151
|
Pickett CL, Kornfeld K. Age-related degeneration of the egg-laying system promotes matricidal hatching in Caenorhabditis elegans. Aging Cell 2013; 12:544-53. [PMID: 23551912 PMCID: PMC4020343 DOI: 10.1111/acel.12079] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2013] [Indexed: 11/29/2022] Open
Abstract
The identification and characterization of age-related degenerative changes is a critical goal because it can elucidate mechanisms of aging biology and contribute to understanding interventions that promote longevity. Here, we document a novel, age-related degenerative change in C. elegans hermaphrodites, an important model system for the genetic analysis of longevity. Matricidal hatching--intra-uterine hatching of progeny that causes maternal death--displayed an age-related increase in frequency and affected ~70% of mated, wild-type hermaphrodites. The timing and incidence of matricidal hatching were largely independent of the levels of early and total progeny production and the duration of male exposure. Thus, matricidal hatching appears to reflect intrinsic age-related degeneration of the egg-laying system rather than use-dependent damage accumulation. Consistent with this model, mutations that extend longevity by causing dietary restriction significantly delayed matricidal hatching, indicating age-related degeneration of the egg-laying system is controlled by nutrient availability. To identify the underlying tissue defect, we analyzed serotonin signaling that triggers vulval muscle contractions. Mated hermaphrodites displayed an age-related decline in the ability to lay eggs in response to exogenous serotonin, indicating that vulval muscles and/or a further downstream function that is necessary for egg laying degenerate in an age-related manner. By characterizing a new, age-related degenerative event displayed by C. elegans hermaphrodites, these studies contribute to understanding a frequent cause of death in mated hermaphrodites and establish a model of age-related reproductive complications that may be relevant to the birthing process in other animals such as humans.
Collapse
Affiliation(s)
| | - Kerry Kornfeld
- Corresponding Author: Department of Developmental Biology, 660 South Euclid Ave., Campus Box 8103, Washington University School of Medicine, St. Louis, MO 63110, Telephone: (314) 747-1480, Fax: (314) 362-7058,
| |
Collapse
|
152
|
Sim C, Denlinger DL. Insulin signaling and the regulation of insect diapause. Front Physiol 2013; 4:189. [PMID: 23885240 PMCID: PMC3717507 DOI: 10.3389/fphys.2013.00189] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/30/2013] [Indexed: 01/22/2023] Open
Abstract
A rich chapter in the history of insect endocrinology has focused on hormonal control of diapause, especially the major roles played by juvenile hormones (JHs), ecdysteroids, and the neuropeptides that govern JH and ecdysteroid synthesis. More recently, experiments with adult diapause in Drosophila melanogaster and the mosquito Culex pipiens, and pupal diapause in the flesh fly Sarcophaga crassipalpis provide strong evidence that insulin signaling is also an important component of the regulatory pathway leading to the diapause phenotype. Insects produce many different insulin-like peptides (ILPs), and not all are involved in the diapause response; ILP-1 appears to be the one most closely linked to diapause in C. pipiens. Many steps in the pathway leading from perception of daylength (the primary environmental cue used to program diapause) to generation of the diapause phenotype remain unknown, but the role for insulin signaling in mosquito diapause appears to be upstream of JH, as evidenced by the fact that application of exogenous JH can rescue the effects of knocking down expression of ILP-1 or the Insulin Receptor. Fat accumulation, enhancement of stress tolerance, and other features of the diapause phenotype are likely linked to the insulin pathway through the action of a key transcription factor, FOXO. This review highlights many parallels for the role of insulin signaling as a regulator in insect diapause and dauer formation in the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Cheolho Sim
- Department of Biology, Baylor University Waco, TX, USA
| | | |
Collapse
|
153
|
Bai X, Adams BJ, Ciche TA, Clifton S, Gaugler R, Kim KS, Spieth J, Sternberg PW, Wilson RK, Grewal PS. A lover and a fighter: the genome sequence of an entomopathogenic nematode Heterorhabditis bacteriophora. PLoS One 2013; 8:e69618. [PMID: 23874975 PMCID: PMC3715494 DOI: 10.1371/journal.pone.0069618] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022] Open
Abstract
Heterorhabditis bacteriophora are entomopathogenic nematodes that have evolved a mutualism with Photorhabdus luminescens bacteria to function as highly virulent insect pathogens. The nematode provides a safe harbor for intestinal symbionts in soil and delivers the symbiotic bacteria into the insect blood. The symbiont provides virulence and toxins, metabolites essential for nematode reproduction, and antibiotic preservation of the insect cadaver. Approximately half of the 21,250 putative protein coding genes identified in the 77 Mbp high quality draft H. bacteriophora genome sequence were novel proteins of unknown function lacking homologs in Caenorhabditis elegans or any other sequenced organisms. Similarly, 317 of the 603 predicted secreted proteins are novel with unknown function in addition to 19 putative peptidases, 9 peptidase inhibitors and 7 C-type lectins that may function in interactions with insect hosts or bacterial symbionts. The 134 proteins contained mariner transposase domains, of which there are none in C. elegans, suggesting an invasion and expansion of mariner transposons in H. bacteriophora. Fewer Kyoto Encyclopedia of Genes and Genomes Orthologies in almost all metabolic categories were detected in the genome compared with 9 other sequenced nematode genomes, which may reflect dependence on the symbiont or insect host for these functions. The H. bacteriophora genome sequence will greatly facilitate genetics, genomics and evolutionary studies to gain fundamental knowledge of nematode parasitism and mutualism. It also elevates the utility of H. bacteriophora as a bridge species between vertebrate parasitic nematodes and the C. elegans model.
Collapse
Affiliation(s)
- Xiaodong Bai
- Department of Entomology, The Ohio State University - OARDC, Wooster, Ohio, United States of America
| | - Byron J. Adams
- Department of Biology and Evolutionary Ecology Laboratories, Brigham Young University, Provo, Utah, United States of America
| | - Todd A. Ciche
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sandra Clifton
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America
- Genome Institute, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Randy Gaugler
- Department of Entomology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Kwi-suk Kim
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - John Spieth
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America
- Genome Institute, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Paul W. Sternberg
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Richard K. Wilson
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America
- Genome Institute, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Parwinder S. Grewal
- Department of Entomology, The Ohio State University - OARDC, Wooster, Ohio, United States of America
- * E-mail:
| |
Collapse
|
154
|
Molecular characterisation of the recovery process in the entomopathogenic nematode Heterorhabditis bacteriophora. Int J Parasitol 2013; 43:843-52. [PMID: 23806512 DOI: 10.1016/j.ijpara.2013.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 11/21/2022]
Abstract
In Heterorhabditis bacteriophora, an insect-parasitic nematode, the third juvenile is the infective, developmentally arrested form. When it infects a suitable host, the infective juvenile recovers from developmental arrest and resumes growth and development. This process is called recovery and it is the first outcome of the host-parasite interaction. Recovery is also very important from a commercial point of view. To characterise the recovery in H. bacteriophora, we sought to identify genes involved in this process. A large-scale bioassay for recovery was established and subtraction libraries of recovering infective juvenile from arrested infective juvenile transcripts were constructed at different time points. Most of the genes identified as differentially expressed between recovering and developmentally arrested infective juveniles belonged to metabolic pathways. Elevated expression levels of 23 selected genes during recovery were confirmed by quantitative PCR. For eight of these genes, transcription silencing in H. bacteriophora resulted in a significant decline in infective juvenile recovery rates, suggesting that these genes are critical to the recovery process. Two of the genes were associated with the insulin-like growth factor-1 (insulin/IGF-1) pathway, known to regulate dauer formation in the free-living nematode Caenorhabditis elegans, whereas the other six genes were associated with pathways not previously associated with recovery in nematodes. These results suggest that although little is known about parasitism-unique genes, the pathways regulating recovery in H. bacteriophora include those activated in C. elegans and those that might be unique to parasitic nematodes; the latter may be activated in response to host signals and enable the parasite to recognise its host.
Collapse
|
155
|
Hung WL, Hwang C, Gao S, Liao EH, Chitturi J, Wang Y, Li H, Stigloher C, Bessereau JL, Zhen M. Attenuation of insulin signalling contributes to FSN-1-mediated regulation of synapse development. EMBO J 2013; 32:1745-60. [PMID: 23665919 DOI: 10.1038/emboj.2013.91] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 03/27/2013] [Indexed: 01/07/2023] Open
Abstract
A neuronal F-box protein FSN-1 regulates Caenorhabditis elegans neuromuscular junction development by negatively regulating DLK-mediated MAPK signalling. In the present study, we show that attenuation of insulin/IGF signalling also contributes to FSN-1-dependent synaptic development and function. The aberrant synapse morphology and synaptic transmission in fsn-1 mutants are partially and specifically rescued by reducing insulin/IGF-signalling activity in postsynaptic muscles, as well as by reducing the activity of EGL-3, a prohormone convertase that processes agonistic insulin/IGF ligands INS-4 and INS-6, in neurons. FSN-1 interacts with, and potentiates the ubiquitination of EGL-3 in vitro, and reduces the EGL-3 level in vivo. We propose that FSN-1 may negatively regulate insulin/IGF signalling, in part, through EGL-3-dependent insulin-like ligand processing.
