151
|
Slavokhotova AA, Rogozhin EA, Musolyamov AK, Andreev YA, Oparin PB, Berkut AA, Vassilevski AA, Egorov TA, Grishin EV, Odintsova TI. Novel antifungal α-hairpinin peptide from Stellaria media seeds: structure, biosynthesis, gene structure and evolution. PLANT MOLECULAR BIOLOGY 2014; 84:189-202. [PMID: 24081691 DOI: 10.1007/s11103-013-0127-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 09/03/2013] [Indexed: 05/06/2023]
Abstract
Plant defense against disease is a complex multistage system involving initial recognition of the invading pathogen, signal transduction and activation of specialized genes. An important role in pathogen deterrence belongs to so-called plant defense peptides, small polypeptide molecules that present antimicrobial properties. Using multidimensional liquid chromatography, we isolated a novel antifungal peptide named Sm-AMP-X (33 residues) from the common chickweed (Stellaria media) seeds. The peptide sequence shows no homology to any previously described proteins. The peculiar cysteine arrangement (C(1)X3C(2)XnC(3)X3C(4)), however, allocates Sm-AMP-X to the recently acknowledged α-hairpinin family of plant defense peptides that share the helix-loop-helix fold stabilized by two disulfide bridges C(1)-C(4) and C(2)-C(3). Sm-AMP-X exhibits high broad-spectrum activity against fungal phytopathogens. We further showed that the N- and C-terminal "tail" regions of the peptide are important for both its structure and activity. The truncated variants Sm-AMP-X1 with both disulfide bonds preserved and Sm-AMP-X2 with only the internal S-S-bond left were progressively less active against fungi and presented largely disordered structure as opposed to the predominantly helical conformation of the full-length antifungal peptide. cDNA and gene cloning revealed that Sm-AMP-X is processed from a unique multimodular precursor protein that contains as many as 12 tandem repeats of α-hairpinin-like peptides. Structure of the sm-amp-x gene and two related pseudogenes sm-amp-x-ψ1 and sm-amp-x-ψ2 allows tracing the evolutionary scenario that led to generation of such a sophisticated precursor protein. Sm-AMP-X is a new promising candidate for engineering disease resistance in plants.
Collapse
Affiliation(s)
- Anna A Slavokhotova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, ul. Gubkina 3, 119991, Moscow, Russian Federation,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Ryazantsev DY, Rogozhin EA, Dimitrieva TV, Drobyazina PE, Khadeeva NV, Egorov TA, Grishin EV, Zavriev SK. A novel hairpin-like antimicrobial peptide from barnyard grass (Echinochloa crusgalli L.) seeds: Structure-functional and molecular-genetics characterization. Biochimie 2013; 99:63-70. [PMID: 24275143 DOI: 10.1016/j.biochi.2013.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/08/2013] [Indexed: 11/26/2022]
Abstract
A novel plant hairpin-like defense polypeptide named EcAMP3 was isolated from latent barnyard grass (Echinochloa crusgalli L.) seeds. The native peptide and its recombinant analogue were characterized. EcAMP3 displays antifungal and antibacterial activity in vitro. The gene family encoding EcAMPs precursor protein was also characterized; the genes and pseudogenes of this family show 97-100% homology. Every member of EcAMPs precursor family contains seven identical cysteine motifs: C1XXXC2(11-13)C3XXXC4. One of those motifs corresponds to the isolated peptide. EcAMP3 is the first member of the plant hairpin-like peptide family that inhibits the growth of phytopathogenic bacteria. Obtained results can explain the nature of the complex resistance of barnyard grass to a variety of pathogenic microorganisms.
Collapse
Affiliation(s)
- Dmitry Yu Ryazantsev
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russian Federation.
| | - Eugene A Rogozhin
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russian Federation.
| | - Tatiana V Dimitrieva
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russian Federation.
| | - Polina E Drobyazina
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russian Federation; All-Russian Research Institute of Biotechnology, Russian Academy of Agricultural Sciences, ul. Timiryazevskaya 42, 127550 Moscow, Russian Federation.
| | - Natalia V Khadeeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, ul. Gubkina 3, 117809 Moscow, Russian Federation.
| | - Tsezi A Egorov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russian Federation
| | - Eugene V Grishin
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russian Federation.
| | - Sergey K Zavriev
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russian Federation.
| |
Collapse
|
153
|
Izgü F, Altinbay D, Türeli AE. In VitroSusceptibilities ofCandidaspp. to Panomycocin, a Novel Exo-β-1,3-Glucanase Isolated fromPichia anomalaNCYC 434. Microbiol Immunol 2013; 51:797-803. [PMID: 17895596 DOI: 10.1111/j.1348-0421.2007.tb03975.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Panomycocin, the killer toxin of Pichia anomala NCYC 434 (K5), is a 49 kDa monomeric glycoprotein with exo-beta-1,3-glucanase activity (patent pending). In this study we evaluated the in vitro activity of panomycocin against a panel of 109 human isolates of seven different pathogenic Candida spp. using microdilution and time-kill methods. Panomycocin was most active against C. tropicalis, C. pseudotropicalis and C. glabrata with MIC(90) values of 1 microg/ml. It displayed significant activity against C. albicans and C. parapsilosis with MIC(90) values of 4 and 2 microg/ml, respectively. For C. krusei, the MIC(90) value was 8 microg/ml. Panomycocin was fungicidal against all the tested Candida spp. The MFC values were only one or 2 dilutions higher than the MICs with the exception of C. krusei isolates with MFCs greater than or equal to 4xMIC. Results of this study indicated that panomycocin could be considered as a natural antifungal agent against Candida infections and has significant potential for further investigation.
Collapse
Affiliation(s)
- Fatih Izgü
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey.
| | | | | |
Collapse
|
154
|
Zare-Zardini H, Tolueinia B, Hashemi A, ebrahimi L, Fesahat F. Antioxidant and cholinesterase inhibitory activity of a new peptide from Ziziphus jujuba fruits. Am J Alzheimers Dis Other Demen 2013; 28:702-9. [PMID: 24005854 PMCID: PMC10852667 DOI: 10.1177/1533317513500839] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
Antioxidant agents and cholinesterase inhibitors are the foremost drugs for the treatment of Alzheimer's disease (AD). In this study, a new peptide from Ziziphus jujuba fruits was investigated for its inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes as well as antioxidant activity. This peptide was introduced as a new peptide and named Snakin-Z. The Snakin-Z displayed considerable cholinesterase inhibition against AChE and BChE. The half maximal inhibitory concentration (IC50) values of Snakin-Z against AChE and BChE are 0.58 ± 0.08 and 0.72 ± 0.085 mg/mL, respectively. This peptide has 80% enzyme inhibitory activity on AChE and BChE at 1.5 mg/mL. The Snakin-Z also had the high antioxidant activity (IC50 = 0.75 ± 0.09 mg/mL). Thus, it is suggested that Snakin-Z may be beneficial in the treatment of AD. However, more detailed researches are still required as in vivo testing its anticholinesterase and antioxidant activities.
Collapse
Affiliation(s)
- Hadi Zare-Zardini
- Young Researchers and Elite Club, Yazd Branch, Islamic Azad University, Yazd, Islamic Republic of Iran
- Department of Pediatric Hematology, Oncology and Genetics Research Center, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Islamic Republic of Iran
| | - Behnaz Tolueinia
- Department of biology, University of Applied Science and Technology of Sistan and Baluchestan, Minushargh Branch, Zahedan, Islamic Republic of Iran
| | - Azam Hashemi
- Department of Pediatric Hematology, Oncology and Genetics Research Center, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Islamic Republic of Iran
| | - Leila ebrahimi
- Department of Hematology, Iranian Blood Transfusion Organization, Tehran, Islamic Republic of Iran
| | - Farzaneh Fesahat
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Islamic Republic of Iran
- Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Islamic Republic of Iran
| |
Collapse
|
155
|
Albuquerque LPD, Santana GMDS, Napoleão TH, Coelho LCBB, Silva MVD, Paiva PMG. Antifungal activity of Microgramma vacciniifolia rhizome lectin on genetically distinct Fusarium oxysporum f. sp. lycopersici races. Appl Biochem Biotechnol 2013; 172:1098-105. [PMID: 24142386 DOI: 10.1007/s12010-013-0600-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
Abstract
Fusarium oxysporum f. sp. lycopersici races 1, 2, and 3 deteriorate tomato crops since they cause a vascular wilt. Lectins are carbohydrate-binding proteins with hemagglutinating and antifungal activities. This work reports that Microgramma vacciniifolia rhizome lectin (MvRL) inhibits F. oxysporum f. sp. lycopersici race 3 growth (61 %) more intensely than of races 1 (55 %) and 2 (45 %). The hemagglutinating activity of MvRL was inhibited by glycoprotein preparations from mycelia of races 1, 2, and 3, and these data indicate that lectin carbohydrate-binding sites recognized glycosylated molecules from races. Inter-simple sequence repeat (ISSR) marker system showed that race 3 is genetically distinct from races 1 and 2, and thus the highest sensitiveness of F. oxysporum f. sp. lycopersici race 3 to MvRL may be due to molecular characteristics of this race.
