151
|
Ruiz IG, de la Torre P, Diaz T, Esteban E, Morillas JD, Muñoz-Yagüe T, Solís-Herruzo JA. Sp family of transcription factors is involved in iron-induced collagen alpha1(I) gene expression. DNA Cell Biol 2000; 19:167-78. [PMID: 10749169 DOI: 10.1089/104454900314555] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The purpose of this study was to identify the cis-acting elements and the trans-acting factors involved in the iron-induced expression of the collagen alpha1(I) (COL1aI) gene. Rat hepatic stellate cells were cultured in the presence of 50 microM ferric chloride, 50 microM ascorbic acid, and 250 microM citric acid (Fe/AA/CA), and the effects on collagen gene expression and the binding of nuclear proteins to the COL1aI promoter were measured. The Fe/AA/CA treatment induced a time- and dose-dependent increase in the cellular levels of COL1aI mRNA that was abrogate by pretreating cells with cycloheximide, antioxidants, and inhibitors of aldehyde-protein adduct formation. Transient transfection experiments showed that Fe/AA/CA exerted its effect through regulatory elements located between -220 and -110 bp of the COL1aI promoter. Gel retardation assays showed that Fe/AA/CA increased the binding of nuclear proteins to two elements located between -161 and -110 bp of the COL1aI promoter. These bindings were blocked by unlabeled consensus Sp1 oligonucleotide and supershifted with Sp1 and Sp3 antibodies. Finally, Fe/AA/CA increased cellular levels of the Sp1 and Sp3 proteins and Sp1 mRNA. Treatment with Fe/AA/CA stimulates COL1aI gene expression by inducing the synthesis of Sp1 and Sp3 and their binding to two regulatory elements located between -161 and -110 bp of the COL1aI promoter.
Collapse
Affiliation(s)
- I G Ruiz
- Department of Gastroenterology, Research Center, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
152
|
Biomedical vignette. J Biomed Sci 2000. [DOI: 10.1007/bf02256614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
153
|
Kapatos G, Stegenga SL, Hirayama K. Identification and characterization of basal and cyclic AMP response elements in the promoter of the rat GTP cyclohydrolase I gene. J Biol Chem 2000; 275:5947-57. [PMID: 10681588 DOI: 10.1074/jbc.275.8.5947] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
5812 base pairs of rat GTP cyclohydrolase I (GTPCH) 5'-flanking region were cloned and sequenced, and the transcription start site was determined for the gene in rat liver. Progressive deletion analysis using transient transfection assays of luciferase reporter constructs defined the core promoter as a highly conserved 142-base pair GC-rich sequence upstream from the cap site. DNase I footprint analysis of this region revealed (5' --> 3') a Sp1/GC box, a noncanonical cAMP-response element (CRE), a CCAAT-box, and an E-box. Transcription from the core promoter in PC12 but not C6 or Rat2 cells was enhanced by incubation with 8-bromo-cyclic AMP. Mutagenesis showed that both the CRE and CCAAT-box independently contribute to basal and cAMP-dependent activity. The combined CRE and CCAAT-box cassette was also found to enhance basal transcription and confer cAMP sensitivity on a heterologous minimal promoter. The addition of the Sp1/GC box sequence to this minimal promoter construct inhibited basal transcription without affecting the cAMP response. EMSA showed that nuclear proteins from PC12 but not C6 or Rat2 cells bind the CRE as a complex containing activating transcription factor (ATF)-4 and CCAAT enhancer-binding protein beta, while both PC12 and C6 cell nuclear extracts were recruited by the CCAAT-box as a complex containing nuclear factor Y. Overexpression of ATF-4 in PC12 cells was found to transactivate the GTPCH promoter response to cAMP. These studies suggest that the elements required for cell type-specific cAMP-dependent enhancement of gene transcription are located along the GTPCH core promoter and include the CRE and adjacent CCAAT-box and the proteins ATF-4, CCAAT enhancer-binding protein beta, and nuclear factor Y.
Collapse
Affiliation(s)
- G Kapatos
- Cellular Neurobiology Program, Department of Psychiatry, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|
154
|
Adachi K, Katsuyama M, Song S, Oka T. Genomic organization, chromosomal mapping and promoter analysis of the mouse selenocysteine tRNA gene transcription-activating factor (mStaf) gene. Biochem J 2000; 346 Pt 1:45-51. [PMID: 10657238 PMCID: PMC1220821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
mStaf is a zinc-finger protein that activates the transcription of the mouse selenocysteine tRNA gene. The mStaf gene is approx. 35 kb long and split into 16 exons. All exon-intron junction sequences conform to the GT/AG rule. The transcription start site is located 83 bp upstream of the initiation codon. Chromosomal mapping localized the gene to mouse chromosome 7, region E3-F1. Sequence analysis of the proximal promoter region revealed several potential regulatory elements; these include the recognition elements of Sp1, Nkx, CP2, E2A, SIF (SIS-inducible factor), TFII-I and cAMP-responsive element (CRE), but no TATA sequences. Transfection experiments demonstrated that the 5'-flanking region (-1894 to +37) of the mStaf gene drives transcription in mouse NMuMG cells and that a construct containing a fragment from -387 to +37 showed the highest transcriptional activity. Deletion and mutation experiments suggested that four Sp1 sites played an important role for the basal promoter activity. Furthermore, electrophoretic mobility-shift assays demonstrated that Sp3 but not other Sp (specificity protein) family members binds to three of the Sp1 sites. Our present study suggests that Sp3 is involved in the basal transcriptional activation of the mStaf gene.
Collapse
Affiliation(s)
- K Adachi
- Laboratory of Genetics and Physiology, Room 106, Building 8, National Institutes of Diabetes, Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
155
|
|
156
|
Yan S, Berquin IM, Troen BR, Sloane BF. Transcription of human cathepsin B is mediated by Sp1 and Ets family factors in glioma. DNA Cell Biol 2000; 19:79-91. [PMID: 10701774 DOI: 10.1089/104454900314591] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cathepsin B expression is increased at both the mRNA and protein levels in a wide variety of tumors. The mechanisms responsible for this regulation are not well elucidated. We have isolated a 2.2-kb cathepsin B genomic fragment that contains the 5'-flanking region of the cathepsin B gene. Using reporter gene analysis in human glioblastoma U87MG cells, we have mapped a 228-bp fragment (-172 to +56) having high promoter activity. This promoter region has a high G+C content; contains potential Spl, Ets, and USF binding motifs; and lacks canonical TATA and CAAT boxes immediately upstream of the major transcriptional initiation site. Cotransfection experiments demonstrated that Spl and Ets1 could trans-activate cathepsin B transcription, whereas Ets2 could not. Electrophoretic mobility shift assays and supershift assays revealed that three of the four putative Sp1 sites in this promoter region form a specific complex containing the Sp1 transcription factor. Mutating all four of the Spl binding sites individually markedly reduced the promoter activity of transfected reporter genes in U87 cells. Cotransfection of this cathepsin B promoter construct with Spl family expression vectors in Schneider's Drosophila line 2 (SL2) cells demonstrated that Spl and Sp3, but not Sp4, activated cathepsin B transcription. Taken together, these results suggest that Sp1, Sp3, and Ets1 are important factors in cathepsin B transcription. The regulation of cathepsin B transcription by Sp1- and Sp1-related factors is mediated through multiple GC boxes.
Collapse
Affiliation(s)
- S Yan
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
157
|
Simmen RC, Zhang XL, Zhang D, Wang Y, Michel FJ, Simmen FA. Expression and regulatory function of the transcription factor Sp1 in the uterine endometrium at early pregnancy: implications for epithelial phenotype. Mol Cell Endocrinol 2000; 159:159-70. [PMID: 10687861 DOI: 10.1016/s0303-7207(99)00191-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The uterus during early pregnancy synthesizes a complex array of signaling molecules with specific spatial and temporal modes of expression and which are critical for embryo implantation and subsequent development. The mechanism(s) underlying the differential pattern of synthesis of these pregnancy-associated proteins is not understood very well. The present study evaluated the expression and trans-activation potential of the transcription factor Sp1 in the early pregnancy porcine endometrium to determine its temporal and functional association with the endometrial epithelial-specific genes encoding the transplacental iron-transport protein uteroferrin (UF) and an Sp-family member, basic transcription element-binding (BTEB) protein. Two identical Sp1 clones (717 bp) were isolated from a porcine endometrial cDNA library by polymerase chain reaction (PCR). The nucleotide sequence of these clones encodes a partial protein sequence of 238 amino acids encompassing the Zn-finger region and had significant identities with the corresponding regions in the rat and human proteins. By using a specific antibody raised against human Sp1, porcine endometrial Sp1 was found to exhibit a molecular weight of 110 kDa, was localized predominantly in the nuclei of glandular and luminal epithelial cells, and appeared to exist as a phosphorylated protein. Northern blot analysis demonstrated three distinct size transcripts of approximately 3.5, 5, and 8 kb for endometrial Sp1. The expression of Sp1 mRNA and protein, determined by RT-PCR and by its ability to bind Sp1 consensus motif in gel mobility shift assays, respectively, overlapped with, but did not parallel that of UF mRNA during early pregnancy. The effect of increased Sp1 expression on UF gene promoter activity was examined using a human Sp1 expression vector that was transiently transfected into primary cultures of pig endometrial glandular epithelial cells. Sp1 increased (P < 0.05) the promoter activities of various UF promoter-Luciferase reporter constructs by 2 to 4-fold, over those transfected with empty expression vector. Co-transfection of a BTEB expression vector with the Sp1 expression vector modified the effect of Sp1 on UF promoter activity in the shortest construct. These results suggest that Sp1 mediates the regulation of endometrial epithelial gene expression during pregnancy, and that this function is likely altered in vivo by co-expression of other family members, including BTEB.