Collapse
Affiliation(s)
- Wesley L Hung
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Hall SE, Chirn GW, Lau NC, Sengupta P. RNAi pathways contribute to developmental history-dependent phenotypic plasticity in C. elegans. RNA (NEW YORK, N.Y.) 2013; 19:306-319. [PMID: 23329696 PMCID: PMC3677242 DOI: 10.1261/rna.036418.112] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/26/2012] [Indexed: 05/30/2023]
Abstract
Early environmental experiences profoundly influence adult phenotypes through complex mechanisms that are poorly understood. We previously showed that adult Caenorhabditis elegans that transiently passed through the stress-induced dauer larval stage (post-dauer adults) exhibit significant changes in gene expression profiles, chromatin states, and life history traits when compared with adults that bypassed the dauer stage (control adults). These wild-type, isogenic animals of equivalent developmental stages exhibit different signatures of molecular marks that reflect their distinct developmental trajectories. To gain insight into the mechanisms that contribute to these developmental history-dependent phenotypes, we profiled small RNAs from post-dauer and control adults by deep sequencing. RNA interference (RNAi) pathways are known to regulate genome-wide gene expression both at the chromatin and post-transcriptional level. By quantifying changes in endogenous small interfering RNA (endo-siRNA) levels in post-dauer as compared with control animals, our analyses identified a subset of genes that are likely targets of developmental history-dependent reprogramming through a complex RNAi-mediated mechanism. Mutations in specific endo-siRNA pathways affect expected gene expression and chromatin state changes for a subset of genes in post-dauer animals, as well as disrupt their increased brood size phenotype. We also find that both chromatin state and endo-siRNA distribution in dauers are unique, and suggest that remodeling in dauers provides a template for the subsequent establishment of adult post-dauer profiles. Our results indicate a role for endo-siRNA pathways as a contributing mechanism to early experience-dependent phenotypic plasticity in adults, and describe how developmental history can program adult physiology and behavior via epigenetic mechanisms.
Collapse
Affiliation(s)
- Sarah E. Hall
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Gung-Wei Chirn
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Nelson C. Lau
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
157
|
Broekhuis JR, Rademakers S, Burghoorn J, Jansen G. SQL-1, homologue of the Golgi protein GMAP210, modulates intraflagellar transport in C. elegans. J Cell Sci 2013; 126:1785-95. [PMID: 23444385 DOI: 10.1242/jcs.116640] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary cilia are microtubule-based organelles that have important sensory functions. For their function, cilia rely on the delivery of specific proteins, both by intracellular trafficking and intraflagellar transport (IFT). In the cilia of Caenorhabditis elegans, anterograde IFT is mediated by kinesin-II and OSM-3. Previously, we have shown that expression of a dominant active G protein α subunit (GPA-3QL) in amphid channel neurons affects the coordination of kinesin-II and OSM-3 and also affects cilia length, suggesting that environmental signals can modulate these processes. Here, we show that loss-of-function of sql-1 (suppressor of gpa-3QL 1), which encodes the homologue of the mammalian Golgi protein GMAP210, suppresses the gpa-3QL cilia length phenotype. SQL-1 localizes to the Golgi apparatus, where it contributes to maintaining Golgi organization. Loss of sql-1 by itself does not affect cilia length, whereas overexpression of sql-1 results in longer cilia. Using live imaging of fluorescently tagged IFT proteins, we show that in sql-1 mutants OSM-3 moves faster, kinesin-II moves slower and that some complex A and B proteins move at an intermediate velocity, while others move at the same velocity as OSM-3. This indicates that mutation of sql-1 destabilizes the IFT complex. Finally, we show that simultaneous inactivation of sql-1 and activation of gpa-3QL affects the velocity of OSM-3. In summary, we show that in C. elegans the Golgin protein SQL-1 plays an important role in maintaining the stability of the IFT complex.
Collapse
Affiliation(s)
- Joost R Broekhuis
- Department of Cell Biology, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
158
|
Wang X, Tang L, Xia Y, Hu L, Feng X, Du W, Liu BF. Stress response ofCaenorhabditis elegansinduced by space crowding in a micro-column array chip. Integr Biol (Camb) 2013; 5:728-37. [DOI: 10.1039/c3ib20289e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Xixian Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China. Fax: +86-27-87792170; Tel: +86-27-87792203
| | - Lichun Tang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China. Fax: +86-27-87792170; Tel: +86-27-87792203
| | - Yuyang Xia
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China. Fax: +86-27-87792170; Tel: +86-27-87792203
| | - Liang Hu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China. Fax: +86-27-87792170; Tel: +86-27-87792203
| | - Xiaojun Feng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China. Fax: +86-27-87792170; Tel: +86-27-87792203
| | - Wei Du
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China. Fax: +86-27-87792170; Tel: +86-27-87792203
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China. Fax: +86-27-87792170; Tel: +86-27-87792203
| |
Collapse
|
159
|
Kim KY, Joo HJ, Kwon HW, Kim H, Hancock WS, Paik YK. Development of a Method to Quantitate Nematode Pheromone for Study of Small-Molecule Metabolism in Caenorhabditis elegans. Anal Chem 2013; 85:2681-8. [DOI: 10.1021/ac4001964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | | | - William S. Hancock
- Barnett Institute, Department
of Chemistry, Northeastern University,
Boston, Massachusetts, United States
| | | |
Collapse
|
160
|
Physiological control of germline development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:101-31. [PMID: 22872476 DOI: 10.1007/978-1-4614-4015-4_5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The intersection between developmental programs and environmental conditions that alter physiology is a growing area of research interest. The C. elegans germ line is emerging as a particularly sensitive and powerful model for these studies. The germ line is subject to environmentally regulated diapause points that allow worms to withstand harsh conditions both prior to and after reproduction commences. It also responds to more subtle changes in physiological conditions. Recent studies demonstrate that different aspects of germ line development are sensitive to environmental and physiological changes and that conserved signaling pathways such as the AMPK, Insulin/IGF, TGFβ, and TOR-S6K, and nuclear hormone receptor pathways mediate this sensitivity. Some of these pathways genetically interact with but appear distinct from previously characterized mechanisms of germline cell fate control such as Notch signaling. Here, we review several aspects of hermaphrodite germline development in the context of "feasting," "food-limited," and "fasting" conditions. We also consider connections between lifespan, metabolism and the germ line, and we comment on special considerations for examining germline development under altered environmental and physiological conditions. Finally, we summarize the major outstanding questions in the field.
Collapse
|
161
|
Neal SJ, Kim K, Sengupta P. Quantitative assessment of pheromone-induced Dauer formation in Caenorhabditis elegans. Methods Mol Biol 2013; 1068:273-83. [PMID: 24014369 DOI: 10.1007/978-1-62703-619-1_20] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Environmental conditions experienced during early larval stages dictate the developmental trajectory of the nematode C. elegans. Favorable conditions such as low population density, abundant food, and lower temperatures allow reproductive growth, while stressful conditions promote entry of second-stage (L2) larvae into the alternate dauer developmental stage. Population density is signaled by the concentration and composition of a complex mixture of small molecules that is produced by all stages of animals, and is collectively referred to as dauer pheromone; pheromone concentration is a major trigger for dauer formation. Here, we describe a quantitative dauer formation assay that provides a measure of the potency of single or mixtures of pheromone components in regulating this critical developmental decision.
Collapse
Affiliation(s)
- Scott J Neal
- Department of Biology, Brandeis University, Waltham, MA, USA
| | | | | |
Collapse
|
162
|
Stoltzfus JD, Minot S, Berriman M, Nolan TJ, Lok JB. RNAseq analysis of the parasitic nematode Strongyloides stercoralis reveals divergent regulation of canonical dauer pathways. PLoS Negl Trop Dis 2012; 6:e1854. [PMID: 23145190 PMCID: PMC3493385 DOI: 10.1371/journal.pntd.0001854] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/26/2012] [Indexed: 01/25/2023] Open
Abstract
The infectious form of many parasitic nematodes, which afflict over one billion people globally, is a developmentally arrested third-stage larva (L3i). The parasitic nematode Strongyloides stercoralis differs from other nematode species that infect humans, in that its life cycle includes both parasitic and free-living forms, which can be leveraged to investigate the mechanisms of L3i arrest and activation. The free-living nematode Caenorhabditis elegans has a similar developmentally arrested larval form, the dauer, whose formation is controlled by four pathways: cyclic GMP (cGMP) signaling, insulin/IGF-1-like signaling (IIS), transforming growth factor β (TGFβ) signaling, and biosynthesis of dafachronic acid (DA) ligands that regulate a nuclear hormone receptor. We hypothesized that homologous pathways are present in S. stercoralis, have similar developmental regulation, and are involved in L3i arrest and activation. To test this, we undertook a deep-sequencing study of the polyadenylated transcriptome, generating over 2.3 billion paired-end reads from seven developmental stages. We constructed developmental expression profiles for S. stercoralis homologs of C. elegans dauer genes identified by BLAST searches of the S. stercoralis genome as well as de novo assembled transcripts. Intriguingly, genes encoding cGMP pathway components were coordinately up-regulated in L3i. In comparison to C. elegans, S. stercoralis has a paucity of genes encoding IIS ligands, several of which have abundance profiles suggesting involvement in L3i development. We also identified seven S. stercoralis genes encoding homologs of the single C. elegans dauer regulatory TGFβ ligand, three of which are only expressed in L3i. Putative DA biosynthetic genes did not appear to be coordinately regulated in L3i development. Our data suggest that while dauer pathway genes are present in S. stercoralis and may play a role in L3i development, there are significant differences between the two species. Understanding the mechanisms governing L3i development may lead to novel treatment and control strategies. Parasitic nematodes infect over one billion people worldwide and cause many diseases, including strongyloidiasis, filariasis, and hookworm disease. For many of these parasites, including Strongyloides stercoralis, the infectious form is a developmentally arrested and long-lived thirdstage larva (L3i). Upon encountering a host, L3i quickly resume development and mature into parasitic adults. In the free-living nematode Caenorhabditis elegans, a similar developmentally arrested third-stage larva, known as the dauer, is regulated by four key cellular mechanisms. We hypothesized that similar cellular mechanisms control L3i arrest and activation. Therefore, we used deep-sequencing technology to characterize the S. stercoralis transcriptome (RNAseq), which allowed us to identify S. stercoralis homologs of components of these four mechanisms and examine their temporal regulation. We found similar temporal regulation between S. stercoralis and C. elegans for components of two mechanisms, but dissimilar temporal regulation for two others, suggesting conserved as well as novel modes of developmental regulation for L3i. Understanding L3i development may lead to novel control strategies as well as new treatments for strongyloidiasis and other diseases caused by parasitic nematodes.
