151
|
Humphries M. Martin Humphries: Attached to adhesion. Interview by Caitlin Sedwick. J Cell Biol 2013; 200:554-5. [PMID: 23460674 PMCID: PMC3587834 DOI: 10.1083/jcb.2005pi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Humphries studies how interactions with the extracellular matrix influence cell phenotype.
Collapse
|
152
|
Byron A, Humphries JD, Humphries MJ. Defining the extracellular matrix using proteomics. Int J Exp Pathol 2013; 94:75-92. [PMID: 23419153 DOI: 10.1111/iep.12011] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 09/13/2012] [Accepted: 11/16/2012] [Indexed: 12/11/2022] Open
Abstract
The cell microenvironment has a profound influence on the behaviour, growth and survival of cells. The extracellular matrix (ECM) provides not only mechanical and structural support to cells and tissues but also binds soluble ligands and transmembrane receptors to provide spatial coordination of signalling processes. The ability of cells to sense the chemical, mechanical and topographical features of the ECM enables them to integrate complex, multiparametric information into a coherent response to the surrounding microenvironment. Consequently, dysregulation or mutation of ECM components results in a broad range of pathological conditions. Characterization of the composition of ECM derived from various cells has begun to reveal insights into ECM structure and function, and mechanisms of disease. Proteomic methodologies permit the global analysis of subcellular systems, but extracellular and transmembrane proteins present analytical difficulties to proteomic strategies owing to the particular biochemical properties of these molecules. Here, we review advances in proteomic approaches that have been applied to furthering our understanding of the ECM microenvironment. We survey recent studies that have addressed challenges in the analysis of ECM and discuss major outcomes in the context of health and disease. In addition, we summarize efforts to progress towards a systems-level understanding of ECM biology.
Collapse
Affiliation(s)
- Adam Byron
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
153
|
Yenjerla M, Panopoulos A, Reynaud C, Fotedar R, Margolis RL. TD-60 is required for interphase cell cycle progression. Cell Cycle 2013; 12:837-41. [PMID: 23388455 DOI: 10.4161/cc.23821] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We previously identified TD-60 (RCC2) as a mitotic centromere-associated protein that is necessary for proper completion of mitosis. We now report that TD-60 is an essential regulator of cell cycle progression during interphase. siRNA suppression blocks progression of mammalian G₁/S phase cells and progression of G₂ cells into mitosis. Prolonged arrest occurs both in non-transformed cells and in transformed cells lacking functional p53. TD-60 associates with Rac1 and Arf6 and has recently been demonstrated to be an element of α5β1 integrin and cortactin interactomes. These associations with known elements of cell cycle control, together with our data, suggest that TD-60 is an essential component of one or more signaling pathways that drive cell cycle progression. During mitosis, TD-60 is required for correct assembly of the mitotic spindle and activation of key mitotic proteins. In contrast, in interphase TD-60 promotes cell cycle progression through what must be distinct mechanisms. TD-60 thus appears to be one of the growing categories of proteins that "moonlight," or have more than one distinct cellular function.
Collapse
Affiliation(s)
- Mythili Yenjerla
- Tumor Development Program, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
154
|
Michaelis UR, Chavakis E, Kruse C, Jungblut B, Kaluza D, Wandzioch K, Manavski Y, Heide H, Santoni MJ, Potente M, Eble JA, Borg JP, Brandes RP. The polarity protein Scrib is essential for directed endothelial cell migration. Circ Res 2013; 112:924-34. [PMID: 23362312 DOI: 10.1161/circresaha.112.300592] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
RATIONALE Polarity proteins are involved in the apico-basal orientation of epithelial cells, but relatively little is known regarding their function in mesenchymal cells. OBJECTIVE We hypothesized that polarity proteins also contribute to endothelial processes like angiogenesis. METHODS AND RESULTS Screening of endothelial cells revealed high expression of the polarity protein Scribble (Scrib). On fibronectin-coated carriers Scrib siRNA (siScrib) blocked directed but not random migration of human umbilical vein endothelial cells and led to an increased number and disturbed orientation of cellular lamellipodia. Coimmunoprecipitation/mass spectrometry and glutathione S-transferase (GST) pulldown assays identified integrin α5 as a novel Scrib interacting protein. By total internal reflection fluorescence (TIRF) microscopy, Scrib and integrin α5 colocalize at the basal plasma membrane of endothelial cells. Western blot and fluorescence activated cell sorting (FACS) analysis revealed that silencing of Scrib reduced the protein amount and surface expression of integrin α5 whereas surface expression of integrin αV was unaffected. Moreover, in contrast to fibronectin, the ligand of integrin α5, directional migration on collagen mediated by collagen-binding integrins was unaffected by siScrib. Mechanistically, Scrib supported integrin α5 recycling and protein stability by blocking its interaction with Rab7a, its translocation into lysosomes, and its subsequent degradation by pepstatin-sensitive proteases. In siScrib-treated cells, reinduction of the wild-type protein but not of PSD95, Dlg, ZO-1 (PDZ), or leucine rich repeat domain mutants restored integrin α5 abundance and directional cell migration. The downregulation of Scrib function in Tg(kdrl:EGFP)(s843) transgenic zebrafish embryos delayed the angiogenesis of intersegmental vessels. CONCLUSIONS Scrib is a novel regulator of integrin α5 turnover and sorting, which is required for oriented cell migration and sprouting angiogenesis.
Collapse
Affiliation(s)
- U Ruth Michaelis
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität, Theodor-Stern-Kai 7, Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Lam BD, Hordijk PL. The Rac1 hypervariable region in targeting and signaling: a tail of many stories. Small GTPases 2013; 4:78-89. [PMID: 23354415 DOI: 10.4161/sgtp.23310] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cellular signaling by small GTPases is critically dependent on proper spatio-temporal orchestration of activation and output. In addition to their core G (guanine nucleotide binding)-domain, small GTPases comprise a hypervariable region (HVR) and a lipid anchor that are generally accepted to control subcellullar localization. The HVR encodes in many small GTPases a polybasic region (PBR) that permits charge-mediated association to the inner leaflet of the plasma membrane or to intracellular organelles. Over the past 15-20 years, evidence has accumulated for specific protein-protein interactions, mediated by the HVR, that control both targeting and signaling specificity of small GTPases. Using the RhoGTPase Rac1 as a paradigm we here review a series of protein partners that require the Rac1 HVR for association and that control various aspects of localized Rac1 signaling. Some of these proteins represent Rac1 activators, whereas others mediate Rac1 inactivation and degradation and yet others potentiate Rac1 downstream signaling. Finally, evidence is discussed which shows that the HVR of Rac1 also contributes to effector interactions, co-operating with the N-terminal effector domain. The complexity of localized Rac1 signaling, reviewed here, is most likely exemplary for many other small GTPases as well, representing a challenge to identify and define similar mechanisms controlling the specific signaling induced by small GTPases.
