151
|
Bah A, Gilson E, Wellinger RJ. Telomerase is required to protect chromosomes with vertebrate-type T2AG3 3' ends in Saccharomyces cerevisiae. J Biol Chem 2011; 286:27132-8. [PMID: 21676873 DOI: 10.1074/jbc.m111.220186] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Telomeres containing vertebrate-type DNA repeats can be stably maintained in Saccharomyces cerevisiae cells. We show here that telomerase is required for growth of yeast cells containing these vertebrate-type telomeres. When present at the chromosome termini, these heterologous repeats elicit a DNA damage response and a certain deprotection of telomeres. The data also show that these phenotypes are due only to the terminal localization of the vertebrate repeats because if they are sandwiched between native yeast repeats, no phenotype is observed. Indeed and quite surprisingly, in this latter situation, telomeres are of virtually normal lengths, despite the presence of up to 50% of heterologous repeats. Furthermore, the presence of the distal vertebrate-type repeats can cause increased problems of the replication fork. These results show that in budding yeast the integrity of the 3' overhang is required for proper termination of telomere replication as well as protection.
Collapse
Affiliation(s)
- Amadou Bah
- Département de Microbiologie et d'Infectiologie, Groupe ARN/RNA Group, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Ave. Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | | | | |
Collapse
|
152
|
Recombination can either help maintain very short telomeres or generate longer telomeres in yeast cells with weak telomerase activity. EUKARYOTIC CELL 2011; 10:1131-42. [PMID: 21666075 DOI: 10.1128/ec.05079-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Yeast mutants lacking telomerase are able to elongate their telomeres through processes involving homologous recombination. In this study, we investigated telomeric recombination in several mutants that normally maintain very short telomeres due to the presence of a partially functional telomerase. The abnormal colony morphology present in some mutants was correlated with especially short average telomere length and with a requirement for RAD52 for indefinite growth. Better-growing derivatives of some of the mutants were occasionally observed and were found to have substantially elongated telomeres. These telomeres were composed of alternating patterns of mutationally tagged telomeric repeats and wild-type repeats, an outcome consistent with amplification occurring via recombination rather than telomerase. Our results suggest that recombination at telomeres can produce two distinct outcomes in the mutants we studied. In occasional cells, recombination generates substantially longer telomeres, apparently through the roll-and-spread mechanism. However, in most cells, recombination appears limited to helping to maintain very short telomeres. The latter outcome likely represents a simplified form of recombinational telomere maintenance that is independent of the generation and copying of telomeric circles.
Collapse
|
153
|
Chang M, Dittmar JC, Rothstein R. Long telomeres are preferentially extended during recombination-mediated telomere maintenance. Nat Struct Mol Biol 2011; 18:451-6. [PMID: 21441915 PMCID: PMC3071861 DOI: 10.1038/nsmb.2034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 01/20/2011] [Indexed: 01/01/2023]
Abstract
Most human somatic cells do not express telomerase. Consequently, with each cell division their telomeres progressively shorten until replicative senescence is induced. Around 15% of human cancers maintain their telomeres using telomerase-independent, recombination-based mechanisms that are collectively termed 'alternative lengthening of telomeres' (ALT). In the yeast Saccharomyces cerevisiae, ALT cells are referred to as 'survivors'. One type of survivor (type II) resembles human ALT cells in that both are defined by the amplification of telomeric repeats. We analyzed recombination-mediated telomere extension events at individual telomeres in telomerase-negative yeast during the formation of type II survivors and found that long telomeres were preferentially extended. Furthermore, senescent cells with long telomeres were more efficient at bypassing senescence by the type II pathway. We speculate that telomere length may be important in determining whether cancer cells use telomerase or ALT to bypass replicative senescence.
Collapse
Affiliation(s)
- Michael Chang
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, USA.
| | | | | |
Collapse
|
154
|
Abstract
In the budding yeast Saccharomyces cerevisiae, the structure and function of telomeres are maintained by binding proteins, such as Cdc13-Stn1-Ten1 (CST), Yku, and the telomerase complex. Like CST and Yku, telomerase also plays a role in telomere protection or capping. Unlike CST and Yku, however, the underlying molecular mechanism of telomerase-mediated telomere protection remains unclear. In this study, we employed both the CDC13-EST1 fusion gene and the separation-of-function allele est1-D514A to elucidate that Est1 provided a telomere protection pathway that was independent of both the CST and Yku pathways. Est1's ability to convert single-stranded telomeric DNA into a G quadruplex was required for telomerase-mediated telomere protection function. Additionally, Est1 maintained the integrity of telomeres by suppressing the recombination of subtelomeric Y' elements. Our results demonstrate that one major functional role that Est1 brings to the telomerase complex is the capping or protection of telomeres.
Collapse
|
155
|
Nabetani A, Ishikawa F. Alternative lengthening of telomeres pathway: recombination-mediated telomere maintenance mechanism in human cells. J Biochem 2011; 149:5-14. [PMID: 20937668 DOI: 10.1093/jb/mvq119] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Unlimitedly proliferating cells need to acquire the telomere DNA maintenance mechanism, to counteract possible shortening through multiple rounds of replication and segregation of linear chromosomes. Most human cancer cells express telomerase whereas the other cells utilize the alternative lengthening of telomeres (ALT) pathway to elongate telomere DNA. It is suggested that ALT depends on the recombination between telomere repetitive DNAs. However, the molecular details remain unknown. Recent studies have provided evidence of special structures of telomere DNA and genes essential for the phenotypes of ALT cells. The molecular models of the ALT pathway should be validated to elucidate recombination-mediated telomere maintenance and promote the applications to anti-cancer therapy.