Collapse
Affiliation(s)
- Lidiane Pereira de Albuquerque
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | | | | | | | | | | |
Collapse
|
156
|
Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Goździcka-Józefiak A. Plant antimicrobial peptides. Folia Microbiol (Praha) 2013; 59:181-96. [PMID: 24092498 PMCID: PMC3971460 DOI: 10.1007/s12223-013-0280-4] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/17/2013] [Indexed: 12/27/2022]
Abstract
Plant antimicrobial peptides (AMPs) are a component of barrier defense system of plants. They have been isolated from roots, seeds, flowers, stems, and leaves of a wide variety of species and have activities towards phytopathogens, as well as against bacteria pathogenic to humans. Thus, plant AMPs are considered as promising antibiotic compounds with important biotechnological applications. Plant AMPs are grouped into several families and share general features such as positive charge, the presence of disulfide bonds (which stabilize the structure), and the mechanism of action targeting outer membrane structures.
Collapse
Affiliation(s)
- Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland,
| | | | | | | | | | | |
Collapse
|
157
|
van der Weerden NL, Bleackley MR, Anderson MA. Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol Life Sci 2013; 70:3545-70. [PMID: 23381653 PMCID: PMC11114075 DOI: 10.1007/s00018-013-1260-1] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/11/2012] [Accepted: 01/03/2013] [Indexed: 01/06/2023]
Abstract
Antimicrobial peptides are a vital component of the innate immune system of all eukaryotic organisms and many of these peptides have potent antifungal activity. They have potential application in the control of fungal pathogens that are a serious threat to both human health and food security. Development of antifungal peptides as therapeutics requires an understanding of their mechanism of action on fungal cells. To date, most research on antimicrobial peptides has focused on their activity against bacteria. Several antimicrobial peptides specifically target fungal cells and are not active against bacteria. Others with broader specificity often have different mechanisms of action against bacteria and fungi. This review focuses on the mechanism of action of naturally occurring antifungal peptides from a diverse range of sources including plants, mammals, amphibians, insects, crabs, spiders, and fungi. While antimicrobial peptides were originally proposed to act via membrane permeabilization, the mechanism of antifungal activity for these peptides is generally more complex and often involves entry of the peptide into the cell.
Collapse
|
158
|
Importance of microbial natural products and the need to revitalize their discovery. J Ind Microbiol Biotechnol 2013; 41:185-201. [PMID: 23990168 DOI: 10.1007/s10295-013-1325-z] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 08/03/2013] [Indexed: 12/31/2022]
Abstract
Microbes are the leading producers of useful natural products. Natural products from microbes and plants make excellent drugs. Significant portions of the microbial genomes are devoted to production of these useful secondary metabolites. A single microbe can make a number of secondary metabolites, as high as 50 compounds. The most useful products include antibiotics, anticancer agents, immunosuppressants, but products for many other applications, e.g., antivirals, anthelmintics, enzyme inhibitors, nutraceuticals, polymers, surfactants, bioherbicides, and vaccines have been commercialized. Unfortunately, due to the decrease in natural product discovery efforts, drug discovery has decreased in the past 20 years. The reasons include excessive costs for clinical trials, too short a window before the products become generics, difficulty in discovery of antibiotics against resistant organisms, and short treatment times by patients for products such as antibiotics. Despite these difficulties, technology to discover new drugs has advanced, e.g., combinatorial chemistry of natural product scaffolds, discoveries in biodiversity, genome mining, and systems biology. Of great help would be government extension of the time before products become generic.
Collapse
|
159
|
Balhara M, Ruhil S, kumar M, Dhankhar S, Chhillar AK. An anti-Aspergillusprotein fromEscherichia coliDH5α: Putative inhibitor of siderophore biosynthesis inAspergillus fumigatus. Mycoses 2013; 57:153-62. [DOI: 10.1111/myc.12119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 07/18/2013] [Accepted: 07/18/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Meenakshi Balhara
- Centre for Biotechnology; Maharshi Dayanand University; Rohtak Haryana India
| | - Sonam Ruhil
- Centre for Biotechnology; Maharshi Dayanand University; Rohtak Haryana India
| | - Manish kumar
- Centre for Biotechnology; Maharshi Dayanand University; Rohtak Haryana India
| | - Sandeep Dhankhar
- Centre for Biotechnology; Maharshi Dayanand University; Rohtak Haryana India
| | - A. K. Chhillar
- Centre for Biotechnology; Maharshi Dayanand University; Rohtak Haryana India
| |
Collapse
|
160
|
Daneshmand F, Zare-Zardini H, Ebrahimi L. Investigation of the antimicrobial activities of Snakin-Z, a new cationic peptide derived from Zizyphus jujuba fruits. Nat Prod Res 2013; 27:2292-6. [PMID: 23962183 DOI: 10.1080/14786419.2013.827192] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Snakin-Z is a novel antimicrobial peptide (AMP) that is identified from the fruit of Zizyphus jujuba. This peptide is composed of 31 amino acids which is determined with the sequence of CARLNCVPKGTSGNTETCPCYASLHSCRKYG and molecular weight of 3318.82 Da. Snakin-Z is not identical to any AMP in the peptide database. According to this study, Snakin-Z potentially has antimicrobial property against bacteria and fungi. Minimal inhibitory concentration (MIC) value of this peptide is suitable for antimicrobial activity. We assessed that Snakin-Z could affect Phomopsis azadirachtae with the MIC value of 7.65 μg/mL and vice versa Staphylococcus aureus with the MIC value of 28.8 μg/mL. Interestingly, human red blood cells also showed good tolerance to the Snakin-Z. On the basis of this study, Snakin-Z can be an appropriate candidate for therapeutic applications in the future due to its antimicrobial property.
Collapse
Affiliation(s)
- Fatemeh Daneshmand
- a Department of Biology , Payame Noor University , P.O. Box 19395-3697, Tehran , Iran
| | | | | |
Collapse
|
161
|
Vejvar E, Himly M, Briza P, Eichhorn S, Ebner C, Hemmer W, Ferreira F, Gadermaier G. Allergenic relevance of nonspecific lipid transfer proteins 2: Identification and characterization of Api g 6 from celery tuber as representative of a novel IgE-binding protein family. Mol Nutr Food Res 2013; 57:2061-70. [PMID: 23913675 DOI: 10.1002/mnfr.201300085] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 11/07/2022]
Abstract
SCOPE Apium graveolens represents a relevant food allergen source linked with severe systemic reactions. We sought to identify an IgE-binding nonspecific lipid transfer protein (nsLTP) in celery tuber. METHODS AND RESULTS A low molecular weight protein exclusively present in celery tuber was purified and designated Api g 6. The entire protein sequence was obtained by MS and classified as member of the nsLTP2 family. Api g 6 is monomeric in solution with a molecular mass of 6936 Da. The alpha-helical disulfide bond-stabilized structure confers tremendous thermal stability (Tm > 90°C) and high resistance to gastrointestinal digestion. Endolysosomal degradation demonstrated low susceptibility and the presence of a dominant peptide cluster at the C-terminus. Thirty-eight percent of A. graveolens allergic patients demonstrated IgE reactivity to purified natural Api g 6 in ELISA and heat treatment did only partially reduce its allergenic activity. No correlation in IgE binding and limited cross-reactivity was observed with Api g 2 and Art v 3, nsLTP1 from celery stalks and mugwort pollen. CONCLUSION Api g 6, a novel nsLTP2 from celery tuber represents the first well-characterized allergen in this protein family. Despite similar structural and physicochemical features as nsLTP1, immunological properties of Api g 6 are distinct which warrants its inclusion in molecule-based diagnosis of A. graveolens allergy.