Collapse
Affiliation(s)
- B Daniel Lam
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
156
|
Pietsch J, Riwaldt S, Bauer J, Sickmann A, Weber G, Grosse J, Infanger M, Eilles C, Grimm D. Interaction of proteins identified in human thyroid cells. Int J Mol Sci 2013; 14:1164-78. [PMID: 23303277 PMCID: PMC3565314 DOI: 10.3390/ijms14011164] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/21/2012] [Accepted: 01/06/2013] [Indexed: 11/16/2022] Open
Abstract
Influence of gravity forces on the regulation of protein expression by healthy and malignant thyroid cells was studied with the aim to identify protein interactions. Western blot analyses of a limited number of proteins suggested a time-dependent regulation of protein expression by simulated microgravity. After applying free flow isoelectric focusing and mass spectrometry to search for differently expressed proteins by thyroid cells exposed to simulated microgravity for three days, a considerable number of candidates for gravi-sensitive proteins were detected. In order to show how proteins sensitive to microgravity could directly influence other proteins, we investigated all polypeptide chains identified with Mascot scores above 100, looking for groups of interacting proteins. Hence, UniProtKB entry numbers of all detected proteins were entered into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and processed. The program indicated that we had detected various groups of interacting proteins in each of the three cell lines studied. The major groups of interacting proteins play a role in pathways of carbohydrate and protein metabolism, regulation of cell growth and cell membrane structuring. Analyzing these groups, networks of interaction could be established which show how a punctual influence of simulated microgravity may propagate via various members of interaction chains.
Collapse
Affiliation(s)
- Jessica Pietsch
- Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University Clinic, Leipziger Str. 44, 39120 Magdeburg, Germany; E-Mails: (J.P.); (S.R.); (M.I.)
| | - Stefan Riwaldt
- Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University Clinic, Leipziger Str. 44, 39120 Magdeburg, Germany; E-Mails: (J.P.); (S.R.); (M.I.)
| | - Johann Bauer
- Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; E-Mail:
| | - Albert Sickmann
- Leibniz-Institute for Analytical Sciences (ISAS), Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany; E-Mail:
| | - Gerhard Weber
- FFE Service GmbH, Frankfurter Ring 193a, 80807 Munich, Germany; E-Mail:
| | - Jirka Grosse
- Nuclear Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; E-Mails: (J.G.); (C.E.)
| | - Manfred Infanger
- Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University Clinic, Leipziger Str. 44, 39120 Magdeburg, Germany; E-Mails: (J.P.); (S.R.); (M.I.)
| | - Christoph Eilles
- Nuclear Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; E-Mails: (J.G.); (C.E.)
| | - Daniela Grimm
- Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University Clinic, Leipziger Str. 44, 39120 Magdeburg, Germany; E-Mails: (J.P.); (S.R.); (M.I.)
- Institute of Biomedicine, Pharmacology, Aarhus University, Wilhelm Meyers Allé 4, 8000 Aarhus C, Denmark
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +45-8716-7693; Fax: +45-8612-8804
| |
Collapse
|
157
|
Akhtar N, Streuli CH. An integrin-ILK-microtubule network orients cell polarity and lumen formation in glandular epithelium. Nat Cell Biol 2013; 15:17-27. [PMID: 23263281 PMCID: PMC3701152 DOI: 10.1038/ncb2646] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/07/2012] [Indexed: 12/16/2022]
Abstract
The extracellular matrix has a crucial role in determining the spatial orientation of epithelial polarity and the formation of lumens in glandular tissues; however, the underlying mechanisms remain elusive. By using Cre–Lox deletion we show that β1 integrins are required for normal mammary gland morphogenesis and lumen formation, both in vivo and in a three-dimensional primary culture model in which epithelial cells directly contact a basement membrane. Downstream of basement membrane β1 integrins, Rac1 is not involved; however, ILK is needed to polarize microtubule plus ends at the basolateral membrane and disrupting each of these components prevents lumen formation. The integrin–microtubule axis is necessary for the endocytic removal of apical proteins from the basement-membrane–cell interface and for internal Golgi positioning. We propose that this integrin signalling network controls the delivery of apical components to the correct surface and thereby governs the orientation of polarity and development of lumens.
Collapse
Affiliation(s)
- Nasreen Akhtar
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M139PT, UK.
| | | |
Collapse
|
158
|
Gupton SL, Riquelme D, Hughes-Alford SK, Tadros J, Rudina SS, Hynes RO, Lauffenburger D, Gertler FB. Mena binds α5 integrin directly and modulates α5β1 function. ACTA ACUST UNITED AC 2012; 198:657-76. [PMID: 22908313 PMCID: PMC3514034 DOI: 10.1083/jcb.201202079] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mena binds to the cytoplasmic tail of α5 integrin and modulates key
α5β1 integrin functions in adhesion, motility, and
fibrillogenesis. Mena is an Ena/VASP family actin regulator with roles in cell migration,
chemotaxis, cell–cell adhesion, tumor cell invasion, and metastasis.
Although enriched in focal adhesions, Mena has no established function within
these structures. We find that Mena forms an adhesion-regulated complex with
α5β1 integrin, a fibronectin receptor involved in cell adhesion,
motility, fibronectin fibrillogenesis, signaling, and growth factor receptor
trafficking. Mena bound directly to the carboxy-terminal portion of the
α5 cytoplasmic tail via a 91-residue region containing 13 five-residue
“LERER” repeats. In fibroblasts, the Mena–α5 complex
was required for “outside-in” α5β1 functions,
including normal phosphorylation of FAK and paxillin and formation of fibrillar
adhesions. It also supported fibrillogenesis and cell spreading and controlled
cell migration speed. Thus, fibroblasts require Mena for multiple
α5β1-dependent processes involving bidirectional interactions
between the extracellular matrix and cytoplasmic focal adhesion proteins.
Collapse
Affiliation(s)
- Stephanie L Gupton
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Stehbens S, Wittmann T. Targeting and transport: how microtubules control focal adhesion dynamics. ACTA ACUST UNITED AC 2012; 198:481-9. [PMID: 22908306 PMCID: PMC3514042 DOI: 10.1083/jcb.201206050] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Directional cell migration requires force generation that relies on the
coordinated remodeling of interactions with the extracellular matrix (ECM),
which is mediated by integrin-based focal adhesions (FAs). Normal FA turnover
requires dynamic microtubules, and three members of the diverse group of
microtubule plus-end-tracking proteins are principally involved in mediating
microtubule interactions with FAs. Microtubules also alter the assembly state of
FAs by modulating Rho GTPase signaling, and recent evidence suggests that
microtubule-mediated clathrin-dependent and -independent endocytosis regulates
FA dynamics. In addition, FA-associated microtubules may provide a polarized
microtubule track for localized secretion of matrix metalloproteases (MMPs).
Thus, different aspects of the molecular mechanisms by which microtubules
control FA turnover in migrating cells are beginning to emerge.
Collapse
Affiliation(s)
- Samantha Stehbens
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
160
|
Cervero P, Himmel M, Krüger M, Linder S. Proteomic analysis of podosome fractions from macrophages reveals similarities to spreading initiation centres. Eur J Cell Biol 2012; 91:908-22. [DOI: 10.1016/j.ejcb.2012.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 12/24/2022] Open
|
161
|
Geiger T, Zaidel-Bar R. Opening the floodgates: proteomics and the integrin adhesome. Curr Opin Cell Biol 2012; 24:562-8. [DOI: 10.1016/j.ceb.2012.05.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/22/2012] [Indexed: 01/09/2023]
|
162
|
Cell adhesion in Drosophila: versatility of cadherin and integrin complexes during development. Curr Opin Cell Biol 2012; 24:702-12. [PMID: 22938782 DOI: 10.1016/j.ceb.2012.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/16/2012] [Accepted: 07/26/2012] [Indexed: 01/22/2023]
Abstract
We highlight recent progress in understanding cadherin and integrin function in the model organism Drosophila. New functions for these adhesion receptors continue to be discovered in this system, emphasising the importance of cell adhesion within the developing organism and showing that the requirement for cell adhesion changes between cell types. New ways to control adhesion have been discovered, including controlling the expression and recruitment of adhesion components, their posttranslational modification, recycling and turnover. Importantly, even ubiquitous adhesion components can function differently in distinct cellular contexts.