Collapse
Affiliation(s)
- Jonathan D. Stoltzfus
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Samuel Minot
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Thomas J. Nolan
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - James B. Lok
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
163
|
Stoltzfus JD, Massey HC, Nolan TJ, Griffith SD, Lok JB. Strongyloides stercoralis age-1: a potential regulator of infective larval development in a parasitic nematode. PLoS One 2012; 7:e38587. [PMID: 22701676 PMCID: PMC3368883 DOI: 10.1371/journal.pone.0038587] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/11/2012] [Indexed: 01/13/2023] Open
Abstract
Infective third-stage larvae (L3i) of the human parasite Strongyloides stercoralis share many morphological, developmental, and behavioral attributes with Caenorhabditis elegans dauer larvae. The ‘dauer hypothesis’ predicts that the same molecular genetic mechanisms control both dauer larval development in C. elegans and L3i morphogenesis in S. stercoralis. In C. elegans, the phosphatidylinositol-3 (PI3) kinase catalytic subunit AGE-1 functions in the insulin/IGF-1 signaling (IIS) pathway to regulate formation of dauer larvae. Here we identify and characterize Ss-age-1, the S. stercoralis homolog of the gene encoding C. elegans AGE-1. Our analysis of the Ss-age-1 genomic region revealed three exons encoding a predicted protein of 1,209 amino acids, which clustered with C. elegans AGE-1 in phylogenetic analysis. We examined temporal patterns of expression in the S. stercoralis life cycle by reverse transcription quantitative PCR and observed low levels of Ss-age-1 transcripts in all stages. To compare anatomical patterns of expression between the two species, we used Ss-age-1 or Ce-age-1 promoter::enhanced green fluorescent protein reporter constructs expressed in transgenic animals for each species. We observed conservation of expression in amphidial neurons, which play a critical role in developmental regulation of both dauer larvae and L3i. Application of the PI3 kinase inhibitor LY294002 suppressed L3i in vitro activation in a dose-dependent fashion, with 100 µM resulting in a 90% decrease (odds ratio: 0.10, 95% confidence interval: 0.08–0.13) in the odds of resumption of feeding for treated L3i in comparison to the control. Together, these data support the hypothesis that Ss-age-1 regulates the development of S. stercoralis L3i via an IIS pathway in a manner similar to that observed in C. elegans dauer larvae. Understanding the mechanisms by which infective larvae are formed and activated may lead to novel control measures and treatments for strongyloidiasis and other soil-transmitted helminthiases.
Collapse
Affiliation(s)
- Jonathan D. Stoltzfus
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Holman C. Massey
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Thomas J. Nolan
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sandra D. Griffith
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - James B. Lok
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
164
|
Kaplan F, Alborn HT, von Reuss SH, Ajredini R, Ali JG, Akyazi F, Stelinski LL, Edison AS, Schroeder FC, Teal PE. Interspecific nematode signals regulate dispersal behavior. PLoS One 2012; 7:e38735. [PMID: 22701701 PMCID: PMC3368880 DOI: 10.1371/journal.pone.0038735] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/09/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Dispersal is an important nematode behavior. Upon crowding or food depletion, the free living bacteriovorus nematode Caenorhabditis elegans produces stress resistant dispersal larvae, called dauer, which are analogous to second stage juveniles (J2) of plant parasitic Meloidogyne spp. and infective juveniles (IJ)s of entomopathogenic nematodes (EPN), e.g., Steinernema feltiae. Regulation of dispersal behavior has not been thoroughly investigated for C. elegans or any other nematode species. Based on the fact that ascarosides regulate entry in dauer stage as well as multiple behaviors in C. elegans adults including mating, avoidance and aggregation, we hypothesized that ascarosides might also be involved in regulation of dispersal behavior in C. elegans and for other nematodes such as IJ of phylogenetically related EPNs. METHODOLOGY/PRINCIPAL FINDINGS Liquid chromatography-mass spectrometry analysis of C. elegans dauer conditioned media, which shows strong dispersing activity, revealed four known ascarosides (ascr#2, ascr#3, ascr#8, icas#9). A synthetic blend of these ascarosides at physiologically relevant concentrations dispersed C. elegans dauer in the presence of food and also caused dispersion of IJs of S. feltiae and J2s of plant parasitic Meloidogyne spp. Assay guided fractionation revealed structural analogs as major active components of the S. feltiae (ascr#9) and C. elegans (ascr#2) dispersal blends. Further analysis revealed ascr#9 in all Steinernema spp. and Heterorhabditis spp. infected insect host cadavers. CONCLUSIONS/SIGNIFICANCE Ascaroside blends represent evolutionarily conserved, fundamentally important communication systems for nematodes from diverse habitats, and thus may provide sustainable means for control of parasitic nematodes.
Collapse
Affiliation(s)
- Fatma Kaplan
- Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Gainesville, Florida, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
|
166
|
Choe A, von Reuss SH, Kogan D, Gasser RB, Platzer EG, Schroeder FC, Sternberg PW. Ascaroside signaling is widely conserved among nematodes. Curr Biol 2012; 22:772-80. [PMID: 22503501 DOI: 10.1016/j.cub.2012.03.024] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/16/2012] [Accepted: 03/12/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Nematodes are among the most successful animals on earth and include important human pathogens, yet little is known about nematode pheromone systems. A group of small molecules called ascarosides has been found to mediate mate finding, aggregation, and developmental diapause in Caenorhabditis elegans, but it is unknown whether ascaroside signaling exists outside of the genus Caenorhabditis. RESULTS To determine whether ascarosides are used as signaling molecules by other nematode species, we performed a mass spectrometry-based screen for ascarosides in secretions from a variety of both free-living and parasitic (plant, insect, and animal) nematodes. We found that most of the species analyzed, including nematodes from several different clades, produce species-specific ascaroside mixtures. In some cases, ascaroside biosynthesis patterns appear to correlate with phylogeny, whereas in other cases, biosynthesis seems to correlate with lifestyle and ecological niche. We further show that ascarosides mediate distinct nematode behaviors, such as retention, avoidance, and long-range attraction, and that different nematode species respond to distinct, but overlapping, sets of ascarosides. CONCLUSIONS Our findings indicate that nematodes utilize a conserved family of signaling molecules despite having evolved to occupy diverse ecologies. Their structural features and level of conservation are evocative of bacterial quorum sensing, where acyl homoserine lactones (AHLs) are both produced and sensed by many species of gram-negative bacteria. The identification of species-specific ascaroside profiles may enable pheromone-based approaches to interfere with reproduction and survival of parasitic nematodes, which are responsible for significant agricultural losses and many human diseases worldwide.
Collapse
Affiliation(s)
- Andrea Choe
- Howard Hughes Medical Institute and Biology Division, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | | | | | | | | | | | | |
Collapse
|
167
|
Abstract
Larvae of the nematode Caenorhabditis elegans must choose between reproductive development and dauer diapause. This decision is based on sensing of environmental inputs and dauer pheromone, a small molecule signal that serves to monitor population density. These signals are integrated via conserved neuroendocrine pathways that converge on steroidal ligands of the nuclear receptor DAF-12, a homolog of the mammalian vitamin D receptor and liver X receptor. DAF-12 acts as the main switch between gene expression programs that drive either reproductive development or dauer entry. Extensive studies in the past two decades demonstrated that biosynthesis of two bile acid-like DAF-12 ligands, named dafachronic acids (DA), controls developmental fate. In this issue of PLoS Biology, Wollam et al. showed that a conserved steroid-modifying enzyme, DHS-16, introduces a key feature in the structures of the DAF-12 ligands, closing a major gap in the DA biosynthesis pathway. The emerging picture of DA biosynthesis in C. elegans enables us to address a key question in the field: how are complex environmental signals integrated to enforce binary, organism-wide decisions on developmental fate? Schaedel et al. demonstrated that pheromone and DA serve as competing signals, and that a positive feedback loop based on regulation of DA biosynthesis ensures organism-wide commitment to reproductive development. Considering that many components of DA signaling are highly conserved, ongoing studies in C. elegans may reveal new aspects of bile acid function and lifespan regulation in mammals.