Collapse
Affiliation(s)
- R C Simmen
- Department of Animal Science, Interdisciplinary Concentration in Animal Molecular and Cell Biology, University of Florida, Gainesville 3261-0910, USA.
| | | | | | | | | | | |
Collapse
|
158
|
Adams TE. Transcription from the P2 promoter of the growth hormone receptor gene involves members of the Sp transcription factor family. Biochem J 1999; 344 Pt 3:867-72. [PMID: 10585875 PMCID: PMC1220710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The P2 promoter of the gene for growth hormone receptor is developmentally regulated and is differentially active in a number of tissues. Little is known about the identity of the transcription factors that participate to effect this pattern of transcription. Deletion analysis and transient transfection were used to localize a previously identified cis-acting element within the sheep P2 promoter to between positions -99 and -87. Gel mobility-shift assays with nuclear extracts from Chinese hamster ovary (CHO-K1) fibroblasts revealed that this sequence encompasses an atypical binding site for both Sp1 and two isoforms of Sp3. A gel mobility-shift scan of promoter sequences between -88 and +21 indicated the existence of three other binding sites for Sp1 and Sp3. One of these, designated site II and found by using a probe spanning -74 to -54, corresponds to a classical GC box consensus sequence. Site III (-63 to -41) and site IV (-27 to -5) harbour atypical Sp1/Sp3-binding sequences. Site-directed mutagenesis of site II or site IV decreased promoter activity by approx. 40%, whereas a promoter construct incorporating both mutations exhibited negligible (approx. 1%) activity. Co-transfection of expression plasmids encoding either Sp1 or Sp3 significantly transactivated reporter gene activity from a P2 promoter construct carrying all four Sp1/Sp3-binding sites (8-fold compared with 7.1-fold induction respectively). Sp1 is known to interact with a variety of other transcription factors to regulate the transcription of a number of differentially expressed genes. The identification of four binding sites for Sp1 and Sp3 within the P2 promoter of the gene for growth hormone receptor might point to other factors that interact to regulate the activity of this promoter in different tissues during foetal and post-natal development.
Collapse
Affiliation(s)
- T E Adams
- Centre for Animal Biotechnology, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
159
|
Hirata H, Yamamura I, Yasuda K, Kobayashi A, Tada N, Suzuki M, Hirayoshi K, Hosokawa N, Nagata K. Separate cis-acting DNA elements control cell type- and tissue-specific expression of collagen binding molecular chaperone HSP47. J Biol Chem 1999; 274:35703-10. [PMID: 10585450 DOI: 10.1074/jbc.274.50.35703] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
HSP47 is a collagen-binding heat shock protein and is assumed to act as a molecular chaperone in the biosynthesis and secretion of procollagen. As the synthesis of HSP47 is closely correlated with that of collagen in various cell lines and tissues, we performed a promoter/reporter assay using HSP47-producing and nonproducing cells. 280 base pairs (bp(s)) of upstream promoter were shown to be necessary for the basal expression but not to be enough for the cell type-specific expression. When the first and the second introns were introduced downstream of this 280-bp region, marked up-regulation of the reporter activity was observed in HSP47-producing cells but not in nonproducing cells. This was confirmed in transgenic mice by staining the lacZ gene product under the control of the 280-bp upstream promoter and the introns. Staining was observed in skin, chondrocytes, precursor of bone, and other HSP47/collagen-producing tissues. A putative Sp1-binding site at -210 bp in the promoter, to which Sp3 and an unidentified protein bind, was shown to be responsible for this up-regulation when combined with the introns. However no difference in the binding to this probe was observed between HSP47-producing and nonproducing cells. The responsible region for cell type-specific up-regulation was found to be located in a 500-bp segment in the first intron. On electrophoresis mobility shift assay using this 500-bp probe, specific DNA-protein complexes were only observed in HSP47-producing cell extracts. These results suggest that two separate elements are necessary for the cell type-specific expression of the hsp47 gene; one is a putative Sp1-binding site at -210 bp necessary for basal expression, and the other is a 500-bp region within the first intron, required for cell type-specific expression.
Collapse
Affiliation(s)
- H Hirata
- Department of Molecular and Cellular Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Schöck F, Purnell BA, Wimmer EA, Jäckle H. Common and diverged functions of the Drosophila gene pair D-Sp1 and buttonhead. Mech Dev 1999; 89:125-32. [PMID: 10559487 DOI: 10.1016/s0925-4773(99)00215-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Drosophila gene buttonhead (btd) is required for the formation of the mandibular, the intercalary and the antennal head segments of the embryo. The btd protein (BTD) is functionally and structurally related to the human C(2)H(2) zinc finger transcription factor Sp1. A second Sp1-like Drosophila gene, termed Drosophila Sp1 (D-Sp1), had been identified on the basis of a partial sequence showing that the gene encodes a characteristic zinc finger domain, composed of three finger motifs similar to both Sp1 and btd. D-Sp1 is located in the same cytological location as btd in chromosome band 9A on the X-chromosome. It had been proposed that D-Sp1 and btd are likely to act as a gene pair and function in a at least partially redundant manner. Here we report the molecular analysis of D-Sp1 and its expression pattern during embryonic and larval development. We show that D-Sp1 acts as a transcriptional regulator. Lack-of-function analysis combined with rescue and gain-of-function studies indicates that btd and D-Sp1 play essential and redundant roles for mechanosensory organ development. However, D-Sp1 lacks the specific features of BTD required for embryonic intercalary and antennal segment formation.
Collapse
Affiliation(s)
- F Schöck
- Lehrstuhl für Genetik, Universität Bayreuth, Universitätsstrasse 30, NW1, 95447, Bayreuth, Germany
| | | | | | | |
Collapse
|
161
|
Dubbink HJ, Cleutjens KB, van der Korput HA, Trapman J, Romijn JC. An Sp1 binding site is essential for basal activity of the human prostate-specific transglutaminase gene (TGM4) promoter. Gene 1999; 240:261-7. [PMID: 10580145 DOI: 10.1016/s0378-1119(99)00454-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human prostate-specific transglutaminase (hTG(P)) is a cross-linking enzyme encoded by the TGM4 gene. The TGM4 gene promoter was characterized by deletion mapping and mutational analysis. Promoter constructs, containing the minimal promoter requirements, could efficiently drive transcription in the prostate cancer cell lines PC346C and LNCaP and the hepatic cancer cell line Hep3B. The region between positions -113 and -61 was demonstrated to be essential for core promoter activity. Further analysis revealed the functional importance of an Sp1 binding motif, 5'-ACCCCGCCCC-3', at positions -96 to -87. This sequence is a binding site of the ubiquitous transcription factors Sp1 and Sp3.
Collapse
Affiliation(s)
- H J Dubbink
- Department of Urology, Josephine Nefkens Institute, Erasmus University Rotterdam, 3000 DR, Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
162
|
Fandos C, Sánchez-Feutrie M, Santalucía T, Viñals F, Cadefau J, Gumà A, Cussó R, Kaliman P, Canicio J, Palacín M, Zorzano A. GLUT1 glucose transporter gene transcription is repressed by Sp3. Evidence for a regulatory role of Sp3 during myogenesis. J Mol Biol 1999; 294:103-19. [PMID: 10556032 DOI: 10.1006/jmbi.1999.3216] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GLUT1 glucose transporters are highly expressed in proliferating and transformed cells as well as in tissues during fetal life. However, the mechanisms that regulate GLUT1 gene expression remain largely unknown. Here, we demonstrate that Sp3 proteins bind to the GLUT1 proximal promoter gene and inhibit transcriptional activity in muscle and non-muscle cells. Two different Sp3 translational products (110 and 74 kDa) derived from differential translational initiation were detected in nuclear extracts from myoblast cells, and both Sp3 protein species inhibited GLUT1 gene transcriptional activity. The inhibitory effect of Sp3 was dominant over the stimulatory effect of Sp1 on transcriptional activity of GLUT1 gene. Furthermore, abolition of Sp3 binding to the proximal promoter of GLUT1 gene completely blocked the response to Sp3. We provide evidence that the expression of Sp3 protein is subject to regulation in muscle cells and that this is likely to control GLUT1. Thus, Sp3 protein was up-regulated in the absence of changes in Sp1 early after the induction of IGF-II-dependent myogenesis. Furthermore, forced over-expression of MyoD caused an enhancement in the cellular Sp3/Sp1 ratio which was concomitant to a reduced GLUT1 expression. Later during myogenesis, Sp3 expression was substantial whereas Sp1 was markedly down-regulated. In summary, we provide direct evidence that the transcription factor Sp3 represses gene expression in non-muscle and muscle cells and this is likely to operate in fetal heart by binding to the GLUT1 gene promoter. This is the first description of a repressor of GLUT1 gene transcription. Furthermore, we propose that variations in the ratio of Sp3 versus Sp1 regulate GLUT1 promoter activity and this is crucial in the down-regulation of GLUT1 associated to myogenesis.
Collapse
Affiliation(s)
- C Fandos
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Rotheneder H, Geymayer S, Haidweger E. Transcription factors of the Sp1 family: interaction with E2F and regulation of the murine thymidine kinase promoter. J Mol Biol 1999; 293:1005-15. [PMID: 10547281 DOI: 10.1006/jmbi.1999.3213] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Promoters of growth and cell cycle regulated genes frequently carry binding sites for transcription factors of the E2F and Sp1 families. We have demonstrated recently that direct interaction between Sp1 and a subgroup of the E2F factors is essential for the regulation of certain promoters. We show here that the amino acids necessary for this interaction in both cases are located within the DNA binding domain. This is in line with the assumption, that the interaction between E2F and Sp-factors contributes to promoter-specificity. Cyclin A, which binds to E2F-1 in close vicinity to Sp1 does not interfere with this interaction. Moreover we have investigated the ability of other members of the Sp1 family to interact with E2F-1 and to regulate the activity of the E2F and Sp1 dependent murine thymidine kinase promoter. All four factors of the Sp1 family are able to bind E2F-1 in co-immunoprecipitation and GST-pull down experiments. Mobility shift assays with oligonucleotides comprising the Sp1, or both the Sp1 and the E2F binding site suggest that Sp1 and Sp3 supply most if not all activity binding to the GC-box of the thymidine kinase promoter in murine fibroblasts. Reporter gene assays in Drosophila melanogaster SL2 cells and murine fibroblast 3T6 cells demonstrate that the thymidine kinase promoter is activated strongly by Sp1 and Sp3, weakly by Sp4, and not at all by Sp2. Co-expression of E2F-1 results in synergistic activation in 3T6 but not in SL2 cells.
