151
|
Tang SJ, Fesharaki-Zadeh A, Takahashi H, Nies SH, Smith LM, Luo A, Chyung A, Chiasseu M, Strittmatter SM. Fyn kinase inhibition reduces protein aggregation, increases synapse density and improves memory in transgenic and traumatic Tauopathy. Acta Neuropathol Commun 2020; 8:96. [PMID: 32611392 PMCID: PMC7329553 DOI: 10.1186/s40478-020-00976-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/21/2020] [Indexed: 01/06/2023] Open
Abstract
Accumulation of misfolded phosphorylated Tau (Tauopathy) can be triggered by mutations or by trauma, and is associated with synapse loss, gliosis, neurodegeneration and memory deficits. Fyn kinase physically associates with Tau and regulates subcellular distribution. Here, we assessed whether pharmacological Fyn inhibition alters Tauopathy. In P301S transgenic mice, chronic Fyn inhibition prevented deficits in spatial memory and passive avoidance learning. The behavioral improvement was coupled with reduced accumulation of phospho-Tau in the hippocampus, with reductions in glial activation and with recovery of presynaptic markers. We extended this analysis to a trauma model in which very mild repetitive closed head injury was paired with chronic variable stress over 2 weeks to produce persistent memory deficits and Tau accumulation. In this model, Fyn inhibition beginning 24 h after the trauma ended rescued memory performance and reduced phospho-Tau accumulation. Thus, inhibition of Fyn kinase may have therapeutic benefit in clinical Tauopathies.
Collapse
|
152
|
Aravind A, Kosty J, Chandra N, Pfister BJ. Blast exposure predisposes the brain to increased neurological deficits in a model of blast plus blunt traumatic brain injury. Exp Neurol 2020; 332:113378. [PMID: 32553593 DOI: 10.1016/j.expneurol.2020.113378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/20/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
Soldiers are often exposed to more than one traumatic brain injury (TBI) over the course of their service. In recent years, more attention has been drawn to the increased risk of neurological deficits caused by the 'blast plus' polytrauma, which typically is a blast trauma combined with other forms of TBI. In this study, we investigated the behavioral and neuronal deficits resulting from a blast plus injury involving a mild-moderate blast followed by a mild blunt trauma using the fluid percussion injury model. We identified that the blast injury predisposed the brain to increased cognitive deficits, chronic ventricular enlargement, increased neurodegeneration at acute time points and chronic neuronal loss. Interestingly, a single blast and single blunt injury differed in their onset and manifestation of cognitive and regional neuronal loss. We also identified the presence of cleaved RIP1 from caspase 8 mediated apoptosis in the blunt injury while the blast injury did not activate immediate apoptosis but led to decreased hilar neuronal survival over time.
Collapse
Affiliation(s)
- Aswati Aravind
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Dr M.L.K. Jr. Blvd, Newark, NJ 07102, USA
| | - Julianna Kosty
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Dr M.L.K. Jr. Blvd, Newark, NJ 07102, USA
| | - Namas Chandra
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Dr M.L.K. Jr. Blvd, Newark, NJ 07102, USA
| | - Bryan J Pfister
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Dr M.L.K. Jr. Blvd, Newark, NJ 07102, USA.
| |
Collapse
|
153
|
Logsdon AF, Schindler AG, Meabon JS, Yagi M, Herbert MJ, Banks WA, Raskind MA, Marshall DA, Keene CD, Perl DP, Peskind ER, Cook DG. Nitric oxide synthase mediates cerebellar dysfunction in mice exposed to repetitive blast-induced mild traumatic brain injury. Sci Rep 2020; 10:9420. [PMID: 32523011 PMCID: PMC7287110 DOI: 10.1038/s41598-020-66113-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/16/2020] [Indexed: 02/02/2023] Open
Abstract
We investigated the role of nitric oxide synthase (NOS) in mediating blood-brain barrier (BBB) disruption and peripheral immune cell infiltration in the cerebellum following blast exposure. Repetitive, but not single blast exposure, induced delayed-onset BBB disruption (72 hours post-blast) in cerebellum. The NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) administered after blast blocked BBB disruption and prevented CD4+ T-cell infiltration into cerebellum. L-NAME also blocked blast-induced increases in intercellular adhesion molecule-1 (ICAM-1), a molecule that plays a critical role in regulating blood-to-brain immune cell trafficking. Blocking NOS-mediated BBB dysfunction during this acute/subacute post-blast interval (24-71 hours after the last blast) also prevented sensorimotor impairment on a rotarod task 30 days later, long after L-NAME cleared the body. In postmortem brains from Veterans/military Servicemembers with blast-related TBI, we found marked Purkinje cell dendritic arbor structural abnormalities, which were comparable to neuropathologic findings in the blast-exposed mice. Taken collectively, these results indicate that blast provokes delayed-onset of NOS-dependent pathogenic cascades that can later emerge as behavioral dysfunction. These results also further implicate the cerebellum as a brain region vulnerable to blast-induced mTBI.
Collapse
Affiliation(s)
- Aric F. Logsdon
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Abigail G. Schindler
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - James S. Meabon
- 0000 0004 0420 6540grid.413919.7VA Northwest Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Mayumi Yagi
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA
| | - Melanie J. Herbert
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA
| | - William A. Banks
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Murray A. Raskind
- 0000 0004 0420 6540grid.413919.7VA Northwest Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Desiree A. Marshall
- 0000000122986657grid.34477.33Department of Pathology, University of Washington, Seattle, WA 98195 USA
| | - C. Dirk Keene
- 0000000122986657grid.34477.33Department of Pathology, University of Washington, Seattle, WA 98195 USA
| | - Daniel P. Perl
- 0000 0001 0421 5525grid.265436.0Department of Pathology, Center for Neuroscience and Regenerative Medicine, School of Medicine, Uniformed Services University, Bethesda, MD 20814 USA
| | - Elaine R. Peskind
- 0000 0004 0420 6540grid.413919.7VA Northwest Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - David G. Cook
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195 USA
| |
Collapse
|
154
|
Zhou Y, Chen Q, Wang Y, Wu H, Xu W, Pan Y, Gao S, Dong X, Zhang JH, Shao A. Persistent Neurovascular Unit Dysfunction: Pathophysiological Substrate and Trigger for Late-Onset Neurodegeneration After Traumatic Brain Injury. Front Neurosci 2020; 14:581. [PMID: 32581697 PMCID: PMC7296179 DOI: 10.3389/fnins.2020.00581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) represents one of the major causes of death worldwide and leads to persisting neurological deficits in many of the survivors. One of the most significant long-term sequelae deriving from TBI is neurodegenerative disease, which is a group of incurable diseases that impose a heavy socio-economic burden. However, mechanisms underlying the increased susceptibility of TBI to neurodegenerative disease remain elusive. The neurovascular unit (NVU) is a functional unit composed of neurons, neuroglia, vascular cells, and the basal lamina matrix. The key role of NVU dysfunction in many central nervous system diseases has been revealed. Studies have proved the presence of prolonged structural and functional abnormalities of the NVU after TBI. Moreover, growing evidence suggests impaired NVU function is also implicated in neurodegenerative diseases. Therefore, we propose the Neurovascular Unit Dysfunction (NVUD) Hypothesis, in which the persistent NVU dysfunction is thought to underlie the development of post-TBI neurodegeneration. We deduce NVUD Hypothesis through relational inference and supporting evidence, and suggest continued NVU abnormalities following TBI serve as the pathophysiological substrate and trigger yielding chronic neuroinflammation, proteinopathies and oxidative stress, consequently leading to the progression of neurodegenerative diseases. The NVUD Hypothesis may provide potential treatment and prevention strategies for TBI and late-onset neurodegenerative diseases.
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiang Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanbo Pan
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Dong
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - John H. Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
155
|
Reddy V, Grogan D, Ahluwalia M, Salles ÉL, Ahluwalia P, Khodadadi H, Alverson K, Nguyen A, Raju SP, Gaur P, Braun M, Vale FL, Costigliola V, Dhandapani K, Baban B, Vaibhav K. Targeting the endocannabinoid system: a predictive, preventive, and personalized medicine-directed approach to the management of brain pathologies. EPMA J 2020; 11:217-250. [PMID: 32549916 PMCID: PMC7272537 DOI: 10.1007/s13167-020-00203-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Cannabis-inspired medical products are garnering increasing attention from the scientific community, general public, and health policy makers. A plethora of scientific literature demonstrates intricate engagement of the endocannabinoid system with human immunology, psychology, developmental processes, neuronal plasticity, signal transduction, and metabolic regulation. Despite the therapeutic potential, the adverse psychoactive effects and historical stigma, cannabinoids have limited widespread clinical application. Therefore, it is plausible to weigh carefully the beneficial effects of cannabinoids against the potential adverse impacts for every individual. This is where the concept of "personalized medicine" as a promising approach for disease prediction and prevention may take into the account. The goal of this review is to provide an outline of the endocannabinoid system, including endocannabinoid metabolizing pathways, and will progress to a more in-depth discussion of the therapeutic interventions by endocannabinoids in various neurological disorders.
Collapse
Affiliation(s)
- Vamsi Reddy
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Dayton Grogan
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Meenakshi Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA USA
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA USA
| | - Katelyn Alverson
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Andy Nguyen
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Srikrishnan P. Raju
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
- Brown University, Providence, RI USA
| | - Pankaj Gaur
- Georgia Cancer Center, Augusta University, Augusta, GA USA
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Molly Braun
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, USA
- VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, USA
| | - Fernando L. Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | | | - Krishnan Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| |
Collapse
|
156
|
Iverson GL, Gardner AJ, Shultz SR, Solomon GS, McCrory P, Zafonte R, Perry G, Hazrati LN, Keene CD, Castellani RJ. Chronic traumatic encephalopathy neuropathology might not be inexorably progressive or unique to repetitive neurotrauma. Brain 2020; 142:3672-3693. [PMID: 31670780 PMCID: PMC6906593 DOI: 10.1093/brain/awz286] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/01/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022] Open
Abstract
In the 20th century, chronic traumatic encephalopathy (CTE) was conceptualized as a neurological disorder affecting some active and retired boxers who had tremendous exposure to neurotrauma. In recent years, the two research groups in the USA who have led the field have asserted definitively that CTE is a delayed-onset and progressive neurodegenerative disease, with symptoms appearing in midlife or decades after exposure. Between 2005 and 2012 autopsy cases of former boxers and American football players described neuropathology attributed to CTE that was broad and diverse. This pathology, resulting from multiple causes, was aggregated and referred to, in toto, as the pathology ‘characteristic’ of CTE. Preliminary consensus criteria for defining the neuropathology of CTE were forged in 2015 and published in 2016. Most of the macroscopic and microscopic neuropathological findings described as characteristic of CTE, in studies published before 2016, were not included in the new criteria for defining the pathology. In the past few years, there has been steadily emerging evidence that the neuropathology described as unique to CTE may not be unique. CTE pathology has been described in individuals with no known participation in collision or contact sports and no known exposure to repetitive neurotrauma. This pathology has been reported in individuals with substance abuse, temporal lobe epilepsy, amyotrophic lateral sclerosis, multiple system atrophy, and other neurodegenerative diseases. Moreover, throughout history, some clinical cases have been described as not being progressive, and there is now evidence that CTE neuropathology might not be progressive in some individuals. Considering the current state of knowledge, including the absence of a series of validated sensitive and specific biomarkers, CTE pathology might not be inexorably progressive or specific to those who have experienced repetitive neurotrauma.
Collapse
Affiliation(s)
- Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA.,Spaulding Rehabilitation Hospital and Spaulding Research Institute, Boston, Massachusetts, USA.,MassGeneral Hospital for Children™ Sports Concussion Program, Boston, Massachusetts, USA.,Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Boston, Massachusetts, USA
| | - Andrew J Gardner
- Hunter New England Local Health District, Sports Concussion Program, University of Newcastle, Callaghan, NSW, Australia.,Centre for Stroke and Brain Injury, School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Gary S Solomon
- Department of Neurological Surgery, Orthopaedic Surgery and Rehabilitation, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Vanderbilt Sports Concussion Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Paul McCrory
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre - Austin Campus, Heidelberg, Victoria Australia
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA.,Spaulding Rehabilitation Hospital and Spaulding Research Institute, Boston, Massachusetts, USA.,Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Boston, Massachusetts, USA
| | - George Perry
- College of Sciences, University of Texas, San Antonio; San Antonio, Texas, USA
| | - Lili-Naz Hazrati
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - C Dirk Keene
- Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Rudolph J Castellani
- Department of Pathology, Anatomy and Laboratory Medicine, West Virginia University School of Medicine, Morgantown, USA.,Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, USA
| |
Collapse
|
157
|
Arun P, Rossetti F, Wilder DM, Sajja S, Van Albert SA, Wang Y, Gist ID, Long JB. Blast Exposure Leads to Accelerated Cellular Senescence in the Rat Brain. Front Neurol 2020; 11:438. [PMID: 32508743 PMCID: PMC7253679 DOI: 10.3389/fneur.2020.00438] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Blast-induced traumatic brain injury (bTBI) is one of the major causes of persistent disabilities in Service Members, and a history of bTBI has been identified as a primary risk factor for developing age-associated neurodegenerative diseases. Clinical observations of several military blast casualties have revealed a rapid age-related loss of white matter integrity in the brain. In the present study, we have tested the effect of single and tightly coupled repeated blasts on cellular senescence in the rat brain. Isoflurane-anesthetized rats were exposed to either a single or 2 closely coupled blasts in an advanced blast simulator. Rats were euthanized and brains were collected at 24 h, 1 month and 1 year post-blast to determine senescence-associated-β-galactosidase (SA-β-gal) activity in the cells using senescence marker stain. Single and repeated blast exposures resulted in significantly increased senescence marker staining in several neuroanatomical structures, including cortex, auditory cortex, dorsal lateral thalamic nucleus, geniculate nucleus, superior colliculus, ventral thalamic nucleus and hippocampus. In general, the increases in SA-β-gal activity were more pronounced at 1 month than at 24 h or 1 year post-blast and were also greater after repeated than single blast exposures. Real-time quantitative RT-PCR analysis revealed decreased levels of mRNA for senescence marker protein-30 (SMP-30) and increased mRNA levels for p21 (cyclin dependent kinase inhibitor 1A, CDKN1A), two other related protein markers of cellular senescence. The increased senescence observed in some of these affected brain structures may be implicated in several long-term sequelae after exposure to blast, including memory disruptions and impairments in movement, auditory and ocular functions.