Collapse
|
163
|
Mortillo S, Elste A, Ge Y, Patil SB, Hsiao K, Huntley GW, Davis RL, Benson DL. Compensatory redistribution of neuroligins and N-cadherin following deletion of synaptic β1-integrin. J Comp Neurol 2012; 520:2041-52. [PMID: 22488504 DOI: 10.1002/cne.23027] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
β1-containing integrins are required for persistent synaptic potentiation in hippocampus and regulate hippocampal-dependent learning. Based largely on indirect evidence, there is a prevailing assumption that β1-integrins are localized at synapses, where they contribute to synapse adhesion and signaling, but this has not been examined directly. Here we investigate the fine localization of β1-integrin in adult mouse hippocampus using high-resolution immunogold labeling, with a particular emphasis on synaptic labeling patterns. We find that β1-integrins localize to synapses in CA1 and are concentrated postsynaptically. At the postsynaptic membrane, β1-integrins are found more commonly clustered near active zone centers rather than at the peripheral edges. In mice harboring a conditional deletion of β1-integrins, labeling for N-cadherin and neuroligins increases. Western blots show increased levels of N-cadherin in total lysates and neuroligins increase selectively in synaptosomes. These data suggest there is a dynamic, compensatory adjustment of synaptic adhesion. Such adjustment is specific only for certain cell adhesion molecules (CAMs), because labeling for SynCAM is unchanged. Together, our findings demonstrate unequivocally that β1-integrin is an integral synaptic adhesion protein, and suggest that adhesive function at the synapse reflects a cooperative and dynamic network of multiple CAM families.
Collapse
Affiliation(s)
- Steven Mortillo
- Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Santos S, Obukhov Y, Nekhai S, Bukrinsky M, Iordanskiy S. Virus-producing cells determine the host protein profiles of HIV-1 virion cores. Retrovirology 2012; 9:65. [PMID: 22889230 PMCID: PMC3432596 DOI: 10.1186/1742-4690-9-65] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/15/2012] [Indexed: 11/10/2022] Open
Abstract
Background Upon HIV entry into target cells, viral cores are released and rearranged into reverse transcription complexes (RTCs), which support reverse transcription and also protect and transport viral cDNA to the site of integration. RTCs are composed of viral and cellular proteins that originate from both target and producer cells, the latter entering the target cell within the viral core. However, the proteome of HIV-1 viral cores in the context of the type of producer cells has not yet been characterized. Results We examined the proteomic profiles of the cores purified from HIV-1 NL4-3 virions assembled in Sup-T1 cells (T lymphocytes), PMA and vitamin D3 activated THP1 (model of macrophages, mMΦ), and non-activated THP1 cells (model of monocytes, mMN) and assessed potential involvement of identified proteins in the early stages of infection using gene ontology information and data from genome-wide screens on proteins important for HIV-1 replication. We identified 202 cellular proteins incorporated in the viral cores (T cells: 125, mMΦ: 110, mMN: 90) with the overlap between these sets limited to 42 proteins. The groups of RNA binding (29), DNA binding (17), cytoskeleton (15), cytoskeleton regulation (21), chaperone (18), vesicular trafficking-associated (12) and ubiquitin-proteasome pathway-associated proteins (9) were most numerous. Cores of the virions from SupT1 cells contained twice as many RNA binding proteins as cores of THP1-derived virus, whereas cores of virions from mMΦ and mMN were enriched in components of cytoskeleton and vesicular transport machinery, most probably due to differences in virion assembly pathways between these cells. Spectra of chaperones, cytoskeletal proteins and ubiquitin-proteasome pathway components were similar between viral cores from different cell types, whereas DNA-binding and especially RNA-binding proteins were highly diverse. Western blot analysis showed that within the group of overlapping proteins, the level of incorporation of some RNA binding (RHA and HELIC2) and DNA binding proteins (MCM5 and Ku80) in the viral cores from T cells was higher than in the cores from both mMΦ and mMN and did not correlate with the abundance of these proteins in virus producing cells. Conclusions Profiles of host proteins packaged in the cores of HIV-1 virions depend on the type of virus producing cell. The pool of proteins present in the cores of all virions is likely to contain factors important for viral functions. Incorporation ratio of certain RNA- and DNA-binding proteins suggests their more efficient, non-random packaging into virions in T cells than in mMΦ and mMN.
Collapse
Affiliation(s)
- Steven Santos
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Ross Hall, Washington, DC 20037, USA
| | | | | | | | | |
Collapse
|
165
|
Roper JA, Williamson RC, Bass MD. Syndecan and integrin interactomes: large complexes in small spaces. Curr Opin Struct Biol 2012; 22:583-90. [PMID: 22841476 PMCID: PMC3712168 DOI: 10.1016/j.sbi.2012.07.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/15/2012] [Accepted: 07/04/2012] [Indexed: 11/30/2022]
Abstract
The syndecan family of transmembrane proteoglycans cooperate with integrins to regulate both early and late events in adhesion formation. The heparan sulphate chains substituted on to the syndecan ectodomains are capable of engaging ligands over great distance, while the protein core spans the plasma membrane and initiates cytoplasmic signals through a short cytoplasmic tail. These properties create a spatial paradox. The volume of the heparan sulphate chains greatly exceeds that of the integrins with which it cooperates, while the short cytodomain must bind to multiple cytoplasmic factors, despite being long enough to bind only one or two. In this review we consider the structural rearrangements that a cell undertakes to overcome spatial restrictions and compare the interactomes of syndecans and integrins to gain insight into the composition of adhesions and how they are regulated over time.
Collapse
Affiliation(s)
- James A Roper
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | | | | |
Collapse
|
166
|
Byron A, Humphries JD, Humphries MJ. Alternative cellular roles for proteins identified using proteomics. J Proteomics 2012; 75:4184-5. [PMID: 22579753 PMCID: PMC4234028 DOI: 10.1016/j.jprot.2012.04.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
Affiliation(s)
- Adam Byron
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Jonathan D. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Martin J. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
167
|
Byron A, Humphries JD, Craig SE, Knight D, Humphries MJ. Proteomic analysis of α4β1 integrin adhesion complexes reveals α-subunit-dependent protein recruitment. Proteomics 2012; 12:2107-14. [PMID: 22623428 PMCID: PMC3472074 DOI: 10.1002/pmic.201100487] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 04/10/2012] [Accepted: 04/12/2012] [Indexed: 01/27/2023]
Abstract
Integrin adhesion receptors mediate cell-cell and cell-extracellular matrix interactions, which control cell morphology and migration, differentiation, and tissue integrity. Integrins recruit multimolecular adhesion complexes to their cytoplasmic domains, which provide structural and mechanosensitive signaling connections between the extracellular and intracellular milieux. The different functions of specific integrin heterodimers, such as α4β1 and α5β1, have been attributed to distinct signal transduction mechanisms that are initiated by selective recruitment of adhesion complex components to integrin cytoplasmic tails. Here, we report the isolation of ligand-induced adhesion complexes associated with wild-type α4β1 integrin, an activated α4β1 variant in the absence of the α cytoplasmic domain (X4C0), and a chimeric α4β1 variant with α5 leg and cytoplasmic domains (α4Pα5L), and the cataloguing of their proteomes by MS. Using hierarchical clustering and interaction network analyses, we detail the differential recruitment of proteins and highlight enrichment patterns of proteins to distinct adhesion complexes. We identify previously unreported components of integrin adhesion complexes and observe receptor-specific enrichment of molecules with previously reported links to cell migration and cell signaling processes. Furthermore, we demonstrate colocalization of MYO18A with active integrin in migrating cells. These datasets provide a resource for future studies of integrin receptor-specific signaling events.