Collapse
Affiliation(s)
- H Rotheneder
- Vienna Biocenter, University of Vienna, Austria.
| | | | | |
Collapse
|
164
|
Cook T, Gebelein B, Belal M, Mesa K, Urrutia R. Three conserved transcriptional repressor domains are a defining feature of the TIEG subfamily of Sp1-like zinc finger proteins. J Biol Chem 1999; 274:29500-4. [PMID: 10506214 DOI: 10.1074/jbc.274.41.29500] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sp1-like transcription factors are characterized by three highly homologous C-terminal zinc finger motifs that bind GC-rich sequences. These proteins behave as either activators or repressors and have begun to be classified into different subfamilies based upon the presence of conserved motifs outside the zinc finger domain. This classification predicts that different Sp1-like subfamilies share certain functional properties. TIEG1 and TIEG2 constitute a new subfamily of transforming growth factor-beta-inducible Sp1-like proteins whose zinc finger motifs also bind GC-rich sequences. However, regions outside of the DNA-binding domain that differ in structure from other Sp1-like family members remain poorly characterized. Here, we have used extensive mutagenesis and GAL4-based transcriptional assays to identify three repression domains within TIEG1 and TIEG2 that we call R1, R2, and R3. R1 is 10 amino acids, R2 is 12 amino acids, and R3 is approximately 80 amino acids long. None of these domains share homology with previously described transcriptional regulatory motifs, but they share strong sequence homology and are functionally conserved between TIEG1 and TIEG2. Together, these data demonstrate that TIEG proteins are capable of repressing transcription, define domains critical for this function, and further support the idea that different subfamilies of Sp1-like proteins have evolved to mediate distinct transcriptional functions.
Collapse
Affiliation(s)
- T Cook
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota 55901, USA
| | | | | | | | | |
Collapse
|
165
|
Abstract
GC-boxes and related motifs are frequently occurring DNA-elements present in many promoters and enhancers. In contrast to other elements it was generally thought that the transcription factor Sp1 is the only factor acting through these motifs. The cloning of paralogous genes of the Sp1 factor uncovered the existence of a small protein family consisting of Sp1, Sp2, Sp3 and Sp4. All four proteins exhibit very similar structural features. They contain a highly conserved DNA-binding domain composed of three zinc fingers close the C-terminus and serine/threonine- and glutamine-rich domains in their N-terminal regions. The high degree of structural conservation between these four proteins suggested that they do exert similar functions. Molecular, genetic and biochemical analyses, however, demonstrated that Sp2, Sp3 and Sp4 are not simply functional equivalents of Sp1. Here, I will summarize and discuss recent advances which have been made towards understanding the mode of action and biological function of individual family members.
Collapse
Affiliation(s)
- G Suske
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Germany.
| |
Collapse
|
166
|
Turker MS. The establishment and maintenance of DNA methylation patterns in mouse somatic cells. Semin Cancer Biol 1999; 9:329-37. [PMID: 10547341 DOI: 10.1006/scbi.1999.0133] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Somatic cell DNA methylation patterns in mammals are established during embryonic development and are then maintained somewhat faithfully for the remainder of the individual's lifetime. Pattern formation can be divided into a series of linked steps that include demethylation, de novo methylation, methylation spreading, methylation blocking, and maintenance methylation. In this review, these steps will be combined to present a model for the formation and maintenance of a methylation pattern in the 5' region of the mouse Aprt gene. This model suggests that an apparently 'stable' methylation pattern results from a dynamic equilibrium between forces that promote and inhibit methylation spreading.
Collapse
Affiliation(s)
- M S Turker
- Center for Research on Occupational and Environmental Toxicology (CROET), L606, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR, 97201, USA.
| |
Collapse
|
167
|
Geng Y, Tsai-Morris CH, Zhang Y, Dufau ML. The human luteinizing hormone receptor gene promoter: activation by Sp1 and Sp3 and inhibitory regulation. Biochem Biophys Res Commun 1999; 263:366-71. [PMID: 10491299 DOI: 10.1006/bbrc.1999.1374] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To understand the transcriptional mechanism(s) of human LH receptor (LHR) gene expression, we have identified the dominant functional cis-elements that regulate the activity of the promoter domain (-1 to -176 bp from ATG). Mutagenesis demonstrated that the promoter activity was dependent on two Sp1 domains (-79 bp, -120 bp) in a transformed normal placental cell (PLC) and the choriocarcinoma JAR cell. Both elements interacted with endogenous Sp1 and Sp3 factors but not with Sp2 or Sp4. In Drosophila SL2 cells, the promoter was activated by either Sp1 or Sp3. An ERE half-site (EREhs) at -174 bp was inhibitory (by 100%), but was unresponsive to estradiol and did not bind the estrogen receptor or orphan receptors ERR1 and SF-1. The 5' upstream sequence (-177 to -2056 bp) inhibited promoter activity in PLC by 60%, but only minimally in JAR cells. Activation of the human LHR promoter through Sp1/3 factors is negatively regulated through EREhs and upstream sequences to exert control of gene expression.
Collapse
Affiliation(s)
- Y Geng
- Endocrinology and Reproduction Research Branch, National Institutes of Child Health and Human Development, Bethesda, Maryland, 20892, USA
| | | | | | | |
Collapse
|
168
|
Hansen TO, Bundgaard JR, Nielsen FC, Rehfeld JF. Composite action of three GC/GT boxes in the proximal promoter region is important for gastrin gene transcription. Mol Cell Endocrinol 1999; 155:1-8. [PMID: 10580833 DOI: 10.1016/s0303-7207(99)00120-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proximal region of the human gastrin gene promoter contains three GC/GT boxes at positions -140 to -134 bp, -108 to -102 bp and -67 to -61 bp. In this study we have examined the significance of the three elements, and their role in Sp1 and Sp3 mediated gastrin transcription. In AGS cells, mutation of each of the boxes caused a moderate decrease in promoter activity from 33 to 63%, whereas double or triple mutations reduced activity to 3-12%. In Drosophila cells Sp1 activated the promoter, mainly through the distal GC box. Similarly, co-transfection of heterologous promoter constructs revealed that only the distal GC box increased activation by Sp1. The effect of Sp3 was cell-line dependent, since Sp3 inhibited the gastrin promoter activity in AGS cells and caused a synergistic activation of the Sp1 stimulated gastrin promoter in Drosophila cells. Both effects were dependent on the C-terminal DNA binding domain of Sp3. The results indicates that the combined effect of the GC/GT boxes and the ratio between Sp1 and Sp3 are important for gastrin gene expression.
Collapse
Affiliation(s)
- T O Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
169
|
Liu HC, Shen JT, Augustin LB, Ko JL, Loh HH. Transcriptional regulation of mouse delta-opioid receptor gene. J Biol Chem 1999; 274:23617-26. [PMID: 10438544 PMCID: PMC3394399 DOI: 10.1074/jbc.274.33.23617] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three major types of opioid receptors, mu (MOR), delta (DOR), and kappa (KOR), have been cloned and characterized. Each opioid receptor exhibits a distinct pharmacological profile as well as a distinct pattern of temporal and spatial expression in the brain, suggesting the critical role of transcription regulatory elements and their associated factors. Here, we report the identification of a minimum core promoter, in the 5'-flanking region of the mouse DOR gene, containing an E box and a GC box that are crucial for DOR promoter activity in NS20Y cells, a DOR-expressing mouse neuronal cell line. In vitro protein-DNA binding assays and in vivo transient transfection assays indicated that members of both the upstream stimulatory factor and Sp families of transcription factors bound to and trans-activated the DOR promoter via the E box and GC box, respectively. Furthermore, functional and physical interactions between these factors were critical for the basal as well as maximum promoter activity of the DOR gene. Thus, the distinct developmental emergence and brain regional distribution of the delta opioid receptor appear to be controlled, at least in part, by these two regulatory elements and their associated factors.
Collapse
Affiliation(s)
- H C Liu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | |
Collapse
|
170
|
Philipsen S, Suske G. A tale of three fingers: the family of mammalian Sp/XKLF transcription factors. Nucleic Acids Res 1999; 27:2991-3000. [PMID: 10454592 PMCID: PMC148522 DOI: 10.1093/nar/27.15.2991] [Citation(s) in RCA: 485] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
One of the most common regulatory elements is the GC box and the related GT/CACC box, which are widely distributed in promoters, enhancers and locus control regions of housekeeping as well as tissue-specific genes. For long it was generally thought that Sp1 is the major factor acting through these motifs. Recent discoveries have shown that Sp1 is only one of many transcription factors binding and acting through these elements. Sp1 simply represents the first identified and cloned protein of a family of transcription factors characterised by a highly conserved DNA-binding domain consisting of three zinc fingers. Currently this new family of transcription factors has at least 16 different mammalian members. Here, we will summarise and discuss recent advances that have been directed towards understanding the biological role of these proteins.
