151
|
Silver JT, Noble EG. Regulation of survival gene hsp70. Cell Stress Chaperones 2012; 17:1-9. [PMID: 21874533 PMCID: PMC3227850 DOI: 10.1007/s12192-011-0290-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/15/2011] [Accepted: 08/16/2011] [Indexed: 12/31/2022] Open
Abstract
Rapid expression of the survival gene, inducible heat shock protein 70 (hsp70), is critical for mounting cytoprotection against severe cellular stress, like elevated temperature. Hsp70 protein chaperones the refolding of heat-denatured peptides to minimize proteolytic degradation as a part of an eukaryotically conserved phenomenon referred to as the heat shock response. The physiologic stress associated with exercise, which can include elevated temperature, mechanical damage, hypoxia, lowered pH, and reactive oxygen species generation, may promote protein unfolding, leading to hsp70 gene expression in skeletal myofibers. Although the pre-transcriptional activation of hsp70 gene expression has been thoroughly reviewed, discussion of downstream hsp70 gene regulation is less extensive. The purpose of this brief review was to examine all levels of hsp70 gene regulation in response to heat stress and exercise with a special focus on skeletal myofibers where data are available. In general, while heat stress represses bulk gene expression, hsp70 mRNA expression is enhanced. Post-transcriptionally, intronless hsp70 mRNA circumvents a host of decay pathways, as well as heat stress-repressed pre-mRNA splicing and nuclear export. Pre-translationally, hsp70 mRNA is excluded from stress granules and preferentially translated during heat stress-repressed global cap-dependent translation. Post-translationally, nascent Hsp70 protein is thermodynamically stable at elevated temperatures, allowing for the commencement of chaperoning activity early after synthesis to attenuate the heat shock response and protect against subsequent injury. This review demonstrates that hsp70 mRNA expression is closely coupled with functional protein translation.
Collapse
Affiliation(s)
- Jordan Thomas Silver
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON Canada N6A 3K7
| | - Earl G. Noble
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON Canada N6A 3K7
- Lawson Health Research Institute, The University of Western Ontario, London, ON Canada N6A 3K7
| |
Collapse
|
152
|
Yohannes E, Ghosh SK, Jiang B, McCormick TS, Weinberg A, Hill E, Faddoul F, Chance MR. Proteomic signatures of human oral epithelial cells in HIV-infected subjects. PLoS One 2011; 6:e27816. [PMID: 22114700 PMCID: PMC3218055 DOI: 10.1371/journal.pone.0027816] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/26/2011] [Indexed: 01/26/2023] Open
Abstract
The oral epithelium, the most abundant structural tissue lining the oral mucosa, is an important line of defense against infectious microorganisms. HIV infected subjects on highly active antiretroviral therapy (HAART) are susceptible to comorbid viral, bacterial and fungal infections in the oral cavity. To provide an assessment of the molecular alterations of oral epithelia potentially associated with susceptibility to comorbid infections in such subjects, we performed various proteomic studies on over twenty HIV infected and healthy subjects. In a discovery phase two Dimensional Difference Gel Electrophoresis (2-D DIGE) analyses of human oral gingival epithelial cell (HOEC) lysates were carried out; this identified 61 differentially expressed proteins between HIV-infected on HAART subjects and healthy controls. Down regulated proteins in HIV-infected subjects include proteins associated with maintenance of protein folding and pro- and anti-inflammatory responses (e.g., heat-shock proteins, Cryab, Calr, IL-1RA, and Galectin-3-binding protein) as well as proteins involved in redox homeostasis and detoxification (e.g., Gstp1, Prdx1, and Ero1). Up regulated proteins include: protein disulfide isomerases, proteins whose expression is negatively regulated by Hsp90 (e.g., Ndrg1), and proteins that maintain cellular integrity (e.g., Vimentin). In a verification phase, proteins identified in the protein profiling experiments and those inferred from Ingenuity Pathway Analysis were analyzed using Western blotting analysis on separate HOEC lysate samples, confirming many of the discovery findings. Additionally in HIV-infected patient samples Heat Shock Factor 1 is down regulated, which explains the reduced heat shock responses, while activation of the MAPK signal transduction cascade is observed. Overall, HAART therapy provides an incomplete immune recovery of the oral epithelial cells of the oral cavity for HIV-infected subjects, and the toxic side effects of HAART and/or HIV chronicity silence expression of multiple proteins that in healthy subjects function to provide robust innate immune responses and combat cellular stress.
Collapse
Affiliation(s)
- Elizabeth Yohannes
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Santosh K. Ghosh
- School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Bin Jiang
- School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Thomas S. McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Aaron Weinberg
- School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Edward Hill
- School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Faddy Faddoul
- School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mark R. Chance
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics, Case Western Reserve University Cleveland, Ohio, United States of America
| |
Collapse
|
153
|
Kihara F, Niimi T, Yamashita O, Yaginuma T. Heat shock factor binds to heat shock elements upstream of heat shock protein 70a and Samui genes to confer transcriptional activity in Bombyx mori diapause eggs exposed to 5°C. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:843-851. [PMID: 21782023 DOI: 10.1016/j.ibmb.2011.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 06/23/2011] [Accepted: 06/30/2011] [Indexed: 05/31/2023]
Abstract
To understand the molecular mechanisms of how 5°C-incubation activates mRNA expression of Hsp70a and Samui genes in Bombyx mori diapause eggs, we first searched the 5'-upstream regions of the Hsp70a and Samui genes for heat shock elements (HSEs) and found two regions [Hsp70aHSE-1 (-95 to -58) and -2 (-145 to -121), and SamuiHSE-1 (-84 to -55) and -2 (-304 to -290)] corresponding to HSEs (repeats of nGAAn and/or nTTCn). We cloned four cDNAs encoding heat shock factor (HSF)-a2 (627 amino acids), -b (685 aa), -c (682 aa) and -d (705 aa), which were produced by alternative splicing. When we exposed diapause eggs to 5°C beginning at 2 day post-oviposition to break diapause, HSFd mRNA only increased after chilling for 6-8 days, a pattern very similar to those of Hsp70a and Samui mRNAs. To examine further whether HSFd binds to the respective HSEs, we carried out a gel shift assay using HSFd protein expressed in a cell-free system and the isolated HSEs; migration of the respective digoxigenin(DIG)-labeled HSE-1 and -2 of Hsp70a and Samui was retarded by addition of HSFd; the retarded bands disappeared after addition of the corresponding unlabeled HSE-1 and -2 as competitors, but were not affected by addition of the respective mutated unlabeled HSE-1 and -2. These results indicated that HSFd protein binds to the respective HSEs and may activate mRNA expression of Hsp70a and Samui genes upon exposure of diapause eggs to 5°C.
Collapse
Affiliation(s)
- Fukashi Kihara
- Laboratory of Sericulture & Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
154
|
Zorzi E, Bonvini P. Inducible hsp70 in the regulation of cancer cell survival: analysis of chaperone induction, expression and activity. Cancers (Basel) 2011; 3:3921-56. [PMID: 24213118 PMCID: PMC3763403 DOI: 10.3390/cancers3043921] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/26/2011] [Accepted: 10/10/2011] [Indexed: 12/31/2022] Open
Abstract
Understanding the mechanisms that control stress is central to realize how cells respond to environmental and physiological insults. All the more important is to reveal how tumour cells withstand their harsher growth conditions and cope with drug-induced apoptosis, since resistance to chemotherapy is the foremost complication when curing cancer. Intensive research on tumour biology over the past number of years has provided significant insights into the molecular events that occur during oncogenesis, and resistance to anti-cancer drugs has been shown to often rely on stress response and expression of inducible heat shock proteins (HSPs). However, with respect to the mechanisms guarding cancer cells against proteotoxic stresses and the modulatory effects that allow their survival, much remains to be defined. Heat shock proteins are molecules responsible for folding newly synthesized polypeptides under physiological conditions and misfolded proteins under stress, but their role in maintaining the transformed phenotype often goes beyond their conventional chaperone activity. Expression of inducible HSPs is known to correlate with limited sensitivity to apoptosis induced by diverse cytotoxic agents and dismal prognosis of several tumour types, however whether cancer cells survive because of the constitutive expression of heat shock proteins or the ability to induce them when adapting to the hostile microenvironment remains to be elucidated. Clear is that tumours appear nowadays more "addicted" to heat shock proteins than previously envisaged, and targeting HSPs represents a powerful approach and a future challenge for sensitizing tumours to therapy. This review will focus on the anti-apoptotic role of heat shock 70kDa protein (Hsp70), and how regulatory factors that control inducible Hsp70 synthesis, expression and activity may be relevant for response to stress and survival of cancer cells.
Collapse
Affiliation(s)
- Elisa Zorzi
- OncoHematology Clinic of Pediatrics, University-Hospital of Padova, 35100 Padova, Italy; E-Mail:
| | - Paolo Bonvini
- OncoHematology Clinic of Pediatrics, University-Hospital of Padova, 35100 Padova, Italy; E-Mail:
- Fondazione Città della Speranza, 36030 Monte di Malo, Vicenza, Italy
| |
Collapse
|
155
|
Nciri R, Allagui MS, Bourogaa E, Saoudi M, Murat JC, Croute F, Elfeki A. Lipid peroxidation, antioxidant activities and stress protein (HSP72/73, GRP94) expression in kidney and liver of rats under lithium treatment. J Physiol Biochem 2011; 68:11-8. [PMID: 21948186 DOI: 10.1007/s13105-011-0113-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/29/2011] [Indexed: 12/25/2022]
Abstract
The present work was aimed at studying the effects of a subchronic lithium treatment on rat liver and kidneys, paying attention to the relationship between lithium toxicity, oxidative stress, and stress protein expression. Male rats were submitted to lithium treatment by adding 2 g of lithium carbonate/kg of food for different durations up to 1 month. This treatment led to serum concentrations ranging from 0.5 mM (day 7) to 1.34 mM (day 28) and renal insufficiency highlighted by an increase of blood creatinine and urea levels and a decrease of urea excretion. Lithium treatment was found to trigger an oxidative stress both in kidney and liver, leading to an increase of lipid peroxidation level (TBARS) and of superoxide dismutase and catalase activities. Conversely, glutathione peroxidase activity was reduced. Constitutive HSP73 (heat shock protein 73) expression was not modified by lithium treatment, whereas inducible HSP72 was down-regulated in kidney. GRP94 (glucose regulated protein 94) appeared as two isoforms of 92 and 98 kDa: the 98-kDa protein being overexpressed in kidney by lithium treatment whereas 92-kDa protein was underexpressed both in kidney and liver.