Collapse
Affiliation(s)
- Eva Vejvar
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Rong W, Qi L, Wang J, Du L, Xu H, Wang A, Zhang Z. Expression of a potato antimicrobial peptide SN1 increases resistance to take-all pathogen Gaeumannomyces graminis var. tritici in transgenic wheat. Funct Integr Genomics 2013; 13:403-9. [PMID: 23839728 DOI: 10.1007/s10142-013-0332-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 06/23/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
Take-all, caused by soil-borne fungus Gaeumannomyces graminis var. tritici (Ggt), is a devastating root disease of wheat (Triticum aestivum) worldwide. Breeding resistant wheat cultivars is the most promising and reliable approach to protect wheat from take-all. Currently, no resistant wheat germplasm is available to breed cultivars using traditional methods. In this study, gene transformation was carried out using Snakin-1 (SN1) gene isolated from potato (Solanum tuberosum) because the peptide shows broad-spectrum antimicrobial activity in vitro. Purified SN1 peptide also inhibits in vitro the growth of Ggt mycelia. By bombardment-mediated method, the gene SN1 was transformed into Chinese wheat cultivar Yangmai 18 to generate SN1 transgenic wheat lines, which were used to assess the effectiveness of the SN1 peptide in protecting wheat from Ggt. Genomic PCR and Southern blot analyses indicated that the alien gene SN1 was integrated into the genomes of five transgenic wheat lines and heritable from T₀ to T₄ progeny. Reverse transcription-PCR and Western blot analyses showed that the introduced SN1 gene was transcribed and highly expressed in the five transgenic wheat lines. Following challenging with Ggt, disease test results showed that compared to segregants lacking the transgene and untransformed wheat plants, these five transgenic wheat lines expressing SN1 displayed significantly enhanced resistance to take-all. These results suggest that SN1 may be a potentially transgenic tool for improving the take-all resistance of wheat.
Collapse
Affiliation(s)
- Wei Rong
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Biology and Genetic Improvement of Triticeae Crops of the Agriculture Ministry, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | | | |
Collapse
|
163
|
Characterization of a Chitin-Binding Protein from Bacillus thuringiensis HD-1. PLoS One 2013; 8:e66603. [PMID: 23824872 PMCID: PMC3688941 DOI: 10.1371/journal.pone.0066603] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 05/07/2013] [Indexed: 11/19/2022] Open
Abstract
Strains of Bacillus thuringiensis produce insecticidal proteins. These strains have been isolated from diverse ecological niches, such as soil, phylloplane, insect cadavers and grain dust. To effectively propagate, these strains produce a range of molecules that facilitate its multiplication in a competing environment. In this report, we have examined synthesis of a chitin-binding protein and evaluated its effect on fungi encountered in environment and its interaction with insecticidal proteins synthesized by B. thuringiensis. The gene encoding chitin-binding protein has been cloned and expressed. The purified protein has been demonstrated to interact with Cry insecticidal protein, Cry1Ac by Circular Dichrosim spectroscopy (CD) and in vitro pull down assays. The chitin-binding protein potentiates insecticidal activity of bacillar insecticidal protein, Cry1Ac. Further, chitin-binding protein was fungistatic against several soil fungi. The chitin binding protein is expressed in spore mother cell and deposited along with insecticidal protein, Cry1Ac. It interacts with Cry1Ac to potentiate its insecticidal activity and facilitate propagation of Bacillus strain in environment by inhibiting growth of certain fungi.
Collapse
|
164
|
Silva NC, Nery JM, Dias ALT. Aspartic proteinases of Candida spp.: role in pathogenicity and antifungal resistance. Mycoses 2013; 57:1-11. [PMID: 23735296 DOI: 10.1111/myc.12095] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 05/03/2013] [Accepted: 05/08/2013] [Indexed: 12/20/2022]
Abstract
Fungal infections represent a serious health risk as they are particularly prevalent in immunocompromised individuals. Candida spp. pathogenicity depends on several factors and secreted aspartic proteinases (Sap) are considered one of the most critical factors as they are associated with adhesion, invasion and tissue damage. The production of proteinases is encoded by a family of 10 genes known as SAP, which are distributed differently among the species. The expression of these genes may be influenced by environmental conditions, which generally result in a higher fungal invasive potential. Non-pathogenic Candida spp. usually have fewer SAP genes, which are not necessarily expressed in the genome. Exposure to subinhibitory concentrations of antifungal agents promotes the development of resistant strains with an increased expression of SAP genes. In general, Candida spp. isolates that are resistant to antifungals show a higher secretion of Sap than the susceptible isolates. The relationship between Sap secretion and the susceptibility profile of the isolates is of great interest, although the role of SAPs in the development of resistance to antifungal agents remains still unclear. This review is the first one to address these issues.
Collapse
Affiliation(s)
- Naiara C Silva
- Microbiology and Immunology Department, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | | | | |
Collapse
|
165
|
Duan XH, Jiang R, Wen YJ, Bin JH. Some 2S albumin from peanut seeds exhibits inhibitory activity against Aspergillus flavus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 66:84-90. [PMID: 23500710 DOI: 10.1016/j.plaphy.2013.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 01/25/2013] [Indexed: 06/01/2023]
Abstract
A crude 2S albumin fraction was separated from peanut (Arachis hypogaea L.) cotyledons. Untreated 2S albumin had little inhibitory activity against trypsin, spore germination, or hyphal growth of Aspergillus flavus. However, following treatment of 2S albumin with SDS, increased inhibitory activity was demonstrated. We further purified 2S albumin using Sephadex G-100 and DEAE cellulose (DE-32) chromatography. HPLC analysis showed that the partially pure 2S albumin consisted of two polypeptides, whereas SDS-PAGE analyzes exhibited six polypeptides. One of the polypeptides, 2S-1, was found to contain the same molecular weight and enzymatic properties as the peanut protease inhibitor (PI); however, the N-terminal amino acid sequence of 2S-1 differed from that of PI. An NCBI database search revealed that the 2S-1 polypeptide is homologous to the pathogenesis-related proteins from soybean, cowpea, chickpea, and Lupinus luteus. We hypothesize that the 2S-1 polypeptide might represent a novel antifungal protein.
Collapse
Affiliation(s)
- Xiao Hua Duan
- College of Life Sciences, South China Normal University, Guangdong Key Laboratory of Biotechnology for Plant Development, Guangzhou 510631, PR China
| | | | | | | |
Collapse
|
166
|
Naidoo R, Ferreira L, Berger DK, Myburg AA, Naidoo S. The identification and differential expression of Eucalyptus grandis pathogenesis-related genes in response to salicylic acid and methyl jasmonate. FRONTIERS IN PLANT SCIENCE 2013; 4:43. [PMID: 23508356 PMCID: PMC3589731 DOI: 10.3389/fpls.2013.00043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/19/2013] [Indexed: 05/08/2023]
Abstract
Two important role players in plant defence response are the phytohormones salicylic acid (SA) and jasmonic acid (JA); both of which have been well described in model species such as Arabidopsis thaliana. Several pathogenesis related (PR) genes have previously been used as indicators of the onset of SA and JA signaling in Arabidopsis. This information is lacking in tree genera such as Eucalyptus. The aim of this study was to characterize the transcriptional response of PR genes (EgrPR2, EgrPR3, EgrPR4, EgrPR5, and EgrLOX) identified in Eucalyptus grandis to SA and methyl jasmonate (MeJA) treatment as well as to qualify them as diagnostic for the two signaling pathways. Using the genome sequence of E. grandis, we identified candidate Eucalyptus orthologs EgrPR2, EgrPR3, EgrPR4, EgrPR5, and EgrLOX based on a co-phylogenetic approach. The expression of these genes was investigated after various doses of SA and MeJA (a derivative of JA) treatment as well as at various time points. The transcript levels of EgrPR2 were decreased in response to high concentrations of MeJA whereas the expression of EgrPR3 and EgrLOX declined as the concentrations of SA treatment increased, suggesting an antagonistic relationship between SA and MeJA. Our results support EgrPR2 as potentially diagnostic for SA and EgrPR3, EgrPR4, and EgrLOX as indicators of MeJA signaling. To further validate the diagnostic potential of the PR genes we challenged E. grandis clones with the fungal necrotrophic pathogen Chrysoporthe austroafricana. The tolerant clone showed high induction of EgrPR2 and decreased transcript abundance of EgrPR4. Pre-treatment of the susceptible genotype with 5 mM SA resulted in lesion lengths comparable to the tolerant genotype after artificial inoculation with C. austroafricana. Thus expression profiling of EgrPR2 and EgrPR4 genes could serve as a useful diagnostic approach to determine which of the two signaling pathways are activated against various pathogens in Eucalyptus.
