151
|
Yin J, Li JY, Craig NJ, Su L. Microplastic pollution in wild populations of decapod crustaceans: A review. CHEMOSPHERE 2022; 291:132985. [PMID: 34801569 DOI: 10.1016/j.chemosphere.2021.132985] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/01/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Along with the increasing amount of plastic production and waste disposal, the presence of microplastics has been confirmed in all compartments of ecosystems. The microplastics in biota is of particular concern due to the potential eco-risks associated with long term exposure and the potential for transportation along food webs. Decapoda represents a diverse taxonomic group within the subphylum Crustacea, and some of which are highly valued in fishery and biological production. The interaction between microplastic pollution and wild populations of decapod crustaceans have been documented less than fish or bivalves but are critical to understand the fates of microplastics in marine eco-systems and enrich the baselines for consumption analyses. Our review systematically summarizes the occurrence, abundance and characteristics of microplastics detected in edible and non-edible sections of decapod crustaceans from field observations. Sub-groups between crabs and shrimps were also included for comparison. The occurrence of microplastics in the edible sections were less than those in non-edible sections, and there are differences between crabs and shrimps. Fibrous microplastics and items with a size category less than 1 mm were dominant pollutants across all available literature. The methodology selection, biological features and uptake pathways play roles in the microplastic body burden in Decapoda. Our work enriches the understanding of microplastic pollution in wild populations of decapod crustaceans but their contribution to the human exposure to microplastics needs to be addressed with more accurate measurements.
Collapse
Affiliation(s)
- Jie Yin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Juan-Ying Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Nicholas J Craig
- School of Biosciences, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Lei Su
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200142, China.
| |
Collapse
|
152
|
Kandah MI. Production of Biodegradable Bioplastics filled with Jordanian Olive Tree Leaves. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Munther Issa Kandah
- Chemical Engineering Department Jordan University of Science and Technology P.O.Box 3030 Irbid 22110 Jordan
| |
Collapse
|
153
|
Yuan W, Christie-Oleza JA, Xu EG, Li J, Zhang H, Wang W, Lin L, Zhang W, Yang Y. Environmental fate of microplastics in the world's third-largest river: Basin-wide investigation and microplastic community analysis. WATER RESEARCH 2022; 210:118002. [PMID: 34986458 DOI: 10.1016/j.watres.2021.118002] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 05/25/2023]
Abstract
Rivers have been recognized as major transport pathways for microplastics into the sea but large-scale quantitative data on the environmental fate of riverine microplastics remains limited, hindering proper risk assessment and development of regulatory measures. Microplastics in the whole Yangtze River Basin of China were systematically investigated by sampling the water, sediment, and soil. Microplastics were detected in all samples, with an average abundance of 1.27 items/L, 286.20 items/kg, and 338.09 items/kg for water, sediments, and soils, respectively, with polypropylene and polyethylene being the most abundant polymers. A generally increasing trend of microplastic abundance from upstream to downstream was identified, which were co-attributed by geographical and anthropogenic factors including elevation, longitude, distance from the nearest city, population density, urbanization rate, and land use. Microplastics in the sediments showed more prominent vertical migration than those in the soils, and the density and size of microplastics may be the key factors governing the migration of microplastics across different compartments. Community analysis showed that microplastics in different compartments were significantly different and highly correlated with geographical distance. Major cities at the middle and lower reaches were considered pivotal nodes of microplastic pollution in the Yangtze River Basin. Policy recommendations were also proposed towards better remediation of microplastic pollution involving riverine systems.
Collapse
Affiliation(s)
- Wenke Yuan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | | | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Jiawei Li
- Department of Geography, University of Manchester, Manchester M13 9PL, UK
| | - Haibo Zhang
- Zhejiang Provincial Key Laboratory of Soil Contamination Bioremediation, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Chinaww
| | - Wenfeng Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430014, China
| | - Weihong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
154
|
Kim T, Park K, Hong J. Understanding the hazards induced by microplastics in different environmental conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127630. [PMID: 34750002 DOI: 10.1016/j.jhazmat.2021.127630] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 05/23/2023]
Abstract
Microplastics that are chemically and physically changed by exposure to environmental stress are emerging as a potential hazard to human health. Research on plastics exposed to long-term environmental stress is fundamentally needed. In this study, four plastics (acrylonitrile butadiene styrene [ABS], polyvinyl chloride [PVC], polystyrene [PS], and polyethylene [PE]) were selected to describe nature-derived microplastics and to analyze their chemical/physical changes, which are potential hazards to the human health, by environmental stress. To mimic the microplastic exposed to long-term environmental stress, we used accelerated aging, lab-scale aging in the environmental conditions((1) UV (2) enzyme (3) seawater). To quantify the percentage of the microplastic size changes, the image patterns of the generated microplastics were converted into numerical values using image-j. The size of the microplastics was reduced by at least 32% in (3) seawater environmental conditions. PE was reduced by at least 46% compared to the size of the bare sample in the environmental conditions. Significantly, the size of the PE has decreased by more than 87% in (3) seawater environmental conditions; also, chemical composition change (-O-CO-/-OH group formation) but not crystallinity changes through infrared and thermal analysis. Therefore, our results suggest that microplastic (PE) exposed to the ocean induces the potential hazards to affect human health.
Collapse
Affiliation(s)
- Taeho Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyungtae Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
155
|
Kwon W, Kim D, Kim HY, Jeong SW, Lee SG, Kim HC, Lee YJ, Kwon MK, Hwang JS, Han JE, Park JK, Lee SJ, Choi SK. Microglial phagocytosis of polystyrene microplastics results in immune alteration and apoptosis in vitro and in vivo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150817. [PMID: 34627918 DOI: 10.1016/j.scitotenv.2021.150817] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/18/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The remarkable increase in plastic usage and widespread microplastic (MP) pollution has emerged as a substantial concern today. Many recent studies have revealed MPs as potentially hazardous substances in mammals. Despite several reports on the impact of small MPs in the brain and behaviors in aquatic animals, it is still unclear how small MPs affect the brain and its underlying cellular physiology in terrestrial animals. In this study, we investigated the accumulation of polystyrene MPs (PS-MPs) in mouse brain after oral treatment using three types of fluorescent PS-MPs of different sizes (0.2,2 and 10 μm). We found that PS-MPs were deposited in microglial cells of the brain. Following differential treatment of PS-MPs in human microglial HMC-3 cells, we identified changes in cellular morphology, immune responses, and microglial apoptosis induced by phagocytosis of 0.2 and 2 μm PS-MPs. By analyzing the PS-MP-treated HMC-3 cell transcriptome, we showed that PS-MPs treatment altered the expression of clusters of immune response genes, immunoglobulins, and several related microRNAs. In addition, we confirmed alterations in microglial differentiation marker expression with the activation of NF-κB, pro-inflammatory cytokines and apoptotic markers in PS-MP-treated human microglial cells and in mouse brain. Our findings suggest a potential risk of small PS-MPs in microglial immune activation, which leads to microglial apoptosis in murine and human brains.
Collapse
Affiliation(s)
- Wookbong Kwon
- Division of Biotechnology, DGIST, Daegu, Republic of Korea; Core Protein Resources Center, DGIST, Daegu, Republic of Korea
| | - Daehwan Kim
- Division of Biotechnology, DGIST, Daegu, Republic of Korea; Core Protein Resources Center, DGIST, Daegu, Republic of Korea
| | - Hee-Yeon Kim
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea; College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang Won Jeong
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Se-Guen Lee
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Hyun-Chul Kim
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Young-Jae Lee
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Mi Kyung Kwon
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | | | - Jee Eun Han
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jin-Kyu Park
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung-Jun Lee
- Division of Biotechnology, DGIST, Daegu, Republic of Korea.
| | - Seong-Kyoon Choi
- Division of Biotechnology, DGIST, Daegu, Republic of Korea; Core Protein Resources Center, DGIST, Daegu, Republic of Korea.
| |
Collapse
|
156
|
Reshaping the Module: The Path to Comprehensive Photovoltaic Panel Recycling. SUSTAINABILITY 2022. [DOI: 10.3390/su14031676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The market for photovoltaic modules is expanding rapidly, with more than 500 GW installed capacity. Consequently, there is an urgent need to prepare for the comprehensive recycling of end-of-life solar modules. Crystalline silicon remains the primary photovoltaic technology, with CdTe and CIGS taking up much of the remaining market. Modules can be separated by crushing or cutting, or by thermal or solvent-based delamination. Separation and extraction of semiconductor materials can be achieved through manual, mechanical, wet or dry chemical means, or a combination. Crystalline silicon modules are currently recycled through crushing and mechanical separation, but procedures do exist for extraction and processing of intact wafers or wafer pieces. Use of these processes could lead to the recovery of higher grades of silicon. CdTe panels are mostly recycled using a chemical leaching process, with the metals recovered from the leachate. CIGS can be recycled through oxidative removal of selenium and thermochemical recovery of the metals, or by electrochemical or hydrometallurgical means. A remaining area of concern is recycling of the polymeric encapsulant and backsheet materials. There is a move away from the use of fluorinated backsheet polymers which may allow for improved recycling, but further research is required to identify materials which can be recycled readily whilst also being able to withstand outdoor environments for multi-decadal timespans.
Collapse
|
157
|
Zhdanov I, Lokhov A, Belesov A, Kozhevnikov A, Pakhomova S, Berezina A, Frolova N, Kotova E, Leshchev A, Wang X, Zavialov P, Yakushev E. Assessment of seasonal variability of input of microplastics from the Northern Dvina River to the Arctic Ocean. MARINE POLLUTION BULLETIN 2022; 175:113370. [PMID: 35114548 DOI: 10.1016/j.marpolbul.2022.113370] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Northern Dvina River is one of the largest rivers in the European Arctic flowing into the White Sea through the populated regions with developed industry. Floating plastics include microplastics (0.5-5 mm) and mesoplastics (5-25 mm) were observed on seasonal variations in the Northern Dvina River mouth. The samples were collected every month from September to November 2019 and from May to October 2020 with a Neuston net that was togged 3 nautical miles in the Korbel'nyy Branch of the River delta. Chemical composition of the plastic particles was determined using a Fourier transmission infrared spectrometer. The majority of the microplastics were identified as polyethylene 52.6%, followed by polypropylene 36.8%. After estimating the export fluxes of microplastics from the Northern Dvina River to the Arctic, there is no significant seasonal variation of the river export of microplastics. The microplastics export rate during the spring flood period in May turned out to be maximum, 58 items/s, while the minimum discharge was in September with a value of 9 items/s. The average weight concentration of microplastics was 18.5 μg/m3, which is higher than it was found in the Barents Sea - 12.5 μg/m3 and several times higher than in the Eurasian Arctic on average - 3.7 μg/m3. These results indicate that the Northern Dvina River is being one of the main sources of microplastic pollution of the White and the Barents Seas.