Collapse
Affiliation(s)
- Riadh Nciri
- Laboratoire d'écophysiologie, Sfax, PB 802, 3018, Tunisia.
| | | | | | | | | | | | | |
Collapse
|
156
|
Cao H, Xue L, Xu X, Wu Y, Zhu J, Chen L, Chen D, Chen Y. Heat shock proteins in stabilization of spontaneously restored sinus rhythm in permanent atrial fibrillation patients after mitral valve surgery. Cell Stress Chaperones 2011; 16:517-28. [PMID: 21455828 PMCID: PMC3156265 DOI: 10.1007/s12192-011-0263-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 01/24/2023] Open
Abstract
A spontaneously restored sinus rhythm in permanent atrial fibrillation patients has been often observed after mitral valve (MV) surgery, but persisting duration in sinus rhythm varies from patient to patient. Heat shock proteins (Hsps) may be involved in pathogenesis of atrial fibrillation. We hypothesized that stabilization of restored sinus rhythm is associated with expression of Hsps in the atria. To test this hypothesis, clinical data, biopsies of right atrial appendage, and blood samples were collected from 135 atrial fibrillation patients who spontaneously restored sinus rhythm after conventional isolated MV replacement. Comparison was made between patients who had recurrence of atrial fibrillation within 7 days (AF) vs. patients with persisted sinus rhythm for more than 7 days (SR). Results showed that SR patients had higher activity of heat shock transcription factor 1 (HSF1) as well as upregulated expressions of heat shock cognate 70, Hsp70, and Hsp27 in the tissues. The activation of HSF1-Hsps pathway was associated with less-aggressive pathogenesis as reflected by lower rates of myolysis, apoptosis, interstitial fibrosis, and inflammation in SR patients. However, Hsp60 was lower in both tissue and plasma in SR patients, and was positively correlated with apoptosis, interstitial fibrosis, and inflammation. These findings suggest that the Hsps play important roles in stabilization of restored sinus rhythm after MV surgery by inhibiting AF-related atrial remodeling and arrhythmogenic substrates in atrial fibrillation patients. Low circulating Hsp60 levels preoperatively might predict a stable spontaneously restored sinus rhythm postoperatively.
Collapse
Affiliation(s)
- Hailong Cao
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou RD, Nanjing, 210029 China
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lei Xue
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou RD, Nanjing, 210029 China
| | - Xiaohan Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou RD, Nanjing, 210029 China
| | - Yanhu Wu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou RD, Nanjing, 210029 China
| | - Jinfu Zhu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou RD, Nanjing, 210029 China
| | - Liang Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou RD, Nanjing, 210029 China
| | - Duan Chen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yijiang Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou RD, Nanjing, 210029 China
| |
Collapse
|
157
|
Fang F, Chang R, Yang L. Heat shock factor 1 promotes invasion and metastasis of hepatocellular carcinoma in vitro and in vivo. Cancer 2011; 118:1782-94. [PMID: 22009757 DOI: 10.1002/cncr.26482] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 01/17/2023]
Abstract
BACKGROUND Heat shock factor 1 (HSF1) is a powerful, multifaceted modifier of carcinogenesis. However, the clinical significance and biologic function of HSF1 in hepatocellular carcinoma (HCC) remain unknown. METHODS Quantitative reverse transcriptase-polymerase chain reaction analysis, Western blot analysis, and immunohistochemical staining were used to detect expression levels of HSF1, and its correlation with clinicopathologic parameters and the prognosis for patients with HCC were analyzed. In addition, the biologic function and molecular mechanisms of HSF1 in HCC were investigated in vitro and in vivo. RESULTS HSF1 levels were elevated predominantly in HCC, especially in venous emboli from HCC (P < .05), and high expression levels of HSF1 were correlated significantly with multiple nodules, venous invasion, absence of capsular formation, and high Edmondson-Steiner grade as well as poor overall survival and disease-free survival in patients with HCC (P < .05). Multivariate Cox regression analysis revealed that high HSF1 expression was an independent prognostic factor for overall survival in patients with HCC (relative risk, 4.874; P < .001). Finally, HSF1 was capable of promoting HCC cell migration and invasion in vitro and in vivo by facilitating the expression and phosphorylation of heat shock protein 27. CONCLUSIONS Collectively, the current findings suggested that HSF1 may serve as a novel prognostic marker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Feng Fang
- Department of Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | |
Collapse
|
158
|
Shinkawa T, Tan K, Fujimoto M, Hayashida N, Yamamoto K, Takaki E, Takii R, Prakasam R, Inouye S, Mezger V, Nakai A. Heat shock factor 2 is required for maintaining proteostasis against febrile-range thermal stress and polyglutamine aggregation. Mol Biol Cell 2011; 22:3571-83. [PMID: 21813737 PMCID: PMC3183013 DOI: 10.1091/mbc.e11-04-0330] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
HSF2 regulates proteostasis capacity against febrile-range thermal stress, which provides temperature-dependent mechanisms of cellular adaptation to thermal stress. Furthermore, HSF2 has a strong impact on disease progression of Huntington's disease R6/2 mice, suggesting that it could be a promising therapeutic target for protein misfolding diseases. Heat shock response is characterized by the induction of heat shock proteins (HSPs), which facilitate protein folding, and non-HSP proteins with diverse functions, including protein degradation, and is regulated by heat shock factors (HSFs). HSF1 is a master regulator of HSP expression during heat shock in mammals, as is HSF3 in avians. HSF2 plays roles in development of the brain and reproductive organs. However, the fundamental roles of HSF2 in vertebrate cells have not been identified. Here we find that vertebrate HSF2 is activated during heat shock in the physiological range. HSF2 deficiency reduces threshold for chicken HSF3 or mouse HSF1 activation, resulting in increased HSP expression during mild heat shock. HSF2-null cells are more sensitive to sustained mild heat shock than wild-type cells, associated with the accumulation of ubiquitylated misfolded proteins. Furthermore, loss of HSF2 function increases the accumulation of aggregated polyglutamine protein and shortens the lifespan of R6/2 Huntington's disease mice, partly through αB-crystallin expression. These results identify HSF2 as a major regulator of proteostasis capacity against febrile-range thermal stress and suggest that HSF2 could be a promising therapeutic target for protein-misfolding diseases.
Collapse
Affiliation(s)
- Toyohide Shinkawa
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube 755-8505, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Sengupta S, Badhwar I, Upadhyay M, Singh S, Ganesh S. Malin and laforin are essential components of a protein complex that protects cells from thermal stress. J Cell Sci 2011; 124:2277-86. [PMID: 21652633 DOI: 10.1242/jcs.082800] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heat-shock response is a conserved cellular process characterized by the induction of a unique group of proteins known as heat-shock proteins. One of the primary triggers for this response, at least in mammals, is heat-shock factor 1 (HSF1)--a transcription factor that activates the transcription of heat-shock genes and confers protection against stress-induced cell death. In the present study, we investigated the role of the phosphatase laforin and the ubiquitin ligase malin in the HSF1-mediated heat-shock response. Laforin and malin are defective in Lafora disease (LD), a neurodegenerative disorder associated with epileptic seizures. Using cellular models, we demonstrate that these two proteins, as a functional complex with the co-chaperone CHIP, translocate to the nucleus upon heat shock and that all the three members of this complex are required for full protection against heat-shock-induced cell death. We show further that laforin and malin interact with HSF1 and contribute to its activation during stress by an unknown mechanism. HSF1 is also required for the heat-induced nuclear translocation of laforin and malin. This study demonstrates that laforin and malin are key regulators of HSF1 and that defects in the HSF1-mediated stress response pathway might underlie some of the pathological symptoms in LD.
Collapse
Affiliation(s)
- Sonali Sengupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| | | | | | | | | |
Collapse
|
160
|
Rawat P, Mitra D. Cellular heat shock factor 1 positively regulates human immunodeficiency virus-1 gene expression and replication by two distinct pathways. Nucleic Acids Res 2011; 39:5879-92. [PMID: 21459854 PMCID: PMC3152347 DOI: 10.1093/nar/gkr198] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) infection leads to changes in cellular gene expression, which in turn tend to modulate viral gene expression and replication. Cellular heat shock proteins (HSPs) are induced upon heat shock, UV irradiation and microbial or viral infections. We have reported earlier Nef-dependent induction of HSP40 leading to increased HIV-1 gene expression; however, the mechanism of induction remained to be elucidated. As expression of HSPs is regulated by heat shock factors (HSFs), we have now studied the role of HSF1 not only in Nef-dependent HSP40 induction but also in HIV-1 gene expression. Our results show that HSF1 is also induced during HIV-1 infection and it positively regulates HIV-1 gene expression by two distinct pathways. First, along with Nef it activates HSP40 promoter which in turn leads to increased HIV-1 gene expression. Second, HSF1 directly interacts with newly identified HSF1 binding sequence on HIV-1 LTR promoter and induces viral gene expression and replication. Thus, the present work not only identifies a molecular basis for HSF1-mediated enhancement of viral replication but also provides another example of how HIV-1 uses host cell machinery for its successful replication in the host.
Collapse
Affiliation(s)
- Pratima Rawat
- National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | | |
Collapse
|
161
|
Maity TK, Henry MM, Tulapurkar ME, Shah NG, Hasday JD, Singh IS. Distinct, gene-specific effect of heat shock on heat shock factor-1 recruitment and gene expression of CXC chemokine genes. Cytokine 2011; 54:61-7. [PMID: 21266308 PMCID: PMC3048923 DOI: 10.1016/j.cyto.2010.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 12/19/2010] [Accepted: 12/22/2010] [Indexed: 11/26/2022]
Abstract
The heat shock (HS) response, a phylogenetically conserved ubiquitous response to stress, is generally characterized by the induced expression of heat shock protein (HSP) genes. Our earlier studies showed that the stress-activated transcription factor, heat shock factor-1 (HSF1), activated at febrile range or HS temperatures also modified expression of non-HSP genes including cytokine and chemokine genes. We also showed by in silico analysis that 28 among 29 human and mouse CXC chemokine genes had multiple putative heat shock response elements (HSEs) present in their gene promoters. To further determine whether these potential HSEs were functional and bound HSF1, we analyzed the recruitment of HSF1 to promoters of 5 human CXC chemokine genes (CXCL-1, 2, 3, 5 and 8) by chromatin immunoprecipitation (ChIP) assay and analyzed the effect of HS exposure on tumor necrosis factor-α (TNFα)-induced expression of these genes in human lung epithelial-like A549 cells. HSF1 ChIP analysis showed that HSF1 was recruited to all but one of these CXC chemokine genes (CXCL-3) and HS caused a significant increase in recruitment of HSF1 to one or multiple HSEs present in the promoters of CXCL-1, 2, 5 and 8 genes. However, the effect of HS exposure on expression of these genes showed a variable gene-specific effect. For example, CXCL8 expression was markedly enhanced (p<0.05) whereas CXCL5 expression was significantly repressed (p<0.05) in cells exposed to HS coincident with TNFα stimulation. In contrast, expression of CXCL1 and CXCL2, despite HSF1 recruitment to their promoters, was not affected by HS exposure. Our results indicate that some, if not all, putative HSEs present in the CXC chemokine gene promoters are functional and recruit HSF1 in vivo but the effects on gene expression are variable and gene specific. We speculate, the physical proximity and interactions of other transcription factors and co-regulators with HSF1 could be critical to determining the effects of HS on the expression of these genes.