Collapse
Affiliation(s)
- Ronishree Naidoo
- Department of Genetics, University of PretoriaPretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| | - Linda Ferreira
- Department of Genetics, University of PretoriaPretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| | - Dave K. Berger
- Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
- Department of Plant Science, University of PretoriaPretoria, South Africa
| | - Alexander A. Myburg
- Department of Genetics, University of PretoriaPretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| | - Sanushka Naidoo
- Department of Genetics, University of PretoriaPretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| |
Collapse
|
167
|
Pinelli LAP, Montandon AAB, Corbi SCT, Moraes TA, Fais LMG. Ricinus communis treatment of denture stomatitis in institutionalised elderly. J Oral Rehabil 2013; 40:375-80. [PMID: 23438045 DOI: 10.1111/joor.12039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2013] [Indexed: 01/06/2023]
Abstract
This study compared the effectiveness of Ricinus communis (RC) with Nystatin (NYS) and Miconazole (MIC) in the treatment of institutionalised elderly with denture stomatitis (DS). They (n = 30) were randomly distributed into three groups: MIC, NYS or RC. Clinical and mycological evaluations were performed prior to the use of the antifungal (baseline) and repeated after 15 and 30 days of treatment. The sample was clinically examined for oral mucosal conditions. Standard photographs were taken of the palate, and the oral candidiasis was classified (Newton's criteria). Mycological investigation was performed by swabbing the palatal mucosa, and Candida spp. were quantified by counting the number of colony-forming units (cfu mL⁻¹). The clinical and mycological data were analysed, respectively by Wilcoxon and Student's t-test (α = 0.05). Significant improvement in the clinical appearance of DS in the MIC and RC groups was observed between the 1st and 3rd collections (MIC - P = 0.018; RC - P = 0.011) as well as between the 2nd and 3rd collections (MIC - P = 0.018; RC - P = 0.011). Neither groups showed a statistically significant reduction in cfu mL⁻¹ at any time. Although none of the treatments decreased the cfu mL⁻¹, it was concluded that Ricinus communis can improve the clinical condition of denture stomatitis in institutionalised elderly patients, showing similar results to Miconazole.
Collapse
Affiliation(s)
- L A P Pinelli
- Departament of Dental Materials and Prosthodontics, Araraquara Dental School, UNESP - Univ. Estadual Paulista, Araraquara, SP, Brazil.
| | | | | | | | | |
Collapse
|
168
|
McBride RC, Boucher N, Park DS, Turner PE, Townsend JP. Yeast response to LA virus indicates coadapted global gene expression during mycoviral infection. FEMS Yeast Res 2013; 13:162-79. [PMID: 23122216 DOI: 10.1111/1567-1364.12019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/26/2012] [Accepted: 10/29/2012] [Indexed: 11/29/2022] Open
Abstract
Viruses that infect fungi have a ubiquitous distribution and play an important role in structuring fungal communities. Most of these viruses have an unusual life history in that they are propagated exclusively via asexual reproduction or fission of fungal cells. This asexual mode of transmission intimately ties viral reproductive success to that of its fungal host and should select for viruses that have minimal deleterious impact on the fitness of their hosts. Accordingly, viral infections of fungi frequently do not measurably impact fungal growth, and in some instances, increase the fitness of the fungal host. Here we determine the impact of the loss of coinfection by LA virus and the virus-like particle M1 upon global gene expression of the fungal host Saccharomyces cerevisiae and provide evidence supporting the idea that coevolution has selected for viral infection minimally impacting host gene expression.
Collapse
Affiliation(s)
- Robert C McBride
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
169
|
Prusky D, Alkan N, Mengiste T, Fluhr R. Quiescent and necrotrophic lifestyle choice during postharvest disease development. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:155-76. [PMID: 23682917 DOI: 10.1146/annurev-phyto-082712-102349] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Insidious fungal infections by postharvest pathogens remain quiescent during fruit growth until, at a particular phase during fruit ripening and senescence, the pathogens switch to the necrotrophic lifestyle and cause decay. During ripening, fruits undergo physiological processes, such as activation of ethylene biosynthesis, cuticular changes, and cell-wall loosening-changes that are accompanied by a decline of antifungal compounds, both those that are preformed and those that are inducible secondary metabolites. Pathogen infection of the unripe host fruit initiates defensive signal-transduction cascades, culminating in accumulation of antifungal proteins that limit fungal growth and development. In contrast, development of the same pathogens during fruit ripening and storage activates a substantially different signaling network, one that facilitates aggressive fungal colonization. This review focuses on responses induced by the quiescent pathogens of postharvest diseases in unripe host fruits. New genome-scale experimental approaches have begun to delineate the complex and multiple networks of host and pathogen responses activated to maintain or to facilitate the transition from the quiescent to the necrotrophic lifestyle.
Collapse
Affiliation(s)
- Dov Prusky
- Department of Postharvest Science of Fresh Produce, ARO, Volcani Center, Bet Dagan, 50250 Israel.
| | | | | | | |
Collapse
|
170
|
Lee SY, Kim SH, Hong CY, Park MJ, Choi IG. Effects of (−)-borneol on the growth and morphology ofAspergillus fumigatusandEpidermophyton floccosom. FLAVOUR FRAG J 2012. [DOI: 10.1002/ffj.3138] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Su Yeon Lee
- Department of Forest Sciences, College of Agriculture and Life Sciences; Seoul National University; 599 Gwanak-ro; Gwanak-gu; Seoul; 151-921; South Korea
| | - Seon Hong Kim
- Department of Forest Sciences, College of Agriculture and Life Sciences; Seoul National University; 599 Gwanak-ro; Gwanak-gu; Seoul; 151-921; South Korea
| | - Chang Young Hong
- Department of Forest Sciences, College of Agriculture and Life Sciences; Seoul National University; 599 Gwanak-ro; Gwanak-gu; Seoul; 151-921; South Korea
| | - Mi-Jin Park
- Division of Wood Chemistry & Microbiology, Department of Forest Resources Utilization, Korea Forest Research Institute; Seoul; 130-712; Republic of Korea
| | | |
Collapse
|
171
|
Gomes FS, Procópio TF, Napoleão TH, Coelho LCBB, Paiva PMG. Antimicrobial lectin from Schinus terebinthifolius leaf. J Appl Microbiol 2012. [PMID: 23190078 DOI: 10.1111/jam.12086] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS Schinus terebinthifolius leaves are used for treating human diseases caused by micro-organisms. This work reports the isolation, characterization and antimicrobial activity of S. terebinthifolius leaf lectin (SteLL). METHODS AND RESULTS The isolation procedure involved protein extraction with 0.15 mol l(-1) NaCl, filtration through activated charcoal and chromatography of the filtrate on a chitin column. SteLL is a 14-kDa glycopeptide with haemagglutinating activity that is inhibited by N-acetyl-glucosamine, not affected by ions (Ca(2+) and Mg(2+)) and stable upon heating (30-100 °C) as well as over the pH 5.0-8.0. The antimicrobial effect of SteLL was evaluated by determining the minimal inhibitory (MIC), bactericide (MBC) and fungicide (MFC) concentrations. Lectin was active against Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella enteritidis and Staphylococcus aureus. Highest bacteriostatic and bactericide effects were detected for Salm. enteritidis (MIC: 0.45 μg ml(-1)) and Staph. aureus (MBC: 7.18 μg ml(-1)), respectively. SteLL impaired the growth (MIC: 6.5 μg ml(-1)) and survival (MFC: 26 μg ml(-1)) of Candida albicans. CONCLUSIONS SteLL, a chitin-binding lectin, purified in milligram quantities, showed antimicrobial activity against medically important bacteria and fungi. SIGNIFICANCE AND IMPACT OF THE STUDY SteLL can be considered as a new biomaterial for potential antimicrobial applications.
Collapse
Affiliation(s)
- F S Gomes
- Departamento de Bioquímica, CCB, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | | | | |
Collapse
|
172
|
Popovic MM, Bulajic A, Ristic D, Krstic B, Jankov RM, Gavrovic-Jankulovic M. In vitro and in vivo antifungal properties of cysteine proteinase inhibitor from green kiwifruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:3072-3078. [PMID: 22653546 DOI: 10.1002/jsfa.5728] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/29/2012] [Accepted: 04/08/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Higher plants possess several mechanisms of defense against plant pathogens. Proteins actively synthesized in response to those stresses are called defense-related proteins which, among others, include certain protease inhibitors. It is of particular relevance to investigate plant natural defense mechanisms for pathogen control which include cystatins-specific inhibitors of cysteine proteases. RESULTS In this study, a cysteine proteinase inhibitor (CPI), 11 kDa in size, was purified from green kiwifruit to homogeneity. Immuno-tissue print results indicated that CPI is most abundant in the outer layer of pericarp, near the peel, and the inner most part of the pulp-sites where it could act as a natural barrier against pathogens entering the fruit. The purified protein (15 µmol L(-1)) showed antifungal activity against two phytopathogenic fungi (Alternaria radicina and Botrytis cinerea) by inhibiting fungal spore germination. In vivo, CPI (10 µmol L(-1)) was able to prevent artificial infection of apple and carrot with spore suspension of B. cinerea and A. radicina, respectively. It also exerted activity on both intracellular and fermentation fluid proteinases. CONCLUSION Identification and characterization of plant defense molecules is the first step towards creation of improved methods for pathogen control based on naturally occurring molecules.