Collapse
Affiliation(s)
- Adam Byron
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | | | | |
Collapse
|
168
|
Bhattacharya M, Su G, Su X, Oses-Prieto JA, Li JT, Huang X, Hernandez H, Atakilit A, Burlingame AL, Matthay MA, Sheppard D. IQGAP1 is necessary for pulmonary vascular barrier protection in murine acute lung injury and pneumonia. Am J Physiol Lung Cell Mol Physiol 2012; 303:L12-9. [PMID: 22561460 PMCID: PMC3426434 DOI: 10.1152/ajplung.00375.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/25/2012] [Indexed: 12/11/2022] Open
Abstract
We recently reported that integrin α(v)β(3) is necessary for vascular barrier protection in mouse models of acute lung injury and peritonitis. Here, we used mass spectrometric sequencing of integrin complexes to isolate the novel β(3)-integrin binding partner IQGAP1. Like integrin β(3), IQGAP1 localized to the endothelial cell-cell junction after sphingosine-1-phosphate (S1P) treatment, and IQGAP1 knockdown prevented cortical actin formation and barrier enhancement in response to S1P. Furthermore, knockdown of IQGAP1 prevented localization of integrin α(v)β(3) to the cell-cell junction. Similar to β(3)-null animals, IQGAP1-null mice had increased pulmonary vascular leak compared with wild-type controls 3 days after intratracheal LPS. In an Escherichia coli pneumonia model, IQGAP1 knockout mice had increased lung weights, lung water, and lung extravascular plasma equivalents of (125)I-labeled albumin compared with wild-type controls. Taken together, these experiments indicate that IQGAP1 is necessary for S1P-mediated vascular barrier protection during acute lung injury and is required for junctional localization of the barrier-protective integrin α(v)β(3).
Collapse
Affiliation(s)
- M Bhattacharya
- Lung Biology Center, UCSF, Rock Hall, Rm. 545, 1550 4th St., San Francisco, CA 94158, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Rashid ST, Humphries JD, Byron A, Dhar A, Askari JA, Selley JN, Knight D, Goldin RD, Thursz M, Humphries MJ. Proteomic analysis of extracellular matrix from the hepatic stellate cell line LX-2 identifies CYR61 and Wnt-5a as novel constituents of fibrotic liver. J Proteome Res 2012; 11:4052-64. [PMID: 22694338 PMCID: PMC3411196 DOI: 10.1021/pr3000927] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Activation of hepatic stellate cells (HSCs) and subsequent
uncontrolled
accumulation of altered extracellular matrix (ECM) underpin liver
fibrosis, a wound healing response to chronic injury, which can lead
to organ failure and death. We sought to catalogue the components
of fibrotic liver ECM to obtain insights into disease etiology and
aid identification of new biomarkers. Cell-derived ECM was isolated
from the HSC line LX-2, an in vitro model of liver
fibrosis, and compared to ECM from human foreskin fibroblasts (HFFs)
as a control. Mass spectrometry analyses of cell-derived ECMs identified,
with ≥99% confidence, 61 structural ECM or secreted proteins
(48 and 31 proteins for LX-2 and HFF, respectively). Gene ontology
enrichment analysis confirmed the enrichment of ECM proteins, and
hierarchical clustering coupled with protein–protein interaction
network analysis revealed a subset of proteins enriched to fibrotic
ECM, highlighting the existence of cell type-specific ECM niches.
Thirty-six proteins were enriched to LX-2 ECM as compared to HFF ECM,
of which Wnt-5a and CYR61 were validated by immunohistochemistry in
human and murine fibrotic liver tissue. Future studies will determine
if these and other components may play a role in the etiology of hepatic
fibrosis, serve as novel disease biomarkers, or open up new avenues
for drug discovery.
Collapse
Affiliation(s)
- S Tamir Rashid
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, and Department of Gastrointestinal Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Florentinus AK, Bowden P, Barbisan V, Marshall J. Capture and qualitative analysis of the activated Fc receptor complex from live cells. ACTA ACUST UNITED AC 2012; Chapter 19:Unit 19.22. [PMID: 22294325 DOI: 10.1002/0471140864.ps1922s67] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This unit describes the isolation of activated Fc receptor complexes from RAW 264.7 macrophages using live-cell affinity receptor chromatography (LARC). The Fc receptor complex is activated and captured by IgG-coated microbeads on the surface of live macrophages. After the cells are disrupted, the receptor complexes are isolated by washing and sucrose gradient ultracentrifugation. Soluble proteins associated with the receptor complex are then eluted from the beads using a stepwise series of salt buffers and aqueous acetonitrile. The eluted proteins and the residual insoluble proteins on the beads can then be digested with trypsin and subjected to liquid chromatography, electrospray ionization, and tandem mass spectrometry (LC-ESI-MS/MS). Controls include IgG-coated beads incubated with crude cell lysates or growth medium and beads coated with oxidized LDL or bovine serum albumin. Using this method, proteins present in IgG-FcR complexes can be distinguished from those in control scavenger receptor complexes (oxLDL or BSA). Thus, LARC is capable of detecting specific members of IgG receptor supramolecular complexes.
Collapse
|
171
|
Yue J, Zhang K, Chen J. Role of integrins in regulating proteases to mediate extracellular matrix remodeling. CANCER MICROENVIRONMENT 2012; 5:275-83. [PMID: 22437309 DOI: 10.1007/s12307-012-0101-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/01/2012] [Indexed: 01/09/2023]
Abstract
The extracellular matrix (ECM) is an extracellular scaffold composed of complex mixtures of proteins that plays a pivotal role in tumor progression. ECM remodeling is crucial for tumor migration and invasion during the process of metastasis. ECM can be remodeled by several processes including synthesis, contraction and proteolytic degradation. In order to cross through the ECM barriers, malignant cells produce a spectrum of extracellular proteinases including matrix metalloproteinases (MMPs), serine proteases (mainly the urokinase plasminogen activator (uPA) system) and cysteine proteases to degrade ECM components. As major adhesion molecules to support cell attachment to ECM, integrins play critical roles in tumor progression by enhancing tumor cell survival, migration and invasion. Previous studies have shown that integrins can regulate the expression and activity of these proteases through different pathways. This review summarizes the roles of MMPs and uPA system in ECM remodeling and discusses the regulatory functions of integrins on these proteases in invasive tumors.