Collapse
Affiliation(s)
- Tapan K. Maity
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Michael M. Henry
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mohan E. Tulapurkar
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nirav G. Shah
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey D. Hasday
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Cytokine Core Laboratory, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research Services of the Baltimore VA Medical Center, Baltimore, Maryland, USA 21201
| | - Ishwar S. Singh
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research Services of the Baltimore VA Medical Center, Baltimore, Maryland, USA 21201
| |
Collapse
|
162
|
Nagashima M, Fujikawa C, Mawatari K, Mori Y, Kato S. HSP70, the earliest-induced gene in the zebrafish retina during optic nerve regeneration: its role in cell survival. Neurochem Int 2011; 58:888-95. [PMID: 21338645 DOI: 10.1016/j.neuint.2011.02.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 01/31/2011] [Accepted: 02/12/2011] [Indexed: 12/22/2022]
Abstract
Fish retinal ganglion cells (RGCs) can survive and regrow their axons after optic nerve injury. Injured RGCs express anti-apoptotic proteins, such as Bcl-2, after nerve injury; however, upstream effectors of this anti-apoptotic protein are not yet fully understood. Heat shock proteins (HSPs) play a crucial role in cell survival against various stress conditions. In this study, we focused on HSP70 expression in the zebrafish retina after optic nerve injury. HSP70 mRNA and protein levels increased rapidly 2.3-fold in RGCs by 1-6 h after injury and returned to control levels by 1-3 days. HSP70 transcription is regulated by heat shock factor 1 (HSF1). HSF1 mRNA and phosphorylated-HSF1 protein rapidly increased by 2.2-fold in RGCs 0.5-6 h after injury. Intraocular injection of HSP inhibitor I significantly suppressed the induction of HSP70 expression after nerve injury. It also suppressed Bcl-2 protein induction and resulted in TUNEL-positive cell death of RGCs at 5 days post-injury. Zebrafish treated with HSP inhibitor I retarded axonal elongation or visual function after injury, as analyzed by GAP43 expression and behavioral analysis of optomotor response, respectively. These results strongly indicate that HSP70, the earliest induced gene in the zebrafish retina after optic nerve injury, is a crucial factor for RGCs survival and optic nerve regeneration in fish.
Collapse
Affiliation(s)
- Mikiko Nagashima
- Division of Health Sciences, Graduate School of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | | | | | | | | |
Collapse
|
163
|
Cohen E. Countering neurodegeneration by reducing the activity of the insulin/IGF signaling pathway: Current knowledge and future prospects. Exp Gerontol 2011; 46:124-8. [DOI: 10.1016/j.exger.2010.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 08/29/2010] [Accepted: 08/31/2010] [Indexed: 10/19/2022]
|
164
|
Asai M, Kawashima D, Katagiri K, Takeuchi R, Tohnai G, Ohtsuka K. Protective effect of a molecular chaperone inducer, paeoniflorin, on the HCl- and ethanol-triggered gastric mucosal injury. Life Sci 2011; 88:350-7. [DOI: 10.1016/j.lfs.2010.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/18/2010] [Accepted: 12/06/2010] [Indexed: 01/20/2023]
|
165
|
Thomas MG, Loschi M, Desbats MA, Boccaccio GL. RNA granules: the good, the bad and the ugly. Cell Signal 2011; 23:324-34. [PMID: 20813183 PMCID: PMC3001194 DOI: 10.1016/j.cellsig.2010.08.011] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 08/20/2010] [Indexed: 12/13/2022]
Abstract
Processing bodies (PBs) and Stress Granules (SGs) are the founding members of a new class of RNA granules, known as mRNA silencing foci, as they harbour transcripts circumstantially excluded from the translationally active pool. PBs and SGs are able to release mRNAs thus allowing their translation. PBs are constitutive, but respond to stimuli that affect mRNA translation and decay, whereas SGs are specifically induced upon cellular stress, which triggers a global translational silencing by several pathways, including phosphorylation of the key translation initiation factor eIF2alpha, and tRNA cleavage among others. PBs and SGs with different compositions may coexist in a single cell. These macromolecular aggregates are highly conserved through evolution, from unicellular organisms to vertebrate neurons. Their dynamics is regulated by several signaling pathways, and depends on microfilaments and microtubules, and the cognate molecular motors myosin, dynein, and kinesin. SGs share features with aggresomes and related aggregates of unfolded proteins frequently present in neurodegenerative diseases, and may play a role in the pathology. Virus infections may induce or impair SG formation. Besides being important for mRNA regulation upon stress, SGs modulate the signaling balancing apoptosis and cell survival. Finally, the formation of Nuclear Stress Bodies (nSBs), which share components with SGs, and the assembly of additional cytosolic aggregates containing RNA -the UV granules and the Ire1 foci-, all of them induced by specific cell damage factors, contribute to cell survival.
Collapse
Key Words
- atxn2, ataxin-2
- bicd, bicaudal d
- cbp, creb binding protein
- cpeb, cytoplasmic polyadenylation element binding protein
- dhc, dynein heavy chain
- dic, dynein intermediate chain
- fak, focal adhesion kinase
- fus/tls/hnrnp p2, fused in sarcoma
- g3bp, ras-gap sh3 domain binding protein
- gcn2, general control nonderepressible-2
- grb7, growth factor receptor-bound protein 7
- hap, hnrnp a1 interacting protein
- hdac6, histone deacetylase 6
- hri, heme-regulated inhibitor
- hsf, heat shock transcription factor
- khc, kinesin heavy chain
- klc, kinesin light chain
- mln51, metastatic lymph node 51
- nmd, nonsense mediated decay
- nsbs, nuclear stress bodies
- ogfod1, 2–14 oxoglutarate and fe(ii)-dependent oxygenase domain containing 1
- pb, processing body
- perk, pancreatic endoplasmic reticulum eif2alpha kinase
- pkr/eif2ak2, double stranded rna-dependent protein kinase
- pp1, protein phosphatase 1
- prp, prion protein
- rbp, rna binding protein
- rnp, ribonucleoparticle
- sam68, src associated in mitosis 68 kda
- member of star, signal transducer and activator of rna
- sca, spinocerebellar ataxia
- sg, stress granule
- sma, spinal muscular atrophy
- fmrp, fragile x mental retardation protein
- smn, survival of motor neuron
- tdp43, tar dna-binding protein 43
- traf2, tnf receptor associated factor 2
- uvgs, uv rna granules
- processing body
- stress granule
- kinesin
- dynein
- bicaudal d
- aggresome
Collapse
Affiliation(s)
- María Gabriela Thomas
- Instituto Leloir, Av. Patricias Argentinas 435, C1405 BWE Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - Mariela Loschi
- Instituto Leloir, Av. Patricias Argentinas 435, C1405 BWE Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - María Andrea Desbats
- Instituto Leloir, Av. Patricias Argentinas 435, C1405 BWE Buenos Aires, Argentina
| | - Graciela Lidia Boccaccio
- Instituto Leloir, Av. Patricias Argentinas 435, C1405 BWE Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
- University of Buenos Aires
| |
Collapse
|
166
|
Batista-Nascimento L, Neef DW, Liu PCC, Rodrigues-Pousada C, Thiele DJ. Deciphering human heat shock transcription factor 1 regulation via post-translational modification in yeast. PLoS One 2011; 6:e15976. [PMID: 21253609 PMCID: PMC3017095 DOI: 10.1371/journal.pone.0015976] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 12/07/2010] [Indexed: 11/18/2022] Open
Abstract
Heat shock transcription factor 1 (HSF1) plays an important role in the cellular response to proteotoxic stresses. Under normal growth conditions HSF1 is repressed as an inactive monomer in part through post-translation modifications that include protein acetylation, sumoylation and phosphorylation. Upon exposure to stress HSF1 homotrimerizes, accumulates in nucleus, binds DNA, becomes hyper-phosphorylated and activates the expression of stress response genes. While HSF1 and the mechanisms that regulate its activity have been studied for over two decades, our understanding of HSF1 regulation remains incomplete. As previous studies have shown that HSF1 and the heat shock response promoter element (HSE) are generally structurally conserved from yeast to metazoans, we have made use of the genetically tractable budding yeast as a facile assay system to further understand the mechanisms that regulate human HSF1 through phosphorylation of serine 303. We show that when human HSF1 is expressed in yeast its phosphorylation at S303 is promoted by the MAP-kinase Slt2 independent of a priming event at S307 previously believed to be a prerequisite. Furthermore, we show that phosphorylation at S303 in yeast and mammalian cells occurs independent of GSK3, the kinase primarily thought to be responsible for S303 phosphorylation. Lastly, while previous studies have suggested that S303 phosphorylation represses HSF1-dependent transactivation, we now show that S303 phosphorylation also represses HSF1 multimerization in both yeast and mammalian cells. Taken together, these studies suggest that yeast cells will be a powerful experimental tool for deciphering aspects of human HSF1 regulation by post-translational modifications.
Collapse
Affiliation(s)
| | - Daniel W. Neef
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Phillip C. C. Liu
- Applied Technology Group, Incyte Corporation, Wilmington, Delaware, United States of America
| | | | - Dennis J. Thiele
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
167
|
Madrigal-Matute J, Martin-Ventura JL, Blanco-Colio LM, Egido J, Michel JB, Meilhac O. Heat-shock proteins in cardiovascular disease. Adv Clin Chem 2011; 54:1-43. [PMID: 21874755 DOI: 10.1016/b978-0-12-387025-4.00001-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heat-shock proteins (HSPs) belong to a group of highly conserved families of proteins expressed by all cells and organisms and their expression may be constitutive or inducible. They are generally considered as protective molecules against different types of stress and have numerous intracellular functions. Secretion or release of HSPs has also been described, and potential roles for extracellular HSPs reported. HSP expression is modulated by different stimuli involved in all steps of atherogenesis including oxidative stress, proteolytic aggression, or inflammation. Also, antibodies to HSPs may be used to monitor the response to different types of stress able to induce changes in HSP levels. In the present review, we will focus on the potential implication of HSPs in atherogenesis and discuss the limitations to the use of HSPs and anti-HSPs as biomarkers of atherothrombosis. HSPs could also be considered as potential therapeutic targets to reinforce vascular defenses and delay or avoid clinical complications associated with atherothrombosis.