Collapse
Affiliation(s)
- Igor Zhdanov
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Lokhov
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
| | - Artem Belesov
- Northern (Arctic) Federal University named after M.V. Lomonosov, Arkhangelsk, Russia
| | - Aleksandr Kozhevnikov
- Northern (Arctic) Federal University named after M.V. Lomonosov, Arkhangelsk, Russia
| | - Svetlana Pakhomova
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia; Norwegian Institute for Water Research, Oslo, Norway
| | - Anfisa Berezina
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia; St Petersburg State University, St Petersburg, Russia
| | | | - Ekaterina Kotova
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Leshchev
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, China
| | - Peter Zavialov
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
| | - Evgeniy Yakushev
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia; Norwegian Institute for Water Research, Oslo, Norway; V.I.Il'ichov Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences.
| |
Collapse
|
158
|
Martin J, Lusher AL, Nixon FC. A review of the use of microplastics in reconstructing dated sedimentary archives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150818. [PMID: 34637878 DOI: 10.1016/j.scitotenv.2021.150818] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Buried microplastics (plastics, <5 mm) have been documented within the sediment column of both marine and lacustrine environments. However, the number of peer-review studies published on the subject remains limited and confidence in data reliability varies considerably. Here we critically review the state of the literature on microplastic loading inventories in dated sedimentary and soil profiles. We conclude that microplastics are being sequestered across a variety of sedimentary environments globally, at a seemingly increasing rate. However, microplastics are also readily mobilised both within depositional settings and the workplace. Microplastics are commonly reported from sediments dated to before the onset of plastic production and researcher-derived microplastics frequently contaminate samples. Additionally, the diversity of microplastic types and issues of constraining source points has so far hindered interpretation of depositional settings. Therefore, further research utilizing high quality data sets, greater levels of reporting transparency, and well-established methodologies from the geosciences will be required for any validation of microplastics as a sediment dating method or in quantifying temporally resolved microplastic loading inventories in sedimentary sinks with confidence.
Collapse
Affiliation(s)
- Jake Martin
- Department of Geography, Faculty of Social and Educational Sciences, Norwegian University of Science and Technology, Norway.
| | - Amy L Lusher
- Norwegian Institute for Water Research, Oslo, Norway; Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Francis Chantel Nixon
- Department of Geography, Faculty of Social and Educational Sciences, Norwegian University of Science and Technology, Norway
| |
Collapse
|
159
|
Lacerda ALDF, Taylor JD, Rodrigues LDS, Kessler F, Secchi E, Proietti MC. Floating plastics and their associated biota in the Western South Atlantic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150186. [PMID: 34818771 DOI: 10.1016/j.scitotenv.2021.150186] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
The lack of information about plastic pollution in many marine regions hinders firm actions to manage human activities and mitigate their impacts. This study conducted for the first time a quali-quantitative evaluation of floating plastics and their associated biota from coastal and oceanic waters in South Brazil. Plastics were collected using a manta net, and were categorized according to their shape, size, malleability and polymer composition. Multi-marker DNA metabarcoding (16S, and 18S V4 and V9 rRNA regions) was performed to identify prokaryotes and eukaryotes associated to plastics. We found 371 likely plastic particles of several sizes, shapes and polymers, and the average concentration of plastics at the region was 4461 items.km-2 (SD ± 3914). Microplastics (0.5 - 5 mm) were dominant in most sampling stations, with fragments and lines representing the most common shapes. Diverse groups of prokaryotes (20 bacteria phyla) and eukaryotes (41 groups) were associated with plastics. Both the community composition and richness of epiplastic organisms were highly variable between individual plastics but, in general, were not influenced by plastic categories. Organisms with potential pathogenicity (e.g. Vibrio species. and Alexandrium tamarense), as well as potential plastic degraders (e.g. Ralstonia, Pseudomonas, and Alcanivorax species), were found. The information generated here is pivotal to support strategies to prevent the input and mitigate the impacts of plastics and their associated organisms on marine environments.
Collapse
Affiliation(s)
- Ana L D F Lacerda
- Projeto Lixo Marinho - Instituto de Oceanografia, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil; Programa de Pós-Graduação em Oceanografia Biológica, PPGOB, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil; Laboratoire d'Océanographie de Villefranche, Sorbonne Université, Villefranche-sur-Mer, France.
| | - Joe D Taylor
- School of Chemistry and Biosciences, University of Bradford, Bradford, West Yorkshire, United Kingdom
| | - Lucas D S Rodrigues
- Projeto Lixo Marinho - Instituto de Oceanografia, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil; Programa de Pós-Graduação em Oceanografia Biológica, PPGOB, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil
| | - Felipe Kessler
- Projeto Lixo Marinho - Instituto de Oceanografia, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil; Escola de Química e Alimentos, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil
| | - Eduardo Secchi
- Projeto Lixo Marinho - Instituto de Oceanografia, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil; Programa de Pós-Graduação em Oceanografia Biológica, PPGOB, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil; Laboratório de Ecologia e Conservação da Megafauna Marinha-Ecomega, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil
| | - Maíra C Proietti
- Projeto Lixo Marinho - Instituto de Oceanografia, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil; Programa de Pós-Graduação em Oceanografia Biológica, PPGOB, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil
| |
Collapse
|
160
|
Talbot R, Chang H. Microplastics in freshwater: A global review of factors affecting spatial and temporal variations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118393. [PMID: 34678395 DOI: 10.1016/j.envpol.2021.118393] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 05/05/2023]
Abstract
Microplastics are a pollutant of growing concern, capable of harming aquatic organisms and entering the food web. While freshwater microplastic research has expanded in recent years, much remains unknown regarding the sources and delivery pathways of microplastics in these environments. This review aims to address the scientific literature regarding the spatial and temporal factors affecting global freshwater microplastic distributions and abundances. A total of 75 papers, published through June 2021 and containing an earliest publication date of October 2014, was identified by a Web of Science database search. Microplastic spatial distributions are heavily influenced by anthropogenic factors, with higher concentrations reported in regions characterized by urban land cover, high population density, and wastewater treatment plant effluent. Spatial distributions may also be affected by physical watershed characteristics such as slope and elevation (positive and negative correlations with microplastic concentrations, respectively), although few studies address these factors. Temporal variables of influence include precipitation and stormwater runoff (positive correlations) and water flow/discharge (negative correlations). Despite these overarching trends, variations in study results may be due to differing scales or contributing area delineations. Thus, more rigorous and standardized spatial analytical methods are needed. Future research could simultaneously evaluate both spatial and temporal factors and incorporate finer temporal resolutions into sampling campaigns.
Collapse
Affiliation(s)
- Rebecca Talbot
- Department of Geography, Portland State University, Portland, OR, 97201, USA
| | - Heejun Chang
- Department of Geography, Portland State University, Portland, OR, 97201, USA.
| |
Collapse
|
161
|
Lins TF, O'Brien AM, Kose T, Rochman CM, Sinton D. Toxicity of nanoplastics to zooplankton is influenced by temperature, salinity, and natural particulate matter. ENVIRONMENTAL SCIENCE: NANO 2022; 9:2678-2690. [DOI: 10.1039/d2en00123c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Increases in temperature/salinity promote nanoplastics toxicity, while organic matter/natural colloids mitigate toxicity.
Collapse
Affiliation(s)
- Tiago F. Lins
- Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Ontario, Canada
| | - Anna M. O'Brien
- Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, M5S3B2, Ontario, Canada
| | - Talha Kose
- Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Ontario, Canada
| | - Chelsea M. Rochman
- Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, M5S3B2, Ontario, Canada
| | - David Sinton
- Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Ontario, Canada
| |
Collapse
|
162
|
Su Y, Hu X, Tang H, Lu K, Li H, Liu S, Xing B, Ji R. Steam disinfection releases micro(nano)plastics from silicone-rubber baby teats as examined by optical photothermal infrared microspectroscopy. NATURE NANOTECHNOLOGY 2022; 17:76-85. [PMID: 34764453 DOI: 10.1038/s41565-021-00998-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 09/06/2021] [Indexed: 05/06/2023]
Abstract
Silicone-rubber baby teats used to bottle-feed infants are frequently disinfected by moist heating. However, infant exposure to small microplastics (<10 μm) potentially released from the heated teats by hydrothermal decomposition has not been studied, owing to the limitations of conventional spectroscopy in visualizing microplastic formation and in characterizing the particles at the submicrometre scale. Here both the surfaces of silicone teats subjected to steam disinfection and the wash waters of the steamed teats were analysed using optical-photothermal infrared microspectroscopy. This new technique revealed submicrometre-resolved steam etching on and chemical modification of the teat surface. Numerous flake- or oil-film-shaped micro(nano)plastics (MNPs) (in the size range of 0.6-332 μm) presented in the wash waters, including cyclic and branched polysiloxanes or polyimides, which were generated by the steam-induced degradation of the base polydimethylsiloxane elastomer and the polyamide resin additive. The results indicated that by the age of one year, a baby could ingest >0.66 million elastomer-derived micro-sized plastics (MPs) (roughly 81% in 1.5-10 μm). Global MP emission from teat disinfection may be as high as 5.2 × 1013 particles per year. Our findings highlight an entry route for surface-active silicone-rubber-derived MNPs into both the human body and the environment. The health and environmental risks of the particles are as yet unknown.
Collapse
Affiliation(s)
- Yu Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Xi Hu
- Quantum Design (Beijing) Co., Ltd, Beijing, China
| | - Hongjie Tang
- Quantum Design (Beijing) Co., Ltd, Beijing, China
| | - Kun Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Huimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China.
| |
Collapse
|
163
|
Tagorti G, Kaya B. Genotoxic effect of microplastics and COVID-19: The hidden threat. CHEMOSPHERE 2022; 286:131898. [PMID: 34411929 DOI: 10.1016/j.chemosphere.2021.131898] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 05/10/2023]
Abstract
Microplastics (MPs) are ubiquitous anthropogenic contaminants, and their abundance in the entire ecosystem raises the question of how far is the impact of these MPs on the biota, humans, and the environment. Recent research has overemphasized the occurrence, characterization, and direct toxicity of MPs; however, determining and understanding their genotoxic effect is still limited. Thus, the present review addresses the genotoxic potential of these emerging contaminants in aquatic organisms and in human peripheral lymphocytes and identified the research gaps in this area. Several genotoxic endpoints were implicated, including the frequency of micronuclei (MN), nucleoplasmic bridge (NPB), nuclear buds (NBUD), DNA strand breaks, and the percentage of DNA in the tail (%Tail DNA). In addition, the mechanism of MPs-induced genotoxicity seems to be closely associated with reactive oxygen species (ROS) production, inflammatory responses, and DNA repair interference. However, the gathered information urges the need for more studies that present environmentally relevant conditions. Taken into consideration, the lifestyle changes within the COVID-19 pandemic, we discussed the impact of the pandemic on enhancing the genotoxic potential of MPs whether through increasing human exposure to MPs via inappropriate disposal and overconsumption of plastic-based products or by disrupting the defense system owing to unhealthy food and sleep deprivation as well as stress. Overall, this review provided a reference for the genotoxic effect of MPs, their mechanism of action, as well as the contribution of COVID-19 to increase the genotoxic risk of MPs.