Collapse
Affiliation(s)
- Jiao Yue
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai, 200031, China
| | | | | |
Collapse
|
172
|
A benchmarked protein microarray-based platform for the identification of novel low-affinity extracellular protein interactions. Anal Biochem 2012; 424:45-53. [PMID: 22342946 PMCID: PMC3325482 DOI: 10.1016/j.ab.2012.01.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/04/2011] [Accepted: 01/13/2012] [Indexed: 12/13/2022]
Abstract
Low-affinity extracellular protein interactions are critical for cellular recognition processes, but existing methods to detect them are limited in scale, making genome-wide interaction screens technically challenging. To address this, we report here the miniaturization of the AVEXIS (avidity-based extracellular interaction screen) assay by using protein microarray technology. To achieve this, we have developed protein tags and sample preparation methods that enable the parallel purification of hundreds of recombinant proteins expressed in mammalian cells. We benchmarked the protein microarray-based assay against a set of known quantified receptor–ligand pairs and show that it is sensitive enough to detect even very weak interactions that are typical of this class of interactions. The increase in scale enables interaction screening against a dilution series of immobilized proteins on the microarray enabling the observation of saturation binding behaviors to show interaction specificity and also the estimation of interaction affinities directly from the primary screen. These methodological improvements now permit screening for novel extracellular receptor–ligand interactions on a genome-wide scale.
Collapse
|
173
|
Pellinen T, Rantala JK, Arjonen A, Mpindi JP, Kallioniemi O, Ivaska J. A functional genetic screen reveals new regulators of β1-integrin activity. J Cell Sci 2012; 125:649-61. [DOI: 10.1242/jcs.090704] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
β1 integrins constitute a large group of widely distributed adhesion receptors, which regulate the ability of cells to interact with their surroundings. This regulation of the expression and activity of integrins is crucial for tissue homeostasis and development and contributes to inflammation and cancer. We report an RNA interference screen to uncover genes involved in the regulation of β1-integrin activity using cell spot microarray technology in cancer cell lines. Altogether, ten cancer and two normal cell lines were used to identify regulators of β1 integrin activity. Cell biological analysis of the identified β1-integrin regulatory genes revealed that modulation of integrin activity can influence cell invasion in a three-dimensional matrix. We demonstrate with loss-of-function and rescue experiments that CD9 activates and MMP8 inactivates β1 integrins and that both proteins associate with β1 integrins in cells. Furthermore, CD9 and MMP8 regulate cancer cell extravasation in vivo. Our discovery of new regulators of β1-integrin activity highlight the complexity of integrin activity regulation and provide a set of new genes involved in regulation of integrin function.
Collapse
Affiliation(s)
- Teijo Pellinen
- Medical Biotechnology, VTT Technical Research Centre of Finland, 20521, Turku, Finland
- Centre for Biotechnology, University of Turku, 20520, Turku, Finland
- Institute for Molecular Medicine Finland (FIMM), Biomedicum 2U, 00014 University of Helsinki, Helsinki, Finland
| | - Juha K. Rantala
- Medical Biotechnology, VTT Technical Research Centre of Finland, 20521, Turku, Finland
| | - Antti Arjonen
- Medical Biotechnology, VTT Technical Research Centre of Finland, 20521, Turku, Finland
- Centre for Biotechnology, University of Turku, 20520, Turku, Finland
| | - John-Patrick Mpindi
- Medical Biotechnology, VTT Technical Research Centre of Finland, 20521, Turku, Finland
- Institute for Molecular Medicine Finland (FIMM), Biomedicum 2U, 00014 University of Helsinki, Helsinki, Finland
| | - Olli Kallioniemi
- Medical Biotechnology, VTT Technical Research Centre of Finland, 20521, Turku, Finland
- Institute for Molecular Medicine Finland (FIMM), Biomedicum 2U, 00014 University of Helsinki, Helsinki, Finland
| | - Johanna Ivaska
- Medical Biotechnology, VTT Technical Research Centre of Finland, 20521, Turku, Finland
- Centre for Biotechnology, University of Turku, 20520, Turku, Finland
- Department of Biochemistry and Food Chemistry, University of Turku, 20520, Turku, Finland
| |
Collapse
|
174
|
Grigera PR, Ma L, Borgman CA, Pinto AF, Sherman NE, Parsons JT, Fox JW. Mass spectrometric analysis identifies a cortactin-RCC2/TD60 interaction in mitotic cells. J Proteomics 2012; 75:2153-9. [PMID: 22282019 DOI: 10.1016/j.jprot.2012.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 01/08/2012] [Accepted: 01/09/2012] [Indexed: 10/24/2022]
Abstract
Cortactin is an F-actin binding protein that functions as a scaffold to regulate Arp2/3 mediated actin polymerization in lamellipodia and invadopodia formation as well as functioning in cell migration and endocytosis of many different cell types. In light of the fact that regulated actin polymerization is critical for many cellular processes we launched a search for novel cortactin interactions with cellular proteins that might indicate heretofore undescribed biological activities supported by cortactin. Using a modified stable isotope labeling in cell culture (SILAC) approach in HEK293 cells and Flag-tagged cortactin (F-cortactin) as bait, we identified a limited set of cortactin interactions including several proteins which have not previously been identified as cortactin associated proteins. Among these were serine/threonine-protein phosphatase 2A subunit beta (PP2A-beta) and RCC2/TD60, a Rac guanine nucleotide exchange factor (GEF) required for completion of mitosis and cytokinesis. The interaction between cortactin and RCC2/TD60 was verified in cell lysates immunoprecitated with anti-RCC2/TD60 antibody. Furthermore, cortactin was localized by immunofluorescence in the equatorial plane of dividing HeLa cells in the region where RCC2/TD60 has previously been localized thus providing support for a complex containing cortactin and RCC2/TD60 complex that may play a functional role in cells undergoing mitosis.
Collapse
Affiliation(s)
- Pablo R Grigera
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, United States
| | | | | | | | | | | | | |
Collapse
|
175
|
Bush JA, Kitaura H, Ma Y, Teitelbaum SL, Ross FP, Smith JW. Comparative proteomic analysis of a cytosolic fraction from β3 integrin-deficient cells. Cancer Genomics Proteomics 2012; 9:1-13. [PMID: 22210044 PMCID: PMC3627548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Integrins are heterodimeric transmembrane receptors involved in sensing and transmitting informational cues from the extracellular environment to the cell. This study explored sub-proteome changes in response to elimination of the β3 integrin using a knockout murine model. Cleavable isotope-coded affinity tagging (cICAT) in combination with sub-cellular fractionation, multiple dimensions of separation and tandem mass spectrometry (MS/MS) were used to characterize differentially expressed proteins among β3 integrin(-/-) (β3(-/-)) mouse embryonic fibroblasts and isogenic wild-type (WT) controls. From a cytosolic protein fraction, 48 proteins were identified, in which expression differed by > 1.5-fold. Predominant ontological groups included actin-binding/cytoskeletal proteins and protease/protease inhibitors. Interestingly, β3 integrin expression was inversely correlated with expression of cathepsin B, a lysosomal cysteine protease, as its expression was greater by over 3.5-fold in the β3(-/-) cells. This inverse correlation was also observed in stable heterologous cells transfected with β3 integrin, where the intracellular expression and activity of cathepsin B was lower compared to control cells. Our data suggests that the composition of the cellular proteome is influenced by integrin expression patterns and reveals a strong functional relationship between β3 integrin and cathepsin B.