Collapse
Affiliation(s)
- Akira Nabetani
- Laboratory of Cell Cycle Regulation, Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University,Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | | |
Collapse
|
156
|
Affiliation(s)
- Devanshi Jain
- Telomere Biology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3PX, United Kingdom;
| | - Julia Promisel Cooper
- Telomere Biology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3PX, United Kingdom;
| |
Collapse
|
157
|
Dewar JM, Lydall D. Pif1- and Exo1-dependent nucleases coordinate checkpoint activation following telomere uncapping. EMBO J 2010; 29:4020-34. [PMID: 21045806 PMCID: PMC3020640 DOI: 10.1038/emboj.2010.267] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 09/29/2010] [Indexed: 11/16/2022] Open
Abstract
Essential telomere 'capping' proteins act as a safeguard against ageing and cancer by inhibiting the DNA damage response (DDR) and regulating telomerase recruitment, thus distinguishing telomeres from double-strand breaks (DSBs). Uncapped telomeres and unrepaired DSBs can both stimulate a potent DDR, leading to cell cycle arrest and cell death. Using the cdc13-1 mutation to conditionally 'uncap' telomeres in budding yeast, we show that the telomere capping protein Cdc13 protects telomeres from the activity of the helicase Pif1 and the exonuclease Exo1. Our data support a two-stage model for the DDR at uncapped telomeres; Pif1 and Exo1 resect telomeric DNA <5 kb from the chromosome end, stimulating weak checkpoint activation; resection is extended >5 kb by Exo1 and full checkpoint activation occurs. Cdc13 is also crucial for telomerase recruitment. However, cells lacking Cdc13, Pif1 and Exo1, do not senesce and maintain their telomeres in a manner dependent upon telomerase, Ku and homologous recombination. Thus, attenuation of the DDR at uncapped telomeres can circumvent the need for otherwise-essential telomere capping proteins.
Collapse
Affiliation(s)
- James M Dewar
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle upon Tyne, Tyne-and-Wear, UK
| | - David Lydall
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle upon Tyne, Tyne-and-Wear, UK
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, Tyne-and-Wear, UK
| |
Collapse
|
158
|
Abstract
Telomeric recombination has been observed in telomerase-negative alternative lengthening of telomeres in human cancer cells and following telomerase inhibition or gene deletion. This study shows that telomeric recombination mechanisms can also be activated by dysfunctional telomeres without telomerase inhibition in telomerase-positive cells. Telomere maintenance is essential for cellular immortality, and most cancer cells maintain their telomeres through the enzyme telomerase. Telomeres and telomerase represent promising anticancer targets. However, 15% of cancer cells maintain their telomeres through alternative recombination-based mechanisms, and previous analyses showed that recombination-based telomere maintenance can be activated after telomerase inhibition. We determined whether telomeric recombination can also be promoted by telomere dysfunction. We report for the first time that telomeric recombination can be induced in human telomerase-positive cancer cells with dysfunctional telomeres.
Collapse
Affiliation(s)
- Marie Eve Brault
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2
| | | |
Collapse
|
159
|
Urena DE, Zhang Z, Tsai YC, Wang YZ, Chen J. From strand exchange to branch migration; bypassing of non-homologous sequences by human Rad51 and Rad54. J Mol Biol 2010; 405:77-91. [PMID: 21056573 DOI: 10.1016/j.jmb.2010.10.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 10/19/2010] [Accepted: 10/22/2010] [Indexed: 12/24/2022]
Abstract
Rad51 and Rad54 play crucial roles during homologous recombination. The biochemical activities of human Rad51 (hRad51) and human Rad54 (hRad54) and their interactions with each other are well documented. However, it is not known how these two proteins work together to bypass heterologous sequences; i.e. mismatched base pairs, during homologous recombination. In this study, we used a fluorescence resonance energy transfer assay to monitor homologous recombination processes in real time so that the interactions between hRad54 and hRad51 during DNA strand exchange and branch migration, which are two core steps of homologous recombination, could be characterized. Our results indicate that hRad54 can facilitate hRad51-promoted strand exchange through various degrees of mismatching. We propose that the main roles of hRad51 in homologous recombination is to initiate the homology recognition and strand-exchange steps and those of hRad54 are to promote efficient branch migration, bypass potential mismatches and facilitate long-range strand exchanges through branch migration of Holliday junctions.
Collapse
Affiliation(s)
- Damian E Urena
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | |
Collapse
|
160
|
Slatter T, Gifford-Garner J, Wiles A, Tan X, Chen YJ, MacFarlane M, Sullivan M, Royds J, Hung N. Pilocytic astrocytomas have telomere-associated promyelocytic leukemia bodies without alternatively lengthened telomeres. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2694-700. [PMID: 21037079 DOI: 10.2353/ajpath.2010.100468] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Telomere maintenance by either telomerase activity or the recombination-mediated alternative lengthening of telomeres (ALT) mechanism is a hallmark of cancer. Tumors that use ALT as their telomere maintenance mechanism are characterized by long telomeres of great heterogeneity in length and by specific nuclear structures of co-localized promyelocytic leukemia protein and telomere DNA, called ALT-associated promyelocytic leukemia bodies (APBs). Recent advances have revealed a direct role for APBs in telomere recombination in ALT-positive cells. In this study, we investigated the possibility that APBs could occur before the long 'alternatively' lengthened telomeres arise, particularly in low-grade tumors. We measured APBs, telomere length, and telomerase activity in 64 astrocytomas inclusive of grade 1-4 tumors. Almost all grade 1-3 tumors (93%) were APB-positive using published criteria. Grade 2-3 APB-positive tumors also had long telomeres and were confirmed as ALT positive. However, grade 1 tumors lacked long telomeres and were therefore classified as ALT negative, but positive for telomere-associated promyelocytic leukemia bodies (TPB). This is the first report of a TPB-positive but ALT-negative tumor, and suggests that low-grade tumors have the foundation for recombinational telomere repair, as in ALT. Further work is warranted to characterize the TPB-positive phenotype in other early malignancies, as well as to determine whether TPBs predispose to telomere maintenance by ALT.