Collapse
Affiliation(s)
- S Philipsen
- Department of Cell Biology, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam, The Netherlands and
| | | |
Collapse
|
171
|
Izmailova ES, Wieczorek E, Perkins EB, Zehner ZE. A GC-box is required for expression of the human vimentin gene. Gene 1999; 235:69-75. [PMID: 10415334 DOI: 10.1016/s0378-1119(99)00209-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Vimentin is an intermediate filament protein normally expressed in cells of mesenchymal origin. The promoter of the human vimentin gene (-1416 to +73) was shown to contain two positive-acting regions, separated by a negative region, and at least eight GC-boxes as determined by sequence homology (Rittling, S.R., Baserga, R., 1987. Mol. Cell. Biol. 7, 3908-3915). We have analyzed the region -900 to +41 for protein binding by in vivo footprinting experiments using ligation-mediated PCR. For the various GC-boxes, we detect protein binding only to that GC-box (at position -64 and -55) closest to the transcriptional start site. Transient transfection assays of various vimentin 5'-end fragments and mutations thereof fused to the reporter gene cat indicate that this sequence is indispensable for promoter function regardless of the inclusion of upstream DNA sequences. In vitro binding studies confirm that this region binds protein specifically. We suggest that this GC-box and its binding factor are required for regulated expression of the human vimentin gene.
Collapse
Affiliation(s)
- E S Izmailova
- Department of Biochemistry and Molecular Biophysics and the Massey Cancer Center, Medical College of Virginia Campus/ Virginia Commonwealth University, P.O. Box 980614, Richmond, VA 23298-0614, USA
| | | | | | | |
Collapse
|
172
|
Abstract
To investigate the DNA regulatory sequences required for stimulation and suppression of leptin gene expression, primary cultured hepatocytes and adipocytes of rats were transfected with plasmids containing the 5'-flanking sequences of the rat leptin gene fused to the luciferase gene. When two copies of the sequences spanning nucleotides -101 to -83 of the leptin promoter were used for transfection, the reporter activity significantly increased in the presence of glucose/insulin in comparison with glucose alone. The glucose/insulin stimulation of the transcription was inhibited by addition of polyunsaturated fatty acids. These results were similar to those found earlier for the transcription of the fatty acid synthase, FAS(-57/-35) and ATP citrate-lyase, ACL(-64/-41) genes. Cotransfection studies in the cells with a Sp1 expression vector and leptin (-101/-83) constructs showed the inactivation of the leptin promoter by Sp1. Gel mobility shift assays using an end-labeled leptin (-101/-83) construct as a probe revealed that nuclear factor(s) from rat liver or adipose tissue specifically formed complexes with the sequence. The DNA-protein complexes were common to the glucose/insulin-responsive regions of the leptin, ACL and FAS genes, suggesting that these genes are coordinately regulated. In addition, by antibody supershift assays, the transcription factor Sp1 was found to bind the GC-rich region located between nucleotides -101 and -83 of the leptin gene. Mutational analysis of this region showed that the sequence of the region was critical for glucose/insulin stimulation of transcription. Thus, we postulated that the region from -101 to -83 of the leptin gene is responsible for glucose/insulin stimulation of transcription, and that Sp1 is somehow involved in this regulation.
Collapse
Affiliation(s)
- H Fukuda
- Faculty of Human and Cultural Studies, Tezukayama Gakuin University, Sakai, Osaka, Japan
| | | |
Collapse
|
173
|
Ding H, Benotmane AM, Suske G, Collen D, Belayew A. Functional interactions between Sp1 or Sp3 and the helicase-like transcription factor mediate basal expression from the human plasminogen activator inhibitor-1 gene. J Biol Chem 1999; 274:19573-80. [PMID: 10391891 DOI: 10.1074/jbc.274.28.19573] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Basal expression of the human plasminogen activator inhibitor-1 (PAI-1) is mediated by a promoter element named B box that binds the helicase-like transcription factor (HLTF), homologous to SNF/SWI proteins. Electrophoretic mobility shift assays performed on a set of B box point mutants demonstrated two HLTF sites flanking and partially overlapping with a GT box binding Sp1 and Sp3. Mutations affecting either the Sp1/Sp3 or the two HLTF sites inhibited by 6- and 2.5-fold, respectively, transient expression in HeLa cells of a reporter gene fused to the PAI-1 promoter. In Sp1/Sp3-devoid insect cells, co-expression of PAI-1-lacZ with Sp1 or Sp3 led to a 14-26-fold induction while HLTF had no effect. Simultaneous presence of Sp1 or Sp3 and the short HLTF form (initiating at Met-123) provided an additional 2-3-fold synergistic activation suppressed by mutations that prevented HLTF binding. Moreover, a DNA-independent interaction between HLTFMet123 and Sp1/Sp3 was demonstrated by co-immunoprecipitation from HeLa cell extracts and glutathione S-transferase pull-down experiments. The interaction domains were mapped to the carboxyl-terminal region of each protein; deletion of the last 85 amino acids of HLTFMet123 abolished the synergy with Sp1. This is the first demonstration of a functional interaction between proteins of the Sp1 and SNF/SWI families.
Collapse
Affiliation(s)
- H Ding
- Center for Molecular and Vascular Biology, University of Leuven, 3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
174
|
Ahlgren R, Suske G, Waterman MR, Lund J. Role of Sp1 in cAMP-dependent transcriptional regulation of the bovine CYP11A gene. J Biol Chem 1999; 274:19422-8. [PMID: 10383457 DOI: 10.1074/jbc.274.27.19422] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pituitary peptide hormone ACTH regulates transcription of the cholesterol side chain cleavage cytochrome P450 (CYP11A) gene via cAMP and activation of cAMP-dependent protein kinase. A G-rich sequence element conferring cAMP-dependent regulation has been found to reside within region -118 to -100 of the bovine CYP11A promoter. Previous studies have suggested that it binds a protein antigenically related to the transcription factor Sp1. We now report that the -118/-100 element binds both Sp1 and Sp3, members of the Sp family of transcription factors. We have made use of Drosophila SL2 cells, which lack endogenous Sp factors, to dissect the possible functional roles of Sp1, Sp3, and Sp4. All factors stimulated the activity of cotransfected reporter constructs in which the promoter of the bovine CYP11A gene regulates luciferase expression. Sp3 did not repress Sp1-dependent activation, as has previously been shown for other G-rich promoters. Mutation of the -118/-100 element of CYP11A abolished Sp1-mediated activation of a CYP11A reporter gene in SL2 cells as well as cAMP responsiveness in human H295R cells. Furthermore, cotransfection of SL2 cells with the catalytic subunit of cAMP-dependent protein kinase together with Sp1 and a CYP11A reporter construct enhanced Sp1-dependent activation of the reporter 4.2-fold, demonstrating that Sp1 confers cAMP responsiveness in these cells. Thus, we show that introduction of Sp1 alone in an Sp-negative cell such as SL2 is sufficient to achieve the cAMP-dependent regulation observed using the -118/-100 element of CYP11A in adrenocortical cells.
Collapse
Affiliation(s)
- R Ahlgren
- Department of Anatomy and Cell Biology, University of Bergen, N-5009 Bergen, Norway
| | | | | | | |
Collapse
|
175
|
Sasahara RM, Takahashi C, Sogayar MC, Noda M. Oncogene-mediated downregulation of RECK, a novel transformation suppressor gene. Braz J Med Biol Res 1999; 32:891-5. [PMID: 10454749 DOI: 10.1590/s0100-879x1999000700014] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The RECK gene was initially isolated as a transformation suppressor gene encoding a novel membrane-anchored glycoprotein and later found to suppress tumor invasion and metastasis by regulating matrix metalloproteinase-9. Its expression is ubiquitous in normal tissues, but undetectable in many tumor cell lines and in fibroblastic lines transformed by various oncogenes. The RECK gene promoter has been cloned and characterized. One of the elements responsible for the oncogene-mediated downregulation of mouse RECK gene is the Sp1 site, where the Sp1 and Sp3 factors bind. Sp1 transcription factor family is involved in the basal level of promoter activity of many genes, as well as in dynamic regulation of gene expression; in a majority of cases as a positive regulator, or, as exemplified by the oncogene-mediated suppression of RECK gene expression, as a negative transcription regulator. The molecular mechanisms of the down-regulation of mouse RECK gene and other tumor suppressor genes are just beginning to be uncovered. Understanding the regulation of these genes may help to develop strategies to restore their expression in tumor cells and, hence, suppress the cells' malignant behavior.
Collapse
Affiliation(s)
- R M Sasahara
- Instituto de Química, Universidade de São Paulo, Brasil.
| | | | | | | |
Collapse
|
176
|
Cook T, Gebelein B, Urrutia R. Sp1 and its likes: biochemical and functional predictions for a growing family of zinc finger transcription factors. Ann N Y Acad Sci 1999; 880:94-102. [PMID: 10415854 DOI: 10.1111/j.1749-6632.1999.tb09513.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The discovery and functional characterization of Sp1 as a GC-rich binding zinc finger protein provided a useful paradigm for understanding mechanisms mediating transcriptional activation in eukaryotic cells. This early paradigm suggested that promoters carrying GC-rich sequences are activated by Sp1 through its interaction with proteins from the basal transcriptional machinery to upregulate gene expression. Since the time of this seminal work, studies from several laboratories have led to the discovery of many Sp1-like transcription factors containing highly homologous DNA binding motifs that bind to similar sequences. Consequently, this knowledge poses many important questions regarding whether these related proteins have similar or antagonistic biochemical and functional properties to Sp1. The goal of this article is to use available database information and recent experimental evidence to describe the current repertoire of Sp1-like zinc finger transcription factors in mammalian cells. Furthermore, we discuss structural and functional studies that reveal that these proteins may share a role in morphogenetic pathways. Altogether, this information is aimed at better understanding how this growing family of transcription factors work to regulate gene expression and morphogenesis.
