151
|
Gregor CR, Cerasoli E, Tulip PR, Ryadnov MG, Martyna GJ, Crain J. Autonomous folding in the membrane proximal HIV peptide gp41659–671: pH tuneability at micelle interfaces. Phys Chem Chem Phys 2011; 13:127-35. [DOI: 10.1039/c0cp01502d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
152
|
Abstract
Enveloped viruses penetrate their cell targets following the merging of their membrane with that of the cell. This fusion process is catalyzed by one or several viral glycoproteins incorporated on the membrane of the virus. These envelope glycoproteins (EnvGP) evolved in order to combine two features. First, they acquired a domain to bind to a specific cellular protein, named "receptor." Second, they developed, with the help of cellular proteins, a function of finely controlled fusion to optimize the replication and preserve the integrity of the cell, specific to the genus of the virus. Following the activation of the EnvGP either by binding to their receptors and/or sometimes the acid pH of the endosomes, many changes of conformation permit ultimately the action of a specific hydrophobic domain, the fusion peptide, which destabilizes the cell membrane and leads to the opening of the lipidic membrane. The comprehension of these mechanisms is essential to develop medicines of the therapeutic class of entry inhibitor like enfuvirtide (Fuzeon) against human immunodeficiency virus (HIV). In this chapter, we will summarize the different envelope glycoprotein structures that viruses develop to achieve membrane fusion and the entry of the virus. We will describe the different entry pathways and cellular proteins that viruses have subverted to allow infection of the cell and the receptors that are used. Finally, we will illustrate more precisely the recent discoveries that have been made within the field of the entry process, with a focus on the use of pseudoparticles. These pseudoparticles are suitable for high-throughput screenings that help in the development of natural or artificial inhibitors as new therapeutics of the class of entry inhibitors.
Collapse
Affiliation(s)
- François-Loic Cosset
- Université de Lyon, UCB-Lyon1, IFR128, Lyon, France,INSERM, U758, Lyon, France,Ecole Normale Supérieure de Lyon, Lyon, France
| | - Dimitri Lavillette
- Université de Lyon, UCB-Lyon1, IFR128, Lyon, France,INSERM, U758, Lyon, France,Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
153
|
Shimura K, Nameki D, Kajiwara K, Watanabe K, Sakagami Y, Oishi S, Fujii N, Matsuoka M, Sarafianos SG, Kodama EN. Resistance profiles of novel electrostatically constrained HIV-1 fusion inhibitors. J Biol Chem 2010; 285:39471-80. [PMID: 20937812 PMCID: PMC2998136 DOI: 10.1074/jbc.m110.145789] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 09/27/2010] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus (HIV) gp41 plays a key role in viral fusion; the N- and C-terminal heptad repeats (N-HR and C-HR) of gp41 form a stable 6-helical conformation for fusion. Therefore, HR-derived peptides, such as enfuvirtide (T-20), inhibit HIV-1 fusion by acting as decoys, and have been used for the treatment of HIV-1 infection. However, the efficacy of T-20 is attenuated by resistance mutations in gp41, including V38A and N43D. To suppress the resistant variants, we previously developed electrostatically constrained peptides, SC34 and SC34EK, and showed that both exhibited potent anti-HIV-1 activity against wild-type and T-20-resistant variants. In this study, to clarify the resistance mechanism to this next generation of fusion inhibitors, we selected variants with resistance to SC34 and SC34EK in vitro. The resistant variants had multiple mutations in gp41. All of these mutations individually caused less than 6-fold resistance to SC34 and SC34EK, indicating that there is a significant genetic barrier for high-level resistance. Cross-resistance to SC34 and SC34EK was reduced by a simple difference in the polarity of two intramolecular electrostatic pairs. Furthermore, the selected mutations enhanced the physicochemical interactions with N-HR variants and restored activities of the parental peptide, C34, even to resistant variants. These results demonstrate that our approach of designing gp41-binding inhibitors using electrostatic constraints and information derived from resistance studies produces inhibitors with enhanced activity, high genetic barrier, and distinct resistance profile from T-20 and other inhibitors. Hence, this is a promising approach for the design of future generation peptide fusion inhibitors.
Collapse
Affiliation(s)
- Kazuya Shimura
- From the Laboratory of Virus Control, Institute for Virus Research, and
| | - Daisuke Nameki
- From the Laboratory of Virus Control, Institute for Virus Research, and
| | - Keiko Kajiwara
- From the Laboratory of Virus Control, Institute for Virus Research, and
| | - Kentaro Watanabe
- Graduate School of Pharmaceutical Science, Kyoto University, 606-8507 Kyoto, Japan
| | - Yasuko Sakagami
- From the Laboratory of Virus Control, Institute for Virus Research, and
| | - Shinya Oishi
- Graduate School of Pharmaceutical Science, Kyoto University, 606-8507 Kyoto, Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Science, Kyoto University, 606-8507 Kyoto, Japan
| | - Masao Matsuoka
- From the Laboratory of Virus Control, Institute for Virus Research, and
| | - Stefan G. Sarafianos
- the Christopher S. Bond Life Sciences Center and Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - Eiichi N. Kodama
- From the Laboratory of Virus Control, Institute for Virus Research, and
- the Division of Emerging Infectious Diseases, Tohoku University School of Medicine, 980-8575 Sendai, Japan, and
| |
Collapse
|
154
|
Interfacial properties and structure stability of the gp41 tryptophan-rich peptide from HIV-1. J Colloid Interface Sci 2010; 352:520-5. [DOI: 10.1016/j.jcis.2010.08.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/26/2010] [Accepted: 08/27/2010] [Indexed: 11/17/2022]
|
155
|
Second Harmonic Generation, a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.09.085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
156
|
Tulip PR, Gregor CR, Troitzsch RZ, Martyna GJ, Cerasoli E, Tranter G, Crain J. Conformational Plasticity in an HIV-1 Antibody Epitope. J Phys Chem B 2010; 114:7942-50. [DOI: 10.1021/jp100929n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- P. R. Tulip
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - C. R. Gregor
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - R. Z. Troitzsch
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - G. J. Martyna
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - E. Cerasoli
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - G. Tranter
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - J. Crain
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| |
Collapse
|
157
|
Buzon V, Natrajan G, Schibli D, Campelo F, Kozlov MM, Weissenhorn W. Crystal structure of HIV-1 gp41 including both fusion peptide and membrane proximal external regions. PLoS Pathog 2010; 6:e1000880. [PMID: 20463810 PMCID: PMC2865522 DOI: 10.1371/journal.ppat.1000880] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 03/25/2010] [Indexed: 11/18/2022] Open
Abstract
The HIV-1 envelope glycoprotein (Env) composed of the receptor binding domain gp120 and the fusion protein subunit gp41 catalyzes virus entry and is a major target for therapeutic intervention and for neutralizing antibodies. Env interactions with cellular receptors trigger refolding of gp41, which induces close apposition of viral and cellular membranes leading to membrane fusion. The energy released during refolding is used to overcome the kinetic barrier and drives the fusion reaction. Here, we report the crystal structure at 2 A resolution of the complete extracellular domain of gp41 lacking the fusion peptide and the cystein-linked loop. Both the fusion peptide proximal region (FPPR) and the membrane proximal external region (MPER) form helical extensions from the gp41 six-helical bundle core structure. The lack of regular coiled-coil interactions within FPPR and MPER splay this end of the structure apart while positioning the fusion peptide towards the outside of the six-helical bundle and exposing conserved hydrophobic MPER residues. Unexpectedly, the section of the MPER, which is juxtaposed to the transmembrane region (TMR), bends in a 90 degrees-angle sideward positioning three aromatic side chains per monomer for membrane insertion. We calculate that this structural motif might facilitate the generation of membrane curvature on the viral membrane. The presence of FPPR and MPER increases the melting temperature of gp41 significantly in comparison to the core structure of gp41. Thus, our data indicate that the ordered assembly of FPPR and MPER beyond the core contributes energy to the membrane fusion reaction. Furthermore, we provide the first structural evidence that part of MPER will be membrane inserted within trimeric gp41. We propose that this framework has important implications for membrane bending on the viral membrane, which is required for fusion and could provide a platform for epitope and lipid bilayer recognition for broadly neutralizing gp41 antibodies.