Collapse
Affiliation(s)
- Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail: (SSL); (FCS)
| | - Frank C. Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail: (SSL); (FCS)
| |
Collapse
|
168
|
Abstract
Phenotypic plasticity refers to the ability of an organism to adopt different phenotypes depending on environmental conditions. In animals and plants, the progression of juvenile development and the formation of dormant stages are often associated with phenotypic plasticity, indicating the importance of phenotypic plasticity for life-history theory. Phenotypic plasticity has long been emphasized as a crucial principle in ecology and as facilitator of phenotypic evolution. In nematodes, several examples of phenotypic plasticity have been studied at the genetic and developmental level. In addition, the influence of different environmental factors has been investigated under laboratory conditions. These studies have provided detailed insight into the molecular basis of phenotypic plasticity and its ecological and evolutionary implications. Here, we review recent studies on the formation of dauer larvae in Caenorhabditis elegans, the evolution of nematode parasitism and the generation of a novel feeding trait in Pristionchus pacificus. These examples reveal a conserved and co-opted role of an endocrine signaling module involving the steroid hormone dafachronic acid. We will discuss how hormone signaling might facilitate life-history and morphological evolution.
Collapse
|
169
|
Stasiuk SJ, Scott MJ, Grant WN. Developmental plasticity and the evolution of parasitism in an unusual nematode, Parastrongyloides trichosuri. EvoDevo 2012; 3:1. [PMID: 22214222 PMCID: PMC3293006 DOI: 10.1186/2041-9139-3-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 01/03/2012] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Parasitism is an important life history strategy in many metazoan taxa. This is particularly true of the Phylum Nematoda, in which parasitism has evolved independently at least nine times. The apparent ease with which parasitism has evolved amongst nematodes may, in part, be due to a feature of nematode development acting as a pre-adaptation for the transition from a free-living to a parasitic life history. One candidate pre-adaptive feature for evolution in terrestrial nematodes is the dauer larva, a developmentally arrested morph formed in response to environmental signals. RESULTS We investigated the role of dauer development in the nematode, Parastrongyloides trichosuri, which has retained a complete free-living life cycle in addition to a life cycle as a mammalian gastrointestinal parasite. We show that the developmental switch between these life histories is sensitive to the same environmental cues as dauer arrest in free-living nematodes, including sensitivity to a chemical cue produced by the free-living stages. Furthermore, we show that genetic variation for the sensitivity of the cue(s) exists in natural populations of P. trichosuri, such that we derived inbred lines that were largely insensitive to the cue and other lines that were supersensitive to the cue. CONCLUSIONS For this parasitic clade, and perhaps more widely in the phylum, the evolution of parasitism co-opted the dauer switch of a free-living ancestor. This lends direct support to the hypothesis that the switch to developmental arrest in the dauer larva acted as a pre-adaptation for the evolution of parasitism, and suggests that the sensory transduction machinery downstream of the cue may have been similarly co-opted and modified.
Collapse
Affiliation(s)
- Susan J Stasiuk
- AgResearch Limited, Hopkirk Research Institute, Private Bag 11008, Palmerston North, New Zealand
- University of Calgary, Department of Comparative Biology and Experimental Medicine, Calgary, T2N 4N1 Alberta, Canada
| | - Maxwell J Scott
- North Carolina State University, Department of Genetics, Campus Box 7614 Raleigh, 27695-7614, USA
| | - Warwick N Grant
- AgResearch Limited, Hopkirk Research Institute, Private Bag 11008, Palmerston North, New Zealand
- La Trobe University, Genetics Department, Bundoora, 3086 Victoria, Australia
| |
Collapse
|
170
|
Chung K, Zhan M, Srinivasan J, Sternberg PW, Gong E, Schroeder FC, Lu H. Microfluidic chamber arrays for whole-organism behavior-based chemical screening. LAB ON A CHIP 2011; 11:3689-3697. [PMID: 21935539 PMCID: PMC3924777 DOI: 10.1039/c1lc20400a] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The nematode Caenorhabditis elegans is an important model organism in genetic research and drug screening because of its relative simplicity, ease of maintenance, amenability to simple genetic manipulation, and relevance to human biology. However, their small size and mobility make nematodes difficult to physically manipulate, particularly with spatial and temporal precision. We have developed a microfluidic device to overcome these challenges and enable fast behavior-based chemical screening in C. elegans. The key components of this easy-to-use device allow rapid loading and housing of C. elegans in a chamber array for chemical screening. A simple two-step loading process enables simultaneous loading of a large number of animals within a few minutes without using any expensive/active off-chip components. In addition, chemicals can be precisely delivered to the worms and exchanged with high temporal precision. To demonstrate this feature and the ability to measure time dependent responses to chemicals, we characterize the transient response of worms exposed to different concentrations of anesthetics. We then use the device to study the effect of chemical signals from hermaphrodite worms on male behavior. The ability of the device to maintain a large number of free moving animals in one field of view over a long period of time permits us to demonstrate an increase in the incidence of a specific behavior in males subjected to worm-conditioned medium. Because our device allows monitoring of a large number of worms with single-animal resolution, we envision that this platform will greatly expedite chemical screening in C. elegans.
Collapse
Affiliation(s)
- Kwanghun Chung
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr, NW, Atlanta, GA, 30332-0100, USA
| | - Mei Zhan
- Interdisciplinary Program of Bioengineering, Georgia Institute of Technology, 311 Ferst Dr, NW, Atlanta, GA, 30332-0100, USA
| | - Jagan Srinivasan
- MC156-29, Biology Division, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125, USA
| | - Paul W. Sternberg
- MC156-29, Biology Division, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125, USA
| | - Emily Gong
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr, NW, Atlanta, GA, 30332-0100, USA
| | - Frank C. Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr, NW, Atlanta, GA, 30332-0100, USA
- Interdisciplinary Program of Bioengineering, Georgia Institute of Technology, 311 Ferst Dr, NW, Atlanta, GA, 30332-0100, USA
- ; Fax: +1-404-894-8473; Tel: +1-404-894-8473
| |
Collapse
|
171
|
McGrath PT, Xu Y, Ailion M, Garrison JL, Butcher RA, Bargmann CI. Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes. Nature 2011; 477:321-5. [PMID: 21849976 PMCID: PMC3257054 DOI: 10.1038/nature10378] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 07/20/2011] [Indexed: 11/15/2022]
Abstract
Evolution can follow predictable genetic trajectories1, indicating that discrete environmental shifts can select for reproducible genetic changes2-4. Conspecific individuals are an important feature of an animal's environment, and a potential source of selective pressures. We show here that adaptation of two Caenorhabditis species to growth at high density, a feature common to domestic environments, occurs by reproducible genetic changes to pheromone receptor genes. Chemical communication through pheromones that accumulate during high-density growth causes young nematode larvae to enter the long-lived but non-reproductive dauer stage. Two strains of Caenorhabditis elegans grown at high density have independently acquired multigenic resistance to pheromone-induced dauer formation. In each strain, resistance to the pheromone ascaroside C3 results from a deletion that disrupts the adjacent chemoreceptor genes serpentine receptor class g (srg)-36 and -37. Through misexpression experiments, we show that these genes encode redundant G protein-coupled receptors for ascaroside C3. Multigenic resistance to dauer formation has also arisen in high-density cultures of a different nematode species, Caenorhabditis briggsae, resulting in part from deletion of an srg gene paralogous to srg-36 and srg-37. These results demonstrate rapid remodeling of the chemoreceptor repertoire as an adaptation to specific environments, and indicate that parallel changes to a common genetic substrate can affect life history traits across species.
Collapse
Affiliation(s)
- Patrick T McGrath
- Howard Hughes Medical Institute, Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
172
|
Linford NJ, Kuo TH, Chan TP, Pletcher SD. Sensory perception and aging in model systems: from the outside in. Annu Rev Cell Dev Biol 2011; 27:759-85. [PMID: 21756108 DOI: 10.1146/annurev-cellbio-092910-154240] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sensory systems provide organisms from bacteria to humans with the ability to interact with the world. Numerous senses have evolved that allow animals to detect and decode cues from sources in both their external and internal environments. Recent advances in understanding the central mechanisms by which the brains of simple organisms evaluate different cues and initiate behavioral decisions, coupled with observations that sensory manipulations are capable of altering organismal lifespan, have opened the door for powerful new research into aging. Although direct links between sensory perception and aging have been established only recently, here we discuss these initial discoveries and evaluate the potential for different forms of sensory processing to modulate lifespan across taxa. Harnessing the neurobiology of simple model systems to study the biological impact of sensory experiences will yield insights into the broad influence of sensory perception in mammals and may help uncover new mechanisms of healthy aging.
Collapse
Affiliation(s)
- Nancy J Linford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | |
Collapse
|
173
|
Cornils A, Gloeck M, Chen Z, Zhang Y, Alcedo J. Specific insulin-like peptides encode sensory information to regulate distinct developmental processes. Development 2011; 138:1183-93. [PMID: 21343369 DOI: 10.1242/dev.060905] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An insulin-like signaling pathway mediates the environmental influence on the switch between the C. elegans developmental programs of reproductive growth versus dauer arrest. However, the specific role of endogenous insulin-like peptide (ILP) ligands in mediating the switch between these programs remains unknown. C. elegans has 40 putative insulin-like genes, many of which are expressed in sensory neurons and interneurons, raising the intriguing possibility that ILPs encode different environmental information to regulate the entry into, and exit from, dauer arrest. These two developmental switches can have different regulatory requirements: here we show that the relative importance of three different ILPs varies between dauer entry and exit. Not only do we find that one ILP, ins-1, ensures dauer arrest under harsh environments and that two other ILPs, daf-28 and ins-6, ensure reproductive growth under good conditions, we also show that daf-28 and ins-6 have non-redundant functions in regulating these developmental switches. Notably, daf-28 plays a more primary role in inhibiting dauer entry, whereas ins-6 has a more significant role in promoting dauer exit. Moreover, the switch into dauer arrest surprisingly shifts ins-6 transcriptional expression from a set of dauer-inhibiting sensory neurons to a different set of neurons, where it promotes dauer exit. Together, our data suggest that specific ILPs generate precise responses to dauer-inducing cues, such as pheromones and low food levels, to control development through stimulus-regulated expression in different neurons.