Collapse
Affiliation(s)
- T Cook
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
177
|
Hernández-Sánchez C, Ito Y, Ferrer J, Reitman M, LeRoith D. Characterization of the mouse sulfonylurea receptor 1 promoter and its regulation. J Biol Chem 1999; 274:18261-70. [PMID: 10373428 DOI: 10.1074/jbc.274.26.18261] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATP-sensitive potassium channels (K+ATP channels) are heteromultimeric structures formed by a member of the sulfonylurea receptor (SUR) family and a member of the inwardly rectifying potassium channel family (Kir6.x). The K+ATP channels play an essential role in nutrient-induced insulin secretion from the pancreatic beta-cell. We have cloned and characterized the promoter region of the mouse SUR1 gene, and have shown that it lacks CAAT and TATA boxes or an initiator element. Studies of transcription initiation in several tissues showed that there is a common SUR1 promoter in brain, heart, and pancreas and in the pancreatic beta-cell line, betaTC3. The SUR1 gene uses multiple transcription start sites with the major site located 54 base pairs 5'-upstream of the translation initiation site. Transient transfection experiments in pancreatic beta-cell lines showed that the proximal promoter fragment -84/+54 is sufficient for significant transcriptional activity. The proximal promoter region contains multiple SP1-binding sites, and cotransfection experiments of the SUR1 promoter-luciferase vector with SP1 expression vector in Drosophila SL2 cells demonstrated a stimulatory effect of SP1 on SUR1 transcriptional activity. The mobility shift assays confirmed the interaction of the SP1 transcription factor with the proximal promoter region of the SUR1 gene. Together, these results indicate that SP1 may mediate transcription initiation of the SUR1 gene. In addition, we have described the coordinate regulation of the gene expression of both K+ATP channel subunits by glucocorticoids. SUR1 and Kir6.2 mRNA levels are down-regulated by approximately 40-50% in response to glucocorticoid treatment. Interestingly, the extent of the inhibitory effect as well as the kinetics and sensitivity are very similar for both mRNAs. Studies of mRNA turnover demonstrate that glucocorticoids most likely decrease the transcriptional activity of both SUR1 and Kir6.2 genes since glucocorticoids failed to affect the stability of each mRNA. Likewise, the reduction in mRNA levels was correlated with a decrease in SUR1 and Kir6.2 protein levels.
Collapse
Affiliation(s)
- C Hernández-Sánchez
- Section on Molecular and Cellular Physiology, Diabetes Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1770, USA
| | | | | | | | | |
Collapse
|
178
|
Abstract
Cyclin D3 plays a major role in the development of polyploidy in megakaryocytes. The expression of cyclin D3 gene and the level of cyclin D3 protein are increased by the Mpl ligand in the Y10/L8057 megakaryocytic cell line, as indicated by Northern and Western blot analyses, and by nuclear run-on assays and transfection experiments with cyclin D3 promoter constructs. DNase I footprinting of the promoter region showed protected segments, at −75 to −60 bp and at −134 to −92 bp, which display binding sites for the Sp family of transcription factors. Gel mobility shift assay and supershifts with specific antibodies indicate that Sp1 binds to these regions in the cyclin D3 promoter and that Sp1 binding activity is significantly increased by Mpl ligand. Mutation of either Sp1 site both decreases the basal promoter activity and eliminates the induction by Mpl ligand. We find that the nonphosphorylated form of SP1 has greater affinity for the cyclin D3 promoter and that the majority of Sp1 in the cells is nonphosphorylated. Mpl ligand treatment results in increased levels of Sp1 protein, which also appears as nonphosphorylated. Okadaic acid, which inhibits protein phosphatase 1 (PP1) and shifts Sp1 to a phosphorylated form, decreases cyclin D3 gene expression and suppresses Mpl ligand induction. Our data point to the potential of Mpl ligand to activate at once several Sp1-dependent genes during megakaryopoiesis.
Collapse
|
179
|
Mpl Ligand Enhances the Transcription of the Cyclin D3 Gene: A Potential Role for Sp1 Transcription Factor. Blood 1999. [DOI: 10.1182/blood.v93.12.4208] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractCyclin D3 plays a major role in the development of polyploidy in megakaryocytes. The expression of cyclin D3 gene and the level of cyclin D3 protein are increased by the Mpl ligand in the Y10/L8057 megakaryocytic cell line, as indicated by Northern and Western blot analyses, and by nuclear run-on assays and transfection experiments with cyclin D3 promoter constructs. DNase I footprinting of the promoter region showed protected segments, at −75 to −60 bp and at −134 to −92 bp, which display binding sites for the Sp family of transcription factors. Gel mobility shift assay and supershifts with specific antibodies indicate that Sp1 binds to these regions in the cyclin D3 promoter and that Sp1 binding activity is significantly increased by Mpl ligand. Mutation of either Sp1 site both decreases the basal promoter activity and eliminates the induction by Mpl ligand. We find that the nonphosphorylated form of SP1 has greater affinity for the cyclin D3 promoter and that the majority of Sp1 in the cells is nonphosphorylated. Mpl ligand treatment results in increased levels of Sp1 protein, which also appears as nonphosphorylated. Okadaic acid, which inhibits protein phosphatase 1 (PP1) and shifts Sp1 to a phosphorylated form, decreases cyclin D3 gene expression and suppresses Mpl ligand induction. Our data point to the potential of Mpl ligand to activate at once several Sp1-dependent genes during megakaryopoiesis.
Collapse
|
180
|
Knepper PA, Mayanil CS, Hayes E, Goossens W, Byrne RW, McLone DG. The presence of transcription factors in chicken albumin, yolk and blastoderm. In Vitro Cell Dev Biol Anim 1999; 35:357-63. [PMID: 10476924 DOI: 10.1007/s11626-999-0087-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Embryonic development is determined by preset intrinsic programs and extrinsic signals. To explore the possibility that transcription factors are present at the onset of development, preparations of yolk, albumin, and blastoderm from unfertilized and fertilized white Leghorn chicken eggs were screened by a panel of 16 transcription factor antibodies with Western blot techniques. Yolk was positive for 13 transcription factors, whereas blastoderm was positive for 10, and albumin was positive for 5. In yolk, several transcription factors, GATA-2, E2F-1, MyoD, and TFIID, were developmentally regulated. These results indicate that intracellular yolk and extracellular albumin contain transcription factors which presumably influence early chick embryonic development from prefertilization to the late blastoderm stage. Thus, the utility of preset maternal transcription factors within yolk and albumin complement maternally derived mRNA to determine the early development of the zygote.
Collapse
Affiliation(s)
- P A Knepper
- Division of Neurosurgery, Children's Memorial Medical Center and Northwestern University Medical School, Chicago, Illinois 60614, USA
| | | | | | | | | | | |
Collapse
|
181
|
Simmen RC, Chung TE, Imataka H, Michel FJ, Badinga L, Simmen FA. Trans-activation functions of the Sp-related nuclear factor, basic transcription element-binding protein, and progesterone receptor in endometrial epithelial cells. Endocrinology 1999; 140:2517-25. [PMID: 10342837 DOI: 10.1210/endo.140.6.6625] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present study examined the trans-activation potential of basic transcription element-binding protein (BTEB), a recently identified member of the Sp family of GC box-binding transcription factors, on the expression of the gene encoding the pregnancy-associated, epithelial-specific, and progesterone (P)-induced porcine uterine endometrial secretory protein, uteroferrin (UF). Endometrial expression of BTEB, P receptor (PR), and UF genes was analyzed by RT-PCR as a function of pregnancy stage and cell type and was correlated with the levels of endometrial BTEB that were quantified by Western blot and/or electrophoretic mobility shift assay. PR, BTEB, and UF messenger RNAs (mRNAs) were present in early (day 12) and mid(day 60) pregnancy pig endometrium, although expression levels varied for each mRNA (UF, day 12 << day 60; PR and BTEB, day 12 = day 60). Within the endometrium, glandular epithelial (GE) cells manifested higher amounts of UF mRNA than stromal fibroblastic cells, whereas both cell types had comparable amounts of BTEB and PR mRNAs. Expression of BTEB, however, was limited to endometrial GE cells. A BTEB expression vector (pcDNA-3BTEB) was used to examine the effect of increased BTEB protein on UF gene expression and promoter activity in primary cultures of pig endometrial GE cells. Cells transiently transfected with pcDNA-3BTEB had 2-fold higher UF mRNA levels than those transfected with the empty expression vector (pcDNA-3). Further, cells cotransfected with a UF promoter-luciferase (-1935UF-Luc) reporter gene and the BTEB expression vector had 2-fold higher Luc activity than those cotransfected with reporter gene and pcDNA-3. This effect of BTEB was not observed in transfected endometrial stromal fibroblastic cells, but was apparent in the human endometrial epithelial carcinoma cell lines ECC-1 and Hec-1-A, which exhibit low levels of BTEB protein and low or undetectable PR mRNA levels, respectively. The respective contributions of BTEB and PR to the modulation of UF promoter activity were examined by cotransfection of Hec-1-A and ECC-1 cells with expression plasmids for BTEB and PR and one of two UF promoter constructs (-831UF-Luc or -1935UF-Luc) in the absence or presence of P. The increase in UF promoter activity with BTEB was mimicked by PR in a P-dependent manner in both cell lines. The combined effect of PR/P and BTEB appeared additive in Hec-1-A cells and was synergistic in ECC-1 cells. These results highlight the cell context dependence of the trans-activation potential of BTEB and suggest its unique role, in concert with PR, in directing the temporal expression of endometrial epithelial genes of pregnancy.