Collapse
Affiliation(s)
- Victor Buzon
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Ganesh Natrajan
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - David Schibli
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Felix Campelo
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael M. Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Winfried Weissenhorn
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| |
Collapse
|
158
|
Bitler A, Lev N, Fridmann-Sirkis Y, Blank L, Cohen SR, Shai Y. Kinetics of interaction of HIV fusion protein (gp41) with lipid membranes studied by real-time AFM imaging. Ultramicroscopy 2010; 110:694-700. [DOI: 10.1016/j.ultramic.2010.02.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
159
|
Nakamura KJ, Gach JS, Jones L, Semrau K, Walter J, Bibollet-Ruche F, Decker JM, Heath L, Decker WD, Sinkala M, Kankasa C, Thea D, Mullins J, Kuhn L, Zwick MB, Aldrovandi GM. 4E10-resistant HIV-1 isolated from four subjects with rare membrane-proximal external region polymorphisms. PLoS One 2010; 5:e9786. [PMID: 20352106 PMCID: PMC2843716 DOI: 10.1371/journal.pone.0009786] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 02/10/2010] [Indexed: 11/19/2022] Open
Abstract
Human antibody 4E10 targets the highly conserved membrane-proximal external region (MPER) of the HIV-1 transmembrane glycoprotein, gp41, and has extraordinarily broad neutralizing activity. It is considered by many to be a prototype for vaccine development. In this study, we describe four subjects infected with viruses carrying rare MPER polymorphisms associated with resistance to 4E10 neutralization. In one case resistant virus carrying a W680G substitution was transmitted from mother to infant. We used site-directed mutagenesis to demonstrate that the W680G substitution is necessary for conferring the 4E10-resistant phenotype, but that it is not sufficient to transfer the phenotype to a 4E10-sensitive Env. Our third subject carried Envs with a W680R substitution causing variable resistance to 4E10, indicating that residues outside the MPER are required to confer the phenotype. A fourth subject possessed a F673L substitution previously associated with 4E10 resistance. For all three subjects with W680 polymorphisms, we observed additional residues in the MPER that co-varied with position 680 and preserved charged distributions across this region. Our data provide important caveats for vaccine development targeting the MPER. Naturally occurring Env variants described in our study also represent unique tools for probing the structure-function of HIV-1 envelope.
Collapse
Affiliation(s)
- Kyle J. Nakamura
- Department of Pediatrics, Childrens Hospital of Los Angeles, Los Angeles, California, United States of America
- Systems Biology and Disease Program, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Johannes S. Gach
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Laura Jones
- Department of Pediatrics, Childrens Hospital of Los Angeles, Los Angeles, California, United States of America
| | - Katherine Semrau
- Center for International Health and Development, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Jan Walter
- Department of Pediatrics, Childrens Hospital of Los Angeles, Los Angeles, California, United States of America
| | - Frederic Bibollet-Ruche
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Julie M. Decker
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Laura Heath
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - William D. Decker
- Department of Pediatrics, Childrens Hospital of Los Angeles, Los Angeles, California, United States of America
| | - Moses Sinkala
- Lusaka District Health Management Team, Lusaka, Zambia
| | - Chipepo Kankasa
- University Teaching Hospital, University of Zambia, Lusaka, Zambia
| | - Donald Thea
- Center for International Health and Development, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - James Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Louise Kuhn
- Department of Epidemiology, Columbia University, New York, New York, United States of America
| | - Michael B. Zwick
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Grace M. Aldrovandi
- Department of Pediatrics, Childrens Hospital of Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
160
|
Anti-gp41 antibodies cloned from HIV-infected patients with broadly neutralizing serologic activity. J Virol 2010; 84:5032-42. [PMID: 20219932 DOI: 10.1128/jvi.00154-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most HIV-infected individuals develop antibodies to the gp120 and gp41 components of the viral spike; however, only a fraction of these individuals mount a broadly neutralizing serum response against HIV. We have cloned anti-HIV antibodies from the memory B-cell compartment of six individuals with variable viral loads and high titers of broadly neutralizing antibodies. Here, we report on the features of the anti-gp41 response in these patients. Competition experiments with previously characterized antibodies targeting defined epitopes on the gp41 ectodomain showed antibodies directed against the "immunodominant region" (cluster I), the carboxy-terminal heptad repeat (cluster II), and the membrane-proximal external region (cluster IV). On the other hand, antibodies directed against the amino-terminal part of the molecule, including the fusion peptide, polar region, and the N-terminal heptad repeat, were not detected. When all patients' data were combined, unique B-cell clones targeting cluster I, II, and IV accounted for 32%, 49%, and 53% of all anti-gp41-reactive B cells, respectively; therefore, no single region was truly immunodominant. Finally, although we found no new neutralizing epitopes or HIV-1-neutralizing activity by any of the gp41 antibodies at concentrations of up to 50 microg/ml, high concentrations of 7 out of 15 anti-cluster I antibodies neutralized tier 2 viruses.
Collapse
|
161
|
Aromatic residues at the edge of the antibody combining site facilitate viral glycoprotein recognition through membrane interactions. Proc Natl Acad Sci U S A 2010; 107:1529-34. [PMID: 20080706 DOI: 10.1073/pnas.0909680107] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The broadly neutralizing anti-HIV antibody 4E10 recognizes an epitope very close to the virus membrane on the glycoprotein gp41. It was previously shown that epitope recognition improves in a membrane context and that 4E10 binds directly, albeit weakly, to lipids. Furthermore, a crystal structure of Fab 4E10 complexed to an epitope peptide revealed that the centrally placed, protruding H3 loop of the antibody heavy chain does not form peptide contacts. To investigate the hypothesis that the H3 loop apex might interact with the viral membrane, two Trp residues in this region were substituted separately or in combination with either Ala or Asp by site-directed mutagenesis. The resultant IgG variants exhibited similar affinities for an epitope peptide as WT 4E10 but lower apparent affinities for both viral membrane mimetic liposomes and Env(-) virus. Variants also exhibited lower apparent affinities for Env(+) virions and failed to significantly neutralize a number of 4E10-sensitive viruses. For the extremely sensitive HXB2 virus, variants did neutralize, but at 37- to >250-fold lower titers than WT 4E10, with Asp substitutions exerting a greater effect on neutralization potency than Ala substitutions. Because reductions in lipid binding reflect trends in neutralization potency, we conclude that Trp residues in the antibody H3 loop enable membrane proximal epitope recognition through favorable lipid interactions. The requirement for lipophilic residues such as Trp adjacent to the antigen binding site may explain difficulties in eliciting 4E10-like neutralizing antibody responses by immunization and helps define a unique motif for antibody recognition of membrane proximal antigens.
Collapse
|
162
|
Cholesterol interaction with proteins that partition into membrane domains: an overview. Subcell Biochem 2010; 51:253-78. [PMID: 20213547 DOI: 10.1007/978-90-481-8622-8_9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biological membranes are complex structures composed largely of proteins and lipids. These components have very different structural and physical properties and consequently they do not form a single homogeneous mixture. Rather components of the mixture are more enriched in some regions than in others. This can be demonstrated with simple lipid mixtures that spontaneously segregate components so as to form different lipid phases that are immiscible with one another. The segregation of molecular components of biological membranes also involves proteins. One driving force that would promote the segregation of membrane components is the preferential interaction between a protein and certain lipid components. Among the varied lipid components of mammalian membranes, the structure and physical properties of cholesterol is quite different from that of other major membrane lipids. It would therefore be expected that in many cases proteins would have very different energies of interaction with cholesterol vs. those of other membrane lipids. This would be sufficient to cause segregation of components in membranes. The factors that facilitate the interaction of proteins with cholesterol are varied and are not yet completely understood. However, there are certain groups that are present in some proteins that facilitate interaction of the protein with cholesterol. These groups include saturated acyl chains of lipidated proteins, as well as certain amino acid sequences. Although there is some understanding as to why these particular groups favour interaction with cholesterol, our knowledge of these molecular features is not sufficiently developed to allow for the design of agents that will modify such binding.
Collapse
|
163
|
Abstract
Up to now less than a handful of viral cholesterol-binding proteins have been characterized, in HIV, influenza virus and Semliki Forest virus. These are proteins with roles in virus entry or morphogenesis. In the case of the HIV fusion protein gp41 cholesterol binding is attributed to a cholesterol recognition consensus (CRAC) motif in a flexible domain of the ectodomain preceding the trans-membrane segment. This specific CRAC sequence mediates gp41 binding to a cholesterol affinity column. Mutations in this motif arrest virus fusion at the hemifusion stage and modify the ability of the isolated CRAC peptide to induce segregation of cholesterol in artificial membranes.Influenza A virus M2 protein co-purifies with cholesterol. Its proton translocation activity, responsible for virus uncoating, is not cholesterol-dependent, and the transmembrane channel appears too short for integral raft insertion. Cholesterol binding may be mediated by CRAC motifs in the flexible post-TM domain, which harbours three determinants of binding to membrane rafts. Mutation of the CRAC motif of the WSN strain attenuates virulence for mice. Its affinity to the raft-non-raft interface is predicted to target M2 protein to the periphery of lipid raft microdomains, the sites of virus assembly. Its influence on the morphology of budding virus implicates M2 as factor in virus fission at the raft boundary. Moreover, M2 is an essential factor in sorting the segmented genome into virus particles, indicating that M2 also has a role in priming the outgrowth of virus buds.SFV E1 protein is the first viral type-II fusion protein demonstrated to directly bind cholesterol when the fusion peptide loop locks into the target membrane. Cholesterol binding is modulated by another, proximal loop, which is also important during virus budding and as a host range determinant, as shown by mutational studies.