Collapse
Affiliation(s)
- Milica M Popovic
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
173
|
Zhang S, Xiao Y, Zhao J, Wang F, Zheng Y. Digital gene expression analysis of early root infection resistance to Sporisorium reilianum f. sp. zeae in maize. Mol Genet Genomics 2012. [PMID: 23196693 DOI: 10.1007/s00438-012-0727-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The maize smut fungus, Sporisorium reilianum f. sp. zeae, which is an important biotrophic pathogen responsible for extensive crop losses, can infect maize by invading the root during the early seedling stage. In order to investigate disease-resistance mechanisms at this early seedling stage, digital gene expression analysis, which applies a dual-enzyme approach, was used to identify the transcriptional changes in the roots of Huangzao4 (susceptible) and Mo17 (resistant) after root inoculation with S. reilianum. During the infection in the roots, the expression pattern of pathogenesis-related genes in Huangzao4 and Mo17 were significantly differentially regulated at different infection stages. The glutathione S-transferase enzyme activity and reactive oxygen species levels also showed changes before and after inoculation. The total lignin contents and the pattern of lignin depositions in the roots differed during root colonization of Huangzao4 and Mo17. These results suggest that the interplay between S. reilianum and maize during the early infection stage involves many important transcriptional and physiological changes, which offer several novel insights to understanding the mechanisms of resistance to the infection of biotrophic fungal pathogens.
Collapse
Affiliation(s)
- Shaopeng Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | | | | | | | | |
Collapse
|
174
|
Rogozhin EA, Ryazantsev DY, Grishin EV, Egorov TA, Zavriev SK. Defense peptides from barnyard grass (Echinochloa crusgalli L.) seeds. Peptides 2012; 38:33-40. [PMID: 22940285 DOI: 10.1016/j.peptides.2012.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/11/2012] [Accepted: 08/13/2012] [Indexed: 11/29/2022]
Abstract
A number of defense polypeptides from latent seeds of weed cereal barnyard grass (Echinochloa crusgalli L.) has been isolated and characterized using an acidic extraction and high performance liquid chromatography methods in combination with MALDI-TOF mass spectrometry and Edman sequencing. Members of three antimicrobial peptide families and two protease inhibitor families were found to be localized in barnyard grass seeds. Their biological activity concerning to Gram-Positive and Gram-Negative phytopathogenic bacteria, as well as oomycete Phytophthora infestans, has been investigated. Diversity of barnyard grass defense peptides is a significant factor that provides a resistance of E. crusgalli seeds to germination and latent phases.
Collapse
Affiliation(s)
- E A Rogozhin
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation.
| | | | | | | | | |
Collapse
|
175
|
Gorjanović S, Sužnjević D, Beljanski M, Ostojić S, Gorjanović R, Vrvić M, Hranisavljević J. Effects of Lipid-Transfer Protein from Malting Barley Grain on Brewers Yeast Fermentation. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2004.tb00624.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
176
|
Huang Y, Liu H, Jia Z, Fang Q, Luo K. Combined expression of antimicrobial genes (Bbchit1 and LJAMP2) in transgenic poplar enhances resistance to fungal pathogens. TREE PHYSIOLOGY 2012; 32:1313-1320. [PMID: 22971569 DOI: 10.1093/treephys/tps079] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Populus species are susceptible to infection by microbial pathogens that severely affect their growth and substantially decrease their economic value. In this study, two pathogenesis-related protein genes consisting of Beauveria bassiana chitinase (Bbchit1) and motherwort lipid-transfer protein (LJAMP2) were introduced into Chinese white poplar (Populus tomentosa Carr.) via Agrobacterium-mediated transformation using the hygromycin (hyg) and neomycin phosphotransferase (NPTII) genes as selectable markers, respectively. Polymerase chain reaction analysis confirmed the stable integration of transgenes in the genome of transgenic plants. In vitro assays showed that inhibitory activity against the fungal pathogen Alternaria alternata (Fr.) Keissler was evident from the crude leaf extracts from transgenic plants. Importantly, the double-transgenic plants exhibited significantly higher resistance to the pathogen than either of the single-gene transformants and wild-type plants when inoculated with A. alternata. The level of disease reduction in double-transgenic lines was between 82 and 95%, whereas that of single-gene transformants carrying either LJAMP2 or Bbchit1 was between 65 and 89%. These results indicated that the combined expression of the LJAMP2 and Bbchit-1 genes could significantly enhance resistance to necrotrophic fungal pathogens in poplar.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | | | | | | | | |
Collapse
|
177
|
Orrego Escobar E. Antifungal agents derived from plants and medicinal plants: Chile’s untapped potential. Medwave 2012. [DOI: 10.5867/medwave.2012.08.5480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
178
|
Lee JJ, Park KW, Kwak YS, Ahn JY, Jung YH, Lee BH, Jeong JC, Lee HS, Kwak SS. Comparative proteomic study between tuberous roots of light orange- and purple-fleshed sweetpotato cultivars. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 193-194:120-129. [PMID: 22794925 DOI: 10.1016/j.plantsci.2012.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 05/15/2023]
Abstract
This study compares the differences in proteomes expressed in tuberous roots of a light orange-fleshed sweetpotato (Ipomoea batatas (L.) Lam. cultivar Yulmi) and a purple-fleshed sweetpotato cultivar (Shinjami). More than 370 protein spots were reproducibly detected by two-dimensional gel electrophoresis, in which 35 spots were up-regulated (Yulmi vs. Shinjami) or uniquely expressed (only Yulmi or Shinjami) in either of the two cultivars. Of these 35 protein spots, 23 were expressed in Yulmi and 12 were expressed in Shinjami. These protein spots were analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and electrospray ionization tandem mass spectrometry. Fifteen proteins in Yulmi and eight proteins in Shinjami were identified from the up-regulated (Yulmi vs. Shinjami) or uniquely expressed (only Yulmi or Shinjami) proteins, respectively. In Yulmi, α-amylase and isomerase precursor-like protein were uniquely expressed or up-regulated and activities of α-amylase, monodehydroascorbate reductase, and dehydroascorbate reductase were higher than in Shinjami. In Shinjami, peroxidase precursor and aldo-keto reductase were uniquely expressed or up-regulated and peroxidase and aldo-keto reductase activities were higher than in Yulmi. PSG-RGH7 uniquely expressed only in Shinjami and the cultivar was evaluated more resistant than Yulmi against the root-knot nematode, Meloidogyne incognita (Kofold and White, 1919) Chitwood 1949 on the basis of shoot and root growth. Egg mass formation was 14.9-fold less in Shinjami than in Yulmi. These results provide important clues that can provide a foundation for sweetpotato proteomics and lead to the characterization of the physiological function of differentially expressed proteins.
Collapse
Affiliation(s)
- Jeung Joo Lee
- Department of Applied Biology, IALS, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Kee Woong Park
- Department of Crop Science, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Youn-Sig Kwak
- Department of Applied Biology, IALS, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Jae Young Ahn
- Department of Applied Biology, IALS, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Young Hak Jung
- Division of Applied Life Science (BK21 Program), IALS, PMBBRC, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Byung-Hyun Lee
- Division of Applied Life Science (BK21 Program), IALS, PMBBRC, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Jae Cheol Jeong
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Haeng-Soon Lee
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Sang-Soo Kwak
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea.
| |
Collapse
|
179
|
Ahmed NU, Park JI, Jung HJ, Seo MS, Kumar TS, Lee IH, Nou IS. Identification and characterization of stress resistance related genes of Brassica rapa. Biotechnol Lett 2012; 34:979-87. [PMID: 22286206 DOI: 10.1007/s10529-012-0860-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/03/2012] [Indexed: 11/29/2022]
Abstract
Two biotic stress resistance related genes from the full-length cDNA library of Brassica rapa cv. Osome were identified from EST analysis and determined to be pathogenesis-related (PR) 12 Brassica defensin-like family protein (BrDLFP) and PR-10 Brassica Betv1 allergen family protein (BrBetv1AFP) after sequence analysis and homology study with other stress resistance related same family genes. In the expression analysis, both genes expressed in different organs and during all developmental growth stages in healthy plants. Expression of BrDLFP significantly increased and BrBetv1AFP gradually decreased after infection with Pectobacterium carotovorum subsp. carotovorum in Chinese cabbage. Expression of these two genes significantly changed after cold, salt, drought and ABA stress treatments. These two PR genes may therefore be involved in the plant resistance against biotic and abiotic stresses.