Collapse
Affiliation(s)
- Jason A. Bush
- Cancer Center and Center on Proteolytic Pathways, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, U.S.A
| | - Hideki Kitaura
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, U.S.A
| | - Yuliang Ma
- Cancer Center and Center on Proteolytic Pathways, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, U.S.A
| | - Steven L. Teitelbaum
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, U.S.A
| | - F. Patrick Ross
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, U.S.A
| | - Jeffrey W. Smith
- Cancer Center and Center on Proteolytic Pathways, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, U.S.A
| |
Collapse
|
176
|
Wehrle-Haller B. Structure and function of focal adhesions. Curr Opin Cell Biol 2011; 24:116-24. [PMID: 22138388 DOI: 10.1016/j.ceb.2011.11.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 01/17/2023]
Abstract
Integrin-dependent cell adhesions come in different shapes and serve in different cell types for tasks ranging from cell-adhesion, migration, and the remodeling of the extracellular matrix to the formation and stabilization of immunological and chemical synapses. A major challenge consists in the identification of adhesion-specific as well as common regulatory mechanisms, motivating the need for a deeper analysis of protein-protein interactions in the context of intact focal adhesions. Specifically, it is critical to understand how small differences in binding of integrins to extracellular ligands and/or cytoplasmic adapter proteins affect the assembly and function of an entire focal adhesion. By using the talin-integrin pair as a starting point, I would like to discuss how specific protein-protein and protein-lipid interactions can control the behavior and function of focal adhesions. By responding to chemical and mechanical cues several allosterically regulated proteins create a dynamic multifunctional protein network that provides both adhesion to the extracellular matrix as well as intracellular signaling in response to mechanical changes in the cellular environment.
Collapse
Affiliation(s)
- Bernhard Wehrle-Haller
- University of Geneva, Department of Cell Physiology and Metabolism, Centre Médical Universitaire, 1. Rue Michel-Servet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
177
|
Nili M, Mukherjee A, Shinde U, David L, Rotwein P. Defining the disulfide bonds of insulin-like growth factor-binding protein-5 by tandem mass spectrometry with electron transfer dissociation and collision-induced dissociation. J Biol Chem 2011; 287:1510-9. [PMID: 22117064 DOI: 10.1074/jbc.m111.285528] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The six high-affinity insulin-like growth factor-binding proteins (IGFBPs) comprise a conserved family of secreted molecules that modulate IGF actions by regulating their half-life and access to signaling receptors, and also exert biological effects that are independent of IGF binding. IGFBPs are composed of cysteine-rich amino- (N-) and carboxyl- (C-) terminal domains, along with a cysteine-poor central linker segment. IGFBP-5 is the most conserved IGFBP, and contains 18 cysteines, but only 2 of 9 putative disulfide bonds have been mapped to date. Using a mass spectrometry (MS)-based strategy combining sequential electron transfer dissociation (ETD) and collision-induced dissociation (CID) steps, in which ETD fragmentation preferentially induces cleavage of disulfide bonds, and CID provides exact disulfide linkage assignments between liberated peptides, we now have definitively mapped 5 disulfide bonds in IGFBP-5. In addition, in conjunction with ab initio molecular modeling we are able to assign the other 4 disulfide linkages to within a GCGCCXXC motif that is conserved in five IGFBPs. Because of the nature of ETD fragmentation MS experiments were performed without chemical reduction of IGFBP-5. Our results not only establish a disulfide bond map of IGFBP-5 but also define a general approach that takes advantage of the specificity of ETD and the scalability of tandem MS, and the predictive power of ab initio molecular modeling to characterize unknown disulfide linkages in proteins.
Collapse
Affiliation(s)
- Mahta Nili
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239-3098, USA
| | | | | | | | | |
Collapse
|
178
|
Huang Z, Hoffmann FW, Norton RL, Hashimoto AC, Hoffmann PR. Selenoprotein K is a novel target of m-calpain, and cleavage is regulated by Toll-like receptor-induced calpastatin in macrophages. J Biol Chem 2011; 286:34830-8. [PMID: 21849499 DOI: 10.1074/jbc.m111.265520] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calpains are proteolytic enzymes that modulate cellular function through cleavage of targets, thereby modifying their actions. An important role is emerging for calpains in regulating inflammation and immune responses, although specific mechanisms by which this occurs have not been clearly defined. In this study, we identify a novel target of calpain, selenoprotein K (SelK), which is an endoplasmic reticulum transmembrane protein important for Ca(2+) flux in immune cells. Calpain-mediated cleavage of SelK was detected in myeloid cells (macrophages, neutrophils, and dendritic cells) but not in lymphoid cells (B and T cells). Both m- and μ-calpain were capable of cleaving immunoprecipitated SelK, but m-calpain was the predominant isoform expressed in mouse immune cells. Consistent with these results, specific inhibitors were used to show that only m-calpain cleaved SelK in macrophages. The cleavage site in SelK was identified between Arg(81) and Gly(82) and the resulting truncated SelK was shown to lack selenocysteine, the amino acid that defines selenoproteins. Resting macrophages predominantly expressed cleaved SelK and, when activated through different Toll-like receptors (TLRs), SelK cleavage was inhibited. We found that decreased calpain cleavage was due to TLR-induced up-regulation of the endogenous inhibitor, calpastatin. TLR-induced calpastatin expression not only inhibited SelK cleavage, but cleavage of another calpain target, talin. Moreover, the expression of the calpain isoforms and calpastatin in macrophages were different from T and B cells. Overall, our findings identify SelK as a novel calpain target and reveal dynamic changes in the calpain/calpastatin system during TLR-induced activation of macrophages.
Collapse
Affiliation(s)
- Zhi Huang
- Department of Cell and Molecular Biology, John A Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96813, USA
| | | | | | | | | |
Collapse
|
179
|
Kindlin-1 and -2 have overlapping functions in epithelial cells implications for phenotype modification. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:975-82. [PMID: 21356350 DOI: 10.1016/j.ajpath.2010.11.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 10/26/2010] [Accepted: 11/17/2010] [Indexed: 11/21/2022]
Abstract
Kindlins are a novel family of intracellular adaptor proteins in integrin-containing focal adhesions. Kindlin-1 and -2 are expressed in the skin, but whether and how they cooperate in adult epithelial cells have remained elusive. We uncovered the overlapping roles of kindlin-1 and -2 in maintaining epithelial integrity and show that the phenotype of kindlin-1-deficient cells can be modulated by regulating kindlin-2 gene expression and vice versa. The experimental evidence is provided by use of human keratinocyte cell lines that express both kindlins, just kindlin-1 or kindlin-2, or none of them. Double deficiency of kindlin-1 and -2 had significant negative effects on focal adhesion formation and actin cytoskeleton organization, cell adhesion, survival, directional migration, and activation of β(1) integrin, whereas deficiency of one kindlin only showed variable perturbation of these functions. Cell motility and formation of cell-cell contacts were particularly affected by lack of kindlin-2. These results predict that kindlin-1 and -2 can functionally compensate for each other, at least in part. The high physiologic and pathologic significance of the compensation was emphasized by the discovery of environmental regulation of kindlin-2 expression. UV-B irradiation induced loss of kindlin-2 in keratinocytes. This first example of environmental regulation of kindlin expression has implications for phenotype modulation in Kindler syndrome, a skin disorder caused by kindlin-1 deficiency.