Collapse
Affiliation(s)
- Astrid Cornils
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
174
|
Schultheis C, Liewald JF, Bamberg E, Nagel G, Gottschalk A. Optogenetic long-term manipulation of behavior and animal development. PLoS One 2011; 6:e18766. [PMID: 21533086 PMCID: PMC3080377 DOI: 10.1371/journal.pone.0018766] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 03/17/2011] [Indexed: 11/24/2022] Open
Abstract
Channelrhodopsin-2 (ChR2) is widely used for rapid photodepolarization of neurons, yet, as it requires high-intensity blue light for activation, it is not suited for long-term in vivo applications, e.g. for manipulations of behavior, or photoactivation of neurons during development. We used “slow” ChR2 variants with mutations in the C128 residue, that exhibit delayed off-kinetics and increased light sensitivity in Caenorhabditis elegans. Following a 1 s light pulse, we could photodepolarize neurons and muscles for minutes (and with repeated brief stimulation, up to days) with low-intensity light. Photoactivation of ChR2(C128S) in command interneurons elicited long-lasting alterations in locomotion. Finally, we could optically induce profound changes in animal development: Long-term photoactivation of ASJ neurons, which regulate larval growth, bypassed the constitutive entry into the “dauer” larval state in daf-11 mutants. These lack a guanylyl cyclase, which possibly renders ASJ neurons hyperpolarized. Furthermore, photostimulated ASJ neurons could acutely trigger dauer-exit. Thus, slow ChR2s can be employed to long-term photoactivate behavior and to trigger alternative animal development.
Collapse
Affiliation(s)
- Christian Schultheis
- Institute of Biochemistry, Goethe-University, Frankfurt, Germany
- Frankfurt Institute for Molecular Life Sciences (FMLS), Goethe-University Frankfurt, Frankfurt, Germany
| | - Jana Fiona Liewald
- Institute of Biochemistry, Goethe-University, Frankfurt, Germany
- Frankfurt Institute for Molecular Life Sciences (FMLS), Goethe-University Frankfurt, Frankfurt, Germany
| | - Ernst Bamberg
- Department of Biophysical Chemistry, Max-Planck-Institute of Biophysics, Frankfurt, Germany
| | - Georg Nagel
- Botanik I, University of Würzburg, Würzburg, Germany
| | - Alexander Gottschalk
- Institute of Biochemistry, Goethe-University, Frankfurt, Germany
- Frankfurt Institute for Molecular Life Sciences (FMLS), Goethe-University Frankfurt, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
175
|
Noh K, Park JH, Park JH, Kim M, Jung M, Ha H, Kwon KI, Lee HJ, Kang W. Quantitative determination of daumone in rat plasma by liquid chromatography-mass spectrometry. J Pharm Biomed Anal 2011; 56:114-7. [PMID: 21600719 DOI: 10.1016/j.jpba.2011.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 04/03/2011] [Accepted: 04/10/2011] [Indexed: 10/18/2022]
Abstract
Daumone, 6-(3,5-dihydroxy-6-methyl-tetrahydro-pyran-2-yloxy)-heptanoic acid is a pheromone secreted by Caenorhabditis elegans, and has been known as a pivotal regulator of chemosensory processes in development and ageing. A quantification method using mass spectrometry was developed for the determination of daumone in rat plasma. After simple protein precipitation with acetonitrile including an internal standard, the analytes were chromatographed on a reversed-phase column and detected by liquid chromatography/tandem mass spectrometry with electrospray ionization. The accuracy and precision of the assay were in accordance with FDA regulations for validation of bioanalytical methods. This method was applied to measure the plasma daumone concentrations after a single intravenous administration of daumone in rats.
Collapse
Affiliation(s)
- Keumhan Noh
- College of Pharmacy, Yeungnam University, Kyoungsan, Kyoungbuk 712-749, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Karp X, Hammell M, Ow MC, Ambros V. Effect of life history on microRNA expression during C. elegans development. RNA (NEW YORK, N.Y.) 2011; 17:639-651. [PMID: 21343388 PMCID: PMC3062175 DOI: 10.1261/rna.2310111] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 01/11/2011] [Indexed: 05/30/2023]
Abstract
Animals have evolved mechanisms to ensure the robustness of developmental outcomes to changing environments. MicroRNA expression may contribute to developmental robustness because microRNAs are key post-transcriptional regulators of developmental gene expression and can affect the expression of multiple target genes. Caenorhabditis elegans provides an excellent model to study developmental responses to environmental conditions. In favorable environments, C. elegans larvae develop rapidly and continuously through four larval stages. In contrast, in unfavorable conditions, larval development may be interrupted at either of two diapause stages: The L1 diapause occurs when embryos hatch in the absence of food, and the dauer diapause occurs after the second larval stage in response to environmental stimuli encountered during the first two larval stages. Dauer larvae are stress resistant and long lived, permitting survival in harsh conditions. When environmental conditions improve, dauer larvae re-enter development, and progress through two post-dauer larval stages to adulthood. Strikingly, all of these life history options (whether continuous or interrupted) involve an identical pattern and sequence of cell division and cell fates. To identify microRNAs with potential functions in buffering development in the context of C. elegans life history options, we used multiplex real-time PCR to assess the expression of 107 microRNAs throughout development in both continuous and interrupted life histories. We identified 17 microRNAs whose developmental profile of expression is affected by dauer life history and/or L1 diapause, compared to continuous development. Hence these microRNAs could function to regulate gene expression programs appropriate for different life history options in the developing worm.
Collapse
Affiliation(s)
- Xantha Karp
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
177
|
Gallo M, Park D, Luciani DS, Kida K, Palmieri F, Blacque OE, Johnson JD, Riddle DL. MISC-1/OGC links mitochondrial metabolism, apoptosis and insulin secretion. PLoS One 2011; 6:e17827. [PMID: 21448454 PMCID: PMC3063170 DOI: 10.1371/journal.pone.0017827] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 02/15/2011] [Indexed: 12/21/2022] Open
Abstract
We identified MISC-1 (Mitochondrial Solute Carrier) as the C. elegans orthologue of mammalian OGC (2-oxoglutarate carrier). OGC was originally identified for its ability to transfer α-ketoglutarate across the inner mitochondrial membrane. However, we found that MISC-1 and OGC are not solely involved in metabolic control. Our data show that these orthologous proteins participate in phylogenetically conserved cellular processes, like control of mitochondrial morphology and induction of apoptosis. We show that MISC-1/OGC is required for proper mitochondrial fusion and fission events in both C. elegans and human cells. Transmission electron microscopy reveals that loss of MISC-1 results in a decreased number of mitochondrial cristae, which have a blebbed appearance. Furthermore, our pull-down experiments show that MISC-1 and OGC interact with the anti-apoptotic proteins CED-9 and Bcl-x(L), respectively, and with the pro-apoptotic protein ANT. Knock-down of misc-1 in C. elegans and OGC in mouse cells induces apoptosis through the caspase cascade. Genetic analysis suggests that MISC-1 controls apoptosis through the physiological pathway mediated by the LIN-35/Rb-like protein. We provide genetic and molecular evidence that absence of MISC-1 increases insulin secretion and enhances germline stem cell proliferation in C. elegans. Our study suggests that the mitochondrial metabolic protein MISC-1/OGC integrates metabolic, apoptotic and insulin secretion functions. We propose a novel mechanism by which mitochondria integrate metabolic and cell survival signals. Our data suggest that MISC-1/OGC functions by sensing the metabolic status of mitochondria and directly activate the apoptotic program when required. Our results suggest that controlling MISC-1/OGC function allows regulation of mitochondrial morphology and cell survival decisions by the metabolic needs of the cell.
Collapse
Affiliation(s)
- Marco Gallo
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Kaplan F, Srinivasan J, Mahanti P, Ajredini R, Durak O, Nimalendran R, Sternberg PW, Teal PEA, Schroeder FC, Edison AS, Alborn HT. Ascaroside expression in Caenorhabditis elegans is strongly dependent on diet and developmental stage. PLoS One 2011; 6:e17804. [PMID: 21423575 PMCID: PMC3058051 DOI: 10.1371/journal.pone.0017804] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 02/11/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The ascarosides form a family of small molecules that have been isolated from cultures of the nematode Caenorhabditis elegans. They are often referred to as "dauer pheromones" because most of them induce formation of long-lived and highly stress resistant dauer larvae. More recent studies have shown that ascarosides serve additional functions as social signals and mating pheromones. Thus, ascarosides have multiple functions. Until now, it has been generally assumed that ascarosides are constitutively expressed during nematode development. METHODOLOGY/PRINCIPAL FINDINGS Cultures of C. elegans were developmentally synchronized on controlled diets. Ascarosides released into the media, as well as stored internally, were quantified by LC/MS. We found that ascaroside biosynthesis and release were strongly dependent on developmental stage and diet. The male attracting pheromone was verified to be a blend of at least four ascarosides, and peak production of the two most potent mating pheromone components, ascr#3 and asc#8 immediately preceded or coincided with the temporal window for mating. The concentration of ascr#2 increased under starvation conditions and peaked during dauer formation, strongly supporting ascr#2 as the main population density signal (dauer pheromone). After dauer formation, ascaroside production largely ceased and dauer larvae did not release any ascarosides. These findings show that both total ascaroside production and the relative proportions of individual ascarosides strongly correlate with these compounds' stage-specific biological functions. CONCLUSIONS/SIGNIFICANCE Ascaroside expression changes with development and environmental conditions. This is consistent with multiple functions of these signaling molecules. Knowledge of such differential regulation will make it possible to associate ascaroside production to gene expression profiles (transcript, protein or enzyme activity) and help to determine genetic pathways that control ascaroside biosynthesis. In conjunction with findings from previous studies, our results show that the pheromone system of C. elegans mimics that of insects in many ways, suggesting that pheromone signaling in C. elegans may exhibit functional homology also at the sensory level. In addition, our results provide a strong foundation for future behavioral modeling studies.