Collapse
Affiliation(s)
- Nasar Uddin Ahmed
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
180
|
Iquebal MA, Rai A. Biotic stress resistance in agriculture through antimicrobial peptides. Peptides 2012; 36:322-30. [PMID: 22659413 DOI: 10.1016/j.peptides.2012.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/21/2012] [Accepted: 05/21/2012] [Indexed: 01/01/2023]
Abstract
Antimicrobial peptides (AMPs) are the hosts' defense molecules against microbial pathogens and gaining extensive research attention worldwide. These have been reported to play vital role of host innate immunity in response to microbial challenges. AMPs can be used as a natural antibiotic as an alternative of their chemical counterpart for protection of plants/animals against diseases. There are a number of sources of AMPs including prokaryotic and eukaryotic organisms and are present, both in vertebrates and invertebrates. AMPs can be classified as cationic or anionic, based on net charges. Large number of databases and tools are available in the public domain which can be used for development of new genetically modified disease resistant varieties/breeds for agricultural production. The results of the biotechnological research as well as genetic engineering related to AMPs have shown high potential for reduction of economic losses of agricultural produce due to pathogens. In this article, an attempt has been made to introduce the role of AMPs in relation to plants and animals. Their functional and structural characteristics have been described in terms of its role in agriculture. Different sources of AMPs and importance of these sources has been reviewed in terms of its availability. This article also reviews the bioinformatics resources including different database tools and algorithms available in public domain. References of promising biotechnology research in relation to AMPs, prospects of AMPs for further development of genetically modified varieties/breeds are highlighted. AMPs are valuable resource for students, researchers, educators and medical and industrial personnel.
Collapse
|
181
|
Gifoni JM, Oliveira JTA, Oliveira HD, Batista AB, Pereira ML, Gomes AS, Oliveira HP, Grangeiro TB, Vasconcelos IM. A novel chitin-binding protein from Moringa oleifera seed with potential for plant disease control. Biopolymers 2012. [DOI: 10.1002/bip.22068] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
182
|
|
183
|
|
184
|
Wu MJ, Rogers PJ, Clarke FM. 125thAnniversary Review: The role of proteins in beer redox stability. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/jib.17] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ming J. Wu
- School of Biomolecular and Physical Sciences and Health; University of Western Sydney; Locked Bag 1797; Penrith; NSW; 2751; Australia
| | - Peter J. Rogers
- School of Biomolecular and Physical Sciences; Griffith University; Nathan; Queensland; 4111; Australia
| | - Frank M. Clarke
- School of Biomolecular and Physical Sciences; Griffith University; Nathan; Queensland; 4111; Australia
| |
Collapse
|
185
|
Porter AV, Lake JC, Gill TA, Speers RA. A Method to Detect Anti-metabolic Factors in Fermentations. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2010.tb00432.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
186
|
Stanislava G. Barley Grain Non-specific Lipid-Transfer Proteins (ns-LTPs) in Beer Production and Quality. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2007.tb00291.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
187
|
Oloriz MI, Gil V, Rojas L, Portal O, Izquierdo Y, Jiménez E, Höfte M. Sugarcane genes differentially expressed in response to Puccinia melanocephala infection: identification and transcript profiling. PLANT CELL REPORTS 2012; 31:955-969. [PMID: 22212461 DOI: 10.1007/s00299-011-1216-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/12/2011] [Accepted: 12/14/2011] [Indexed: 05/31/2023]
Abstract
Brown rust caused by the fungus Puccinia melanocephala is a major disease of sugarcane (Saccharum spp.). A sugarcane mutant, obtained by chemical mutagenesis of the susceptible variety B4362, showed a post-haustorial hypersensitive response (HR)-mediated resistance to the pathogen and was used to identify genes differentially expressed in response to P. melanocephala via suppression subtractive hybridization (SSH). Tester cDNA was derived from the brown rust-resistant mutant after inoculation with P. melanocephala, while driver cDNAs were obtained from the non-inoculated resistant mutant and the inoculated susceptible donor variety B4362. Database comparisons of the sequences of the SSH recombinant clones revealed that, of a subset of 89 non-redundant sequences, 88% had similarity to known functional genes, while 12% were of unknown function. Thirteen genes were selected for transcript profiling in the resistant mutant and the susceptible donor variety. Genes involved in glycolysis and C4 carbon fixation were up-regulated in both interactions probably due to disturbance of sugarcane carbon metabolism by the pathogen. Genes related with the nascent polypeptide associated complex, post-translational proteome modulation and autophagy were transcribed at higher levels in the compatible interaction. Up-regulation of a putative L-isoaspartyl O-methyltransferase S-adenosylmethionine gene in the compatible interaction may point to fungal manipulation of the cytoplasmatic methionine cycle. Genes coding for a putative no apical meristem protein, S-adenosylmethionine decarboxylase, non-specific lipid transfer protein, and GDP-L-galactose phosphorylase involved in ascorbic acid biosynthesis were up-regulated in the incompatible interaction at the onset of haustorium formation, and may contribute to the HR-mediated defense response in the rust-resistant mutant.
Collapse
Affiliation(s)
- María I Oloriz
- Instituto de Biotecnología de las Plantas, Universidad Central Marta Abreu de Las Villas, Carretera a Camajuaní km 5.5, 54 830 Santa Clara, Cuba
| | | | | | | | | | | | | |
Collapse
|
188
|
Verma SS, Yajima WR, Rahman MH, Shah S, Liu JJ, Ekramoddoullah AKM, Kav NNV. A cysteine-rich antimicrobial peptide from Pinus monticola (PmAMP1) confers resistance to multiple fungal pathogens in canola (Brassica napus). PLANT MOLECULAR BIOLOGY 2012; 79:61-74. [PMID: 22351159 DOI: 10.1007/s11103-012-9895-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 02/10/2012] [Indexed: 05/21/2023]
Abstract
Canola (Brassica napus), an agriculturally important oilseed crop, can be significantly affected by diseases such as sclerotinia stem rot, blackleg, and alternaria black spot resulting in significant loss of crop productivity and quality. Cysteine-rich antimicrobial peptides isolated from plants have emerged as a potential resource for protection of plants against phytopathogens. Here we report the significance of an antimicrobial peptide, PmAMP1, isolated from western white pine (Pinus monticola), in providing canola with resistance against multiple phytopathogenic fungi. The cDNA encoding PmAMP1 was successfully incorporated into the genome of B. napus, and it's in planta expression conferred greater protection against Alternaria brassicae, Leptosphaeria maculans and Sclerotinia sclerotiorum. In vitro experiments with proteins extracted from transgenic canola expressing Pm-AMP1 demonstrated its inhibitory activity by reducing growth of fungal hyphae. In addition, the in vitro synthesized peptide also inhibited the growth of the fungi. These results demonstrate that generating transgenic crops expressing PmAMP1 may be an effective and versatile method to protect susceptible crops against multiple phytopathogens.
Collapse
Affiliation(s)
- Shiv S Verma
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB T6G 2P5, Canada
| | | | | | | | | | | | | |
Collapse
|
189
|
Grabowski A, Siuda R, Lenc L, Jaroszuk-Ściseł J. Effect of the degree of fusariosis on the physical characteristics of individual wheat kernels. Int J Food Sci Technol 2012. [DOI: 10.1111/j.1365-2621.2012.02949.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
190
|
Shah P, Powell ALT, Orlando R, Bergmann C, Gutierrez-Sanchez G. Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea. J Proteome Res 2012; 11:2178-92. [PMID: 22364583 DOI: 10.1021/pr200965c] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Botrytis cinerea, a model necrotrophic fungal pathogen that causes gray mold as it infects different organs on more than 200 plant species, is a significant contributor to postharvest rot in fresh fruit and vegetables, including tomatoes. By describing host and pathogen proteomes simultaneously in infected tissues, the plant proteins that provide resistance and allow susceptibility and the pathogen proteins that promote colonization and facilitate quiescence can be identified. This study characterizes fruit and fungal proteins solubilized in the B. cinerea-tomato interaction using shotgun proteomics. Mature green, red ripe wild type and ripening inhibited (rin) mutant tomato fruit were infected with B. cinerea B05.10, and the fruit and fungal proteomes were identified concurrently 3 days postinfection. One hundred eighty-six tomato proteins were identified in common among red ripe and red ripe-equivalent ripening inhibited (rin) mutant tomato fruit infected by B. cinerea. However, the limited infections by B. cinerea of mature green wild type fruit resulted in 25 and 33% fewer defense-related tomato proteins than in red and rin fruit, respectively. In contrast, the ripening stage of genotype of the fruit infected did not affect the secreted proteomes of B. cinerea. The composition of the collected proteins populations and the putative functions of the identified proteins argue for their role in plant-pathogen interactions.