Collapse
|
180
|
Geiger B, Yamada KM. Molecular architecture and function of matrix adhesions. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a005033. [PMID: 21441590 DOI: 10.1101/cshperspect.a005033] [Citation(s) in RCA: 391] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell adhesions mediate important bidirectional interactions between cells and the extracellular matrix. They provide an interactive interface between the extracellular chemical and physical environment and the cellular scaffolding and signaling machinery. This dynamic, reciprocal regulation of intracellular processes and the matrix is mediated by membrane receptors such as the integrins, as well as many other components that comprise the adhesome. Adhesome constituents assemble themselves into different types of cell adhesion structures that vary in molecular complexity and change over time. These cell adhesions play crucial roles in cell migration, proliferation, and determination of cell fate.
Collapse
Affiliation(s)
- Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
181
|
|
182
|
Byron A, Humphries JD, Bass MD, Knight D, Humphries MJ. Proteomic analysis of integrin adhesion complexes. Sci Signal 2011; 4:pt2. [PMID: 21467297 DOI: 10.1126/scisignal.2001827] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Integrin receptors regulate cell fate by coupling the binding of extracellular adhesion proteins to the assembly of intracellular cytoskeletal and signaling complexes. A detailed, integrative view of adhesion complexes will provide insight into the molecular mechanisms that control cell morphology, survival, movement, and differentiation. To date, membrane receptor-associated signaling complexes have been refractory to proteomic analysis because of their inherent lability and inaccessibility. We developed a methodology to isolate ligand-induced integrin adhesion complexes, and we used this technique to analyze the composition of complexes associated with multiple receptor-ligand pairs and define core and receptor-specific subnetworks. In particular, we identified regulator of chromosome condensation-2 (RCC2) as a component of fibronectin-activated signaling pathways that regulate directional cell movement. The development of this proteomics pipeline provides the means to investigate the molecular composition and function of various adhesion complexes.
Collapse
Affiliation(s)
- Adam Byron
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, UK
| | | | | | | | | |
Collapse
|
183
|
Abstract
Intercellular communication in metazoa not only requires autocrine, paracrine and exocrine signalling systems, but it also relies on the structural and positional information encoded in extracellular matrices (ECMs). Most cells in tissues are structurally and functionally integrated with their surrounding ECM in a highly organised manner involving thousands of dynamic connections. On the intracellular face of these linkages, adhesion receptors - principally integrins and syndecans - link the cytoskeleton to the plasma membrane and compartmentalise cytoplasmic signalling events, whereas at the extracellular face the same receptors direct and organise the deposition of the ECM itself. Adhesion receptors transduce mechanical force bidirectionally across the plasma membrane by tethering variably deformable ECMs to the contractile cytoskeleton (Figure 1), and they translate the topography and composition of the ECM into chemical signals that determine behaviour. The membrane-proximal functions of adhesion receptors in turn trigger distal processes within cells, such as alterations in the direction of cell movement and the regulation of gene transcription, and long-range effects outside cells, such as the construction of ECM networks and consequent shaping of higher-order tissue structure. Given the diverse and fundamental roles attributed to adhesion, it is understandable that adhesion receptor engagement has been reported to alter the flux through virtually all major signalling pathways.
Collapse
Affiliation(s)
- Adam Byron
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Mark R Morgan
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
184
|
Gallegos L, Ng MR, Brugge JS. The myosin-II-responsive focal adhesion proteome: a tour de force? Nat Cell Biol 2011. [DOI: 10.1038/ncb2230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
185
|
Gallegos L, Ng MR, Brugge JS. The myosin-II-responsive focal adhesion proteome: a tour de force? Nat Cell Biol 2011; 13:344-6. [PMID: 21460805 DOI: 10.1038/ncb0411-344] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The formation and maturation of focal adhesions involves significant changes in protein composition and requires acto-myosin contractility. A mass spectrometry approach reveals changes to the focal adhesion proteome on myosin inhibition, providing a valuable resource for the cell adhesion field.
Collapse
|
186
|
Quantitative proteomics of the integrin adhesome show a myosin II-dependent recruitment of LIM domain proteins. EMBO Rep 2011; 12:259-66. [PMID: 21311561 DOI: 10.1038/embor.2011.5] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 12/20/2010] [Accepted: 01/12/2011] [Indexed: 12/21/2022] Open
Abstract
A characteristic of integrins is their ability to transfer chemical and mechanical signals across the plasma membrane. Force generated by myosin II makes cells able to sense substrate stiffness and induce maturation of nascent adhesions into focal adhesions. In this paper, we present a comprehensive proteomic analysis of nascent and mature adhesions. The purification of integrin adhesion complexes combined with quantitative mass spectrometry enabled the identification and quantification of known and new adhesion-associated proteins. Furthermore, blocking adhesion maturation with the myosin II inhibitor blebbistatin markedly impaired the recruitment of LIM domain proteins to integrin adhesion sites. This suggests a common recruitment mechanism for a whole class of adhesion-associated proteins, involving myosin II and the zinc-finger-type LIM domain.
Collapse
|
187
|
Smith AL, Friedman DB, Yu H, Carnahan RH, Reynolds AB. ReCLIP (reversible cross-link immuno-precipitation): an efficient method for interrogation of labile protein complexes. PLoS One 2011; 6:e16206. [PMID: 21283770 PMCID: PMC3024417 DOI: 10.1371/journal.pone.0016206] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 12/08/2010] [Indexed: 02/06/2023] Open
Abstract
The difficulty of maintaining intact protein complexes while minimizing non-specific background remains a significant limitation in proteomic studies. Labile interactions, such as the interaction between p120-catenin and the E-cadherin complex, are particularly challenging. Using the cadherin complex as a model-system, we have developed a procedure for efficient recovery of otherwise labile protein-protein interactions. We have named the procedure “ReCLIP” (Reversible Cross-Link Immuno-Precipitation) to reflect the primary elements of the method. Using cell-permeable, thiol-cleavable crosslinkers, normally labile interactions (i.e. p120 and E-cadherin) are stabilized in situ prior to isolation. After immunoprecipitation, crosslinked binding partners are selectively released and all other components of the procedure (i.e. beads, antibody, and p120 itself) are discarded. The end result is extremely efficient recovery with exceptionally low background. ReCLIP therefore appears to provide an excellent alternative to currently available affinity-purification approaches, particularly for studies of labile complexes.
Collapse
Affiliation(s)
- Andrew L. Smith
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - David B. Friedman
- Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Huapeng Yu
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Robert H. Carnahan
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Albert B. Reynolds
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
188
|
Anthis NJ, Campbell ID. The tail of integrin activation. Trends Biochem Sci 2011; 36:191-8. [PMID: 21216149 DOI: 10.1016/j.tibs.2010.11.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/29/2010] [Accepted: 11/30/2010] [Indexed: 12/13/2022]
Abstract
Integrins are essential adhesion receptors found on the surfaces of all metazoan cells. As regulators of cell migration and extracellular matrix assembly, these membrane-spanning heterodimers are critical for embryonic development, tissue repair and immune responses. Signals transmitted by integrins from outside to inside the cell promote cell survival and proliferation, but integrin affinity for extracellular ligands can also be controlled by intracellular cues. This bidirectional signaling is mediated by the short cytoplasmic tails of the two integrin subunits. Recent structural and functional studies of various integrin fragments and complexes between the cytoplasmic tails and intracellular proteins, such as talin, have provided new insight into the signaling processes centered around the tails, particularly inside-out integrin activation.
