151
|
Valentine PJ, Devore BP, Heffron F. Identification of three highly attenuated Salmonella typhimurium mutants that are more immunogenic and protective in mice than a prototypical aroA mutant. Infect Immun 1998; 66:3378-83. [PMID: 9632608 PMCID: PMC108355 DOI: 10.1128/iai.66.7.3378-3383.1998] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A panel of Salmonella typhimurium 14028s mutants, which were previously shown to be highly attenuated in the BALB/c mouse model of infection, were analyzed for their potential as live Salmonella oral-vaccine candidates. A prototypical aroA mutant was chosen as a basis of comparison. From the panel of mutants initially chosen for this study, three mutants with comparable levels of attenuation elicited higher Salmonella-specific serum immunoglobulin G (IgG) and/or mucosal secretory-IgA antibody titers than the aroA vaccine strain. The three mutants, CL288, CL401, and CL554, also elicited a better protective immune response than the aroA control strain, after a single oral dose of 1 x 10(9) to 2 x 10(9) bacteria.
Collapse
Affiliation(s)
- P J Valentine
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon, USA.
| | | | | |
Collapse
|
152
|
Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998; 393:537-44. [PMID: 9634230 DOI: 10.1038/31159] [Citation(s) in RCA: 5770] [Impact Index Per Article: 213.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Countless millions of people have died from tuberculosis, a chronic infectious disease caused by the tubercle bacillus. The complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis, H37Rv, has been determined and analysed in order to improve our understanding of the biology of this slow-growing pathogen and to help the conception of new prophylactic and therapeutic interventions. The genome comprises 4,411,529 base pairs, contains around 4,000 genes, and has a very high guanine + cytosine content that is reflected in the biased amino-acid content of the proteins. M. tuberculosis differs radically from other bacteria in that a very large portion of its coding capacity is devoted to the production of enzymes involved in lipogenesis and lipolysis, and to two new families of glycine-rich proteins with a repetitive structure that may represent a source of antigenic variation.
Collapse
Affiliation(s)
- S T Cole
- Sanger Centre, Wellcome Trust Genome Campus, Hinxton, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Arnau J, Jørgensen F, Madsen SM, Vrang A, Israelsen H. Cloning of the Lactococcus lactis adhE gene, encoding a multifunctional alcohol dehydrogenase, by complementation of a fermentative mutant of Escherichia coli. J Bacteriol 1998; 180:3049-55. [PMID: 9620952 PMCID: PMC107803 DOI: 10.1128/jb.180.12.3049-3055.1998] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Lactococcus lactis adhE gene, which encodes a multifunctional alcohol dehydrogenase, has been cloned and characterized. A DNA fragment encoding the putative alcohol dehydrogenase domain of the AdhE protein was cloned by screening an L. lactis genomic library in a fermentative mutant of Escherichia coli and selecting for the ability to grow anaerobically. Further analysis of the clone obtained allowed the cloning of the entire adhE gene sequence. Analysis of adhE expression in L. lactis during anaerobiosis showed induction at the transcriptional level, especially in medium containing glucose. Constructed mutant strains produced reduced amounts of ethanol under anaerobic conditions. With the L. lactis gene as a probe, adhE homologs were found in other industrially relevant lactic acid bacteria.
Collapse
Affiliation(s)
- J Arnau
- Biotechnological Institute, Hørsholm, Denmark.
| | | | | | | | | |
Collapse
|
154
|
Turner AK, Lovell MA, Hulme SD, Zhang-Barber L, Barrow PA. Identification of Salmonella typhimurium genes required for colonization of the chicken alimentary tract and for virulence in newly hatched chicks. Infect Immun 1998; 66:2099-106. [PMID: 9573095 PMCID: PMC108169 DOI: 10.1128/iai.66.5.2099-2106.1998] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
From a collection of 2,800 Tn5-TC1 transposon mutants of Salmonella typhimurium F98, 18 that showed reduced intestinal colonization of 3-week-old chicks were identified. The sites of transposon insertion were determined for most of the mutants and included insertions in the lipopolysaccharide biosynthesis genes rfaK, rfaY, rfbK, and rfbB and the genes dksA, clpB, hupA, and sipC. In addition, identification was made of an insertion into a novel gene that encodes a protein showing similarity to the IIC component of the mannose class of phosphoenolpyruvate-carbohydrate phosphotransferase systems, which we putatively called ptsC. Transduction of most of the transposon mutations to a fresh S. typhimurium F98 genetic background and construction of defined mutations in the rfbK, dksA, hupA, sipC, and ptsC genes of S. typhimurium F98 supported the role in colonization of all but the pts locus. The virulence of the rfbK, dksA, hupA, sipC, and ptsC defined mutants and clpB and rfaY transductants in 1-day-old chicks was tested. All but the ptsC and rfaY mutants were attenuated for virulence. A number of other phenotypes associated with some of the mutations are described.
Collapse
Affiliation(s)
- A K Turner
- Institute for Animal Health, Compton, Near Newbury, Berkshire, United Kingdom
| | | | | | | | | |
Collapse
|
155
|
Bäumler AJ, Heffron F. Mosaic structure of the smpB-nrdE intergenic region of Salmonella enterica. J Bacteriol 1998; 180:2220-3. [PMID: 9555907 PMCID: PMC107151 DOI: 10.1128/jb.180.8.2220-2223.1998] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/1997] [Accepted: 02/17/1998] [Indexed: 02/07/2023] Open
Abstract
The Salmonella enterica smpB-nrdE intergenic region contains about 45 kb of DNA that is not present in Escherichia coli. This DNA region was not introduced by a single horizontal transfer event, but was generated by multiple insertions and/or deletions that gave rise to a mosaic structure in this area of the chromosome.