Collapse
Affiliation(s)
- Ghada Tagorti
- Akdeniz University, Faculty of Sciences, Department of Biology, 07058-Campus, Antalya, Turkey
| | - Bülent Kaya
- Akdeniz University, Faculty of Sciences, Department of Biology, 07058-Campus, Antalya, Turkey.
| |
Collapse
|
164
|
Wang J, Bucci K, Helm P, Hoellein T, Hoffman M, Rooney R, Rochman C. Runoff and discharge pathways of microplastics into freshwater ecosystems: A systematic review and meta-analysis. Facets (Ott) 2022. [DOI: 10.1139/facets-2022-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although many studies have focused on the importance of littering and (or) illegal dumping as a source of plastic pollution to freshwater, other relevant pathways should be considered, including wastewater, stormwater runoff, industrial effluent/runoff, and agricultural runoff. Here, we conducted a meta-analysis focused on these four pathways. We quantified the number of studies, amount and characteristics of microplastics reported, and the methods used to sample and measure microplastics from each pathway. Overall, we found 121 studies relevant to our criteria, published from 2014 to 2020. Of these, 54 (45%) quantified and characterized microplastics in discharge pathways. Although most focused on wastewater treatment plant effluent (85%), microplastic concentrations were highest in stormwater runoff (0.009 to 3862 particles/L). Morphologies of particles varied among pathways and sampling methods. For example, stormwater runoff was the only pathway with rubbery particles. When assessing methods, our analysis suggested that water filtered through a finer (<200 um) mesh and of a smaller volume (e.g., 6 L) captured more particles, and with a slightly greater morphological diversity. Overall, our meta-analysis suggested that all four pathways bring microplastics into freshwater ecosystems, and further research is necessary to inform the best methods for monitoring and to better understand hydrologic patterns that can inform local mitigation.
Collapse
Affiliation(s)
- J. Wang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - K. Bucci
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - P.A. Helm
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Rd, Toronto, ON, M9P 3V6, Canada
| | - T. Hoellein
- Department of Biology, Loyola University of Chicago, 1032 W Sheridan Rd, Chicago, Illinois, 60660 USA
| | - M.J. Hoffman
- School of Mathematical Sciences, Rochester Institute of Technology, 85 Lomb Memorial Dr., Rochester, NY 14623, USA
| | - R. Rooney
- Department of Biology, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
| | - C.M. Rochman
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
165
|
Alfonso MB, Arias AH, Ronda AC, Piccolo MC. Continental microplastics: Presence, features, and environmental transport pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149447. [PMID: 34371405 DOI: 10.1016/j.scitotenv.2021.149447] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are ubiquitous contaminants of great concern for the environment. MPs' presence and concentration in the air, soil, marine, and freshwater environments have been reported as a matter of priority in recent years. This review addresses the current knowledge of the main pathways of MPs in air, soil, and freshwater reservoirs in order to provide an integrated understanding of their behaviors in the continental environment. Therefore, MPs' occurrence (as particle counts), sources, and how their features as shape, size, polymer composition, and density could influence their transport and final sink were discussed. Wind resuspension and atmospheric fallout, groundwater migration, runoff from catchments, and water flow from rivers and effluents were pointed as the principal pathways. MPs' size, shape, polymer composition, and density interact with environmental variables as soil structure and composition, precipitation, wind, relative humidity, water temperature, and salinity. Sampling designs for MPs research should further consider soil characteristics, climate variability and extreme events, time lag and grasshopper effects, morphological and hydrological features of aquatic systems, and water currents, among others. Furthermore, long-term monitoring and lab experiments are still needed to understand MPs' behavior in the environment. This information will provide a unified understanding of the continental MPs pathways, including the key main findings, knowledge gaps, and future challenges to understand this emerging contaminant.
Collapse
Affiliation(s)
- María B Alfonso
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Florida 8000, Complejo CCT CONICET Bahía Blanca, Edificio E1, B8000BFW Bahía Blanca, Argentina; Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-Koen, Kasuga 816-8580, Japan.
| | - Andrés H Arias
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Florida 8000, Complejo CCT CONICET Bahía Blanca, Edificio E1, B8000BFW Bahía Blanca, Argentina; Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, B8000DIC Bahía Blanca, Argentina
| | - Ana C Ronda
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Florida 8000, Complejo CCT CONICET Bahía Blanca, Edificio E1, B8000BFW Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Avenida Alem 1253, B8000DIC Bahía Blanca, Buenos Aires, Argentina
| | - María C Piccolo
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Florida 8000, Complejo CCT CONICET Bahía Blanca, Edificio E1, B8000BFW Bahía Blanca, Argentina; Departamento de Geografía y Turismo, Universidad Nacional del Sur, 12 de Octubre 1198 4°Piso, B8000CTX Bahía Blanca, Argentina
| |
Collapse
|
166
|
Song YK, Hong SH, Eo S, Shim WJ. A comparison of spectroscopic analysis methods for microplastics: Manual, semi-automated, and automated Fourier transform infrared and Raman techniques. MARINE POLLUTION BULLETIN 2021; 173:113101. [PMID: 34743073 DOI: 10.1016/j.marpolbul.2021.113101] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
This study was conducted to establish the best practice for microplastic analysis by reducing the time demand and human bias and comparing the characteristics of μ-FTIR and Raman techniques. A manual analysis, semi-automated method, and fully automatic identification method were compared. Fully automated identification took the shortest time to analyze a whole filter paper (Ø25 mm), but its false positive identification rate was 80 ± 15%. The semi-automated analysis using spectrum profiling was suitable for all aspects of microplastic analysis. It was less time consuming than the manual analysis (manual: 6.1 ± 0.8 h, semi-automated: 4.0 ± 0.6 h), and 22 ± 12% more microplastic particles were detected using the semi-automated method compared to the manual analysis due to the reduction in false negative results. Raman microscopy was suitable for small microplastic (>5 μm) identification, although the Raman analysis took nine times longer than the semi-automated analysis.
Collapse
Affiliation(s)
- Young Kyoung Song
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje-shi 53201, South Korea
| | - Sang Hee Hong
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje-shi 53201, South Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, South Korea
| | - Soeun Eo
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje-shi 53201, South Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, South Korea
| | - Won Joon Shim
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje-shi 53201, South Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, South Korea.
| |
Collapse
|
167
|
Facile one-step fabrication of all cellulose composites with unique optical performance from wood and bamboo pulp. Carbohydr Polym 2021; 274:118630. [PMID: 34702454 DOI: 10.1016/j.carbpol.2021.118630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/29/2021] [Indexed: 11/20/2022]
Abstract
Cellulosic substrates completely originating from biomass have gained increasing attention for utilization in photoelectric devices due to their biodegradability, sustainability, and renewability. Herein, a simple one-step strategy was used to fabricate transparent (84.2%-90% at 550 nm) all-cellulose composites (ACCs) with customized optical haze (14.7%-83.7% at 550 nm) from wood and bamboo pulp due to their variable solubility. Surface roughness, coagulation bath composition, and the size of the undissolved cellulose fibers contributed to optical haze regulation. Fabricated ACCs demonstrated water resistance, thermal stability, and good mechanical properties. Moreover, an enhancement in the power conversion efficiency of a perovskite solar cell was achieved by simple attachment. Compared with non-sustainable petroleum base materials, ACCs exhibit biodegradability and renewability, which makes the composites promising in large-scale production and various applications due to their tunable haze.
Collapse
|
168
|
Araújo APDC, Rocha TL, E Silva DDM, Malafaia G. Micro(nano)plastics as an emerging risk factor to the health of amphibian: A scientometric and systematic review. CHEMOSPHERE 2021; 283:131090. [PMID: 34153909 DOI: 10.1016/j.chemosphere.2021.131090] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Although the toxicity of microplastics (MPs) and nanoplastics (NPs) is recognized at different trophic levels, our know-how about their effects on amphibians is limited. Thus, we present and discuss the current state on studies involving amphibians and plastic particles, based on a broad approach to studies published in the last 5 years. To search for the articles, the ISI Web of Science, ScienceDirect, and Scopus databases were consulted, using different descriptors related to the topic of study. After the systematic search, we identified 848 publications. Of these, 12 studies addressed the relationship "plastic particles and amphibians" (7 studies developed in the laboratory and 5 field studies). The scientometric analysis points to geographic concentration of studies in Brazil and China; low investment in research in the area, and limited participation of international authors in the studies carried out. In the systematic approach, we confirm the scarcity of available data on the toxicity of plastic particles in amphibians; we observed a concentration of studies in the Anura order, only one study explored the toxicological effects of NPs and polystyrene and polyethylene are the most studied plastic types. Moreover, the laboratory tested concentrations are distant from those of the environmentally relevant; and little is known about the mechanisms of action of NPs/MPs involved in the identified (eco)toxicological effects. Thus, we strongly recommend more investments in this area, given the ubiquitous nature of NPs/MPs in aquatic environments and their possible consequences on the dynamics, reproduction, and survival of species in the natural environment.
Collapse
Affiliation(s)
- Amanda Pereira da Costa Araújo
- Biological Research Laboratory, Goiano Federal Institute, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Environmental Sciences, Federal University of Goiás, Goiânia, GO, Brazil.