Collapse
Affiliation(s)
- Peethambaran Arun
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Franco Rossetti
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Donna M Wilder
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Sujith Sajja
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Stephen A Van Albert
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Ying Wang
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Irene D Gist
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Joseph B Long
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
158
|
Venkatasubramanian PN, Keni P, Gastfield R, Li L, Aksenov D, Sherman SA, Bailes J, Sindelar B, Finan JD, Lee J, Bailes JE, Wyrwicz AM. Diffusion Tensor Imaging Detects Acute and Subacute Changes in Corpus Callosum in Blast-Induced Traumatic Brain Injury. ASN Neuro 2020; 12:1759091420922929. [PMID: 32403948 PMCID: PMC7238783 DOI: 10.1177/1759091420922929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
There is a critical need for understanding the progression of neuropathology in blast-induced traumatic brain injury using valid animal models to develop diagnostic approaches. In the present study, we used diffusion imaging and magnetic resonance (MR) morphometry to characterize axonal injury in white matter structures of the rat brain following a blast applied via blast tube to one side of the brain. Diffusion tensor imaging was performed on acute and subacute phases of pathology from which fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were calculated for corpus callosum (CC), cingulum bundle, and fimbria. Ventricular volume and CC thickness were measured. Blast-injured rats showed temporally varying bilateral changes in diffusion metrics indicating persistent axonal pathology. Diffusion changes in the CC suggested vasogenic edema secondary to axonal injury in the acute phase. Axonal pathology persisted in the subacute phase marked by cytotoxic edema and demyelination which was confirmed by ultrastructural analysis. The evolution of pathology followed a different pattern in the cingulum bundle: axonal injury and demyelination in the acute phase followed by cytotoxic edema in the subacute phase. Spatially, structures close to midline were most affected. Changes in the genu were greater than in the body and splenium; the caudal cingulum bundle was more affected than the rostral cingulum. Thinning of CC and ventriculomegaly were greater only in the acute phase. Our results reveal the persistent nature of blast-induced axonal pathology and suggest that diffusion imaging may have potential for detecting the temporal evolution of blast injury.
Collapse
Affiliation(s)
- Palamadai N Venkatasubramanian
- Center for Basic M.R. Research, Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, United States
| | - Prachi Keni
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, Illinois, United States
| | - Roland Gastfield
- Center for Basic M.R. Research, Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, United States
| | - Limin Li
- Center for Basic M.R. Research, Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, United States
| | - Daniil Aksenov
- Center for Basic M.R. Research, Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, United States
| | - Sydney A Sherman
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, Illinois, United States
| | - Julian Bailes
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, Illinois, United States
| | - Brian Sindelar
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, Illinois, United States
| | - John D Finan
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, Illinois, United States
| | - John Lee
- Department of Pathology, NorthShore University HealthSystem, Evanston, Illinois, United States
| | - Julian E Bailes
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, Illinois, United States
| | - Alice M Wyrwicz
- Center for Basic M.R. Research, Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, United States
| |
Collapse
|
159
|
Gilis-Januszewska A, Kluczyński Ł, Hubalewska-Dydejczyk A. Traumatic brain injuries induced pituitary dysfunction: a call for algorithms. Endocr Connect 2020; 9:R112-R123. [PMID: 32412425 PMCID: PMC7274553 DOI: 10.1530/ec-20-0117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury affects many people each year, resulting in a serious burden of devastating health consequences. Motor-vehicle and work-related accidents, falls, assaults, as well as sport activities are the most common causes of traumatic brain injuries. Consequently, they may lead to permanent or transient pituitary insufficiency that causes adverse changes in body composition, worrisome metabolic function, reduced bone density, and a significant decrease in one's quality of life. The prevalence of post-traumatic hypopituitarism is difficult to determine, and the exact mechanisms lying behind it remain unclear. Several probable hypotheses have been suggested. The diagnosis of pituitary dysfunction is very challenging both due to the common occurrence of brain injuries, the subtle character of clinical manifestations, the variable course of the disease, as well as the lack of proper diagnostic algorithms. Insufficiency of somatotropic axis is the most common abnormality, followed by presence of hypogonadism, hypothyroidism, hypocortisolism, and diabetes insipidus. The purpose of this review is to summarize the current state of knowledge about post-traumatic hypopituitarism. Moreover, based on available data and on our own clinical experience, we suggest an algorithm for the evaluation of post-traumatic hypopituitarism. In addition, well-designed studies are needed to further investigate the pathophysiology, epidemiology, and timing of pituitary dysfunction after a traumatic brain injury with the purpose of establishing appropriate standards of care.
Collapse
Affiliation(s)
- Aleksandra Gilis-Januszewska
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Krakow, Poland
- Endocrinology Department, University Hospital in Krakow, Krakow, Poland
| | - Łukasz Kluczyński
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Krakow, Poland
- Endocrinology Department, University Hospital in Krakow, Krakow, Poland
- Correspondence should be addressed to Ł Kluczyński:
| | - Alicja Hubalewska-Dydejczyk
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Krakow, Poland
- Endocrinology Department, University Hospital in Krakow, Krakow, Poland
| |
Collapse
|
160
|
White DL, Kunik ME, Yu H, Lin HL, Richardson PA, Moore S, Sarwar AI, Marsh L, Jorge RE. Post-Traumatic Stress Disorder is Associated with further Increased Parkinson's Disease Risk in Veterans with Traumatic Brain Injury. Ann Neurol 2020; 88:33-41. [PMID: 32232880 DOI: 10.1002/ana.25726] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 03/13/2020] [Accepted: 03/20/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Determining if traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD) are risk factors for Parkinson's disease (PD). This constitutes a research priority for the Veterans Administration (VA) with implications for screening policy and prevention. METHODS Population-based, matched case-control study among veterans using VA health care facilities from October 1, 1999, to September 30, 2013. We identified 176,871 PD cases and 707,484 randomly selected PD-free matched controls. PD, TBI, and PTSD were ascertained by validated International Classification of Disease 9th revision (ICD)-9 code-based algorithms. We examined the association between both risk factors and PD using race-adjusted conditional logistic regression. RESULTS The overall study cohort prevalence for TBImild , TBInon-mild , and PTSD was 0.65%, 0.69%, and 5.5%, respectively. Both TBI and PTSD were significantly associated with PD in single-risk factor race-adjusted analyses (conditional odds ratio [cOR] = 2.99; 95% confidence interval [CI]: 2.69-3.32), 3.82 (95% CI: 3.67-3.97), and 2.71 (95% CI: 2.66-2.77) for TBImild , TBInon-mild , and PTSD, respectively). There was suggestive positive interaction observed with comorbid PTSD/TBI in dual-risk factor analyses, with significant 2.69-fold and 3.70-fold excess relative PD risk in veterans with TBImild and TBInon-mild versus those without TBI when PTSD was present versus 2.17-fold and 2.80-fold excess risk when PTSD was absent. INTERPRETATION Our study was the first to demonstrate that both TBI and PTSD are independently associated with increased relative PD risk in a diverse nationwide cohort of military service veterans, and the first to suggest a potential modest synergistic excess risk in those with comorbid TBI/PTSD. Longitudinal research is needed to confirm these suggestive findings. ANN NEUROL 2020 ANN NEUROL 2020;88:33-41.
Collapse
Affiliation(s)
- Donna L White
- Department of Medicine, Clinical Epidemiology and Comparative Effectiveness Program, Michael E. DeBakey VA Health Services Research Center of Innovations (IQuESt), Houston, TX, USA.,Section of Health Services Research and Development, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Center for Translational Research in Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Mark E Kunik
- Section of Health Services Research and Development, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,VA South Central Mental Illness Research, Education and Clinical Center, Houston, TX, USA.,Mental Health Care Line, Michael E. DeBakey VA Medical Center and Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Hong Yu
- Department of Medicine, Clinical Epidemiology and Comparative Effectiveness Program, Michael E. DeBakey VA Health Services Research Center of Innovations (IQuESt), Houston, TX, USA
| | - Helen L Lin
- VA South Central Mental Illness Research, Education and Clinical Center, Houston, TX, USA
| | - Peter A Richardson
- Section of Health Services Research and Development, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Suzanne Moore
- Parkinson's Disease Research, Education and Clinical Centers (PADRECC), Michael E DeBakey VA Medical Center, Houston, TX, USA.,Neurology Care Line, Michael E. DeBakey VA Medical Center and Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Aliya I Sarwar
- Parkinson's Disease Research, Education and Clinical Centers (PADRECC), Michael E DeBakey VA Medical Center, Houston, TX, USA.,Neurology Care Line, Michael E. DeBakey VA Medical Center and Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Laura Marsh
- VA South Central Mental Illness Research, Education and Clinical Center, Houston, TX, USA.,Mental Health Care Line, Michael E. DeBakey VA Medical Center and Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Ricardo E Jorge
- VA South Central Mental Illness Research, Education and Clinical Center, Houston, TX, USA.,Mental Health Care Line, Michael E. DeBakey VA Medical Center and Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
161
|
Delic V, Beck KD, Pang KCH, Citron BA. Biological links between traumatic brain injury and Parkinson's disease. Acta Neuropathol Commun 2020; 8:45. [PMID: 32264976 PMCID: PMC7137235 DOI: 10.1186/s40478-020-00924-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
Parkinson's Disease (PD) is a progressive neurodegenerative disorder with no cure. Clinical presentation is characterized by postural instability, resting tremors, and gait problems that result from progressive loss of A9 dopaminergic neurons in the substantia nigra pars compacta. Traumatic brain injury (TBI) has been implicated as a risk factor for several neurodegenerative diseases, but the strongest evidence is linked to development of PD. Mild TBI (mTBI), is the most common and is defined by minimal, if any, loss of consciousness and the absence of significant observable damage to the brain tissue. mTBI is responsible for a 56% higher risk of developing PD in U.S. Veterans and the risk increases with severity of injury. While the mounting evidence from human studies suggests a link between TBI and PD, fundamental questions as to whether TBI nucleates PD pathology or accelerates PD pathology in vulnerable populations remains unanswered. Several promising lines of research point to inflammation, metabolic dysregulation, and protein accumulation as potential mechanisms through which TBI can initiate or accelerate PD. Amyloid precursor protein (APP), alpha synuclein (α-syn), hyper-phosphorylated Tau, and TAR DNA-binding protein 43 (TDP-43), are some of the most frequently reported proteins upregulated following a TBI and are also closely linked to PD. Recently, upregulation of Leucine Rich Repeat Kinase 2 (LRRK2), has been found in the brain of mice following a TBI. Subset of Rab proteins were identified as biological substrates of LRRK2, a protein also extensively linked to late onset PD. Inhibition of LRRK2 was found to be neuroprotective in PD and TBI models. The goal of this review is to survey current literature concerning the mechanistic overlap between TBI and PD with a particular focus on inflammation, metabolic dysregulation, and aforementioned proteins. This review will also cover the application of rodent TBI models to further our understanding of the relationship between TBI and PD.
Collapse
Affiliation(s)
- Vedad Delic
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research and Development (Mailstop 15), 385 Tremont Ave, East Orange, NJ, 07018, USA.
- NeuroBehavioral Research Laboratory, VA New Jersey Health Care System, Research and Development (Mailstop 15), 385 Tremont Ave, East Orange, NJ, 07018, USA.
| | - Kevin D Beck
- NeuroBehavioral Research Laboratory, VA New Jersey Health Care System, Research and Development (Mailstop 15), 385 Tremont Ave, East Orange, NJ, 07018, USA
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers- New Jersey Medical School, Newark, NJ, 07103, USA
| | - Kevin C H Pang
- NeuroBehavioral Research Laboratory, VA New Jersey Health Care System, Research and Development (Mailstop 15), 385 Tremont Ave, East Orange, NJ, 07018, USA
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers- New Jersey Medical School, Newark, NJ, 07103, USA
| | - Bruce A Citron
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research and Development (Mailstop 15), 385 Tremont Ave, East Orange, NJ, 07018, USA
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers- New Jersey Medical School, Newark, NJ, 07103, USA
| |
Collapse
|
162
|
Liang KJ, Carlson ES. Resistance, vulnerability and resilience: A review of the cognitive cerebellum in aging and neurodegenerative diseases. Neurobiol Learn Mem 2020; 170:106981. [PMID: 30630042 PMCID: PMC6612482 DOI: 10.1016/j.nlm.2019.01.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/14/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
In the context of neurodegeneration and aging, the cerebellum is an enigma. Genetic markers of cellular aging in cerebellum accumulate more slowly than in the rest of the brain, and it generates unknown factors that may slow or even reverse neurodegenerative pathology in animal models of Alzheimer's Disease (AD). Cerebellum shows increased activity in early AD and Parkinson's disease (PD), suggesting a compensatory function that may mitigate early symptoms of neurodegenerative pathophysiology. Perhaps most notably, different parts of the brain accumulate neuropathological markers of AD in a recognized progression and generally, cerebellum is the last brain region to do so. Taken together, these data suggest that cerebellum may be resistant to certain neurodegenerative mechanisms. On the other hand, in some contexts of accelerated neurodegeneration, such as that seen in chronic traumatic encephalopathy (CTE) following repeated traumatic brain injury (TBI), the cerebellum appears to be one of the most susceptible brain regions to injury and one of the first to exhibit signs of pathology. Cerebellar pathology in neurodegenerative disorders is strongly associated with cognitive dysfunction. In neurodegenerative or neurological disorders associated with cerebellar pathology, such as spinocerebellar ataxia, cerebellar cortical atrophy, and essential tremor, rates of cognitive dysfunction, dementia and neuropsychiatric symptoms increase. When the cerebellum shows AD pathology, such as in familial AD, it is associated with earlier onset and greater severity of disease. These data suggest that when neurodegenerative processes are active in the cerebellum, it may contribute to pathological behavioral outcomes. The cerebellum is well known for comparing internal representations of information with observed outcomes and providing real-time feedback to cortical regions, a critical function that is disturbed in neuropsychiatric disorders such as intellectual disability, schizophrenia, dementia, and autism, and required for cognitive domains such as working memory. While cerebellum has reciprocal connections with non-motor brain regions and likely plays a role in complex, goal-directed behaviors, it has proven difficult to establish what it does mechanistically to modulate these behaviors. Due to this lack of understanding, it's not surprising to see the cerebellum reflexively dismissed or even ignored in basic and translational neuropsychiatric literature. The overarching goals of this review are to answer the following questions from primary literature: When the cerebellum is affected by pathology, is it associated with decreased cognitive function? When it is intact, does it play a compensatory or protective role in maintaining cognitive function? Are there theoretical frameworks for understanding the role of cerebellum in cognition, and perhaps, illnesses characterized by cognitive dysfunction? Understanding the role of the cognitive cerebellum in neurodegenerative diseases has the potential to offer insight into origins of cognitive deficits in other neuropsychiatric disorders, which are often underappreciated, poorly understood, and not often treated.