Collapse
Affiliation(s)
- A J Bäumler
- Department of Medical Microbiology and Immunology, Texas A&M University, College Station 77843-1114, USA.
| | | |
Collapse
|
156
|
Silver RF, Li Q, Ellner JJ. Expression of virulence of Mycobacterium tuberculosis within human monocytes: virulence correlates with intracellular growth and induction of tumor necrosis factor alpha but not with evasion of lymphocyte-dependent monocyte effector functions. Infect Immun 1998; 66:1190-9. [PMID: 9488413 PMCID: PMC108033 DOI: 10.1128/iai.66.3.1190-1199.1998] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/1996] [Accepted: 12/09/1997] [Indexed: 02/06/2023] Open
Abstract
We assessed the applicability of an in vitro model of low-level infection of human monocytes to the characterization of the virulence of strains of the Mycobacterium tuberculosis family. Peripheral blood monocytes were infected at a 1:1 ratio with the virulent M. tuberculosis strain H37Rv, the avirulent M. tuberculosis strain H37Ra, and the attenuated M. bovis strain BCG. Both the percentages of cells infected by the three strains and the initial numbers of intracellular organisms were equivalent, as were levels of monocyte viability up to 7 days following infection. Intracellular growth reflected virulence, as H37Rv replicated in logarithmic fashion throughout the assay, BCG growth reached a plateau at 4 days, and H37Ra did not grow at all. The same patterns of growth were observed following infection of human alveolar macrophages with H37Rv and H37Ra. Monocyte production of tumor necrosis factor alpha was significantly higher following infection with virulent H37Rv than with either BCG or H37Ra. In contrast, there was no clear correlation of interleukin 10 production with virulence. Nonadherent cells of purified-protein-derivative-positive donors mediated equivalent degrees of reduction of the intracellular growth of H37Rv, BCG, and H37Ra. Low-level infection of human monocytes with H37Rv, BCG, and H37Ra thus provides an in vitro model for assessment of the virulence of these M. tuberculosis family strains. Furthermore, it is suggested that the virulence of these strains is expressed primarily by their differing abilities to adapt to the intracellular environment of the mononuclear phagocyte.
Collapse
Affiliation(s)
- R F Silver
- Division of Pulmonary and Critical Care Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4941, USA.
| | | | | |
Collapse
|
157
|
Hinton JC. 7.2 Genetic Approaches to the Study of Pathogenic Salmonellae. J Microbiol Methods 1998. [DOI: 10.1016/s0580-9517(08)70296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
158
|
Fanning AS, Anderson JM. PDZ domains and the formation of protein networks at the plasma membrane. Curr Top Microbiol Immunol 1997; 228:209-33. [PMID: 9401208 DOI: 10.1007/978-3-642-80481-6_9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- A S Fanning
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8019, USA
| | | |
Collapse
|
159
|
Zhang-Barber L, Turner AK, Martin G, Frankel G, Dougan G, Barrow PA. Influence of genes encoding proton-translocating enzymes on suppression of Salmonella typhimurium growth and colonization. J Bacteriol 1997; 179:7186-90. [PMID: 9371470 PMCID: PMC179664 DOI: 10.1128/jb.179.22.7186-7190.1997] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Twenty-four-hour-old, aerobically grown, Luria-Bertani broth cultures of Salmonella typhimurium F98 suppressed the growth of a spectinomycin-resistant (Spcr) derivative of the same strain inoculated at 10(3) CFU ml(-1). This growth suppression is genus specific and RpoS independent, and it is not solely a result of nutrient depletion (P. A. Barrow, M. A. Lovell, and L. Zhang-Barber, J. Bacteriol. 178:3072-3076, 1996). Mutations in three genes are shown here to significantly reduce growth suppression under these conditions. The mutations were located in the nuo, cyd, and unc operons, which code for the NADH dehydrogenase I, cytochrome d oxidase, and F0F1 proton-translocating ATPase complexes, respectively. When cultures were grown under strictly anaerobic conditions, only the unc mutant did not suppress growth. Prior colonization of the alimentary tract of newly hatched chickens with the S. typhimurium F98 wild type or nuo or cyd mutants suppressed colonization by an S. typhimurium F98 Spcr derivative inoculated 24 h later. In contrast, the S. typhimurium unc mutant did not suppress colonization. The nuo and unc mutants showed poorer growth on certain carbon sources. The data support the hypothesis that growth suppression operates because of the absence of a utilizable carbon source or electron acceptor.
Collapse
Affiliation(s)
- L Zhang-Barber
- Institute for Animal Health, Compton, Nr Newbury, Berkshire, United Kingdom
| | | | | | | | | | | |
Collapse
|
160
|
Phillips RW, Elzer PH, Robertson GT, Hagius SD, Walker JV, Fatemi MB, Enright FM, Roop RM. A Brucella melitensis high-temperature-requirement A (htrA) deletion mutant is attenuated in goats and protects against abortion. Res Vet Sci 1997; 63:165-7. [PMID: 9429252 DOI: 10.1016/s0034-5288(97)90012-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has been previously demonstrated that a Brucella melitensis high-temperature-requirement A (htrA) deletion mutant is more susceptible to oxidative killing in vitro than the parental strain and is attenuated in mice. To evaluate the contribution of the B melitensis HtrA protease to virulence in ruminants, the capacity of the B melitensis htrA mutant RWP5 to produce abortion in goats was compared to that of the virulent parental strain 16M. Experimental infection with strain 16M caused abortion in eight of 12 pregnant nannies, while none of the 12 nannies inoculated with RWP5 aborted. Furthermore, intramuscular injection of fetuses in utero with RWP5 led to colonisation of the fetus with subsequent colonisation of the nanny, but no abortion was observed. Nannies vaccinated with RWP5 showed complete protection against abortion when challenged with 16M during the third trimester of pregnancy. However, these animals were not protected from colonisation by 16M. The results presented here clearly indicate that the B melitensis htrA gene product contributes to pathogenesis in goats, but the utility of B melitensis htrA mutants as vaccines in this host appears to be limited.
Collapse
Affiliation(s)
- R W Phillips
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport 71130, USA
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Pogliano J, Lynch AS, Belin D, Lin EC, Beckwith J. Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system. Genes Dev 1997; 11:1169-82. [PMID: 9159398 DOI: 10.1101/gad.11.9.1169] [Citation(s) in RCA: 247] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We show that the two-component signal transduction system of Escherichia coli, CpxA-CpxR, controls the expression of genes encoding cell envelope proteins involved in protein folding and degradation. These findings are based on three lines of evidence. First, activation of the Cpx pathway induces 5- to 10-fold the synthesis of DsbA, required for disulfide bond formation, and DegP, a major periplasmic protease. Second, using electrophoretic mobility shift and DNase I protection assays, we have shown that phosphorylated CpxR binds to elements upstream of the transcription start sites of dsbA, degP, and ppiA (rotA), the latter coding for a peptidyl-prolyl cis/trans isomerase. Third, we have demonstrated increased in vivo transcription of all three genes, dsbA, degP, and ppiA, when the Cpx pathway is activated. We have identified a putative CpxR consensus binding site that is found upstream of a number of other E. coli genes. These findings suggest a potentially extensive Cpx regulon including genes transcribed by sigma70 and sigma(E), which encode factors involved in protein folding as well as other cellular functions.