Collapse
Affiliation(s)
- Cornelia Schroeder
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307, Dresden, Germany.
| |
Collapse
|
164
|
Relationship between antibody 2F5 neutralization of HIV-1 and hydrophobicity of its heavy chain third complementarity-determining region. J Virol 2009; 84:2955-62. [PMID: 20042512 DOI: 10.1128/jvi.02257-09] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The membrane-proximal external region (MPER) of the HIV-1 gp41 transmembrane glycoprotein is the target of the broadly neutralizing antibody 2F5. Prior studies have suggested a two-component mechanism for 2F5-mediated neutralization involving both structure-specific recognition of a gp41 protein epitope and nonspecific interaction with the viral lipid membrane. Here, we mutationally alter a hydrophobic patch on the third complementarity-determining region of the heavy chain (CDR H3) of the 2F5 antibody and assess the abilities of altered 2F5 variants to bind gp41 and to neutralize diverse strains of HIV-1. CDR H3 alterations had little effect on the affinity of 2F5 variants for a peptide corresponding to its gp41 epitope. In contrast, strong effects and a high degree of correlation (P < 0.0001) were found between virus neutralization and CDR H3 hydrophobicity, as defined by predicted free energies of transfer from water to a lipid bilayer interface or to octanol. The effect of CDR H3 hydrophobicity on neutralization was independent of isolate sensitivity to 2F5, and CDR H3 variants with tryptophan substitutions were able to neutralize HIV-1 approximately 10-fold more potently than unmodified 2F5. A threshold was observed for increased hydrophobicity of the 2F5 CDR H3 loop beyond which effects on 2F5-mediated neutralization leveled off. Together, the results provide a more complete understanding of the 2F5 mechanism of HIV-1 neutralization and indicate ways to enhance the potency of MPER-directed antibodies.
Collapse
|
165
|
Corver J, Broer R, van Kasteren P, Spaan W. Mutagenesis of the transmembrane domain of the SARS coronavirus spike glycoprotein: refinement of the requirements for SARS coronavirus cell entry. Virol J 2009; 6:230. [PMID: 20034394 PMCID: PMC2805634 DOI: 10.1186/1743-422x-6-230] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 12/24/2009] [Indexed: 01/22/2023] Open
Abstract
Background The spike protein (S) of SARS Coronavirus (SARS-CoV) mediates entry of the virus into target cells, including receptor binding and membrane fusion. Close to or in the viral membrane, the S protein contains three distinct motifs: a juxtamembrane aromatic part, a central highly hydrophobic stretch and a cysteine rich motif. Here, we investigate the role of aromatic and hydrophobic parts of S in the entry of SARS CoV and in cell-cell fusion. This was investigated using the previously described SARS pseudotyped particles system (SARSpp) and by fluorescence-based cell-cell fusion assays. Results Mutagenesis showed that the aromatic domain was crucial for SARSpp entry into cells, with a likely role in pore enlargement. Introduction of lysine residues in the hydrophobic stretch of S also resulted in a block of entry, suggesting the borders of the actual transmembrane domain. Surprisingly, replacement of a glycine residue, situated close to the aromatic domain, with a lysine residue was tolerated, whereas the introduction of a lysine adjacent to the glycine, was not. In a model, we propose that during fusion, the lateral flexibility of the transmembrane domain plays a critical role, as do the tryptophans and the cysteines. Conclusions The aromatic domain plays a crucial role in the entry of SARS CoV into target cells. The positioning of the aromatic domain and the hydrophobic domain relative to each other is another essential characteristic of this membrane fusion process.
Collapse
Affiliation(s)
- Jeroen Corver
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.
| | | | | | | |
Collapse
|
166
|
Liu J, Deng Y, Dey AK, Moore JP, Lu M. Structure of the HIV-1 gp41 membrane-proximal ectodomain region in a putative prefusion conformation. Biochemistry 2009; 48:2915-23. [PMID: 19226163 DOI: 10.1021/bi802303b] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conserved membrane-proximal external region (MPER) of the HIV-1 gp41 envelope protein is the established target for very rare but broadly neutralizing monoclonal antibodies (NAbs) elicited during natural human infection. Nevertheless, attempts to generate an HIV-1 neutralizing antibody response with immunogens bearing MPER epitopes have met with limited success. Here we show that the MPER peptide (residues 662-683) forms a labile alpha-helical trimer in aqueous solution and report the crystal structure of this autonomous folding subdomain stabilized by addition of a C-terminal isoleucine zipper motif. The structure reveals a parallel triple-stranded coiled coil in which the neutralization epitope residues are buried within the interface between the associating MPER helices. Accordingly, both the 2F5 and 4E10 NAbs recognize the isolated MPER peptide but fail to bind the trimeric MPER subdomain. We propose that the trimeric MPER structure represents the prefusion conformation of gp41, preceding the putative prehairpin intermediate and the postfusion trimer-of-hairpins structure. As such, the MPER trimer should inform the design of new HIV-1 immunogens to elicit broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
167
|
Gray ES, Madiga MC, Moore PL, Mlisana K, Abdool Karim SS, Binley JM, Shaw GM, Mascola JR, Morris L. Broad neutralization of human immunodeficiency virus type 1 mediated by plasma antibodies against the gp41 membrane proximal external region. J Virol 2009; 83:11265-74. [PMID: 19692477 PMCID: PMC2772769 DOI: 10.1128/jvi.01359-09] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 08/06/2009] [Indexed: 11/20/2022] Open
Abstract
We identified three cross-neutralizing plasma samples with high-titer anti-membrane proximal external region (MPER) peptide binding antibodies from among 156 chronically human immunodeficiency virus type 1-infected individuals. In order to establish if these antibodies were directly responsible for the observed neutralization breadth, we used MPER-coated magnetic beads to deplete plasmas of these specific antibodies. Depletion of anti-MPER antibodies from BB34, CAP206, and SAC21 resulted in 77%, 68%, and 46% decreases, respectively, in the number of viruses neutralized. Antibodies eluted from the beads showed neutralization profiles similar to those of the original plasmas, with potencies comparable to those of the known anti-MPER monoclonal antibodies (MAbs), 4E10, 2F5, and Z13e1. The anti-MPER neutralizing antibodies in BB34 were present in the immunoglobulin G3 subclass-enriched fraction. Alanine scanning of the MPER showed that the antibodies from these three plasmas had specificities distinct from those of the known MAbs, requiring one to three crucial residues at positions 670, 673, and 674. These data demonstrate the existence of MPER-specific cross-neutralizing antibodies in plasma, although the ability to elicit such potent antiviral antibodies during natural infection appears to be rare. Nevertheless, the identification of three novel antibody specificities within the MPER supports its further study as a promising target for vaccine design.
Collapse
Affiliation(s)
- Elin S. Gray
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa, Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa, Torrey Pines Institute for Molecular Studies, San Diego, California 92121, University of Alabama at Birmingham, Birmingham, Alabama 35294, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Maphuti C. Madiga
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa, Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa, Torrey Pines Institute for Molecular Studies, San Diego, California 92121, University of Alabama at Birmingham, Birmingham, Alabama 35294, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Penny L. Moore
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa, Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa, Torrey Pines Institute for Molecular Studies, San Diego, California 92121, University of Alabama at Birmingham, Birmingham, Alabama 35294, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Koleka Mlisana
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa, Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa, Torrey Pines Institute for Molecular Studies, San Diego, California 92121, University of Alabama at Birmingham, Birmingham, Alabama 35294, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Salim S. Abdool Karim
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa, Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa, Torrey Pines Institute for Molecular Studies, San Diego, California 92121, University of Alabama at Birmingham, Birmingham, Alabama 35294, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - James M. Binley
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa, Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa, Torrey Pines Institute for Molecular Studies, San Diego, California 92121, University of Alabama at Birmingham, Birmingham, Alabama 35294, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - George M. Shaw
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa, Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa, Torrey Pines Institute for Molecular Studies, San Diego, California 92121, University of Alabama at Birmingham, Birmingham, Alabama 35294, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - John R. Mascola
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa, Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa, Torrey Pines Institute for Molecular Studies, San Diego, California 92121, University of Alabama at Birmingham, Birmingham, Alabama 35294, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Lynn Morris
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa, Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa, Torrey Pines Institute for Molecular Studies, San Diego, California 92121, University of Alabama at Birmingham, Birmingham, Alabama 35294, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
168
|
Sackett K, Nethercott MJ, Shai Y, Weliky DP. Hairpin folding of HIV gp41 abrogates lipid mixing function at physiologic pH and inhibits lipid mixing by exposed gp41 constructs. Biochemistry 2009; 48:2714-22. [PMID: 19222185 DOI: 10.1021/bi8019492] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conformational changes in the HIV gp41 protein are directly correlated with fusion between the HIV and target cell plasma membranes, which is the initial step of infection. Key gp41 fusion conformations include an early extended conformation termed prehairpin which contains exposed regions and a final low-energy conformation termed hairpin which has a compact six-helix bundle structure. Current fusion models debate the roles of hairpin and prehairpin conformations in the process of membrane merger. In the present work, gp41 constructs have been engineered which correspond to fusion relevant parts of both prehairpin and hairpin conformations and have been analyzed for their ability to induce lipid mixing between membrane vesicles. The data correlate membrane fusion function with the prehairpin conformation and suggest that one of the roles of the final hairpin conformation is sequestration of membrane-perturbing gp41 regions with consequent loss of the membrane disruption induced earlier by the prehairpin structure. To our knowledge, this is the first biophysical study to delineate the membrane fusion potential of gp41 constructs modeling key fusion conformations.