Collapse
Affiliation(s)
- Katharine J Liang
- University of Washington School of Medicine, Department of Psychiatry and Behavioral Sciences, Seattle, WA, United States
| | - Erik S Carlson
- University of Washington School of Medicine, Seattle, WA, United States.
| |
Collapse
|
163
|
Li M, Reisman J, Morris-Eppolito B, Qian SX, Kazis LE, Wolozin B, Goldstein LE, Xia W. Beneficial association of angiotensin-converting enzyme inhibitors and statins on the occurrence of possible Alzheimer's disease after traumatic brain injury. Alzheimers Res Ther 2020; 12:33. [PMID: 32220235 PMCID: PMC7102441 DOI: 10.1186/s13195-020-00589-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/25/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Pathological analysis of brain tissue from animals and humans with a history of traumatic brain injury (TBI) suggests that TBI could be one of the risk factors facilitating onset of dementia with possible Alzheimer's disease (AD), but medications to prevent or delay AD onset are not yet available. METHODS This study explores four medication classes (angiotensin-converting enzyme inhibitors (ACEI), beta blockers, metformin, and statins) approved by the Food and Drug Administration (FDA) for other indications and evaluates their influence when used in combination on the risk of possible AD development for patients with a history of TBI. We identified patients with history of TBI from an existing Department of Veterans Affairs (VA) national database. Among 1,660,151 veterans who used VA services between the ages of 50 to 89 years old, we analyzed 733,920 patients, including 15,450 patients with a history of TBI and 718,470 non-TBI patients. The TBI patients were followed for up to 18.5 years, with an average of 7.7 ± 4.7 years, and onset of dementia with possible AD was recorded based on International Statistical Classification of Diseases (ICD) 9 or 10 codes. The effect of TBI on possible AD development was evaluated by multivariable logistic regression models adjusted by age, gender, race, and other comorbidities. The association of ACEI, beta blockers, metformin, statins, and combinations of these agents over time from the first occurrence of TBI to possible AD onset was assessed using Cox proportional hazard models adjusted for demographics and comorbidities. RESULTS Veterans with at least two TBI occurrences by claims data were 25% (odds ratio (OR) = 1.25, 95% confidence intervals (CI) (1.13, 1.37)) more likely to develop dementia with possible AD, compared to those with no record of TBI. In multivariable logistic regression models (propensity score weighted or adjusted), veterans taking a combination of ACEI and statins had reduced risk in developing possible AD after suffering TBI, and use of this medication class combination was associated with a longer period between TBI occurring and dementia with possible AD onset, compared to patients who took statins alone or did not take any of the four target drugs after TBI. CONCLUSIONS The combination of ACEI and statins significantly lowered the risk of development of dementia with possible AD in a national cohort of people with a history of TBI, thus supporting a clinical approach to lowering the risk of dementia with possible AD.
Collapse
Affiliation(s)
- Mingfei Li
- Center for Healthcare Organization and Implementation Research, Edith Nourse Rogers Memorial Hospital, Bedford, MA USA
- Department of Mathematical Sciences, Bentley University, Waltham, MA USA
| | - Joel Reisman
- Center for Healthcare Organization and Implementation Research, Edith Nourse Rogers Memorial Hospital, Bedford, MA USA
| | - Benjamin Morris-Eppolito
- Geriatric Research Education Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA 01730 USA
| | - Shirley X. Qian
- Center for Healthcare Organization and Implementation Research, Edith Nourse Rogers Memorial Hospital, Bedford, MA USA
- Department of Health Law, Policy and Management, Boston University School of Public Health, Boston, MA USA
| | - Lewis E. Kazis
- Center for Healthcare Organization and Implementation Research, Edith Nourse Rogers Memorial Hospital, Bedford, MA USA
- Department of Health Law, Policy and Management, Boston University School of Public Health, Boston, MA USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA USA
| | - Lee E. Goldstein
- Departments of Radiology, Psychiatry, Neurology, and Pathology, Boston University School of Medicine, Boston, MA USA
- Departments of Biomedical, Electrical, and Computer Engineering, Boston University College of Engineering & Photonics Center, Boston, MA USA
- Boston University Alzheimer’s Disease Center, Boston, MA USA
| | - Weiming Xia
- Geriatric Research Education Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA 01730 USA
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA USA
| |
Collapse
|
164
|
Evans LP, Woll AW, Wu S, Todd BP, Hehr N, Hedberg-Buenz A, Anderson MG, Newell EA, Ferguson PJ, Mahajan VB, Harper MM, Bassuk AG. Modulation of Post-Traumatic Immune Response Using the IL-1 Receptor Antagonist Anakinra for Improved Visual Outcomes. J Neurotrauma 2020; 37:1463-1480. [PMID: 32056479 PMCID: PMC7249480 DOI: 10.1089/neu.2019.6725] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to characterize acute changes in inflammatory pathways in the mouse eye after blast-mediated traumatic brain injury (bTBI) and to determine whether modulation of these pathways could protect the structure and function of retinal ganglion cells (RGC). The bTBI was induced in C57BL/6J male mice by exposure to three 20 psi blast waves directed toward the head with the body shielded, with an inter-blast interval of one hour. Acute cytokine expression in retinal tissue was measured through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) four hours post-blast. Increased retinal expression of interleukin (lL)-1β, IL-1α, IL-6, and tumor necrosis factor (TNF)α was observed in bTBI mice exposed to blast when compared with shams, which was associated with activation of microglia and macroglia reactivity, assessed via immunohistochemistry with ionized calcium binding adaptor molecule 1 and glial fibrillary acidic protein, respectively, one week post-blast. Blockade of the IL-1 pathway was accomplished using anakinra, an IL-1RI antagonist, administered intra-peritoneally for one week before injury and continuing for three weeks post-injury. Retinal function and RGC layer thickness were evaluated four weeks post-injury using pattern electroretinogram (PERG) and optical coherence tomography (OCT), respectively. After bTBI, anakinra treatment resulted in a preservation of RGC function and RGC structure when compared with saline treated bTBI mice. Optic nerve integrity analysis demonstrated a trend of decreased damage suggesting that IL-1 blockade also prevents axonal damage after blast. Blast exposure results in increased retinal inflammation including upregulation of pro-inflammatory cytokines and activation of resident microglia and macroglia. This may explain partially the RGC loss we observed in this model, as blockade of the acute inflammatory response after injury with the IL-1R1 antagonist anakinra resulted in preservation of RGC function and RGC layer thickness.
Collapse
Affiliation(s)
- Lucy P Evans
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA.,Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, USA
| | - Addison W Woll
- Department of Psychiatry, University of Iowa, Iowa City, Iowa, USA
| | - Shu Wu
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Brittany P Todd
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Nicole Hehr
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Adam Hedberg-Buenz
- The Iowa City Department of Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, USA.,Department of Molecular Physiology and Biophysics, and University of Iowa, Iowa City, Iowa, USA
| | - Michael G Anderson
- The Iowa City Department of Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, USA.,Department of Molecular Physiology and Biophysics, and University of Iowa, Iowa City, Iowa, USA.,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | | | - Polly J Ferguson
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Vinit B Mahajan
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Matthew M Harper
- The Iowa City Department of Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, USA.,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | | |
Collapse
|
165
|
Honig MG, Dorian CC, Worthen JD, Micetich AC, Mulder IA, Sanchez KB, Pierce WF, Del Mar NA, Reiner A. Progressive long-term spatial memory loss following repeat concussive and subconcussive brain injury in mice, associated with dorsal hippocampal neuron loss, microglial phenotype shift, and vascular abnormalities. Eur J Neurosci 2020; 54:5844-5879. [PMID: 32090401 PMCID: PMC7483557 DOI: 10.1111/ejn.14711] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/14/2022]
Abstract
There is considerable concern about the long‐term deleterious effects of repeat head trauma on cognition, but little is known about underlying mechanisms and pathology. To examine this, we delivered four air blasts to the left side of the mouse cranium, a week apart, with an intensity that causes deficits when delivered singly and considered “concussive,” or an intensity that does not yield significant deficits when delivered singly and considered “subconcussive.” Neither repeat concussive nor subconcussive blast produced spatial memory deficits at 4 months, but both yielded deficits at 14 months, and dorsal hippocampal neuron loss. Hierarchical cluster analysis of dorsal hippocampal microglia across the three groups based on morphology and expression of MHCII, CX3CR1, CD68 and IBA1 revealed five distinct phenotypes. Types 1A and 1B microglia were more common in sham mice, linked to better neuron survival and memory, and appeared mildly activated. By contrast, 2B and 2C microglia were more common in repeat concussive and subconcussive mice, linked to poorer neuron survival and memory, and characterized by low expression levels and attenuated processes, suggesting they were de‐activated and dysfunctional. In addition, endothelial cells in repeat concussive mice exhibited reduced CD31 and eNOS expression, which was correlated with the prevalence of type 2B and 2C microglia. Our findings suggest that both repeat concussive and subconcussive head injury engender progressive pathogenic processes, possibly through sustained effects on microglia that over time lead to increased prevalence of dysfunctional microglia, adversely affecting neurons and blood vessels, and thereby driving neurodegeneration and memory decline.
Collapse
Affiliation(s)
- Marcia G Honig
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Conor C Dorian
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - John D Worthen
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anthony C Micetich
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Isabelle A Mulder
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Katelyn B Sanchez
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - William F Pierce
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nobel A Del Mar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
166
|
Vasilevskaya A, Taghdiri F, Burke C, Tarazi A, Naeimi SA, Khodadadi M, Goswami R, Sato C, Grinberg M, Moreno D, Wennberg R, Mikulis D, Green R, Colella B, Davis KD, Rusjan P, Houle S, Tator C, Rogaeva E, Tartaglia MC. Interaction of APOE4 alleles and PET tau imaging in former contact sport athletes. Neuroimage Clin 2020; 26:102212. [PMID: 32097865 PMCID: PMC7037542 DOI: 10.1016/j.nicl.2020.102212] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Genetic polymorphisms like apolipoprotein E (APOE) and microtubule-associated protein tau (MAPT) genes increase the risk of neurodegeneration. METHODS 38 former players (age 52.63±14.02) of contact sports underwent neuroimaging, biofluid collection, and comprehensive neuropsychological assessment. The [F-18]AV-1451 tracer signal was compared in the cortical grey matter between APOE4 allele carriers and non-carriers as well as carriers of MAPT H1H1 vs non-H1H1. Participants were then divided into the high (N = 13) and low (N = 13) groups based on cortical PET tau standard uptake value ratios (SUVRs) for comparison. FINDINGS Cortical grey matter PET tau SUVR values were significantly higher in APOE4 carriers compared to non-carriers (p = 0.020). In contrast, there was no significant difference in SUVR between MAPT H1H1 vs non-H1H1 carrier genes (p = 1.00). There was a significantly higher APOE4 allele frequency in the high cortical grey matter PET tau group, comparing to low cortical grey matter PET tau group (p = 0.048). No significant difference in neuropsychological function was found between APOE4 allele carriers and non-carriers. INTERPRETATION There is an association between higher cortical grey matter tau burden as seen with [F-18]AV-1451 PET tracer SUVR, and the APOE4 allele in former professional and semi-professional players at high risk of concussions. APOE4 allele may be a risk factor for tau accumulation in former contact sports athletes at high risk of neurodegeneration. FUNDING Toronto General and Western Hospital Foundations; Weston Brain Institute; Canadian Consortium on Neurodegeneration in ageing; Krembil Research Institute. There was no role of the funders in this study.
Collapse
Affiliation(s)
- Anna Vasilevskaya
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Division of Neurology, Toronto Western Hospital, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Foad Taghdiri
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Charles Burke
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Division of Neurology, Toronto Western Hospital, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; School of Medicine & Dentistry, Western University, Windsor, ON, Canada
| | - Apameh Tarazi
- Division of Neurology, Toronto Western Hospital, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Seyed Ali Naeimi
- Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Mozghan Khodadadi
- Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Ruma Goswami
- Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada
| | - Mark Grinberg
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada
| | - Danielle Moreno
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada
| | - Richard Wennberg
- Division of Neurology, Toronto Western Hospital, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - David Mikulis
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Division of Neuroradiology, Joint Department of Medical Imaging, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Robin Green
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Department of Rehabilitation Sciences, University of Toronto, 500 University Ave, Toronto, ON, M5G 1V7, Canada
| | - Brenda Colella
- Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Department of Rehabilitation Sciences, University of Toronto, 500 University Ave, Toronto, ON, M5G 1V7, Canada
| | - Karen D Davis
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Department of Surgery, University of Toronto, 149 College St., Toronto, ON, M5T 1P5, Canada
| | - Pablo Rusjan
- Research Imaging Centre, Campbell Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada
| | - Sylvain Houle
- Research Imaging Centre, Campbell Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada
| | - Charles Tator
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Division of Neurosurgery, Toronto Western Hospital, Krembil Brain Institute, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada; Department of Medicine, Division of Neurology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Maria C Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Division of Neurology, Toronto Western Hospital, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.
| |
Collapse
|
167
|
Giannoni P, Claeysen S, Noe F, Marchi N. Peripheral Routes to Neurodegeneration: Passing Through the Blood-Brain Barrier. Front Aging Neurosci 2020; 12:3. [PMID: 32116645 PMCID: PMC7010934 DOI: 10.3389/fnagi.2020.00003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
A bidirectional crosstalk between peripheral players of immunity and the central nervous system (CNS) exists. Hence, blood-brain barrier (BBB) breakdown is emerging as a participant mechanism of dysregulated peripheral-CNS interplay, promoting diseases. Here, we examine the implication of BBB damage in neurodegeneration, linking it to peripheral brain-directed autoantibodies and gut-brain axis mechanisms. As BBB breakdown is a factor contributing to, or even anticipating, neuronal dysfunction(s), we here identify contemporary pharmacological strategies that could be exploited to repair the BBB in disease conditions. Developing neurovascular, add on, therapeutic strategies may lead to a more efficacious pre-clinical to clinical transition with the goal of curbing the progression of neurodegeneration.
