151
|
Han XJ, Ma XL, Yang L, Wei YQ, Peng Y, Wei XW. Progress in Neoantigen Targeted Cancer Immunotherapies. Front Cell Dev Biol 2020; 8:728. [PMID: 32850843 PMCID: PMC7406675 DOI: 10.3389/fcell.2020.00728] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/14/2020] [Indexed: 02/05/2023] Open
Abstract
Immunotherapies that harness the immune system to kill cancer cells have showed significant therapeutic efficacy in many human malignancies. A growing number of studies have highlighted the relevance of neoantigens in recognizing cancer cells by intrinsic T cells. Cancer neoantigens are a direct consequence of somatic mutations presenting on the surface of individual cancer cells. Neoantigens are fully cancer-specific and exempt from central tolerance. In addition, neoantigens are important targets for checkpoint blockade therapy. Recently, technological innovations have made neoantigen discovery possible in a variety of malignancies, thus providing an impetus to develop novel immunotherapies that selectively enhance T cell reactivity for the destruction of cancer cells while leaving normal tissues unharmed. In this review, we aim to introduce the methods of the identification of neoantigens, the mutational patterns of human cancers, related clinical trials, neoantigen burden and sensitivity to immune checkpoint blockade. Moreover, we focus on relevant challenges of targeting neoantigens for cancer treatment.
Collapse
|
152
|
Zamora AE, Crawford JC, Allen EK, Guo XZJ, Bakke J, Carter RA, Abdelsamed HA, Moustaki A, Li Y, Chang TC, Awad W, Dallas MH, Mullighan CG, Downing JR, Geiger TL, Chen T, Green DR, Youngblood BA, Zhang J, Thomas PG. Pediatric patients with acute lymphoblastic leukemia generate abundant and functional neoantigen-specific CD8 + T cell responses. Sci Transl Med 2020; 11:11/498/eaat8549. [PMID: 31243155 DOI: 10.1126/scitranslmed.aat8549] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/16/2018] [Accepted: 05/06/2019] [Indexed: 12/12/2022]
Abstract
Cancer arises from the accumulation of genetic alterations, which can lead to the production of mutant proteins not expressed by normal cells. These mutant proteins can be processed and presented on the cell surface by major histocompatibility complex molecules as neoepitopes, allowing CD8+ T cells to mount responses against them. For solid tumors, only an average 2% of neoepitopes predicted by algorithms have detectable endogenous antitumor T cell responses. This suggests that low mutation burden tumors, which include many pediatric tumors, are poorly immunogenic. Here, we report that pediatric patients with acute lymphoblastic leukemia (ALL) have tumor-associated neoepitope-specific CD8+ T cells, responding to 86% of tested neoantigens and recognizing 68% of the tested neoepitopes. These responses include a public neoantigen from the ETV6-RUNX1 fusion that is targeted in seven of nine tested patients. We characterized phenotypic and transcriptional profiles of CD8+ tumor-infiltrating lymphocytes (TILs) at the single-cell level and found a heterogeneous population that included highly functional effectors. Moreover, we observed immunodominance hierarchies among the CD8+ TILs restricted to one or two putative neoepitopes. Our results indicate that robust antitumor immune responses are induced in pediatric ALL despite their low mutation burdens and emphasize the importance of immunodominance in shaping cellular immune responses. Furthermore, these data suggest that pediatric cancers may be amenable to immunotherapies aimed at enhancing immune recognition of tumor-specific neoantigens.
Collapse
Affiliation(s)
- Anthony E Zamora
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xi-Zhi J Guo
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jesse Bakke
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,Department of Foundational Sciences, College of Medicine, Central Michigan University, Mount Pleasant, MI 48858, USA
| | - Robert A Carter
- Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hossam A Abdelsamed
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ardiana Moustaki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yongjin Li
- Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ti-Cheng Chang
- Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Walid Awad
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mari H Dallas
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Terrence L Geiger
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Benjamin A Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA. .,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
153
|
Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics 2020; 12:pharmaceutics12070663. [PMID: 32674488 PMCID: PMC7408110 DOI: 10.3390/pharmaceutics12070663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
The onset of checkpoint inhibition revolutionized the treatment of cancer. However, studies from the last decade suggested that the sole enhancement of T cell functionality might not suffice to fight malignancies in all individuals. Dendritic cells (DCs) are not only part of the innate immune system, but also generals of adaptive immunity and they orchestrate the de novo induction of tolerogenic and immunogenic T cell responses. Thus, combinatorial approaches addressing DCs and T cells in parallel represent an attractive strategy to achieve higher response rates across patients. However, this requires profound knowledge about the dynamic interplay of DCs, T cells, other immune and tumor cells. Here, we summarize the DC subsets present in mice and men and highlight conserved and divergent characteristics between different subsets and species. Thereby, we supply a resource of the molecular players involved in key functional features of DCs ranging from their sentinel function, the translation of the sensed environment at the DC:T cell interface to the resulting specialized T cell effector modules, as well as the influence of the tumor microenvironment on the DC function. As of today, mostly monocyte derived dendritic cells (moDCs) are used in autologous cell therapies after tumor antigen loading. While showing encouraging results in a fraction of patients, the overall clinical response rate is still not optimal. By disentangling the general aspects of DC biology, we provide rationales for the design of next generation DC vaccines enabling to exploit and manipulate the described pathways for the purpose of cancer immunotherapy in vivo. Finally, we discuss how DC-based vaccines might synergize with checkpoint inhibition in the treatment of malignant diseases.
Collapse
|
154
|
Abstract
Adoptive immunotherapy with engineered T cells is at the forefront of cancer treatment. T cells can be engineered to express T-cell receptors (TCRs) specific for tumor-associated antigens (TAAs) derived from intracellular or cell surface proteins. T cells engineered with TCRs (TCR-T) allow for targeting diverse types of TAAs, including proteins overexpressed in malignant cells, those with lineage-restricted expression, cancer-testis antigens, and neoantigens created from abnormal, malignancy-restricted proteins. Minor histocompatibility antigens can also serve as TAAs for TCR-T to treat relapsed hematologic malignancies after allogeneic hematopoietic cell transplantation. Moreover, TCR constructs can be modified to improve safety and enhance function and persistence of TCR-T. Transgenic T-cell receptor therapies targeting 3 different TAAs are in early-phase clinical trials for treatment of hematologic malignancies. Preclinical studies of TCR-T specific for many other TAAs are underway and offer great promise as safe and effective therapies for a wide range of cancers.
Collapse
Affiliation(s)
- Melinda A Biernacki
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Michelle Brault
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
155
|
Acebes-Fernández V, Landeira-Viñuela A, Juanes-Velasco P, Hernández AP, Otazo-Perez A, Manzano-Román R, Gongora R, Fuentes M. Nanomedicine and Onco-Immunotherapy: From the Bench to Bedside to Biomarkers. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1274. [PMID: 32610601 PMCID: PMC7407304 DOI: 10.3390/nano10071274] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
The broad relationship between the immune system and cancer is opening a new hallmark to explore for nanomedicine. Here, all the common and synergy points between both areas are reviewed and described, and the recent approaches which show the progress from the bench to the beside to biomarkers developed in nanomedicine and onco-immunotherapy.
Collapse
Affiliation(s)
- Vanessa Acebes-Fernández
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Alicia Landeira-Viñuela
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Pablo Juanes-Velasco
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Angela-Patricia Hernández
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Andrea Otazo-Perez
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Raúl Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain;
| | - Rafael Gongora
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Manuel Fuentes
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain;
| |
Collapse
|
156
|
Bianchi V, Harari A, Coukos G. Neoantigen-Specific Adoptive Cell Therapies for Cancer: Making T-Cell Products More Personal. Front Immunol 2020; 11:1215. [PMID: 32695101 PMCID: PMC7333784 DOI: 10.3389/fimmu.2020.01215] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Mutation-derived neoantigens are taking central stage as a determinant in eliciting effective antitumor immune responses following adoptive T-cell therapies. These mutations are patient-specific, and their targeting calls for highly personalized pipelines. The promising clinical outcomes of tumor-infiltrating lymphocyte (TIL) therapy have spurred interest in generating T-cell infusion products that have been selectively enriched in neoantigen (or autologous tumor) reactivity. The implementation of an isolation step, prior to T-cell in vitro expansion and reinfusion, may provide a way to improve the overall response rates achieved to date by adoptive T-cell therapies in metastatic cancer patients. Here we provide an overview of the main technologies [i.e., peptide major histocompatibility complex (pMHC) multimers, cytokine capture, and activation markers] to enrich infiltrating or circulating T-cells in predefined neoantigen specificities (or tumor reactivity). The unique technical and regulatory challenges faced by such highly specialized and patient-specific manufacturing T-cell platforms are also discussed.
Collapse
Affiliation(s)
- Valentina Bianchi
- Department of Oncology, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Alexandre Harari
- Department of Oncology, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
157
|
Mutis T, Xagara A, Spaapen RM. The Connection Between Minor H Antigens and Neoantigens and the Missing Link in Their Prediction. Front Immunol 2020; 11:1162. [PMID: 32670277 PMCID: PMC7326952 DOI: 10.3389/fimmu.2020.01162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/12/2020] [Indexed: 12/26/2022] Open
Abstract
For hundreds of thousands of years, the human genome has extensively evolved, resulting in genetic variations in almost every gene. Immunological reflections of these genetic variations become clearly visible after an allogeneic stem cell transplantation (allo-SCT) as minor Histocompatibility (H) antigens. Minor H antigens are peptides cleaved from genetically encoded variable protein regions after which they are presented at the cell surface by HLA molecules. After allo-SCT with minor H antigen mismatches between donor and recipient, donor T cells recognize the minor H antigens of the recipient as foreign, evoking strong alloreactive immune responses. Studies in the late eighties have discovered that a subset of minor H antigens are encoded by hematopoietic system-specific genes. After allo-SCT, this subset is strictly expressed on the hematopoietic malignant cells and was therefore the first well-defined highly immunogenic group of tumor-specific antigens. In the last decade, neoantigens derived from genetic mutations in tumors have been identified as another group of immunogenic tumor-specific antigens. Therefore, hematopoietic minor H antigens and neoantigens are therapeutic equivalents. This review will connect our current knowledge about the immune biology and identification of minor H antigens and neoantigens leading to novel conclusions on their prediction.
Collapse
Affiliation(s)
- Tuna Mutis
- Department of Hematology, Amsterdam UMC, VU Medical Center, Amsterdam, Netherlands
| | - Anastasia Xagara
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
158
|
Wang G, Wan H, Jian X, Li Y, Ouyang J, Tan X, Zhao Y, Lin Y, Xie L. INeo-Epp: A Novel T-Cell HLA Class-I Immunogenicity or Neoantigenic Epitope Prediction Method Based on Sequence-Related Amino Acid Features. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5798356. [PMID: 32626747 PMCID: PMC7315274 DOI: 10.1155/2020/5798356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/23/2020] [Indexed: 12/30/2022]
Abstract
In silico T-cell epitope prediction plays an important role in immunization experimental design and vaccine preparation. Currently, most epitope prediction research focuses on peptide processing and presentation, e.g., proteasomal cleavage, transporter associated with antigen processing (TAP), and major histocompatibility complex (MHC) combination. To date, however, the mechanism for the immunogenicity of epitopes remains unclear. It is generally agreed upon that T-cell immunogenicity may be influenced by the foreignness, accessibility, molecular weight, molecular structure, molecular conformation, chemical properties, and physical properties of target peptides to different degrees. In this work, we tried to combine these factors. Firstly, we collected significant experimental HLA-I T-cell immunogenic peptide data, as well as the potential immunogenic amino acid properties. Several characteristics were extracted, including the amino acid physicochemical property of the epitope sequence, peptide entropy, eluted ligand likelihood percentile rank (EL rank(%)) score, and frequency score for an immunogenic peptide. Subsequently, a random forest classifier for T-cell immunogenic HLA-I presenting antigen epitopes and neoantigens was constructed. The classification results for the antigen epitopes outperformed the previous research (the optimal AUC = 0.81, external validation data set AUC = 0.77). As mutational epitopes generated by the coding region contain only the alterations of one or two amino acids, we assume that these characteristics might also be applied to the classification of the endogenic mutational neoepitopes also called "neoantigens." Based on mutation information and sequence-related amino acid characteristics, a prediction model of a neoantigen was established as well (the optimal AUC = 0.78). Further, an easy-to-use web-based tool "INeo-Epp" was developed for the prediction of human immunogenic antigen epitopes and neoantigen epitopes.