Collapse
Affiliation(s)
- Kelly Sackett
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
169
|
Crystallographic definition of the epitope promiscuity of the broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2F5: vaccine design implications. J Virol 2009; 83:11862-75. [PMID: 19740978 DOI: 10.1128/jvi.01604-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The quest to create a human immunodeficiency virus type 1 (HIV-1) vaccine capable of eliciting broadly neutralizing antibodies against Env has been challenging. Among other problems, one difficulty in creating a potent immunogen resides in the substantial overall sequence variability of the HIV envelope protein. The membrane-proximal region (MPER) of gp41 is a particularly conserved tryptophan-rich region spanning residues 659 to 683, which is recognized by three broadly neutralizing monoclonal antibodies (bnMAbs), 2F5, Z13, and 4E10. In this study, we first describe the variability of residues in the gp41 MPER and report on the invariant nature of 15 out of 25 amino acids comprising this region. Subsequently, we evaluate the ability of the bnMAb 2F5 to recognize 31 varying sequences of the gp41 MPER at a molecular level. In 19 cases, resulting crystal structures show the various MPER peptides bound to the 2F5 Fab'. A variety of amino acid substitutions outside the 664DKW666 core epitope are tolerated. However, changes at the 664DKW666 motif itself are restricted to those residues that preserve the aspartate's negative charge, the hydrophobic alkyl-pi stacking arrangement between the beta-turn lysine and tryptophan, and the positive charge of the former. We also characterize a possible molecular mechanism of 2F5 escape by sequence variability at position 667, which is often observed in HIV-1 clade C isolates. Based on our results, we propose a somewhat more flexible molecular model of epitope recognition by bnMAb 2F5, which could guide future attempts at designing small-molecule MPER-like vaccines capable of eliciting 2F5-like antibodies.
Collapse
|
170
|
Tudor D, Derrien M, Diomede L, Drillet AS, Houimel M, Moog C, Reynes JM, Lopalco L, Bomsel M. HIV-1 gp41-specific monoclonal mucosal IgAs derived from highly exposed but IgG-seronegative individuals block HIV-1 epithelial transcytosis and neutralize CD4(+) cell infection: an IgA gene and functional analysis. Mucosal Immunol 2009; 2:412-26. [PMID: 19587640 DOI: 10.1038/mi.2009.89] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
AIDS is mainly a sexually transmitted disease, and accordingly, mucosal tissues are the primary sites of natural human immunodeficiency virus type-1 (HIV-1) transmission. Mucosal immunoglobulin A (IgA) antibody specific for HIV-1 envelope gp41 subunit is one correlate of protection in individuals who are highly sexually exposed to HIV-1 but remain persistently IgG seronegative (HEPS). Understanding these peculiar IgAs at the gene and functional level is possible only with monoclonal IgAs. We have constructed a mucosal Fab IgA library from HEPS and have characterized a series of HIV-1 IgAs specific for gp41 that, in vitro, are transcytosis-blocking and infection-neutralizing. Characterization of their IgA genes shows that Fab specific for the gp41 membrane-proximal region harbors a long heavy-chain CDR3 loop (CDRH3) similar to the two broadly neutralizing IgG monoclonal antibodies, 2F5 and 4E10. Furthermore, the selected Fab IgA shows extensive somatic mutations that cluster in the CDR regions, indicating that affinity maturation due to an antigen-driven process had occurred in HEPS individuals, presumably upon multiple exposures to HIV. This analysis of HEPS monoclonal IgA gives a unique opportunity to correlate an antibody function (resistance to a pathogen in vivo) with an antibody gene. Such neutralizing monoclonal IgAs could be used in microbicide formulation.
Collapse
Affiliation(s)
- D Tudor
- Entrée Muqueuse du VIH et Immunité Muqueuse, (Mucosal Entry of HIV-1 and Mucosal Immunity), Departement de Biologie Cellulaire, (Cell Biology Department), Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
The pre-transmembrane domain of the Autographa californica multicapsid nucleopolyhedrovirus GP64 protein is critical for membrane fusion and virus infectivity. J Virol 2009; 83:10993-1004. [PMID: 19692475 DOI: 10.1128/jvi.01085-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The envelope glycoprotein, GP64, of the baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) is a class III viral fusion protein that mediates pH-triggered membrane fusion during virus entry. Viral fusion glycoproteins from many viruses contain a short region in the ectodomain and near the transmembrane domain, referred to as the pre-transmembrane (PTM) domain. In some cases, the PTM domain is rich in aromatic amino acids and plays an important role in membrane fusion. Although the 23-amino-acid (aa) PTM domain of AcMNPV GP64 lacks aromatic amino acids, we asked whether this region might also play a significant role in membrane fusion. We generated alanine scanning and single and multiple amino acid substitutions in the GP64 PTM domain. We specifically focused on amino acid positions conserved between baculovirus GP64 and thogotovirus GP75 proteins, as well as hydrophobic and charged amino acids. For each PTM-modified construct, we examined trimerization, cell surface localization, and membrane fusion activity. Membrane merger and pore formation were also examined. We identified eight aa positions that are important for membrane fusion activity. Critical positions were not clustered in the linear sequence but were distributed throughout the PTM domain. While charged residues were not critical or essential, three hydrophobic amino acids (L465, L476, and L480) played an important role in membrane fusion activity and appear to be involved in formation of the fusion pore. We also asked whether selected GP64 constructs were capable of rescuing a gp64null AcMNPV virus. These studies suggested that several conserved residues (T463, G460, G462, and G474) were not required for membrane fusion but were important for budding and viral infectivity.
Collapse
|
172
|
Salzwedel K, Berger EA. Complementation of diverse HIV-1 Env defects through cooperative subunit interactions: a general property of the functional trimer. Retrovirology 2009; 6:75. [PMID: 19671162 PMCID: PMC2738651 DOI: 10.1186/1742-4690-6-75] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Accepted: 08/11/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The HIV-1 Env glycoprotein mediates virus entry by catalyzing direct fusion between the virion membrane and the target cell plasma membrane. Env is composed of two subunits: gp120, which binds to CD4 and the coreceptor, and gp41, which is triggered upon coreceptor binding to promote the membrane fusion reaction. Env on the surface of infected cells is a trimer consisting of three gp120/gp41 homo-dimeric protomers. An emerging question concerns cooperative interactions between the protomers in the trimer, and possible implications for Env function. RESULTS We extended studies on cooperative subunit interactions within the HIV-1 Env trimer, using analysis of functional complementation between coexpressed inactive variants harboring different functional deficiencies. In assays of Env-mediated cell fusion, complementation was observed between variants with a wide range of defects in both the gp120 and gp41 subunits. The former included gp120 subunits mutated in the CD4 binding site or incapable of coreceptor interaction due either to mismatched specificity or V3 loop mutation. Defective gp41 variants included point mutations at different residues within the fusion peptide or heptad repeat regions, as well as constructs with modifications or deletions of the membrane proximal tryptophan-rich region or the transmembrane domain. Complementation required the defective variants to be coexpressed in the same cell. The observed complementation activities were highly dependent on the assay system. The most robust activities were obtained with a vaccinia virus-based expression and reporter gene activation assay for cell fusion. In an alternative system involving Env expression from integrated provirus, complementation was detected in cell fusion assays, but not in virus particle entry assays. CONCLUSION Our results indicate that Env function does not require every subunit in the trimer to be competent for all essential activities. Through cross-talk between subunits, the functional determinants on one defective protomer can cooperatively interact to trigger the functional determinants on an adjacent protomer(s) harboring a different defect, leading to fusion. Cooperative subunit interaction is a general feature of the Env trimer, based on complementation activities observed for a highly diverse range of functional defects.
Collapse
Affiliation(s)
- Karl Salzwedel
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Current address: Division of AIDS, NIAID, 6700-B Rockledge Drive, Room 4149, Bethesda, MD 20892, USA
| | - Edward A Berger
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
173
|
Apellániz B, Nir S, Nieva JL. Distinct mechanisms of lipid bilayer perturbation induced by peptides derived from the membrane-proximal external region of HIV-1 gp41. Biochemistry 2009; 48:5320-31. [PMID: 19449801 DOI: 10.1021/bi900504t] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The conserved, membrane-proximal external region (MPER) of the human immunodeficiency virus type-1 envelope glycoprotein 41 subunit is required for fusogenic activity. It has been proposed that MPER functions by disrupting the virion membrane. Supporting its critical role in viral entry as a membrane-bound entity, MPER constitutes the target for broadly neutralizing antibodies that have evolved mechanisms to recognize membrane-inserted epitopes. We have analyzed here the molecular mechanisms of membrane permeabilization induced by N-preTM and PreTM-C, two peptides derived from MPER sequences showing a tendency to associate with the bilayer interface or to transfer into the hydrocarbon core, respectively. Both peptides contained the full epitope sequence recognized by the 4E10 monoclonal antibody (MAb4E10), which was subsequently used to probe peptide accessibility from the water phase. Capacities of N-preTM and PreTM-C for associating with vesicles and inducing their permeabilization were comparable. However, MAb4E10 specifically blocked the permeabilization induced by N-preTM but did not appreciably affect that induced by PreTM-C. Supporting the existence of different membrane-bound lytic structures, N-preTM was running as a monomer on SDS-PAGE and induced the graded release of vesicular contents, whereas PreTM-C migrated on SDS-PAGE as dimers and permeabilized vesicles following an all-or-none mechanism, reminiscent of that underlying melittin-induced membrane lysis. These results support the functional segmentation of gp41 membrane regions into hydrophobic subdomains, which might expose neutralizing epitopes and induce membrane-disrupting effects following distinct patterns during the fusion cascade.