Collapse
Affiliation(s)
| | - Sylvie Claeysen
- CNRS, INSERM U1191, Institut de Génomique Fonctionnelle, University of Montpellier, Montpellier, France
| | - Francesco Noe
- HiLIFE – Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Nicola Marchi
- CNRS, INSERM U1191, Institut de Génomique Fonctionnelle, University of Montpellier, Montpellier, France
| |
Collapse
|
168
|
Harper MM, Rudd D, Meyer KJ, Kanthasamy AG, Anantharam V, Pieper AA, Vázquez-Rosa E, Shin MK, Chaubey K, Koh Y, Evans LP, Bassuk AG, Anderson MG, Dutca L, Kudva IT, John M. Identification of chronic brain protein changes and protein targets of serum auto-antibodies after blast-mediated traumatic brain injury. Heliyon 2020; 6:e03374. [PMID: 32099918 PMCID: PMC7029173 DOI: 10.1016/j.heliyon.2020.e03374] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/19/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
In addition to needing acute emergency management, blast-mediated traumatic brain injury (TBI) is also a chronic disorder with delayed-onset symptoms that manifest and progress over time. While the immediate consequences of acute blast injuries are readily apparent, chronic sequelae are harder to recognize. Indeed, the identification of individuals with mild-TBI or TBI-induced symptoms is greatly impaired in large part due to the lack of objective and robust biomarkers. The purpose of this study was to address these need by identifying candidates for serum-based biomarkers of blast TBI, and also to identify unique or differentially regulated protein expression in the thalamus in C57BL/6J mice exposed to blast using high throughput qualitative screens of protein expression. To identify thalamic proteins differentially or uniquely associated with blast exposure, we utilized an antibody-based affinity-capture strategy (referred to as "proteomics-based analysis of depletomes"; PAD) to deplete thalamic lysates from blast-treated mice of endogenous thalamic proteins also found in control mice. Analysis of this "depletome" detected 75 unique proteins, many with associations to the myelin sheath. To identify blast-associated proteins eliciting production of circulating autoantibodies, serum antibodies of blast-treated mice were immobilized, and their immunogens subsequently identified by proteomic analysis of proteins specifically captured following incubation with thalamic lysates (a variant of a strategy referred to as "proteomics-based expression library screening"; PELS). This analysis identified 46 blast-associated immunogenic proteins, including 6 shared in common with the PAD analysis (ALDOA, PHKB, HBA-A1, DPYSL2, SYN1, and CKB). These proteins and their autoantibodies are appropriate for further consideration as biomarkers of blast-mediated TBI.
Collapse
Affiliation(s)
- Matthew M. Harper
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA
- The University of Iowa Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Danielle Rudd
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA
| | - Kacie J. Meyer
- The University of Iowa Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | | | | | - Andrew A. Pieper
- Harrington Discovery Institute, University Hospitals of Cleveland, Department of Psychiatry Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes VA Medical Center, Cleveland, OH 44106, USA
| | - Edwin Vázquez-Rosa
- Harrington Discovery Institute, University Hospitals of Cleveland, Department of Psychiatry Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes VA Medical Center, Cleveland, OH 44106, USA
| | - Min-Kyoo Shin
- Harrington Discovery Institute, University Hospitals of Cleveland, Department of Psychiatry Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes VA Medical Center, Cleveland, OH 44106, USA
| | - Kalyani Chaubey
- Harrington Discovery Institute, University Hospitals of Cleveland, Department of Psychiatry Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes VA Medical Center, Cleveland, OH 44106, USA
| | - Yeojung Koh
- Harrington Discovery Institute, University Hospitals of Cleveland, Department of Psychiatry Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes VA Medical Center, Cleveland, OH 44106, USA
| | - Lucy P. Evans
- The University of Iowa Department of Pediatrics, University of Iowa, Iowa City, IA, USA
- The University of Iowa Department of Neurology, University of Iowa, Iowa City, IA, USA
- The University of Iowa Department of Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Alexander G. Bassuk
- The University of Iowa Department of Pediatrics, University of Iowa, Iowa City, IA, USA
- The University of Iowa Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Michael G. Anderson
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA
- The University of Iowa Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- The University of Iowa Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Laura Dutca
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA
| | - Indira T. Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, USA
| | | |
Collapse
|
169
|
Smith DH, Johnson VE, Trojanowski JQ, Stewart W. Chronic traumatic encephalopathy - confusion and controversies. Nat Rev Neurol 2020; 15:179-183. [PMID: 30664683 DOI: 10.1038/s41582-018-0114-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The term chronic traumatic encephalopathy (CTE) has recently entered public consciousness via media reports and even a Hollywood movie. However, in contrast to general impressions, the incidence of CTE is unknown, the clinical diagnostic criteria have not been agreed upon and the current neuropathological characterization of CTE is acknowledged as preliminary. Additionally, few studies have compared the pathologies of CTE with those of other neurodegenerative disorders or of age-matched controls. Consequently, disagreement continues about the neuropathological aspects that make CTE unique. Furthermore, CTE is widely considered to be a consequence of exposure to repeated head blows, but evidence suggests that a single moderate or severe traumatic brain injury can also induce progressive neuropathological changes. These unresolved aspects of CTE underlie disparate claims about its clinical and pathological features, leading to confusion among the public and health-care professionals alike.
Collapse
Affiliation(s)
- Douglas H Smith
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Victoria E Johnson
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William Stewart
- Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow, UK.,Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
170
|
Chen K, Gu H, Zhu L, Feng DF. A New Model of Repetitive Traumatic Brain Injury in Mice. Front Neurosci 2020; 13:1417. [PMID: 32038131 PMCID: PMC6985558 DOI: 10.3389/fnins.2019.01417] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022] Open
Abstract
Repetitive traumatic brain injury (rTBI) is a major health care concern that causes substantial neurological impairment. To better understand rTBI, we introduced a new model of rTBI in mice induced by sudden rotation in the coronal plane combined with lateral translation delivered twice at an interval of 24 h. By routine histology, histological examination of Prussian blue-stained sections revealed the presence of microbleed in the corpus callosum and brain stem. Amyloid precursor protein (β-APP) and neurofilament heavy-chain (NF-200) immunohistochemistry demonstrated axonal injury following rTBI. Swelling, waving, and enlargement axons were observed in the corpus callosum and brain stem 24 h after injury by Bielschowsky staining. Ultrastructural studies by electron microscopy provided further insights into the existence and progression of axonal injury. rTBI led to widespread astrogliosis and microgliosis in white matter, as well as significantly increased levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β. rTBI mice showed a significantly increased loss of righting reflex (LRR) duration within each time point compared with that of sham animals, which was under 15 min. rTBI mice exhibited depression-like behavior at 1 month. rTBI mice also demonstrated deficits in MWM testing. These results suggested that this model might be suitable for investigating rTBI pathophysiology and evaluating preclinical candidate therapeutics.
Collapse
Affiliation(s)
- Kui Chen
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Gu
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Zhu
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Fu Feng
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
171
|
Mehta T, Fayyaz M, Giler GE, Kaur H, Raikwar SP, Kempuraj D, Selvakumar GP, Ahmed ME, Thangavel R, Zaheer S, Iyer S, Govindarajan R, Zaheer A. Current Trends in Biomarkers for Traumatic Brain Injury. OPEN ACCESS JOURNAL OF NEUROLOGY & NEUROSURGERY 2020; 12:86-94. [PMID: 32775958 PMCID: PMC7410004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Neurotrauma, especially Traumatic Brain Injury (TBI) is a major health concern not only for the civilian population but also for the military personnel. Currently there are no precision and regenerative therapies available for the successful treatment of TBI patients. Hence, early detection and treatment options may prevent the severity and untoward harmful effects of TBI. However, currently there are no effective biomarkers available for the rapid and robust diagnosis as well as prognosis of TBI. Several biomarkers in blood, cerebrospinal fluid (CSF), saliva and urine have been explored to assess the onset, progression, severity and prognosis of TBI recently. Present knowledge on the blood biomarkers including cytokines and chemokines and in vivo imaging modalities are useful to some extent to detect and treat TBI patients. Here, we review S100B, Glial Fibrillary Acidic Protein (GFAP), Neuron Specific Enolase (NSE), Myelin Basic Protein (MBP), Ubiquitin C-terminal Hydrolase L1 (UCHL1), tau protein, and alpha spectrin II break down products regarding their usefulness as a set of reliable biomarkers for the robust diagnosis of TBI. We suggest that these biomarkers may prove very useful for the diagnosis and prognosis of TBI.
Collapse
Affiliation(s)
- Tejas Mehta
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Muniba Fayyaz
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Gema E Giler
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Harleen Kaur
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Sudhanshu P Raikwar
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Department of Veterans Affairs, Columbia, MO, USA
| | - Duraisamy Kempuraj
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Department of Veterans Affairs, Columbia, MO, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Department of Veterans Affairs, Columbia, MO, USA
| | - Mohammad Ejaz Ahmed
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Department of Veterans Affairs, Columbia, MO, USA
| | - Ramasamy Thangavel
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Department of Veterans Affairs, Columbia, MO, USA
| | - Smita Zaheer
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Shankar Iyer
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Department of Veterans Affairs, Columbia, MO, USA
| | - Raghav Govindarajan
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Asgar Zaheer
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Department of Veterans Affairs, Columbia, MO, USA
| |
Collapse
|
172
|
Venkatasubramanian PN, Pina-Crespo JC, Mathews K, Rigby PH, Smith M, Duckworth JL, Wyrwicz AM, Spiess J. Initial Biphasic Fractional Anisotropy Response to Blast-Induced Mild Traumatic Brain Injury in a Mouse Model. Mil Med 2020; 185:243-247. [PMID: 32074348 PMCID: PMC7029837 DOI: 10.1093/milmed/usz307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 11/23/2022] Open
Abstract
Introduction Blast-induced mild traumatic brain injury was generated in a mouse model using a shock tube to investigate recovery and axonal injury from single blast. Methods A supersonic helium wave hit the head of anesthetized male young adult mice with a reflected pressure of 69 psi for 0.2 ms on Day 1. Subsequently, the mice were cardioperfused on Days 2, 5, or 12. The isolated brains were subjected to diffusion tensor imaging. Reduced fractional anisotropy (FA) indicated axonal injury. Results After single blast, FA showed a biphasic response in the corpus callosum with decrease on Days 2 and 12 and increase on Day 5. Conclusions Blast-induced mild traumatic brain injury in a mouse model follows a biphasic FA response within 12 days after a single blast similar to that reported for human subjects.
Collapse
Affiliation(s)
| | - Juan C Pina-Crespo
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla, CA 92037
| | - Kiran Mathews
- L3 Applied Technologies, 10180 Barnes Canyon Rd, San Diego, CA 92121
| | - Paul H Rigby
- L3 Applied Technologies, 10180 Barnes Canyon Rd, San Diego, CA 92121
| | - Matthew Smith
- Northshore University Health System, 1001 University Place, Evanston, IL 60201
| | - Josh L Duckworth
- Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814
| | - Alice M Wyrwicz
- Northshore University Health System, 1001 University Place, Evanston, IL 60201
| | - Joachim Spiess
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla, CA 92037.,Cortrop Inc., 271 Cerro Street, Encinitas, CA 92024
| |
Collapse
|
173
|
Bieniek KF, Blessing MM, Heckman MG, Diehl NN, Serie AM, Paolini MA, Boeve BF, Savica R, Reichard RR, Dickson DW. Association between contact sports participation and chronic traumatic encephalopathy: a retrospective cohort study. Brain Pathol 2020; 30:63-74. [PMID: 31199537 PMCID: PMC6916416 DOI: 10.1111/bpa.12757] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/08/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic traumatic encephalopathy is a debilitating neurodegenerative disorder associated with repetitive traumatic brain injuries often sustained through prior contact sport participation. The frequency of this disorder in a diverse population, including amateur athletes, is unknown. Primary historical obituary and yearbook records were queried for 2566 autopsy cases in the Mayo Clinic Tissue Registry resulting in identification of 300 former athletes and 450 non-athletes. In these cases, neocortical tissue was screened for tau pathology with immunohistochemistry, including pathology consistent with chronic traumatic encephalopathy, blinded to exposure or demographic information. Using research infrastructure of the Rochester Epidemiology Project, a comprehensive and established medical records-linkage system of care providers in southern Minnesota and western Wisconsin, medical diagnostic billing codes pertaining to head trauma, dementia, movement disorders, substance abuse disorders and psychiatric disorders were recorded for cases and controls in a blinded manner. A total of 42 individuals had pathology consistent with, or features of, chronic traumatic encephalopathy. It was more frequent in athletes compared to non-athletes (27 cases versus 15 cases) and was largely observed in men (except for one woman). For contact sports, American football had the highest frequency of chronic traumatic encephalopathy pathology (15% of cases) and an odds ratio of 2.62 (P-value = 0.005). Cases with chronic traumatic encephalopathy pathology had higher frequencies of antemortem clinical features of dementia, psychosis, movement disorders and alcohol abuse compared to cases without chronic traumatic encephalopathy pathology. Understanding the frequency of chronic traumatic encephalopathy pathology in a large autopsy cohort with diverse exposure backgrounds provides a baseline for future prospective studies assessing the epidemiology and public health impact of chronic traumatic encephalopathy and sports-related repetitive head trauma.
Collapse
Affiliation(s)
- Kevin F. Bieniek
- Department of NeuroscienceMayo ClinicJacksonvilleFL
- Department of Pathology and Laboratory Medicine, Long School of MedicineUT Health San AntonioSan AntonioTX
| | | | - Michael G. Heckman
- Division of Biomedical Statistics and InformaticsMayo ClinicJacksonvilleFL
| | - Nancy N. Diehl
- Division of Biomedical Statistics and InformaticsMayo ClinicJacksonvilleFL
| | | | | | | | - Rodolfo Savica
- Department of NeurologyMayo ClinicRochesterMN
- Division of Epidemiology, Department of Health Sciences ResearchMayo ClinicRochesterMN
| | - R. Ross Reichard
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMN
| | | |
Collapse
|
174
|
Huynh LM, Burns MP, Taub DD, Blackman MR, Zhou J. Chronic Neurobehavioral Impairments and Decreased Hippocampal Expression of Genes Important for Brain Glucose Utilization in a Mouse Model of Mild TBI. Front Endocrinol (Lausanne) 2020; 11:556380. [PMID: 33071972 PMCID: PMC7531511 DOI: 10.3389/fendo.2020.556380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/17/2020] [Indexed: 11/17/2022] Open
Abstract
Glucose is an essential cellular fuel for maintaining normal brain functions. Traumatic brain injury (TBI) decreases brain glucose utilization in both human and experimental animals during the acute or subacute phase of TBI. It remains unclear as to how the damages affect brain glucose utilization and its association with persistent neurobehavioral impairments in the chronic phase of mild TBI (mTBI). Accordingly, we compared expression of selected genes important to brain glucose utilization in different brain regions of mice during the chronic phase in mTBI vs. sham operated mice. These genes included hexokinase-1 (HK1), phosphofructokinase (PFK), pyruvate kinase (PK), pyruvate dehydrogenase (PDH), capillary glucose transporter (Glut-1), neuron glucose transporter (Glut-3), astrocyte lactate transpor1 (MCT-1), neuron lactate transporter (MCT-2), lactate receptor (GPR81), and Hexokinase isoform-2 (HK2). Young adult male C57BL/6J mice were brain injured with repetitive closed-head concussions. Morris water maze (MWM), elevated plus maze (EPM), and neurological severity score test (NSS) were performed for evaluation of mice neurobehavioral impairments at 2, 4, and 6 months post mTBI. Two days after completion of the last behavioral test, the frontal cortex, hippocampus, brainstem, hypothalamus, and cerebellum were collected for gene expression measurements. The expression of the mRNAs encoding PK, and PDH, two critical enzymes in glucose metabolism, was decreased at all-time points only in the hippocampus, but was unchanged in the brainstem, hypothalamus, and cortex in mTBI mice. mTBI mice also exhibited the following behavioral alterations: (1) decreased spatial learning and memory 2, 4, and 6 months after the injury, (2) increased proportion of time spent on open vs. closed arms determined by EPM, and (3) accelerated reduction in motor activity observed at 4 months, two months earlier than observed in the sham group, during the EPM testing. There were no significant differences in NSS between injury and sham groups at any of the three time points. Thus, mTBI in male mice led to persistent decreased hippocampal expression of mRNAs that encode critical glucose utilization related enzymes in association with long-term impairments in selected neurobehavioral outcomes.