Collapse
Affiliation(s)
- Tania Slatter
- Department of Pathology, Dunedin School of Medicine, PO Box 913, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Paeschke K, McDonald KR, Zakian VA. Telomeres: structures in need of unwinding. FEBS Lett 2010; 584:3760-72. [PMID: 20637196 PMCID: PMC2954063 DOI: 10.1016/j.febslet.2010.07.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/25/2010] [Accepted: 07/02/2010] [Indexed: 11/26/2022]
Abstract
Telomeres protect the ends of eukaryotic chromosomes from being recognized and processed as double strand breaks. In most organisms, telomeric DNA is highly repetitive with a high GC-content. Moreover, the G residues are concentrated in the strand running 3'-5' from the end of the chromosome towards its center. This G-rich strand is extended to form a 3' single-stranded tail that can form unusual secondary structures such as T-loops and G-quadruplex DNA. Both the duplex repeats and the single-stranded G-tail are assembled into stable protein-DNA complexes. The unique architecture, high GC content, and multi-protein association create particularly stable protein-DNA complexes that are a challenge for replication, recombination, and transcription. Helicases utilize the energy of nucleotide hydrolysis to unwind base paired nucleic acids and, in some cases, to displace proteins from them. The telomeric functions of helicases from the RecQ, Pifl, FANCJ, and DNA2 families are reviewed in this article. We summarize data showing that perturbation of their telomere activities can lead to telomere dysfunction and genome instability and in some cases human disease.
Collapse
Affiliation(s)
| | | | - Virginia A. Zakian
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
162
|
Wang CT, Ho CH, Hseu MJ, Chen CM. The subtelomeric region of the Arabidopsis thaliana chromosome IIIR contains potential genes and duplicated fragments from other chromosomes. PLANT MOLECULAR BIOLOGY 2010; 74:155-166. [PMID: 20652368 DOI: 10.1007/s11103-010-9664-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/05/2010] [Indexed: 05/29/2023]
Abstract
The subtelomere and a portion of the associated telomeric region (together named 3RTAS) of chromosome IIIR from the Arabidopsis thaliana ecotypes Columbia (Col) and Wassilewskija (Ws) were specifically amplified by polymerase chain reaction and subsequently cloned and sequenced. The centromere-proximal portion of 3RTAS from both ecotypes contained two newly identified potential genes, one encoding the chloroplast luminal 19-kDa protein precursor and the other encoding three potential alternatively spliced CCCH-type zinc finger proteins. The telomere-proximal portion of 3RTAS from the Col ecotype contained short duplicated fragments derived from chromosomes I, II, and III, and that from the Ws ecotype contained a duplicated fragment derived from chromosome V. Each duplicated fragment has diverged somewhat in sequence from that of the ectopic template. Small patches of homologous nucleotides were found within the flanking sequences of both the duplicated fragments and the corresponding ectopic template sequences. The structural characteristics of these duplicated fragments suggest that they are filler DNAs captured by non-homologous end joining during double-strand break repair. Our characterization of 3RTAS not only filled up a gap in the chromosome IIIR sequence of A. thaliana but also identified new genes with unknown functions.
Collapse
Affiliation(s)
- Chi-Ting Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
163
|
HAATI survivors replace canonical telomeres with blocks of generic heterochromatin. Nature 2010; 467:223-7. [DOI: 10.1038/nature09374] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 07/21/2010] [Indexed: 01/25/2023]
|
164
|
Survival and growth of yeast without telomere capping by Cdc13 in the absence of Sgs1, Exo1, and Rad9. PLoS Genet 2010; 6:e1001072. [PMID: 20808892 PMCID: PMC2924318 DOI: 10.1371/journal.pgen.1001072] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 07/15/2010] [Indexed: 11/19/2022] Open
Abstract
Maintenance of telomere capping is absolutely essential to the survival of eukaryotic cells. Telomere capping proteins, such as Cdc13 and POT1, are essential for the viability of budding yeast and mammalian cells, respectively. Here we identify, for the first time, three genetic modifications that allow budding yeast cells to survive without telomere capping by Cdc13. We found that simultaneous inactivation of Sgs1, Exo1, and Rad9, three DNA damage response (DDR) proteins, is sufficient to allow cell division in the absence of Cdc13. Quantitative amplification of ssDNA (QAOS) was used to show that the RecQ helicase Sgs1 plays an important role in the resection of uncapped telomeres, especially in the absence of checkpoint protein Rad9. Strikingly, simultaneous deletion of SGS1 and the nuclease EXO1, further reduces resection at uncapped telomeres and together with deletion of RAD9 permits cell survival without CDC13. Pulsed-field gel electrophoresis studies show that cdc13-1 rad9Δ sgs1Δ exo1Δ strains can maintain linear chromosomes despite the absence of telomere capping by Cdc13. However, with continued passage, the telomeres of such strains eventually become short and are maintained by recombination-based mechanisms. Remarkably, cdc13Δ rad9Δ sgs1Δ exo1Δ strains, lacking any Cdc13 gene product, are viable and can grow indefinitely. Our work has uncovered a critical role for RecQ helicases in limiting the division of cells with uncapped telomeres, and this may provide one explanation for increased tumorigenesis in human diseases associated with mutations of RecQ helicases. Our results reveal the plasticity of the telomere cap and indicate that the essential role of telomere capping is to counteract specific aspects of the DDR. The telomeric DNA of most eukaryotes consists of G-rich repetitive DNA with a 3′ single stranded DNA (ssDNA) overhang. In human and budding yeast (Saccharomyces cerevisiae) cells, the 3′ ssDNA overhang is bound by essential telomere capping proteins, POT1 and Cdc13 respectively. Maintenance of telomere capping is essential for the survival of cells. The RecQ helicases are a family of highly conserved proteins involved in the maintenance of telomere and genome stability. Loss of function of three RecQ helicases in humans results in cancer predisposition disorders Bloom's syndrome (BS), Werner's syndrome (WS), and Rothmund Thomson syndrome (RTS). Here we found that the RecQ helicase in budding yeast, Sgs1, plays a critical role in the resection of uncapped telomeres. Strikingly, simultaneous inactivation of Sgs1, the exonuclease Exo1, and checkpoint protein Rad9 allows budding yeast cells to divide in the absence of Cdc13, indicating that the essential role of the telomere cap is to counteract specific components of DNA damage response pathways. We speculate that, in certain genetic contexts, mammalian RecQ helicase also inhibit growth of cells with telomere capping defects, and a defect in this role could contribute to increased levels of tumorigenesis in BS, WS, and RTS patients.