Collapse
Affiliation(s)
- Guangzhi Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
| | - Huihui Wan
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xingxing Jian
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education and Key Laboratory of Carcinogenesis, National Health and Family Planning Commission, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuyu Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Ouyang
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
| | - Xiaoxiu Tan
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yong Lin
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lu Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
| |
Collapse
|
159
|
MHC-II alleles shape the CDR3 repertoires of conventional and regulatory naïve CD4 + T cells. Proc Natl Acad Sci U S A 2020; 117:13659-13669. [PMID: 32482872 DOI: 10.1073/pnas.2003170117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
T cell maturation and activation depend upon T cell receptor (TCR) interactions with a wide variety of antigenic peptides displayed in a given major histocompatibility complex (MHC) context. Complementarity-determining region 3 (CDR3) is the most variable part of the TCRα and -β chains, which govern interactions with peptide-MHC complexes. However, it remains unclear how the CDR3 landscape is shaped by individual MHC context during thymic selection of naïve T cells. We established two mouse strains carrying distinct allelic variants of H2-A and analyzed thymic and peripheral production and TCR repertoires of naïve conventional CD4+ T (Tconv) and naïve regulatory CD4+ T (Treg) cells. Compared with tuberculosis-resistant C57BL/6 (H2-Ab) mice, the tuberculosis-susceptible H2-Aj mice had fewer CD4+ T cells of both subsets in the thymus. In the periphery, this deficiency was only apparent for Tconv and was compensated for by peripheral reconstitution for Treg We show that H2-Aj favors selection of a narrower and more convergent repertoire with more hydrophobic and strongly interacting amino acid residues in the middle of CDR3α and CDR3β, suggesting more stringent selection against a narrower peptide-MHC-II context. H2-Aj and H2-Ab mice have prominent reciprocal differences in CDR3α and CDR3β features, probably reflecting distinct modes of TCR fitting to MHC-II variants. These data reveal the mechanics and extent of how MHC-II shapes the naïve CD4+ T cell CDR3 landscape, which essentially defines adaptive response to infections and self-antigens.
Collapse
|
160
|
Prota G, Gileadi U, Rei M, Lechuga-Vieco AV, Chen JL, Galiani S, Bedard M, Lau VWC, Fanchi LF, Artibani M, Hu Z, Gordon S, Rehwinkel J, Enríquez JA, Ahmed AA, Schumacher TN, Cerundolo V. Enhanced Immunogenicity of Mitochondrial-Localized Proteins in Cancer Cells. Cancer Immunol Res 2020; 8:685-697. [PMID: 32205315 DOI: 10.1158/2326-6066.cir-19-0467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/05/2019] [Accepted: 03/12/2020] [Indexed: 11/16/2022]
Abstract
Epitopes derived from mutated cancer proteins elicit strong antitumor T-cell responses that correlate with clinical efficacy in a proportion of patients. However, it remains unclear whether the subcellular localization of mutated proteins influences the efficiency of T-cell priming. To address this question, we compared the immunogenicity of NY-ESO-1 and OVA localized either in the cytosol or in mitochondria. We showed that tumors expressing mitochondrial-localized NY-ESO-1 and OVA proteins elicit significantdly higher frequencies of antigen-specific CD8+ T cells in vivo. We also demonstrated that this stronger immune response is dependent on the mitochondrial location of the antigenic proteins, which contributes to their higher steady-state amount, compared with cytosolic localized proteins. Consistent with these findings, we showed that injection of mitochondria purified from B16 melanoma cells can protect mice from a challenge with B16 cells, but not with irrelevant tumors. Finally, we extended these findings to cancer patients by demonstrating the presence of T-cell responses specific for mutated mitochondrial-localized proteins. These findings highlight the utility of prioritizing epitopes derived from mitochondrial-localized mutated proteins as targets for cancer vaccination strategies.
Collapse
Affiliation(s)
- Gennaro Prota
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| | - Uzi Gileadi
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Margarida Rei
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Ana Victoria Lechuga-Vieco
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ji-Li Chen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Silvia Galiani
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Melissa Bedard
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Vivian Wing Chong Lau
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Lorenzo F Fanchi
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mara Artibani
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, United Kingdom
| | - Zhiyuan Hu
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, United Kingdom
| | - Siamon Gordon
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Chang Gung University, Graduate Institute of Biomedical Sciences, College of Medicine, Taoyuan City, Taiwan
| | - Jan Rehwinkel
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Jose A Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Ahmed A Ahmed
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, United Kingdom
| | - Ton N Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
161
|
Garrido G, Schrand B, Levay A, Rabasa A, Ferrantella A, Da Silva DM, D'Eramo F, Marijt KA, Zhang Z, Kwon D, Kortylewski M, Kast WM, Dudeja V, van Hall T, Gilboa E. Vaccination against Nonmutated Neoantigens Induced in Recurrent and Future Tumors. Cancer Immunol Res 2020; 8:856-868. [PMID: 32295785 DOI: 10.1158/2326-6066.cir-20-0020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/25/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
Abstract
Vaccination of patients against neoantigens expressed in concurrent tumors, recurrent tumors, or tumors developing in individuals at risk of cancer is posing major challenges in terms of which antigens to target and is limited to patients expressing neoantigens in their tumors. Here, we describe a vaccination strategy against antigens that were induced in tumor cells by downregulation of the peptide transporter associated with antigen processing (TAP). Vaccination against TAP downregulation-induced antigens was more effective than vaccination against mutation-derived neoantigens, was devoid of measurable toxicity, and inhibited the growth of concurrent and future tumors in models of recurrence and premalignant disease. Human CD8+ T cells stimulated with TAPlow dendritic cells elicited a polyclonal T-cell response that recognized tumor cells with experimentally reduced TAP expression. Vaccination against TAP downregulation-induced antigens overcomes the main limitations of vaccinating against mostly unique tumor-resident neoantigens and could represent a simpler vaccination strategy that will be applicable to most patients with cancer.
Collapse
Affiliation(s)
- Greta Garrido
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Brett Schrand
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Agata Levay
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Ailem Rabasa
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Anthony Ferrantella
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Diane M Da Silva
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Francesca D'Eramo
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Koen A Marijt
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Zhuoran Zhang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Medical Center, Duarte, California
| | - Deukwoo Kwon
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, Florida
| | - Marcin Kortylewski
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Medical Center, Duarte, California
| | - W Martin Kast
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Vikas Dudeja
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Eli Gilboa
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, Florida. .,Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
162
|
Li Y, Wang G, Tan X, Ouyang J, Zhang M, Song X, Liu Q, Leng Q, Chen L, Xie L. ProGeo-neo: a customized proteogenomic workflow for neoantigen prediction and selection. BMC Med Genomics 2020; 13:52. [PMID: 32241270 PMCID: PMC7118832 DOI: 10.1186/s12920-020-0683-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Neoantigens can be differentially recognized by T cell receptor (TCR) as these sequences are derived from mutant proteins and are unique to the tumor. The discovery of neoantigens is the first key step for tumor-specific antigen (TSA) based immunotherapy. Based on high-throughput tumor genomic analysis, each missense mutation can potentially give rise to multiple neopeptides, resulting in a vast total number, but only a small percentage of these peptides may achieve immune-dominant status with a given major histocompatibility complex (MHC) class I allele. Specific identification of immunogenic candidate neoantigens is consequently a major challenge. Currently almost all neoantigen prediction tools are based on genomics data. RESULTS Here we report the construction of proteogenomics prediction of neoantigen (ProGeo-neo) pipeline, which incorporates the following modules: mining tumor specific antigens from next-generation sequencing genomic and mRNA expression data, predicting the binding mutant peptides to class I MHC molecules by latest netMHCpan (v.4.0), verifying MHC-peptides by MaxQuant with mass spectrometry proteomics data searched against customized protein database, and checking potential immunogenicity of T-cell-recognization by additional screening methods. ProGeo-neo pipeline achieves proteogenomics strategy and the neopeptides identified were of much higher quality as compared to those identified using genomic data only. CONCLUSIONS The pipeline was constructed based on the genomics and proteomics data of Jurkat leukemia cell line but is generally applicable to other solid cancer research. With massively parallel sequencing and proteomics profiling increasing, this proteogenomics workflow should be useful for neoantigen oriented research and immunotherapy.
Collapse
Affiliation(s)
- Yuyu Li
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture; College of Food Science and Technology, Shanghai Ocean University, 999 Hu Cheng Huan Road, Shanghai, 201306, China.,Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, 1278 Keyuan Road, Shanghai, 201203, China
| | - Guangzhi Wang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture; College of Food Science and Technology, Shanghai Ocean University, 999 Hu Cheng Huan Road, Shanghai, 201306, China.,Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, 1278 Keyuan Road, Shanghai, 201203, China
| | - Xiaoxiu Tan
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, 1278 Keyuan Road, Shanghai, 201203, China
| | - Jian Ouyang
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, 1278 Keyuan Road, Shanghai, 201203, China
| | - Menghuan Zhang
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, 1278 Keyuan Road, Shanghai, 201203, China
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Qi Liu
- Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 20009, China
| | - Qibin Leng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Heng Zhi Gang, Lu Hu Road, Guangzhou, 510095, China
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture; College of Food Science and Technology, Shanghai Ocean University, 999 Hu Cheng Huan Road, Shanghai, 201306, China.
| | - Lu Xie
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, 1278 Keyuan Road, Shanghai, 201203, China.
| |
Collapse
|
163
|
Natoli M, Bonito N, Robinson JD, Ghaem-Maghami S, Mao Y. Human ovarian cancer intrinsic mechanisms regulate lymphocyte activation in response to immune checkpoint blockade. Cancer Immunol Immunother 2020; 69:1391-1401. [PMID: 32200422 PMCID: PMC7347689 DOI: 10.1007/s00262-020-02544-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/05/2020] [Indexed: 12/15/2022]
Abstract
Immune checkpoint blocking antibodies are currently being tested in ovarian cancer (OC) patients and have shown some responses in early clinical trials. However, it remains unclear how human OC cancer cells regulate lymphocyte activation in response to therapy. In this study, we have established and optimised an in vitro tumour-immune co-culture system (TICS), which is specifically designed to quantify the activation of multiple primary human lymphocyte subsets and human cancer cell killing in response to PD-1/L1 blockade. Human OC cell lines and treatment naïve patient ascites show differential effects on lymphocyte activation and respond differently to PD-1 blocking antibody nivolumab in TICS. Using paired OC cell lines established prior to and after chemotherapy relapse, our data reveal that the resistant cells express low levels of HLA and respond poorly to nivolumab, relative to the treatment naïve cells. In accordance, knockdown of IFNγ receptor expression compromises response to nivolumab in the treatment naïve OC cell line, while enhanced HLA expression induced by a DNA methyltransferase inhibitor promotes lymphocyte activation in TICS. Altogether, our results suggest a ‘cross resistance’ model, where the acquired chemotherapy resistance in cancer cells may confer resistance to immune checkpoint blockade therapy through down-regulation of antigen presentation machinery. As such, agents that can restore HLA expression may be a suitable combination partner for immunotherapy in chemotherapy-relapsed human ovarian cancer patients.