Collapse
Affiliation(s)
- Julio Madrigal-Matute
- Vascular Research Lab, IIS, Fundación Jiménez Díaz, Autónoma University, Av. Reyes Católicos 2, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
168
|
Choi K, Ni L, Jonakait GM. Fas ligation and tumor necrosis factor α activation of murine astrocytes promote heat shock factor-1 activation and heat shock protein expression leading to chemokine induction and cell survival. J Neurochem 2010; 116:438-48. [PMID: 21114495 DOI: 10.1111/j.1471-4159.2010.07124.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Death-inducing ligands tumor necrosis factor alpha (TNFα) and Fas ligand (FasL) do not kill cultured astrocytes; instead they induce a variety of chemokines including macrophage-inflammatory protein-1α/CC chemokine ligand 3 (CCL3), monocyte chemoattractant protein-1 (CC CCL-2), macrophage-inflammatory protein-2/CXC chemokine ligand 2 (CXCL2, a murine homologue of interleukin 8), and interferon-induced protein of 10 kDa (CXCL10). Induction is enhanced by protein synthesis inhibition suggesting the existence of endogenous inhibitors. ERK, NF-κB, heat shock factor-1 (HSF-1) and heat shock proteins were examined for their possible roles in signal transduction. Inhibition of ERK activation by PD98059 partially inhibited expression of all but FasL-induced CXCL10. Although inhibition of NF-κB DNA binding inhibited chemokine induction, PD98059 did not inhibit TNFα-induced NF-κB DNA binding suggesting that ERK serves an NF-κB-independent pathway. Heat shock itself induced astrocytic chemokine expression; both TNFα and FasL induced HSF-1 DNA binding and Hsp72 production; and Hsp72-induced chemokine expression. Inhibition of either HSF-1 binding with quercetin or heat shock protein synthesis with KNK437 compromised chemokine induction without compromising cell survival. These data suggest that the induction of heat shock proteins via HSF-1 contribute to the TNFα- and FasL-induced expression of chemokines in astrocytes.
Collapse
Affiliation(s)
- Kuicheon Choi
- Federated Department of Biological Sciences, New Jersey Institute of Technology/Rutgers University, Newark, New Jersey 07102, USA
| | | | | |
Collapse
|
169
|
Murshid A, Chou SD, Prince T, Zhang Y, Bharti A, Calderwood SK. Protein kinase A binds and activates heat shock factor 1. PLoS One 2010; 5:e13830. [PMID: 21085490 PMCID: PMC2976705 DOI: 10.1371/journal.pone.0013830] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 10/18/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Many inducible transcription factors are regulated through batteries of posttranslational modifications that couple their activity to inducing stimuli. We have studied such regulation of Heat Shock Factor 1 (HSF1), a key protein in control of the heat shock response, and a participant in carcinogenisis, neurological health and aging. As the mechanisms involved in the intracellular regulation of HSF1 in good health and its dysregulation in disease are still incomplete we are investigating the role of posttranslational modifications in such regulation. METHODOLOGY/PRINCIPAL FINDINGS In a proteomic study of HSF1 binding partners, we have discovered its association with the pleiotropic protein kinase A (PKA). HSF1 binds avidly to the catalytic subunit of PKA, (PKAcα) and becomes phosphorylated on a novel serine phosphorylation site within its central regulatory domain (serine 320 or S320), both in vitro and in vivo. Intracellular PKAcα levels and phosphorylation of HSF1 at S320 were both required for HSF1 to be localized to the nucleus, bind to response elements in the promoter of an HSF1 target gene (hsp70.1) and activate hsp70.1 after stress. Reduction in PKAcα levels by small hairpin RNA led to HSF1 exclusion from the nucleus, its exodus from the hsp70.1 promoter and decreased hsp70.1 transcription. Likewise, null mutation of HSF1 at S320 by alanine substitution for serine led to an HSF1 species excluded from the nucleus and deficient in hsp70.1 activation. CONCLUSIONS These findings of PKA regulation of HSF1 through S320 phosphorylation add to our knowledge of the signaling networks converging on this factor and may contribute to elucidating its complex roles in the stress response and understanding HSF1 dysregulation in disease.
Collapse
Affiliation(s)
- Ayesha Murshid
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shiuh-Dih Chou
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas Prince
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yue Zhang
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ajit Bharti
- Stress Response Center, Boston University Medical Center, Boston, Massachusetts, United States of America
| | - Stuart K. Calderwood
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
170
|
Abstract
The heat shock response was originally characterized as the induction of a set of major heat shock proteins encoded by heat shock genes. Because heat shock proteins act as molecular chaperones that facilitate protein folding and suppress protein aggregation, this response plays a major role in maintaining protein homeostasis. The heat shock response is regulated mainly at the level of transcription by heat shock factors (HSFs) in eukaryotes. HSF1 is a master regulator of the heat shock genes in mammalian cells, as is HSF3 in avian cells. HSFs play a significant role in suppressing protein misfolding in cells and in ameliorating the progression of Caenorhabditis elegans, Drosophila and mouse models of protein-misfolding disorders, by inducing the expression of heat shock genes. Recently, numerous HSF target genes were identified, such as the classical heat shock genes and other heat-inducible genes, called nonclassical heat shock genes in this study. Importance of the expression of the nonclassical heat shock genes was evidenced by the fact that mouse HSF3 and chicken HSF1 play a substantial role in the protection of cells from heat shock without inducing classical heat shock genes. Furthermore, HSF2 and HSF4, as well as HSF1, shown to have roles in development, were also revealed to be necessary for the expression of certain nonclassical heat shock genes. Thus, the heat shock response regulated by the HSF family should consist of the induction of classical as well as of nonclassical heat shock genes, both of which might be required to maintain protein homeostasis.
Collapse
|
171
|
Mustafa DAM, Sieuwerts AM, Zheng PP, Kros JM. Overexpression of Colligin 2 in Glioma Vasculature is Associated with Overexpression of Heat Shock Factor 2. GENE REGULATION AND SYSTEMS BIOLOGY 2010; 4:103-7. [PMID: 21072323 PMCID: PMC2976072 DOI: 10.4137/grsb.s4546] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
In previous studies we found expression of the protein colligin 2 (heat shock protein 47 (HSP47), SERPINH1) in glioma neovasculature while not in normal brain tissue. Generally, the regulation of heat shock gene expression in eukaryotes is mediated by heat shock factors (HSF). In mammals, three heat shock transcription factors, HSF-1, -2, and -4, have been isolated. Here we investigated the relation between the expression of colligin 2 and these heat shock factors at the mRNA level using real-time reverse transcriptase PCR (qRT-PCR) in different grades of astrocytic tumorigenesis, viz., low-grade glioma and glioblastoma. Endometrium samples, representing physiological angiogenesis, were included as controls. Since colligin 2 is a chaperon for collagens, the gene expression of collagen I (COL1A1) was also investigated. The blood vessel density of the samples was monitored by expression of the endothelial marker CD31 (PECAM1). Because NG2-immunopositive pericytic cells are involved in glioma neovascularization, the expression of NG2 (CSPG4) was also measured. We demonstrate overexpression of HSF2 in both stages of glial tumorigenesis (reaching significance only in low-grade glioma) and also minor elevated levels of HSF1 as compared to normal brain. There were no differences in expression of HSF4 between low-grade glioma and normal brain while HSF4 was downregulated in glioblastoma. In the endometrium samples, none of the HSFs were upregulated. In the low-grade gliomas SERPINH appeared to be slightly overexpressed with a parallel 4-fold upregulation of COL1A1, while in glioblastoma there was over 5-fold overexpression of SERPINH1 and more than 150-fold overexpression of COL1A1. In both the lowgrade gliomas and the glioblastomas overexpression of CSPG4 was found and overexpression of PECAM1 was only found in the latter. Our data suggest that the upregulated expression of colligin 2 in glioma is accompanied by upregulation of COL1A1, CSPG4, HSF2 and to a lesser extent, HSF1. Further studies will unravel the association of these factors with colligin 2 expression, possibly leading to keys for therapeutic intervention.
Collapse
|
172
|
Björk JK, Sandqvist A, Elsing AN, Kotaja N, Sistonen L. miR-18, a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis. Development 2010; 137:3177-84. [DOI: 10.1242/dev.050955] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
miR-18 belongs to the Oncomir-1 or miR-17~92 cluster that is intimately associated with the occurrence and progression of different types of cancer. However, the physiological roles of the Oncomir-1 cluster and its individual miRNAs are largely unknown. Here, we describe a novel function for miR-18 in mouse. We show that miR-18 directly targets heat shock factor 2 (HSF2), a transcription factor that influences a wide range of developmental processes including embryogenesis and gametogenesis. Furthermore, we show that miR-18 is highly abundant in testis, displaying distinct cell-type-specific expression during the epithelial cycle that constitutes spermatogenesis. Expression of HSF2 and of miR-18 exhibit an inverse correlation during spermatogenesis, indicating that, in germ cells, HSF2 is downregulated by miR-18. To investigate the in vivo function of miR-18 we developed a novel method, T-GIST, and demonstrate that inhibition of miR-18 in intact seminiferous tubules leads to increased HSF2 protein levels and altered expression of HSF2 target genes. Our results reveal that miR-18 regulates HSF2 activity in spermatogenesis and link miR-18 to HSF2-mediated physiological processes such as male germ cell maturation.