Collapse
Affiliation(s)
- Beatriz Apellániz
- Unidad de Biofisica (CSIC-UPV/EHU) and Departamento de Bioquimica, Universidad del Pais Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | | | | |
Collapse
|
174
|
Human Ubc9 contributes to production of fully infectious human immunodeficiency virus type 1 virions. J Virol 2009; 83:10448-59. [PMID: 19640976 DOI: 10.1128/jvi.00237-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ubc9 was identified as a cellular protein that interacts with the Gag protein of Mason-Pfizer monkey virus. We show here that Ubc9 also interacts with the human immunodeficiency virus type 1 (HIV-1) Gag protein and that their interaction is important for virus replication. Gag was found to colocalize with Ubc9 predominantly at perinuclear puncta. While cells in which Ubc9 expression was suppressed with RNA interference produced normal numbers of virions, these particles were 8- to 10-fold less infectious than those produced in the presence of Ubc9. The nature of this defect was assayed for dependence on Ubc9 during viral assembly, trafficking, and Env incorporation. The Gag-mediated assembly of virus particles and protease-mediated processing of Gag and Gag-Pol were unchanged in the absence of Ubc9. However, the stability of the cell-associated Env glycoprotein was decreased and Env incorporation into released virions was altered. Interestingly, overexpression of the Ubc9 trans-dominant-negative mutant C93A, which is a defective E2-SUMO-1 conjugase, suggests that this activity may not be required for interaction with Gag, virion assembly, or infectivity. This finding demonstrates that Ubc9 plays an important role in the production of infectious HIV-1 virions.
Collapse
|
175
|
Abad C, Martínez-Gil L, Tamborero S, Mingarro I. Membrane topology of gp41 and amyloid precursor protein: interfering transmembrane interactions as potential targets for HIV and Alzheimer treatment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2132-41. [PMID: 19619504 PMCID: PMC7094694 DOI: 10.1016/j.bbamem.2009.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/29/2009] [Accepted: 07/13/2009] [Indexed: 01/08/2023]
Abstract
The amyloid precursor protein (APP), that plays a critical role in the development of senile plaques in Alzheimer disease (AD), and the gp41 envelope protein of the human immunodeficiency virus (HIV), the causative agent of the acquired immunodeficiency syndrome (AIDS), are single-spanning type-1 transmembrane (TM) glycoproteins with the ability to form homo-oligomers. In this review we describe similarities, both in structural terms and sequence determinants of their TM and juxtamembrane regions. The TM domains are essential not only for anchoring the proteins in membranes but also have functional roles. Both TM segments contain GxxxG motifs that drive TM associations within the lipid bilayer. They also each possess similar sequence motifs, positioned at the membrane interface preceding their TM domains. These domains are known as cholesterol recognition/interaction amino acid consensus (CRAC) motif in gp41 and CRAC-like motif in APP. Moreover, in the cytoplasmic domain of both proteins other α-helical membranotropic regions with functional implications have been identified. Recent drug developments targeting both diseases are reviewed and the potential use of TM interaction modulators as therapeutic targets is discussed.
Collapse
Affiliation(s)
- Concepción Abad
- Departament de Bioquímica i Biologia Molecular, Universitat de València. Dr. Moliner, 50, E-46100 Burjassot, Spain
| | | | | | | |
Collapse
|
176
|
Schibli DJ, Weissenhorn W. Class I and class II viral fusion protein structures reveal similar principles in membrane fusion (Review). Mol Membr Biol 2009; 21:361-71. [PMID: 15764366 DOI: 10.1080/09687860400017784] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recent crystal structures of Flavivirus and Alphavirus fusion proteins (class II) confirm two major principles of protein machineries that mediate the merger of two opposing lipid bilayers. First, the fusion protein can bridge both membranes tethered by two membrane anchors. Second, refolding or domain rearrangement steps lead to the positioning of both anchors into close proximity at the same end of an elongated structure. Although these two steps are in principle sufficient to pull two opposing membranes together and initiate membrane fusion, accumulating evidence suggests that the process requires the concerted action of a number of fusion proteins at and outside the contact sites. This review will focus on the structures of viral class I and class II fusion proteins and their similarities in facilitating membrane fusion.
Collapse
|
177
|
A conformational switch in human immunodeficiency virus gp41 revealed by the structures of overlapping epitopes recognized by neutralizing antibodies. J Virol 2009; 83:8451-62. [PMID: 19515770 DOI: 10.1128/jvi.00685-09] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The membrane-proximal external region (MPER) of the human immunodeficiency virus (HIV) envelope glycoprotein (gp41) is critical for viral fusion and infectivity and is the target of three of the five known broadly neutralizing HIV type 1 (HIV-1) antibodies, 2F5, Z13, and 4E10. Here, we report the crystal structure of the Fab fragment of Z13e1, an affinity-enhanced variant of monoclonal antibody Z13, in complex with a 12-residue peptide corresponding to the core epitope (W(670)NWFDITN(677)) at 1.8-A resolution. The bound peptide adopts an S-shaped conformation composed of two tandem, perpendicular helical turns. This conformation differs strikingly from the alpha-helical structure adopted by an overlapping MPER peptide bound to 4E10. Z13e1 binds to an elbow in the MPER at the membrane interface, making relatively few interactions with conserved aromatics (Trp672 and Phe673) that are critical for 4E10 recognition. The comparison of the Z13e1 and 4E10 epitope structures reveals a conformational switch such that neutralization can occur by the recognition of the different conformations and faces of the largely amphipathic MPER. The Z13e1 structure provides significant new insights into the dynamic nature of the MPER, which likely is critical for membrane fusion, and it has significant implications for mechanisms of HIV-1 neutralization by MPER antibodies and for the design of HIV-1 immunogens.
Collapse
|
178
|
Watson DS, Szoka FC. Role of lipid structure in the humoral immune response in mice to covalent lipid-peptides from the membrane proximal region of HIV-1 gp41. Vaccine 2009; 27:4672-83. [PMID: 19520200 DOI: 10.1016/j.vaccine.2009.05.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 05/21/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
Abstract
The membrane proximal region (MPR) of HIV-1 gp41 is a desirable target for development of a vaccine that elicits neutralizing antibodies since the patient-derived monoclonal antibodies, 2F5 and 4E10, bind to the MPR and neutralize primary HIV isolates. The 2F5 and 4E10 antibodies cross-react with lipids and structural studies suggest that MPR immunogens may be presented in a membrane environment. We hypothesized that covalent attachment of lipid anchors would enhance the humoral immune response to MPR-derived peptides presented in liposomal bilayers. In a comparison of eight lipids conjugated to an extended 2F5 epitope peptide, a sterol, cholesterol hemisuccinate (CHEMS), was found to promote the strongest anti-peptide IgG titers (6.4 x 10(4)) in sera of BALB/C mice. Two lipid anchors, palmitic acid and phosphatidylcholine, failed to elicit a detectable serum anti-peptide IgG response. Association with the liposomal vehicle contributed to the ability of a lipopeptide to elicit anti-peptide antibodies, but no other single factor, such as position of the lipid anchor, peptide helical content, lipopeptide partition coefficient, or presence of phosphate on the anchor clearly determined lipopeptide potency. Conjugation to CHEMS also rendered a 4E10 epitope peptide immunogenic (5.6 x 10(2) IgG titer in serum). Finally, attachment of CHEMS to a peptide spanning both the 2F5 and 4E10 epitopes elicited serum IgG antibodies that bound to each of the individual epitopes as well as to recombinant gp140. Further research into the mechanism of how structure influences the immune response to the MPR may lead to immunogens that could be useful in prime-boost regimens for focusing the immune response in an HIV vaccine.
Collapse
Affiliation(s)
- Douglas S Watson
- Departments of Bioengineering and Therapeutic Sciences and Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94143-0912, USA
| | | |
Collapse
|
179
|
Broadly neutralizing anti-HIV-1 antibodies disrupt a hinge-related function of gp41 at the membrane interface. Proc Natl Acad Sci U S A 2009; 106:9057-62. [PMID: 19458040 DOI: 10.1073/pnas.0901474106] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A vaccine capable of stimulating protective antiviral antibody responses is needed to curtail the global AIDS epidemic caused by HIV-1. Although rarely elicited during the course of natural infection or upon conventional vaccination, the membrane-proximal ectodomain region (MPER) of the HIV-1 glycoprotein of M(r) 41,000 (gp41) envelope protein subunit is the target of 3 such human broadly neutralizing antibodies (BNAbs): 4E10, 2F5, and Z13e1. How these BNAbs bind to their lipid-embedded epitopes and mediate antiviral activity is unclear, but such information might offer important insight into a worldwide health imperative. Here, EPR and NMR techniques were used to define the manner in which these BNAbs differentially recognize viral membrane-encrypted residues configured within the L-shaped helix-hinge-helix MPER segment. Two distinct modes of antibody-mediated interference of viral infection were identified. 2F5, like 4E10, induces large conformational changes in the MPER relative to the membrane. However, although 4E10 straddles the hinge and extracts residues W672 and F673, 2F5 lifts up residues N-terminal to the hinge region, exposing L669 and W670. In contrast, Z13e1 effects little change in membrane orientation or conformation, but rather immobilizes the MPER hinge through extensive rigidifying surface contacts. Thus, BNAbs disrupt HIV-1 MPER fusogenic functions critical for virus entry into human CD4 T cells and macrophages either by preventing hinge motion or by perturbing MPER orientation. HIV-1 MPER features important for targeted vaccine design have been revealed, the implications of which extend to BNAb targets on other viral fusion proteins.