Collapse
|
165
|
Kinsky S, Mihalikova A, Kramara J, Nosek J, Tomaska L. Lack of the catalytic subunit of telomerase leads to growth defects accompanied by structural changes at the chromosomal ends in Yarrowia lipolytica. Curr Genet 2010; 56:413-25. [PMID: 20549213 DOI: 10.1007/s00294-010-0310-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/26/2010] [Accepted: 05/28/2010] [Indexed: 12/01/2022]
Abstract
Comparative analysis of the telomeres of distantly related species has proven to be helpful for identifying novel components involved in telomere maintenance. We therefore initiated such a study in the nonconventional yeast Yarrowia lipolytica. Its genome encodes only a small fraction of the proteins that are typically associated with telomeres in other yeast models, indicating that its telomeres may employ noncanonical means for their stabilization and maintenance. In this report, we have measured the size of the telomeric fragments in wild-type strains, and characterized the catalytic subunit of telomerase (YlEst2p). In silico analysis of the YlEst2 amino acid sequence revealed the presence of domains typical for telomerase reverse transcriptases. Disruption of YlEST2 is not lethal, but results in retarded growth accompanied by a rapid loss of the telomeric sequences. This phenotype is associated with structural changes at the chromosomal ends in the ΔYlest2 mutants, likely the circularization of all six chromosomes. An apparent absence of several typical telomere-associated factors, as well as the presence of an efficient means of telomerase-independent telomere maintenance, qualify Y. lipolytica as an attractive model for the study of telomere maintenance mechanisms and a promising source of novel players in telomere dynamics.
Collapse
Affiliation(s)
- Slavomir Kinsky
- Department of Genetics, Comenius University, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
166
|
Eckert-Boulet N, Lisby M. Regulation of homologous recombination at telomeres in budding yeast. FEBS Lett 2010; 584:3696-702. [DOI: 10.1016/j.febslet.2010.05.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 05/14/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
|
167
|
An mre11 mutation that promotes telomere recombination and an efficient bypass of senescence. Genetics 2010; 185:761-70. [PMID: 20421597 DOI: 10.1534/genetics.110.117598] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Preventing the formation of dysfunctional telomeres is essential for genomic stability. In most organisms, the ribo-nucleoprotein reverse transcriptase telomerase is responsible for telomere GT-strand elongation. However, in telomerase-negative cells, low-frequency recombination mechanisms can avert lethality by elongating critically short telomeres. This study focuses on the involvement of the budding yeast Mre11 in telomere recombination and homeostasis. We have identified a novel allele of MRE11, mre11-A470T, that, in telomerase-positive cells, confers a semidominant decrease in telomere size and a recessive defect in telomere healing. In addition, mutant cells lack normal telomere size homeostasis. Telomerase-negative mre11-A470T cells display a Rad51-dependent bypass of replicative senescence via induction of a highly efficient type I-related recombination pathway termed type IA. The type IA pathway involves an amplification of subtelomeric Y' elements, coupled with elongated and more heterogeneous telomere tracts relative to the short telomere size of type I survivors. The data have led us to propose the involvement of break-induced replication in telomere expansion. The differing phenotypes elicited by the mre11-A470T mutants in telomerase-positive and telomerase-negative cells have also led us to speculate that the telomere end structure may be modified differentially in mre11-A470T cells, directing the telomere into specific pathways.
Collapse
|
168
|
Buonomo SBC. Heterochromatin DNA replication and Rif1. Exp Cell Res 2010; 316:1907-13. [PMID: 20347809 DOI: 10.1016/j.yexcr.2010.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/16/2010] [Accepted: 03/17/2010] [Indexed: 10/19/2022]
Abstract
Constitutive heterochromatin is essential for chromosome maintenance in all eukaryotes. However, the repetitive nature of the underlying DNA, the presence of very stable protein-DNA complexes and the highly compacted nature of this type of chromatin represent a challenge for the DNA replication machinery. Data collected from different model organisms suggest that at least some of the components of the DNA replication checkpoint could be essential for ensuring the completion of DNA replication in the context of heterochromatin. I review and discuss the literature that directly or indirectly contributes to the formulation of this hypothesis. In particular, I focus my attention on Rif1, a newly discovered member of the DNA replication checkpoint. Recent data generated in mammalian cells highlight the spatial and temporal relation between Rif1, pericentromeric heterochromatin and S-phase. I review these recent and the previous data coming from studies performed in yeast in order to highlight the possible evolutionary conserved links and propose a molecular model for Rif1 role in heterochromatin replication.
Collapse
Affiliation(s)
- S B C Buonomo
- EMBL Mouse Biology Unit, Via Ramarini 32, Monteorotondo, Rome, Italy.
| |
Collapse
|
169
|
|
170
|
Chavez A, George V, Agrawal V, Johnson FB. Sumoylation and the structural maintenance of chromosomes (Smc) 5/6 complex slow senescence through recombination intermediate resolution. J Biol Chem 2010; 285:11922-30. [PMID: 20159973 DOI: 10.1074/jbc.m109.041277] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Telomeres are repetitive nucleoprotein structures that cap the ends of chromosomes. Without telomerase, telomeres shorten with replication and eventually signal cell cycle arrest (cell senescence). Homologous recombination (HR)-based mechanisms slow senescence, and distinct HR mechanisms support the growth of the rare survivors of senescence. Here, we report novel roles for the post-translational modification of small ubiquitin-like modifier (SUMO) in regulating the rate of senescence in Saccharomyces cerevisiae telomerase mutants. We identify Mms21 as the relevant SUMO E3 ligase and demonstrate that cells lacking Mms21-dependent sumoylation accumulate HR intermediates selectively at telomeres during senescence. One target of Mms21-dependent sumoylation is the cohesin- and condensin-related Smc5-Smc6 complex (Smc5/6). We show that hypomorphic smc5 or smc6 alleles exhibit phenotypes similar to mms21 sumoylation-deficient mutants with regard to senescence and the accumulation of unresolved HR intermediates. Further, we provide evidence that Mms21 and Smc5/6 prevent aberrant recombination between sister telomeres and also globally facilitate resolution of sister chromatid HR intermediates.