Collapse
Affiliation(s)
- R C Simmen
- Department of Animal Science, University of Florida, Gainesville 32611-0910, USA
| | | | | | | | | | | |
Collapse
|
182
|
Xiao H, Hasegawa T, Isobe KI. Both Sp1 and Sp3 are responsible for p21waf1 promoter activity induced by histone deacetylase inhibitor in NIH3T3 cells. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19990601)73:3<291::aid-jcb1>3.0.co;2-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
183
|
Querfurth HW, Jiang J, Xia W, Selkoe DJ. Enhancer function and novel DNA binding protein activity in the near upstream betaAPP gene promoter. Gene 1999; 232:125-41. [PMID: 10333529 DOI: 10.1016/s0378-1119(99)00091-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The role of betaAPP gene transcription and promoter regulation in modifying amyloid beta-peptide (Abeta) levels is not well understood. Increased production of Abeta or changes in Abeta42/Abeta40 ratio by fibroblasts occurs in the presence of mutant presenilin or betaAPP alleles in familial Alzheimer's disease subjects. Both betaAPP mRNA and Abeta levels are increased in trisomy 21. The APP gene promoter is in a class of housekeeping genes and contains two putative consensus sites for the binding of transcription factor AP1. Electrophoretic mobility shift (EMSA) and DNase protection assays using human fibroblast and HeLa nuclear extract identified specific protein binding with novel Sp1-like properties to both a near-upstream and a downstream domain of the betaAPP promoter. The upstream binding activity was localized to a putative AP1 consensus site and its immediate 5'-adjacent GC-rich element. However, c-Jun antibody and competition experiments had no effect on binding to this domain. A series of 5'-deleted betaAPP promoter-reporter gene transfections in HeLa and fibroblast cells showed that the domain-containing region, n.t. -383 to -348, exerts a 2.9-fold activating influence on basal pbetaAPP-reporter transcription. When subcloned to test enhancer function, the 5'-GC element/'AP1 site' tandem construct conferred four-fold greater activity than either element alone and two-fold greater than the more 3'-situated HSE consensus sequence. Phorbol ester treatment had no effect in these reporter assays. This element shares homology and binding properties with a domain immediately 5' to the downstream E-box/USF element. An interaction model involving both domains and looping of interjacent DNA is proposed. We conclude that this newly described binding protein-enhancer complex is required for full betaAPP promoter activation.
Collapse
Affiliation(s)
- H W Querfurth
- Division of Neurology, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA.
| | | | | | | |
Collapse
|
184
|
Chu S, Blaisdell CJ, Liu MZ, Zeitlin PL. Perinatal regulation of the ClC-2 chloride channel in lung is mediated by Sp1 and Sp3. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:L614-24. [PMID: 10198359 DOI: 10.1152/ajplung.1999.276.4.l614] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanisms responsible for regulation of pulmonary epithelial chloride-channel expression in the perinatal period are under investigation to better understand normal lung development and airway disease pathogenesis. The ClC-2 epithelial chloride channel is regulated by changes in pH and volume and is most abundant in lung during fetal development. In this study, we identify and sequence the ClC-2 promoter, which is GC rich and lacks a TATA box. By construction of a series of promoter-luciferase constructs, a 67-bp GC box-containing sequence in the promoter is shown to be critical to ClC-2 expression in primary and immortalized fetal lung epithelial cells. Electrophoretic mobility shift assays and antibody supershifts demonstrate that the Sp1 and Sp3 transcription factors are expressed in fetal lung nuclei and interact with the GC box sequences in the promoter. Immunoblotting techniques demonstrate that Sp1 and Sp3 are perinatally downregulated in the lung with the same temporal sequence as ClC-2 downregulation. This work suggests that Sp1 and Sp3 activate ClC-2 gene transcription and that reduction in Sp1 and Sp3 at birth explains perinatal downregulation of ClC-2 in the lung.
Collapse
Affiliation(s)
- S Chu
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2533, USA.
| | | | | | | |
Collapse
|
185
|
Zedlacher M, Schmoll M, Zimmermann K, Horstkorte O, Nischt R. Differential regulation of the human nidogen gene promoter region by a novel cell-type-specific silencer element. Biochem J 1999; 338 ( Pt 2):343-50. [PMID: 10024509 PMCID: PMC1220059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Transfection analyses of the human nidogen promoter region in nidogen-producing fibroblasts from adult skin revealed multiple positive and negative cis-acting elements controlling nidogen gene expression. Characterization of the positive regulatory domains by gel mobility-shift assays and co-transfection studies in Drosophila SL2 cells unequivocally demonstrated that Sp1-like transcription factors are essential for a high expression of the human nidogen gene. Analysis of the negative regulatory domains identified a novel silencer element between nt -1333 and -1322, which is bound by a distinct nuclear factor, by using extracts from adult but not from embryonal fibroblasts. In embryonal fibroblasts, which express significantly higher amounts of nidogen mRNA as compared with adult fibroblasts, this inhibitory nidogen promoter region did not affect nidogen and SV40 promoter activities. The silencer element seems to be active only in nidogen-producing cells. Therefore this regulatory element might function in vivo to limit nidogen gene expression in response to external stimuli. However, none of the identified regulatory elements, including the silencer, contribute significantly to cell-specific expression of the human nidogen gene. Instead we provide evidence that gene expression in epidermal keratinocytes that are not producing nidogen is repressed by methylation-specific and chromatin-dependent mechanisms.
Collapse
Affiliation(s)
- M Zedlacher
- Department of Dermatology, University of Cologne, D-50924 Cologne, Germany
| | | | | | | | | |
Collapse
|
186
|
Medvedev A, Saunders NA, Matsuura H, Chistokhina A, Jetten AM. Regulation of the transglutaminase I gene. Identification of DNA elements involved in its transcriptional control in tracheobronchial epithelial cells. J Biol Chem 1999; 274:3887-96. [PMID: 9920944 DOI: 10.1074/jbc.274.6.3887] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transglutaminase I (TGase I) gene encodes an enzyme that catalyzes the cross-linking of structural proteins involved in the formation of the cornified envelope during squamous cell differentiation. To identify DNA elements important for the transcriptional control of the TGase I gene, we analyzed the ability of a 2.9-kilobase pair (kb) upstream regulatory region to control the expression of a reporter gene in vivo and in vitro. Transgenic mice bearing the pTG(-2.9kb)CAT construct exhibited the same pattern of tissue-specific expression of CAT as reported for TGase I. Deletion analysis in transiently transfected rabbit tracheal epithelial cells indicated that two sequences from bp -490 to -470 and from -54 to -37 are involved in the activation of TGase I transcription. Point mutation analysis and mobility shift assays showed that the sequence located between -54 and -37 is a functional Sp1-like transcription element. Sp1 and Sp3, but not Sp2, are part of nuclear protein complexes from differentiated RbTE cells binding to this site. The element TGATGTCA between bp -490 and -470 is contained in a larger 22-bp palindrome and resembles the consensus cAMP response element-binding protein (CREB)/AP-1 element recognized by dimeric complexes of members of the CREB, ATF, Fos, and Jun families. Mutations in this sequence greatly reduced promoter activity. Supershift analysis identified CREB1, JunB, c-Fos, Fra-1, and c-Jun in protein complexes isolated from differentiated rabbit tracheal epithelial cells binding to this site. Our study shows that the Sp1- and CREB/AP-1-like sites act in concert to stimulate transcription of the TGase I gene. The 2.9-kb promoter region could guide expression of specific genes in the granular layer of the epidermis and could be useful in gene therapy.
Collapse
Affiliation(s)
- A Medvedev
- Cell Biology Section, Laboratory of Pulmonary Pathobiology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
187
|
Song A, Chen YF, Thamatrakoln K, Storm TA, Krensky AM. RFLAT-1: a new zinc finger transcription factor that activates RANTES gene expression in T lymphocytes. Immunity 1999; 10:93-103. [PMID: 10023774 DOI: 10.1016/s1074-7613(00)80010-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
RANTES (Regulated upon Activation, Normal T cell Expressed and Secreted) is a chemoattractant cytokine (chemokine) important in the generation of inflammatory infiltrate and human immunodeficiency virus entry into immune cells. RANTES is expressed late (3-5 days) after activation in T lymphocytes. Using expression cloning, we identified the first "late" T lymphocyte associated transcription factor and named it "RANTES Factor of Late Activated T Lymphocytes-1" (RFLAT-1). RFLAT-1 is a novel, phosphorylated, zinc finger transcription factor that is expressed in T cells 3 days after activation, coincident with RANTES expression. While Rel proteins play the dominant role in RANTES gene expression in fibroblasts, RFLAT-1 is a strong transactivator for RANTES in T cells.
Collapse
Affiliation(s)
- A Song
- Department of Pediatrics, Stanford University School of Medicine, California 94305-5208, USA
| | | | | | | | | |
Collapse
|
188
|
Kwon HS, Kim MS, Edenberg HJ, Hur MW. Sp3 and Sp4 can repress transcription by competing with Sp1 for the core cis-elements on the human ADH5/FDH minimal promoter. J Biol Chem 1999; 274:20-8. [PMID: 9867805 DOI: 10.1074/jbc.274.1.20] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human alcohol dehydrogenase 5 gene (also known as the formaldehyde dehydrogenase gene, ADH5/FDH) has a GC-rich promoter with many sites at which transcription factors bind. A minimal promoter extending from -34 base pairs (bp) to +61 bp directs high levels of transcription in several different cells, consistent with the ubiquitous expression of the gene. Nearly the entire minimal promoter can be bound by Sp1. We analyzed the transcriptional regulation of ADH5/FDH by members of the Sp1 multigene family. Two core cis-elements (-22 bp to +22 bp) had the highest affinity for Sp1. Mutagenesis revealed that these cis-elements are critical for transcriptional activation. The zinc-finger domains of Sp3 and Sp4 also bind selectively to the core cis-elements. In Drosophila SL2 cells, which lack endogenous Sp1, the minimal promoter cannot drive transcription. Introduction of Sp1 activated transcription over 50-fold, suggesting that Sp1 is critical in the initiation of transcription. Neither Sp3 nor Sp4 was able to activate transcription in those cells, and transcriptional activation by Sp1 was repressed by Sp3 or Sp4. These data suggest that Sp3 and Sp4 can repress transcription by competing with Sp1 for binding to the core cis-elements. The content of Sp1, Sp3, and Sp4 in different cells may be critical factors regulating transcription of the ADH5/FDH gene.