Collapse
Affiliation(s)
- J Pogliano
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
162
|
Klose KE, Mekalanos JJ. Simultaneous prevention of glutamine synthesis and high-affinity transport attenuates Salmonella typhimurium virulence. Infect Immun 1997; 65:587-96. [PMID: 9009317 PMCID: PMC176100 DOI: 10.1128/iai.65.2.587-596.1997] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In Salmonella typhimurium, transcription of the glnA gene (encoding glutamine synthetase) is under the control of the nitrogen-regulatory (ntr) system comprising the alternate sigma factor sigma54 (NtrA) and the two-component sensor-transcriptional activator pair NtrB and NtrC. The glnA, ntrB, and ntrC genes form an operon. We measured the virulence of S. typhimurium strains with nitrogen-regulatory mutations after intraperitoneal (i.p.) or oral inoculations of BALB/c mice. Strains with single mutations in glnA, ntrA, ntrB, or ntrC had i.p. 50% lethal doses (LD50s) of <10 bacteria, similar to the wild-type strain. However, a strain with a delta(glnA-ntrC) operon deletion had an i.p. LD50 of >10(5) bacteria, as did delta glnA ntrA and delta glnA ntrC strains, suggesting that glnA strains require an ntr-transcribed gene for full virulence. High-level transcription of the glutamine transport operon (glnHPQ) is dependent upon both ntrA and ntrC, as determined by glnHp-lacZ fusion measurements. Moreover, delta glnA glnH and delta glnA glnQ strains are attenuated, similar to delta glnA ntrA and delta glnA ntrC strains. These results reveal that access of S. typhimurium to host glutamine depends on the ntr system, which apparently is required for the transcription of the glutamine transport genes. The delta(glnA-ntrC) strain exhibited a reduced ability to survive within the macrophage cell line J774, identifying a potential host environment with low levels of glutamine. Finally, the delta(glnA-ntrC) strain, when inoculated at doses as low as 10 organisms, provided mice with protective immunity against challenge by the wild-type strain, demonstrating its potential use as a live vaccine.
Collapse
Affiliation(s)
- K E Klose
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
163
|
Buchmeier NA, Libby SJ. Dynamics of growth and death within a Salmonella typhimurium population during infection of macrophages. Can J Microbiol 1997; 43:29-34. [PMID: 9057293 DOI: 10.1139/m97-005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Survival of Salmonella typhimurium within macrophages is associated with virulence. Most data on the fate of Salmonella during infection of macrophages are derived from viable counts of intracellular bacteria. These counts are a result of a combination of bacterial death and growth within the intracellular population but may not reflect the true levels of either macrophage killing of Salmonella or bacterial growth inside cells. In this study, two independent methods have been used to obtain a more accurate measurement of absolute levels of both death and growth of Salmonella inside macrophages. A purine auxotroph (purD) was used to measure Salmonella death in the absence of bacterial growth and then bacterial growth was measured by supplementing the purD cultures with adenosine. Numbers of dead and live Salmonella were also quantitated using the BacLight staining system, which distinguishes dead from live bacteria. Both methods demonstrate that killing of Salmonella by macrophages is considerably greater than detected using traditional cell counts and that bacterial inactivation occurs throughout the infection period. Salmonella was inactivated at a similar rate in both J774 macrophages (most permissive macrophages) and peritoneal exuadate macrophages (least permissive macrophages), suggesting that the major difference between these cells is the ability to limit bacterial growth. These studies also demonstrate that growth of Salmonella within murine macrophages occurs simultaneously with significant amounts of bacterial death. Identifying the factors responsible for shifting the interaction between macrophages and bacteria toward conditions that favor bacterial growth will be critical to understanding Salmonella virulence.
Collapse
Affiliation(s)
- N A Buchmeier
- Department of Pathology, University of California, San Diego, La Jolla 92093-0640, USA.
| | | |
Collapse
|
164
|
Bäumler AJ, Tsolis RM, van der Velden AW, Stojiljkovic I, Anic S, Heffron F. Identification of a new iron regulated locus of Salmonella typhi. Gene 1996; 183:207-13. [PMID: 8996108 DOI: 10.1016/s0378-1119(96)00560-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In order to identify genes belonging to the Fur regulon of Salmonella typhi which are absent from Escherichia coli K-12, a plasmid gene bank consisting of 4000 independent clones was screened for Fur regulated promoters using the Fur titration assay (FURTA). DNA probes generated from FURTA positive plasmids were then used for hybridization with chromosomal DNA from S. typhi, Salmonella typhimurium and E. coli. Using these techniques we identified an iron regulated locus present in S. typhi and S. typhimurium but not in E. coli. Further cloning and nucleotide sequence analysis identified two open reading frames, termed iroBC, organized in a typical operon structure. The genes iroBC were located at 4 and 57 centisomes on the physical maps of Salmonella typhi and S. typhimurium, respectively. This region of the S. typhimurium chromosome contains a large DNA loop which is absent from the corresponding area of the E. coli chromosome. Finally, we developed a new method for generation of single copy transcriptional fusions. A suicide vector was constructed, which allows for the generation of chromosomal fusions to the promoterless E. coli lacZYA genes. By integration of this construct at the iro locus we could establish iron responsive expression of iroBC.
Collapse
Affiliation(s)
- A J Bäumler
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland 97201-3098, USA
| | | | | | | | | | | |
Collapse
|
165
|
Daniels JJ, Autenrieth IB, Ludwig A, Goebel W. The gene slyA of Salmonella typhimurium is required for destruction of M cells and intracellular survival but not for invasion or colonization of the murine small intestine. Infect Immun 1996; 64:5075-84. [PMID: 8945549 PMCID: PMC174491 DOI: 10.1128/iai.64.12.5075-5084.1996] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Recent studies have shown that Salmonella typhimurium invades the M cells of Peyer's patches (PP) of the murine ileum. The slyA gene of S. typhimurium has also recently been reported to affect virulence of this pathogen in mice and survival in macrophages. We therefore compared the effect on PP tissue of four strains of S. typhimurium: a wild-type strain, two slyA insertion mutants, and a recombinant S. typhimurium derivative carrying multiple copies of slyA. Invasion assays performed 2 and 7 days after orogastric infection revealed significantly lower numbers of bacteria of the slyA mutants and of the SlyA-overproducing strain in PP than of the wild type. However, similar numbers of bacteria of all strains were still present in the lumen of the small intestine after these times. Invasion assays of PP tissue after 90-min ileal loop infection yielded comparable numbers of bacteria of all strains in PP. Transmission and scanning electron microscopy of PP tissue after ileal loop infection demonstrated that the two slyA mutants and the SlyA-overproducing strain were able to attach to, induce membrane ruffling of, and invade M cells in a way morphologically and quantitatively similar to that of the wild type. In contrast to the wild type, both slyA mutants and, to a lesser extent, the SlyA-overproducing strain were significantly impaired in their ability to destroy M cells and adjacent enterocytes. Taken together, these data suggest that slyA is involved in intracellular survival and M-cell cytotoxicity but not in the invasion process and that the amount of SlyA needs to be precisely balanced for virulence.