Collapse
Affiliation(s)
- Marina Natoli
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Nair Bonito
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - James D Robinson
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Sadaf Ghaem-Maghami
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK.
| | - Yumeng Mao
- Bioscience, Early Oncology R&D, AstraZeneca, Cambridge, UK. .,Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
164
|
Lee HJ, Shin DH, Lee YJ, Lee SJ, Hwang CS, Kim A, Park WY, Lee JH, Choi KU, Kim JY, Lee CH, Sol MY, Park SW. PD-L1 expression and infiltration by CD4 + and FoxP3 + T cells are increased in Xp11 translocation renal cell carcinoma and indicate poor prognosis. Histopathology 2020; 76:714-721. [PMID: 31841221 DOI: 10.1111/his.14047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/14/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
Abstract
AIMS Interaction between programmed death-1 ligand (PD-L1) and its receptor programmed death 1 (PD-1) on T cells inactivates antitumour immune responses. PD-L1 expression has been associated with poor prognosis in renal cell carcinoma (RCC) and predicts adverse outcome. This study was designed to evaluate the impact of PD-L1 expression and the immune microenvironment on the clinical outcome in Xp11 translocation renal cell carcinoma (TRCC) and, therefore, their potential relevance as prognostic biomarkers. METHODS AND RESULTS The present retrospective analysis investigated expression of PD-L1 and immune cells CD8, CD4, CD3, forkhead box protein 3 (FoxP3) and PD-1 in TRCC compared to other types of RCC. FFPE specimens were collected between 2011 and 2017 from 311 patients who underwent nephrectomy at our institution for RCC. Specimens were immunostained for PD-L1, CD8, CD4, CD3, FoxP3 and PD-1, and an outcome analysis was conducted. PD-L1 expression rate was highest in TRCC (68%, 16 of 25), followed by mucinous tubular and spindle cell RCC and collecting duct carcinoma (33%, one of three), papillary RCC (27%, seven of 26), clear cell RCC (16%, 29 of 233), chromophobe RCC (11%, two of 18) and multilocular cystic RCC (0%, none of three). In TRCC, PD-L1 expression was associated with poor recurrence-free survival (RFS) (P = 0.041). The CD4high and FoxP3high groups showed a significantly shorter RFS (P = 0.05 and P = 0.031, respectively) compared to CD4low and FOXPlow groups. CONCLUSION PD-L1 expression was higher in TRCC than in other types of RCC. High PD-L1 tumour cell expression and tumour infiltration by CD4+ and FoxP3+ immune cells were associated with poor RFS in TRCC.
Collapse
Affiliation(s)
- Hyun J Lee
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Korea.,The Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Dong H Shin
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Korea.,The Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Yeon J Lee
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Korea
| | - So J Lee
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Chung S Hwang
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Ahrong Kim
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Won Y Park
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Jung H Lee
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Kyung U Choi
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Jee Y Kim
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Chang H Lee
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Mee Y Sol
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Sung W Park
- Department of Urology, School of Medicine, Pusan National University, Yangsan, Korea
| |
Collapse
|
165
|
LoRusso PM, Schalper K, Sosman J. Targeted therapy and immunotherapy: Emerging biomarkers in metastatic melanoma. Pigment Cell Melanoma Res 2020; 33:390-402. [PMID: 31705737 DOI: 10.1111/pcmr.12847] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/18/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022]
Abstract
Targeted therapy directed against oncogenic BRAF mutations and immune checkpoint inhibitors have transformed melanoma therapy over the past decade and prominently improved patient outcomes. However, not all patients will respond to targeted therapy or immunotherapy and many relapse after initially responding to treatment. This unmet need presents two major challenges. First, can we elucidate novel oncogenic drivers to provide new therapeutic targets? Second, can we identify patients who are most likely to respond to current therapeutic strategies in order to both more accurately select populations and avoid undue drug exposure in patients unlikely to respond? In an effort to evaluate the current state of the field with respect to these questions, we provide an overview of some common oncogenic mutations in patients with metastatic melanoma and ongoing efforts to therapeutically target these populations, as well as a discussion of biomarkers for response to immune checkpoint inhibitors-including tumor programmed death ligand 1 expression and the future use of neoantigens as a means of truly personalized therapy. This information is becoming important in treatment decision making and provides the framework for a treatment algorithm based on the current landscape in metastatic melanoma.
Collapse
Affiliation(s)
| | - Kurt Schalper
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Jeffrey Sosman
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical Center, Chicago, IL, USA
| |
Collapse
|
166
|
Hansen UK, Ramskov S, Bjerregaard AM, Borch A, Andersen R, Draghi A, Donia M, Bentzen AK, Marquard AM, Szallasi Z, Eklund AC, Svane IM, Hadrup SR. Tumor-Infiltrating T Cells From Clear Cell Renal Cell Carcinoma Patients Recognize Neoepitopes Derived From Point and Frameshift Mutations. Front Immunol 2020; 11:373. [PMID: 32226429 PMCID: PMC7080703 DOI: 10.3389/fimmu.2020.00373] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Mutation-derived neoantigens are important targets for T cell-mediated reactivity toward tumors and, due to their unique tumor expression, an attractive target for immunotherapy. Neoepitope-specific T cells have been detected across a number of solid cancers with high mutational burden tumors, but neoepitopes have been mostly selected from single nucleotide variations (SNVs), and little focus has been given to neoepitopes derived from in-frame and frameshift indels, which might be equally important and potentially highly immunogenic. Clear cell renal cell carcinomas (ccRCCs) are medium-range mutational burden tumors with a high pan-cancer proportion of frameshift mutations. In this study, the mutational landscape of tumors from six RCC patients was analyzed by whole-exome sequencing (WES) of DNA from tumor fragments (TFs), autologous tumor cell lines (TCLs), and tumor-infiltrating lymphocytes (TILs, germline reference). Neopeptides were predicted using MuPeXI, and patient-specific peptide–MHC (pMHC) libraries were created for all neopeptides with a rank score < 2 for binding to the patient's HLAs. T cell recognition toward neoepitopes in TILs was evaluated using the high-throughput technology of DNA barcode-labeled pMHC multimers. The patient-specific libraries consisted of, on average, 258 putative neopeptides (range, 103–397, n = 6). In four patients, WES was performed on two different sources (TF and TCL), whereas in two patients, WES was performed only on TF. Most of the peptides were predicted from both sources. However, a fraction was predicted from one source only. Among the total predicted neopeptides, 16% were derived from frameshift indels. T cell recognition of 52 neoepitopes was detected across all patients (range, 4–18, n = 6) and spanning two to five HLA restrictions per patient. On average, 21% of the recognized neoepitopes were derived from frameshift indels (range, 0–43%, n = 6). Thus, frameshift indels are equally represented in the pool of immunogenic neoepitopes as SNV-derived neoepitopes. This suggests the importance of a broad neopeptide prediction strategy covering multiple sources of tumor material, and including different genetic alterations. This study, for the first time, describes the T cell recognition of frameshift-derived neoepitopes in RCC and determines their immunogenic profile.
Collapse
Affiliation(s)
- Ulla Kring Hansen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Sofie Ramskov
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | - Annie Borch
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Rikke Andersen
- Center for Cancer Immune Therapy, Copenhagen University Hospital, Copenhagen, Denmark
| | - Arianna Draghi
- Center for Cancer Immune Therapy, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marco Donia
- Center for Cancer Immune Therapy, Copenhagen University Hospital, Copenhagen, Denmark
| | - Amalie Kai Bentzen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | | | - Aron Charles Eklund
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.,Clinical Microbiomics A/S, Copenhagen, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
167
|
Abstract
T cell-secreted IFNγ can exert pleiotropic effects on tumor cells that include induction of immune checkpoints and antigen presentation machinery components, and inhibition of cell growth. Despite its role as key effector molecule, little is known about the spatiotemporal spreading of IFNγ secreted by activated CD8+ T cells within the tumor environment. Using multiday intravital imaging, we demonstrate that T cell recognition of a minor fraction of tumor cells leads to sensing of IFNγ by a large part of the tumor mass. Furthermore, imaging of tumors in which antigen-positive and -negative tumor cells are separated in space reveals spreading of the IFNγ response, reaching distances of >800 µm. Notably, long-range sensing of IFNγ can modify tumor behavior, as both shown by induction of PD-L1 expression and inhibition of tumor growth. Collectively, these data reveal how, through IFNγ, CD8+ T cells modulate the behavior of remote tumor cells, including antigen-loss variants.
Collapse
|
168
|
Ni Q, Zhang F, Liu Y, Wang Z, Yu G, Liang B, Niu G, Su T, Zhu G, Lu G, Zhang L, Chen X. A bi-adjuvant nanovaccine that potentiates immunogenicity of neoantigen for combination immunotherapy of colorectal cancer. SCIENCE ADVANCES 2020; 6:eaaw6071. [PMID: 32206706 PMCID: PMC7080439 DOI: 10.1126/sciadv.aaw6071] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 12/19/2019] [Indexed: 05/09/2023]
Abstract
Neoantigen vaccines have been enthusiastically pursued for personalized cancer immunotherapy while vast majority of neoantigens have no or low immunogenicity. Here, a bi-adjuvant neoantigen nanovaccine (banNV) that codelivered a peptide neoantigen (Adpgk) with two adjuvants [Toll-like receptor (TLR) 7/8 agonist R848 and TLR9 agonist CpG] was developed for potent cancer immunotherapy. Specifically, banNVs were prepared by a nanotemplated synthesis of concatemer CpG, nanocondensation with cationic polypeptides, and then physical loading with hydrophobic R848 and Adpgk. The immunogenicity of the neoantigen was profoundly potentiated by efficient codelivery of neoantigen and dual synergistic adjuvants, which is accompanied by reduced acute systemic toxicity. BanNVs sensitized immune checkpoint programmed death receptor 1 (PD-1) on T cells, therefore, a combination of banNVs with aPD-1 conspicuously induced the therapy response and led to complete regression of 70% neoantigen-specific tumors without recurrence. We conclude that banNVs are promising to optimize personalized therapeutic neoantigen vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Qianqian Ni
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD 20892, USA
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD 20892, USA
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD 20892, USA
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD 20892, USA
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD 20892, USA
| | - Brian Liang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD 20892, USA
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD 20892, USA
| | - Ting Su
- Department of Pharmaceutics, Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy; Massey Cancer Center; Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Guizhi Zhu
- Department of Pharmaceutics, Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy; Massey Cancer Center; Virginia Commonwealth University, Richmond, VA, 23219, USA
- Corresponding author. (X.C.); (L.Z.); (G.L.); (G.Z.)