Collapse
Affiliation(s)
- Fatma Kaplan
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, Gainesville, Florida, United States of America
| | - Jagan Srinivasan
- Medical Institute and Biology Division, California Institute of Technology, Pasadena, California, United States of America
| | - Parag Mahanti
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Ramadan Ajredini
- Department of Biochemistry and Molecular Biology, High Magnetic Field Laboratory, University of Florida, Gainesville, Florida, United States of America
| | - Omer Durak
- Medical Institute and Biology Division, California Institute of Technology, Pasadena, California, United States of America
| | - Rathika Nimalendran
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Paul W. Sternberg
- Medical Institute and Biology Division, California Institute of Technology, Pasadena, California, United States of America
| | - Peter E. A. Teal
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, Gainesville, Florida, United States of America
| | - Frank C. Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Arthur S. Edison
- Department of Biochemistry and Molecular Biology, High Magnetic Field Laboratory, University of Florida, Gainesville, Florida, United States of America
| | - Hans T. Alborn
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
179
|
Yen K, Narasimhan SD, Tissenbaum HA. DAF-16/Forkhead box O transcription factor: many paths to a single Fork(head) in the road. Antioxid Redox Signal 2011; 14:623-34. [PMID: 20673162 PMCID: PMC3021330 DOI: 10.1089/ars.2010.3490] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Caenorhabditis elegans Forkhead box O transcription factor (FOXO) homolog DAF-16 functions as a central mediator of multiple biological processes such as longevity, development, fat storage, stress resistance, and reproduction. In C. elegans, similar to other systems, DAF-16 functions as the downstream target of a conserved, well-characterized insulin/insulin-like growth factor (IGF)-1 signaling pathway. This cascade is comprised of an insulin/IGF-1 receptor, which signals through a conserved PI 3-kinase/AKT pathway that ultimately downregulates DAF-16/FOXO activity. Importantly, studies have shown that multiple pathways intersect with the insulin/IGF-1 signaling pathway and impinge on DAF-16 for their regulation. Therefore, in C. elegans, the single FOXO family member, DAF-16, integrates signals from several pathways and then regulates its many downstream target genes.
Collapse
Affiliation(s)
- Kelvin Yen
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
180
|
Mayer MG, Sommer RJ. Natural variation in Pristionchus pacificus dauer formation reveals cross-preference rather than self-preference of nematode dauer pheromones. Proc Biol Sci 2011; 278:2784-90. [PMID: 21307052 DOI: 10.1098/rspb.2010.2760] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many free-living nematodes, including the laboratory model organisms Caenorhabditis elegans and Pristionchus pacificus, have a choice between direct and indirect development, representing an important case of phenotypic plasticity. Under harsh environmental conditions, these nematodes form dauer larvae, which arrest development, show high resistance to environmental stress and constitute a dispersal stage. Pristionchus pacificus occurs in a strong association with scarab beetles in the wild and remains in the dauer stage on the living beetle. Here, we explored the circumstances under which P. pacificus enters and exits the dauer stage by using a natural variation approach. The analysis of survival, recovery and fitness after dauer exit of eight P. pacificus strains revealed that dauer larvae can survive for up to 1 year under experimental conditions. In a second experiment, we isolated dauer pheromones from 16 P. pacificus strains, and tested for natural variation in pheromone production and sensitivity in cross-reactivity assays. Surprisingly, 13 of the 16 strains produce a pheromone that induces the highest dauer formation in individuals of other genotypes. These results argue against a simple adaptation model for natural variation in dauer formation and suggest that strains may have evolved to induce dauer formation precociously in other strains in order to reduce the fitness of these strains. We therefore discuss intraspecific competition among genotypes as a previously unconsidered aspect of dauer formation.
Collapse
Affiliation(s)
- Melanie G Mayer
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | | |
Collapse
|
181
|
Lee J, Kim KY, Joo HJ, Kim H, Jeong PY, Paik YK. Methods for Evaluating the Caenorhabditis elegans Dauer State: Standard Dauer-Formation Assay Using Synthetic Daumones and Proteomic Analysis of O-GlcNAc Modifications. Methods Cell Biol 2011; 106:445-60. [PMID: 22118287 DOI: 10.1016/b978-0-12-544172-8.00016-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
182
|
Garrity PA, Goodman MB, Samuel AD, Sengupta P. Running hot and cold: behavioral strategies, neural circuits, and the molecular machinery for thermotaxis in C. elegans and Drosophila. Genes Dev 2010; 24:2365-82. [PMID: 21041406 PMCID: PMC2964747 DOI: 10.1101/gad.1953710] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Like other ectotherms, the roundworm Caenorhabditis elegans and the fruit fly Drosophila melanogaster rely on behavioral strategies to stabilize their body temperature. Both animals use specialized sensory neurons to detect small changes in temperature, and the activity of these thermosensors governs the neural circuits that control migration and accumulation at preferred temperatures. Despite these similarities, the underlying molecular, neuronal, and computational mechanisms responsible for thermotaxis are distinct in these organisms. Here, we discuss the role of thermosensation in the development and survival of C. elegans and Drosophila, and review the behavioral strategies, neuronal circuits, and molecular networks responsible for thermotaxis behavior.
Collapse
Affiliation(s)
- Paul A. Garrity
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
- National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Miriam B. Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, USA
| | - Aravinthan D. Samuel
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
- National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
183
|
Abstract
Caenorhabditis elegans, a free-living soil nematode, is an ideal model system for studying various physiological problems relevant to human diseases. Despite its short history, C. elegans proteomics is receiving great attention in multiple research areas, including the genome annotation, major signaling pathways (e.g. TGF-beta and insulin/IGF-1 signaling), verification of RNA interference-mediated gene targeting, aging, disease models, as well as peptidomic analysis of neuropeptides involved in behavior and locomotion. For example, a proteome-wide profiling of developmental and aging processes not only provides basic information necessary for constructing a molecular network, but also identifies important target proteins for chemical modulation. Although C. elegans has a simple body system and neural circuitry, it exhibits very complicated functions ranging from feeding to locomotion. Investigation of these functions through proteomic analysis of various C. elegans neuropeptides, some of which are not found in the predicted genome sequence, would open a new field of peptidomics. Given the importance of nematode infection in plants and mammalian pathogenesis pathways, proteomics could be applied to investigate the molecular mechanisms underlying plant- or animal-nematode pathogenesis and to identify novel antinematodal drugs. Thus, C. elegans proteomics, in combination of other molecular, biological and genetic techniques, would provide a versatile new tool box for the systematic analysis of gene functions throughout the entire life cycle of this nematode.
Collapse
Affiliation(s)
- Yhong-Hee Shim
- Department of Bioscience and Biotechnology, BMIC, Konkuk University, Gwangjin-Ku, Seoul, Korea
| | | |
Collapse
|
184
|
Kontnik R, Crawford JM, Clardy J. Exploiting a global regulator for small molecule discovery in Photorhabdus luminescens. ACS Chem Biol 2010; 5:659-65. [PMID: 20524642 DOI: 10.1021/cb100117k] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterially produced small molecules demonstrate a remarkable range of structural and functional diversity and include some of our most useful biological probes and therapeutic agents. Annotations of bacterial genomes reveal a large gap between the number of known small molecules and the number of biosynthetic genes/loci that could produce such small molecules, a gap that most likely originates from tight regulatory control by the producing organism. This study coupled a global transcriptional regulator, HexA, to secondary metabolite production in Photorhabdus luminescens, a member of the Gammaproteobacteria that participates in a complex symbiosis with nematode worms and insect larvae. HexA is a LysR-type transcriptional repressor, and knocking it out to create a P. luminescens DeltahexA mutant led to dramatic upregulation of biosynthesized small molecules. Use of this mutant expanded a family of stilbene-derived small molecules, which were known to play important roles in the symbiosis, from three members to at least nine members.
Collapse
Affiliation(s)
- Renee Kontnik
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115
| | - Jason M. Crawford
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115
| |
Collapse
|
185
|
Joo HJ, Kim KY, Yim YH, Jin YX, Kim H, Kim MY, Paik YK. Contribution of the peroxisomal acox gene to the dynamic balance of daumone production in Caenorhabditis elegans. J Biol Chem 2010; 285:29319-25. [PMID: 20610393 DOI: 10.1074/jbc.m110.122663] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dauer pheromones or daumones, which are signaling molecules that interrupt development and reproduction (dauer larvae) during unfavorable growth conditions, are essential for cellular homeostasis in Caenorhabditis elegans. According to earlier studies, dauer larva formation in strain N2 is enhanced by a temperature increase, suggesting the involvement of a temperature-dependent component in dauer pheromone biosynthesis or sensing. Several naturally occurring daumone analogs (e.g. daumones 1-3) have been identified, and these molecules are predicted to be synthesized in different physiological settings in this nematode. To elucidate the molecular regulatory system that may influence the dynamic balance of specific daumone production in response to sudden temperature changes, we characterized the peroxisomal acox gene encoding acyl-CoA oxidase, which is predicted to catalyze the first reaction during biosynthesis of the fatty acid component of daumones. Using acox-1(ok2257) mutants and a new, robust analytical method, we quantified the three most abundant daumones in worm bodies and showed that acox likely contributes to the dynamic production of various quantities of three different daumones in response to temperature increase, changes that are critical in C. elegans for coping with the natural environmental changes it faces.