Collapse
Affiliation(s)
- Alejandro Chavez
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
171
|
Buonomo SBC, Wu Y, Ferguson D, de Lange T. Mammalian Rif1 contributes to replication stress survival and homology-directed repair. ACTA ACUST UNITED AC 2010; 187:385-98. [PMID: 19948482 PMCID: PMC2779251 DOI: 10.1083/jcb.200902039] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rif1, originally recognized for its role at telomeres in budding yeast, has been implicated in a wide variety of cellular processes in mammals, including pluripotency of stem cells, response to double-strand breaks, and breast cancer development. As the molecular function of Rif1 is not known, we examined the consequences of Rif1 deficiency in mouse cells. Rif1 deficiency leads to failure in embryonic development, and conditional deletion of Rif1 from mouse embryo fibroblasts affects S-phase progression, rendering cells hypersensitive to replication poisons. Rif1 deficiency does not alter the activation of the DNA replication checkpoint but rather affects the execution of repair. RNA interference to human Rif1 decreases the efficiency of homology-directed repair (HDR), and Rif1 deficiency results in aberrant aggregates of the HDR factor Rad51. Consistent with a role in S-phase progression, Rif1 accumulates at stalled replication forks, preferentially around pericentromeric heterochromatin. Collectively, these findings reveal a function for Rif1 in the repair of stalled forks by facilitating HDR.
Collapse
Affiliation(s)
- Sara B C Buonomo
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
172
|
Bhattacharyya S, Sandy A, Groden J. Unwinding protein complexes in ALTernative telomere maintenance. J Cell Biochem 2010; 109:7-15. [PMID: 19911388 PMCID: PMC2892175 DOI: 10.1002/jcb.22388] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Telomeres are composed of specialized chromatin that includes DNA repair/recombination proteins, telomere DNA-binding proteins and a number of three dimensional nucleic acid structures including G-quartets and D-loops. A number of studies suggest that the BLM and WRN recQ-like helicases play important roles in recombination-mediated mechanisms of telomere elongation or Alternative Lengthening of Telomeres (ALT), processes that maintain/elongate telomeres in the absence of telomerase. BLM and WRN localize within ALT-associated nuclear bodies in telomerase-negative immortalized cell lines and interact with the telomere-specific proteins POT1, TRF1 and TRF2. Helicase activity is modulated by these interactions. BLM functions in DNA double-strand break repair processes such as non-homologous end joining, homologous recombination-mediated repair, resolution of stalled replication forks and synthesis-dependent strand annealing, although its precise functions at the telomeres are speculative. WRN also functions in DNA replication, recombination and repair, and in addition to its helicase domain, includes an exonuclease domain not found in other recQ-like helicases. The biochemical properties of BLM and WRN are, therefore, important in biological processes other than DNA replication, recombination and repair. In this review, we discuss some previous and recent findings of human rec-Q-like helicases and their role in telomere elongation during ALT processes.
Collapse
Affiliation(s)
- Saumitri Bhattacharyya
- Department of Molecular Virology, Immunology & Medical Genetics, The Ohio State University College of Medicine, 460 W 12th Avenue, 986 Biomedical Research Tower, Columbus, Ohio 43210-2207
| | - April Sandy
- Department of Molecular Virology, Immunology & Medical Genetics, The Ohio State University College of Medicine, 460 W 12th Avenue, 986 Biomedical Research Tower, Columbus, Ohio 43210-2207
| | - Joanna Groden
- Department of Molecular Virology, Immunology & Medical Genetics, The Ohio State University College of Medicine, 460 W 12th Avenue, 986 Biomedical Research Tower, Columbus, Ohio 43210-2207
| |
Collapse
|
173
|
Olofsson P, Bertuch AA. Modeling growth and telomere dynamics in Saccharomyces cerevisiae. J Theor Biol 2009; 263:353-9. [PMID: 20018194 DOI: 10.1016/j.jtbi.2009.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/12/2009] [Accepted: 12/02/2009] [Indexed: 11/29/2022]
Abstract
A general branching process is proposed to model a population of cells of the yeast Saccharomyces cerevisiae following loss of telomerase. Previously published experimental data indicate that a population of telomerase-deficient cells regain exponential growth after a period of slowing due to critical telomere shortening. The explanation for this phenomenon is that some cells engage telomerase-independent pathways to maintain telomeres that allow them to become "survivors." Our model takes into account random variation in individual cell cycle times, telomere length, finite replicative lifespan of mother cells, and survivorship. We identify and estimate crucial parameters such as the probability of an individual cell becoming a survivor, and compare our model predictions to experimental data.
Collapse
Affiliation(s)
- Peter Olofsson
- Trinity University, Mathematics Department, One Trinity Place, San Antonio, TX 78212, USA.