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Daniela de Melo E Silva
- Post-Graduation Program in Environmental Sciences, Federal University of Goiás, Goiânia, GO, Brazil; Laboratory of Environmental Mutagenesis, Federal University of Goiás, Goiânia, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Goiano Federal Institute, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| |
Collapse
|
169
|
Ding J, Zhu D, Wang Y, Wang H, Liang A, Sun H, Chen Q, Lassen SB, Lv M, Chen L. Exposure to heavy metal and antibiotic enriches antibiotic resistant genes on the tire particles in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148417. [PMID: 34144237 DOI: 10.1016/j.scitotenv.2021.148417] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
The widespread occurrence of tire particles (TPs) in soils has attracted considerable attention due to their potential threats. The assemblage of bacteria and associated antibiotic resistant genes (ARGs) on TPs is yet largely unknown, especially under the stress of soil pollutants. In the present study, TPs were incubated in soils with or without the stress of heavy metal (Cu2+) or/and antibiotic (tetracycline), and bacterial community and ARG profile on TPs and in soils were explored using high-throughput sequencing and high-throughput quantitative PCR. Results indicated that bacterial community structure on TPs was significantly different from the surrounding soils, with a lower diversity, and significantly shifted by heavy metal and antibiotic exposure. Additionally, a diverse set of ARGs were detected on TPs, and their abundances were significantly increased under the stress of heavy metal and antibiotic, revealing a strong synergistic effect. Moreover, a good fit was observed for the correlation between bacterial community and ARG profile on TPs. Taken together, this study, for the first time, demonstrates that TPs can provide a novel niche for soil bacteria and soil resistome, and heavy metal and antibiotic exposure may potentially increase the abundance of ARGs on TPs, threatening soil ecosystems and human health.
Collapse
Affiliation(s)
- Jing Ding
- School of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Yang Wang
- Department of Galactophore Surgery, Weifang People's Hospital, 151 Guangwen Road, Weifang 261041, China
| | - Hongtao Wang
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Henan University, Kaifeng 475004, China
| | - Aiping Liang
- School of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Hongwei Sun
- School of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Qinglin Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Simon Bo Lassen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai 264003, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai 264003, China
| |
Collapse
|
170
|
Royer SJ, Wiggin K, Kogler M, Deheyn DD. Degradation of synthetic and wood-based cellulose fabrics in the marine environment: Comparative assessment of field, aquarium, and bioreactor experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148060. [PMID: 34119782 DOI: 10.1016/j.scitotenv.2021.148060] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
As global production of textiles rapidly grows, there is urgency to understand the persistence of fabrics in the marine environment, particularly from the microfibers they shed during wearing and washing. Here, we show that fabrics containing polyester (one of the most common plastics) remained relatively intact (viz., with a limited biofilm) after >200 days in seawater off the Scripps Oceanography pier (La Jolla, CA), in contrast to wood-based cellulose fabrics that fell apart within 30 days. We also show similar results under experimental aquaria (in open circuit with the pier waters) as well as bioreactor settings (in close circuit, using microbial inoculum from the North Sea, off Belgium), using nonwoven fabrics and individual fibers, respectively. The fact that fibers released from synthetic textiles remain persistent and non-biodegradable despite their small (invisible) size, highlights concern for the growing industry that uses polyester from recycled plastics to make clothing.
Collapse
Affiliation(s)
- Sarah-Jeanne Royer
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Kara Wiggin
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Dimitri D Deheyn
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
171
|
Zhu D, Li G, Wang HT, Duan GL. Effects of nano- or microplastic exposure combined with arsenic on soil bacterial, fungal, and protistan communities. CHEMOSPHERE 2021; 281:130998. [PMID: 34289636 DOI: 10.1016/j.chemosphere.2021.130998] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
The soil protistan community makes important contributions to the ecological functions of soil. However, our knowledge of the effects of pollutants, especially plastic particles, on the soil protistan community is still very limited compared to our knowledge on other soil microbes, such as bacterial and fungi. In this study, we revealed the effects of combined and single pollution caused by arsenic (As) and microplastics/nanoplastics (MPs/NPs) on bacterial, fungal and protistan communities. Our results revealed that combined pollution through As and MPs/NPs distinctly affected the composition and structure of the soil protistan communities (P < 0.05), but in the case of bacteria, only some families were altered, and there was no impact on fungi. Changes of soil protistan communities might be mainly due to As pollution, and MPs/NPs exposure increased this detrimental effect. Further, As + MPs exposure greatly increased the abundance of soil protistan parasites, and As + NPs exposure caused an evident decrease in the abundance of soil protistan consumers (P < 0.05). These findings indicate that combined pollution by As and MPs/NPs can affect the ecological functions of soil by altering soil protistan communities. These results will help enhance our understanding of the impact of plastic particles on soil ecosystems.
Collapse
Affiliation(s)
- Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Gang Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Hong-Tao Wang
- College of Environment and Planning, Henan University, Kaifeng, 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China.
| | - Gui-Lan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
172
|
Ji Z, Huang Y, Feng Y, Johansen A, Xue J, Tremblay LA, Li Z. Effects of pristine microplastics and nanoplastics on soil invertebrates: A systematic review and meta-analysis of available data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147784. [PMID: 34029821 DOI: 10.1016/j.scitotenv.2021.147784] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
In laboratory studies, microplastics and/or nanoplastics (MPs/NPs) have been shown to cause a variety of ecotoxicological effects on soil invertebrates. Existing data on the effects of these plastic debris on biological functions and physiological systems, showed a great variability among studies. Thus, how soil invertebrates respond to different types, shapes, sizes and concentrations of pristine MPs/NPs remains to be further characterized. The present work is an up-to-date review on quantitative and qualitative data on the effects of pristine MPs/NPs on soil invertebrates in laboratory conditions. Research priorities are also discussed. Out of a total of 1061 biological endpoints investigated in 56 studies, 49% were significantly affected after exposed to pristine MPs/NPs. The polymers with chloro and phenyl groups had more negative impacts on soil invertebrates than other polymers. Most studies used earthworm and nematode species as model organisms. For nematodes, the impact of MPs/NPs seemed to be concentration-dependent and higher concentrations of pristine MPs/NPs appeared to have more adverse impacts on biological functions and physiological systems, but this trend was not confirmed in earthworms. Meta-analysis revealed that pristine MP/NP concentrations higher than 1 g kg-1 (in soil) may decrease growth and survival of earthworms, while a concentration higher than 1 μg L-1 (in water) may affect nematode reproductive fitness.
Collapse
Affiliation(s)
- Zhengyu Ji
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yin Huang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Resources and Environment, Hunan Agricultural University, Hunan 410128, China
| | - Yao Feng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Anders Johansen
- Department of Environmental Science, Faculty of Technical Sciences, Aarhus University, Roskilde 4000, Denmark
| | - Jianming Xue
- Scion, Private Bag 29237, Christchurch, New Zealand
| | - Louis A Tremblay
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; School of Biological Sciences, University of Auckland, PO Box 92019, Auckland 1142, New Zealand
| | - Zhaojun Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
173
|
Sridharan S, Kumar M, Singh L, Bolan NS, Saha M. Microplastics as an emerging source of particulate air pollution: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126245. [PMID: 34111744 DOI: 10.1016/j.jhazmat.2021.126245] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 05/07/2023]
Abstract
Accumulation of plastic litter exerts pressure on the environment. Microplastics (MPs) pollution has become a universal challenge due to the overexploitation of plastic products and unsystematic dumping of plastic waste. Initial studies on MPs and their implications had been confined to aquatic and terrestrial ecosystems, but recent research has also focused on MPs in the air. Their impacts on urban air quality and atmospheric transport to pristine habitats have emerged to be a serious concern. However, the extent and the significance of impacts of airborne particulate matter (PM) MPs on human health are not clearly understood. Further, the influence of airborne MPs on indoor and outdoor air quality remains unknown. We highlight the human health impacts of airborne PM-MPs with a special focus on the occupational safety of the industry workers, their possible influence on Air Quality Index (AQI), their potential exposure, and accumulation in the canopy/arboreal, above-canopy and atmospheric (aerial) habitats. The present review emphasizes the data limitations and knowledge gaps on the atmospheric transport and contribution of particulate plastics to the worsening of overall urban air quality and throws critical perspectives on whether atmospheric MPs pollution is trivial or an actual matter of concern.
Collapse
Affiliation(s)
- Srinidhi Sridharan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Lal Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, New South Wales, 2308, Australia; Cooperative Research Centre for High-Performance Soils, Callaghan, New South Wales 2308, Australia
| | - Mahua Saha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India.
| |
Collapse
|
174
|
Kallenbach EMF, Hurley RR, Lusher A, Friberg N. Chitinase digestion for the analysis of microplastics in chitinaceous organisms using the terrestrial isopod Oniscus asellus L. as a model organism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147455. [PMID: 33964777 DOI: 10.1016/j.scitotenv.2021.147455] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 05/12/2023]
Abstract
Chitinaceous organisms have been found to ingest microplastic; however, a standardised, validated, and time- and cost-efficient method for dissolving these organisms without affecting microplastic particles is still required. This study tested four protocols for dissolving organisms with a chitin exoskeleton: 1) potassium hydroxide (KOH) + chitinase, 2) Creon® + chitinase, 3) hydrogen peroxide (H2O2) + chitinase, and, 4) Nitric Acid (HNO3) + hydrogen peroxide (H2O2). The effects on microplastics composed of eight different polymers were also tested. The use of H2O2 followed by chitinase was found to be a highly efficient method. The three other protocols either did not digest the chitin sufficiently or negatively affected the tested polymers. A recovery test using microplastic fibres, beads and tyre particles revealed high recovery rates of 0.85, 0.89 and 1 respectively. This further supported the applicability of the H2O2 and chitinase (protocol 3) for dissolving chitinaceous organisms. Thus, we recommend that future investigations of microplastic (0.05 μm-5000 μm) in chitinaceous organisms (0.3 cm-5 cm) utilise the here presented methodology. This represents an important component of the ongoing validation and harmonization of methodological approaches that are urgently needed for the advancement of microplastic assessments globally.
Collapse
Affiliation(s)
- Emilie M F Kallenbach
- NIVA Denmark Water Research, Njalsgade 76, 2300 Copenhagen S, Denmark; University of Copenhagen, Universitetsparken 4, Copenhagen Ø, Denmark.
| | | | - Amy Lusher
- NIVA, Gaustadalléen 21, 0349 Oslo, Norway; Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway.
| | - Nikolai Friberg
- NIVA Denmark Water Research, Njalsgade 76, 2300 Copenhagen S, Denmark; University of Copenhagen, Universitetsparken 4, Copenhagen Ø, Denmark; NIVA, Gaustadalléen 21, 0349 Oslo, Norway.
| |
Collapse
|
175
|
Li C, Guo J, Xu X, Sun M, Zhang L. Determinants of smallholder farmers' choice on mulch film thickness in rural China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45545-45556. [PMID: 33866510 DOI: 10.1007/s11356-021-13866-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Agricultural mulch film pollution has become a prevailing concern. Studies have shown that the thickness of mulch film is a key factor affecting mulch film recycling, but research about farmers' choice on mulch film thickness is lacking. Based on survey data from 2025 households in five Chinese provinces in 2018, the Heckman two-stage model was used to analyze the influencing factors of farmers' choice on mulch film thicknesses. Mulch film had been used by 21.98% of the sample households, and 41.47% of the used mulch film did not meet the national thickness standard. The econometric results showed that farmers' product cognition and market factors were the two most important factors, and there was a significant negative correlation with the choice of film thickness. In addition, the choice of mulch film with different thicknesses was affected by household characteristics, subjective norms, and farmland property rights. Strengthening and stabilizing farmland property rights is a long-term mechanism to promote farmers to choose thicker mulch film. In addition to strengthening the production and sale of substandard film supervision, farmers' choice of film thickness should be included in village regulations and other rural grass-roots governance systems, especially in the mechanism design between agricultural farmland protective subsidies and the prevention of mulch film pollution, rather than just considering the recycling itself.