Collapse
Affiliation(s)
- H S Kwon
- Department of Biochemistry and Molecular Biology, Institute of Genetic Sciences, Yonsei University School of Medicine, 134, ShinChon-Dong, SeoDaeMoon-Ku, Seoul, Korea 120-752
| | | | | | | |
Collapse
|
189
|
Selective Sp1 Binding Is Critical for Maximal Activity of the Human c-kit Promoter. Blood 1998. [DOI: 10.1182/blood.v92.11.4138.423k44_4138_4149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The receptor tyrosine kinase c-kit is necessary for normal hematopoiesis, the development of germ cells and melanocytes, and the pathogenesis of certain hematologic and nonhematologic malignancies. To better understand the regulation of the c-kit gene, a detailed analysis of the core promoter was performed. Rapid amplification of cDNA ends (RACE) and RNase protection methods showed two major transcriptional initiation sites. Luciferase reporter assays using 5′ promoter deletion-reporter constructs containing up to 3 kb of 5′ sequence were performed in hematopoietic and small-cell lung cancer cell lines which either did or did not express the endogenous c-kit gene. This analysis showed the region 83 to 124 bp upstream of the 5′ transcription initiation site was crucial for maximal core promoter activity. Sequence analysis showed several potential Sp1 binding sites within this highly GC-rich region. Gel shift and DNase footprinting showed that Sp1 selectively bound to a single site within this region. Supershift studies using an anti-Sp1 antibody confirmed specific Sp1 binding. Site-directed mutagenesis of the −93/−84 Sp1 binding site reduced promoter-reporter activity to basal levels in c-kit–expressing cells. Cotransfection into DrosophilaSL2 cells of a c-kit promoter-reporter construct with an Sp1 expression vector showed an Sp1 dose-dependent enhancement of expression that was markedly attenuated by mutation of the −93/−84 site. These results indicate that despite the fact that the human c-kit promoter contains multiple potential Sp1 sites, Sp1 binding is a selective process that is essential for core promoter activity.
Collapse
|
190
|
Abstract
AbstractThe receptor tyrosine kinase c-kit is necessary for normal hematopoiesis, the development of germ cells and melanocytes, and the pathogenesis of certain hematologic and nonhematologic malignancies. To better understand the regulation of the c-kit gene, a detailed analysis of the core promoter was performed. Rapid amplification of cDNA ends (RACE) and RNase protection methods showed two major transcriptional initiation sites. Luciferase reporter assays using 5′ promoter deletion-reporter constructs containing up to 3 kb of 5′ sequence were performed in hematopoietic and small-cell lung cancer cell lines which either did or did not express the endogenous c-kit gene. This analysis showed the region 83 to 124 bp upstream of the 5′ transcription initiation site was crucial for maximal core promoter activity. Sequence analysis showed several potential Sp1 binding sites within this highly GC-rich region. Gel shift and DNase footprinting showed that Sp1 selectively bound to a single site within this region. Supershift studies using an anti-Sp1 antibody confirmed specific Sp1 binding. Site-directed mutagenesis of the −93/−84 Sp1 binding site reduced promoter-reporter activity to basal levels in c-kit–expressing cells. Cotransfection into DrosophilaSL2 cells of a c-kit promoter-reporter construct with an Sp1 expression vector showed an Sp1 dose-dependent enhancement of expression that was markedly attenuated by mutation of the −93/−84 site. These results indicate that despite the fact that the human c-kit promoter contains multiple potential Sp1 sites, Sp1 binding is a selective process that is essential for core promoter activity.
Collapse
|
191
|
Tu ZJ, Kiang DT. Mapping and characterization of the basal promoter of the human connexin26 gene. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1443:169-81. [PMID: 9838096 DOI: 10.1016/s0167-4781(98)00212-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Connexin26 (Cx26) is a major gap junction protein expressed in mammary and endometrial epithelial cells. Previously, we have cloned the genomic upstream sequence of the human connexin26 gene. In this paper, we studied the structure and function of its basal promoter. Various 5'-flanking regions of the human Cx26 gene were inserted upstream of the bacterial chloramphenicol acetyltransferase (CAT) reporter gene and transfected into human immortalized mammary MCF-10A and MCF-12A cell lines and endometrial RL95-2 cancer cell line. Through CAT reporter gene analysis, we identified the basal promoter of human Cx26 gene in the proximal 5'-flanking region from -128 to +2 (relative to the transcription initiation site). Further deletion analyses suggested that the critical regulatory area was located within a 29 bp region (from -97 to -69), where two GC consensus boxes (CCGCCC) resided, one at -93 and the other at -81. Labeled oligonucleotides encompassing these two GC box DNA sequences could bind the nuclear extracts from MCF-12A and RL95-2 cells in the electrophoretic mobility shift assay. These binding complexes could be competitively reduced by non-labeled self or Sp1 consensus oligonucleotide, and supershifted by antibodies against either Sp1 or Sp3. Mutations in the core sequence of these two GC boxes from CCGCCC to CCGAAC caused a loss of competitive ability and also produced a drastic reduction of basal promoter activity when integrated into promoter/reporter constructs. Furthermore, co-transfection of Sp1 and/or Sp3 expressing plasmids could trans-activate the expression of human Cx26 promoter/reporter constructs in Drosophila Schneider line 2 (SL2) cells. Taken together, these data indicated that the two GC boxes in the proximal promoter region play an important role in the control of human Cx26 gene expression.
Collapse
Affiliation(s)
- Z J Tu
- Breast Cancer Research Laboratory, Department of Medicine, University of Minnesota Medical School, Box 286 UMHC, 420 Delaware St. S.E., Minneapolis, MN 55455, USA
| | | |
Collapse
|
192
|
Abstract
We compared the Sp1 binding activity of Rat2 fibroblasts in nuclear extracts prepared from quiescent cells and cells stimulated with 20% serum. Increased DNA-binding activity was observed in extracts from serum-stimulated cells when an Sp1 oligonucleotide was used as radiolabeled probe in electrophoretic mobility shift assays. This increase in Sp1 DNA-binding activity is not due to changes in the amount of Sp1 in the nucleus as shown by immunoblot analysis. The transcriptional activity of a reporter construct containing six Sp1 sites upstream of a minimal adenovirus promoter or an Sp1-dependent promoter such as ornithine decarboxylase (ODC) containing Sp1 sites was enhanced following serum stimulation in transient transfection assays. Dephosphorylation of the nuclear extracts with potato acid phosphatase abolished the Sp1 DNA-binding activity, demonstrating a possible correlation between phosphorylation of Sp1 and DNA-binding activity. These results implicate a potential role for Sp1 in mediating signal transduction pathways in response to mitogenic signals.
Collapse
Affiliation(s)
- A P Kumar
- The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, 78957, USA
| | | |
Collapse
|
193
|
Mummaneni P, Yates P, Simpson J, Rose J, Turker MS. The primary function of a redundant Sp1 binding site in the mouse aprt gene promoter is to block epigenetic gene inactivation. Nucleic Acids Res 1998; 26:5163-9. [PMID: 9801314 PMCID: PMC147958 DOI: 10.1093/nar/26.22.5163] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The promoter region of the mouse adenine phosphoribosyltransferase (aprt) gene contains one non-consensus Sp1 binding site at its 5' end followed by three consensus Sp1 binding sites. The two 3'-most binding sites are sufficient for maximal expression of aprt , suggesting that the non-consensus and consensus binding sites at the 5' end are redundant. However, the two 3' sites are not sufficient to block epigenetic inactivation, which led to the hypothesis that the redundant consensus and/or non-consensus 5' Sp1 binding sites are required to block inactivation events. To test this hypothesis, promoter region constructs were made in which the two 5' Sp1 binding sites were mutated alone or in tandem, and then each construct was tested for its ability to withstand epigenetic inactivation. A cis -acting methylation center that is normally located 1.2 kb upstream of the promoter was used to induce inactivation. The results demonstrate that the presence of the redundant consensus Sp1 binding site is required to block methylation-associated gene inactivation. Therefore, the Sp1 binding sites comprising the mouse aprt promoter have evolved two distinct functions, one to promote transcription and the other to block epigenetic inactivation.
Collapse
Affiliation(s)
- P Mummaneni
- Department of Pathology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
194
|
Tiwari B, Muralikrishna B, Parnaik VK. Functional analysis of the 5' promoter region of the rat lamin A gene. DNA Cell Biol 1998; 17:957-65. [PMID: 9839805 DOI: 10.1089/dna.1998.17.957] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The A-type lamins are constituents of the nuclear lamina in differentiated cells and have been proposed to play an important role in nuclear organization. In this study, we isolated and characterized a genomic clone containing the putative promoter region of the rat lamin A gene. Sequence analysis of about 2 kb of this region combined with primer extension data revealed the presence of a TATA box at -33, a GC box at -101, and AP1 motifs at -7, -424, and -1677. Deletion analysis of the promoter fragments in three mammalian cell lines indicated that a 221-bp segment of the proximal promoter containing the GC box and AP1 motif at -7 was sufficient to give high levels of luciferase activity in reporter gene assays. Mutations in these two motifs resulted in considerable loss of reporter gene activity. Analysis by electrophoretic mobility shift assays (EMSAs) has provided evidence for specific binding of the AP1 and Sp1 family of transcription factors to the promoter, a conclusion supported by DNase I footprinting data. This characterization of the 5' promoter region of the lamin A gene should afford a basis for the further clarification of the mechanism of regulation of this important gene during growth and development.
Collapse
Affiliation(s)
- B Tiwari
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | |
Collapse
|
195
|
Croager EJ, Muir TM, Abraham LJ. Analysis of the human and mouse promoter region of the non-Hodgkin's lymphoma-associated CD30 gene. J Interferon Cytokine Res 1998; 18:915-20. [PMID: 9858312 DOI: 10.1089/jir.1998.18.915] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To investigate the regulation of CD30 at the level of transcription, we have isolated and compared the promoter sequence of human and murine CD30. Analysis of the human and mouse promoter identified a number of potential transcription factor binding sites, including ETS, MZF, AP-1, IK2, CREB, Stat, USF, and Spl. The absence of TATA or CAAT boxes and the identification of one major and three minor transcription initiation sites for CD30 suggest that it is a member of the class of TATA-less promoters that use initiator elements to correctly position the RNA polymerase. Comparison of the murine and human CD30 promoters identified a number of highly conserved regions, including an Spl site 40 bp upstream from the major start site and a downstream promoter element (DPE) that may be involved in directing transcriptional initiation of the CD30 gene. Functional analysis of the human CD30 promoter in transfected Jurkat T cells provided further evidence that these conserved regions are important regulatory elements in the CD30 promoter.