Collapse
Affiliation(s)
- Punit Shah
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States
| | | | | | | | | |
Collapse
|
191
|
Molecular cloning and functional analysis of a recombinant ribosome-inactivating protein (alpha-momorcharin) from Momordica charantia. Appl Microbiol Biotechnol 2012; 96:939-50. [PMID: 22262229 DOI: 10.1007/s00253-012-3886-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 12/29/2011] [Accepted: 12/31/2011] [Indexed: 10/14/2022]
Abstract
Alpha-momorcharin (α-MC), a member of the ribosome-inactivating protein (RIP) family, has been used not only as antiviral, antimicrobial, and antitumor agents, but also as toxicant to protozoa, insects, and fungi. In this study, we expressed the protein in Escherichia coli Rosetta (DE3) pLysS strain and purified it by nickel-nitrilotriacetic acid affinity chromatography. A total of 85 mg of homogeneous protein was obtained from 1 l culture supernatant of Rosetta (DE3) pLysS, showing a high recovery rate of 73.9%. Protein activity assay indicated that α-MC had both N-glycosidase activity and DNA-nuclease activity, the former releasing RIP diagnostic RNA fragment (Endo's fragment) from rice rRNAs and the latter converting supercoiled circular DNA of plasmid pET-32a(+) into linear conformations in a concentration-dependent manner. Specially, we found that α-MC could inhibit the mycelial growth of Fusarium solani and Fusarium oxysporum with IC(50) values of 6.23 and 4.15 μM, respectively. Results of optical microscopy and transmission electron microscopy demonstrated that α-MC caused extensive septum formation, loss of integrity of the cell wall, separation of the cytoplasm from the cell wall, deformation of cells with irregular budding sites, and apoptosis in F. solani. Moreover, α-MC was active against Pseudomonas aeruginosa with an IC(50) value of 0.59 μM. The α-MC protein carries a high potential for the design of new antifungal drugs or the development of transgenic crops resistant to pathogens.
Collapse
|
192
|
Rivero M, Furman N, Mencacci N, Picca P, Toum L, Lentz E, Bravo-Almonacid F, Mentaberry A. Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens. J Biotechnol 2012; 157:334-43. [PMID: 22115953 DOI: 10.1016/j.jbiotec.2011.11.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 10/07/2011] [Accepted: 11/04/2011] [Indexed: 10/15/2022]
Abstract
Solanum tuberosum plants were transformed with three genetic constructions expressing the Nicotiana tabacum AP24 osmotine, Phyllomedusa sauvagii dermaseptin and Gallus gallus lysozyme, and with a double-transgene construction expressing the AP24 and lysozyme sequences. Re-transformation of dermaseptin-transformed plants with the AP24/lysozyme construction allowed selection of plants simultaneously expressing the three transgenes. Potato lines expressing individual transgenes or double- and triple-transgene combinations were assayed for resistance to Erwinia carotovora using whole-plant and tuber infection assays. Resistance levels for both infection tests compared consistently for most potato lines and allowed selection of highly resistant phenotypes. Higher resistance levels were found in lines carrying the dermaseptin and lysozyme sequences, indicating that theses proteins are the major contributors to antibacterial activity. Similar results were obtained in tuber infection tests conducted with Streptomyces scabies. Plant lines showing the higher resistance to bacterial infections were challenged with Phytophthora infestans, Rhizoctonia solani and Fusarium solani. Considerable levels of resistance to each of these pathogens were evidenced employing semi-quantitative tests based in detached-leaf inoculation, fungal growth inhibition and in vitro plant inoculation. On the basis of these results, we propose that stacking of these transgenes is a promising approach to achieve resistance to both bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Mercedes Rivero
- Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires. Av. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
193
|
Liu Y, Zhou Z, Miao W, Zhang Y, Cao Y, He S, Bai D, Yao B. A Chitinase from Aeromonas veronii CD3 with the potential to control myxozoan disease. PLoS One 2011; 6:e29091. [PMID: 22205999 PMCID: PMC3242780 DOI: 10.1371/journal.pone.0029091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/21/2011] [Indexed: 11/18/2022] Open
Abstract
Background The class Myxosporea encompasses about 2,400 species, most of which are parasites of fish and cause serious damage in aquaculture. Due to the concerns about food safety issues and limited knowledge of Myxozoa life cycle and fish immune system, no chemicals, antibiotics or immune modulators are available to control myxozoa infection. Therefore, little can be done once Myxozoa establishment has occurred. Methodology/Principal Findings In this paper we isolated Aeromonas veronii CD3 with significant myxospore shell valve-degrading ability from pond sediment. A 3,057-bp full-length chitinase gene was consequently cloned, and the corresponding mature, recombinant chitinase (ChiCD3) produced by Escherichia coli had substantial chitinase activity. The deduced sequence of ChiCD3 contained one catalytic domain, two chitin-binding domains, and one putative signal peptide. ChiCD3 had an optimal activity at 50°C and pH 6.0, and retained more than 50% of its optimal activity under warm water aquaculture conditions (∼30°C and pH ∼7.0). After incubation with ChiCD3, 38.0±4.8% of the myxospores had damaged shell valves, whereas myxospores incubated with commercially available chitinases remained intact. Conclusion/Significance This study reveals a new strategy to control myxozoan disease. ChiCD3 that has capacity to damage the shell valve of myxospores can be supplemented into fish feed and used to control Myxozoa-induced diseases specifically.
Collapse
Affiliation(s)
- Yuchun Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- * E-mail: (ZZ); (BY)
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Yuting Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yanan Cao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Suxu He
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Dongqing Bai
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Fisheries Science Department, Tianjin Agricultural University, Tianjin, People's Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- * E-mail: (ZZ); (BY)
| |
Collapse
|
194
|
Efficacy of killer yeasts in the biological control of Penicillium digitatum on Tarocco orange fruits (Citrus sinensis). Food Microbiol 2011; 30:219-25. [PMID: 22265304 DOI: 10.1016/j.fm.2011.12.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 11/23/2022]
Abstract
Killer Saccharomyces cerevisiae and Wickerhamomyces anomalus yeast strains were tested as biocontrol agents against Penicillium digitatum, one the most important causes of postharvest decay in orange fruits. W. anomalus, grown on acidified medium, demonstrated micocinogenic activity against P. digitatum, as indicated by large inhibition halos and hyphal damage resulting from β-glucanase activity. Oranges that had been deliberately inoculated with pathogens were protected from decay by W. anomalus. Inoculation of oranges with W. anomalus strains BS 91 and BS 92 reduced disease severity to 1 and 4%, respectively, for up to 10 days in storage.
Collapse
|
195
|
Canam T, Town JR, Tsang A, McAllister TA, Dumonceaux TJ. Biological pretreatment with a cellobiose dehydrogenase-deficient strain of Trametes versicolor enhances the biofuel potential of canola straw. BIORESOURCE TECHNOLOGY 2011; 102:10020-10027. [PMID: 21903381 DOI: 10.1016/j.biortech.2011.08.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 05/31/2023]
Abstract
The use of Trametes versicolor as a biological pretreatment for canola straw was explored in the context of biofuel production. Specifically, the effects on the straw of a wild-type strain (52J) and a cellobiose dehydrogenase (CDH)-deficient strain (m4D) were investigated. The xylose and glucose contents of the straw treated with 52J were significantly reduced, while only the xylose content was reduced with m4D treatment. Lignin extractability was greatly improved with fungal treatments compared to untreated straw. Saccharification of the residue of the m4D-treated straw led to a significant increase in proportional glucose yield, which was partially attributed to the lack of cellulose catabolism by m4D. Overall, the results of this study indicate that CDH facilitates cellulose access by T. versicolor. Furthermore, treatment of lignocellulosic material with m4D offers improvements in lignin extractability and saccharification efficacy compared to untreated biomass without loss of substrate due to fungal catabolism.