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
- Corresponding author. (X.C.); (L.Z.); (G.L.); (G.Z.)
| | - Longjiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
- Corresponding author. (X.C.); (L.Z.); (G.L.); (G.Z.)
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD 20892, USA
- Corresponding author. (X.C.); (L.Z.); (G.L.); (G.Z.)
| |
Collapse
|
169
|
HLA class I restricted epitopes prediction of common tumor antigens in white and East Asian populations: Implication on antigen selection for cancer vaccine design. PLoS One 2020; 15:e0229327. [PMID: 32106223 PMCID: PMC7046239 DOI: 10.1371/journal.pone.0229327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/29/2020] [Indexed: 12/30/2022] Open
Abstract
Tumor antigens processed and presented by human leukocyte antigen (HLA) Class I alleles are important targets in tumor immunotherapies. Clinical trials showed that presence of CD8+ T cells specific to tumor associated antigens (TAAs) and tumor neoantigens is one of the main factors resulting in tumor regression. Affinity prediction of tumor antigen epitopes to HLA is an important reference index for peptide selection, which is highly individualized. In this study, we selected 6 CTAs (cancer-testis antigens) commonly used in cancer immunotherapy and top 95 hot mutations from the Cancer Genome Atlas for analyzing potential epitopes with high affinities to the common HLA class I molecules in white and East Asian population, respectively. The results showed that the overall difference in CTAs epitope prediction is small between the two populations. Meanwhile, there is a linear relationship between the CTAs peptide length and the relative overall epitope occurrence. However, the difference is bigger for epitopes prediction of missense mutations between the two populations. It is worth noting that, both in the two populations, the single point mutations with the highest incidences have the lowest epitope occurrences while the mutations with the highest epitope occurrences are with low mutation incidences. This may be the result of long-term selection by the host immunosurveillance. Frameshift/inframe indel mutation neoantigens are between CTAs and spot mutation neoantigens in the relationship between peptide length and predicted epitope number. Our results help provide clues for tumor antigen and epitope selection in cancer vaccine design.
Collapse
|
170
|
Lu T, Wang S, Xu L, Zhou Q, Singla N, Gao J, Manna S, Pop L, Xie Z, Chen M, Luke JJ, Brugarolas J, Hannan R, Wang T. Tumor neoantigenicity assessment with CSiN score incorporates clonality and immunogenicity to predict immunotherapy outcomes. Sci Immunol 2020; 5:eaaz3199. [PMID: 32086382 PMCID: PMC7239327 DOI: 10.1126/sciimmunol.aaz3199] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/11/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022]
Abstract
Lack of responsiveness to checkpoint inhibitors is a central problem in the modern era of cancer immunotherapy. Tumor neoantigens are critical targets of the host antitumor immune response, and their presence correlates with the efficacy of immunotherapy treatment. Many studies involving assessment of tumor neoantigens principally focus on total neoantigen load, which simplistically treats all neoantigens equally. Neoantigen load has been linked with treatment response and prognosis in some studies but not others. We developed a Cauchy-Schwarz index of Neoantigens (CSiN) score to better account for the degree of concentration of immunogenic neoantigens in truncal mutations. Unlike total neoantigen load determinations, CSiN incorporates the effect of both clonality and MHC binding affinity of neoantigens when characterizing tumor neoantigen profiles. By analyzing the clinical responses in 501 treated patients with cancer (with most receiving checkpoint inhibitors) and the overall survival of 1978 patients with cancer at baseline, we showed that CSiN scores predict treatment response to checkpoint inhibitors and prognosis in patients with melanoma, lung cancer, and kidney cancer. CSiN score substantially outperformed prior genetics-based prediction methods of responsiveness and fills an important gap in research involving assessment of tumor neoantigen burden.
Collapse
Affiliation(s)
- Tianshi Lu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shidan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qinbo Zhou
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nirmish Singla
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Subrata Manna
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laurentiu Pop
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiqun Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jason J Luke
- University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Raquibul Hannan
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
171
|
Janelle V, Rulleau C, Del Testa S, Carli C, Delisle JS. T-Cell Immunotherapies Targeting Histocompatibility and Tumor Antigens in Hematological Malignancies. Front Immunol 2020; 11:276. [PMID: 32153583 PMCID: PMC7046834 DOI: 10.3389/fimmu.2020.00276] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/03/2020] [Indexed: 12/19/2022] Open
Abstract
Over the last decades, T-cell immunotherapy has revealed itself as a powerful, and often curative, strategy to treat blood cancers. In hematopoietic cell transplantation, most of the so-called graft-vs.-leukemia (GVL) effect hinges on the recognition of histocompatibility antigens that reflect immunologically relevant genetic variants between donors and recipients. Whether other variants acquired during the neoplastic transformation, or the aberrant expression of gene products can yield antigenic targets of similar relevance as the minor histocompatibility antigens is actively being pursued. Modern genomics and proteomics have enabled the high throughput identification of candidate antigens for immunotherapy in both autologous and allogeneic settings. As such, these major histocompatibility complex-associated tumor-specific (TSA) and tumor-associated antigens (TAA) can allow for the targeting of multiple blood neoplasms, which is a limitation for other immunotherapeutic approaches, such as chimeric antigen receptor (CAR)-modified T cells. We review the current strategies taken to translate these discoveries into T-cell therapies and propose how these could be introduced in clinical practice. Specifically, we discuss the criteria that are used to select the antigens with the greatest therapeutic value and we review the various T-cell manufacturing approaches in place to either expand antigen-specific T cells from the native repertoire or genetically engineer T cells with minor histocompatibility antigen or TSA/TAA-specific recombinant T-cell receptors. Finally, we elaborate on the current and future incorporation of these therapeutic T-cell products into the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Valérie Janelle
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Caroline Rulleau
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Simon Del Testa
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Cédric Carli
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Jean-Sébastien Delisle
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada.,Division Hématologie et Oncologie, Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| |
Collapse
|
172
|
Biernacki MA, Bleakley M. Neoantigens in Hematologic Malignancies. Front Immunol 2020; 11:121. [PMID: 32117272 PMCID: PMC7033457 DOI: 10.3389/fimmu.2020.00121] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
T cell cancer neoantigens are created from peptides derived from cancer-specific aberrant proteins, such as mutated and fusion proteins, presented in complex with human leukocyte antigens on the cancer cell surface. Because expression of the aberrant target protein is exclusive to malignant cells, immunotherapy directed against neoantigens should avoid “on-target, off-tumor” toxicity. The efficacy of neoantigen vaccines in melanoma and glioblastoma and of adoptive transfer of neoantigen-specific T cells in epithelial tumors indicates that neoantigens are valid therapeutic targets. Improvements in sequencing technology and innovations in antigen discovery approaches have facilitated the identification of neoantigens. In comparison to many solid tumors, hematologic malignancies have few mutations and thus fewer potential neoantigens. Despite this, neoantigens have been identified in a wide variety of hematologic malignancies. These include mutated nucleophosmin1 and PML-RARA in acute myeloid leukemia, ETV6-RUNX1 fusions and other mutated proteins in acute lymphoblastic leukemia, BCR-ABL1 fusions in chronic myeloid leukemia, driver mutations in myeloproliferative neoplasms, immunoglobulins in lymphomas, and proteins derived from patient-specific mutations in chronic lymphoid leukemias. We will review advances in the field of neoantigen discovery, describe the spectrum of identified neoantigens in hematologic malignancies, and discuss the potential of these neoantigens for clinical translation.
Collapse
Affiliation(s)
- Melinda A Biernacki
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
173
|
Lancaster EM, Jablons D, Kratz JR. Applications of Next-Generation Sequencing in Neoantigen Prediction and Cancer Vaccine Development. Genet Test Mol Biomarkers 2020; 24:59-66. [DOI: 10.1089/gtmb.2018.0211] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Elizabeth M. Lancaster
- Thoracic Oncology Program, Department of Surgery, University of California, San Francisco, San Francisco, California
| | - David Jablons
- Thoracic Oncology Program, Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Johannes R. Kratz
- Thoracic Oncology Program, Department of Surgery, University of California, San Francisco, San Francisco, California
| |
Collapse
|
174
|
Chandran SS, Klebanoff CA. T cell receptor-based cancer immunotherapy: Emerging efficacy and pathways of resistance. Immunol Rev 2020; 290:127-147. [PMID: 31355495 PMCID: PMC7027847 DOI: 10.1111/imr.12772] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
Adoptive cell transfer (ACT) using chimeric antigen receptor (CAR)-modified T cells can induce durable remissions in patients with refractory B-lymphoid cancers. By contrast, results applying CAR-modified T cells to solid malignancies have been comparatively modest. Alternative strategies to redirect T cell specificity and cytolytic function are therefore necessary if ACT is to serve a greater role in human cancer treatments. T cell receptors (TCRs) are antigen recognition structures physiologically expressed by all T cells that have complementary, and in some cases superior, properties to CARs. Unlike CARs, TCRs confer recognition to epitopes derived from proteins residing within any subcellular compartment, including the membrane, cytoplasm and nucleus. This enables TCRs to detect a broad universe of targets, such as neoantigens, cancer germline antigens, and viral oncoproteins. Moreover, because TCRs have evolved to efficiently detect and amplify antigenic signals, these receptors respond to epitope densities many fold smaller than required for CAR-signaling. Herein, we summarize recent clinical data demonstrating that TCR-based immunotherapies can mediate regression of solid malignancies, including immune-checkpoint inhibitor refractory cancers. These trials simultaneously highlight emerging mechanisms of TCR resistance. We conclude by discussing how TCR-based immunotherapies can achieve broader dissemination through innovations in cell manufacturing and non-viral genome integration techniques.
Collapse
Affiliation(s)
- Smita S Chandran
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Parker Institute for Cancer Immunotherapy, New York, NY
| | - Christopher A Klebanoff
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Parker Institute for Cancer Immunotherapy, New York, NY.,Weill Cornell Medical College, New York, NY
| |
Collapse
|
175
|
Zhang DKY, Cheung AS, Mooney DJ. Activation and expansion of human T cells using artificial antigen-presenting cell scaffolds. Nat Protoc 2020; 15:773-798. [DOI: 10.1038/s41596-019-0249-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/30/2019] [Indexed: 01/03/2023]
|
176
|
Gowthaman R, Pierce BG. Modeling and Viewing T Cell Receptors Using TCRmodel and TCR3d. Methods Mol Biol 2020; 2120:197-212. [PMID: 32124321 DOI: 10.1007/978-1-0716-0327-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The past decade has seen a rapid increase in T cell receptor (TCR) sequences from single cell cloning and repertoire-scale high throughput sequencing studies. Many of these TCRs are of interest as potential therapeutics or for their implications in autoimmune disease or effective targeting of pathogens. As it is impractical to characterize the structure or targeting of the vast majority of these TCRs experimentally, advanced computational methods have been developed to predict their 3D structures and gain mechanistic insights into their antigen binding and specificity. Here, we describe the use of a TCR modeling web server, TCRmodel, which generates models of TCRs from sequence, and TCR3d, which is a weekly-updated database of all known TCR structures. Additionally, we describe the use of RosettaTCR, which is a protocol implemented in the Rosetta framework that serves as the command-line backend to TCRmodel. We provide an example where these tools are used to analyze and model a therapeutically relevant TCR based on its amino acid sequence.