Collapse
Affiliation(s)
- E J Croager
- Department of Biochemistry, University of Western Australia, Nedlands, Australia
| | | | | |
Collapse
|
196
|
Ungefroren H, Gellersen B, Krull NB, Kalthoff H. Biglycan gene expression in the human leiomyosarcoma cell line SK-UT-1. Basal and protein kinase A-induced transcription involves binding of Sp1-like/Sp3 proteins in the proximal promoter region. J Biol Chem 1998; 273:29230-40. [PMID: 9786935 DOI: 10.1074/jbc.273.44.29230] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In this study we demonstrate that the gene encoding the small leucine-rich proteoglycan biglycan is expressed in human myometrial tissue and in the human leiomyosarcoma cell line SK-UT-1. Treatment of SK-UT-1 cells with forskolin or 8-bromo-cAMP strongly increased biglycan mRNA and this effect was transcriptional as shown by transient transfection experiments with biglycan promoter-luciferase reporter fusion genes. The cAMP-mediated induction of the transfected biglycan promoter in SK-UT-1 cells was abolished by coexpression of a specific protein kinase A inhibitor, and was mimicked by overexpression of the catalytic subunit (Cbeta) of protein kinase A. By 5' deletion analysis, part of the cAMP response was localized to the segment from residues -78 to -46 of the biglycan promoter. This region conferred strong cAMP responsiveness to a heterologous promoter. Electrophoretic mobility shift and antibody supershift assays identified two specific complexes that contained nuclear proteins antigenically related to the ubiquitous transcription factors Sp1 and Sp3, respectively. The binding site of these proteins was mapped to a CT-rich sequence extending from -59 to -49 in the biglycan promoter. Mutating this sequence eliminated complex formation and markedly reduced basal and cAMP-dependent promoter activity of transfected reporter genes. In vitro binding studies using recombinant Sp1 revealed that the nuclear factor binding to the CT element was not Sp1 but a Sp1-like protein(s). Western blot analysis of SK-UT-1 nuclear proteins confirmed expression of Sp3, Sp1 and nuclear proteins that crossreacted with Sp1 antibody but according to their molecular weight were not Sp1. These results indicate that all cAMP-dependent as well as some basal biglycan transcription in SK-UT-1 cells is mediated through activated protein kinase A and that both functions are conferred at the promoter level through the interaction of Sp1-like/Sp3 factors with the CT element at -59 in the biglycan promoter.
Collapse
Affiliation(s)
- H Ungefroren
- Research Unit Molecular Oncology, Clinic for General Surgery and Thoracic Surgery, Christian-Albrechts University, 24105 Kiel, Germany.
| | | | | | | |
Collapse
|
197
|
Ko JL, Liu HC, Minnerath SR, Loh HH. Transcriptional regulation of mouse mu-opioid receptor gene. J Biol Chem 1998; 273:27678-85. [PMID: 9765304 DOI: 10.1074/jbc.273.42.27678] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, the existence of dual promoters was reported in mouse mu-opioid receptor (mor) gene, with mor transcription in the mouse brain predominantly initiated by the proximal promoter. In this study, we further analyzed the proximal promoter region, base pairs -450 to -249, to identify cis-DNA regulatory elements and trans-acting protein factors that are important for mor promoter activity. The results revealed that a mor inverted GA (iGA) motif and a canonical Sp1 binding site are required for the promoter activity. Using electrophoretic mobility shift analysis, we identified nuclear proteins that specifically bind to the mor iGA motif and that are immunologically related to Sp1 and Sp3. Mutation of the mor iGA motif, resulting in a loss of Sp binding, led to a 50% decrease in activity. Mutation of the canonical Sp1 binding site yielded a lesser (approximately 25%) loss of activity. Mutation of both motifs together resulted in an approximately 70% decrease in activity. In cotransfection assays using Drosophila SL2 cells, Sp1 trans-activated the promoter in a manner dependent on the presence of mor iGA and canonical Sp1 binding motifs. Sp3 can also trans-activate the promoter, and furthermore, Sp1 and Sp3 can trans-activate the mor promoter additively. Our results suggest that combined or cooperative interaction of Sp transcription factors within the proximal promoter is necessary for activation of mor gene transcription.
Collapse
Affiliation(s)
- J L Ko
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
198
|
Cook T, Gebelein B, Mesa K, Mladek A, Urrutia R. Molecular cloning and characterization of TIEG2 reveals a new subfamily of transforming growth factor-beta-inducible Sp1-like zinc finger-encoding genes involved in the regulation of cell growth. J Biol Chem 1998; 273:25929-36. [PMID: 9748269 DOI: 10.1074/jbc.273.40.25929] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sp1-like zinc finger transcription factors are involved in the regulation of cell growth and differentiation. Recent evidence demonstrating that mammalian cells express novel, yet uncharacterized, Sp1-like proteins has stimulated a search for new members of this family. We and others have recently reported that the transforming growth factor (TGF)-beta-regulated gene TIEG encodes a new Sp1-like protein that inhibits cell growth in cultured cells. Here we report the identification, nuclear localization, DNA binding activity, transcriptional repression activity, and growth inhibitory effects of TIEG2, a novel TGF-beta-inducible gene related to TIEG. TIEG2 is ubiquitously expressed in human tissues, with an enrichment in pancreas and muscle. TIEG2 shares 91% homology with TIEG1 within the zinc finger region and 44% homology within the N terminus. Biochemical characterization reveals that TIEG2 is a nuclear protein, which, as predicted from the primary structure, specifically binds to an Sp1-like DNA sequence in vitro and can repress a promoter containing Sp1-like binding sites in transfected Chinese hamster ovary epithelial cells. Furthermore, functional studies using [3H]thymidine uptake and MTS (3-(4, 3-dimethyltiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-su lfophenyl)-2 H-tetrazolium) assays demonstrate that the overexpression of TIEG2 in Chinese hamster ovary cells inhibits cell proliferation. Thus, TIEG2, together with TIEG1, defines a new subfamily of TGF-beta-inducible Sp1-like proteins involved in the regulation of cell growth.
Collapse
Affiliation(s)
- T Cook
- Gastroenterology Research Unit, Saint Marys Hospital, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
199
|
Hu ZZ, Zhuang L, Meng J, Dufau ML. Transcriptional regulation of the generic promoter III of the rat prolactin receptor gene by C/EBPbeta and Sp1. J Biol Chem 1998; 273:26225-35. [PMID: 9748306 DOI: 10.1074/jbc.273.40.26225] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three promoters are operative in the rat prolactin receptor gene as follows: promoter I (PI) and II (PII) are specific for the gonads and liver, respectively, and promoter III (PIII) is common to several tissues. To investigate the mechanisms controlling the activity of promoter III, its regulatory elements and transcription factors were characterized in gonadal and non-gonadal cells. The TATA-less PIII domain was localized to the region -437 to -179 (ATG +1) containing the 5'-flanking region and part of the non-coding first exon. Within the promoter domain, a functional CAAT-box/enhancer binding protein (C/EBP) (-398) and an Sp1 element (-386), which bind C/EBPbeta and Sp1/Sp3, respectively, contribute individually to promoter activation in gonadal and non-gonadal cells. However, significant redundancy was demonstrated between these elements in non-gonadal cells. Additionally, an element within the non-coding exon 1 (-338) is also required for promoter activity. Activation of PIII by the widely expressed Sp1 and C/EBPbeta factors explains its common utilization in multiple tissues. Moreover, whereas the rat and mouse PIII share similar structure and function, the mouse PI lacks the functional SF-1 element and hence is inactive. These findings indicate that promoter III is of central importance in prolactin receptor gene transcription across species.
Collapse
Affiliation(s)
- Z Z Hu
- Section on Molecular Endocrinology, Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
200
|
Ohtaka-Maruyama C, Hanaoka F, Chepelinsky AB. A novel alternative spliced variant of the transcription factor AP2alpha is expressed in the murine ocular lens. Dev Biol 1998; 202:125-35. [PMID: 9758708 DOI: 10.1006/dbio.1998.8997] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The AP2alpha gene encodes a transcription factor containing a basic, helix-span-helix DNA-binding/dimerization domain, which is developmentally regulated and retinoic acid inducible. Recent reports about AP2alpha null mice indicate that AP2alpha plays an important role in embryogenesis, especially in craniofacial development and midline fusion. Ocular development is also affected in these null mice. As AP2alpha may be involved in transcriptional regulation in the lens, it was important to examine the expression of the AP2alpha gene in the lens. Four AP2alpha mRNA variants have been previously isolated from whole mouse embryos. Variants 1, 3, and 4 are transcriptional activators that are transcribed from different promoters and variant 2 is a repressor lacking the activation domain encoded by exon 2. Using in situ-PCR, we found that AP2alpha is expressed in the lens epithelia but not in the lens fibers. RT-PCR analysis of lens mRNA with amplimers specific for each variant revealed that AP2alpha variants 1, 2, and 3 are expressed in newborn mouse lenses. However, variant 4 is not expressed in the lens. In this report we characterized a novel isoform, which we named variant 5, expressed in the lens and kidney. Variant 5, which is generated by alternative splicing, may function as a repressor due to the partial deletion of the proline-rich transactivation domain encoded by exon 2. This is the first molecular characterization of AP2alpha gene expression in the lens. Our results indicate that two activator and two repressor AP2alpha isoforms may play a role in regulating gene expression in the lens.
Collapse
Affiliation(s)
- C Ohtaka-Maruyama
- Cellular Physiology Laboratory, the Institute for Chemical and Physical Science (RIKEN), 2-1 Hirosawa, Wako, Saitama, 351-01, Japan
| | | | | |
Collapse
|