Collapse
Affiliation(s)
- Linda M. Huynh
- Research Service, Washington DC VA Medical Center, Washington, DC, United States
| | - Mark P. Burns
- Department of Neuroscience, Georgetown University School of Medicine, Washington, DC, United States
| | - Daniel D. Taub
- Research Service, Washington DC VA Medical Center, Washington, DC, United States
- Department of Biochemistry and Molecular and Cell Biology, Georgetown University School of Medicine, Washington, DC, United States
| | - Marc R. Blackman
- Research Service, Washington DC VA Medical Center, Washington, DC, United States
- Department of Medicine, George Washington University School of Medicine, Washington, DC, United States
- Department of Medicine, Georgetown University School of Medicine, Washington, DC, United States
| | - June Zhou
- Research Service, Washington DC VA Medical Center, Washington, DC, United States
- *Correspondence: June Zhou
| |
Collapse
|
175
|
Mez J, Daneshvar DH, Abdolmohammadi B, Chua AS, Alosco ML, Kiernan PT, Evers L, Marshall L, Martin BM, Palmisano JN, Nowinski CJ, Mahar I, Cherry JD, Alvarez VE, Dwyer B, Huber BR, Stein TD, Goldstein LE, Katz DI, Cantu RC, Au R, Kowall NW, Stern RA, McClean MD, Weuve J, Tripodis Y, McKee AC. Duration of American Football Play and Chronic Traumatic Encephalopathy. Ann Neurol 2020; 87:116-131. [PMID: 31589352 PMCID: PMC6973077 DOI: 10.1002/ana.25611] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/27/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to contact and collision sports, including American football. We hypothesized a dose-response relationship between duration of football played and CTE risk and severity. METHODS In a convenience sample of 266 deceased American football players from the Veterans Affairs-Boston University-Concussion Legacy Foundation and Framingham Heart Study Brain Banks, we estimated the association of years of football played with CTE pathological status and severity. We evaluated the ability of years played to classify CTE status using receiver operating characteristic curve analysis. Simulation analyses quantified conditions that might lead to selection bias. RESULTS In total, 223 of 266 participants met neuropathological diagnostic criteria for CTE. More years of football played were associated with having CTE (odds ratio [OR] = 1.30 per year played, 95% confidence interval [CI] = 1.19-1.41; p = 3.8 × 10-9 ) and with CTE severity (severe vs mild; OR = 1.14 per year played, 95% CI = 1.07-1.22; p = 3.1 × 10-4 ). Participants with CTE were 1/10th as likely to have played <4.5 years (negative likelihood ratio [LR] = 0.102, 95% CI = 0.100-0.105) and were 10 times as likely to have played >14.5 years (positive LR = 10.2, 95% CI = 9.8-10.7) compared with participants without CTE. Sensitivity and specificity were maximized at 11 years played. Simulation demonstrated that years played remained adversely associated with CTE status when years played and CTE status were both related to brain bank selection across widely ranging scenarios. INTERPRETATION The odds of CTE double every 2.6 years of football played. After accounting for brain bank selection, the magnitude of the relationship between years played and CTE status remained consistent. ANN NEUROL 2020;87:116-131.
Collapse
|
176
|
Flotte TR. Gene Therapy Untangles the Problem of Chronic Traumatic Encephalopathy. Hum Gene Ther 2020; 31:12-13. [DOI: 10.1089/hum.2019.29104.trf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
177
|
Yin Z, Han Z, Hu T, Zhang S, Ge X, Huang S, Wang L, Yu J, Li W, Wang Y, Li D, Zhao J, Wang Y, Zuo Y, Li Y, Kong X, Chen F, Lei P. Neuron-derived exosomes with high miR-21-5p expression promoted polarization of M1 microglia in culture. Brain Behav Immun 2020; 83:270-282. [PMID: 31707083 DOI: 10.1016/j.bbi.2019.11.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Neuroinflammation is a characteristic pathological change of acute neurological deficit and chronic traumatic encephalopathy (CTE) after traumatic brain injury (TBI). Microglia are the key cell involved in neuroinflammation and neuronal injury. The type of microglia polarization determines the direction of neuroinflammation. MiR-21-5p elevated in neurons and microglia after TBI in our previous research. In this study, we explore the influence of miR-21-5p for neuroinflammation by regulating microglia polarization. METHODS In this study, PC12 and BV2 used to instead of neuron and microglia respectively. The co-cultured transwell system used to simulate interaction of PC12 and BV2 cells in vivo environment. RESULTS We found that PC12-derived exosomes with containing miR-21-5p were phagocytosed by microglia and induced microglia polarization, meanwhile, the expression of miR-21-5p was increased in M1 microglia cells. Polarization of M1 microglia aggravated the release of neuroinflammation factors, inhibited the neurite outgrowth, increased accumulation of P-tau and promoted the apoptosis of PC12 cells, which formed a model of cyclic cumulative damage. Simultaneously, we also got similar results in vivo experiments. CONCLUSIONS PC12-derived exosomes with containing miR-21-5p is the essential of this cyclic cumulative damage model. Therefore, regulating the expression of miR-21-5p or the secretion of exosomes may be an important novel strategy for the treatment of neuroinflammation after TBI.
Collapse
Affiliation(s)
- Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Institute of Geriatrics, Tianjin, China
| | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Institute of Geriatrics, Tianjin, China
| | - Tianpeng Hu
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Institute of Geriatrics, Tianjin, China
| | - Shishuang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Institute of Geriatrics, Tianjin, China
| | - Xintong Ge
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shan Huang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Institute of Geriatrics, Tianjin, China
| | - Lu Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Institute of Geriatrics, Tianjin, China
| | - Jinwen Yu
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Institute of Geriatrics, Tianjin, China
| | - Wenzhu Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Institute of Geriatrics, Tianjin, China
| | - Yan Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Institute of Geriatrics, Tianjin, China
| | - Dai Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Institute of Geriatrics, Tianjin, China
| | - Jing Zhao
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Institute of Geriatrics, Tianjin, China
| | - Yifeng Wang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Zuo
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Institute of Geriatrics, Tianjin, China
| | - Ying Li
- Tianjin Neurological Institute, Tianjin, China
| | - Xiaodong Kong
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Institute of Geriatrics, Tianjin, China
| | | | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Institute of Geriatrics, Tianjin, China.
| |
Collapse
|
178
|
Abstract
Neuronal activity can be modulated by mechanical stimuli. To study this phenomenon quantitatively, we mechanically stimulated rat cortical neurons by shear stress and local indentation. Neurons show 2 distinct responses, classified as transient and sustained. Transient responses display fast kinetics, similar to spontaneous neuronal activity, whereas sustained responses last several minutes before returning to baseline. Local soma stimulations with micrometer-sized beads evoke transient responses at low forces of ∼220 nN and pressures of ∼5.6 kPa and sustained responses at higher forces of ∼360 nN and pressures of ∼9.2 kPa. Among the neuronal compartments, axons are highly susceptible to mechanical stimulation and predominantly show sustained responses, whereas the less susceptible dendrites predominantly respond transiently. Chemical perturbation experiments suggest that mechanically evoked responses require the influx of extracellular calcium through ion channels. We propose that subtraumatic forces/pressures applied to neurons evoke neuronal responses via nonspecific gating of ion channels.
Collapse
|
179
|
Kelley CM, Perez SE, Mufson EJ. Tau pathology in the medial temporal lobe of athletes with chronic traumatic encephalopathy: a chronic effects of neurotrauma consortium study. Acta Neuropathol Commun 2019; 7:207. [PMID: 31831066 PMCID: PMC6909582 DOI: 10.1186/s40478-019-0861-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative condition associated with repetitive traumatic brain injury (rTBI) seen in contact-sport athletes and military personnel. The medial temporal lobe (MTL; i.e., hippocampus, subiculum, and entorhinal and perirhinal cortices) memory circuit displays tau lesions during the pathological progression of CTE. We examined MTL tissue obtained from 40 male Caucasian and African American athletes who received a postmortem CTE neuropathological diagnosis defined as stage II, III, or IV. Sections were immunolabeled using an early (AT8) or a late (TauC3) marker for pathological tau and for amyloid beta (Aβ) species (6E10, Aβ1-42 and thioflavin S). Stereological analysis revealed that stage III had significantly less AT8-positive neurons and dystrophic neurites than stage IV in all MTL regions except hippocampal subfield CA3, whereas significantly more AT8-positive neurons, dystrophic neurites, and neurite clusters were found in the perirhinal cortex, entorhinal cortex, hippocampal CA1, and subiculum of CTE stage III compared with stage II. TauC3-positive pathology was significantly higher in the perirhinal and subicular cortex of stage IV compared to stage III and the perirhinal cortex of stage III compared to stage II. AT8-positive neurite clusters were observed in stages III and IV, but virtually absent in stage II. When observed, Aβ pathology appeared as amyloid precursor protein (APP)/Aβ (6E10)-positive diffuse plaques independent of region. Thioflavine S labeling, did not reveal evidence for fibril or neuritic pathology associated with plaques, confirming a diffuse, non-cored plaque phenotype in CTE. Total number of AT8-positive profiles correlated with age at death, age at symptom onset, and time from retirement to death. There was no association between AT8-positive tau pathology and age sport began, years played, or retirement age, and no difference between CTE stage and the highest level of sport played. In summary, our findings demonstrate different tau profiles in the MTL across CTE stages, proffering CA3 tau pathology and MTL dystrophic neurite clusters as possible markers for the transition between early (II) and late (III/IV) stages, while highlighting CTE as a progressive noncommunicative tauopathy.
Collapse
|
180
|
Harper MM, Hedberg-Buenz A, Herlein J, Abrahamson EE, Anderson MG, Kuehn MH, Kardon RH, Poolman P, Ikonomovic MD. Blast-Mediated Traumatic Brain Injury Exacerbates Retinal Damage and Amyloidosis in the APPswePSENd19e Mouse Model of Alzheimer's Disease. Invest Ophthalmol Vis Sci 2019; 60:2716-2725. [PMID: 31247112 PMCID: PMC6735799 DOI: 10.1167/iovs.18-26353] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Purpose Traumatic brain injury (TBI) is a risk factor for developing chronic neurodegenerative conditions including Alzheimer's disease (AD). The purpose of this study was to examine chronic effects of blast TBI on retinal ganglion cells (RGC), optic nerve, and brain amyloid load in a mouse model of AD amyloidosis. Methods Transgenic (TG) double-mutant APPswePSENd19e (APP/PS1) mice and nontransgenic (Non-TG) littermates were exposed to a single blast TBI (20 psi) at age 2 to 3 months. RGC cell structure and function was evaluated 2 months later (average age at endpoint = 4.5 months) using pattern electroretinogram (PERG), optical coherence tomography (OCT), and the chromatic pupil light reflex (cPLR), followed by histologic analysis of retina, optic nerve, and brain amyloid pathology. Results APP/PS1 mice exposed to blast TBI (TG-Blast) had significantly lower PERG and cPLR responses 2 months after injury compared to preblast values and compared to sham groups of APP/PS1 (TG-Sham) and nontransgenic (Non-TG-Sham) mice as well as nontransgenic blast-exposed mice (Non-TG-Blast). The TG-Blast group also had significantly thinner RGC complex and more optic nerve damage compared to all groups. No amyloid-β (Aβ) deposits were detected in retinas of APP/PS1 mice; however, increased amyloid precursor protein (APP)/Aβ-immunoreactivity was seen in TG-Blast compared to TG-Sham mice, particularly near blood vessels. TG-Blast and TG-Sham groups exhibited high variability in pathology severity, with a strong, but not statistically significant, trend for greater cerebral cortical Aβ plaque load in the TG-Blast compared to TG-Sham group. Conclusions When combined with a genetic susceptibility for developing amyloidosis of AD, blast TBI exposure leads to earlier RGC and optic nerve damage associated with modest but detectable increase in cerebral cortical Aβ pathology. These findings suggest that genetic risk factors for AD may increase the sensitivity of the retina to blast-mediated damage.
Collapse
Affiliation(s)
- Matthew M Harper
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States.,The Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Adam Hedberg-Buenz
- The Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States.,Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa, United States
| | - Judith Herlein
- The Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Eric E Abrahamson
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.,Geriatric Research Education and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, Pennsylvania, United States
| | - Michael G Anderson
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States.,The Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States.,Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa, United States
| | - Markus H Kuehn
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States.,The Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Randy H Kardon
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States.,The Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Pieter Poolman
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States.,The Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.,Geriatric Research Education and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, Pennsylvania, United States.,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
181
|
Hemorrhage Associated Mechanisms of Neuroinflammation in Experimental Traumatic Brain Injury. J Neuroimmune Pharmacol 2019; 15:181-195. [DOI: 10.1007/s11481-019-09882-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
|
182
|
Graham NS, Sharp DJ. Understanding neurodegeneration after traumatic brain injury: from mechanisms to clinical trials in dementia. J Neurol Neurosurg Psychiatry 2019; 90:1221-1233. [PMID: 31542723 PMCID: PMC6860906 DOI: 10.1136/jnnp-2017-317557] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) leads to increased rates of dementia, including Alzheimer's disease. The mechanisms by which trauma can trigger neurodegeneration are increasingly understood. For example, diffuse axonal injury is implicated in disrupting microtubule function, providing the potential context for pathologies of tau and amyloid to develop. The neuropathology of post-traumatic dementias is increasingly well characterised, with recent work focusing on chronic traumatic encephalopathy (CTE). However, clinical diagnosis of post-traumatic dementia is problematic. It is often difficult to disentangle the direct effects of TBI from those produced by progressive neurodegeneration or other post-traumatic sequelae such as psychiatric impairment. CTE can only be confidently identified at postmortem and patients are often confused and anxious about the most likely cause of their post-traumatic problems. A new approach to the assessment of the long-term effects of TBI is needed. Accurate methods are available for the investigation of other neurodegenerative conditions. These should be systematically employed in TBI. MRI and positron emission tomography neuroimaging provide biomarkers of neurodegeneration which may be of particular use in the postinjury setting. Brain atrophy is a key measure of disease progression and can be used to accurately quantify neuronal loss. Fluid biomarkers such as neurofilament light can complement neuroimaging, representing sensitive potential methods to track neurodegenerative processes that develop after TBI. These biomarkers could characterise endophenotypes associated with distinct types of post-traumatic neurodegeneration. In addition, they might profitably be used in clinical trials of neuroprotective and disease-modifying treatments, improving trial design by providing precise and sensitive measures of neuronal loss.