Collapse
Affiliation(s)
- Ragul Gowthaman
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Brian G Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
177
|
Hou J, Zhang H, Sun B, Karin M. The immunobiology of hepatocellular carcinoma in humans and mice: Basic concepts and therapeutic implications. J Hepatol 2020; 72:167-182. [PMID: 31449859 DOI: 10.1016/j.jhep.2019.08.014] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/02/2019] [Accepted: 08/14/2019] [Indexed: 02/08/2023]
Abstract
Basic and clinical studies have demonstrated the efficacy of immunotherapy, a technical and conceptual breakthrough that has revolutionised cancer treatment. Hepatocellular carcinoma (HCC), a deadly malignancy with aetiologic diversity and a chronic course, is strongly influenced by the immune system, and was recently found to partially benefit from immune-checkpoint inhibitor therapy. Notably, HCC onco-immunology depends on diverse genetic and environmental factors that together shape cancer-promoting inflammation and immune dysfunction - critical processes that control HCC malignant progression and response to therapy. Herein, we summarise the current understanding of liver and HCC onco-immunology obtained through basic studies with mouse models and clinical practice in humans. In particular, we discuss preclinical and clinical findings that implicate immunomodulation as a major factor in HCC development and explain the basis for HCC-targeting immunotherapy.
Collapse
Affiliation(s)
- Jiajie Hou
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China; Department of Hepatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Haiyan Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
178
|
Abstract
T cells are key players in cancer immunotherapy, but strategies to expand tumor-reactive cells and study their interactions with tumor cells at the level of an individual patient are limited. Here we describe the generation and functional assessment of tumor-reactive T cells based on cocultures of tumor organoids and autologous peripheral blood lymphocytes. The procedure consists of an initial coculture of 2 weeks, in which tumor-reactive T cells are first expanded in the presence of (IFNγ-stimulated) autologous tumor cells. Subsequently, T cells are evaluated for their capacity to carry out effector functions (IFNγ secretion and degranulation) after recognition of tumor cells, and their capacity to kill tumor organoids. This strategy is unique in its use of peripheral blood as a source of tumor-reactive T cells in an antigen-agnostic manner. In 2 weeks, tumor-reactive CD8+ T-cell populations can be obtained from ~33-50% of samples from patients with non-small-cell lung cancer (NSCLC) and microsatellite-instable colorectal cancer (CRC). This enables the establishment of ex vivo test systems for T-cell-based immunotherapy at the level of the individual patient.
Collapse
|
179
|
Zhang H, Liu L, Zhang J, Chen J, Ye J, Shukla S, Qiao J, Zhan X, Chen H, Wu CJ, Fu YX, Li B. Investigation of Antigen-Specific T-Cell Receptor Clusters in Human Cancers. Clin Cancer Res 2019; 26:1359-1371. [PMID: 31831563 DOI: 10.1158/1078-0432.ccr-19-3249] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/26/2019] [Accepted: 12/05/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Cancer antigen-specific T cells are key components in antitumor immune response, yet their identification in the tumor microenvironment remains challenging, as most cancer antigens are unknown. Recent advance in immunology suggests that similar T-cell receptor (TCR) sequences can be clustered to infer shared antigen specificity. This study aims to identify antigen-specific TCRs from the tumor genomics sequencing data. EXPERIMENTAL DESIGN We used the TRUST (Tcr Repertoire Utilities for Solid Tissue) algorithm to assemble the TCR hypervariable CDR3 regions from 9,700 bulk tumor RNA-sequencing (RNA-seq) samples, and developed a computational method, iSMART, to group similar TCRs into antigen-specific clusters. Integrative analysis on the TCR clusters with multi-omics datasets was performed to profile cancer-associated T cells and to uncover novel cancer antigens. RESULTS Clustered TCRs are associated with signatures of T-cell activation after antigen encounter. We further elucidated the phenotypes of clustered T cells using single-cell RNA-seq data, which revealed a novel subset of tissue-resident memory T-cell population with elevated metabolic status. An exciting application of the TCR clusters is to identify novel cancer antigens, exemplified by our identification of a candidate cancer/testis gene, HSFX1, through integrated analysis of HLA alleles and genomics data. The target was further validated using vaccination of humanized HLA-A*02:01 mice and ELISpot assay. Finally, we showed that clustered tumor-infiltrating TCRs can differentiate patients with early-stage cancer from healthy donors, using blood TCR repertoire sequencing data, suggesting potential applications in noninvasive cancer detection. CONCLUSIONS Our analysis on the antigen-specific TCR clusters provides a unique resource for alternative antigen discovery and biomarker identification for cancer immunotherapies.
Collapse
Affiliation(s)
- Hongyi Zhang
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas
| | - Longchao Liu
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Jian Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jiahui Chen
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas
| | - Jianfeng Ye
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas
| | - Sachet Shukla
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jian Qiao
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Xiaowei Zhan
- Department of Clinical Science, UT Southwestern Medical Center, Dallas, Texas
| | - Hao Chen
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Catherine J Wu
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yang-Xin Fu
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas.
| | - Bo Li
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas. .,Department of Immunology, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
180
|
Wickström SL, Lövgren T, Volkmar M, Reinhold B, Duke-Cohan JS, Hartmann L, Rebmann J, Mueller A, Melief J, Maas R, Ligtenberg M, Hansson J, Offringa R, Seliger B, Poschke I, Reinherz EL, Kiessling R. Cancer Neoepitopes for Immunotherapy: Discordance Between Tumor-Infiltrating T Cell Reactivity and Tumor MHC Peptidome Display. Front Immunol 2019; 10:2766. [PMID: 31921104 PMCID: PMC6918724 DOI: 10.3389/fimmu.2019.02766] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022] Open
Abstract
Tumor-infiltrating lymphocytes (TIL) are considered enriched for T cells recognizing shared tumor antigens or mutation-derived neoepitopes. We performed exome sequencing and HLA-A*02:01 epitope prediction from tumor cell lines from two HLA-A2-positive melanoma patients whose TIL displayed strong tumor reactivity. The potential neoepitopes were screened for recognition using autologous TIL by immunological assays and presentation on tumor major histocompatibility complex class I (MHC-I) molecules by Poisson detection mass spectrometry (MS). TIL from the patients recognized 5/181 and 3/49 of the predicted neoepitopes, respectively. MS screening detected 3/181 neoepitopes on tumor MHC-I from the first patient but only one was also among those recognized by TIL. Consequently, TIL enriched for neoepitope specificity failed to recognize tumor cells, despite being activated by peptides. For the second patient, only after IFN-γ treatment of the tumor cells was one of 49 predicted neoepitopes detected by MS, and this coincided with recognition by TIL sorted for the same specificity. Importantly, specific T cells could be expanded from patient and donor peripheral blood mononuclear cells (PBMC) for all neoepitopes recognized by TIL and/or detected on tumor MHC-I. In summary, stimulating the appropriate inflammatory environment within tumors may promote neoepitope MHC presentation while expanding T cells in blood may circumvent lack of specific TIL. The discordance in detection between physical and functional methods revealed here can be rationalized and used to improve neoantigen-targeted T cell immunotherapy.
Collapse
Affiliation(s)
- Stina L Wickström
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Tanja Lövgren
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Michael Volkmar
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bruce Reinhold
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Jonathan S Duke-Cohan
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Laura Hartmann
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Janina Rebmann
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anja Mueller
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jeroen Melief
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Roeltje Maas
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Maarten Ligtenberg
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Hansson
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Rienk Offringa
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Isabel Poschke
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany.,DKTK Immune Monitoring Unit, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Ellis L Reinherz
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Rolf Kiessling
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
181
|
Blanc E, Holtgrewe M, Dhamodaran A, Messerschmidt C, Willimsky G, Blankenstein T, Beule D. Identification and ranking of recurrent neo-epitopes in cancer. BMC Med Genomics 2019; 12:171. [PMID: 31775766 PMCID: PMC6882202 DOI: 10.1186/s12920-019-0611-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/25/2019] [Indexed: 12/25/2022] Open
Abstract
Background Immune escape is one of the hallmarks of cancer and several new treatment approaches attempt to modulate and restore the immune system’s capability to target cancer cells. At the heart of the immune recognition process lies antigen presentation from somatic mutations. These neo-epitopes are emerging as attractive targets for cancer immunotherapy and new strategies for rapid identification of relevant candidates have become a priority. Methods We carefully screen TCGA data sets for recurrent somatic amino acid exchanges and apply MHC class I binding predictions. Results We propose a method for in silico selection and prioritization of candidates which have a high potential for neo-antigen generation and are likely to appear in multiple patients. While the percentage of patients carrying a specific neo-epitope and HLA-type combination is relatively small, the sheer number of new patients leads to surprisingly high reoccurence numbers. We identify 769 epitopes which are expected to occur in 77629 patients per year. Conclusion While our candidate list will definitely contain false positives, the results provide an objective order for wet-lab testing of reusable neo-epitopes. Thus recurrent neo-epitopes may be suitable to supplement existing personalized T cell treatment approaches with precision treatment options.
Collapse
Affiliation(s)
- Eric Blanc
- Core Unit Bioinformatics, Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany
| | - Manuel Holtgrewe
- Core Unit Bioinformatics, Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany
| | - Arunraj Dhamodaran
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, Berlin, 13092, Germany
| | - Clemens Messerschmidt
- Core Unit Bioinformatics, Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany
| | - Gerald Willimsky
- Institute of Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lindenberger Weg 80, Berlin, 13125, Germany.,Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany.,German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Thomas Blankenstein
- Institute of Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lindenberger Weg 80, Berlin, 13125, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, Berlin, 13092, Germany.,Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany. .,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, Berlin, 13092, Germany.
| |
Collapse
|
182
|
Mösch A, Raffegerst S, Weis M, Schendel DJ, Frishman D. Machine Learning for Cancer Immunotherapies Based on Epitope Recognition by T Cell Receptors. Front Genet 2019; 10:1141. [PMID: 31798635 PMCID: PMC6878726 DOI: 10.3389/fgene.2019.01141] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/21/2019] [Indexed: 12/30/2022] Open
Abstract
In the last years, immunotherapies have shown tremendous success as treatments for multiple types of cancer. However, there are still many obstacles to overcome in order to increase response rates and identify effective therapies for every individual patient. Since there are many possibilities to boost a patient's immune response against a tumor and not all can be covered, this review is focused on T cell receptor-mediated therapies. CD8+ T cells can detect and destroy malignant cells by binding to peptides presented on cell surfaces by MHC (major histocompatibility complex) class I molecules. CD4+ T cells can also mediate powerful immune responses but their peptide recognition by MHC class II molecules is more complex, which is why the attention has been focused on CD8+ T cells. Therapies based on the power of T cells can, on the one hand, enhance T cell recognition by introducing TCRs that preferentially direct T cells to tumor sites (so called TCR-T therapy) or through vaccination to induce T cells in vivo. On the other hand, T cell activity can be improved by immune checkpoint inhibition or other means that help create a microenvironment favorable for cytotoxic T cell activity. The manifold ways in which the immune system and cancer interact with each other require not only the use of large omics datasets from gene, to transcript, to protein, and to peptide but also make the application of machine learning methods inevitable. Currently, discovering and selecting suitable TCRs is a very costly and work intensive in vitro process. To facilitate this process and to additionally allow for highly personalized therapies that can simultaneously target multiple patient-specific antigens, especially neoepitopes, breakthrough computational methods for predicting antigen presentation and TCR binding are urgently required. Particularly, potential cross-reactivity is a major consideration since off-target toxicity can pose a major threat to patient safety. The current speed at which not only datasets grow and are made available to the public, but also at which new machine learning methods evolve, is assuring that computational approaches will be able to help to solve problems that immunotherapies are still facing.