Collapse
|
180
|
D'Errico G, Vitiello G, D'Ursi AM, Marsh D. Interaction of short modified peptides deriving from glycoprotein gp36 of feline immunodeficiency virus with phospholipid membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 38:873-82. [PMID: 19415263 PMCID: PMC2728064 DOI: 10.1007/s00249-009-0454-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 03/27/2009] [Accepted: 04/07/2009] [Indexed: 11/26/2022]
Abstract
A tryptophan-rich octapeptide, C8 (Ac-Trp-Glu-Asp-Trp-Val-Gly-Trp-Ile-NH(2)), modelled on the membrane-proximal external region of the feline immunodeficiency virus (FIV) gp36 glycoprotein ectodomain, exhibits potent antiviral activity against FIV. A mechanism has been proposed by which the peptide, being positioned on the surface of the cell membrane, inhibits its fusion with the virus. In the present work, peptide-lipid interactions of C8 with dimyristoyl phosphatidylcholine liposomes are investigated using electron spin resonance spectroscopy of spin-labelled lipids. Three other peptides, obtained from modifications of C8, have also been investigated, in an attempt to clarify the essential molecular features of the interactions involving the tryptophan residues. The results show that C8 adsorbs strongly on the bilayer surface. Membrane binding requires not only the presence of the Trp residues in the sequence, but also their common orientation on one side of the peptide that is engendered by the WX(2) WX(2) W motif. Membrane interaction correlates closely with peptide antiviral activity, indicating that the membrane is essential in stabilizing the peptide conformation that will be able to inhibit viral infection.
Collapse
Affiliation(s)
- Gerardino D'Errico
- Dipartimento di Chimica Paolo Corradini, Università di Napoli Federico II, Complesso di Monte S. Angelo, Via Cinthia, 80126, Naples, Italy.
| | | | | | | |
Collapse
|
181
|
Li J, Lu L, Wu F, Chen X, Niu B, Jiang S, Chen Y. The interaction between the membrane-proximal external region and the N-trimer region of HIV-1 gp41: Involvement in viral fusion. Sci Bull (Beijing) 2009. [DOI: 10.1007/s11434-009-0280-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
182
|
Waheed AA, Freed EO. Lipids and membrane microdomains in HIV-1 replication. Virus Res 2009; 143:162-76. [PMID: 19383519 DOI: 10.1016/j.virusres.2009.04.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/01/2009] [Accepted: 04/03/2009] [Indexed: 10/20/2022]
Abstract
Several critical steps in the replication cycle of human immunodeficiency virus type 1 (HIV-1) - entry, assembly and budding - are complex processes that take place at the plasma membrane of the host cell. A growing body of data indicates that these early and late steps in HIV-1 replication take place in specialized plasma membrane microdomains, and that many of the viral and cellular components required for entry, assembly, and budding are concentrated in these microdomains. In particular, a number of studies have shown that cholesterol- and sphingolipid-enriched microdomains known as lipid rafts play important roles in multiple steps in the virus replication cycle. In this review, we provide an overview of what is currently known about the involvement of lipids and membrane microdomains in HIV-1 replication.
Collapse
Affiliation(s)
- Abdul A Waheed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA.
| | | |
Collapse
|
183
|
Nishikawa H, Nakamura S, Kodama E, Ito S, Kajiwara K, Izumi K, Sakagami Y, Oishi S, Ohkubo T, Kobayashi Y, Otaka A, Fujii N, Matsuoka M. Electrostatically constrained α-helical peptide inhibits replication of HIV-1 resistant to enfuvirtide. Int J Biochem Cell Biol 2009; 41:891-9. [DOI: 10.1016/j.biocel.2008.08.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/19/2008] [Accepted: 08/22/2008] [Indexed: 11/25/2022]
|
184
|
Ura T, Yoshida A, Xin KQ, Yoshizaki S, Yashima S, Abe S, Mizuguchi H, Okuda K. Designed recombinant adenovirus type 5 vector induced envelope-specific CD8(+) cytotoxic T lymphocytes and cross-reactive neutralizing antibodies against human immunodeficiency virus type 1. J Gene Med 2009; 11:139-49. [PMID: 19065543 DOI: 10.1002/jgm.1277] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND A monoclonal antibody (mAb) 2F5 binds to the membrane-proximal external region (MPER) of the transmembrane subunit gp41 of human immunodeficiency virus type 1 (HIV-1) is known to broadly neutralize HIV-1 strains. The Adenovirus type 5 vector (Ad5) has been widely applied for HIV-1 vaccine, and hexon hypervariable region 5 (HVR5) is exposed on viral surface and easily target host immune responses against Ad5. METHODS We constructed a recombinant adenovirus type 5 vector (rAd5) with a 2F5-binding epitope (ELDKWA) of MPER on Ad5-HVR5. In addition, we developed rAd5 encoding the HIV-1(IIIB) envelope (Env) gene for the induction of Env-specific cellular immunity. RESULTS The virus titers of the constructed rAd5 were similar to that of the parental Ad5 vector. Furthermore, high-dose immunization of rAd5 induced Env-specific CD8(+) cells and high levels of anti-ELDKWA antibodies. Moreover, an in vitro HIV-1 neutralization assay indicated that ELDKWA-specific mAbs derived from rAd5-immunized mice neutralized a wide range of HIV-1 strains. CONCLUSIONS The present study outlines the development of an Ad5-based HIV-1 vaccine targeting the hypervariable regions of Ad5. The constructed rAd5 induced an HIV-1-specific cellular immune response and neutralizing antibodies against various strains of HIV-1 simultaneously.
Collapse
Affiliation(s)
- Takehiro Ura
- Department of Molecular Biodefence Research, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Broad neutralization of human immunodeficiency virus type 1 (HIV-1) elicited from human rhinoviruses that display the HIV-1 gp41 ELDKWA epitope. J Virol 2009; 83:5087-100. [PMID: 19279101 DOI: 10.1128/jvi.00184-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In efforts to develop AIDS vaccine components, we generated combinatorial libraries of recombinant human rhinoviruses that display the well-conserved ELDKWA epitope of the membrane-proximal external region of human immunodeficiency virus type 1 (HIV-1) gp41. The broadly neutralizing human monoclonal antibody 2F5 was used to select for viruses whose ELDKWA conformations resemble those of HIV. Immunization of guinea pigs with different chimeras, some boosted with ELDKWA-based peptides, elicited antibodies capable of neutralizing HIV-1 pseudoviruses of diverse subtypes and coreceptor usages. These recombinant immunogens are the first reported that elicit broad, albeit modest, neutralization of HIV-1 using an ELDKWA-based epitope and are among the few reported that elicit broad neutralization directed against any recombinant HIV epitope, providing a critical advance in developing effective AIDS vaccine components.
Collapse
|
186
|
Lapelosa M, Gallicchio E, Arnold GF, Arnold E, Levy RM. In silico vaccine design based on molecular simulations of rhinovirus chimeras presenting HIV-1 gp41 epitopes. J Mol Biol 2009; 385:675-91. [PMID: 19026659 PMCID: PMC2649764 DOI: 10.1016/j.jmb.2008.10.089] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 09/15/2008] [Accepted: 10/31/2008] [Indexed: 11/28/2022]
Abstract
A cluster of promising epitopes for the development of human immunodeficiency virus (HIV) vaccines is located in the membrane-proximal external region (MPER) of the gp41 subunit of the HIV envelope spike structure. The crystal structure of the peptide corresponding to the so-called ELDKWA epitope (HIV-1 HxB2 gp41 residues 662-668), in complex with the corresponding broadly neutralizing human monoclonal antibody 2F5, provides a target for structure-based vaccine design strategies aimed at finding macromolecular carriers that are able to present this MPER-derived epitope with optimal antigenic activity. To this end, a series of replica exchange molecular dynamics computer simulations was conducted to characterize the distributions of conformations of ELDKWA-based epitopes inserted into a rhinovirus carrier and to identify those with the highest fraction of conformations that are able to bind 2F5. The length, hydrophobic character, and precise site of insertion were found to be critical for achieving structural similarity to the target crystal structure. A construct with a high degree of complementarity to the corresponding determinant region of 2F5 was obtained. This construct was employed to build a high-resolution structural model of the complex between the 2F5 antibody and the chimeric human rhinovirus type 14:HIV-1 ELDKWA virus particle. Additional simulations, which were conducted to study the conformational propensities of the ELDKWA region in solution, confirm the hypothesis that the ELDKWA region of gp41 is highly flexible and capable of assuming helical conformations (as in the postfusion helical bundle structure) and beta-turn conformations (as in the complex with the 2F5 antibody). These results also suggest that the ELDKWA epitope can be involved in intramolecular--and likely intermolecular--hydrophobic interactions. This tendency offers an explanation for the observation that mutations decreasing the hydrophobic character of the MPER in many cases result in conformational changes that increase the affinity of this region for the 2F5 antibody.