Collapse
Affiliation(s)
- Neil Sn Graham
- Brain Sciences, Imperial College London, London, UK.,UK DRI Care Research & Technology Centre, Imperial College London, London, United Kingdom
| | - David J Sharp
- Brain Sciences, Imperial College London, London, UK .,UK DRI Care Research & Technology Centre, Imperial College London, London, United Kingdom.,The Royal British Legion Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
183
|
Ye M, Solarana K, Rafi H, Patel S, Nabili M, Liu Y, Huang S, Fisher JAN, Krauthamer V, Myers M, Welle C. Longitudinal Functional Assessment of Brain Injury Induced by High-Intensity Ultrasound Pulse Sequences. Sci Rep 2019; 9:15518. [PMID: 31664091 PMCID: PMC6820547 DOI: 10.1038/s41598-019-51876-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/09/2019] [Indexed: 01/02/2023] Open
Abstract
Exposure of the brain to high-intensity stress waves creates the potential for long-term functional deficits not related to thermal or cavitational damage. Possible sources of such exposure include overpressure from blast explosions or high-intensity focused ultrasound (HIFU). While current ultrasound clinical protocols do not normally produce long-term neurological deficits, the rapid expansion of potential therapeutic applications and ultrasound pulse-train protocols highlights the importance of establishing a safety envelope beyond which therapeutic ultrasound can cause neurological deficits not detectable by standard histological assessment for thermal and cavitational damage. In this study, we assessed the neuroinflammatory response, behavioral effects, and brain micro-electrocorticographic (µECoG) signals in mice following exposure to a train of transcranial pulses above normal clinical parameters. We found that the HIFU exposure induced a mild regional neuroinflammation not localized to the primary focal site, and impaired locomotor and exploratory behavior for up to 1 month post-exposure. In addition, low frequency (δ) and high frequency (β, γ) oscillations recorded by ECoG were altered at acute and chronic time points following HIFU application. ECoG signal changes on the hemisphere ipsilateral to HIFU exposure are of greater magnitude than the contralateral hemisphere, and persist for up to three months. These results are useful for describing the upper limit of transcranial ultrasound protocols, and the neurological sequelae of injury induced by high-intensity stress waves.
Collapse
Affiliation(s)
- Meijun Ye
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA.
| | - Krystyna Solarana
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Harmain Rafi
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Shyama Patel
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
- Division of Neurological and Physical Medicine Devices, Office of Device Evaluation, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Marjan Nabili
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
- Division of Radiological Health, Office of In Vitro Diagnostics and Radiological Health, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Yunbo Liu
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | | | - Jonathan A N Fisher
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Victor Krauthamer
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Matthew Myers
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Cristin Welle
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA.
- Departments of Neurosurgery and Physiology & Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
184
|
Bugay V, Bozdemir E, Vigil FA, Chun SH, Holstein DM, Elliott WR, Sprague CJ, Cavazos JE, Zamora DO, Rule G, Shapiro MS, Lechleiter JD, Brenner R. A Mouse Model of Repetitive Blast Traumatic Brain Injury Reveals Post-Trauma Seizures and Increased Neuronal Excitability. J Neurotrauma 2019; 37:248-261. [PMID: 31025597 DOI: 10.1089/neu.2018.6333] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Repetitive blast traumatic brain injury (TBI) affects numerous soldiers on the battlefield. Mild TBI has been shown to have long-lasting effects with repeated injury. We have investigated effects on neuronal excitability after repetitive, mild TBI in a mouse model of blast-induced brain injury. We exposed mice to mild blast trauma of an average peak overpressure of 14.6 psi, repeated across three consecutive days. While a single exposure did not reveal trauma as indicated by the glial fibrillary acidic protein indicator, three repetitive blasts did show significant increases. As well, mice had an increased indicator of inflammation (Iba-1) and increased tau, tau phosphorylation, and altered cytokine levels in the spleen. Video-electroencephalographic monitoring 48 h after the final blast exposure demonstrated seizures in 50% (12/24) of the mice, most of which were non-convulsive seizures. Long-term monitoring revealed that spontaneous seizures developed in at least 46% (6/13) of the mice. Patch clamp recording of dentate gyrus hippocampus neurons 48 h post-blast TBI demonstrated a shortened latency to the first spike and hyperpolarization of action potential threshold. We also found that evoked excitatory postsynaptic current amplitudes were significantly increased. These findings indicate that mild, repetitive blast exposures cause increases in neuronal excitability and seizures and eventual epilepsy development in some animals. The non-convulsive nature of the seizures suggests that subclinical seizures may occur in individuals experiencing even mild blast events, if repeated.
Collapse
Affiliation(s)
- Vladislav Bugay
- Cell and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Eda Bozdemir
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Fabio A Vigil
- Cell and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Sang H Chun
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Deborah M Holstein
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - William R Elliott
- Sensory Trauma, United States Army Institute of Surgical Research, Fort Sam Houston San Antonio, Texas
| | - Cassie J Sprague
- Sensory Trauma, United States Army Institute of Surgical Research, Fort Sam Houston San Antonio, Texas
| | - Jose E Cavazos
- Cell and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas.,Department of Neurology, University of Texas Health San Antonio, San Antonio, Texas
| | - David O Zamora
- Sensory Trauma, United States Army Institute of Surgical Research, Fort Sam Houston San Antonio, Texas
| | | | - Mark S Shapiro
- Cell and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - James D Lechleiter
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Robert Brenner
- Cell and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
185
|
Chen M, Song H, Cui J, Johnson CE, Hubler GK, DePalma RG, Gu Z, Xia W. Proteomic Profiling of Mouse Brains Exposed to Blast-Induced Mild Traumatic Brain Injury Reveals Changes in Axonal Proteins and Phosphorylated Tau. J Alzheimers Dis 2019; 66:751-773. [PMID: 30347620 DOI: 10.3233/jad-180726] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is characterized by two pathological hallmarks: Tau-containing neurofibrillary tangles and amyloid-β protein (Aβ)-containing neuritic plaques. The goal of this study is to understand mild traumatic brain injury (mTBI)-related brain proteomic changes and tau-related biochemical adaptations that may contribute to AD-like neurodegeneration. We found that both phosphorylated tau (p-tau) and the ratio of p-tau/tau were significantly increased in brains of mice collected at 3 and 24 h after exposure to 82-kPa low-intensity open-field blast. Neurological deficits were observed in animals at 24 h and 7 days after the blast using Simple Neuroassessment of Asymmetric imPairment (SNAP) test, and axon/dendrite degeneration was revealed at 7 days by silver staining. Liquid chromatography-mass spectrometry (LC-MS/MS) was used to analyze brain tissue labeled with isobaric mass tags for relative protein quantification. The results from the proteomics and bioinformatic analysis illustrated the alterations of axonal and synaptic proteins in related pathways, including but not being limited to substantia nigra development, cortical cytoskeleton organization, and synaptic vesicle exocytosis, suggesting a potential axonal damage caused by blast-induced mTBI. Among altered proteins found in brains suffering blast, microtubule-associated protein 1B, stathmin, neurofilaments, actin binding proteins, myelin basic protein, calcium/calmodulin-dependent protein kinase, and synaptotagmin I were representative ones involved in altered pathways elicited by mTBI. Therefore, TBI induces elevated phospho-tau, a pathological feature found in brains of AD, and altered a number of neurophysiological processes, supporting the notion that blast-induced mTBI as a risk factor contributes to AD pathogenesis. LC/MS-based profiling has presented candidate target/pathways that could be explored for future therapeutic development.
Collapse
Affiliation(s)
- Mei Chen
- Geriatric Research Education and Clinical Center, Office of Research and Development, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, USA.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hailong Song
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, USA.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jiankun Cui
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, USA.,Truman VA Hospital Research Service, Columbia, MO, USA
| | - Catherine E Johnson
- Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO, USA
| | - Graham K Hubler
- Sidney Kimmel Institute for Nuclear Renaissance, Department of Physics and Astronomy, University of Missouri, Columbia, MO USA
| | - Ralph G DePalma
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, USA Department of Surgery, Uniformed University of the Health Science, Bethesda, MD, USA
| | - Zezong Gu
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, USA.,Truman VA Hospital Research Service, Columbia, MO, USA
| | - Weiming Xia
- Geriatric Research Education and Clinical Center, Office of Research and Development, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, USA.,Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
186
|
Lecca D, Bader M, Tweedie D, Hoffman AF, Jung YJ, Hsueh SC, Hoffer BJ, Becker RE, Pick CG, Lupica CR, Greig NH. (-)-Phenserine and the prevention of pre-programmed cell death and neuroinflammation in mild traumatic brain injury and Alzheimer's disease challenged mice. Neurobiol Dis 2019; 130:104528. [PMID: 31295555 PMCID: PMC6716152 DOI: 10.1016/j.nbd.2019.104528] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/05/2019] [Accepted: 07/06/2019] [Indexed: 01/12/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is a risk factor for neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD). TBI-derived neuropathologies are promoted by inflammatory processes: chronic microgliosis and release of pro-inflammatory cytokines that further promote neuronal dysfunction and loss. Herein, we evaluated the effect on pre-programmed cell death/neuroinflammation/synaptic integrity and function of (-)-Phenserine tartrate (Phen), an agent originally developed for AD. This was studied at two clinically translatable doses (2.5 and 5.0 mg/kg, BID), in a weight drop (concussive) mTBI model in wild type (WT) and AD APP/PSEN1 transgenic mice. Phen mitigated mTBI-induced cognitive impairment, assessed by Novel Object Recognition and Y-maze behavioral paradigms, in WT mice. Phen fully abated mTBI-induced neurodegeneration, evaluated by counting Fluoro-Jade C-positive (FJC+) cells, in hippocampus and cortex of WT mice. In APP/PSEN1 mice, degenerating cell counts were consistently greater across all experimental groups vs. WT mice. mTBI elevated FJC+ cell counts vs. the APP/PSEN1 control (sham) group, and Phen similarly mitigated this. Anti-inflammatory effects on microglial activation (IBA1-immunoreactivity (IR)) and the pro-inflammatory cytokine TNF-α were evaluated. mTBI increased IBA1-IR and TNF-α/IBA1 colocalization vs. sham, both in WT and APP/PSEN1 mice. Phen decreased IBA1-IR throughout hippocampi and cortices of WT mice, and in cortices of AD mice. Phen, likewise, reduced levels of IBA1/TNF-α-IR colocalization volume across all areas in WT animals, with a similar trend in APP/PSEN1 mice. Actions on astrocyte activation by mTBI were followed by evaluating GFAP, and were similarly mitigated by Phen. Synaptic density was evaluated by quantifying PSD-95+ dendritic spines and Synaptophysin (Syn)-IR. Both were significantly reduced in mTBI vs. sham in both WT and APP/PSEN1 mice. Phen fully reversed the PSD-95+ spine loss in WT and Syn-IR decrease in both WT and APP/PSEN1 mice. To associate immunohistochemical changes in synaptic markers with function, hippocampal long term potentiation (LTP) was induced in WT mice. LTP was impaired by mTBI, and this impairment was mitigated by Phen. In synopsis, clinically translatable doses of Phen ameliorated mTBI-mediated pre-programmed cell death/neuroinflammation/synaptic dysfunction in WT mice, consistent with fully mitigating mTBI-induced cognitive impairments. Phen additionally demonstrated positive actions in the more pathologic brain microenvironment of AD mice, further supporting consideration of its repurposing as a treatment for mTBI.
Collapse
Affiliation(s)
- Daniela Lecca
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Miaad Bader
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - David Tweedie
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Alexander F Hoffman
- Electrophysiology Research Section, Cellular Neurobiology Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, 21224 Baltimore, MD, USA
| | - Yoo Jin Jung
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Shin-Chang Hsueh
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Robert E Becker
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA; Aristea Translational Medicine Corporation, Park City, UT 84098, USA
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel; Center for the Biology of Addictive Diseases, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Carl R Lupica
- Electrophysiology Research Section, Cellular Neurobiology Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, 21224 Baltimore, MD, USA
| | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
187
|
Harper MM, Woll AW, Evans LP, Delcau M, Akurathi A, Hedberg-Buenz A, Soukup DA, Boehme N, Hefti MM, Dutca LM, Anderson MG, Bassuk AG. Blast Preconditioning Protects Retinal Ganglion Cells and Reveals Targets for Prevention of Neurodegeneration Following Blast-Mediated Traumatic Brian Injury. Invest Ophthalmol Vis Sci 2019; 60:4159-4170. [PMID: 31598627 PMCID: PMC6785841 DOI: 10.1167/iovs.19-27565] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose The purpose of this study was to examine the effect of multiple blast exposures and blast preconditioning on the structure and function of retinal ganglion cells (RGCs), to identify molecular pathways that contribute to RGC loss, and to evaluate the role of kynurenine-3-monooxygenase (KMO) inhibition on RGC structure and function. Methods Mice were subjected to sham blast injury, one single blast injury, or three blast injuries separated by either 1 hour or 1 week, using a blast intensity of 20 PSI. To examine the effect of blast preconditioning, mice were subjected to sham blast injury, one single 20-PSI injury, or three blast injuries separated by 1 week (5 PSI, 5 PSI, 20 PSI and 5 PSI, 5 PSI, 5 PSI). RGC structure was analyzed by optical coherence tomography (OCT) and function was analyzed by the pattern electroretinogram (PERG). BRN3A-positive cells were quantified to determine RGC density. RNA-seq analysis was used to identify transcriptional changes between groups. Results Analysis of mice with multiple blast exposures of 20 PSI revealed no significant differences compared to one 20-pounds per square inch (PSI) exposure using OCT, PERG, or BRN3A cell counts. Analysis of mice exposed to two preconditioning 5-PSI blasts prior to one 20-PSI blast showed preservation of RGC structure and function. RNA-seq analysis of the retina identified multiple transcriptomic changes between conditions. Pharmacologic inhibition of KMO preserved RGC responses compared to vehicle-treated mice. Conclusions Preconditioning protects RGC from blast injury. Protective effects appear to involve changes in KMO activity, whose inhibition is also protective.