Collapse
Affiliation(s)
- J J Daniels
- Lehrstuhl für Mikrobiologie, Biozentrum, Universität Würzburg, Germany
| | | | | | | |
Collapse
|
166
|
Elzer PH, Phillips RW, Robertson GT, Roop RM. The HtrA stress response protease contributes to resistance of Brucella abortus to killing by murine phagocytes. Infect Immun 1996; 64:4838-41. [PMID: 8890248 PMCID: PMC174454 DOI: 10.1128/iai.64.11.4838-4841.1996] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Compared with virulent Brucella abortus 2308, the isogenic htrA mutant PHE1 shows decreased resistance to killing by cultured murine neutrophils and macrophages and significant attenuation during the early stages of infection in the BALB/c mouse model. These findings further define the contributions of the htrA gene product to the pathogenesis of B. abortus infections.
Collapse
Affiliation(s)
- P H Elzer
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport 71130-3932, USA
| | | | | | | |
Collapse
|
167
|
Tyagi JS, Das TK, Kinger AK. An M. tuberculosis DNA fragment contains genes encoding cell division proteins ftsX and ftsE, a basic protein and homologues of PemK and small protein B. Gene X 1996; 177:59-67. [PMID: 8921846 DOI: 10.1016/0378-1119(96)00271-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A 4-kb fragment of the M. tuberculosis chromosome was identified which contains several genes including those involved in cell division and possibly macrophage survival. DNA sequence analysis revealed open reading frames (ORFs) encoding putative proteins bearing significant homology with proteins FtsX and FtsE associated with cell division in E. coli, with PemK protein which inhibits cell division in E. coli harboring plasmid R100 and with SmpB protein of Salmonella typhimurium implicated in its survival within macrophages. The ftsX gene is conserved among mycobacteria belonging to the M. tuberculosis Complex. Furthermore, ftsX-specific transcripts were prevalent in equivalent amounts in M. tuberculosis H37Rv and H37Ra as analyzed by RT-PCR and primer extension. Transcription start points (tsp) a and b map in the region upstream of the FtsX ORF whose promoter activity was established by (i) a promoter-fusion experiment and (ii) by mapping the 5' ends of transcripts derived from the promoter-fusion construct. FtsX transcription is modulated as a function of mycobacterial growth and division status, maximum expression being observed in log phase cells. Growth-related expression of ftsX may provide a basis for developing a marker to distinguish actively replicating M. tuberculosis cells from quiescent mycobacteria.
Collapse
Affiliation(s)
- J S Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India.
| | | | | |
Collapse
|
168
|
Ochman H, Soncini FC, Solomon F, Groisman EA. Identification of a pathogenicity island required for Salmonella survival in host cells. Proc Natl Acad Sci U S A 1996; 93:7800-4. [PMID: 8755556 PMCID: PMC38828 DOI: 10.1073/pnas.93.15.7800] [Citation(s) in RCA: 505] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have identified a region unique to the Salmonella typhimurium chromosome that is essential for virulence in mice. This region harbors at least three genes: two (spiA and spiB) encode products that are similar to proteins found in type III secretion systems, and a third (spiR) encodes a putative regulator. A strain with a mutation in spiA was unable to survive within macrophages but displayed wild-type levels of epithelial cell invasion. The culture supernatants of the spi mutants lacked a modified form of flagellin, which was present in the supernatant of the wild-type strain. This suggests that the Spi secretory apparatus exports a protease, or a protein that can alter the activity of a secreted protease. The "pathogenicity island" harboring the spi genes may encode the virulence determinants that set Salmonella apart from other enteric pathogens.
Collapse
Affiliation(s)
- H Ochman
- Department of Biology, University of Rochester, NY 14627, USA
| | | | | | | |
Collapse
|
169
|
Li SR, Dorrell N, Everest PH, Dougan G, Wren BW. Construction and characterization of a Yersinia enterocolitica O:8 high-temperature requirement (htrA) isogenic mutant. Infect Immun 1996; 64:2088-94. [PMID: 8675311 PMCID: PMC174040 DOI: 10.1128/iai.64.6.2088-2094.1996] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The high-temperature requirement (HtrA) family of stress response proteins are induced by different environmental stress conditions in a variety of bacteria and have been shown to contribute to the pathogenicity of some of these species. In this study, the htrA gene from Yersinia enterocolitica O:8 was amplified, cloned, and sequenced. Analysis of the deduced amino acid sequence predicted that the putative HtrA homolog contains a serine protease active site and a catalytic triad characteristic of trypsin-like serine proteases, structural features characteristic of previously described HtrA proteins. In order to evaluate the biological functions of Y. enterocolitica HtrA, an isogenic mutant was constructed by a reverse-genetics PCR-based approach. Characterization of the mutant provided evidence supporting a stress response function for the Y. enterocolitica htrA gene product. In contrast to the parent strain, the mutant showed increased sensitivity to killing by H2O2, O2- and temperature stress (50 degrees C). The mutant was avirulent in the murine yersiniosis injection model and offered partial protection to mice challenged with the parent strain. Further studies with the Y. enterocolitica htrA mutant should increase our knowledge of the host-pathogen interactions which occur during Yersinia infections.
Collapse
Affiliation(s)
- S R Li
- Department of Medical Microbiology, St. Bartholomew's Hospital, London, United Kingdom
| | | | | | | | | |
Collapse
|
170
|
Schmitt CK, Darnell SC, O'Brien AD. The attenuated phenotype of a Salmonella typhimurium flgM mutant is related to expression of FliC flagellin. J Bacteriol 1996; 178:2911-5. [PMID: 8631681 PMCID: PMC178028 DOI: 10.1128/jb.178.10.2911-2915.1996] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The flgM gene of Salmonella typhimurium encodes a negative regulator of flagellin synthesis that acts by inhibiting the flagellum-specific sigma factor FliA (sigma 28), but only when a mutation in a flagellar basal body, hook, or switch gene is present. We previously showed that FlgM is also necessary for the virulence of S. typhimurium in the mouse model of typhoid fever and proposed that FlgM is required to modulate the activity of the FliA sigma factor, which, in turn, regulates a gene involved in virulence. In this investigation, we observed that (i) the in vitro generation times of flgM mutant and wild-type strains of S. typhimurium were indistinguishable, as were the amounts of flagellin produced by the strains; (ii) the 50% lethal doses of fliA mutant and wild-type strains of S. typhimurium were similar in orally infected mice; and (iii) inactivation of the FliA-regulated flagellin gene fliC in an flgM S. typhimurium mutant resulted in a virulent phenotype. Therefore, we now conclude that expression of the FliC flagellin subunit in an flgM strain is responsible for the attenuated phenotype of an flgM mutant and that FliA does not appear to positively regulate virulence genes in S. typhimurium. Our results suggest that the normal regulation of flagellum synthesis appears to be necessary for virulence and that there may be an advantage conferred in vivo by expression of a particular flagellar phenotype of S. typhimurium.