Collapse
Affiliation(s)
- Chang Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- International Ecosystem Management Partnership, United Nations Environment Programme, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianbing Guo
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing, 100872, China
- China Anti-Poverty Research Institute, Renmin University of China, Beijing, 100872, China
| | - Xiangbo Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- International Ecosystem Management Partnership, United Nations Environment Programme, Beijing, 100101, China.
| | - Mingxing Sun
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- International Ecosystem Management Partnership, United Nations Environment Programme, Beijing, 100101, China
| | - Linxiu Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- International Ecosystem Management Partnership, United Nations Environment Programme, Beijing, 100101, China
| |
Collapse
|
176
|
Bellasi A, Binda G, Pozzi A, Boldrocchi G, Bettinetti R. The extraction of microplastics from sediments: An overview of existing methods and the proposal of a new and green alternative. CHEMOSPHERE 2021; 278:130357. [PMID: 33823347 DOI: 10.1016/j.chemosphere.2021.130357] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 05/21/2023]
Abstract
Microplastics (MPs) contamination is an existing and concerning environmental issue. Plastic particles have been observed worldwide in every natural matrix, with water environments being the final sink of dispersed MPs. Microplastic distribution in water ecosystems varies as a function of multiple factors, including polymer properties (e.g., density and wettability) and environmental conditions (e.g., water currents and temperature). Because of the tendency of MPs to settle, sediment is known to be one of the most impacted environmental matrices. Despite the increasing awareness of their diffusion in sediments, a proper quantification of dispersed particles is still difficult, due to the lack of standard protocols, which avoid a proper comparison of different sites. This hampers the current knowledge on environmental implications and toxicological effects of MPs in sediments. In this work, we examined 49 studies carried out from 2004 to 2020 to describe the different extraction methods applied, and to highlight pros and cons, with the aim of evaluating the more promising protocols. Therefore, we evaluated each proposed method by considering precision, reproducibility, economic viability and greenness (in term of used reagents). Finally, we proposed a valid alternative procedure in term of reliability and costs, which can attract increasing interest for future studies.
Collapse
Affiliation(s)
- A Bellasi
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, Italy.
| | - G Binda
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, Italy.
| | - A Pozzi
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, Italy.
| | - G Boldrocchi
- Department of Human and Innovation for the Territory, University of Insubria, Via Valleggio 11, 22100, Como, Italy.
| | - R Bettinetti
- Department of Human and Innovation for the Territory, University of Insubria, Via Valleggio 11, 22100, Como, Italy.
| |
Collapse
|
177
|
Microplastic Pollution in the Surface Waters from Plain and Mountainous Lakes in Siberia, Russia. WATER 2021. [DOI: 10.3390/w13162287] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microplastics (MPs) contaminations of freshwater and marine environments has become a global issue. Lakes in southern Siberia provide a wide range of ecosystem services and are essential elements in the annual and interannual runoff distribution of the Great Siberian Rivers. However, the extent of their MPs pollution remains unknown. In this paper, for the first time, we analyze the concentrations, composition, and spatial distribution of MPs in six lakes in southern Siberia. The studied lakes are located both in the Altai mountains and the West Siberian plain. Some of them are significantly impacted by human activities, while others are located in protected areas with no permanent population. Nevertheless, MPs were detected in all of the studied lakes. MPs concentrations ranged from 4 to 26 MPs L−1. Comparing with other inland lakes, South Siberian lakes presented moderate MPs concentrations. Among the registered MPs forms, fragments and films were dominant, with a size range between 31 and 60 nm. The MPs’ sources depend on local human activities (fishing, transport, landfilling). Therefore, sufficiently high concentrations were observed even in remote lakes. The present study set a baseline that emphasizes the need for increased attention to waste management and sustainable water use in Siberian freshwater environments.
Collapse
|
178
|
Li B, Liang W, Liu QX, Fu S, Ma C, Chen Q, Su L, Craig NJ, Shi H. Fish Ingest Microplastics Unintentionally. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10471-10479. [PMID: 34297559 DOI: 10.1021/acs.est.1c01753] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microplastics (size of plastic debris <5 mm) occur in various environments worldwide these days and cause detrimental effects on biota. However, the behavioral responses of fish to microplastics in feeding processes are not well understood. In the present study, juveniles from four fish species and two common shapes of microplastics were used to explore fish feeding responses. We found swallowing-feeding fish ingested more pellets than filtering- and sucking-feeding fish. With high-definition and high-speed observational experiments, we found that all species did not actively capture microfibers; instead, they passively sucked in microfibers while breathing. Surprisingly, fish showed a rejective behavior, which was spontaneously coughing up microfibers mixed with mucus. Nevertheless, some of the microfibers were still found in the gastrointestinal tracts and gills of fish, while abundances of ingested microfibers were increased in the presence of food. Our findings reveal a common phenomenon that fish ingest microplastics inadvertently rather than intentionally. We also provide insights into the pathways via which microplastics enter fish and potential strategies to assess future ecological risk and food safety related to microplastics.
Collapse
Affiliation(s)
- Bowen Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Weiwenhui Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Quan-Xing Liu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Shijian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University Chongqing 401331, China
| | - Cuizhu Ma
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Lei Su
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Nicholas J Craig
- School of Biosciences, the University of Melbourne, Parkville 3010, Victoria, Australia
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| |
Collapse
|
179
|
Okoffo ED, Donner E, McGrath SP, Tscharke BJ, O'Brien JW, O'Brien S, Ribeiro F, Burrows SD, Toapanta T, Rauert C, Samanipour S, Mueller JF, Thomas KV. Plastics in biosolids from 1950 to 2016: A function of global plastic production and consumption. WATER RESEARCH 2021; 201:117367. [PMID: 34182349 DOI: 10.1016/j.watres.2021.117367] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/22/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Plastics are ubiquitous contaminants that leak into the environment from multiple pathways including the use of treated sewage sludge (biosolids). Seven common plastics (polymers) were quantified in the solid fraction of archived biosolids samples from Australia and the United Kingdom from between 1950 and 2016. Six plastics were detected, with increasing concentrations observed over time for each plastic. Biosolids plastic concentrations correlated with plastic production estimates, implying a potential link between plastics production, consumption and leakage into the environment. Prior to the 1990s, the leakage of plastics into biosolids was limited except for polystyrene. Increased leakage was observed from the 1990s onwards; potentially driven by increased consumption of polyethylene, polyethylene terephthalate and polyvinyl chloride. We show that looking back in time along specific plastic pollution pathways may help unravel the potential sources of plastics leakage into the environment and provide quantitative evidence to support the development of source control interventions or regulations.
Collapse
Affiliation(s)
- Elvis D Okoffo
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia.
| | - Erica Donner
- Future Industries Institute (FII), University of South Australia, University Boulevard, Mawson Lakes, SA 5095, Australia
| | - Steve P McGrath
- Rothamsted Research, West Common, Harpenden, Hertfordshire, Al5 2JQ, United Kingdom
| | - Benjamin J Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Stacey O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Francisca Ribeiro
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia; College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Stephen D Burrows
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia; College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Tania Toapanta
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Cassandra Rauert
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Saer Samanipour
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1090 GD Amsterdam, Netherlands; Norwegian Institute for Water Research (NIVA), 0349 Oslo, Norway
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
180
|
Temperate UV-Accelerated Weathering Cycle Combined with HT-GPC Analysis and Drop Point Testing for Determining the Environmental Instability of Polyethylene Films. Polymers (Basel) 2021; 13:polym13142373. [PMID: 34301130 PMCID: PMC8309575 DOI: 10.3390/polym13142373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/26/2022] Open
Abstract
Polyethylene films are one of the most frequently used packaging materials in our society, due to their combination of strength and flexibility. An unintended consequence of this high use has been the ever-increasing accumulation of polyethylene films in the natural environment. Previous attempts to understand their deterioration have either focused on their durability using polymer analysis; or they have focused on changes occurring during outdoor exposure. Herein, this study combines those strategies into one, by studying the chemical and physical changes in the polyethylene structure in a laboratory using molecular weight and IR spectroscopic mapping analysis, combined with temperate UV-accelerated weathering cycles. This approach has been correlated to real-world outdoor exposure timeframes by parallel testing of the sample polyethylene films in Florida and France. The formation of polyethylene microparticles or polyethylene waxes is elucidated through comparison of drop point testing and molecular weight analysis.
Collapse
|
181
|
Zhang Z, Tian R, Lin D, Wu D, Lu C, Duan X. Three-Dimensional Fluorescent Imaging to Identify Multi-Paths in Polymer Aging. Anal Chem 2021; 93:10301-10309. [PMID: 34269562 DOI: 10.1021/acs.analchem.1c01784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
It is of great significance to disclose the diverse aging pathways for polymers under multiple factors, so as to predict and control the potential aging evolution. However, the current methods fail to distinguish multiple pathways (multi-paths) of polymer aging due to the lack of spatiotemporal resolution. In this work, using polyimide as a model polymer, the hydroxyl, carboxyl, and amino groups from the polyimide aging process were labeled using specific fluorescent probes through boron-oxygen, imine, and thiourea linkages, respectively. When the excitation and emission wavelengths of each fluorescent probe were controlled, the multi-paths in polyimide aging can be visualized individually and simultaneously in three-dimensional fluorescent images. The overall aging process under hydrothermal treatment was destructured into the pyrolysis and hydrolysis pathways. Three-dimensional dynamic studies discovered that the increased humidity, along with the decreased oxygen content, could hamper the pyrolysis reaction and accelerate the hydrolysis reaction, leading to severe degradation of the overall polyimide aging. More importantly, the oxygen showed a higher regulation coefficient in accelerating the pyrolysis reaction, than the water vapor in motivating the hydrolysis reactions. Such a multidimensional identification methodology is able to guide the long-term use of polymers and control their aging process to a harmless direction in advance by tuning the contents of oxygen and water vapor.