Collapse
Affiliation(s)
- Matthew M. Harper
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Addison W. Woll
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Lucy P. Evans
- Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, United States
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States
| | - Michael Delcau
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Abhigna Akurathi
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
| | - Adam Hedberg-Buenz
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States
| | - Dana A. Soukup
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States
| | - Nickolas Boehme
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Marco M. Hefti
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States
| | - Laura M. Dutca
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Michael G. Anderson
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States
| | - Alexander G. Bassuk
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States
- Department of Neurology, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
188
|
Current fluid biomarkers, animal models, and imaging tools for diagnosing chronic traumatic encephalopathy. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0039-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
189
|
Barnes DE, Byers AL, Gardner RC, Seal KH, Boscardin WJ, Yaffe K. Association of Mild Traumatic Brain Injury With and Without Loss of Consciousness With Dementia in US Military Veterans. JAMA Neurol 2019; 75:1055-1061. [PMID: 29801145 DOI: 10.1001/jamaneurol.2018.0815] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Importance Traumatic brain injury (TBI) is common in both veteran and civilian populations. Prior studies have linked moderate and severe TBI with increased dementia risk, but the association between dementia and mild TBI, particularly mild TBI without loss of consciousness (LOC), remains unclear. Objective To examine the association between TBI severity, LOC, and dementia diagnosis in veterans. Design, Setting, and Participants This cohort study of all patients diagnosed with a TBI in the Veterans Health Administration health care system from October 1, 2001, to September 30, 2014, and a propensity-matched comparison group. Patients with dementia at baseline were excluded. Researchers identified TBIs through the Comprehensive TBI Evaluation database, which is restricted to Iraq and Afghanistan veterans, and the National Patient Care Database, which includes veterans of all eras. The severity of each TBI was based on the most severe injury recorded and classified as mild without LOC, mild with LOC, mild with LOC status unknown, or moderate or severe using Department of Defense or Defense and Veterans Brain Injury Center criteria. International Classification of Diseases, Ninth Revision codes were used to identify dementia diagnoses during follow-up and medical and psychiatric comorbidities in the 2 years prior to the index date. Main Outcomes and Measures Dementia diagnosis in veterans who had experienced TBI with or without LOC and control participants without TBI exposure. Results The study included 178 779 patients diagnosed with a TBI in the Veterans Health Administration health care system and 178 779 patients in a propensity-matched comparison group. Veterans had a mean (SD) age of nearly 49.5 (18.2) years at baseline; 33 250 (9.3%) were women, and 259 136 (72.5%) were non-Hispanic white individuals. Differences between veterans with and without TBI were small. A total of 4698 veterans (2.6%) without TBI developed dementia compared with 10 835 (6.1%) of those with TBI. After adjustment for demographics and medical and psychiatric comobidities, adjusted hazard ratios for dementia were 2.36 (95% CI, 2.10-2.66) for mild TBI without LOC, 2.51 (95% CI, 2.29-2.76) for mild TBI with LOC, 3.19 (95% CI, 3.05-3.33) for mild TBI with LOC status unknown, and 3.77 (95% CI, 3.63-3.91) for moderate to severe TBI. Conclusions and Relevance In this cohort study of more than 350 000 veterans, even mild TBI without LOC was associated with more than a 2-fold increase in the risk of dementia diagnosis. Studies of strategies to determine mechanisms, prevention, and treatment of TBI-related dementia in veterans are urgently needed.
Collapse
Affiliation(s)
- Deborah E Barnes
- San Francisco Veterans Affairs Health Care System, San Francisco, California.,Department of Psychiatry, University of California, San Francisco.,Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Amy L Byers
- San Francisco Veterans Affairs Health Care System, San Francisco, California.,Department of Psychiatry, University of California, San Francisco.,Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Raquel C Gardner
- San Francisco Veterans Affairs Health Care System, San Francisco, California.,Department of Neurology, University of California, San Francisco
| | - Karen H Seal
- San Francisco Veterans Affairs Health Care System, San Francisco, California.,Department of Psychiatry, University of California, San Francisco.,Department of Medicine, University of California, San Francisco
| | - W John Boscardin
- San Francisco Veterans Affairs Health Care System, San Francisco, California.,Department of Medicine, University of California, San Francisco
| | - Kristine Yaffe
- San Francisco Veterans Affairs Health Care System, San Francisco, California.,Department of Psychiatry, University of California, San Francisco.,Department of Epidemiology and Biostatistics, University of California, San Francisco.,Department of Neurology, University of California, San Francisco
| |
Collapse
|
190
|
Lee EB, Kinch K, Johnson VE, Trojanowski JQ, Smith DH, Stewart W. Chronic traumatic encephalopathy is a common co-morbidity, but less frequent primary dementia in former soccer and rugby players. Acta Neuropathol 2019; 138:389-399. [PMID: 31152201 PMCID: PMC6689293 DOI: 10.1007/s00401-019-02030-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/25/2019] [Indexed: 02/07/2023]
Abstract
Chronic traumatic encephalopathy (CTE) is reported at high prevalence in selected autopsy case series of former contact sports athletes. Nevertheless, the contribution of CTE pathology to clinical presentation and its interaction with co-morbid neurodegenerative pathologies remain unclear. To address these issues, we performed comprehensive neuropathology assessments on the brains of former athletes with dementia and considered these findings together with detailed clinical histories to derive an integrated clinicopathological diagnosis for each case. Consecutive, autopsy-acquired brains from former soccer and rugby players with dementia were assessed for neurodegenerative pathologies using established and preliminary consensus protocols. Thereafter, next of kin interviews were conducted to obtain detailed accounts of the patient’s clinical presentation and course of disease to inform a final, integrated clinicopathological diagnosis. Neuropathologic change consistent with CTE (CTE-NC) was confirmed in five of seven former soccer and three of four former rugby players’ brains, invariably in combination with mixed, often multiple neurodegenerative pathologies. However, in just three cases was the integrated dementia diagnosis consistent with CTE, the remainder having alternate diagnoses, with the most frequent integrated diagnosis Alzheimer’s disease (AD) (four cases; one as mixed AD and vascular dementia). This consecutive autopsy series identifies neuropathologic change consistent with preliminary diagnostic criteria for CTE (CTE-NC) in a high proportion of former soccer and rugby players dying with dementia. However, in the majority, CTE-NC appears as a co-morbidity rather than the primary, dementia causing pathology. As such, we suggest that while CTE-NC might be common in former athletes with dementia, in many cases its clinical significance remains uncertain.
Collapse
Affiliation(s)
- Edward B Lee
- Translational Neuropathology Research Laboratory, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kevin Kinch
- Department of Neuropathology, Queen Elizabeth University Hospital, 1345 Govan Rd, Glasgow, G51 4TF, UK
| | - Victoria E Johnson
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Douglas H Smith
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - William Stewart
- Department of Neuropathology, Queen Elizabeth University Hospital, 1345 Govan Rd, Glasgow, G51 4TF, UK.
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
191
|
Standring OJ, Friedberg J, Tripodis Y, Chua AS, Cherry JD, Alvarez VE, Huber BR, Xia W, Mez J, Alosco ML, Nicks R, Mahar I, Pothast MJ, Gardner HM, Meng G, Palmisano JN, Martin BM, Dwyer B, Kowall NW, Cantu RC, Goldstein LE, Katz DI, Stern RA, McKee AC, Stein TD. Contact sport participation and chronic traumatic encephalopathy are associated with altered severity and distribution of cerebral amyloid angiopathy. Acta Neuropathol 2019; 138:401-413. [PMID: 31183671 DOI: 10.1007/s00401-019-02031-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 12/14/2022]
Abstract
Cerebral amyloid angiopathy (CAA) consists of beta-amyloid deposition in the walls of the cerebrovasculature and is commonly associated with Alzheimer's disease (AD). However, the association of CAA with repetitive head impacts (RHI) and with chronic traumatic encephalopathy (CTE) is unknown. We evaluated the relationship between RHI from contact sport participation, CTE, and CAA within a group of deceased contact sport athletes (n = 357), a community-based cohort (n = 209), and an AD cohort from Boston University AD Center (n = 241). Unsupervised hierarchal cluster analysis demonstrated a unique cluster (n = 11) with increased CAA in the leptomeningeal vessels compared to the intracortical vessels (p < 0.001) comprised of participants with significantly greater frequencies of CTE (7/11) and history of RHI. Overall, participants with CTE (n = 251) had more prevalent (p < 0.001) and severe (p = 0.010) CAA within the frontal leptomeningeal vessels compared to intracortical vessels. Compared to those with AD, participants with CTE had more severe CAA in frontal than parietal lobes (p < 0.001) and more severe CAA in leptomeningeal than intracortical vessels (p = 0.002). The overall frequency of CAA in participants with CTE was low, and there was no significant association between contact sport participation and the presence of CAA. However, in those with CAA, a history of contact sports was associated with increased CAA severity in the frontal leptomeningeal vessels (OR = 4.01, 95% CI 2.52-6.38, p < 0.001) adjusting for AD, APOE ε4 status, and age. Participants with CAA had increased levels of sulcal tau pathology and decreased levels of the synaptic marker PSD-95 (p's < 0.05), and CAA was a predictor of dementia (OR = 1.75, 95% CI 1.02-2.99, p = 0.043) adjusting for age, sex, and comorbid pathology. Overall, contact sport participation and CTE were associated with more severe frontal and leptomeningeal CAA, and CAA was independently associated with worse pathological and clinical outcomes.
Collapse
Affiliation(s)
- Oliver J Standring
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Jacob Friedberg
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Yorghos Tripodis
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 20118, USA
| | - Alicia S Chua
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 20118, USA
| | - Jonathan D Cherry
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
| | - Victor E Alvarez
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA
| | - Bertrand R Huber
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
| | - Weiming Xia
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA
| | - Jesse Mez
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
| | - Michael L Alosco
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
| | - Raymond Nicks
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA
| | - Ian Mahar
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
| | - Morgan J Pothast
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA
| | - Hannah M Gardner
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Gaoyuan Meng
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA
| | - Joseph N Palmisano
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, USA
| | - Brett M Martin
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, USA
| | - Brigid Dwyer
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
- Braintree Rehabilitation Hospital, Braintree, MA, 02118, USA
| | - Neil W Kowall
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
| | - Robert C Cantu
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, 20119, USA
- Concussion Legacy Foundation, Boston, MA, 02115, USA
- Department of Neurosurgery, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Neurosurgery, Emerson Hospital, Concord, MA, 01742, USA
| | - Lee E Goldstein
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Departments of Psychiatry, Ophthalmology, Boston University School of Medicine, Boston, USA
- Departments of Biomedical, Electrical and Computer Engineering, Boston University College of Engineering, Boston, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Douglas I Katz
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
- Braintree Rehabilitation Hospital, Braintree, MA, 02118, USA
| | - Robert A Stern
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, 20119, USA
- Department of Neurosurgery, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ann C McKee
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Thor D Stein
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA.
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA.
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA.
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
192
|
Mayer AR, Dodd AB, Vermillion MS, Stephenson DD, Chaudry IH, Bragin DE, Gigliotti AP, Dodd RJ, Wasserott BC, Shukla P, Kinsler R, Alonzo SM. A systematic review of large animal models of combined traumatic brain injury and hemorrhagic shock. Neurosci Biobehav Rev 2019; 104:160-177. [PMID: 31255665 PMCID: PMC7307133 DOI: 10.1016/j.neubiorev.2019.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 01/08/2023]
Abstract
Traumatic brain injury (TBI) and severe blood loss (SBL) frequently co-occur in human trauma, resulting in high levels of mortality and morbidity. Importantly, each of the individual post-injury cascades is characterized by complex and potentially opposing pathophysiological responses, complicating optimal resuscitation and therapeutic approaches. Large animal models of poly-neurotrauma closely mimic human physiology, but a systematic literature review of published models has been lacking. The current review suggests a relative paucity of large animal poly-neurotrauma studies (N = 52), with meta-statistics revealing trends for animal species (exclusively swine), characteristics (use of single biological sex, use of juveniles) and TBI models. Although most studies have targeted blood loss volumes of 35-45%, the associated mortality rates are much lower relative to Class III/IV human trauma. This discrepancy may result from potentially mitigating experimental factors (e.g., mechanical ventilation prior to or during injury, pausing/resuming blood loss based on physiological parameters, administration of small volume fluid resuscitation) that are rarely associated with human trauma, highlighting the need for additional work in this area.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States; Neurology Department, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States; Psychiatry Department, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States; Psychology Department, University of New Mexico, Albuquerque, NM 87131, United States.
| | - Andrew B Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Meghan S Vermillion
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - David D Stephenson
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Irshad H Chaudry
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294-0019, United States
| | - Denis E Bragin
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Andrew P Gigliotti
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Rebecca J Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Benjamin C Wasserott
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Priyank Shukla
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Rachel Kinsler
- Department of the Army Civilian, U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL 36362-0577, United States
| | - Sheila M Alonzo
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| |
Collapse
|
193
|
Edwards G, Zhao J, Dash PK, Soto C, Moreno-Gonzalez I. Traumatic Brain Injury Induces Tau Aggregation and Spreading. J Neurotrauma 2019; 37:80-92. [PMID: 31317824 PMCID: PMC6921297 DOI: 10.1089/neu.2018.6348] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The misfolding and aggregation of tau protein into neurofibrillary tangles is the main underlying hallmark of tauopathies. Most tauopathies have a sporadic origin and can be associated with multiple risk factors. Traumatic brain injury (TBI) has been suggested as a risk factor for tauopathies by triggering disease onset and facilitating its progression. Several studies indicate that TBI seems to be a risk factor to development of Alzheimer disease and chronic traumatic encephalopathy, because there is a relationship of TBI severity and propensity to development of these illnesses. In this study, we evaluated whether moderate to severe TBI can trigger the initial formation of pathological tau that would induce the development of the pathology throughout the brain. To this end, we subjected tau transgenic mice to TBI and assessed tau phosphorylation and aggregation pattern to create a spatial heat map of tau deposition and spreading in the brain. Our results suggest that brain injured tau transgenic mice have an accelerated tau pathology in different brain regions that increases over time compared with sham mice. The appearance of pathological tau occurs in regions distant to the injury area that are connected synaptically, suggesting dissemination of tau aggregates. Overall, this work posits TBI as a risk factor for tauopathies through the induction of tau hyperphosphorylation and aggregation.
Collapse
Affiliation(s)
- George Edwards
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Jing Zhao
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Ines Moreno-Gonzalez
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas.,Department of Cell Biology, Networking Research Center on Neurodegenerative Diseases (CIBERNED), Facultad Ciencias, Universidad de Malaga, Malaga, Spain
| |
Collapse
|
194
|
Finan JD, Udani SV, Patel V, Bailes JE. The Influence of the Val66Met Polymorphism of Brain-Derived Neurotrophic Factor on Neurological Function after Traumatic Brain Injury. J Alzheimers Dis 2019; 65:1055-1064. [PMID: 30149456 DOI: 10.3233/jad-180585] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Functional outcomes after traumatic brain injury (TBI) vary widely across patients with apparently similar injuries. This variability hinders prognosis, therapy, and clinical innovation. Recently, single nucleotide polymorphism (SNPs) that influence outcome after TBI have been identified. These discoveries create opportunities to personalize therapy and stratify clinical trials. Both of these changes would propel clinical innovation in the field. This review focuses on one of most well-characterized of these SNPs, the Val66Met SNP in the brain-derived neurotrophic factor (BDNF) gene. This SNP influences neurological function in healthy subjects as well as TBI patients and patients with similar acute insults to the central nervous system. A host of other patient-specific factors including ethnicity, age, gender, injury severity, and post-injury time point modulate this influence. These interactions confound efforts to define a simple relationship between this SNP and TBI outcomes. The opportunities and challenges associated with personalizing TBI therapy around this SNP and other similar SNPs are discussed in light of these results.