Collapse
Affiliation(s)
- C K Schmitt
- Department of Microbiology and Immunology, F. Edward Hèbert School of Medicine, University of the Health Sciences, Bethesda, Maryland 20814-4799, USA
| | | | | |
Collapse
|
171
|
Lindgren SW, Stojiljkovic I, Heffron F. Macrophage killing is an essential virulence mechanism of Salmonella typhimurium. Proc Natl Acad Sci U S A 1996; 93:4197-201. [PMID: 8633040 PMCID: PMC39511 DOI: 10.1073/pnas.93.9.4197] [Citation(s) in RCA: 195] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Phagocytic cells are a critical line of defense against infection. The ability of a pathogen to survive and even replicate within phagocytic cells is a potent method of evading the defense mechanisms of the host. A number of pathogens survive within macrophages after phagocytosis and this contributes to their virulence. Salmonella is one of these pathogens. Here we report that 6-14 hr after Salmonella enters the macrophage and replicates, it resides in large vacuoles and causes the destruction of these cells. Furthermore, we identified four independently isolated MudJ-lacZ insertion mutants that no longer cause the formation of these vacuoles or kill the macrophages. All four insertions were located in the ompR/envZ regulon. These findings suggest that killing and escape from macrophages may be as important steps in Salmonella pathogenesis as are survival and replication in these host cells.
Collapse
Affiliation(s)
- S W Lindgren
- Department of Microbiology and Immunology, Oregon Health Sciences University, Portland 97201, USA
| | | | | |
Collapse
|
172
|
Robertson GT, Elzer PH, Roop RM. In vitro and in vivo phenotypes resulting from deletion of the high temperature requirement A (htrA) gene from the bovine vaccine strain Brucella abortus S19. Vet Microbiol 1996; 49:197-207. [PMID: 8734637 DOI: 10.1016/0378-1135(96)84554-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An htrA deletion mutant was created in the bovine vaccine strain, B. abortus S19, by replacing the majority of the htrA gene with a kanamycin resistance gene. Antibiotic selection for a double crossover event yielded kanamycin-resistant, ampicillin-sensitive colonies confirmed by Southern and western blot analysis to be HtrA deficient. The B. abortus S19 htrA mutant was significantly more susceptible than the parental strain to killing by H2O2 (P < 0.001) and O(2)- generated by the redox cycling agent paraquat (P < 0.05) in disk sensitivity assays. Deletion of the htrA gene from S19 produced a bimodal effect on the spleen colonization profile of this strain in BALB/c mice. At one week post-infection, the B. abortus S19 htrA mutant colonized the spleens of experimentally infected BALB/c mice at significantly lower levels (P < 0.01) than the parental strain. Enhanced clearance (P < 0.05) was also observed at later timepoints, i.e. 4 and 7 weeks post infection, however at 2 and 3 weeks post infection, the mutant and parental strains colonized the mice at equivalent levels. The temporal development of specific delayed type hypersensitivity and antibody responses in BALB/c mice infected with the mutant or parental strain were equivalent. These results suggest that the htrA gene product contributes to successful host colonization by S19. However, deletion of this gene does not radically alter the overall, characteristic spleen colonization profile of this vaccine strain in the BALB/c mouse model, nor compromise the capacity of this strain to elicit Brucella cellular or humoral immune responses in this experimental host.
Collapse
Affiliation(s)
- G T Robertson
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport 71130-3932, USA
| | | | | |
Collapse
|
173
|
Abstract
The lifestyle of bacterial pathogens requires them to establish infection in the face of host immunity. Upon entering a potential host, a variety of interactions are initiated, the outcome of which depends upon a myriad of attributes of each of the participants. In this review we discuss the interactions that occur between pathogenic Salmonella species and the host immune systems, but when appropriate to broaden perspective, we have provided a general overview of the interactions between bacterial pathogens and animal hosts. Pathogenic Salmonella species possess an array of invasion genes that produce proteins secreted by a specialized type III secretion apparatus. These proteins are used by the bacteria to penetrate the intestinal mucosa by invading and destroying specialized epithelial M cells of the Peyer's patches. This maneuver deposits the bacteria directly within the confines of the reticuloendothelial system. The host responds to these actions with nonspecific phagocytic cells and an inflammatory response as well as by activating specific cellular and humoral immune responses. Salmonella responds to this show of force directly. It appears that the bacteria invade and establish a niche within the very cells that have been sent to destroy them. Efforts are underway to characterize the factors that allow these intracellular bacteria to customize intracellular vacuoles for their own purposes. It is the constant play between these interactions that determines the outcome of the host infection, and clearly they will also shape the evolution of new survival strategies for both the bacterium and the host.
Collapse
Affiliation(s)
- B D Jones
- Department of Microbiology, University of Iowa School of Medicine, Iowa City 52242, USA
| | | |
Collapse
|
174
|
Glazebrook J, Ichige A, Walker GC. Genetic analysis of Rhizobium meliloti bacA-phoA fusion results in identification of degP: two loci required for symbiosis are closely linked to degP. J Bacteriol 1996; 178:745-52. [PMID: 8550509 PMCID: PMC177721 DOI: 10.1128/jb.178.3.745-752.1996] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The function of the Rhizobium meliloti bacA gene, which is a homolog of the Escherichia coli sbmA gene, is required for an intermediate step in nodule development. A strain carrying the bacA386::TnphoA fusion was mutagenized with N-methyl-N'-nitro-N-nitrosoguanidine, and three mutants that had higher levels of alkaline phosphatase activity were identified. The mutations in these strains were recessive and mapped to the same genetic locus. The gene affected by these mutations was identified and sequenced and was found to be a homolog of the E. coli degP gene, which encodes a periplasmic endopeptidase. Although degP function is important for the virulence of certain intracellular pathogens of mammals, it is not required for the R. meliloti-alfalfa symbiosis. The genetic analyses involving degP were complicated by the presence of a locus immediately upstream of depP that was lethal when present in multiple copies in a DegP- background. R. meliloti derivatives carrying insertion mutations in this locus displayed an N,N,N',N'-tetramethyl-p-phenylenediamine oxidase-negative phenotype, elicited the formation of white cylindrical nodules that did not fix nitrogen, and grew slowly in rich medium, suggesting that the locus was a cyc gene encoding a protein involved in the biosynthesis of a component or components of a respiratory chain. The previously identified fix-382::TnphoA, which similarly causes the formation of white cylindrical nodules that do not fix nitrogen, was shown to affect a gene that is separate from this cyc gene but extremely closely linked to it.