Collapse
Affiliation(s)
- Nicholas J Anthis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | | |
Collapse
|
189
|
Abstract
Collagens are the most abundant proteins in mammals. The collagen family comprises 28 members that contain at least one triple-helical domain. Collagens are deposited in the extracellular matrix where most of them form supramolecular assemblies. Four collagens are type II membrane proteins that also exist in a soluble form released from the cell surface by shedding. Collagens play structural roles and contribute to mechanical properties, organization, and shape of tissues. They interact with cells via several receptor families and regulate their proliferation, migration, and differentiation. Some collagens have a restricted tissue distribution and hence specific biological functions.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS, Université Lyon 1, Lyon, 69367, France.
| |
Collapse
|
190
|
Anthis NJ, Wegener KL, Critchley DR, Campbell ID. Structural diversity in integrin/talin interactions. Structure 2010; 18:1654-66. [PMID: 21134644 PMCID: PMC3157975 DOI: 10.1016/j.str.2010.09.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/25/2010] [Accepted: 09/01/2010] [Indexed: 10/18/2022]
Abstract
The adhesion of integrins to the extracellular matrix is regulated by binding of the cytoskeletal protein talin to the cytoplasmic tail of the β-integrin subunit. Structural studies of this interaction have hitherto largely focused on the β3-integrin, one member of the large and diverse integrin family. Here, we employ NMR to probe interactions and dynamics, revealing marked structural diversity in the contacts between β1A, β1D, and β3 tails and the Talin1 and Talin2 isoforms. Coupled with analysis of recent structures of talin/β tail complexes, these studies elucidate the thermodynamic determinants of this heterogeneity and explain why the Talin2/β1D isoforms, which are co-localized in striated muscle, form an unusually tight interaction. We also show that talin/integrin affinity can be enhanced 1000-fold by deleting two residues in the β tail. Together, these studies illustrate how the integrin/talin interaction has been fine-tuned to meet varying biological requirements.
Collapse
Affiliation(s)
- Nicholas J. Anthis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3DR, UK
| | - Kate L. Wegener
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3DR, UK
| | - David R. Critchley
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester LE1 9HN, UK
| | - Iain D. Campbell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3DR, UK
| |
Collapse
|
191
|
Galectin-1 sensitizes carcinoma cells to anoikis via the fibronectin receptor α5β1-integrin. Cell Death Differ 2010; 18:806-16. [PMID: 21113146 DOI: 10.1038/cdd.2010.148] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Anoikis resistance is a hallmark of transformed epithelial cells. Here, we show that treatment of anoikis-resistant carcinoma cell lines with the endogenous lectin galectin-1 (Gal-1) promoted apoptosis via interaction with the unligated fibronectin receptor α(5)β(1)-integrin. Gal-1 efficiency correlated with expression of α(5)β(1)-integrin, and transfection of the α(5)-subunit into deficient cell lines conferred Gal-1 binding and anoikis stimulation. Furthermore, Gal-1 and the α(5)- and β(1)-integrin subunits co-precipitated in Gal-1-stimulated cells undergoing anoikis. Other members of the galectin family failed to be active. The functional interaction between Gal-1 and α(5)β(1)-integrin was glycan dependent with α2,6-sialylation representing a switch-off signal. Desialylation of cell surface glycans resulted in increased electrophoretic mobility of α(5)β(1)-integrin and facilitated Gal-1 binding and anoikis stimulation. On the level of signaling, Gal-1-stimulated anoikis was prevented by filipin, which impaired the internalization of α(5)β(1)-integrin via cholesterol-enriched microdomains, and by pretreatment with a caspase-8 inhibitor. We propose that Gal-1/α(5)β(1)-integrin interaction participates in the control of epithelial integrity and integrin sialylation may enable carcinoma cells to evade this Gal-1-dependent control mechanism.
Collapse
|
192
|
Worth DC, Hodivala-Dilke K, Robinson SD, King SJ, Morton PE, Gertler FB, Humphries MJ, Parsons M. Alpha v beta3 integrin spatially regulates VASP and RIAM to control adhesion dynamics and migration. ACTA ACUST UNITED AC 2010; 189:369-83. [PMID: 20404115 PMCID: PMC2856911 DOI: 10.1083/jcb.200912014] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Loss of β3 integrin enhances turnover of focal adhesions and cell migration speed due to increased β1 integrin–talin interactions. Integrins are fundamental to the control of protrusion and motility in adherent cells. However, the mechanisms by which specific members of this receptor family cooperate in signaling to cytoskeletal and adhesion dynamics are poorly understood. Here, we show that the loss of β3 integrin in fibroblasts results in enhanced focal adhesion turnover and migration speed but impaired directional motility on both 2D and 3D matrices. These motility defects are coupled with an increased rate of actin-based protrusion. Analysis of downstream signaling events reveals that loss of β3 integrin results in a loss of protein kinase A–dependent phosphorylation of the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP). Dephosphorylated VASP in β3-null cells is preferentially associated with Rap1-GTP–interacting adaptor molecule (RIAM) both in vitro and in vivo, which leads to enhanced formation of a VASP–RIAM complex at focal adhesions and subsequent increased binding of talin to β1 integrin. These data demonstrate a novel mechanism by which αvβ3 integrin acts to locally suppress β1 integrin activation and regulate protrusion, adhesion dynamics, and persistent migration.
Collapse
Affiliation(s)
- Daniel C Worth
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
193
|
Affiliation(s)
- Elizabeth M. Adler
- Senior Editor of Science Signaling, American Association for the Advancement of Science, 1200 New York Avenue, N.W., Washington, DC 20005, USA
| |
Collapse
|
194
|
Costa P, Parsons M. New insights into the dynamics of cell adhesions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:57-91. [PMID: 20801418 DOI: 10.1016/s1937-6448(10)83002-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adhesion to the extracellular matrix (ECM) and to adjacent cells is a fundamental requirement for survival, differentiation, and migration of numerous cell types during both embryonic development and adult homeostasis. Different types of adhesion structures have been classified within different cell types or tissue environments. Much is now known regarding the complexity of protein composition of these critical points of cell contact with the extracellular environment. It has become clear that adhesions are highly ordered, dynamic structures under tight spatial control at the subcellular level to enable localized responses to extracellular cues. However, it is only in the last decade that the relative dynamics of these adhesion proteins have been closely studied. Here, we provide an overview of the recent data arising from such studies of cell-matrix and cell-cell contact and an overview of the imaging strategies that have been developed and implemented to study the intricacies and hierarchy of protein turnover within adhesions.
Collapse
Affiliation(s)
- Patricia Costa
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London, United Kingdom
| | | |
Collapse
|
195
|
Abstract
Integrin transmembrane receptors orchestrate signaling cascades by recruiting cytoskeletal linker proteins and enzymes to sites of cell adhesion. A proteomics-based view of such integrin-associated signaling networks is now available. Besides the usual suspects, the interactomes contain several proteins that were not previously connected to integrins. One of these, regulator of chromosome condensation-2 (RCC2), represents an unexpected molecular connection between integrins and the cell-migration machinery.
Collapse
Affiliation(s)
- Erik H J Danen
- Leiden Amsterdam Center for Drug Research, Leiden University, Netherlands.
| |
Collapse
|