Collapse
Affiliation(s)
- John D Finan
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| | - Shreya V Udani
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| | - Vimal Patel
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| | - Julian E Bailes
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| |
Collapse
|
195
|
Erdener ŞE, Dalkara T. Small Vessels Are a Big Problem in Neurodegeneration and Neuroprotection. Front Neurol 2019; 10:889. [PMID: 31474933 PMCID: PMC6707104 DOI: 10.3389/fneur.2019.00889] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022] Open
Abstract
The cerebral microcirculation holds a critical position to match the high metabolic demand by neuronal activity. Functionally, microcirculation is virtually inseparable from other nervous system cells under both physiological and pathological conditions. For successful bench-to-bedside translation of neuroprotection research, the role of microcirculation in acute and chronic neurodegenerative disorders appears to be under-recognized, which may have contributed to clinical trial failures with some neuroprotectants. Increasing data over the last decade suggest that microcirculatory impairments such as endothelial or pericyte dysfunction, morphological irregularities in capillaries or frequent dynamic stalls in blood cell flux resulting in excessive heterogeneity in capillary transit may significantly compromise tissue oxygen availability. We now know that ischemia-induced persistent abnormalities in capillary flow negatively impact restoration of reperfusion after recanalization of occluded cerebral arteries. Similarly, microcirculatory impairments can accompany or even precede neural loss in animal models of several neurodegenerative disorders including Alzheimer's disease. Macrovessels are relatively easy to evaluate with radiological or experimental imaging methods but they cannot faithfully reflect the downstream microcirculatory disturbances, which may be quite heterogeneous across the tissue at microscopic scale and/or happen fast and transiently. The complexity and size of the elements of microcirculation, therefore, require utilization of cutting-edge imaging techniques with high spatiotemporal resolution as well as multidisciplinary team effort to disclose microvascular-neurodegenerative connection and to test treatment approaches to advance the field. Developments in two photon microscopy, ultrafast ultrasound, and optical coherence tomography provide valuable experimental tools to reveal those microscopic events with high resolution. Here, we review the up-to-date advances in understanding of the primary microcirculatory abnormalities that can result in neurodegenerative processes and the combined neurovascular protection approaches that can prevent acute as well as chronic neurodegeneration.
Collapse
Affiliation(s)
- Şefik Evren Erdener
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.,Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
196
|
Heyburn L, Abutarboush R, Goodrich S, Urioste R, Batuure A, Statz J, Wilder D, Ahlers ST, Long JB, Sajja VSSS. Repeated Low-Level Blast Overpressure Leads to Endovascular Disruption and Alterations in TDP-43 and Piezo2 in a Rat Model of Blast TBI. Front Neurol 2019; 10:766. [PMID: 31417481 PMCID: PMC6682625 DOI: 10.3389/fneur.2019.00766] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/01/2019] [Indexed: 11/29/2022] Open
Abstract
Recent evidence linking repeated low-level blast overpressure exposure in operational and training environments with neurocognitive decline, neuroinflammation, and neurodegenerative processes has prompted concern over the cumulative deleterious effects of repeated blast exposure on the brains of service members. Repetitive exposure to low-level primary blast may cause symptoms (subclinical) similar to those seen in mild traumatic brain injury (TBI), with progressive vascular and cellular changes, which could contribute to neurodegeneration. At the cellular level, the mechanical force associated with blast exposure can cause cellular perturbations in the brain, leading to secondary injury. To examine the cumulative effects of repetitive blast on the brain, an advanced blast simulator (ABS) was used to closely mimic “free-field” blast. Rats were exposed to 1–4 daily blasts (one blast per day, separated by 24 h) at 13, 16, or 19 psi peak incident pressures with a positive duration of 4–5 ms, either in a transverse or longitudinal orientation. Blood-brain barrier (BBB) markers (vascular endothelial growth factor (VEGF), occludin, and claudin-5), transactive response DNA binding protein (TDP-43), and the mechanosensitive channel Piezo2 were measured following blast exposure. Changes in expression of VEGF, occludin, and claudin-5 after repeated blast exposure indicate alterations in the BBB, which has been shown to be disrupted following TBI. TDP-43 is very tightly regulated in the brain and altered expression of TDP-43 is found in clinically-diagnosed TBI patients. TDP-43 levels were differentially affected by the number and magnitude of blast exposures, decreasing after 2 exposures, but increasing following a greater number of exposures at various intensities. Lastly, Piezo2 has been shown to be dysregulated following blast exposure and was here observed to increase after multiple blasts of moderate magnitude, indicating that blast may cause a change in sensitivity to mechanical stimuli in the brain and may contribute to cellular injury. These findings reveal that cumulative effects of repeated exposures to blast can lead to pathophysiological changes in the brain, demonstrating a possible link between blast injury and neurodegenerative disease, which is an important first step in understanding how to prevent these diseases in soldiers exposed to blast.
Collapse
Affiliation(s)
- Lanier Heyburn
- Walter Reed Army Institute of Research, Blast Induced Neurotrauma Branch, Silver Spring, MD, United States
| | - Rania Abutarboush
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Samantha Goodrich
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Rodrigo Urioste
- Walter Reed Army Institute of Research, Blast Induced Neurotrauma Branch, Silver Spring, MD, United States
| | - Andrew Batuure
- Walter Reed Army Institute of Research, Blast Induced Neurotrauma Branch, Silver Spring, MD, United States
| | - Jonathan Statz
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Donna Wilder
- Walter Reed Army Institute of Research, Blast Induced Neurotrauma Branch, Silver Spring, MD, United States
| | - Stephen T Ahlers
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, MD, United States
| | - Joseph B Long
- Walter Reed Army Institute of Research, Blast Induced Neurotrauma Branch, Silver Spring, MD, United States
| | | |
Collapse
|
197
|
Brand KP, Finkel AM. A Decision-Analytic Approach to Addressing the Evidence About Football and Chronic Traumatic Encephalopathy. Semin Neurol 2019; 40:450-460. [PMID: 31311037 DOI: 10.1055/s-0039-1688484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Doubts can be raised about almost any assertion that a particular exposure can lead to an increase in a given adverse health effect. Even some of the most well-accepted causal associations in public health, such as that linking cigarette smoking to increased lung cancer risk, have intriguing research questions remaining to be answered. The inquiry whether an exposure causes a disease is never wholly a yes/no question but ought to follow from an appraisal of the weight of evidence supporting the positive conclusion in light of any coherent theories casting doubt on this evidence and the data supporting these. More importantly, such an appraisal cannot be made sensibly without considering the relative consequences to public health and economic welfare of specific actions based on unwarranted credulity (false positives) versus unwarranted skepticism (false negatives). Here we appraise the weight of evidence for the premise that repeated head impacts (RHIs) in professional football can increase the incidence of chronic traumatic encephalopathy (CTE) and, in turn, cause a variety of cognitive and behavioral symptoms. We first dismiss four logical fallacies that should not affect the appraisal of the weight of evidence. We then examine four alternative hypotheses in which RHI is not associated with CTE or symptoms (or both), and we conclude that the chances are small that the RHI→ CTE→ symptoms link is coincidental or artifactual. In particular, we observe that there are many specific interventions for which, even under a skeptical appraisal of the weight of evidence, the costs of a false positive are smaller than the false negative costs of refusing to intervene.
Collapse
Affiliation(s)
- Kevin P Brand
- Telfer School of Management, University of Ottawa, Ottawa, Canada
| | - Adam M Finkel
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
198
|
Zanier ER, Bertani I, Sammali E, Pischiutta F, Chiaravalloti MA, Vegliante G, Masone A, Corbelli A, Smith DH, Menon DK, Stocchetti N, Fiordaliso F, De Simoni MG, Stewart W, Chiesa R. Induction of a transmissible tau pathology by traumatic brain injury. Brain 2019; 141:2685-2699. [PMID: 30084913 DOI: 10.1093/brain/awy193] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/06/2018] [Indexed: 01/13/2023] Open
Abstract
Traumatic brain injury is a risk factor for subsequent neurodegenerative disease, including chronic traumatic encephalopathy, a tauopathy mostly associated with repetitive concussion and blast, but not well recognized as a consequence of severe traumatic brain injury. Here we show that a single severe brain trauma is associated with the emergence of widespread hyperphosphorylated tau pathology in a proportion of humans surviving late after injury. In parallel experimental studies, in a model of severe traumatic brain injury in wild-type mice, we found progressive and widespread tau pathology, replicating the findings in humans. Brain homogenates from these mice, when inoculated into the hippocampus and overlying cerebral cortex of naïve mice, induced widespread tau pathology, synaptic loss, and persistent memory deficits. These data provide evidence that experimental brain trauma induces a self-propagating tau pathology, which can be transmitted between mice, and call for future studies aimed at investigating the potential transmissibility of trauma associated tau pathology in humans.
Collapse
Affiliation(s)
- Elisa R Zanier
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Bertani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Eliana Sammali
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Department of Cerebrovascular Diseases, Fondazione IRCCS - Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Pischiutta
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Gloria Vegliante
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Antonio Masone
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alessandro Corbelli
- Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Douglas H Smith
- Penn Centre for Brain Injury and Repair and Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Nino Stocchetti
- Department of Pathophysiology and Transplants, University of Milan, Milan, Italy.,Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Fabio Fiordaliso
- Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Maria-Grazia De Simoni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - William Stewart
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.,Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Roberto Chiesa
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
199
|
The Administration of the New Pyrimidine Derivative-4-{2-[2-(3,4-Dimethoxyphenyl)-Vinyl]-6-Ethyl-4-Oxo-5-Phenyl-4H-Pyrimidine-1-Il}Benzsulfamide Restores the Activity of Brain Cells in Experimental Chronic Traumatic Encephalopathy by Maintaining Mitochondrial Function. ACTA ACUST UNITED AC 2019; 55:medicina55070386. [PMID: 31319603 PMCID: PMC6681389 DOI: 10.3390/medicina55070386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Background and objectives: To evaluate the effect of a new pyrimidine derivative on the change of mitochondrial function in experimental chronic traumatic encephalopathy. Materials and methods: The study was performed on male mice of the BALB/c line (acute toxicity was assessed) and male rats of the Wistar line, which were modeled chronic traumatic encephalopathy by the method of free fall of the load (weight 150 g from a 50 cm height). The injury to rats was reproduced once a day for 7 days. Further, cognitive functions, changes in sensorimotor deficiency, cerebral blood flow, neuron-specific enolase(NSE), S100β, glial fibrillary acidic protein (GFAP) (in blood serum) and β-amyloid, adenosine triphosphate (ATP) (in brain tissue supernatant) were evaluated. Mitochondrial respiration was also measured. Choline alfoscerate (100 mg/kg) was used as a reference drug. Results: The study found that the use of a new pyrimidine derivative contributed to the preservation of the mitochondrial respirometric function and cognitive functions in rats. In addition, against the administration of test-object marked increase in the concentration of ATP, the velocity of cerebral blood flow was 4.2 times (p < 0.05) and 35.6% (p < 0.05), respectively, as well as reduced concentration and GFAP, NSE, S100β, β-amyloid and sensorimotor deficit at 2.7 (p < 0.05) times; 2 times (p < 0.05); 2.4 times (p < 0.05); of 30.4% (p < 0.05 and 46.5% (p < 0.05), respectively. The LD50 (per os) for the test-object was 4973.56 ± 573.72 mg/kg. Conclusion: Based on the obtained data, high therapeutic efficacy and low systemic toxicity of the application are assumed 4-{2-[2-(3,4-dimethoxyphenyl)-vinyl]-6-ethyl-4-oxo-5-phenyl-4H-pyrimidine-1-Il}benzsulfamide in chronic traumatic encephalopathy.
Collapse
|
200
|
Astafiev SV, Wen J, Brody DL, Cross AH, Anokhin AP, Zinn KL, Corbetta M, Yablonskiy DA. A Novel Gradient Echo Plural Contrast Imaging Method Detects Brain Tissue Abnormalities in Patients With TBI Without Evident Anatomical Changes on Clinical MRI: A Pilot Study. Mil Med 2019; 184:218-227. [PMID: 30901451 DOI: 10.1093/milmed/usy394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/10/2018] [Accepted: 11/21/2018] [Indexed: 01/06/2023] Open
Abstract
RESEARCH OBJECTIVES It is widely accepted that mild traumatic brain injury (mTBI) causes injury to the white matter, but the extent of gray matter (GM) damage in mTBI is less clear. METHODS We tested 26 civilian healthy controls and 14 civilian adult subacute-chronic mTBI patients using quantitative features of MRI-based Gradient Echo Plural Contrast Imaging (GEPCI) technique. GEPCI data were reconstructed using previously developed algorithms allowing the separation of R2t*, a cellular-specific part of gradient echo MRI relaxation rate constant, from global R2* affected by BOLD effect and background gradients. RESULTS Single-subject voxel-wise analysis (comparing each mTBI patient to the sample of 26 control subjects) revealed GM abnormalities that were not visible on standard MRI images (T1w and T2w). Analysis of spatial overlap for voxels with low R2t* revealed tissue abnormalities in multiple GM regions, especially in the frontal and temporal regions, that are frequently damaged after mTBI. The left posterior insula was the region with abnormalities found in the highest proportion (50%) of mTBI patients. CONCLUSIONS Our data suggest that GEPCI quantitative R2t* metric has potential to detect abnormalities in GM cellular integrity in individual TBI patients, including abnormalities that are not detectable by a standard clinical MRI.
Collapse
Affiliation(s)
- Serguei V Astafiev
- Department of Radiology, Washington University in St. Louis, 660 S. Euclid Ave, Campus Box 8225, St. Louis, MO.,Department of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave, Campus Box 8134, St. Louis, MO
| | - Jie Wen
- Department of Radiology, Washington University in St. Louis, 660 S. Euclid Ave, Campus Box 8225, St. Louis, MO
| | - David L Brody
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, Campus Box 8111, St. Louis, MO.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD
| | - Anne H Cross
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, Campus Box 8111, St. Louis, MO
| | - Andrey P Anokhin
- Department of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave, Campus Box 8134, St. Louis, MO
| | - Kristina L Zinn
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, Campus Box 8111, St. Louis, MO
| | - Maurizio Corbetta
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, Campus Box 8111, St. Louis, MO.,Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Palazzina Neuroscienze, Via Giustiniani, 2, Padova, Italy
| | - Dmitriy A Yablonskiy
- Department of Radiology, Washington University in St. Louis, 660 S. Euclid Ave, Campus Box 8225, St. Louis, MO
| |
Collapse
|