Collapse
Affiliation(s)
- J Glazebrook
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
175
|
Bass S, Gu Q, Christen A. Multicopy suppressors of prc mutant Escherichia coli include two HtrA (DegP) protease homologs (HhoAB), DksA, and a truncated R1pA. J Bacteriol 1996; 178:1154-61. [PMID: 8576052 PMCID: PMC177779 DOI: 10.1128/jb.178.4.1154-1161.1996] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have isolated three multicopy suppressors of the conditional lethal phenotype of a prc (tsp) null strain of Escherichia coli. One of these suppressors included two novel putative protease genes in tandem that map to 3400 kb or 72.5 centisomes on the chromosome. We propose the names hhoA and hhoB, for htrA homolog, to denote that these genes encode proteins that are 58 and 35% identical, respectively, to the HtrA (DegP) serine protease and 36% identical to each other. The HhoA and HhoB proteins are predicted to be 455 and 355 amino acids, respectively, in length. The mature HhoA protein is periplasmic in location, and amino-terminal sequencing shows that it arises following cleavage of a 27-amino-acid signal peptide. Searches of the protein and DNA databases reveal a rapidly growing family of homologous genes in a variety of other bacteria, including several which are required for virulence in their host. Deletion of the hhoAB genes shows that they are not required for viability at high temperatures like the homologous htrA but grow more slowly than wild-type strains. A second multicopy prc suppressor is the dksA (dnaK suppressor) gene, which is also a multicopy suppressor of defects in the heat shock genes dnaK, dnaJ, and grpE. The dksA gene was independently isolated as a multicopy suppressor of a mukB mutation, which is required for chromosomal partitioning. A third dosage-dependent prc suppressor includes a truncated rare lipoprotein A (rlpA) gene.
Collapse
Affiliation(s)
- S Bass
- Department of Molecular Biology, Genentech Inc, South San Francisco, California 94080-4990, USA
| | | | | |
Collapse
|
176
|
Waller PR, Sauer RT. Characterization of degQ and degS, Escherichia coli genes encoding homologs of the DegP protease. J Bacteriol 1996; 178:1146-53. [PMID: 8576051 PMCID: PMC177778 DOI: 10.1128/jb.178.4.1146-1153.1996] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The degQ and degS genes of Escherichia coli encode proteins of 455 and 355 residues, respectively, which are homologs of the DegP protease. The purified DegQ protein has the properties of a serine endoprotease and is processed by the removal of a 27-residue amino-terminal signal sequence. A plasmid expressing degQ rescues the temperature-sensitive phenotype of a strain bearing the degP41 deletion, implying that DegQ, like DegP, functions as a periplasmic protease in vivo. Deletions in the degQ gene cause no obvious growth defect, while those in the degS gene result in a small-colony phenotype. The latter phenotype is rescued by a plasmid expressing the degS gene but not by plasmids expressing the degQ or degP genes. This result and the inability of a plasmid expressing degS to rescue the temperature-sensitive degP41 phenotype indicate that the DegS protein is functionally different from the DegQ and DegP proteins.
Collapse
Affiliation(s)
- P R Waller
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
177
|
Elzer PH, Hagius SD, Robertson GT, Phillips RW, Walker JV, Fatemi MB, Enright FM, Roop RM. Behaviour of a high-temperature-requirement A (HtrA) deletion mutant of Brucella abortus in goats. Res Vet Sci 1996; 60:48-50. [PMID: 8745255 DOI: 10.1016/s0034-5288(96)90130-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Previous studies have shown that high-temperature-requirement A (HtrA) mutants of Brucella abortus are more sensitive to oxidative killing in vitro, are less able to survive in cultured murine macrophages and are attenuated in BALB/c mice. To measure the effect of an HtrA mutation on the virulence of B abortus in ruminants, pregnant goats in late gestation were exposed to infection by the conjunctival route with B abortus 2308 or an isogenic htrA mutant, PHE1. Infection with either 2308 or PHE1 resulted in abortion, but the serological responses to infection were consistent with 2308 but variable with PHE1. Strain 2308 was recovered post mortem both from aborted fetuses and infected dams, whereas PHE1 was recovered from neither. Nevertheless, short term studies revealed that PHE1 could be recovered from infected goats for up to two weeks after infection, suggesting that although the HtrA mutation may change the colonising ability of B abortus, the virulence of the mutant in pregnant goats is not reduced.
Collapse
Affiliation(s)
- P H Elzer
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport 71130, USA
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Wu S, Pascual DW, VanCott JL, McGhee JR, Maneval DR, Levine MM, Hone DM. Immune responses to novel Escherichia coli and Salmonella typhimurium vectors that express colonization factor antigen I (CFA/I) of enterotoxigenic E. coli in the absence of the CFA/I positive regulator cfaR. Infect Immun 1995; 63:4933-8. [PMID: 7591160 PMCID: PMC173709 DOI: 10.1128/iai.63.12.4933-4938.1995] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
An asd-stabilized plasmid carrying enterotoxigenic Escherichia coli cfaABCE genes was constructed and called pJGX15C-asd+. Expression of colonization factor antigen I (CFA/I) by this plasmid occurs independently of the cfaABCE positive regulator cfaR in attenuated Salmonella delta aro delta asd strain H683 and nonpathogenic laboratory E. coli asd strain chi 6212. Oral immunization of mice with nonpathogenic E. coli chi 6212 (pJGX15C-asd+) does not elicit significant serum or mucosal responses against CFA/I. In contrast, oral immunization with a single dose of attenuated S. typhimurium H683(pJGX15C-asd+) elicits a 10(5)-fold increase in CFA/I-specific serum immunoglobulin G and significant elevation of CFA/I-specific immunoglobulin A-secreting B cells in the lamina propria, mesenteric lymph nodes, and spleen. Thus, only the Salmonella-CFA/I construct effectively delivered CFA/I to the inductive sites of the gut-associated and systemic lymphoid tissues.