Collapse
Affiliation(s)
- Zekun Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Daolei Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dezhen Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
182
|
Gkoutselis G, Rohrbach S, Harjes J, Obst M, Brachmann A, Horn MA, Rambold G. Microplastics accumulate fungal pathogens in terrestrial ecosystems. Sci Rep 2021; 11:13214. [PMID: 34267241 PMCID: PMC8282651 DOI: 10.1038/s41598-021-92405-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
Microplastic (MP) is a pervasive pollutant in nature that is colonised by diverse groups of microbes, including potentially pathogenic species. Fungi have been largely neglected in this context, despite their affinity for plastics and their impact as pathogens. To unravel the role of MP as a carrier of fungal pathogens in terrestrial ecosystems and the immediate human environment, epiplastic mycobiomes from municipal plastic waste from Kenya were deciphered using ITS metabarcoding as well as a comprehensive meta-analysis, and visualised via scanning electron as well as confocal laser scanning microscopy. Metagenomic and microscopic findings provided complementary evidence that the terrestrial plastisphere is a suitable ecological niche for a variety of fungal organisms, including important animal and plant pathogens, which formed the plastisphere core mycobiome. We show that MPs serve as selective artificial microhabitats that not only attract distinct fungal communities, but also accumulate certain opportunistic human pathogens, such as cryptococcal and Phoma-like species. Therefore, MP must be regarded a persistent reservoir and potential vector for fungal pathogens in soil environments. Given the increasing amount of plastic waste in terrestrial ecosystems worldwide, this interrelation may have severe consequences for the trans-kingdom and multi-organismal epidemiology of fungal infections on a global scale.
Collapse
Affiliation(s)
- Gerasimos Gkoutselis
- Department of Mycology, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Stephan Rohrbach
- Institute of Microbiology, Leibniz University Hannover, 30419, Hannover, Germany
| | - Janno Harjes
- Department of Mycology, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Martin Obst
- Experimental Biogeochemistry, BayCEER, University of Bayreuth, 95448, Bayreuth, Germany
| | - Andreas Brachmann
- Genetics, Faculty of Biology, Ludwig Maximilian University Munich, 82152, Martinsried, Germany
| | - Marcus A Horn
- Institute of Microbiology, Leibniz University Hannover, 30419, Hannover, Germany.
| | - Gerhard Rambold
- Department of Mycology, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany.
| |
Collapse
|
183
|
Santos RG, Machovsky-Capuska GE, Andrades R. Plastic ingestion as an evolutionary trap: Toward a holistic understanding. Science 2021; 373:56-60. [PMID: 34210877 DOI: 10.1126/science.abh0945] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Human activities are changing our environment. Along with climate change and a widespread loss of biodiversity, plastic pollution now plays a predominant role in altering ecosystems globally. Here, we review the occurrence of plastic ingestion by wildlife through evolutionary and ecological lenses and address the fundamental question of why living organisms ingest plastic. We unify evolutionary, ecological, and cognitive approaches under the evolutionary trap theory and identify three main factors that may drive plastic ingestion: (i) the availability of plastics in the environment, (ii) an individual's acceptance threshold, and (iii) the overlap of cues given by natural foods and plastics.
Collapse
Affiliation(s)
- Robson G Santos
- Laboratório de Biologia Marinha e Conservação, Universidade Federal de Alagoas, Cidade Universitária 57072-900, Maceió, AL, Brazil.
| | - Gabriel E Machovsky-Capuska
- Cetacean Ecology Research Group, Massey University, Albany, AKL 0745, New Zealand.,The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ryan Andrades
- Laboratório de Ictiologia, Universidade Federal do Espírito Santo, Goiabeiras 29075-910, Vitória, ES, Brazil
| |
Collapse
|
184
|
Weiss L, Ludwig W, Heussner S, Canals M, Ghiglione JF, Estournel C, Constant M, Kerhervé P. The missing ocean plastic sink: Gone with the rivers. Science 2021; 373:107-111. [PMID: 34210886 DOI: 10.1126/science.abe0290] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 05/20/2021] [Indexed: 11/02/2022]
Abstract
Plastic floating at the ocean surface, estimated at tens to hundreds of thousands of metric tons, represents only a small fraction of the estimated several million metric tons annually discharged by rivers. Such an imbalance promoted the search for a missing plastic sink that could explain the rapid removal of river-sourced plastics from the ocean surface. On the basis of an in-depth statistical reanalysis of updated data on microplastics-a size fraction for which both ocean and river sampling rely on equal techniques-we demonstrate that current river flux assessments are overestimated by two to three orders of magnitude. Accordingly, the average residence time of microplastics at the ocean surface rises from a few days to several years, strongly reducing the theoretical need for a missing sink.
Collapse
Affiliation(s)
- Lisa Weiss
- CEFREM, UMR 5110 University of Perpignan-CNRS, F-66860 Perpignan Cedex, France.
| | - Wolfgang Ludwig
- CEFREM, UMR 5110 University of Perpignan-CNRS, F-66860 Perpignan Cedex, France
| | - Serge Heussner
- CEFREM, UMR 5110 University of Perpignan-CNRS, F-66860 Perpignan Cedex, France
| | - Miquel Canals
- CRG Marine Geosciences, Department of Earth and Ocean Dynamics, University of Barcelona, E-08028 Barcelona, Spain
| | | | - Claude Estournel
- LEGOS, UMR 5566 University Toulouse III-CNRS/CNES/IRD/UPS, F-31400 Toulouse, France
| | - Mel Constant
- CEFREM, UMR 5110 University of Perpignan-CNRS, F-66860 Perpignan Cedex, France
| | - Philippe Kerhervé
- CEFREM, UMR 5110 University of Perpignan-CNRS, F-66860 Perpignan Cedex, France
| |
Collapse
|
185
|
Beladi-Mousavi SM, Hermanová S, Ying Y, Plutnar J, Pumera M. A Maze in Plastic Wastes: Autonomous Motile Photocatalytic Microrobots against Microplastics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25102-25110. [PMID: 34009926 DOI: 10.1021/acsami.1c04559] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
An extremely high quantity of small pieces of synthetic polymers, namely, microplastics, has been recently identified in some of the most intact natural environments, e.g., on top of the Alps and Antarctic ice. This is a "scary wake-up call", considering the potential risks of microplastics for humans and marine systems. Sunlight-driven photocatalysis is the most energy-efficient currently known strategy for plastic degradation; however, attaining efficient photocatalyst-plastic interaction and thus an effective charge transfer in the micro/nanoscale is very difficult; that adds up to the common challenges of heterogeneous photocatalysis including low solubility, precipitation, and aggregation of the photocatalysts. Here, an active photocatalytic degradation procedure based on intelligent visible-light-driven microrobots with the capability of capturing and degrading microplastics "on-the-fly" in a complex multichannel maze is introduced. The robots with hybrid powers carry built-in photocatalytic (BiVO4) and magnetic (Fe3O4) materials allowing a self-propelled motion under sunlight with the possibility of precise actuation under a magnetic field inside the macrochannels. The photocatalytic robots are able to efficiently degrade different synthetic microplastics, particularly polylactic acid, polycaprolactone, thanks to the generated local self-stirring effect in the nanoscale and enhanced interaction with microplastics without using any exterior mechanical stirrers, typically used in conventional systems. Overall, this proof-of-concept study using microrobots with hybrid wireless powers has shown for the first time the possibility of efficient degradation of ultrasmall plastic particles in confined complex spaces, which can impact research on microplastic treatments, with the final goal of diminishing microplastics as an emergent threat for humans and marine ecosystems.
Collapse
Affiliation(s)
- Seyyed Mohsen Beladi-Mousavi
- Center for the Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic
| | - Soňa Hermanová
- Center for the Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic
- Department of Polymers, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic
| | - Yulong Ying
- Center for the Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic
| | - Jan Plutnar
- Center for the Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic
| | - Martin Pumera
- Center for the Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| |
Collapse
|
186
|
Haque MS, Sharif S, Masnoon A, Rashid E. SARS-CoV-2 pandemic-induced PPE and single-use plastic waste generation scenario. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2021; 39:3-17. [PMID: 33407011 DOI: 10.1177/0734242x20980828] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The SARS-CoV-2 pandemic has demonstrated both positive and negative effects on the environment. Major concerns over personal hygiene, mandated and ease in lockdown actions and slackening of some policy measures have led to a massive surge in the use of disposable personal protective equipment (PPE) and other single-use plastic items. This generated an enormous amount of plastic waste from both healthcare and household units, and will continue to do so for the foreseeable future. Apart from the healthcare workers, the general public have become accustomed to using PPE. These habits are threatening the land and marine environment with immense loads of plastic waste, due to improper disposal practices across the world, especially in developing nations. Contaminated PPE has already made its way to the oceans which will inevitably produce plastic particles alongside other pathogen-driven diseases. This study provided an estimation-based approach in quantifying the amount of contaminated plastic waste that can be expected daily from the massive usage of PPE (e.g. facemasks) because of the countrywide mandated regulations on PPE usage. The situation of Bangladesh has been analysed and projections revealed that a total of 3.4 billion pieces of single-use facemask, hand sanitizer bottles, hand gloves and disposable polyethylene bags will be produced monthly, which will give rise to 472.30 t of disposable plastic waste per day. The equations provided for the quantification of waste from used single-use plastic and PPE can be used for other countries for rough estimations. Then, the discussed recommendations will help concerned authorities and policy makers to design effective response plans. Sustainable plastic waste management for the current and post-pandemic period can be imagined and acted upon.