| | | |
Collapse
|
174
|
Lin YH, Chang CC, Wong CW, Teng SC. Recruitment of Rad51 and Rad52 to short telomeres triggers a Mec1-mediated hypersensitivity to double-stranded DNA breaks in senescent budding yeast. PLoS One 2009; 4:e8224. [PMID: 20011546 PMCID: PMC2790616 DOI: 10.1371/journal.pone.0008224] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 11/16/2009] [Indexed: 01/05/2023] Open
Abstract
Telomere maintenance is required for chromosome stability, and telomeres are typically replicated by the action of telomerase. In both mammalian tumor and yeast cells that lack telomerase, telomeres are maintained by an alternative recombination mechanism. Here we demonstrated that the budding yeast Saccharomyces cerevisiae type I survivors derived from telomerase-deficient cells were hypersensitive to DNA damaging agents. Assays to track telomere lengths and drug sensitivity of telomerase-deficient cells from spore colonies to survivors suggested a correlation between telomere shortening and bleomycin sensitivity. Our genetic studies demonstrated that this sensitivity depends on Mec1, which signals checkpoint activation, leading to prolonged cell-cycle arrest in senescent budding yeasts. Moreover, we also observed that when cells equipped with short telomeres, recruitments of homologous recombination proteins, Rad51 and Rad52, were reduced at an HO-endonuclease-catalyzed double-strand break (DSB), while their associations were increased at chromosome ends. These results suggested that the sensitive phenotype may be attributed to the sequestration of repair proteins to compromised telomeres, thus limiting the repair capacity at bona fide DSB sites.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Ching Chang
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chui-Wei Wong
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
175
|
Deletion of Ogg1 DNA glycosylase results in telomere base damage and length alteration in yeast. EMBO J 2009; 29:398-409. [PMID: 19942858 DOI: 10.1038/emboj.2009.355] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 11/04/2009] [Indexed: 12/20/2022] Open
Abstract
Telomeres consist of short guanine-rich repeats. Guanine can be oxidized to 8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG). 8-oxoguanine DNA glycosylase (Ogg1) repairs these oxidative guanine lesions through the base excision repair (BER) pathway. Here we show that in Saccharomyces cerevisiae ablation of Ogg1p leads to an increase in oxidized guanine level in telomeric DNA. The ogg1 deletion (ogg1Delta) strain shows telomere lengthening that is dependent on telomerase and/or Rad52p-mediated homologous recombination. 8-oxoG in telomeric repeats attenuates the binding of the telomere binding protein, Rap1p, to telomeric DNA in vitro. Moreover, the amount of telomere-bound Rap1p and Rif2p is reduced in ogg1Delta strain. These results suggest that oxidized guanines may perturb telomere length equilibrium by attenuating telomere protein complex to function in telomeres, which in turn impedes their regulation of pathways engaged in telomere length maintenance. We propose that Ogg1p is critical in maintaining telomere length homoeostasis through telomere guanine damage repair, and that interfering with telomere length homoeostasis may be one of the mechanism(s) by which oxidative DNA damage inflicts the genome.
Collapse
|
176
|
Lu CY, Tsai CH, Brill SJ, Teng SC. Sumoylation of the BLM ortholog, Sgs1, promotes telomere-telomere recombination in budding yeast. Nucleic Acids Res 2009; 38:488-98. [PMID: 19906698 PMCID: PMC2810998 DOI: 10.1093/nar/gkp1008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BLM and WRN are members of the RecQ family of DNA helicases, and in humans their loss is associated with syndromes characterized by genome instability and cancer predisposition. As the only RecQ DNA helicase in the yeast Saccharomyces cerevisiae, Sgs1 is known to safeguard genome integrity through its role in DNA recombination. Interestingly, WRN, BLM and Sgs1 are all known to be modified by the small ubiquitin-related modifier (SUMO), although the significance of this posttranslational modification remains elusive. Here, we demonstrate that Sgs1 is specifically sumoylated under the stress of DNA double strand breaks. The major SUMO attachment site in Sgs1 is lysine 621, which lies between the Top3 binding domain and the DNA helicase domain. Surprisingly, sumoylation of K621 was found to be uniquely required for Sgs1's role in telomere-telomere recombination. In contrast, sumoylation was dispensable for Sgs1's roles in DNA damage tolerance, supppression of direct repeat and rDNA recombination, and promotion of top3Delta slow growth. Our results demonstrate that although modification by SUMO is a conserved feature of RecQ family DNA helicases, the major sites of modification are located on different domains of the protein in different organisms. We suggest that sumoylation of different domains of RecQ DNA helicases from different organisms contributes to conserved roles in regulating telomeric recombination.
Collapse
Affiliation(s)
- Chia-Yin Lu
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
177
|
Kozak ML, Chavez A, Dang W, Berger SL, Ashok A, Guo X, Johnson FB. Inactivation of the Sas2 histone acetyltransferase delays senescence driven by telomere dysfunction. EMBO J 2009; 29:158-70. [PMID: 19875981 DOI: 10.1038/emboj.2009.314] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 09/24/2009] [Indexed: 01/28/2023] Open
Abstract
Changes in telomere chromatin have been linked to cellular senescence, but the underlying mechanisms and impact on lifespan are unclear. We found that inactivation of the Sas2 histone acetyltransferase delays senescence in Saccharomyces cerevisiae telomerase (tlc1) mutants through a homologous recombination-dependent mechanism. Sas2 acetylates histone H4 lysine 16 (H4K16), and telomere shortening in tlc1 mutants was accompanied by a selective and Sas2-dependent increase in subtelomeric H4K16 acetylation. Further, mutation of H4 lysine 16 to arginine, which mimics constitutively deacetylated H4K16, delayed senescence and was epistatic to sas2 deletion, indicating that deacetylated H4K16 mediates the delay caused by sas2 deletion. Sas2 normally prevents the Sir2/3/4 heterochromatin complex from leaving the telomere and spreading to internal euchromatic loci. Senescence was delayed by sir3 deletion, but not sir2 deletion, indicating that senescence delay is mediated by release of Sir3 specifically from the telomere repeats. In contrast, sir4 deletion sped senescence and blocked the delay conferred by sas2 or sir3 deletion. We thus show that manipulation of telomere chromatin modulates senescence caused by telomere shortening.
Collapse
Affiliation(s)
- Marina L Kozak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6100, USA
| | | | | | | | | | | | | |
Collapse
|
178
|
Large telomerase RNA, telomere length heterogeneity and escape from senescence in Candida glabrata. FEBS Lett 2009; 583:3605-10. [PMID: 19840797 DOI: 10.1016/j.febslet.2009.10.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/10/2009] [Accepted: 10/13/2009] [Indexed: 11/23/2022]
Abstract
Telomerase, the key enzyme essential for the maintenance of eukaryotic chromosome ends, contains a reverse transcriptase and an RNA that provides the template for the synthesis of telomeric repeats. Here, we characterize the telomerase subunits in the hemiascomycete yeast Candida glabrata. We propose a secondary structure model for the telomerase RNA that is the largest described to date. Telomerase deletion mutants show a progressive shortening of telomeres and a modest loss of viability. Frequent post-senescence survivors emerge that possess long telomeric repeat tracts. We suggest that the high telomere length heterogeneity accounts for this distinct senescence phenotype.