Collapse
Affiliation(s)
- Anja Mösch
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- Medigene Immunotherapies GmbH, a subsidiary of Medigene AG, Planegg, Germany
| | - Silke Raffegerst
- Medigene Immunotherapies GmbH, a subsidiary of Medigene AG, Planegg, Germany
| | - Manon Weis
- Medigene Immunotherapies GmbH, a subsidiary of Medigene AG, Planegg, Germany
| | - Dolores J. Schendel
- Medigene Immunotherapies GmbH, a subsidiary of Medigene AG, Planegg, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| |
Collapse
|
183
|
Ma S, Chee J, Fear VS, Forbes CA, Boon L, Dick IM, Robinson BWS, Creaney J. Pre-treatment tumor neo-antigen responses in draining lymph nodes are infrequent but predict checkpoint blockade therapy outcome. Oncoimmunology 2019; 9:1684714. [PMID: 32002299 PMCID: PMC6959436 DOI: 10.1080/2162402x.2019.1684714] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/30/2022] Open
Abstract
Immune checkpoint blockade (ICPB) is a powerfully effective cancer therapy in some patients. Tumor neo-antigens are likely main targets for attack but it is not clear which and how many tumor mutations in individual cancers are actually antigenic, with or without ICPB therapy and their role as neo-antigen vaccines or as predictors of ICPB responses. To examine this, we interrogated the immune response to tumor neo-antigens in a murine model in which the tumor is induced by a natural human carcinogen (i.e. asbestos) and mimics its human counterpart (i.e. mesothelioma). We identified and screened 33 candidate neo-antigens, and found T cell responses against one candidate in tumor-bearing animals, mutant UQCRC2. Interestingly, we found a high degree of inter-animal variation in the magnitude of neo-antigen responses in otherwise identical mice. ICPB therapy with Cytotoxic T-lymphocyte-associated protein (CTLA-4) and α-glucocorticoid-induced TNFR family related gene (GITR) in doses that induced tumor regression, increased the magnitude of responses and unmasked functional T cell responses against another neo-antigen, UNC45a. Importantly, the magnitude of the pre-treatment draining lymph node (dLN) response to UNC45a closely corresponded to ICPB therapy outcomes. Surprisingly however, boosting pre-treatment UNC45a-specific T cell numbers did not improve response rates to ICPB. These observations suggest a novel biomarker approach to the clinical prediction of ICPB response and have important implications for the development of neo-antigen vaccines.
Collapse
Affiliation(s)
- Shaokang Ma
- National Centre for Asbestos Related Diseases, University of Western Australia, Nedlands, Australia
| | - Jonathan Chee
- National Centre for Asbestos Related Diseases, University of Western Australia, Nedlands, Australia
| | - Vanessa S Fear
- National Centre for Asbestos Related Diseases, University of Western Australia, Nedlands, Australia
| | - Catherine A Forbes
- National Centre for Asbestos Related Diseases, University of Western Australia, Nedlands, Australia
| | | | - Ian M Dick
- National Centre for Asbestos Related Diseases, University of Western Australia, Nedlands, Australia
| | - Bruce W S Robinson
- National Centre for Asbestos Related Diseases, University of Western Australia, Nedlands, Australia.,Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Jenette Creaney
- National Centre for Asbestos Related Diseases, University of Western Australia, Nedlands, Australia.,Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Australia.,Institute of Respiratory Health, University of Western Australia, Nedlands, Australia
| |
Collapse
|
184
|
Catalano I, Grassi E, Bertotti A, Trusolino L. Immunogenomics of Colorectal Tumors: Facts and Hypotheses on an Evolving Saga. Trends Cancer 2019; 5:779-788. [PMID: 31813455 DOI: 10.1016/j.trecan.2019.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 01/10/2023]
Abstract
Immunotherapy with immune checkpoint inhibitors is an approved treatment option for a subpopulation of patients with colorectal cancers that display microsatellite instability. However, not all individuals within this subgroup respond to immunotherapy, and molecular biomarkers for effective patient stratification are still lacking. In this opinion article, we provide an overview of the different biological parameters that contribute to rendering colorectal cancers with microsatellite instability potentially sensitive to immunotherapy. We critically discuss the reasons why such parameters have limited predictive value and the implications therein. We also consider that a more informed knowledge of response determinants in this tumor subtype could help understand the mechanisms of immunotherapy resistance in microsatellite stable tumors. We conclude that the dynamic nature of the interactions between cancer and immune cells complicates conventional biomarker development and argue that a new generation of adaptive metrics, borrowed from evolutionary genetics, may improve the effectiveness and reliability of clinical decision making.
Collapse
Affiliation(s)
- Irene Catalano
- Department of Oncology, University of Torino, 10060 Candiolo, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, 10060 Candiolo, Torino, Italy
| | - Elena Grassi
- Candiolo Cancer Institute - FPO IRCCS, 10060 Candiolo, Torino, Italy
| | - Andrea Bertotti
- Department of Oncology, University of Torino, 10060 Candiolo, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, 10060 Candiolo, Torino, Italy
| | - Livio Trusolino
- Department of Oncology, University of Torino, 10060 Candiolo, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, 10060 Candiolo, Torino, Italy.
| |
Collapse
|
185
|
Wang Z, Cheng G, Li G. TCR Ligand Discovery via T-Scan. Trends Immunol 2019; 40:1075-1077. [PMID: 31699586 DOI: 10.1016/j.it.2019.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/03/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022]
Abstract
T cell receptor (TCR) ligand discovery is crucial to monitoring T cell responses to antigen and to identifying antigens reactive against orphan TCRs of interest. In a recent article, Elledge and colleagues describe a functional T cell ligand screening platform for unbiased TCR ligand discovery.
Collapse
Affiliation(s)
- Zhe Wang
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Guideng Li
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China.
| |
Collapse
|
186
|
Zhang Y, Lin Z, Wan Y, Cai H, Deng L, Li R. The Immunogenicity and Anti-tumor Efficacy of a Rationally Designed Neoantigen Vaccine for B16F10 Mouse Melanoma. Front Immunol 2019; 10:2472. [PMID: 31749795 PMCID: PMC6848027 DOI: 10.3389/fimmu.2019.02472] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/03/2019] [Indexed: 12/30/2022] Open
Abstract
Tumor neoantigens are ideal targets for cancer immunotherapy as they are recognized by host immune system as foreigners and can elicit tumor-specific immune responses. However, existing strategies utilizing RNA or long peptides for the neoantigen vaccines render limited immune responses since only 20–30% of neoantigens predicted in silico to bind MHC I molecules are capable of eliciting immune responses with the majority of responding T cells are CD4+. Therefore, it warrants further exploration to enhance neoantigen-specific CD8+ T cells responses. Since neoantigens are naturally weak antigens, we asked whether foreign T help epitopes could enhance their immunogenicity. In present study, we chose 4 weak B16F10 neoantigens as vaccine targets, and fused them to the transmembrane domain of diphtheria toxin, namely DTT-neoAg. Strikingly, the vaccine elicited anti-tumor CD8+ T cells responses and enhanced tumor infiltration of both T cells and NK cells. Impressively, DTT-neoAg vaccine significantly deterred tumor growth with the inhibition rate reached 88% in the preventive model and 100% in the therapeutic model at low dose of tumor challenge. Furthermore, after second challenge with higher dose of tumor cells, 33.3% of the immunized mice remained tumor-free for 6 months in the therapeutic model. Because DTT is a non-toxic domain of diphtheria toxin, it may be not of great concern in terms of safety as a Th epitope provider. Thus, the fusion strategy employed by this study may become a feasible and powerful approach for development of personalized cancer vaccines.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhibing Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhua Wan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Huaman Cai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Deng
- Shanghai HyCharm Inc., Shanghai, China
| | - Rongxiu Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Shanghai HyCharm Inc., Shanghai, China.,Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, China
| |
Collapse
|
187
|
Wu J, Wang W, Zhang J, Zhou B, Zhao W, Su Z, Gu X, Wu J, Zhou Z, Chen S. DeepHLApan: A Deep Learning Approach for Neoantigen Prediction Considering Both HLA-Peptide Binding and Immunogenicity. Front Immunol 2019; 10:2559. [PMID: 31736974 PMCID: PMC6838785 DOI: 10.3389/fimmu.2019.02559] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/15/2019] [Indexed: 12/30/2022] Open
Abstract
Neoantigens play important roles in cancer immunotherapy. Current methods used for neoantigen prediction focus on the binding between human leukocyte antigens (HLAs) and peptides, which is insufficient for high-confidence neoantigen prediction. In this study, we apply deep learning techniques to predict neoantigens considering both the possibility of HLA-peptide binding (binding model) and the potential immunogenicity (immunogenicity model) of the peptide-HLA complex (pHLA). The binding model achieves comparable performance with other well-acknowledged tools on the latest Immune Epitope Database (IEDB) benchmark datasets and an independent mass spectrometry (MS) dataset. The immunogenicity model could significantly improve the prediction precision of neoantigens. The further application of our method to the mutations with pre-existing T-cell responses indicating its feasibility in clinical application. DeepHLApan is freely available at https://github.com/jiujiezz/deephlapan and http://biopharm.zju.edu.cn/deephlapan.
Collapse
Affiliation(s)
- Jingcheng Wu
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Wenzhe Wang
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Jiucheng Zhang
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Binbin Zhou
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Wenyi Zhao
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Zhixi Su
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xun Gu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Jian Wu
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Zhan Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shuqing Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
188
|
Wang Q, Douglass J, Hwang MS, Hsiue EHC, Mog BJ, Zhang M, Papadopoulos N, Kinzler KW, Zhou S, Vogelstein B. Direct Detection and Quantification of Neoantigens. Cancer Immunol Res 2019; 7:1748-1754. [PMID: 31527070 PMCID: PMC6825591 DOI: 10.1158/2326-6066.cir-19-0107] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/15/2019] [Accepted: 09/04/2019] [Indexed: 12/30/2022]
Abstract
Many immunotherapeutic approaches under development rely on T-cell recognition of cancer-derived peptides bound to human leukocyte antigen molecules on the cell surface. Direct experimental demonstration that such peptides are processed and bound is currently challenging. Here, we describe a method that meets this challenge. The method entailed an optimized immunoprecipitation protocol coupled with two-dimensional chromatography and mass spectrometry. The ability to detect and quantify minute amounts of predefined antigens should be useful both for basic research in tumor immunology and for the development of rationally designed cancer vaccines.
Collapse
Affiliation(s)
- Qing Wang
- Ludwig Center, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland.
- Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
| | - Jacqueline Douglass
- Ludwig Center, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
- Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
| | - Michael S Hwang
- Ludwig Center, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
- Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
| | - Emily Han-Chung Hsiue
- Ludwig Center, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
- Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
| | - Brian J Mog
- Ludwig Center, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
- Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
| | - Ming Zhang
- Ludwig Center, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
- Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
| | - Nickolas Papadopoulos
- Ludwig Center, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
- Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
| | - Kenneth W Kinzler
- Ludwig Center, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
- Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
| | - Shibin Zhou
- Ludwig Center, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland.
- Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
| | - Bert Vogelstein
- Ludwig Center, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland.
- Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
| |
Collapse
|
189
|
Alspach E, Lussier DM, Miceli AP, Kizhvatov I, DuPage M, Luoma AM, Meng W, Lichti CF, Esaulova E, Vomund AN, Runci D, Ward JP, Gubin MM, Medrano RFV, Arthur CD, White JM, Sheehan KCF, Chen A, Wucherpfennig KW, Jacks T, Unanue ER, Artyomov MN, Schreiber RD. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature 2019; 574:696-701. [PMID: 31645760 PMCID: PMC6858572 DOI: 10.1038/s41586-019-1671-8] [Citation(s) in RCA: 597] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022]
Abstract
The ability of the immune system to eliminate and shape the immunogenicity of tumours defines the process of cancer immunoediting1. Immunotherapies such as those that target immune checkpoint molecules can be used to augment immune-mediated elimination of tumours and have resulted in durable responses in patients with cancer that did not respond to previous treatments. However, only a subset of patients benefit from immunotherapy and more knowledge about what is required for successful treatment is needed2-4. Although the role of tumour neoantigen-specific CD8+ T cells in tumour rejection is well established5-9, the roles of other subsets of T cells have received less attention. Here we show that spontaneous and immunotherapy-induced anti-tumour responses require the activity of both tumour-antigen-specific CD8+ and CD4+ T cells, even in tumours that do not express major histocompatibility complex (MHC) class II molecules. In addition, the expression of MHC class II-restricted antigens by tumour cells is required at the site of successful rejection, indicating that activation of CD4+ T cells must also occur in the tumour microenvironment. These findings suggest that MHC class II-restricted neoantigens have a key function in the anti-tumour response that is nonoverlapping with that of MHC class I-restricted neoantigens and therefore needs to be considered when identifying patients who will most benefit from immunotherapy.
Collapse
Affiliation(s)
- Elise Alspach
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.,The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Danielle M Lussier
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.,The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Alexander P Miceli
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.,The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Ilya Kizhvatov
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Michel DuPage
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Adrienne M Luoma
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Wei Meng
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.,The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.,The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Ekaterina Esaulova
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Anthony N Vomund
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Daniele Runci
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.,The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Jeffrey P Ward
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.,The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.,Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Matthew M Gubin
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.,The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Ruan F V Medrano
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.,The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Cora D Arthur
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.,The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - J Michael White
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Kathleen C F Sheehan
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.,The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Alex Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA. .,The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA. .,The Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
190
|
Sanghera C, Sanghera R. Immunotherapy - Strategies for Expanding Its Role in the Treatment of All Major Tumor Sites. Cureus 2019; 11:e5938. [PMID: 31788395 PMCID: PMC6858270 DOI: 10.7759/cureus.5938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Immunotherapy is widely regarded to have the ability to transform the treatment of cancer, with immune checkpoint inhibitors already in use for cancers such as advanced melanoma and non-small cell lung cancer (NSCLC). However, despite its potential, the widespread adoption of immunotherapy for the treatment of other cancers has been largely limited. This can be partly attributed to additional immunosuppressive mechanisms in the tumor microenvironment that help promote and maintain a state of T cell exhaustion. As such, the exploration of combinatory immunotherapies is an active area of research and includes the combination of immune checkpoint inhibitors with cytotoxic therapies, cancer vaccines and monoclonal antibodies against other co-inhibitory and co-stimulatory receptors. Strategies are also being employed to improve the homing, extravasation and survival of chimeric antigen receptor (CAR)-T cells in the tumor microenvironment. Furthermore, the development of immunotherapies targeted to one or multiple neoantigens unique to a specific tumor may act to enhance anti-tumor immunity, as well as reduce immune-related adverse events (irAEs). As immunotherapy evolves to become a mainstay treatment for cancer, it is imperative that optimum treatment regimens that maximize efficacy and limit toxicity are developed. Foremost, appropriate biomarkers must be identified to help tailor combinatory immunotherapies to the individual patient and hence pave the way to a new era of personalized medicine.
Collapse
Affiliation(s)
| | - Rohan Sanghera
- School of the Biological Sciences, University of Cambridge, Cambridge, GBR
| |
Collapse
|
191
|
Simultaneous Deletion of Endogenous TCRαβ for TCR Gene Therapy Creates an Improved and Safe Cellular Therapeutic. Mol Ther 2019; 28:64-74. [PMID: 31636040 DOI: 10.1016/j.ymthe.2019.10.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022] Open
Abstract
Generation of an optimal T cell therapeutic expressing high frequencies of transgenic T cell receptor (tgTCR) is essential for improving TCR gene therapy. Upon TCR gene transfer, presence of endogenous TCRαβ reduces expression of tgTCR due to TCR mixed-dimer formation and competition for binding CD3. Knockout (KO) of endogenous TCRαβ was recently achieved using CRISPR/Cas9 editing of the TRAC or TRBC loci, resulting in increased expression and function of tgTCR. Here, we adopt this approach into current protocols for generating T cell populations expressing tgTCR to validate this strategy in the context of four clinically relevant TCRs. First, simultaneous editing of TRAC and TRBC loci was reproducible and resulted in high double KO efficiencies in bulk CD8 T cells. Next, tgTCR expression was significantly higher in double TRAC/BC KO conditions for all TCRs tested, including those that contained structural modifications to encourage preferential pairing. Finally, increased expression of tgTCR in edited T cell populations allowed for increased recognition of antigen expressing tumor targets and prolonged control of tumor outgrowth in a preclinical model of multiple myeloma. In conclusion, CRISPR/Cas9-mediated KO of both endogenous TCRαβ chains can be incorporated in current T cell production protocols and is preferential to ensure an improved and safe clinical therapeutic.
Collapse
|
192
|
Sharma P, Harris DT, Stone JD, Kranz DM. T-cell Receptors Engineered De Novo for Peptide Specificity Can Mediate Optimal T-cell Activity without Self Cross-Reactivity. Cancer Immunol Res 2019; 7:2025-2035. [PMID: 31548259 DOI: 10.1158/2326-6066.cir-19-0035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/04/2019] [Accepted: 09/17/2019] [Indexed: 12/17/2022]
Abstract
Despite progress in adoptive T-cell therapies, the identification of targets remains a challenge. Although chimeric antigen receptors recognize cell-surface antigens, T-cell receptors (TCR) have the advantage that they can target the array of intracellular proteins by binding to peptides associated with major histocompatibility complex (MHC) products (pepMHC). Although hundreds of cancer-associated peptides have been reported, it remains difficult to identify effective TCRs against each pepMHC complex. Conventional approaches require isolation of antigen-specific CD8+ T cells, followed by TCRαβ gene isolation and validation. To bypass this process, we used directed evolution to engineer TCRs with desired peptide specificity. Here, we compared the activity and cross-reactivity of two affinity-matured TCRs (T1 and RD1) with distinct origins. T1-TCR was isolated from a melanoma-reactive T-cell line specific for MART-1/HLA-A2, whereas RD1-TCR was derived de novo against MART-1/HLA-A2 by in vitro engineering. Despite their distinct origins, both TCRs exhibited similar peptide fine specificities, focused on the center of the MART-1 peptide. In CD4+ T cells, both TCRs mediated activity against MART-1 presented by HLA-A2. However, in CD8+ T cells, T1, but not RD1, demonstrated cross-reactivity with endogenous peptide/HLA-A2 complexes. Based on the fine specificity of these and other MART-1 binding TCRs, we conducted bioinformatics scans to identify structurally similar self-peptides in the human proteome. We showed that the T1-TCR cross-reacted with many of these self-peptides, whereas the RD1-TCR was rarely cross-reactive. Thus, TCRs such as RD1, generated de novo against cancer antigens, can serve as an alternative to TCRs generated from T-cell clones.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, Illinois.
| | - Daniel T Harris
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, Illinois
| | - Jennifer D Stone
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, Illinois
| | - David M Kranz
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, Illinois.
| |
Collapse
|
193
|
Wolf Y, Bartok O, Patkar S, Eli GB, Cohen S, Litchfield K, Levy R, Jiménez-Sánchez A, Trabish S, Lee JS, Karathia H, Barnea E, Day CP, Cinnamon E, Stein I, Solomon A, Bitton L, Pérez-Guijarro E, Dubovik T, Shen-Orr SS, Miller ML, Merlino G, Levin Y, Pikarsky E, Eisenbach L, Admon A, Swanton C, Ruppin E, Samuels Y. UVB-Induced Tumor Heterogeneity Diminishes Immune Response in Melanoma. Cell 2019; 179:219-235.e21. [PMID: 31522890 PMCID: PMC6863386 DOI: 10.1016/j.cell.2019.08.032] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 05/30/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022]
Abstract
Although clonal neo-antigen burden is associated with improved response to immune therapy, the functional basis for this remains unclear. Here we study this question in a novel controlled mouse melanoma model that enables us to explore the effects of intra-tumor heterogeneity (ITH) on tumor aggressiveness and immunity independent of tumor mutational burden. Induction of UVB-derived mutations yields highly aggressive tumors with decreased anti-tumor activity. However, single-cell-derived tumors with reduced ITH are swiftly rejected. Their rejection is accompanied by increased T cell reactivity and a less suppressive microenvironment. Using phylogenetic analyses and mixing experiments of single-cell clones, we dissect two characteristics of ITH: the number of clones forming the tumor and their clonal diversity. Our analysis of melanoma patient tumor data recapitulates our results in terms of overall survival and response to immune checkpoint therapy. These findings highlight the importance of clonal mutations in robust immune surveillance and the need to quantify patient ITH to determine the response to checkpoint blockade.
Collapse
Affiliation(s)
- Yochai Wolf
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Osnat Bartok
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sushant Patkar
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Gitit Bar Eli
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sapir Cohen
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Kevin Litchfield
- Cancer Evolution and Genome Instability Laboratory, Francis Crick Institute, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence London, University College London Cancer Institute, London WC1E 6DD, UK
| | - Ronen Levy
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alejandro Jiménez-Sánchez
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Sophie Trabish
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Joo Sang Lee
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Hiren Karathia
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Eilon Barnea
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Einat Cinnamon
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ilan Stein
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Adam Solomon
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Lital Bitton
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eva Pérez-Guijarro
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Tania Dubovik
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shai S Shen-Orr
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Martin L Miller
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Lea Eisenbach
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Arie Admon
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, Francis Crick Institute, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence London, University College London Cancer Institute, London WC1E 6DD, UK; Department of Medical Oncology, University College London Hospitals, London NW1 2BU, UK
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
194
|
Toward in silico Identification of Tumor Neoantigens in Immunotherapy. Trends Mol Med 2019; 25:980-992. [PMID: 31494024 DOI: 10.1016/j.molmed.2019.08.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/13/2019] [Accepted: 08/02/2019] [Indexed: 12/30/2022]
Abstract
Cancer immunotherapy includes cancer vaccination, adoptive T cell transfer (ACT) with chimeric antigen receptor (CAR) T cells, and administration of tumor-infiltrating lymphocytes and immune-checkpoint blockade such as anti-CTLA4/anti-PD1 inhibitors that can directly or indirectly target tumor neoantigens and elicit a T cell response. Accurate, rapid, and cost-effective identification of neoantigens, however, is critical for successful immunotherapy. Here, we review computational issues for neoantigen identification by summarizing the various sources of neoantigens and their identification from high-throughput sequencing data. Several opinions are presented to inspire further discussions toward improving neoantigen identification. Continuing efforts are required to improve the sensitivity and specificity of bona fide neoantigens, taking advantage of the development of high-throughput sequencing techniques for effective and personalized cancer immunotherapy.