Collapse
Affiliation(s)
- Mauro Lapelosa
- BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
187
|
Martinez V, Diemert M, Braibant M, Potard V, Charuel J, Barin F, Costagliola D, Caumes E, Clauvel J, Autran B, Musset L. Anticardiolipin Antibodies in HIV Infection Are Independently Associated with Antibodies to the Membrane Proximal External Region of gp41 and with Cell‐Associated HIV DNA and Immune Activation. Clin Infect Dis 2009; 48:123-32. [DOI: 10.1086/595013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
188
|
Identification of the LWYIK motif located in the human immunodeficiency virus type 1 transmembrane gp41 protein as a distinct determinant for viral infection. J Virol 2008; 83:870-83. [PMID: 18987155 DOI: 10.1128/jvi.01088-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The highly conserved LWYIK motif located immediately proximal to the membrane-spanning domain of the gp41 transmembrane protein of human immunodeficiency virus type 1 has been proposed as being important for the surface envelope (Env) glycoprotein's association with lipid rafts and gp41-mediated membrane fusion. Here we employed substitution and deletion mutagenesis to understand the role of this motif in the virus life cycle. None of the mutants examined affected the synthesis, precursor processing, CD4 binding, oligomerization, or cell surface expression of the Env, nor did they alter Env incorporation into the virus. All of the mutants, particularly the DeltaYI, DeltaIK, and DeltaLWYIK mutants, in which the indicated residues were deleted, exhibited greatly reduced one-cycle viral replication and the Env trans-complementation ability. All of these deletion mutant proteins were still localized in the lipid rafts. With the exception of the Trp-to-Ala (WA) mutant, which exhibited reduced viral infectivity albeit with normal membrane fusion, all mutants displayed loss of some or almost all of the membrane fusion ability. Although these deletion mutants partially inhibited in trans wild-type (WT) Env-mediated fusion, they were more effective in dominantly interfering with WT Env-mediated viral entry when coexpressed with the WT Env, implying a role of this motif in postfusion events as well. Both T20 and L43L peptides derived from the two gp41 extracellular C- and N-terminal alpha-helical heptad repeats, respectively, inhibited WT and DeltaLWYIK Env-mediated viral entry with comparable efficacies. Biotin-tagged T20 effectively captured both the fusion-active, prehairpin intermediates of WT and mutant gp41 upon CD4 activation. Env without the deletion of the LWYIK motif still effectively mediated lipid mixing but inhibited content mixing. Our study demonstrates that the immediate membrane-proximal LWYIK motif acts as a unique and distinct determinant located in the gp41 C-terminal ectodomain by promoting enlargement of fusion pores and postfusion activities.
Collapse
|
189
|
Li J, Chen X, Jiang S, Chen YH. Deletion of fusion peptide or destabilization of fusion core of HIV gp41 enhances antigenicity and immunogenicity of 4E10 epitope. Biochem Biophys Res Commun 2008; 376:60-4. [DOI: 10.1016/j.bbrc.2008.08.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 08/19/2008] [Indexed: 10/21/2022]
|
190
|
Engineered Saccharomyces cerevisiae strain for improved xylose utilization with a three-plasmid SUMO yeast expression system. Plasmid 2008; 61:22-38. [PMID: 18831987 DOI: 10.1016/j.plasmid.2008.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/02/2008] [Accepted: 09/02/2008] [Indexed: 12/18/2022]
Abstract
A three-plasmid yeast expression system utilizing the portable small ubiquitin-like modifier (SUMO) vector set combined with the efficient endogenous yeast protease Ulp1 was developed for production of large amounts of soluble functional protein in Saccharomyces cerevisiae. Each vector has a different selectable marker (URA, TRP, or LEU), and the system provides high expression levels of three different proteins simultaneously. This system was integrated into the protocols on a fully automated plasmid-based robotic platform to screen engineered strains of S. cerevisiae for improved growth on xylose. First, a novel PCR assembly strategy was used to clone a xylose isomerase (XI) gene into the URA-selectable SUMO vector and the plasmid was placed into the S. cerevisiae INVSc1 strain to give the strain designated INVSc1-XI. Second, amino acid scanning mutagenesis was used to generate a library of mutagenized genes encoding the bioinsecticidal peptide lycotoxin-1 (Lyt-1) and the library was cloned into the TRP-selectable SUMO vector and placed into INVSc1-XI to give the strain designated INVSc1-XI-Lyt-1. Third, the Yersinia pestis xylulokinase gene was cloned into the LEU-selectable SUMO vector and placed into the INVSc1-XI-Lyt-1 yeast. Yeast strains expressing XI and xylulokinase with or without Lyt-1 showed improved growth on xylose compared to INVSc1-XI yeast.
Collapse
|
191
|
Vishwanathan SA, Thomas A, Brasseur R, Epand RF, Hunter E, Epand RM. Large changes in the CRAC segment of gp41 of HIV do not destroy fusion activity if the segment interacts with cholesterol. Biochemistry 2008; 47:11869-76. [PMID: 18937430 DOI: 10.1021/bi8014828] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The membrane-proximal external region (MPER) of the gp41 fusion protein of HIV is highly conserved among isolates of this virus and is considered a target for vaccine development. This region also appears to play a role in membrane fusion as well as localization of the virus to cholesterol-rich domains in membranes. The carboxyl terminus of MPER has the sequence LWYIK and appears to have an important role in cholesterol interactions. We have tested how amino acid substitutions that would affect the conformational flexibility of this segment could alter its interaction with cholesterol. We studied a family of peptides (all peptides as N-acetyl-peptide amides) with P, G, or A substituting for W and I of the LWYIK sequence. The peptide having the greatest effect on cholesterol distribution in membranes was the most flexible one, LGYGK. The corresponding mutation in gp41 resulted in a protein retaining 72% of the fusion activity of the wild-type protein. Two other peptides were synthesized, also containing two Gly residues, GWGIK and LWGIG, and did not have the ability to sequester cholesterol as efficiently as LGYGK did. Making the corresponding mutants of gp41 showed that these other two double Gly substitutions resulted in proteins that were much less fusogenic, although they were equally well expressed at the cell surface. The study demonstrates that drastic changes can be made in the LWYIK segment with the retention of a significant fraction of the fusogenic activity, as long as the mutant proteins interact with cholesterol.
Collapse
Affiliation(s)
- Sundaram A Vishwanathan
- Emory Vaccine Research Center, Yerkes, Emory University, 954 Gatewood Road, Atlanta, Georgia 30329, USA
| | | | | | | | | | | |
Collapse
|
192
|
Yu H, Tudor D, Alfsen A, Labrosse B, Clavel F, Bomsel M. Peptide P5 (residues 628-683), comprising the entire membrane proximal region of HIV-1 gp41 and its calcium-binding site, is a potent inhibitor of HIV-1 infection. Retrovirology 2008; 5:93. [PMID: 18925934 PMCID: PMC2585100 DOI: 10.1186/1742-4690-5-93] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 10/16/2008] [Indexed: 11/10/2022] Open
Abstract
The membrane proximal region (MPR) of the transmembrane subunit, gp41, of the HIV envelope glycoprotein plays a critical role in HIV-1 infection of CD4+ target cells and CD4-independent mucosal entry. It contains continuous epitopes recognized by neutralizing IgG antibodies 2F5, 4E10 and Z13, and is therefore considered to be a promising target for vaccine design. Moreover, some MPR-derived peptides, such as T20 (enfuvirtide), are in clinical use as HIV-1 inhibitors. We have shown that an extended MPR peptide, P5, harbouring the lectin-like domain of gp41 and a calcium-binding site, is implicated in the interaction of HIV with its mucosal receptor. We now investigate the potential antiviral activities of P5 and other such long MPR-derived peptides. Structural studies of gp41 MPR-derived peptides using circular dichroism showed that the peptides P5 (a.a.628–683), P1 (a.a.648–683), P5L (a.a.613–683) and P7 (a.a.613–746) displayed a well-defined α-helical structure. Peptides P5 inhibited HIV-1 envelope mediated cell-cell fusion and infection of peripheral blood mononuclear cells by both X4- and R5-tropic HIV-1 strains, whereas peptides P5 mutated in the calcium binding site or P1 lacked antiviral activity, when P5L blocked cell fusion in contrast to P7. Strikingly, P5 inhibited CD4-dependent infection by T20-resistant R5-tropic HIV-1 variants. Cell-cell fusion studies indicated that the anti-HIV-1 activity of P5, unlike T20, could not be abrogated in the presence of the N-terminal leucine zipper domain (LZ). These results suggested that P5 could serve as a potent fusion inhibitor.
Collapse
Affiliation(s)
- Huifeng Yu
- Departement de Biologie Cellulaire, (Cell Biology Department), Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), 22 rue Mechain, 75014 Paris, France.
| | | | | | | | | | | |
Collapse
|
193
|
Huarte N, Lorizate M, Kunert R, Nieva JL. Lipid modulation of membrane-bound epitope recognition and blocking by HIV-1 neutralizing antibodies. FEBS Lett 2008; 582:3798-804. [DOI: 10.1016/j.febslet.2008.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 09/29/2008] [Accepted: 10/05/2008] [Indexed: 11/24/2022]
|
194
|
The pre-transmembrane region of the HCV E1 envelope glycoprotein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2069-80. [DOI: 10.1016/j.bbamem.2008.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/22/2008] [Accepted: 03/24/2008] [Indexed: 12/13/2022]
|
195
|
Abstract
Mechanisms of HIV-mediated CD4+ T cell loss leading to immunodeficiency are amongst the most extensively studied yet unanswered questions in HIV biology. The level of CD4+ T cell depletion in HIV infected patients far exceeds the number of infected T cells, suggesting an indirect mechanism of HIV pathogenesis termed bystander cell death. Evidence is accumulating that the HIV envelope glycoprotein (Env) is a major determinant of HIV pathogenesis and plays a critical role in bystander cell death. The complex structure and function of HIV Env makes the determination of the mechanism of Env mediated apoptosis more complex than previously thought. This review will examine the complex relationship between HIV Env phenotype, coreceptor expression and immune activation in determining HIV pathogenesis. We review data here corresponding to the role of HIV Env hemifusion activity in HIV pathogenesis and how it interplays with other AIDS associated factors such as chemokine receptor expression and immune activation.