Collapse
Affiliation(s)
- Johanna K. Björk
- Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, 20520 Turku, Finland
| | - Anton Sandqvist
- Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, 20520 Turku, Finland
| | - Alexandra N. Elsing
- Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, 20520 Turku, Finland
| | - Noora Kotaja
- Department of Physiology, University of Turku, 20520 Turku, Finland
| | - Lea Sistonen
- Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, 20520 Turku, Finland
| |
Collapse
|
173
|
Shah NG, Tulapurkar ME, Singh IS, Shelhamer JH, Cowan MJ, Hasday JD. Prostaglandin E2 potentiates heat shock-induced heat shock protein 72 expression in A549 cells. Prostaglandins Other Lipid Mediat 2010; 93:1-7. [PMID: 20382255 PMCID: PMC2919605 DOI: 10.1016/j.prostaglandins.2010.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 03/23/2010] [Accepted: 03/31/2010] [Indexed: 12/11/2022]
Abstract
The heat shock (HS) response is an important cytoprotective response comprising the expression of heat shock proteins (HSPs) and orchestrated by the heat/stress-induced transcription factor, heat shock factor-1 (HSF-1). Previous studies suggest that the activation threshold and magnitude of the HS response may be modified by treatment with arachidonic acid (AA). We analyzed the effect of exogenous AA and its metabolites, PGE(2), LTD(4), and 15-HETE on HSF-1-dependent gene expression in A549 human respiratory epithelial-like cells. When added at 1microM, PGE(2) much more than LTD(4), but not 15-HETE increased activity of a synthetic HSF-1-dependent reporter after HS exposure (42 degrees C for 2h), but had no effect in the absence of HS. Exposing A549 cells to HS stimulated the release of PGE(2) and treatment with the cyclooxygenase inhibitor, ibuprofen, reduced HS-induced HSF-1-dependent transcription. PGE(2) increased HS-induced HSP72 mRNA and protein expression but EMSA and Western blot analysis failed to show an effect on HSF-1 DNA binding activity or post-translational modification. In summary, we showed that HS stimulates the generation of PGE(2), which augments the generation of HSPs. The clinical consequences of this pathway have yet to be determined.
Collapse
Affiliation(s)
- Nirav G. Shah
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mohan E. Tulapurkar
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ishwar S. Singh
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research Services of the Baltimore VA Medical Center, Baltimore, Maryland, USA 21201
| | - James H. Shelhamer
- Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Mark J. Cowan
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research Services of the Baltimore VA Medical Center, Baltimore, Maryland, USA 21201
| | - Jeffrey D. Hasday
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research Services of the Baltimore VA Medical Center, Baltimore, Maryland, USA 21201
| |
Collapse
|
174
|
Sakashita E, Endo H. SR and SR-related proteins redistribute to segregated fibrillar components of nucleoli in a response to DNA damage. Nucleus 2010; 1:367-80. [PMID: 21327085 DOI: 10.4161/nucl.1.4.12683] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 06/15/2010] [Accepted: 06/16/2010] [Indexed: 11/19/2022] Open
Abstract
Pre-mRNA splicing factors are often redistributed to nucleoli in response to physiological conditions and cell stimuli. In telophase nuclei, serine-arginine rich (SR) proteins, which usually reside in nuclear speckles, localize transiently to active ribosomal DNA (rDNA) transcription sites called nucleolar organizing region-associated patches (NAPs). Here, we show that ultraviolet light and DNA damaging chemicals induce the redistribution of SR and SR-related proteins to areas around nucleolar fibrillar components in interphase nuclei that are similar to, but distinct from, NAPs, and these areas have been termed DNA damage-induced NAPs (d-NAPs). In vivo labeling of nascent RNA distinguished d-NAPs from NAPs in that d-NAPs were observed even after full rDNA transcriptional arrest as a result of DNA damage. Studies under a variety of conditions revealed that d-NAP formation requires both RNA polymerase II-dependent transcriptional arrest and nucleolar segregation, in particular, the disorganization of the granular nucleolar components. Despite the redistribution of SR proteins, splicing factor-enriched nuclear speckles were not disrupted because other nuclear speckle components, such as nuclear poly(A) RNA and the U5-116K protein, remained in DNA-damaged cells. These data suggest that the selective redistribution of splicing factors contributes to the regulation of specific genes via RNA metabolism. Finally, we demonstrate that a change in alternative splicing of apoptosis-related genes is coordinated with the occurrence of d-NAPs. Our results reveal a novel response to DNA damage that involves the dynamic redistribution of splicing factors to nucleoli.
Collapse
Affiliation(s)
- Eiji Sakashita
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, Japan.
| | | |
Collapse
|
175
|
Zhong X, Wang T, Zhang X, Li W. Heat shock protein 70 is upregulated in the intestine of intrauterine growth retardation piglets. Cell Stress Chaperones 2010; 15:335-42. [PMID: 19830596 PMCID: PMC2866992 DOI: 10.1007/s12192-009-0148-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 08/02/2009] [Accepted: 09/30/2009] [Indexed: 01/21/2023] Open
Abstract
The objective of this study is to investigate the expression and distribution of heat shock protein 70 (Hsp70) in the intestine of intrauterine growth retardation (IUGR) piglets. Samples from the duodenum, prejejunum, distal jejunum, ileum, and colon of IUGR and normal-body-weight (NBW) piglets were collected at birth. The results indicated that the body and intestine weight of IUGR piglets were significantly lower than NBW piglets. The villus height and villus/crypt ratio in jejunum and ileum of IUGR piglets were significantly reduced compared to NBW piglets. These results indicated that IUGR causes abnormal gastrointestinal morphologies and gastrointestinal dysfunction. The mRNA of hsp70 was increased in prejejunum (P < 0.05), distal jejunum (P < 0.05), and colon in IUGR piglets. However, the hsp70 mRNA in ileum of piglets with IUGR was decreased. Similar to hsp70 mRNA, the protein levels of Hsp70 in prejejunum (P < 0.05), distal jejunum, and colon (P < 0.05) in IUGR piglets were higher than those in NBW piglets. These results indicated that the expression of Hsp70 in the intestinal piglets was upregulated by IUGR, and different intestinal sites had different responses to stress. Meanwhile, the localization of Hsp70 in the epithelial cells of the whole villi and intestinal gland rather than in the lamina propria and myenteron suggested that Hsp70 has a cytoprotective role in epithelial cell function and structure.
Collapse
Affiliation(s)
- Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xuhui Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
176
|
Hao Q, Bao E, Zhang M, Yue Z, Hartung J. Variation in the expression of Hsp27, Hsp70, Hsp90 and their corresponding mRNA transcripts in the hearts of pigs during different transportation durations. Livest Sci 2010. [DOI: 10.1016/j.livsci.2010.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
177
|
Yue Z, Hao Q, Tang S, Bao E, Hartung J. Variation in Hsp90, HSF-1, and hsp90 mRNA expression in tissues of pigs exposed to different durations of transport. Livest Sci 2010. [DOI: 10.1016/j.livsci.2010.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
178
|
Cohen E, Du D, Joyce D, Kapernick EA, Volovik Y, Kelly JW, Dillin A. Temporal requirements of insulin/IGF-1 signaling for proteotoxicity protection. Aging Cell 2010; 9:126-34. [PMID: 20003171 PMCID: PMC3026833 DOI: 10.1111/j.1474-9726.2009.00541.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Toxic protein aggregation (proteotoxicity) is a unifying feature in the development of late-onset human neurodegenerative disorders. Reduction of insulin/IGF-1 signaling (IIS), a prominent lifespan, developmental and reproductive regulatory pathway, protects worms from proteotoxicity associated with the aggregation of the Alzheimer’s disease-linked Aβ peptide. We utilized transgenic nematodes that express human Aβ and found that late life IIS reduction efficiently protects from Aβ toxicity without affecting development, reproduction or lifespan. To alleviate proteotoxic stress in the animal, the IIS requires heat shock factor (HSF)-1 to modulate a protein disaggregase, while DAF-16 regulates a presumptive active aggregase, raising the question of how these opposing activities could be co-regulated. One possibility is that HSF-1 and DAF-16 have distinct temporal requirements for protection from proteotoxicity. Using a conditional RNAi approach, we found an early requirement for HSF-1 that is distinct from the adult functions of DAF-16 for protection from proteotoxicity. Our data also indicate that late life IIS reduction can protect from proteotoxicity when it can no longer promote longevity, strengthening the prospect that IIS reduction might be a promising strategy for the treatment of neurodegenerative disorders caused by proteotoxicity.
Collapse
Affiliation(s)
- Ehud Cohen
- Howard Hughes Medical Institute, Glenn Center for Aging Research, Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
- The Institute for Medical Research Israel – Canada, the Hebrew University of Jerusalem Medical School, Ein‐Kerem, Jerusalem 91120, Israel
| | - Deguo Du
- Departments of Chemistry and Molecular and Experimental Medicine and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Derek Joyce
- Howard Hughes Medical Institute, Glenn Center for Aging Research, Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Erik A. Kapernick
- Howard Hughes Medical Institute, Glenn Center for Aging Research, Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yuli Volovik
- The Institute for Medical Research Israel – Canada, the Hebrew University of Jerusalem Medical School, Ein‐Kerem, Jerusalem 91120, Israel
| | - Jeffery W. Kelly
- Departments of Chemistry and Molecular and Experimental Medicine and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Andrew Dillin
- Howard Hughes Medical Institute, Glenn Center for Aging Research, Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
179
|
Conde R, Belak ZR, Nair M, O'Carroll RF, Ovsenek N. Modulation of Hsf1 activity by novobiocin and geldanamycin. Biochem Cell Biol 2010; 87:845-51. [PMID: 19935870 DOI: 10.1139/o09-049] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Since Hsp90 is a known modulator of HSF1 activity, we examined the effects of two pharmacological inhibitors of Hsp90, novobiocin and geldanamycin, on HSF1 DNA-binding activity in the Xenopus oocyte model system. Novobiocin exhibits antiproliferative activity in culture cells and interacts with a C-terminal ATP-binding pocket on Hsp90, inhibiting Hsp90 autophosphorylation. Treatment of oocytes with novobiocin followed by heat shock results in a dose-dependent decrease in HSF1 DNA-binding and transcriptional activity. Immunoprecipitation experiments demonstrate novobiocin does not alter HSF1 activity through dissociation of Hsp90 from either monomeric or trimerized HSF1, suggesting that the effect of novobiocin on HSF1 is mediated through alterations in Hsp90 autophosphorylation. Geldanamycin binds the N-terminal ATPase site of Hsp90 and inhibits chaperone activity. Geldanamycin treatment of oocytes resulted in a dose-dependent increase in stability of active HSF1 trimers during submaximal heat shock and a delay in disassembly of trimers during recovery. The results suggest that Hsp90 chaperone activity is required for disassembly of HSF1 trimers. The data obtained with novobiocin suggests the C-terminal ATP-binding activity of Hsp90 is required for the initial steps of HSF1 trimerization, whereas the effects of geldanamycin suggest N-terminal ATPase and chaperone activities are required for disassembly of activated trimers. These data provide important insight into the molecular mechanisms by which pharmacological inhibitors of Hsp90 affect the heat shock response.