Collapse
|
195
|
Peng S, Zaretsky JM, Ng AHC, Chour W, Bethune MT, Choi J, Hsu A, Holman E, Ding X, Guo K, Kim J, Xu AM, Heath JE, Noh WJ, Zhou J, Su Y, Lu Y, McLaughlin J, Cheng D, Witte ON, Baltimore D, Ribas A, Heath JR. Sensitive Detection and Analysis of Neoantigen-Specific T Cell Populations from Tumors and Blood. Cell Rep 2019; 28:2728-2738.e7. [PMID: 31484081 PMCID: PMC6774618 DOI: 10.1016/j.celrep.2019.07.106] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 05/04/2019] [Accepted: 07/29/2019] [Indexed: 12/30/2022] Open
Abstract
Neoantigen-specific T cells are increasingly viewed as important immunotherapy effectors, but physically isolating these rare cell populations is challenging. Here, we describe a sensitive method for the enumeration and isolation of neoantigen-specific CD8+ T cells from small samples of patient tumor or blood. The method relies on magnetic nanoparticles that present neoantigen-loaded major histocompatibility complex (MHC) tetramers at high avidity by barcoded DNA linkers. The magnetic particles provide a convenient handle to isolate the desired cell populations, and the barcoded DNA enables multiplexed analysis. The method exhibits superior recovery of antigen-specific T cell populations relative to literature approaches. We applied the method to profile neoantigen-specific T cell populations in the tumor and blood of patients with metastatic melanoma over the course of anti-PD1 checkpoint inhibitor therapy. We show that the method has value for monitoring clinical responses to cancer immunotherapy and might help guide the development of personalized mutational neoantigen-specific T cell therapies and cancer vaccines.
Collapse
Affiliation(s)
- Songming Peng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA
| | - Jesse M Zaretsky
- Department of Medicine, University of California Los Angeles and Jonsson Comprehensive Cancer Center, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Alphonsus H C Ng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA; Institute for Systems Biology, Seattle, WA 98109, USA
| | - William Chour
- Institute for Systems Biology, Seattle, WA 98109, USA; Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Michael T Bethune
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Jongchan Choi
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Alice Hsu
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Elizabeth Holman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA
| | - Xiaozhe Ding
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA; Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Katherine Guo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA
| | - Jungwoo Kim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA
| | - Alexander M Xu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA; Institute for Systems Biology, Seattle, WA 98109, USA
| | - John E Heath
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA
| | - Won Jun Noh
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Jing Zhou
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA
| | - Yapeng Su
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA; Institute for Systems Biology, Seattle, WA 98109, USA
| | - Yue Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA; Institute for Systems Biology, Seattle, WA 98109, USA
| | - Jami McLaughlin
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Donghui Cheng
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Owen N Witte
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Antoni Ribas
- Department of Medicine, University of California Los Angeles and Jonsson Comprehensive Cancer Center, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - James R Heath
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA; Institute for Systems Biology, Seattle, WA 98109, USA.
| |
Collapse
|
196
|
Riley TP, Keller GLJ, Smith AR, Davancaze LM, Arbuiso AG, Devlin JR, Baker BM. Structure Based Prediction of Neoantigen Immunogenicity. Front Immunol 2019; 10:2047. [PMID: 31555277 PMCID: PMC6724579 DOI: 10.3389/fimmu.2019.02047] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/13/2019] [Indexed: 12/30/2022] Open
Abstract
The development of immunological therapies that incorporate peptide antigens presented to T cells by MHC proteins is a long sought-after goal, particularly for cancer, where mutated neoantigens are being explored as personalized cancer vaccines. Although neoantigens can be identified through sequencing, bioinformatics and mass spectrometry, identifying those which are immunogenic and able to promote tumor rejection remains a significant challenge. Here we examined the potential of high-resolution structural modeling followed by energetic scoring of structural features for predicting neoantigen immunogenicity. After developing a strategy to rapidly and accurately model nonameric peptides bound to the common class I MHC protein HLA-A2, we trained a neural network on structural features that influence T cell receptor (TCR) and peptide binding energies. The resulting structurally-parameterized neural network outperformed methods that do not incorporate explicit structural or energetic properties in predicting CD8+ T cell responses of HLA-A2 presented nonameric peptides, while also providing insight into the underlying structural and biophysical mechanisms governing immunogenicity. Our proof-of-concept study demonstrates the potential for structure-based immunogenicity predictions in the development of personalized peptide-based vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Brian M. Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
197
|
Chromosome Y-encoded antigens associate with acute graft-versus-host disease in sex-mismatched stem cell transplant. Blood Adv 2019; 2:2419-2429. [PMID: 30262602 DOI: 10.1182/bloodadvances.2018019513] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/21/2018] [Indexed: 12/22/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HCT) is a curative option for blood cancers, but the coupled effects of graft-versus-tumor and graft-versus-host disease (GVHD) limit its broader application. Outcomes improve with matching at HLAs, but other factors are required to explain residual risk of GVHD. In an effort to identify genetic associations outside the major histocompatibility complex, we conducted a genome-wide clinical outcomes study on 205 acute myeloid leukemia patients and their fully HLA-A-, HLA-B-, HLA-C-, HLA-DRB1-, and HLA-DQB1-matched (10/10) unrelated donors. HLA-DPB1 T-cell epitope permissibility mismatches were observed in less than half (45%) of acute GVHD cases, motivating a broader search for genetic factors affecting clinical outcomes. A novel bioinformatics workflow adapted from neoantigen discovery found no associations between acute GVHD and known, HLA-restricted minor histocompatibility antigens (MiHAs). These results were confirmed with microarray data from an additional 988 samples. On the other hand, Y-chromosome-encoded single-nucleotide polymorphisms in 4 genes (PCDH11Y, USP9Y, UTY, and NLGN4Y) did associate with acute GVHD in male patients with female donors. Males in this category with acute GVHD had more Y-encoded variant peptides per patient with higher predicted HLA-binding affinity than males without GVHD who matched X-paralogous alleles in their female donors. Methods and results described here have an immediate impact for allo-HCT, warranting further development and larger genomic studies where MiHAs are clinically relevant, including cancer immunotherapy, solid organ transplant, and pregnancy.
Collapse
|
198
|
Garrido G, Schrand B, Rabasa A, Levay A, D'Eramo F, Berezhnoy A, Modi S, Gefen T, Marijt K, Doorduijn E, Dudeja V, van Hall T, Gilboa E. Tumor-targeted silencing of the peptide transporter TAP induces potent antitumor immunity. Nat Commun 2019; 10:3773. [PMID: 31434881 PMCID: PMC6704146 DOI: 10.1038/s41467-019-11728-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 08/01/2019] [Indexed: 12/21/2022] Open
Abstract
Neoantigen burden is a major determinant of tumor immunogenicity, underscored by recent clinical experience with checkpoint blockade therapy. Yet the majority of patients do not express, or express too few, neoantigens, and hence are less responsive to immune therapy. Here we describe an approach whereby a common set of new antigens are induced in tumor cells in situ by transient downregulation of the transporter associated with antigen processing (TAP). Administration of TAP siRNA conjugated to a broad-range tumor-targeting nucleolin aptamer inhibited tumor growth in multiple tumor models without measurable toxicity, was comparatively effective to vaccination against prototypic mutation-generated neoantigens, potentiated the antitumor effect of PD-1 antibody or Flt3 ligand, and induced the presentation of a TAP-independent peptide in human tumor cells. Treatment with the chemically-synthesized nucleolin aptamer-TAP siRNA conjugate represents a broadly-applicable approach to increase the antigenicity of tumor lesions and thereby enhance the effectiveness of immune potentiating therapies.
Collapse
Affiliation(s)
- Greta Garrido
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Brett Schrand
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Ailem Rabasa
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Agata Levay
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Francesca D'Eramo
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Alexey Berezhnoy
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Shrey Modi
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Tal Gefen
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Koen Marijt
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Elien Doorduijn
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Vikas Dudeja
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Thorbald van Hall
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Eli Gilboa
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
199
|
Zamkova M, Kalinina A, Silaeva Y, Persiyantseva N, Bruter A, Deikin A, Khromykh L, Kazansky D. Dominant role of the α-chain in rejection of tumor cells bearing a specific alloantigen in TCRα transgenic mice and in in vitro experiments. Oncotarget 2019; 10:4808-4821. [PMID: 31448049 PMCID: PMC6690675 DOI: 10.18632/oncotarget.27093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/29/2019] [Indexed: 12/17/2022] Open
Abstract
Both TCRα and TCRβ types of T-cell receptors contribute to antigen recognition. However, some TCRs have chain centricity, which means that either the α-chain or the β-chain dictates the peptide–MHC complex specificity. Most earlier reports investigated the role of well-studied β-chains in antigen recognition by TCRαβ. In a previous study, we identified TCRs specific to the H-2Kb molecule. In the present work, we generated transgenic mice carrying the α-chain of this TCR. We found that these transgenic mice rejected EL-4 tumor cells bearing alloantigen H-2Kb more effectively than wild-type mice and similarly to mice with established specific memory T cells. Moreover, we found that T cells transduced with this TCRα can inhibit EL-4 cell growth in vitro and in vivo. We also found that transgenic mice recruit fewer CD8 T cells into the peritoneal cavity at the peak of the immune response and had a significantly higher number of central memory CD8 T cells in the spleen of intact transgenic mice compared to intact wild-type control. These results indicate the ability of a single transgenic α-chain of the H-2Kb-specific TCR to determine specific recognition of the H-2Kb molecule by a repertoire of T lymphocytes and to rapidly reject H-2Kb-bearing lymphoma cells.
Collapse
Affiliation(s)
- Maria Zamkova
- "N. N. Blokhin National Medical Research Centre of Oncology" of the Health Ministry of Russia, Moscow, Russia
| | - Anastasiya Kalinina
- "N. N. Blokhin National Medical Research Centre of Oncology" of the Health Ministry of Russia, Moscow, Russia
| | - Yuliya Silaeva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda Persiyantseva
- "N. N. Blokhin National Medical Research Centre of Oncology" of the Health Ministry of Russia, Moscow, Russia
| | - Alexandra Bruter
- Russian Academy of Sciences, Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Alexey Deikin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila Khromykh
- "N. N. Blokhin National Medical Research Centre of Oncology" of the Health Ministry of Russia, Moscow, Russia
| | - Dmitry Kazansky
- "N. N. Blokhin National Medical Research Centre of Oncology" of the Health Ministry of Russia, Moscow, Russia
| |
Collapse
|
200
|
Yin Q, Tang J, Zhu X. Next-generation sequencing technologies accelerate advances in T-cell therapy for cancer. Brief Funct Genomics 2019; 18:119-128. [PMID: 29982317 DOI: 10.1093/bfgp/ely018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Next-generation sequencing has produced a large quantity of DNA or RNA sequences related to the processes occurring within tumors and their microenvironment in a reasonable time and cost. These data have been used to guide the identification of neoantigens and to determine their specific T-cell receptors. Furthermore, adoptive T-cell therapy targeting neoantigens is under development for cancer treatment. In this review, we first provide an overview of sequencing technologies and the updated findings concerning neoantigens related to adoptive T-cell therapy and then summarize the methods and principles underlying the development of next-generation sequencing-based neoantigen-reactive T-cell therapy for cancer.
Collapse
Affiliation(s)
- Qinan Yin
- Clinical Center of National Institutes of Health, Bethesda, MD, USA
| | - Jiaxing Tang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Xuekai Zhu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| |
Collapse
|