Collapse
Affiliation(s)
- Md Sazzadul Haque
- Department of Civil and Environmental Engineering, North South University, Bangladesh
| | - Shafkat Sharif
- Department of Civil and Environmental Engineering, North South University, Bangladesh
| | - Aseer Masnoon
- Department of Civil and Environmental Engineering, North South University, Bangladesh
| | - Ebne Rashid
- Department of Civil Engineering, University of Asia Pacific, Bangladesh
| |
Collapse
|
187
|
Microplastic in angling baits as a cryptic source of contamination in European freshwaters. Sci Rep 2021; 11:11255. [PMID: 34045532 PMCID: PMC8160005 DOI: 10.1038/s41598-021-90468-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/07/2021] [Indexed: 11/11/2022] Open
Abstract
High environmental microplastic pollution, and its largely unquantified impacts on organisms, are driving studies to assess their potential entry pathways into freshwaters. Recreational angling, where many anglers release manufactured baits into freshwater ecosystems, is a widespread activity with important socio-economic implications in Europe. It also represents a potential microplastic pathway into freshwaters that has yet to be quantified. Correspondingly, we analysed three different categories of industrially-produced baits (‘groundbait’, ‘boilies’ and ‘pellets’) for their microplastic contamination (particles 700 µm to 5 mm). From 160 samples, 28 microplastics were identified in groundbait and boilies, with a mean concentration of 17.4 (± 48.1 SD) MP kg−1 and 6.78 (± 29.8 SD) mg kg−1, yet no microplastics within this size range were recorded in the pellets. Microplastic concentrations significantly differed between bait categories and companies, but microplastic characteristics did not vary. There was no correlation between microplastic contamination and the number of bait ingredients, but it was positively correlated with C:N ratio, indicating a higher contamination in baits with higher proportion of plant-based ingredients. We thus reveal that bait microplastics introduced accidentally during manufacturing and/or those originating from contaminated raw ingredients might be transferred into freshwaters. However, further studies are needed to quantify the relative importance of this cryptic source of contamination and how it influences microplastic levels in wild fish.
Collapse
|
188
|
de Carvalho AR, Garcia F, Riem-Galliano L, Tudesque L, Albignac M, Ter Halle A, Cucherousset J. Urbanization and hydrological conditions drive the spatial and temporal variability of microplastic pollution in the Garonne River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144479. [PMID: 33482548 DOI: 10.1016/j.scitotenv.2020.144479] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/28/2020] [Accepted: 12/09/2020] [Indexed: 05/18/2023]
Abstract
Microplastic (MP) pollution represents a novel environmental pressure acting on freshwater ecosystems. Improving our understanding of the dynamics of MP pollution in freshwater ecosystems is therefore a prerequisite for managing and limiting this pollution. In this study, we quantified the spatial and temporal variability of MP (size range 700 μm - 5 mm) pollution in surface water in 14 sites located across the Garonne river catchment (Southwestern France, 6 in the main river and 8 tributaries). MP concentration averaged 0.15 particles.m-3 (± 0.46 SD) and strongly varied both in space and in time. We found that the spatial variation in MP concentration was driven by urbanization and that the temporal variation in MP concentration and MP size was driven by hydrological conditions, with higher concentrations and smaller particles sizes in warm seasons with low discharge. Polyethylene (44.5%), polystyrene (30.1%) and polypropylene (18.2%) were the main polymers and their proportion did not vary significantly across sampled sites. Particle color was associated with polymer type, with a high proportion of white particles in polystyrene. We also found a significant and negative relationship between MP size and the distance to the source in sites located in the main stream. MP pollution across watershed, from headwater tributaries to lowland rivers, is dynamic, and further studies are needed to improve the resolution of our knowledge of spatial and temporal patterns of MP pollution in freshwater ecosystems.
Collapse
Affiliation(s)
- Aline Reis de Carvalho
- UMR 5623 IMRCP (Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique), CNRS, Université Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France; UMR 5174 EDB (Laboratoire Évolution and Diversité Biologique), CNRS, Université Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France.
| | - Flavien Garcia
- UMR 5623 IMRCP (Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique), CNRS, Université Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France; UMR 5174 EDB (Laboratoire Évolution and Diversité Biologique), CNRS, Université Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | - Louna Riem-Galliano
- UMR 5174 EDB (Laboratoire Évolution and Diversité Biologique), CNRS, Université Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | - Loïc Tudesque
- UMR 5174 EDB (Laboratoire Évolution and Diversité Biologique), CNRS, Université Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | - Magali Albignac
- UMR 5623 IMRCP (Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique), CNRS, Université Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | - Alexandra Ter Halle
- UMR 5623 IMRCP (Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique), CNRS, Université Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | - Julien Cucherousset
- UMR 5174 EDB (Laboratoire Évolution and Diversité Biologique), CNRS, Université Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
189
|
Sharma VK, Ma X, Guo B, Zhang K. Environmental factors-mediated behavior of microplastics and nanoplastics in water: A review. CHEMOSPHERE 2021; 271:129597. [PMID: 33460897 DOI: 10.1016/j.chemosphere.2021.129597] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
The release of plastics in nature is an increasing global concern due to their degradation from microplastics (MPs) and even to nanoplastics (NPs), which are being recognized as a potential global threat to humans and environment. This paper summarizes the current knowledge on the effect of different environmental factors on the aggregation of MPs and NPs in aquatic environment. Stability (or extent of aggregation) of MPs and NPs varies with pH, ionic strength, ion type (monovalent, divalent, and trivalent), kind of minerals, and natural organic matter (NOM) of the aquatic environment. Electrostatic interactions between particles at different pH and ionic strength caused by salts of different valents govern the aggregation. In the presence of minerals (or inorganic colloids), net surface charge of mineral and surface potential of MPs and NPs (i.e., positive or negative surface functionality) play important roles in the heteroaggregation of MPs and NPs. In the presence of NOM, additional complex interactions including hydrophobic interactions and bridging are also involved in the aggregation of particles. Understanding the interactions of MPs and NPs of different surface charge with diverse environmental factors at a wide range of environmental conditions is pivotal to assess the mobility and the fate of degraded plastic particles and their risk to human health and ecological systems.
Collapse
Affiliation(s)
- Virender K Sharma
- Program of the Environment and Sustainability, Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA.
| | - Xingmao Ma
- Zachery Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Binglin Guo
- Program of the Environment and Sustainability, Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA; Zachery Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Kaiyi Zhang
- Program of the Environment and Sustainability, Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA; Zachery Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
190
|
Abstract
Plastic pollution is one of the most pressing environmental and social issues of the 21st century. Recent work has highlighted the atmosphere's role in transporting microplastics to remote locations [S. Allen et al., Nat. Geosci. 12, 339 (2019) and J. Brahney, M. Hallerud, E. Heim, M. Hahnenberger, S. Sukumaran, Science 368, 1257-1260 (2020)]. Here, we use in situ observations of microplastic deposition combined with an atmospheric transport model and optimal estimation techniques to test hypotheses of the most likely sources of atmospheric plastic. Results suggest that atmospheric microplastics in the western United States are primarily derived from secondary re-emission sources including roads (84%), the ocean (11%), and agricultural soil dust (5%). Using our best estimate of plastic sources and modeled transport pathways, most continents were net importers of plastics from the marine environment, underscoring the cumulative role of legacy pollution in the atmospheric burden of plastic. This effort uses high-resolution spatial and temporal deposition data along with several hypothesized emission sources to constrain atmospheric plastic. Akin to global biogeochemical cycles, plastics now spiral around the globe with distinct atmospheric, oceanic, cryospheric, and terrestrial residence times. Though advancements have been made in the manufacture of biodegradable polymers, our data suggest that extant nonbiodegradable polymers will continue to cycle through the earth's systems. Due to limited observations and understanding of the source processes, there remain large uncertainties in the transport, deposition, and source attribution of microplastics. Thus, we prioritize future research directions for understanding the plastic cycle.
Collapse
|
191
|
Huang W, Chen M, Song B, Deng J, Shen M, Chen Q, Zeng G, Liang J. Microplastics in the coral reefs and their potential impacts on corals: A mini-review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143112. [PMID: 33172634 DOI: 10.1016/j.scitotenv.2020.143112] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 05/26/2023]
Abstract
Plastic debris exists worldwide and research on microplastic pollution has gradually spread from the oceans to freshwater and terrestrial systems. Coral reefs not only serve as one of the most charismatic and biodiverse ecosystems on our planet, but also maintain the human harvesting of natural resources and livelihoods of hundreds of millions of people. However, the abundance and distribution characteristics of microplastics in coral reef systems receive little scientific attention. Meanwhile, the impacts of microplastics and nanoplastics on coral health and its potential mechanisms remain further studied. Herein, this review first summarized the current status of microplastics pollution in global coral reefs, especially included (i) abundance and distribution characteristics of microplastics in different media (e.g., seawater, sediment, corals), and (ii) possible sources of microplastics in reef regions. Furthermore, the main interaction mechanisms between microplastics and corals are highlighted. Following this, the direct or indirect impacts of microplastics on coral species are discussed. With the rapid increase of plastic consumption and background of pervasive global coral bleaching, research on marine microplastics must focus on the critical coral reef regions and include a comprehensive knowledge about the distribution, fate, and potential risks from an ecosystem perspective.
Collapse
Affiliation(s)
- Wei Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiaqin Deng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Maocai Shen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qiang Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
192
|
Liu J, Vethaak AD, An L, Liu Q, Yang Y, Ding J. An Environmental Dilemma for China During the COVID-19 Pandemic: The Explosion of Disposable Plastic Wastes. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:237-240. [PMID: 33515068 PMCID: PMC7845788 DOI: 10.1007/s00128-021-03121-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/18/2021] [Indexed: 05/21/2023]
Abstract
Plastic pollution control has been on top of the political agenda in China. In January 2020, China announced a phased ban on the production and usage of various types of single-use plastics as a solution to environmental pollution problems. However, the outbreak of COVID-19 seems to be a new obstacle to the ban on single-use plastic products. To basically satisfied the daily necessities and contain the spread of SARS-CoV-2 under the background of the regular epidemic prevention and control in China, online ordering, contactless delivery and wearing mask have become an important and feasible way of daily life. However, the unrestrained use of disposable plastic bags, lunch boxes and masks within the nationwide quarantine leads to hundreds of millions of plastics wastes every day. The potential environmental pollution caused by the use of disposable plastic products during the pandemic should arouse social concern. The Chinese government should manage environmental protection in parallel with anti-pandemic endeavors as the situation of the pandemic evolves.
Collapse
Affiliation(s)
- Jianli Liu
- School of Textile Science and Engineering, Jiangnan University, Wuxi, 214021 China
| | - A. Dick Vethaak
- Deltares, Marine and Coastal Systems, Boussinesqweg 1, Delft, 2629 HV the Netherlands
- Department of Environment and Health, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV the Netherlands
| | - Lihui An
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012 China
| | - Qiang Liu
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 4648601 Japan
| | - Yunfei Yang
- Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036 China
| | - Jiannan Ding
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
193
|
Yue TJ, Wang LY, Ren WM. The synthesis of degradable sulfur-containing polymers: precise control of structure and stereochemistry. Polym Chem 2021. [DOI: 10.1039/d1py01065d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review comprehensively summarized the recent progresses made in the precise synthesis of sulfur-containing polymers from the structure control, stereochemistry control and the topological structure modification aspects.