Collapse
Affiliation(s)
- Renaud Conde
- Department of Anatomy and Cell Biology, College of Medicine, 107 Wiggins Rd., University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | | | | | | | | |
Collapse
|
180
|
Dokladny K, Lobb R, Wharton W, Ma TY, Moseley PL. LPS-induced cytokine levels are repressed by elevated expression of HSP70 in rats: possible role of NF-kappaB. Cell Stress Chaperones 2010; 15:153-63. [PMID: 19551494 PMCID: PMC2866987 DOI: 10.1007/s12192-009-0129-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 06/10/2009] [Indexed: 10/19/2022] Open
Abstract
Heat shock protein (HSP)70 provides a spectrum of protection against any of a variety of stresses, preventing damage measured at the level of molecules, cells, as well as whole organism. We have previously reported that lipopolysaccharide (LPS)-induced lethality in rats is prevented by a previous exposure to a mild thermal stress and that a thermal stress sufficient to induce HSP70 expression in the liver is accompanied by an inhibition of endotoxin-mediated cytokines and modulation of febrile response. However, the effect of HSP70 upregulation on cytokine expression in animals is unknown. The aim of the present study was to demonstrate the effect of HSP70 overexpression with adenovirus administration on LPS-induced increase in cytokines levels in animals. In the present study, Sprague-Dawley rats were infected with either the control AdTrack or Ad70 virus that directs the expression of human HSP70. After a 5-day incubation, animals were injected with either saline alone or LPS (50 microg/kg). Four hours later, blood samples were drawn and plasma levels of interleukin (IL)-6 or tumor necrosis factor (TNF)-alpha were measured by enzyme-linked immunosorbent assay. Our data demonstrate for the first time that HSP70 overexpression with adenovirus injection prevented the LPS-induced increase in TNF-alpha and IL-6 levels in rats. Repression of LPS-induced cytokines expressions by HSP70 upregulation was associated with inhibited IkappaBalpha degradation and nuclear factor kappa-B (NF-kappaB) p65 nuclear translocation in liver, suggesting that HSP70 overexpression may regulate LPS-induced cytokines expression through NF-kappaB pathway. We conclude that the effects of heat stress-induced increase in HSP70 protein expression on LPS-induced cytokine elaboration in whole animals can be reproduced by the actions of a single gene product.
Collapse
Affiliation(s)
- Karol Dokladny
- Department of Internal Medicine, University of New Mexico Health Sciences Center, MSC 10-5550, Albuquerque, NM 87131 USA
| | - Rebecca Lobb
- Department of Internal Medicine, University of New Mexico Health Sciences Center, MSC 10-5550, Albuquerque, NM 87131 USA
| | - Walker Wharton
- Department of Internal Medicine, University of New Mexico Health Sciences Center, MSC 10-5550, Albuquerque, NM 87131 USA
| | - Thomas Y. Ma
- Department of Internal Medicine, University of New Mexico Health Sciences Center, MSC 10-5550, Albuquerque, NM 87131 USA
| | - Pope L. Moseley
- Department of Internal Medicine, University of New Mexico Health Sciences Center, MSC 10-5550, Albuquerque, NM 87131 USA
| |
Collapse
|
181
|
Bouchier-Hayes L, McBride S, van Geelen CM, Nance S, Lewis LK, Pinkoski MJ, Beere HM. Fas ligand gene expression is directly regulated by stress-inducible heat shock transcription factor-1. Cell Death Differ 2010; 17:1034-46. [DOI: 10.1038/cdd.2010.4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
182
|
Vuori KA, Ahlskog JK, Sistonen L, Nikinmaa M. TransLISA, a novel quantitative, nonradioactive assay for transcription factor DNA-binding analyses. FEBS J 2010; 276:7366-74. [PMID: 19912339 DOI: 10.1111/j.1742-4658.2009.07446.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transcription factors are DNA-binding proteins that regulate key biological processes. Their interactions with DNA are commonly analyzed with gel-based electrophoretic mobility shift assay (EMSA) using radioactively labeled probes. Within various fields of research, there exists an increasing demand to develop assays with faster sample throughput combined with improved sensitivity, increased analytical range, and precise quantification. Here, we describe the development and performance of a 384-well plate immunoassay, termed TransLISA, which is a novel homogeneous assay for rapid and sensitive quantification of the DNA-binding activity of transcription factors in cell and tissue lysates. TransLISA outperforms EMSAs, because it eliminates the need to use radioactive chemicals and allows fast and precise quantification of DNA-binding activity of transcription factors from large number of samples simultaneously. We have used TransLISA to demonstrate the DNA-binding activity of heat shock factor 1, representing a well-known model of inductive transcriptional regulatory responses, but the method is easily adaptable for the study of any transcription factor. Thus, TransLISA can replace EMSAs and may be used in various applications and research fields where quantitative, cost-effective and large-scale measurements of the DNA-binding activity of transcription factors are required, including screening of responses in multiple treatments in cellular and molecular biology, evolutionary research, environmental monitoring, and drug discovery.
Collapse
Affiliation(s)
- Kristiina A Vuori
- Centre of Excellence in Evolutionary Genetics and Physiology, Department of Biology, University of Turku, Finland.
| | | | | | | |
Collapse
|
183
|
Sonoda S, Tsumuki H. Characterization of alternatively spliced transcripts encoding heat shock transcription factor in cultured cells of the cabbage armyworm, Mamestra brassicae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 73:49-60. [PMID: 19750550 DOI: 10.1002/arch.20339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A gene encoding heat shock transcription factor (HSF) was cloned and sequenced from cultured cells of the cabbage armyworm, Mamestra brassicae. The cDNA potentially encoded a 699-aa protein, with a calculated molecular weight of 77.8 kDa. Deduced amino acid identities to HSFs from Aedes aegypti and Drosophila melanogaster were 36 and 34%, respectively. Analysis of the genomic DNA revealed eight exons and three optional exons: a, b, and c. Exon a contained a premature in-frame stop codon that would generate a truncated protein. When the cells were exposed to high temperature or cadmium, no particular alternative transcripts showed significant up- or down-regulated expression relative to the total amount of the transcripts. These results suggest that alternative splicing may not be a principal mechanism for regulation of M. brassicae HSF gene expression in response to heat shock and cadmium.
Collapse
Affiliation(s)
- Shoji Sonoda
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama, Japan.
| | | |
Collapse
|
184
|
Mutational analysis of human heat-shock transcription factor 1 reveals a regulatory role for oligomerization in DNA-binding specificity. Biochem J 2009; 424:253-61. [PMID: 19758120 DOI: 10.1042/bj20090922] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
HSF (heat-shock transcription factor) trimers bind to the HSE (heat-shock element) regulatory sequence of target genes and regulate gene expression. A typical HSE consists of at least three contiguous inverted repeats of the 5-bp sequence nGAAn. Yeast HSF is able to recognize discontinuous HSEs that contain gaps in the array of the nGAAn sequence; however, hHSF1 (human HSF1) fails to recognize such sites in vitro, in yeast and in HeLa cells. In the present study, we isolated suppressors of the temperature-sensitive growth defect of hHSF1-expressing yeast cells. Intragenic suppressors contained amino acid substitutions in the DNA-binding domain of hHSF1 that enabled hHSF1 to regulate the transcription of genes containing discontinuous HSEs. The substitutions facilitated hHSF1 oligomerization, suggesting that the DNA-binding domain is important for this conformational change. Furthermore, other oligomerization-prone derivatives of hHSF1 were capable of recognizing discontinuous HSEs. These results suggest that modulation of oligomerization is important for the HSE specificity of hHSF1 and imply that hHSF1 possesses the ability to bind to and regulate gene expression via various types of HSEs in diverse cellular processes.
Collapse
|
185
|
Fujimoto M, Hayashida N, Katoh T, Oshima K, Shinkawa T, Prakasam R, Tan K, Inouye S, Takii R, Nakai A. A novel mouse HSF3 has the potential to activate nonclassical heat-shock genes during heat shock. Mol Biol Cell 2009; 21:106-16. [PMID: 19864465 PMCID: PMC2801703 DOI: 10.1091/mbc.e09-07-0639] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
HSF1 is a master regulator of the heat-shock response in mammalian cells, whereas in avian cells, HSF3, which was considered as an avian-specific factor, is required for the expression of classical heat-shock genes. Here, the authors identify mouse HSF3, and demonstrate that it has the potential to activate only nonclassical heat-shock genes. The heat-shock response is characterized by the expression of a set of classical heat-shock genes, and is regulated by heat-shock transcription factor 1 (HSF1) in mammals. However, comprehensive analyses of gene expression have revealed very large numbers of inducible genes in cells exposed to heat shock. It is believed that HSF1 is required for the heat-inducible expression of these genes although HSF2 and HSF4 modulate some of the gene expression. Here, we identified a novel mouse HSF3 (mHSF3) translocated into the nucleus during heat shock. However, mHSF3 did not activate classical heat-shock genes such as Hsp70. Remarkably, overexpression of mHSF3 restored the expression of nonclassical heat-shock genes such as PDZK3 and PROM2 in HSF1-null mouse embryonic fibroblasts (MEFs). Although down-regulation of mHSF3 expression had no effect on gene expression or cell survival in wild-type MEF cells, it abolished the moderate expression of PDZK3 mRNA and reduced cell survival in HSF1-null MEF cells during heat shock. We propose that mHSF3 represents a unique HSF that has the potential to activate only nonclassical heat-shock genes to protect cells from detrimental stresses.
Collapse
Affiliation(s)
- Mitsuaki Fujimoto
- Department of Biochemistry, Yamaguchi University School of Medicine, Ube, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Reina CP, Zhong X, Pittman RN. Proteotoxic stress increases nuclear localization of ataxin-3. Hum Mol Genet 2009; 19:235-49. [PMID: 19843543 DOI: 10.1093/hmg/ddp482] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3)/Machado Joseph disease results from expansion of the polyglutamine domain in ataxin-3 (Atx3). Atx3 is a transcriptional co-repressor, as well as a deubiquitinating enzyme that appears to function in cellular pathways involved in protein homeostasis. In this study, we show that interactions of Atx3 with valosin-containing protein and hHR23B are dynamic and modulated by proteotoxic stresses. Heat shock, a general proteotoxic stress, also induced wild-type and pathogenic Atx3 to accumulate in the nucleus. Mapping studies showed that two regions of Atx3, the Josephin domain and the C-terminus, regulated heat shock-induced nuclear localization. Heat shock-induced nuclear localization of Atx3 was not affected by a casein kinase-2 inhibitor or by mutating a predicted nuclear localization signal. However, serine-111 of Atx3 was required for nuclear localization of the Josephin domain and regulated nuclear localization of full-length Atx3. Atx3 null cells were more sensitive to toxic effects of heat shock suggesting that Atx3 had a protective function in the cellular response to heat shock. Importantly, we found that oxidative stress also induced nuclear localization of Atx3; both wild-type and pathogenic Atx3 accumulated in the nucleus of SCA3 patient fibroblasts following oxidative stress. Heat shock and oxidative stress are the first processes identified that increase nuclear localization of Atx3. Observations in this study provide new and important insights for understanding SCA3 pathology as the nucleus is likely a key site for early pathogenesis.