Collapse
Affiliation(s)
- S Wu
- Center for Vaccine Development, School of Medicine, University of Maryland at Baltimore 21201, USA
| | | | | | | | | | | | | |
Collapse
|
179
|
A Brucella melitensis high temperature requirement A (htrA) deletion mutant demonstrates a stress response defective phenotype in vitro and transient attenuation in the BALB/c mouse model. Microb Pathog 1995. [DOI: 10.1016/s0882-4010(96)80001-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
180
|
Drazek ES, Houng HS, Crawford RM, Hadfield TL, Hoover DL, Warren RL. Deletion of purE attenuates Brucella melitensis 16M for growth in human monocyte-derived macrophages. Infect Immun 1995; 63:3297-301. [PMID: 7642258 PMCID: PMC173454 DOI: 10.1128/iai.63.9.3297-3301.1995] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We constructed a defined purine-auxotrophic mutant of Brucella melitensis 16M by chromosomal gene replacement. We electroporated B. melitensis 16M with suicide plasmids containing a kanamycin resistance cassette that replaced 226 bp at the carboxyl end of purE, the intergenic region, and 18 bases of the purK open reading frame. Recombinant B. melitensis delta purE201 required exogenous purines for growth on minimal media. Purine auxotrophy was complemented by electroporation of B. melitensis delta purE201 failed to grow in human monocyte-derived macrophages, while the growth of wild-type 16M and the complemented strain, delta purE201 (pSD5), increased by nearly two logs. These results suggest that B. melitensis delta purE201 will be attenuated in animals and humans and thus may be useful as a live attenuated vaccine.
Collapse
Affiliation(s)
- E S Drazek
- Department of Infectious and Parasitic Diseases, Armed Forces Institute of Pathology, Washington, D.C. 20306-6000, USA
| | | | | | | | | | | |
Collapse
|
181
|
Tsolis RM, Bäumler AJ, Stojiljkovic I, Heffron F. Fur regulon of Salmonella typhimurium: identification of new iron-regulated genes. J Bacteriol 1995; 177:4628-37. [PMID: 7642488 PMCID: PMC177226 DOI: 10.1128/jb.177.16.4628-4637.1995] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In order to identify genes belonging to the Fur regulon of Salmonella typhimurium, a bank of 10,000 independent S. typhimurium MudJ insertion mutants was screened for lacZ fusions regulated by the iron response regulator Fur. In parallel, a plasmid gene bank of S. typhimurium consisting of 10,000 independent clones was screened for Fur-regulated promoters or iron binding proteins by the Fur titration assay (FURTA). Fur-regulated MudJ insertions and Fur-regulated promoters were mapped. In addition, iron-regulated promoter activities of transcriptional fusions from MudJ insertions and FURTA-positive clones were quantified. The nucleotide sequences of 11 FURTA-positive plasmids and of short fragments of DNA flanking three MudJ insertions were determined. By these methods we identified 14 Fur-regulated genes of S. typhimurium. For 11 of these genes, Fur-regulated homologs have been described in Escherichia coli or Yersinia enterocolitica, including fhuA,fhuB,fepA,fes,fepD,p43,entB,fur ,foxA,hemP, and fhuE. In addition, we identified three genes with homologs in other bacteria which have not previously been shown to be Fur regulated.
Collapse
Affiliation(s)
- R M Tsolis
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland 97201, USA
| | | | | | | |
Collapse
|
182
|
Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, Holden DW. Simultaneous identification of bacterial virulence genes by negative selection. Science 1995; 269:400-3. [PMID: 7618105 DOI: 10.1126/science.7618105] [Citation(s) in RCA: 917] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An insertional mutagenesis system that uses transposons carrying unique DNA sequence tags was developed for the isolation of bacterial virulence genes. The tags from a mixed population of bacterial mutants representing the inoculum and bacteria recovered from infected hosts were detected by amplification, radiolabeling, and hybridization analysis. When applied to a murine model of typhoid fever caused by Salmonella typhimurium, mutants with attenuated virulence were revealed by use of tags that were present in the inoculum but not in bacteria recovered from infected mice. This approach resulted in the identification of new virulence genes, some of which are related to, but functionally distinct from, the inv/spa family of S. typhimurium.
Collapse
Affiliation(s)
- M Hensel
- Department of Infectious Diseases and Bacteriology, Royal Postgraduate Medical School, Hammersmith Hospital, London, UK
| | | | | | | | | | | |
Collapse
|
183
|
Abstract
We present edition VIII of the genetic map of Salmonella typhimurium LT2. We list a total of 1,159 genes, 1,080 of which have been located on the circular chromosome and 29 of which are on pSLT, the 90-kb plasmid usually found in LT2 lines. The remaining 50 genes are not yet mapped. The coordinate system used in this edition is neither minutes of transfer time in conjugation crosses nor units representing "phage lengths" of DNA of the transducing phage P22, as used in earlier editions, but centisomes and kilobases based on physical analysis of the lengths of DNA segments between genes. Some of these lengths have been determined by digestion of DNA by rare-cutting endonucleases and separation of fragments by pulsed-field gel electrophoresis. Other lengths have been determined by analysis of DNA sequences in GenBank. We have constructed StySeq1, which incorporates all Salmonella DNA sequence data known to us. StySeq1 comprises over 548 kb of nonredundant chromosomal genomic sequences, representing 11.4% of the chromosome, which is estimated to be just over 4,800 kb in length. Most of these sequences were assigned locations on the chromosome, in some cases by analogy with mapped Escherichia coli sequences.