Collapse
Affiliation(s)
- Thomas Canam
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada
| | | | | | | | | |
Collapse
|
196
|
Sonthi M, Toubiana M, Pallavicini A, Venier P, Roch P. Diversity of coding sequences and gene structures of the antifungal peptide mytimycin (MytM) from the Mediterranean mussel, Mytilus galloprovincialis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:857-867. [PMID: 21246236 DOI: 10.1007/s10126-010-9345-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 11/30/2010] [Indexed: 05/30/2023]
Abstract
Knowledge on antifungal biomolecules is limited compared to antibacterial peptides. A strictly antifungal peptide from the blue mussel, Mytilus edulis named mytimycin (MytM) was reported in 1996 as partial NH(2) 33 amino acid sequence. Using back-translations of the previous sequence, MytM-related nucleotide sequences were identified from a normalized Mytilus galloprovincialis expressed sequence tag library. Primers designed from a consensus sequence have been used to obtain a fragment of 560 nucleotides, including the complete coding sequence of 456 nucleotides. Precursor is constituted by a signal peptide of 23 amino acids, followed by MytM of 54 amino acids (6.2-6.3 kDa, 12 cysteines) and C-terminal extension of 75 amino acids. Only two major amino acid precursor sequences emerged, one shared by M. galloprovincialis from Venice and Vigo, the other belonging to M. galloprovincialis from Palavas, with nine amino acid differences between the two MytM. Predicted disulfide bonds suggested the presence of two constrained domains joined by amino acidic NIFG track. Intriguing was the presence of conserved canonical EF hand-motif located in the C-terminus extension of the precursor. The MytM gene was found interrupted by two introns. Intron 2 existed in two forms, a long (1,112 nucleotides) and a short (716 nucleotides) one resulting from the removal of the central part of the long one. Both the short (GenBank FJ804479) and the long (GenBank FJ804478) genes are simultaneously present in the mussel genome.
Collapse
Affiliation(s)
- Molruedee Sonthi
- Ecosystèmes Lagunaires, CNRS-Université Montpellier 2, cc093, place E. Bataillon, 34095, Montpellier, Cedex 05, France
| | | | | | | | | |
Collapse
|
197
|
Ono S, Kusama M, Ogura R, Hiratsuka K. Evaluation of the use of the tobacco PR-1a promoter to monitor defense gene expression by the luciferase bioluminescence reporter system. Biosci Biotechnol Biochem 2011; 75:1796-800. [PMID: 21897029 DOI: 10.1271/bbb.110326] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Because of their marked responsiveness to induction signals, genes encoding pathogenesis-related proteins are used as markers to monitor defense gene expression in plants. To develop a non-invasive bioluminescence reporter assay system, we tested acidic PR-1 gene promoters from tobacco and Arabidopsis. These two promoters share common regulatory elements and are believed to show similar responsiveness to various stimuli but the results of transient expression assays by microprojectile bombardment of various plant cells and npr1 mutant Arabidopsis suggest that the tobacco PR-1a promoter is superior to its Arabidopsis counterpart in terms of responsiveness to salicylic acid treatment. Transgenic Arabidopsis seedlings harboring the tobacco PR-1a promoter fused to firefly luciferase showed marked induction in response to treatment with chemicals that induce defense gene expression in plants. These results suggest that the tobacco PR-1a promoter is applicable in monitoring defense-gene expression in various plant species.
Collapse
Affiliation(s)
- Sachiko Ono
- Graduate School of Environment and Information Sciences, Yokohama National University
| | | | | | | |
Collapse
|
198
|
Vandenborre G, Smagghe G, Van Damme EJM. Plant lectins as defense proteins against phytophagous insects. PHYTOCHEMISTRY 2011; 72:1538-50. [PMID: 21429537 DOI: 10.1016/j.phytochem.2011.02.024] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 05/19/2023]
Abstract
One of the most important direct defense responses in plants against the attack by phytophagous insects is the production of insecticidal peptides or proteins. One particular class of entomotoxic proteins present in many plant species is the group of carbohydrate-binding proteins or lectins. During the last decade a lot of progress was made in the study of a few lectins that are expressed in response to herbivory by phytophagous insects and the insecticidal properties of plant lectins in general. This review gives an overview of lectins with high potential for the use in pest control strategies based on their activity towards pest insects. In addition, potential target sites for lectins inside the insect and the mode of action are discussed. In addition, the effect of plant lectins on non-target organisms such as beneficial insects as well as on human/animal consumers is discussed. It can be concluded that some insecticidal lectins are useful tools that can contribute to the development of integrated pest management strategies with minimal effect(s) on non-target organisms.
Collapse
Affiliation(s)
- Gianni Vandenborre
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | | | | |
Collapse
|
199
|
Huffaker A, Kaplan F, Vaughan MM, Dafoe NJ, Ni X, Rocca JR, Alborn HT, Teal PEA, Schmelz EA. Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. PLANT PHYSIOLOGY 2011; 156:2082-97. [PMID: 21690302 PMCID: PMC3149930 DOI: 10.1104/pp.111.179457] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 06/18/2011] [Indexed: 05/18/2023]
Abstract
Nonvolatile terpenoid phytoalexins occur throughout the plant kingdom, but until recently were not known constituents of chemical defense in maize (Zea mays). We describe a novel family of ubiquitous maize sesquiterpenoid phytoalexins, termed zealexins, which were discovered through characterization of Fusarium graminearum-induced responses. Zealexins accumulate to levels greater than 800 μg g⁻¹ fresh weight in F. graminearum-infected tissue. Their production is also elicited by a wide variety of fungi, Ostrinia nubilalis herbivory, and the synergistic action of jasmonic acid and ethylene. Zealexins exhibit antifungal activity against numerous phytopathogenic fungi at physiologically relevant concentrations. Structural elucidation of four members of this complex family revealed that all are acidic sesquiterpenoids containing a hydrocarbon skeleton that resembles β-macrocarpene. Induced zealexin accumulation is preceded by increased expression of the genes encoding TERPENE SYNTHASE6 (TPS6) and TPS11, which catalyze β-macrocarpene production. Furthermore, zealexin accumulation displays direct positive relationships with the transcript levels of both genes. Microarray analysis of F. graminearum-infected tissue revealed that Tps6/Tps11 were among the most highly up-regulated genes, as was An2, an ent-copalyl diphosphate synthase associated with production of kauralexins. Transcript profiling suggests that zealexins cooccur with a number of antimicrobial proteins, including chitinases and pathogenesis-related proteins. In addition to zealexins, kauralexins and the benzoxazinoid 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one-glucose (HDMBOA-glucose) were produced in fungal-infected tissue. HDMBOA-glucose accumulation occurred in both wild-type and benzoxazine-deficient1 (bx1) mutant lines, indicating that Bx1 gene activity is not required for HDMBOA biosynthesis. Together these results indicate an important cooperative role of terpenoid phytoalexins in maize biochemical defense.
Collapse
Affiliation(s)
- Alisa Huffaker
- Center for Medical, Agricultural, and Veterinary Entomology, United States Department of Agriculture, Agricultural Research Service, Chemistry Research Unit, Gainesville, Florida 32608, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Zhang N, Zhang S, Borchert S, Richardson K, Schmid J. High levels of a fungal superoxide dismutase and increased concentration of a PR-10 plant protein in associations between the endophytic fungus Neotyphodium lolii and ryegrass. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:984-92. [PMID: 21520999 DOI: 10.1094/mpmi-02-11-0028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Neotyphodium lolii is a fungal endosymbiont of the ryegrass Lolium perenne. Its growth is tightly controlled and synchronized with that of the plant. How the symbionts communicate is largely unknown but failure of the endophyte to elicit a defense response is considered crucial for successful symbiosis. In silver-stained two-dimensional gels of protein extracts from endophyte-infected ryegrass, a fungal Cu/Zn superoxide dismutase was detectable, even though the fungus accounts for only <¹/500 of the biomass, indicating that it is an abundant fungal protein and that the fungus needs protection against reactive oxygen species. The plant increased levels of a pathogenesis-related class 10 (PR-10) protein; when equal amounts of protein from infected and uninfected plants were loaded, PR-10 was only detectable in extracts from infected plants. Presence of the endophyte did not lead to a significant increase in PR10 transcript levels. In protein extracts from a symbiosis containing an N. lolii variant with an abnormal in planta growth pattern, the fungal Cu/Zn superoxide dismutase but not PR-10 protein was detectable. The correlation between increased PR-10 levels and presence of a normally growing endophyte is suggestive of a role of a very limited host defense in the interaction between grass and endophyte.
Collapse
Affiliation(s)
- Ningxin Zhang
- Institute for Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | | | | | | | | |
Collapse
|