Collapse
|
179
|
Tomaska L, Nosek J, Kramara J, Griffith JD. Telomeric circles: universal players in telomere maintenance? Nat Struct Mol Biol 2009; 16:1010-5. [PMID: 19809492 PMCID: PMC4041010 DOI: 10.1038/nsmb.1660] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To maintain linear DNA genomes, organisms have evolved numerous means of solving problems associated with DNA ends (telomeres), including telomere-associated retrotransposons, palindromes, hairpins, covalently bound proteins and the addition of arrays of simple DNA repeats. Telomeric arrays can be maintained through various mechanisms such as telomerase activity or recombination. The recombination-dependent maintenance pathways may include telomeric loops (t-loops) and telomeric circles (t-circles). The potential involvement of t-circles in telomere maintenance was first proposed for linear mitochondrial genomes. The occurrence of t-circles in a wide range of organisms, spanning yeasts, plants and animals, suggests the involvement of t-circles in many phenomena including the alternative-lengthening of telomeres (ALT) pathway and telomere rapid deletion (TRD). In this Perspective, we summarize these findings and discuss how t-circles may be related to t-loops and how t-circles may have initiated the evolution of telomeres.
Collapse
Affiliation(s)
- Lubomir Tomaska
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia.
| | | | | | | |
Collapse
|
180
|
Liti G, Haricharan S, Cubillos FA, Tierney AL, Sharp S, Bertuch AA, Parts L, Bailes E, Louis EJ. Segregating YKU80 and TLC1 alleles underlying natural variation in telomere properties in wild yeast. PLoS Genet 2009; 5:e1000659. [PMID: 19763176 PMCID: PMC2734985 DOI: 10.1371/journal.pgen.1000659] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 08/20/2009] [Indexed: 11/19/2022] Open
Abstract
In yeast, as in humans, telomere length varies among individuals and is controlled by multiple loci. In a quest to define the extent of variation in telomere length, we screened 112 wild-type Saccharomyces sensu stricto isolates. We found extensive telomere length variation in S. paradoxus isolates. This phenotype correlated with their geographic origin: European strains were observed to have extremely short telomeres (<150 bp), whereas American isolates had telomeres approximately three times as long (>400 bp). Insertions of a URA3 gene near telomeres allowed accurate analysis of individual telomere lengths and telomere position effect (TPE). Crossing the American and European strains resulted in F1 spores with a continuum of telomere lengths consistent with what would be predicted if many quantitative trait loci (QTLs) were involved in length maintenance. Variation in TPE is similarly quantitative but only weakly correlated with telomere length. Genotyping F1 segregants indicated several QTLs associated with telomere length and silencing variation. These QTLs include likely candidate genes but also map to regions where there are no known genes involved in telomeric properties. We detected transgressive segregation for both phenotypes. We validated by reciprocal hemizygosity that YKU80 and TLC1 are telomere-length QTLs in the two S. paradoxus subpopulations. Furthermore, we propose that sequence divergence within the Ku heterodimer generates negative epistasis within one of the allelic combinations (American-YKU70 and European-YKU80) resulting in very short telomeres. Telomere length is a complex trait that varies among individuals. Its regulation is critical to the process of aging, and altered length control can result in either senescence or immortalization. We detected extreme variation between different subpopulations of the wild yeast S. paradoxus, the closest relative to S. cerevisiae. By tagging individual telomeric ends in these two groups, we show that regardless of the total number of telomeric repeats, the critical length at which any telomere is replenished remains conserved. To detect the quantitative trait loci (QTLs) behind the length variation, we used the two sub-populations with the most polar distribution to generate progeny and perform linkage analysis. Further, we validated that naturally occurring sequence variations in YKU80 and TLC1, two genes previously shown to be important for telomere length maintenance, can explain part of the variation. We also identified other loci that influence both telomere length and gene silencing. Further investigation will provide more insights into the underlying genetic mechanism behind normal telomere regulation, potentially relevant in aging and aging-related disease such as cancer.
Collapse
Affiliation(s)
- Gianni Liti
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- * E-mail: (GL); (EJL)
| | - Svasti Haricharan
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Baylor College of Medicine, Houston, Texas, United States of America
| | - Francisco A. Cubillos
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Anna L. Tierney
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Sarah Sharp
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Alison A. Bertuch
- Baylor College of Medicine, Houston, Texas, United States of America
| | - Leopold Parts
- The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Elizabeth Bailes
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Edward J. Louis
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- * E-mail: (GL); (EJL)
| |
Collapse
|
181
|
Stabilization of dicentric translocations through secondary rearrangements mediated by multiple mechanisms in S. cerevisiae. PLoS One 2009; 4:e6389. [PMID: 19636429 PMCID: PMC2712687 DOI: 10.1371/journal.pone.0006389] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 06/25/2009] [Indexed: 02/05/2023] Open
Abstract
Background The gross chromosomal rearrangements (GCRs) observed in S. cerevisiae mutants with increased rates of accumulating GCRs include predicted dicentric GCRs such as translocations, chromosome fusions and isoduplications. These GCRs resemble the genome rearrangements found as mutations underlying inherited diseases as well as in the karyotypes of many cancers exhibiting ongoing genome instability Methodology/Principal Findings The structures of predicted dicentric GCRs were analyzed using multiple strategies including array-comparative genomic hybridization, pulse field gel electrophoresis, PCR amplification of predicted breakpoints and sequencing. The dicentric GCRs were found to be unstable and to have undergone secondary rearrangements to produce stable monocentric GCRs. The types of secondary rearrangements observed included: non-homologous end joining (NHEJ)-dependent intramolecular deletion of centromeres; chromosome breakage followed by NHEJ-mediated circularization or broken-end fusion to another chromosome telomere; and homologous recombination (HR)-dependent non-reciprocal translocations apparently mediated by break-induced replication. A number of these GCRs appeared to have undergone multiple bridge-fusion-breakage cycles. We also observed examples of chromosomes with extensive ongoing end decay in mec1 tlc1 mutants, suggesting that Mec1 protects chromosome ends from degradation and contributes to telomere maintenance by HR. Conclusions/Significance HR between repeated sequences resulting in secondary rearrangements was the most prevalent pathway for resolution of dicentric GCRs regardless of the structure of the initial dicentric GCR, although at least three other resolution mechanisms were observed. The resolution of dicentric GCRs to stable rearranged chromosomes could in part account for the complex karyotypes seen in some cancers.