Collapse
Affiliation(s)
- Hyoe-Jin Joo
- Department of Biochemistry, College of Life Sciences and Biotechnology, Yonsei Proteome Research Center, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | | | |
Collapse
|
186
|
Bento G, Ogawa A, Sommer RJ. Co-option of the hormone-signalling module dafachronic acid-DAF-12 in nematode evolution. Nature 2010; 466:494-7. [PMID: 20592728 DOI: 10.1038/nature09164] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 05/06/2010] [Indexed: 11/09/2022]
Abstract
Morphological novelties are lineage-specific traits that serve new functions. Developmental polyphenisms have been proposed to be facilitators of phenotypic evolution, but little is known about the interplay between the associated genetic and environmental factors. Here, we study two alternative morphologies in the mouth of the nematode Pristionchus pacificus and the formation of teeth-like structures that are associated with bacteriovorous feeding and predatory behaviour on fungi and other worms. These teeth-like denticles represent an evolutionary novelty, which is restricted to some members of the nematode family Diplogastridae but is absent from Caenorhabditis elegans and related nematodes. We show that the mouth dimorphism is a polyphenism that is controlled by starvation and the co-option of an endocrine switch mechanism. Mutations in the nuclear hormone receptor DAF-12 and application of its ligand, the sterol hormone dafachronic acid, strongly influence this switch mechanism. The dafachronic acid-DAF-12 module has been shown to control the formation of arrested dauer larvae in both C. elegans and P. pacificus, as well as related life-history decisions in distantly related nematodes. The comparison of dauer formation and mouth morphology switch reveals that different thresholds of dafachronic acid signalling provide specificity. This study shows how hormonal signalling acts by coupling environmental change and genetic regulation and identifies dafachronic acid as a key hormone in nematode evolution.
Collapse
Affiliation(s)
- Gilberto Bento
- Department for Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Spemannstrasse 37; D-72076 Tübingen, Germany
| | | | | |
Collapse
|
187
|
Burghoorn J, Dekkers MPJ, Rademakers S, de Jong T, Willemsen R, Swoboda P, Jansen G. Dauer pheromone and G-protein signaling modulate the coordination of intraflagellar transport kinesin motor proteins in C. elegans. J Cell Sci 2010; 123:2077-84. [PMID: 20501698 DOI: 10.1242/jcs.062885] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cilia length and function are dynamically regulated by modulation of intraflagellar transport (IFT). The cilia of C. elegans amphid channel neurons provide an excellent model to study this process, since they use two different kinesins for anterograde transport: kinesin-II and OSM-3 kinesin together in the cilia middle segments, but only OSM-3 in the distal segments. To address whether sensory signaling modulates the coordination of the kinesins, we studied IFT protein motility in gpa-3 mutant animals, since dominant active mutation of this sensory Galpha protein GPA-3QL) affects cilia length. In addition, we examined animals exposed to dauer pheromone, since dauer formation, which involves gpa-3, induces changes in cilia morphology. Live imaging of fluorescently tagged IFT proteins showed that in gpa-3 mutants and in larvae exposed to dauer pheromone, kinesin-II speed is decreased and OSM-3 speed is increased, whereas structural IFT proteins move at an intermediate speed. These results indicate that mutation of gpa-3 and exposure to dauer pheromone partially uncouple the two kinesins. We propose a model in which GPA-3-regulated docking of kinesin-II and/or OSM-3 determines entry of IFT particles into the cilia subdomains, allowing structural and functional plasticity of cilia in response to environmental cues.
Collapse
Affiliation(s)
- Jan Burghoorn
- Department of Cell Biology and Genetics, Erasmus MC, Rotterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
188
|
Chasnov JR. The evolution from females to hermaphrodites results in a sexual conflict over mating in androdioecious nematode worms and clam shrimp. J Evol Biol 2010; 23:539-56. [PMID: 20074309 DOI: 10.1111/j.1420-9101.2009.01919.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nematode worm Caenorhabditis elegans and the clam shrimp Eulimnadia texana are two well-studied androdioecious species consisting mostly of self-fertilizing hermaphrodites and few males. To understand how androdioecy can evolve, a simple two-step mathematical model of the evolutionary pathway from a male-female species to a selfing-hermaphrodite species is constructed. First, the frequency of mutant females capable of facultative self-fertilization increases if the benefits of reproductive assurance exceed the cost. Second, hermaphrodites become obligate self-fertilizers if the fitness of selfed offspring exceeds one-half the fitness of outcrossed offspring. Genetic considerations specific to C. elegans and E. texana show that males may endure as descendants of the ancestral male-female species. These models combined with an extensive literature review suggest a sexual conflict over mating in these androdioecious species: selection favours hermaphrodites that self and males that outcross. The strength of selection on hermaphrodites and males differs, however. Males that fail to outcross suffer a genetic death. Hermaphrodites may never encounter a rare male, and those that do and outcross only bear less fecund offspring. This asymmetric sexual conflict results in an evolutionary stand-off: rare, but persistent males occasionally fertilize common, but reluctant hermaphrodites. A consequence of this stand-off may be an increase in the longevity of the androdioecious mating system.
Collapse
Affiliation(s)
- J R Chasnov
- Department of Mathematics, Hong Kong University of Science and Technology, Kowloon, Hong Kong.
| |
Collapse
|
189
|
Hall SE, Beverly M, Russ C, Nusbaum C, Sengupta P. A cellular memory of developmental history generates phenotypic diversity in C. elegans. Curr Biol 2010; 20:149-55. [PMID: 20079644 DOI: 10.1016/j.cub.2009.11.035] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 10/13/2009] [Accepted: 11/09/2009] [Indexed: 11/29/2022]
Abstract
Early life experiences have a major impact on adult phenotypes [1-3]. However, the mechanisms by which animals retain a cellular memory of early experience are not well understood. Here we show that adult wild-type Caenorhabditis elegans that transiently pass through the stress-resistant dauer larval stage exhibit distinct gene expression profiles and life history traits, as compared to adult animals that bypassed this stage. Using chromatin immunoprecipitation experiments coupled with massively parallel sequencing, we found that genome-wide levels of specific histone tail modifications are markedly altered in postdauer animals. Mutations in subsets of genes implicated in chromatin remodeling abolish, or alter, the observed changes in gene expression and life history traits in postdauer animals. Modifications to the epigenome as a consequence of early experience may contribute in part to a memory of early experience and generate phenotypic variation in an isogenic population.
Collapse
Affiliation(s)
- Sarah E Hall
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA.
| | | | | | | | | |
Collapse
|
190
|
Affiliation(s)
- Akira Ogawa
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| | | |
Collapse
|
191
|
La Clair JJ. Natural product mode of action (MOA) studies: a link between natural and synthetic worlds. Nat Prod Rep 2010; 27:969-95. [DOI: 10.1039/b909989c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
192
|
Kim K, Sato K, Shibuya M, Zeiger DM, Butcher RA, Ragains JR, Clardy J, Touhara K, Sengupta P. Two chemoreceptors mediate developmental effects of dauer pheromone in C. elegans. Science 2009; 326:994-8. [PMID: 19797623 PMCID: PMC4448937 DOI: 10.1126/science.1176331] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intraspecific chemical communication is mediated by signals called pheromones. Caenorhabditis elegans secretes a mixture of small molecules (collectively termed dauer pheromone) that regulates entry into the alternate dauer larval stage and also modulates adult behavior via as yet unknown receptors. Here, we identify two heterotrimeric GTP-binding protein (G protein)-coupled receptors (GPCRs) that mediate dauer formation in response to a subset of dauer pheromone components. The SRBC-64 and SRBC-66 GPCRs are members of the large Caenorhabditis-specific SRBC subfamily and are expressed in the ASK chemosensory neurons, which are required for pheromone-induced dauer formation. Expression of both, but not each receptor alone, confers pheromone-mediated effects on heterologous cells. Identification of dauer pheromone receptors will allow a better understanding of the signaling cascades that transduce the context-dependent effects of ecologically important chemical signals.
Collapse
Affiliation(s)
- Kyuhyung Kim
- Department of Biology and National Center for Behavioral Genomics Brandeis University, Waltham, MA 02454
| | - Koji Sato
- Department of Integrated Biosciences, University of Tokyo Chiba, Japan
| | - Mayumi Shibuya
- Department of Biology and National Center for Behavioral Genomics Brandeis University, Waltham, MA 02454
| | - Danna M. Zeiger
- Department of Biology and National Center for Behavioral Genomics Brandeis University, Waltham, MA 02454
| | - Rebecca A. Butcher
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School, Boston, MA 02115
| | - Justin R. Ragains
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School, Boston, MA 02115
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School, Boston, MA 02115
| | - Kazushige Touhara
- Department of Integrated Biosciences, University of Tokyo Chiba, Japan
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics Brandeis University, Waltham, MA 02454
| |
Collapse
|
193
|
Searching for signals in the noise: metabolomics in chemical ecology. Anal Bioanal Chem 2009; 396:193-7. [DOI: 10.1007/s00216-009-3162-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 09/15/2009] [Indexed: 10/20/2022]
|
194
|
Wang Y, Ezemaduka AN, Tang Y, Chang Z. Understanding the mechanism of the dormant dauer formation of C. elegans: from genetics to biochemistry. IUBMB Life 2009; 61:607-12. [PMID: 19472183 DOI: 10.1002/iub.211] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dauer is a dormancy state that may occur at the end of developmental stage L1 or L2 of Caenorhabditis elegans when the environmental conditions are unfavorable (e.g., lack of food, high temperature, or overcrowding) for further growth. Dauer is a nonaging duration that does not affect the postdauer adult lifespan. Major molecular events would include the sensing of the environmental cues, the transduction of the signals into the cells, and the subsequent integration of the signals that result in the corresponding alteration of the metabolism and morphology of the organism. Genetics approach has been effectively used in identifying many of the so-called daf genes involved in dauer formation using C. elegans as the model. Nevertheless, biochemical studies at the protein and metabolic level has been lacking behind in understanding this important life phenomenon. This review focuses on the biochemical understanding so far achieved on dauer formation and dormancy in general, as well as important issues that need to be addressed in the future.