Collapse
Affiliation(s)
- Christopher P Reina
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084, USA
| | | | | |
Collapse
|
187
|
Krivoruchko A, Storey KB. Regulation of the heat shock response under anoxia in the turtle, Trachemys scripta elegans. J Comp Physiol B 2009; 180:403-14. [PMID: 19834715 DOI: 10.1007/s00360-009-0414-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 09/14/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022]
Abstract
The effects of 20 h of anoxic submergence in cold water and 5 h of aerobic recovery on the heat shock response were analyzed in four organs of the anoxia-tolerant turtle Trachemys scripta elegans. Immunoblotting was used to analyze levels of active and inactive forms of the heat shock transcription factor 1 (HSF1), nuclear translocation of HSF1, and the levels of six heat shock proteins (HSPs). PCR was also used to retrieve the turtle HSF1 nucleotide sequence; its deduced amino acid sequence showed 97% identity with chicken HSF1. White skeletal muscle showed a strong fivefold increase in the amount of active HSF1 under anoxic conditions as well as an 80% increase in nuclear localization. This was accompanied by upregulation of five HSPs by 1.8- to 2.9-fold: Hsp25, Hsp40, Hsp70, Hsc70, and Hsp90, the latter two remained elevated after 5 h of aerobic recovery. Kidney and liver showed little change in active HSF1 content during anoxia and recovery, but a significant increase in the nuclear localization of HSF1 during anoxia. This supported enhanced expression of three HSPs in kidney (Hsp40, Hsc70, and Hsp90) and four in liver (Hsp40, Hsp60, Hsp70, Hsc70). Heart displayed a strong increase in active HSF1 during anoxia and recovery (6.6- to 6.8-fold higher than control) and increased nuclear localization but heart HSP levels did not rise. The data demonstrate organ-specific regulation of HSPs during anoxia exposure and aerobic recovery in T. s. elegans and suggest that the heat shock response is an important aspect of cytoprotection during facultative anaerobiosis, particularly with regard to underwater hibernation of turtles in cold water.
Collapse
Affiliation(s)
- Anastasia Krivoruchko
- Department of Biology, Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | | |
Collapse
|
188
|
Li L, Saegusa H, Tanabe T. Deficit of heat shock transcription factor 1-heat shock 70 kDa protein 1A axis determines the cell death vulnerability in a model of spinocerebellar ataxia type 6. Genes Cells 2009; 14:1253-69. [PMID: 19817876 DOI: 10.1111/j.1365-2443.2009.01348.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Spinocerebellar ataxia type 6 (SCA6) is caused by a small expansion of polyglutamine (polyQ)-encoding CAG repeat in Ca(v)2.1 calcium channel gene. To gain insights into pathogenic mechanism of SCA6, we used HEK293 cells expressing fusion protein of enhanced green fluorescent protein and Ca(v)2.1 carboxyl terminal fragment (EGFP-Ca(v)2.1CT) [L24 and S13 cells containing 24 polyQ (disease range) and 13 polyQ (normal range), respectively] and examined their responses to some stressors. When exposed to CdCl(2), L24 cells showed lower viability than the control S13 cells and caspase-dependent apoptosis was enhanced more in L24 cells. Localization of EGFP-Ca(v)2.1CT was almost confined to the nucleus, where it existed as speckle-like structures. Interestingly, CdCl(2) treatment resulted in disruption of more promyelocytic leukemia nuclear bodies (PML-NBs) in L24 cells than in S13 cells and in cells where PML-NBs were disrupted, aggregates of EGFP-Ca(v)2.1CT became larger. Furthermore, a large number of aggregates were formed in L24 cells than in S13 cells. Results of RNAi experiments indicated that HSPA1A determined the difference against CdCl(2) toxicity. Furthermore, protein expression of heat shock transcription factor 1 (HSF1), which activates HSPA1A expression, was down-regulated in L24 cells. Therefore, HSF1-HSPA1A axis is critical for the vulnerability in L24 cells.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | |
Collapse
|
189
|
Tulapurkar ME, Asiegbu BE, Singh IS, Hasday JD. Hyperthermia in the febrile range induces HSP72 expression proportional to exposure temperature but not to HSF-1 DNA-binding activity in human lung epithelial A549 cells. Cell Stress Chaperones 2009; 14:499-508. [PMID: 19221897 PMCID: PMC2728283 DOI: 10.1007/s12192-009-0103-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/26/2009] [Accepted: 01/29/2009] [Indexed: 10/21/2022] Open
Abstract
Expression of heat shock proteins (HSPs) is classically activated at temperatures above the physiologic range (>or=42 degrees C) via activation of the stress-activated transcription factor, heat shock factor-1 (HSF-1). Several studies suggest that less extreme hyperthermia, especially within the febrile range, as occurs during fever and exertional/environmental hyperthemia, can also activate HSF-1 and enhance HSP expression. We compared HSP72 protein and mRNA expression in human A549 lung epithelial cells continuously exposed to 38.5 degrees C, 39.5 degrees C, or 41 degrees C or exposed to a classic heat shock (42 degrees C for 2 h). We found that expression of HSP72 protein and mRNA increased linearly as incubation temperature was increased from 37 degrees C to 41 degrees C, but increased abruptly when the incubation temperature was raised to 42 degrees C. A similar response in luciferase activity was observed using A549 cells stably transfected with an HSF-1-responsive luciferase reporter plasmid. However, activation of intranuclear HSF-1 DNA-binding activity was comparable at 38.5 degrees C, 39.5 degrees C, and 41 degrees C and only modestly greater at 42 degrees C but the mobility of HSF1 protein on a denaturing gel was altered with increasing exposure temperature and was distinctly different at 42 degrees C. These findings indicate that the proportional changes in HSF-1-dependent HSP72 expression at febrile-range temperatures are dependent upon exposure time and temperature but not on the degree of HSF-1 DNA-binding activity. Instead, HSF-1-mediated HSP expression following hyperthermia and heat shock appears to be mediated, in addition to HSF-1 activation, by posttranslational modifications of HSF-1 protein.
Collapse
Affiliation(s)
- Mohan E. Tulapurkar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201 USA
| | - Benedict E. Asiegbu
- Division of Neonatology, Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, MD 21201 USA
| | - Ishwar S. Singh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201 USA
- Mucosal Biology Research Center, School of Medicine, University of Maryland, Baltimore, MD 21201 USA
- Research Services, Baltimore VA Medical Center, Baltimore, MD USA
| | - Jeffrey D. Hasday
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201 USA
- Mucosal Biology Research Center, School of Medicine, University of Maryland, Baltimore, MD 21201 USA
- Research Services, Baltimore VA Medical Center, Baltimore, MD USA
- Health Science Facility-II, School of Medicine, University of Maryland, Rm. 327, 20 Penn St., Baltimore, MD 21201 USA
| |
Collapse
|
190
|
Kawashima D, Asai M, Katagiri K, Takeuchi R, Ohtsuka K. Reinvestigation of the effect of carbenoxolone on the induction of heat shock proteins. Cell Stress Chaperones 2009; 14:535-43. [PMID: 19333787 PMCID: PMC2728286 DOI: 10.1007/s12192-009-0106-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 01/30/2009] [Accepted: 02/05/2009] [Indexed: 11/26/2022] Open
Abstract
Carbenoxolone (CBX) is a semisynthetic derivative of the licorice root substance glycyrrhizinic acid and has been previously reported to induce only heat shock protein 70 [Hsp70, HSPA1A (the systematic name of heat shock protein is given in the parenthesis after each HSP, according to the recent nomenclature guidelines, Kampinga et al., Cell Stress Chaperones, 14:105-111, 2008) but not other heat shock proteins (HSPs) (Nagayama et al., Life Sci. 69:2867-2873, 2001). In this study, we reinvestigated the effect of CBX on the induction of HSPs in HeLa and human neuroblastoma (A-172) cells. CBX clearly induced not only Hsp70 but also Hsp90 (HSPC1), Hsp40 (DNAJB1), and Hsp27 (HSPB1) at concentrations of 10 to 800 microM for 16 h incubation. At higher concentrations (more than 400 microM), however, CBX appeared to be toxic. Treatment of cells with CBX resulted in enhanced phosphorylation and acquisition of DNA-binding ability of heat shock transcription factor 1 (HSF1). Furthermore, characteristic HSF1 granules were formed in the nucleus, suggesting that the induction of HSPs by CBX is mediated by the activation of HSF1. Furthermore, thermotolerance was induced by CBX treatment, as determined by clonogenic survival. Although the precise target of CBX is not known at present, these results indicate that CBX is one of the molecular chaperone inducers and suggest that some pharmacological activities of CBX might be ascribable in part to its molecular chaperone-inducing property.
Collapse
Affiliation(s)
- Daisuke Kawashima
- Laboratory of Cell & Stress Biology, Department of Environmental Biology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Midori Asai
- Laboratory of Cell & Stress Biology, Department of Environmental Biology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Kiyoe Katagiri
- Laboratory of Cell & Stress Biology, Department of Environmental Biology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Rika Takeuchi
- Laboratory of Cell & Stress Biology, Department of Environmental Biology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Kenzo Ohtsuka
- Laboratory of Cell & Stress Biology, Department of Environmental Biology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| |
Collapse
|
191
|
Upregulation of lactate dehydrogenase A by ErbB2 through heat shock factor 1 promotes breast cancer cell glycolysis and growth. Oncogene 2009; 28:3689-701. [DOI: 10.1038/onc.2009.229] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
192
|
Rossignol JF, La Frazia S, Chiappa L, Ciucci A, Santoro MG. Thiazolides, a new class of anti-influenza molecules targeting viral hemagglutinin at the post-translational level. J Biol Chem 2009; 284:29798-808. [PMID: 19638339 DOI: 10.1074/jbc.m109.029470] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The emergence of highly contagious influenza A virus strains, such as the new H1N1 swine influenza, represents a serious threat to global human health. Efforts to control emerging influenza strains focus on surveillance and early diagnosis, as well as development of effective vaccines and novel antiviral drugs. Herein we document the anti-influenza activity of the anti-infective drug nitazoxanide and its active circulating-metabolite tizoxanide and describe a class of second generation thiazolides effective against influenza A virus. Thiazolides inhibit the replication of H1N1 and different other strains of influenza A virus by a novel mechanism: they act at post-translational level by selectively blocking the maturation of the viral hemagglutinin at a stage preceding resistance to endoglycosidase H digestion, thus impairing hemagglutinin intracellular trafficking and insertion into the host plasma membrane, a key step for correct assembly and exit of the virus from the host cell. Targeting the maturation of the viral glycoprotein offers the opportunity to disrupt the production of infectious viral particles attacking the pathogen at a level different from the currently available anti-influenza drugs. The results indicate that thiazolides may represent a new class of antiviral drugs effective against influenza A infection.