Collapse
Affiliation(s)
- H. Garg
- Membrane Structure and Function Section, Center for Cancer Research, Nanobiology Program, National Cancer Institute, National Institutes of Health, P.O. Box B, Building 469, Room 152, Miller Drive, Frederick, MD 21702-1201 USA
| | - R. Blumenthal
- Membrane Structure and Function Section, Center for Cancer Research, Nanobiology Program, National Cancer Institute, National Institutes of Health, P.O. Box B, Building 469, Room 152, Miller Drive, Frederick, MD 21702-1201 USA
| |
Collapse
|
196
|
Coûtant J, Yu H, Clément M, Alfsen A, Toma F, Curmi PA, Bomsel M. Both lipid environment and pH are critical for determining physiological solution structure of 3‐D‐conserved epitopes of the HIV‐1 gp41‐MPER peptide P1. FASEB J 2008; 22:4338-51. [DOI: 10.1096/fj.08-113142] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jérôme Coûtant
- Structure Activité des Biomolécules Normales et PathologiquesINSERM/UEVE U829 Université d'EvryEvryFrance
| | - Huifeng Yu
- Entrée Muqueuse du VIH et Immunite Muqueuse, Departement de Biologie CellulaireInstitut Cochin, Université Paris Descartes, CNRS UMR 8104ParisFrance
- INSERM U567ParisFrance
| | - Marie‐Jeanne Clément
- Structure Activité des Biomolécules Normales et PathologiquesINSERM/UEVE U829 Université d'EvryEvryFrance
| | - Annette Alfsen
- Entrée Muqueuse du VIH et Immunite Muqueuse, Departement de Biologie CellulaireInstitut Cochin, Université Paris Descartes, CNRS UMR 8104ParisFrance
- INSERM U567ParisFrance
| | - Flavio Toma
- Structure Activité des Biomolécules Normales et PathologiquesINSERM/UEVE U829 Université d'EvryEvryFrance
| | - Patrick A. Curmi
- Structure Activité des Biomolécules Normales et PathologiquesINSERM/UEVE U829 Université d'EvryEvryFrance
| | - Morgane Bomsel
- Entrée Muqueuse du VIH et Immunite Muqueuse, Departement de Biologie CellulaireInstitut Cochin, Université Paris Descartes, CNRS UMR 8104ParisFrance
- INSERM U567ParisFrance
| |
Collapse
|
197
|
Guillén J, Kinnunen PKJ, Villalaín J. Membrane insertion of the three main membranotropic sequences from SARS-CoV S2 glycoprotein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2765-74. [PMID: 18721794 PMCID: PMC7157930 DOI: 10.1016/j.bbamem.2008.07.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 07/09/2008] [Accepted: 07/23/2008] [Indexed: 12/02/2022]
Abstract
In order to complete the fusion process of SARS-CoV virus, several regions of the S2 virus envelope glycoprotein are necessary. Recent studies have identified three membrane-active regions in the S2 domain of SARS-CoV glycoprotein, one situated downstream of the minimum furin cleavage, which is considered the fusion peptide (SARSFP), an internal fusion peptide located immediately upstream of the HR1 region (SARSIFP) and the pre-transmembrane domain (SARSPTM). We have explored the capacity of these selected membrane-interacting regions of the S2 SARS-CoV fusion protein, alone or in equimolar mixtures, to insert into the membrane as well as to perturb the dipole potential of the bilayer. We show that the three peptides interact with lipid membranes depending on lipid composition and experiments using equimolar mixtures of these peptides show that different segments of the protein may act in a synergistic way suggesting that several membrane-active regions could participate in the fusion process of the SARS-CoV.
Collapse
Affiliation(s)
- Jaime Guillén
- Instituto de Biología Molecular y Celular, Campus de Elche, Universidad Miguel Hernández, E-03202 Elche-Alicante, Spain
| | | | | |
Collapse
|
198
|
White JM, Delos SE, Brecher M, Schornberg K. Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol 2008; 43:189-219. [PMID: 18568847 DOI: 10.1080/10409230802058320] [Citation(s) in RCA: 665] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent work has identified three distinct classes of viral membrane fusion proteins based on structural criteria. In addition, there are at least four distinct mechanisms by which viral fusion proteins can be triggered to undergo fusion-inducing conformational changes. Viral fusion proteins also contain different types of fusion peptides and vary in their reliance on accessory proteins. These differing features combine to yield a rich diversity of fusion proteins. Yet despite this staggering diversity, all characterized viral fusion proteins convert from a fusion-competent state (dimers or trimers, depending on the class) to a membrane-embedded homotrimeric prehairpin, and then to a trimer-of-hairpins that brings the fusion peptide, attached to the target membrane, and the transmembrane domain, attached to the viral membrane, into close proximity thereby facilitating the union of viral and target membranes. During these conformational conversions, the fusion proteins induce membranes to progress through stages of close apposition, hemifusion, and then the formation of small, and finally large, fusion pores. Clearly, highly divergent proteins have converged on the same overall strategy to mediate fusion, an essential step in the life cycle of every enveloped virus.
Collapse
Affiliation(s)
- Judith M White
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908-0732, USA.
| | | | | | | |
Collapse
|
199
|
The broadly neutralizing anti-human immunodeficiency virus type 1 4E10 monoclonal antibody is better adapted to membrane-bound epitope recognition and blocking than 2F5. J Virol 2008; 82:8986-96. [PMID: 18596094 DOI: 10.1128/jvi.00846-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The broadly neutralizing 2F5 and 4E10 monoclonal antibodies (MAbs) recognize epitopes within the membrane-proximal external region (MPER) that connects the human immunodeficiency virus type 1 (HIV-1) envelope gp41 ectodomain with the transmembrane anchor. By adopting different conformations that stably insert into the virion external membrane interface, such as helical structures, a conserved aromatic-rich sequence within the MPER is thought to participate in HIV-1-cell fusion. Recent experimental evidence suggests that the neutralizing activity of 2F5 and 4E10 might correlate with the MAbs' capacity to recognize epitopes inserted into the viral membrane, thereby impairing MPER fusogenic activity. To gain new insights into the molecular mechanism underlying viral neutralization by these antibodies, we have compared the capacities of 2F5 and 4E10 to block the membrane-disorganizing activity of MPER peptides inserted into the surface bilayer of solution-diffusing unilamellar vesicles. Both MAbs inhibited leakage of vesicular aqueous contents (membrane permeabilization) and intervesicular lipid mixing (membrane fusion) promoted by MPER-derived peptides. Thus, our data support the idea that antibody binding to a membrane-inserted epitope may interfere with the function of the MPER during gp41-induced fusion. Antibody insertion into a cholesterol-containing, uncharged virion-like membrane is mediated by specific epitope recognition, and moreover, partitioning-coupled folding into a helix reduces the efficiency of 2F5 MAb binding to its epitope in the membrane. We conclude that the capacity to interfere with the membrane activity of conserved MPER sequences is best correlated with the broad neutralization of the 4E10 MAb.
Collapse
|
200
|
Noah E, Biron Z, Naider F, Arshava B, Anglister J. The membrane proximal external region of the HIV-1 envelope glycoprotein gp41 contributes to the stabilization of the six-helix bundle formed with a matching N' peptide. Biochemistry 2008; 47:6782-92. [PMID: 18540633 DOI: 10.1021/bi7023139] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The HIV-1 envelope glycoprotein gp41 undergoes a sequence of extensive conformational changes while participating in the fusion of the virus with the host cell. Since the discovery of its postfusion conformation, the structure and function of the protease-resistant six-helix bundle (6-HB) have been the subject of extensive investigation. In this work, we describe additional determinants (S528-Q540 and W666-N677) in the fusion peptide proximal region (FP-PR) and the membrane proximal external region (MPER) that stabilize the six-helix bundle and are involved in the interaction of T-20 (FUZEON, an anti-HIV-1 fusion inhibitor drug) with the gp41 FP-PR. Circular dichroism and sedimentation equilibrium measurements indicate that the 1:1 mixture of N' and C' peptides comprising residues A541-T569 and I635-K665 from the gp41 first and second helical repeats, HR1 and HR2, respectively, fail to form a stable six-helix bundle. Triglutamic acid and triarginine tags were added to these N' and C' peptides, respectively, at the termini distant from the FP-PR and the MPER to alter their pI and increase their solubility at pH 3.5. The tagged HR1 and HR2 peptides were elongated by addition of residues S528-Q540 from the FP-PR and residues W666-N677 from the MPER, respectively. A 1:1 complex of the elongated peptides formed a stable six-helix bundle which melted at 60 degrees C. These results underscore the importance of a detailed high-resolution characterization of MPER interactions, the results of which may improve our understanding of the structure-function relationship of gp41 and its role in HIV-1 fusion.
Collapse
Affiliation(s)
- Eran Noah
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|