Collapse
Affiliation(s)
- K E Sanderson
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
184
|
Mizel SB, Kucera LS, Richardson SH, Ciacci F, Iyer NP. Regulation of macrophage activation and human immunodeficiency virus production by invasive Salmonella strains. Infect Immun 1995; 63:1820-6. [PMID: 7729890 PMCID: PMC173230 DOI: 10.1128/iai.63.5.1820-1826.1995] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Salmonellae possess the ability to adhere to and invade macrophages and in so doing trigger a number of intracellular events that are associated with cellular activation. As an initial approach to defining the mechanisms by which invasive salmonellae alter macrophage function, we have explored the impact of Salmonella infection on the production of human immunodeficiency virus (HIV) in U1 cells, a promonocytic cell line latently infected with the virus. Infection of U1 cells with a pathogenic strain of Salmonella enteritidis resulted in a marked induction of macrophage activation and HIV production. The stimulatory effect of salmonellae was mediated by signals other than lipopolysaccharide. Salmonella mutants with specific defects in invasion or intracellular survival were markedly less effective in the induction of HIV production. In contrast to S. enteritidis, strains of Yersinia enterocolitica, Legionella pneumophila, and Escherichia coli did not induce HIV production. However, all of these bacteria induced comparable levels of gene expression mediated by the HIV long terminal repeat. The results of this study are consistent with the notion that invasive salmonellae possess the ability to activate the macrophage by at least one mechanism that is not shared with several other species of gram-negative bacteria. Furthermore, the expression of this unique property is maximal with Salmonella strains that are not only invasive but also capable of prolonged survival within the macrophage. Our results indicate that the U1 cell line may be a very useful model system with which to examine the biochemical pathways by which internalized salmonellae modulate the activation state of the macrophage.
Collapse
Affiliation(s)
- S B Mizel
- Department of Microbiology and Immunology, Wake Forest University Medical Center, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | |
Collapse
|
185
|
Bäumler AJ, Heffron F. Identification and sequence analysis of lpfABCDE, a putative fimbrial operon of Salmonella typhimurium. J Bacteriol 1995; 177:2087-97. [PMID: 7721701 PMCID: PMC176853 DOI: 10.1128/jb.177.8.2087-2097.1995] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A chromosomal region present in Salmonella typhimurium but absent from related species was identified by hybridization. A DNA probe originating from 78 min on the S. typhimurium chromosome hybridized with DNA from Salmonella enteritidis, Salmonella heidelberg, and Salmonella dublin but not with DNA from Salmonella typhi, Salmonella arizonae, Escherichia coli, and Shigella serotypes. Cloning and sequence analysis revealed that the corresponding region of the S. typhimurium chromosome encodes a fimbrial operon. Long fimbriae inserted at the poles of the bacterium were observed by electron microscopy when this fimbrial operon was introduced into a nonpiliated E. coli strain. The genes encoding these fimbriae were therefore termed lpfABCDE, for long polar fimbriae. Genetically, the lpf operon was found to be most closely related to the fim operon of S. typhimurium, both in gene order and in conservation of the deduced amino acid sequences.
Collapse
Affiliation(s)
- A J Bäumler
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland 97201-3098, USA
| | | |
Collapse
|
186
|
Stojiljkovic I, Bäumler AJ, Heffron F. Ethanolamine utilization in Salmonella typhimurium: nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster. J Bacteriol 1995; 177:1357-66. [PMID: 7868611 PMCID: PMC176743 DOI: 10.1128/jb.177.5.1357-1366.1995] [Citation(s) in RCA: 275] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A fragment of the Salmonella typhimurium ethanolamine utilization operon was cloned and characterized. The 6.3-kb nucleotide sequence encoded six complete open reading frames, termed cchA, cchB, eutE, eutJ, eutG, and eutH. In addition, the nucleotide sequences of two incomplete open reading frames, termed eutX and eutI, were also determined. Comparison of the deduced amino acid sequences and entries in the GenBank database indicated that eutI encodes a phosphate acetyltransferase-like enzyme. The deduced amino acid sequences of the EutE and EutG proteins revealed a significant degree of homology with the Escherichia coli alcohol dehydrogenase AdhE sequence. Mutations in eutE or eutG completely abolished the ability of mutants to utilize ethanolamine as a carbon source and reduced the ability to utilize ethanolamine as a nitrogen source. The product of eutE is most probably an acetaldehyde dehydrogenase catalyzing the conversion of acetaldehyde into acetyl coenzyme A. The product of the eutG gene, an uncommon iron-containing alcohol dehydrogenase, may protect the cell from unconverted acetaldehyde by converting it into an alcohol. The deduced amino acid sequence of cchA resembles that of carboxysome shell proteins from Thiobacillus neapolitanus and Synechococcus sp. as well as that of the PduA product from S. typhimurium. CchA and CchB proteins may be involved in the formation of an intracellular microcompartment responsible for the metabolism of ethanolamine. The hydrophobic protein encoded by the eutH gene possesses some characteristics of bacterial permeases and might therefore be involved in the transport of ethanolamine. Ethanolamine-utilization mutants were slightly attenuated in a mouse model of S. typhimurium infection, indicating that ethanolamine may be an important source of nitrogen and carbon for S. typhimurium in vivo.
Collapse
Affiliation(s)
- I Stojiljkovic
- Department of Microbiology and Immunology, Oregon Health Sciences University, Portland 97201
| | | | | |
Collapse
|
187
|
Elzer PH, Phillips RW, Kovach ME, Peterson KM, Roop RM. Characterization and genetic complementation of a Brucella abortus high-temperature-requirement A (htrA) deletion mutant. Infect Immun 1994; 62:4135-9. [PMID: 7927667 PMCID: PMC303087 DOI: 10.1128/iai.62.10.4135-4139.1994] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In order to evaluate the biological function of the Brucella abortus high-temperature-requirement A (HtrA) stress response protein homolog, the majority of the htrA gene was deleted from the chromosome of B. abortus 2308 via gene replacement. In contrast to the parental strain, the resulting htrA deletion mutant, designated PHE1, failed to grow on solid medium at 40 degrees C and demonstrated increased sensitivity to killing by H2O2 and O2- in disk sensitivity assays. BALB/c mice were infected with strains 2308 and PHE1 to assess the effect of the htrA mutation on virulence, and significantly fewer brucellae were recovered from the spleens of mice infected with PHE1 than from those of mice infected with 2308 at 1 week postinfection. Genetic complementation studies were performed to confirm the relationship between the htrA mutation and the phenotype observed for PHE1. Plasmid pRIE1 was constructed by inserting a 1.9-kb EcoRI fragment encoding the B. abortus htrA gene into the broad-host-range plasmid pBBR1MCS. Introduction of pRIE1 into PHE1 relieved the temperature- and H2O2-sensitive phenotypes of this mutant in vitro, and PHE1(pRIE1) colonized the spleens of BALB/c mice at levels equivalent to those of the parental 2308 strain at 1 week postinfection. These results support our previous proposal that the B. abortus htrA gene product functions as a stress response protein and further suggest that this protein contributes to virulence. These studies also demonstrate the utility of the broad-host-range plasmid pBBR1MCS for genetic complementation studies in Brucella spp., establishing a key reagent for more detailed genetic analysis of this important zoonotic pathogen.
Collapse
Affiliation(s)
- P H Elzer
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport 71130-3932
| | | | | | | | | |
Collapse
|