Collapse
Affiliation(s)
- Yunbiao Wang
- National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Center for Protein Science, Peking University, Beijing, China
| | | | | | | |
Collapse
|
195
|
Butcher RA, Ragains JR, Clardy J. An indole-containing dauer pheromone component with unusual dauer inhibitory activity at higher concentrations. Org Lett 2009; 11:3100-3. [PMID: 19545143 DOI: 10.1021/ol901011c] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In Caenorhabditis elegans, the dauer pheromone, which consists of a number of derivatives of the 3,6-dideoxysugar ascarylose, is the primary cue for entry into the stress-resistant, "nonaging" dauer larval stage. Here, using activity-guided fractionation and NMR-based structure elucidation, a structurally novel, indole-3-carboxyl-modified ascaroside is identified that promotes dauer formation at low nanomolar concentrations but inhibits dauer formation at higher concentrations.
Collapse
Affiliation(s)
- Rebecca A Butcher
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
196
|
Edison AS. Caenorhabditis elegans pheromones regulate multiple complex behaviors. Curr Opin Neurobiol 2009; 19:378-88. [PMID: 19665885 DOI: 10.1016/j.conb.2009.07.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/10/2009] [Accepted: 07/12/2009] [Indexed: 10/20/2022]
Abstract
A family of small molecules called ascarosides act as pheromones to control multiple behaviors in the nematode Caenorhabditis elegans. At picomolar concentrations, a synergistic mixture of at least three ascarosides produced by hermaphrodites causes male-specific attraction. At higher concentrations, the same ascarosides, perhaps in a different mixture, induce the developmentally arrested stage known as dauer. The production of ascarosides is strongly dependent on environmental conditions, although relatively little is known about the major variables and mechanisms of their regulation. Thus, male mating and dauer formation are linked through a common set of small molecules whose expression is sensitive to a given microenvironment, suggesting a model by which ascarosides regulate the overall life cycle of C. elegans.
Collapse
Affiliation(s)
- Arthur S Edison
- Box 100245, Department of Biochemistry & Molecular Biology, McKnight Brain Institute, and National High Magnetic Field Laboratory, University of Florida, Gainesville, FL 32610-0245, USA.
| |
Collapse
|
197
|
Bacterial attraction and quorum sensing inhibition in Caenorhabditis elegans exudates. J Chem Ecol 2009; 35:878-92. [PMID: 19649780 DOI: 10.1007/s10886-009-9670-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 07/06/2009] [Accepted: 07/12/2009] [Indexed: 10/20/2022]
Abstract
Caenorhabditis elegans, a bacterivorous nematode, lives in complex rotting fruit, soil, and compost environments, and chemical interactions are required for mating, monitoring population density, recognition of food, avoidance of pathogenic microbes, and other essential ecological functions. Despite being one of the best-studied model organisms in biology, relatively little is known about the signals that C. elegans uses to interact chemically with its environment or as defense. C. elegans exudates were analyzed by using several analytical methods and found to contain 36 common metabolites that include organic acids, amino acids, and sugars, all in relatively high abundance. Furthermore, the concentrations of amino acids in the exudates were dependent on developmental stage. The C. elegans exudates were tested for bacterial chemotaxis using Pseudomonas putida (KT2440), a plant growth promoting rhizobacterium, Pseudomonas aeruginosa (PAO1), a soil bacterium pathogenic to C. elegans, and Escherichia coli (OP50), a non-motile bacterium tested as a control. The C. elegans exudates attracted the two Pseudomonas species, but had no detectable antibacterial activity against P. aeruginosa. To our surprise, the exudates of young adult and adult life stages of C. elegans exudates inhibited quorum sensing in the reporter system based on the LuxR bacterial quorum sensing (QS) system, which regulates bacterial virulence and other factors in Vibrio fischeri. We were able to fractionate the QS inhibition and bacterial chemotaxis activities, thus demonstrating that these activities are chemically distinct. Our results demonstrate that C. elegans can attract its bacterial food and has the potential of partially regulating the virulence of bacterial pathogens by inhibiting specific QS systems.
Collapse
|
198
|
Caenorhabditis elegans utilizes dauer pheromone biosynthesis to dispose of toxic peroxisomal fatty acids for cellular homoeostasis. Biochem J 2009; 422:61-71. [DOI: 10.1042/bj20090513] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Caenorhabditis elegans excretes a dauer pheromone or daumone composed of ascarylose and a fatty acid side chain, the perception of which enables worms to enter the dauer state for long-term survival in an adverse environment. During the course of elucidation of the daumone biosynthetic pathway in which DHS-28 and DAF-22 are involved in peroxisomal β-oxidation of VLCFAs (very long-chain fatty acids), we sought to investigate the physiological consequences of a deficiency in daumone biosynthesis in C. elegans. Our results revealed that two mutants, dhs-28(tm2581) and daf-22(ok693), lacked daumones and thus were dauer defective; this coincided with massive accumulation of fatty acyl-CoAs (up to 100-fold) inside worm bodies compared with levels in wild-type N2 worms. Furthermore, the deficiency in daumone biosynthesis and the massive accumulation of fatty acids and their acyl-CoAs caused severe developmental defects with reduced life spans (up to 30%), suggesting that daumone biosynthesis is be an essential part of C. elegans homoeostasis, affecting survival and maintenance of optimal physiological conditions by metabolizing some of the toxic non-permissible peroxisomal VLCFAs from the worm body in the form of readily excretable daumones.
Collapse
|
199
|
Harvey SC, Barker GLA, Shorto A, Viney ME. Natural variation in gene expression in the early development of dauer larvae of Caenorhabditis elegans. BMC Genomics 2009; 10:325. [PMID: 19615088 PMCID: PMC2907687 DOI: 10.1186/1471-2164-10-325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 07/18/2009] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The free-living nematode Caenorhabditis elegans makes a developmental decision based on environmental conditions: larvae either arrest as dauer larva, or continue development into reproductive adults. There is natural variation among C. elegans lines in the sensitivity of this decision to environmental conditions; that is, there is variation in the phenotypic plasticity of dauer larva development. We hypothesised that these differences may be transcriptionally controlled in early stage larvae. We investigated this by microarray analysis of different C. elegans lines under different environmental conditions, specifically the presence and absence of dauer larva-inducing pheromone. RESULTS There were substantial transcriptional differences between four C. elegans lines under the same environmental conditions. The expression of approximately 2,000 genes differed between genetically different lines, with each line showing a largely line-specific transcriptional profile. The expression of genes that are markers of larval moulting suggested that the lines may be developing at different rates. The expression of a total of 89 genes was putatively affected by dauer larva or non-dauer larva-inducing conditions. Among the upstream regions of these genes there was an over-representation of DAF-16-binding motifs. CONCLUSION Under the same environmental conditions genetically different lines of C. elegans had substantial transcriptional differences. This variation may be due to differences in the developmental rates of the lines. Different environmental conditions had a rather smaller effect on transcription. The preponderance of DAF-16-binding motifs upstream of these genes was consistent with these genes playing a key role in the decision between development into dauer or into non-dauer larvae. There was little overlap between the genes whose expression was affected by environmental conditions and previously identified loci involved in the plasticity of dauer larva development.
Collapse
Affiliation(s)
- Simon C Harvey
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK
- Department of Geographical and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, CT1 1QU, UK
| | - Gary LA Barker
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK
| | - Alison Shorto
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK
| | - Mark E Viney
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK
| |
Collapse
|
200
|
Harvey SC. Non-dauer larval dispersal in Caenorhabditis elegans. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:224-30. [PMID: 19288538 DOI: 10.1002/jez.b.21287] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Species that exploit transient food patches must both effectively utilize such food sources and colonize new patches. The timing and rate of dispersal from existing patches and adaptations that aid dispersal are therefore crucial. Currently, no system exists in which dispersal has been investigated at both the ecological and genetic levels. The extensively studied model nematode Caenorhabditis elegans is potentially such a system. Dispersal between food patches in C. elegans has been found to be related to polymorphism in the npr-1 gene, which regulates the tendency of worms to aggregate on food. Here I show that this non-dauer larval dispersal is affected by various environmental variables and that variation is not fully explained by differences in aggregation behavior. Quantitative trait loci mapping identifies candidate genomic regions, separate to npr-1, which affect variation in dispersal between two isolates. These data suggest that the ecology of C. elegans is more complex than previously thought, but indicate that it is experimentally tractable.
Collapse
Affiliation(s)
- Simon C Harvey
- Department of Geographical and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom.
| |
Collapse
|