Collapse
Affiliation(s)
- Tian-Jun Yue
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Li-Yang Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
194
|
Li C, Gan Y, Zhang C, He H, Fang J, Wang L, Wang Y, Liu J. "Microplastic communities" in different environments: Differences, links, and role of diversity index in source analysis. WATER RESEARCH 2021; 188:116574. [PMID: 33137530 DOI: 10.1016/j.watres.2020.116574] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/04/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Microplastics have been detected in various environments, yet the differences between microplastics in different environments are still largely unknown. Scientists have proposed the concept of the "microplastic cycle," but the evidence for the movement of microplastics between different environments is still scarce. By screening the literature and extracting information, we obtained microplastic data from 709 sampling sites in freshwater, seawater, freshwater sediment, sea sediment, and soil in China. Based on the similarity between microplastics and biological communities, here we propose the concept of a "microplastic community" and examine the differences, links, and diversity of microplastic communities in different environments. Wilcoxon sign-ranks test, Kruskal-Wallis test, and analysis of similarities (ANOSIM) showed that there were significant differences in abundance, proportion of small microplastics, and community composition (shape, color, and polymer types) of microplastics in different environments. The Mantel test showed that there were significant correlations between microplastic community composition in different environments. Network analysis based on community similarity further confirmed the links between microplastic communities. The distance decay models revealed that the links weakened with the increase of geographic distance, suggesting that sampling sites with closed geographical locations had similar pollution sources and more easily to migrate or exchange microplastics. The microplastic diversity integrated index (MDII) was established based on the diversity of microplastic shape, color, and polymer types, and its indication of the number of microplastic pollution sources was verified by the statistical fitting relationship between the number of industrial pollution sources and MDII. Our study provides new insight into the differences and links between microplastics in different environments, which contributes to the microplastic risk assessment and demonstrates the "microplastic cycle." The establishment of the microplastic diversity integrated index could be used in source analysis of microplastics.
Collapse
Affiliation(s)
- Changchao Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yandong Gan
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Chao Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Huan He
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jiaohui Fang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Lifei Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yan Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jian Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
195
|
Preliminary Screening for Microplastic Concentrations in the Surface Water of the Ob and Tom Rivers in Siberia, Russia. SUSTAINABILITY 2020. [DOI: 10.3390/su13010080] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To date, the largest Russian rivers discharging to the Arctic Ocean remain a “blank spot” on the world map of data on the distribution of microplastics in freshwater systems. This study characterizes the abundance and morphology of microplastics in surface water of the Ob River and its large tributary, the Tom River, in western Siberia. The average number of particles for the two rivers ranged from 44.2 to 51.2 items per m3 or from 79.4 to 87.5 μg per m3 in the Tom River and in the Ob River, respectively. Of the recovered microplastics, 93.5% were less than 1 mm in their largest dimension, the largest group (45.5% of total counts) consisted of particles with sizes range 0.30–1.00 mm. Generally, microfragments of irregular shape were the most abundant among the Ob and Tom samples (47.4%) and exceeded microfibers (22.1%), microfilms (20.8%), and microspheres (9.74%) by average counts. Results from this study provide a baseline for understanding the scale of the transport of microplastics by the Ob River system into the Arctic Ocean and add to currently available data on microplastics abundance and diversity in freshwater systems of differing global geographic locations.
Collapse
|
196
|
Hohn S, Acevedo-Trejos E, Abrams JF, Fulgencio de Moura J, Spranz R, Merico A. The long-term legacy of plastic mass production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141115. [PMID: 32745856 DOI: 10.1016/j.scitotenv.2020.141115] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Mismanaged plastic waste is transported via rivers or city drains into the ocean where it accumulates in coastal sediments, ocean gyres and the deep ocean. Plastic harms marine biota and may ultimately return to humans via the food chain. Private initiatives proposing to collect plastic from the sea and rivers have gained widespread attention, especially in the media. However, few of these methods are proven concepts and it remains unclear how effective they are. Here we estimate the amount of plastic in the global surface ocean to assess the long-term legacy of plastic mass production, calculate the time required to clean up the oceans with river barriers and clean up devices, and explore the fate of collected plastic waste. We find that the projected impact of both single and multiple clean up devices is very modest. A significant reduction of plastic debris in the ocean can be only achieved with collection at rivers or with a combination of river barriers and clean up devices. We also show that the incineration and production of plastic has a significant long-term effect on the global atmospheric carbon budget. We conclude that a combination of reduced plastic emissions and reinforced collection is the only way to rid the ocean of plastic waste.
Collapse
Affiliation(s)
- Sönke Hohn
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359 Bremen, Germany.
| | - Esteban Acevedo-Trejos
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359 Bremen, Germany
| | - Jesse F Abrams
- Global Systems Institute and Institute of Data Science and Artificial Intelligence, University of Exeter, Exeter EX4 4PY, United Kingdom; Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | | | - Roger Spranz
- Making Oceans Plastic Free e.V., Basler Landstr. 41a, 79111 Freiburg, Germany
| | - Agostino Merico
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359 Bremen, Germany; Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
197
|
Brachner A, Fragouli D, Duarte IF, Farias PMA, Dembski S, Ghosh M, Barisic I, Zdzieblo D, Vanoirbeek J, Schwabl P, Neuhaus W. Assessment of Human Health Risks Posed by Nano-and Microplastics Is Currently Not Feasible. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8832. [PMID: 33261100 PMCID: PMC7730001 DOI: 10.3390/ijerph17238832] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/14/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
The exposure of humans to nano-and microplastic particles (NMPs) is an issue recognized as a potential health hazard by scientists, authorities, politics, non-governmental organizations and the general public. The concentration of NMPs in the environment is increasing concomitantly with global plastic production and the usage of plastic materials. NMPs are detectable in numerous aquatic organisms and also in human samples, therefore necessitating a risk assessment of NMPs for human health. So far, a comprehensive risk assessment of NMPs is hampered by limited availability of appropriate reference materials, analytical obstacles and a lack of definitions and standardized study designs. Most studies conducted so far used polystyrene (PS) spheres as a matter of availability, although this polymer type accounts for only about 7% of total plastic production. Differently sized particles, different concentration and incubation times, and various biological models have been used, yielding hardly comparable data sets. Crucial physico-chemical properties of NMPs such as surface (charge, polarity, chemical reactivity), supplemented additives and adsorbed chemicals have been widely excluded from studies, although in particular the surface of NMPs determines the interaction with cellular membranes. In this manuscript we give an overview about the critical parameters which should be considered when performing risk assessments of NMPs, including novel reference materials, taking into account surface modifications (e.g., reflecting weathering processes), and the possible role of NMPs as a substrate and/or carrier for (pathogenic) microbes. Moreover, we make suggestions for biological model systems to evaluate immediate toxicity, long-term effects and the potential of NMPs to cross biological barriers. We are convinced that standardized reference materials and experimental parameters along with technical innovations in (nano)-particle sampling and analytics are a prerequisite for the successful realization of conclusive human health risk assessments of NMPs.
Collapse
Affiliation(s)
- Andreas Brachner
- Competence Unit Molecular Diagnostics, Austrian Institute of Technology GmbH, 1210 Vienna, Austria;
| | - Despina Fragouli
- Smart Materials, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy;
| | - Iola F. Duarte
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Patricia M. A. Farias
- PHORNANO Holding GmbH, 2100 Korneuburg, Austria;
- Programa de Pos-graduacao em Ciencia de Materiais, Departamento de Biofisica e Radiobiologia, Universidade Federal de Pernambuco-UFPE, Recife 50670-901, Brazil
| | - Sofia Dembski
- Fraunhofer Translational Center Regenerative Therapies TLC-RT, 97070 Würzburg, Germany; (S.D.); (D.Z.)
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital, 97070 Würzburg, Germany
| | - Manosij Ghosh
- Department of Public Health and Primary Care Centre for Environment and Health Herestraat 49 (O&N 706), KU Leuven, B-3000 Leuven, Belgium; (M.G.); (J.V.)
| | - Ivan Barisic
- Competence Unit Molecular Diagnostics, Austrian Institute of Technology GmbH, 1210 Vienna, Austria;
| | - Daniela Zdzieblo
- Fraunhofer Translational Center Regenerative Therapies TLC-RT, 97070 Würzburg, Germany; (S.D.); (D.Z.)
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital, 97070 Würzburg, Germany
| | - Jeroen Vanoirbeek
- Department of Public Health and Primary Care Centre for Environment and Health Herestraat 49 (O&N 706), KU Leuven, B-3000 Leuven, Belgium; (M.G.); (J.V.)
| | - Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, 1090 Vienna, Austria;
| | - Winfried Neuhaus
- Competence Unit Molecular Diagnostics, Austrian Institute of Technology GmbH, 1210 Vienna, Austria;
| |
Collapse
|
198
|
Li D, Liu K, Li C, Peng G, Andrady AL, Wu T, Zhang Z, Wang X, Song Z, Zong C, Zhang F, Wei N, Bai M, Zhu L, Xu J, Wu H, Wang L, Chang S, Zhu W. Profiling the Vertical Transport of Microplastics in the West Pacific Ocean and the East Indian Ocean with a Novel in Situ Filtration Technique. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12979-12988. [PMID: 32966052 DOI: 10.1021/acs.est.0c02374] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new technique involving large-volume (10 m3) samples of seawater was used to determine the abundance of microplastics (MPs) in the water column in the West Pacific Ocean and the East Indian Ocean. Compared to the conventional sampling methods based on smaller volumes of water, the new data yielded abundance values for the deep-water column that were at least 1-2 orders of magnitude lower. The data suggested that limited bulk volumes currently used for surface sampling are insufficient to obtain accurate estimates of MP abundance in deep water. Size distribution data indicated that the lateral movement of MPs into the water column contributed to their movement from the surface to the bottom. This study provides a reliable dataset for the water column to enable a better understanding of the transport and fate of plastic contamination in the deep-ocean ecosystem.
Collapse
Affiliation(s)
- Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China
| | - Kai Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China
| | - Changjun Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China
| | - Guyu Peng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China
| | - Anthony L Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Tianning Wu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China
| | - Zhiwei Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China
| | - Xiaohui Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China
| | - Zhangyu Song
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China
| | - Changxing Zong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China
| | - Feng Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China
| | - Nian Wei
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China
| | - Mengyu Bai
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China
| | - Lixin Zhu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China
| | - Jiayi Xu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China
| | - Hui Wu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China
| | - Lu Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China
| | - Siyuan Chang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China
| | - Wenxi Zhu
- Intergovernmental Oceanographic Commission Sub-Commission for the Western Pacific, IOC-UNESCO, 120 Chaengwattana Road, Bangkok 10210, Thailand
| |
Collapse
|