Collapse
Affiliation(s)
- Jean François Rossignol
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305-5187, USA
| | | | | | | | | |
Collapse
|
193
|
Tabuchi Y, Takasaki I, Wada S, Zhao QL, Hori T, Nomura T, Ohtsuka K, Kondo T. Genes and genetic networks responsive to mild hyperthermia in human lymphoma U937 cells. Int J Hyperthermia 2009; 24:613-22. [DOI: 10.1080/02656730802140777] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
194
|
Sakurai H, Kitamoto Y, Saitoh JI, Nonaka T, Ishikawa H, Kiyohara H, Shioya M, Fukushima M, Akimoto T, Hasegawa M, Nakano T. Attenuation of chronic thermotolerance by KNK437, a benzylidene lactam compound, enhances thermal radiosensitization in mild temperature hyperthermia combined with low dose-rate irradiation. Int J Radiat Biol 2009; 81:711-8. [PMID: 16368649 DOI: 10.1080/09553000500448172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE We investigated whether the attenuation of chronic thermotolerance by KNK437, a heat shock protein inhibitor, can modify the effect of thermal radiosensitization in mild temperature hyperthermia (MTH) combined with low dose-rate irradiation (LDRI). MATERIALS AND METHODS The human lung adenocarcinoma cell line A549 was simultaneously exposed to LDRI with MTH at 41 degrees C and KNK437 at a dose of 100 microM. Cell survival was estimated by a clonogenic assay. Cell cycle change during treatment was analyzed by flow cytometry. Expression levels of the heat shock proteins hsp72, hsp27 and heat shock factor 1 (HSF-1) were measured by Western blotting. RESULTS KNK437 inhibited the expression of inducible hsp72 and hsp27, but produced no change in the mobility shift of HSF-1. The cytotoxicity of LDRI was enhanced by MTH. The survival curve for LDRI + MTH revealed no development of chronic thermotolerance up to 48 h. Simultaneous LDRI and KNK437 treatment also resulted in enhanced cell killing. The radiosensitizing effect of KNK437 was enhanced by simultaneous exposure of the cells to MTH. Flow cytometry analysis of cell cycle progression demonstrated marked G2 arrest and mild G1 arrest with LDRI alone, but mild G1 arrest with MTH alone, and mild G2-M, S-phase accumulation with KNK437 alone. The marked G2 arrest caused by LDRI was partially suppressed by the addition of MTH, and was also suppressed by KNK437 treatment. CONCLUSIONS Exposure of A549 cells to KNK437 caused inhibition of hsp72 and hsp27 expression. The addition of KNK437 increased not only thermosensitivity to MTH, but also radiosensitivity to LDRI. KNK437 also enhanced the MTH-induced radiosensitization under these experimental conditions.
Collapse
Affiliation(s)
- Hideyuki Sakurai
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Teiten MH, Reuter S, Schmucker S, Dicato M, Diederich M. Induction of heat shock response by curcumin in human leukemia cells. Cancer Lett 2009; 279:145-54. [DOI: 10.1016/j.canlet.2009.01.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 12/24/2008] [Accepted: 01/21/2009] [Indexed: 01/10/2023]
|
196
|
Heat shock proteins as gatekeepers of proteolytic pathways-Implications for age-related macular degeneration (AMD). Ageing Res Rev 2009; 8:128-39. [PMID: 19274853 DOI: 10.1016/j.arr.2009.01.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Age-related macular degeneration (AMD) is the major diagnosis for severe and irreversible central loss of vision in elderly people in the developed countries. The loss of vision involves primarily a progressive degeneration and cell death of postmitotic retinal pigment epithelial cells (RPE), which secondarily evokes adverse effects on photoreceptor cells. The RPE cells are exposed to chronic oxidative stress from three sources: their high levels of oxygen consumption, their exposure to the high levels of lipid peroxidation derived from the photoreceptor outer segments and their exposure to constant light stimuli. Cells increase the expression of heat shock proteins (HSPs) in order to normalize their growth conditions in response to various environmental stress factors, e.g. oxidative stress. The HSPs function as molecular chaperones by preventing the accumulation of cellular cytotoxic protein aggregates and assisting in correct folding of both nascent and misfolded proteins. Increased HSPs levels are observed in the retina of AMD patients, evidence of stressed tissue. A hallmark of RPE cell aging is lysosomal lipofuscin accumulation reflecting a weakened capacity to degrade proteins in lysosomes. The presence of lipofuscin increases the misfolding of intracellular proteins, which evokes additional stress in the RPE cells. If the capacity of HSPs to repair protein damages is overwhelmed, then the proteins are mainly cleared in proteasomes or in lysosomes. In this review, we discuss the role of heat shock proteins, proteasomes, and lysosomes and autophagic processes in RPE cell proteolysis and how these might be involved in development of AMD. In addition to classical lysosomal proteolysis, we focus on the increasing evidence that, HSPs, proteasomes and autophagy regulate protein turnover in the RPE cells and thus have important roles in AMD disease.
Collapse
|
197
|
Szymańska Z, Zylicz M. Mathematical modeling of heat shock protein synthesis in response to temperature change. J Theor Biol 2009; 259:562-9. [PMID: 19327370 DOI: 10.1016/j.jtbi.2009.03.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 03/05/2009] [Accepted: 03/06/2009] [Indexed: 10/21/2022]
Abstract
One of the most important questions in cell biology is how cells cope with rapid changes in their environment. The range of common molecular responses includes a dramatic change in the pattern of gene expression and the elevated synthesis of so-called heat shock (or stress) proteins (HSPs). Induction of HSPs increases cell survival under stress conditions [Morimoto, R.I., 1993. Cells in stress: transcriptional activation of heat shock genes. Science 259, 1409-1410]. In this paper we propose a mathematical model of heat shock protein synthesis induced by an external temperature stimulus. Our model consists of a system of nine nonlinear ordinary differential equations describing the temporal evolution of the key variables involved in the regulation of HSP synthesis. Computational simulations of our model are carried out for different external temperature stimuli. We compare our model predictions with experimental data for three different cases-one corresponding to heat shock, the second corresponding to slow heating conditions and the third corresponding to a short heat shock (lasting about 40 min). We also present our model predictions for heat shocks carried out up to different final temperatures and finally we present a new hypothesis concerning the molecular response to stress that explains some phenomena observed in experiments.
Collapse
|
198
|
Lee YK, Liu DJ, Lu J, Chen KY, Liu AYC. Aberrant regulation and modification of heat shock factor 1 in senescent human diploid fibroblasts. J Cell Biochem 2009; 106:267-78. [PMID: 19097133 DOI: 10.1002/jcb.21997] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Induction of the heat shock response (HSR), determined by hsp70-luciferase reporter and HSP70 protein expression, is attenuated as a function of age of the IMR-90 human diploid fibroblasts. To better understand the underlying mechanism, we evaluated changes in the regulation and function of the HSF1 transcription factor. We show that the activation of HSF1 both in vivo and in vitro was decreased as a function of age, and this was attributable to a change in the regulation of HSF1 as the abundance of HSF1 protein and mRNA was unaffected. HSF1 was primarily cytosolic in young cells maintained at 37 degrees C, and heat shock promoted its quantitative nuclear translocation and trimerization. In old cells, some HSF1 was nuclear sequestered at 37 degrees C, and heat shock failed to promote the quantitative trimerization of HSF1. These changes in HSF1 could be reproduced by treating young cells with H2O2 to stunt them into premature senescence. Flow cytometry measurement of peroxide content showed higher levels in old cells and H2O2-induced premature senescent cells as compared to young cells. Experiments using isoelectric focusing and Western blot showed age-dependent changes in the mobility of HSF1 in a pattern consistent with its S-glutathiolation and S-nitrosylation; these changes could be mimicked by treating young cells with H2O2. Our results demonstrated dynamic age-dependent changes in the regulation but not the amount of HSF1. These changes are likely mediated by oxidative events that promote reversible and irreversible modification of HSF1 including S-glutathiolation and S-nitrosylation.
Collapse
Affiliation(s)
- Yoon Kwang Lee
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey 604 Allison Road, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
199
|
Satellite III non-coding RNAs show distinct and stress-specific patterns of induction. Biochem Biophys Res Commun 2009; 382:102-7. [PMID: 19258006 DOI: 10.1016/j.bbrc.2009.02.137] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 11/21/2022]
Abstract
The heat shock response in human cells is associated with the transcription of satellite III repeats (SatIII) located in the 9q12 locus. Upon induction, the SatIII transcripts remain associated with the locus and recruit several transcription and splicing factors to form the nuclear stress bodies (nSBs). The nSBs are thought to modulate epigenetic changes during the heat shock response. We demonstrate here that the nSBs are induced by a variety of stressors and show stress-specific patterns of induction. While the transcription factor HSF1 is required for the induction of SatIII locus by the stressors tested, its specific role in the transcriptional process appears to be stress dependent. Our results suggest the existence of multiple transcriptional loci for the SatIII transcripts and that their activation might depend upon the type of stressors. Thus, induction of SatIII transcripts appears to be a generic response to a variety of stress conditions.
Collapse
|
200
|
Biamonti G, Caceres JF. Cellular stress and RNA splicing. Trends Biochem Sci 2009; 34:146-53. [PMID: 19208481 DOI: 10.1016/j.tibs.2008.11.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/03/2008] [Accepted: 11/04/2008] [Indexed: 01/02/2023]
Abstract
In response to physical and chemical stresses that affect protein folding and, thus, the execution of normal metabolic processes, cells activate gene-expression strategies aimed at increasing their chance of survival. One target of several stressing agents is pre-mRNA splicing, which is inhibited upon heat shock. Recently, the molecular basis of this splicing inhibition has begun to emerge. Interestingly, different mechanisms seem to be in place to block constitutive pre-mRNA splicing and to affect alternative splicing regulation. This could be important to modulate gene expression during recovery from stress. Thus, pre-mRNA splicing emerges as a central mechanism to integrate cellular and metabolic stresses into gene-expression profiles.
Collapse
Affiliation(s)
- Giuseppe Biamonti
- Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche Via Abbiategrasso 207, 27100 Pavia, Italy.
| | | |
Collapse
|