Collapse
|
182
|
Abdallah P, Luciano P, Runge KW, Lisby M, Géli V, Gilson E, Teixeira MT. A two-step model for senescence triggered by a single critically short telomere. Nat Cell Biol 2009; 11:988-93. [PMID: 19597486 DOI: 10.1038/ncb1911] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 04/29/2009] [Indexed: 12/14/2022]
Abstract
Telomeres protect chromosome ends from fusion and degradation. In the absence of a specific telomere elongation mechanism, their DNA shortens progressively with every round of replication, leading to replicative senescence. Here, we show that telomerase-deficient cells bearing a single, very short telomere senesce earlier, demonstrating that the length of the shortest telomere is a major determinant of the onset of senescence. We further show that Mec1p-ATR specifically recognizes the single, very short telomere causing the accelerated senescence. Strikingly, before entering senescence, cells divide for several generations despite complete erosion of their shortened telomeres. This pre-senescence growth requires RAD52 (radiation sensitive) and MMS1 (methyl methane sulfonate sensitive), and there is no evidence for major inter-telomeric recombination. We propose that, in the absence of telomerase, a very short telomere is first maintained in a pre-signalling state by a RAD52-MMS1-dependent pathway and then switches to a signalling state leading to senescence through a Mec1p-dependent checkpoint.
Collapse
Affiliation(s)
- Pauline Abdallah
- LBMC, UMR 5239, CNRS- ENS Lyon, Université Lyon 1, Ecole Normale Supérieure, 46 allée d'Italie, F-69364 Lyon Cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
183
|
Lebel C, Rosonina E, Sealey DCF, Pryde F, Lydall D, Maringele L, Harrington LA. Telomere maintenance and survival in saccharomyces cerevisiae in the absence of telomerase and RAD52. Genetics 2009; 182:671-84. [PMID: 19380905 PMCID: PMC2710150 DOI: 10.1534/genetics.109.102939] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 04/15/2009] [Indexed: 11/18/2022] Open
Abstract
Telomeres are essential features of linear genomes that are crucial for chromosome stability. Telomeric DNA is usually replenished by telomerase. Deletion of genes encoding telomerase components leads to telomere attrition with each cycle of DNA replication, eventually causing cell senescence or death. In the Saccharomyces cerevisiae strain W303, telomerase-null populations bypass senescence and, unless EXO1 is also deleted, this survival is RAD52 dependent. Unexpectedly, we found that the S. cerevisiae strain S288C could survive the removal of RAD52 and telomerase at a low frequency without additional gene deletions. These RAD52-independent survivors were propagated stably and exhibited a telomere organization typical of recombination between telomeric DNA tracts, and in diploids behaved as a multigenic trait. The polymerase-delta subunit Pol32 was dispensable for the maintenance of RAD52-independent survivors. The incidence of this rare escape was not affected by deletion of other genes necessary for RAD52-dependent survival, but correlated with initial telomere length. If W303 strains lacking telomerase and RAD52 first underwent telomere elongation, rare colonies could then bypass senescence. We suggest that longer telomeres provide a more proficient substrate for a novel telomere maintenance mechanism that does not rely on telomerase, RAD52, or POL32.
Collapse
Affiliation(s)
- Catherine Lebel
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland EH9 3JR
| | | | | | | | | | | | | |
Collapse
|
184
|
Chen XF, Meng FL, Zhou JQ. Telomere recombination accelerates cellular aging in Saccharomyces cerevisiae. PLoS Genet 2009; 5:e1000535. [PMID: 19557187 PMCID: PMC2694356 DOI: 10.1371/journal.pgen.1000535] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 05/22/2009] [Indexed: 12/19/2022] Open
Abstract
Telomeres are nucleoprotein structures located at the linear ends of eukaryotic chromosomes. Telomere integrity is required for cell proliferation and survival. Although the vast majority of eukaryotic species use telomerase as a primary means for telomere maintenance, a few species can use recombination or retrotransposon-mediated maintenance pathways. Since Saccharomyces cerevisiae can use both telomerase and recombination to replicate telomeres, budding yeast provides a useful system with which to examine the evolutionary advantages of telomerase and recombination in preserving an organism or cell under natural selection. In this study, we examined the life span in telomerase-null, post-senescent type II survivors that have employed homologous recombination to replicate their telomeres. Type II recombination survivors stably maintained chromosomal integrity but exhibited a significantly reduced replicative life span. Normal patterns of cell morphology at the end of a replicative life span and aging-dependent sterility were observed in telomerase-null type II survivors, suggesting the type II survivors aged prematurely in a manner that is phenotypically consistent with that of wild-type senescent cells. The shortened life span of type II survivors was extended by calorie restriction or TOR1 deletion, but not by Fob1p inactivation or Sir2p over-expression. Intriguingly, rDNA recombination was decreased in type II survivors, indicating that the premature aging of type II survivors was not caused by an increase in extra-chromosomal rDNA circle accumulation. Reintroduction of telomerase activity immediately restored the replicative life span of type II survivors despite their heterogeneous telomeres. These results suggest that telomere recombination accelerates cellular aging in telomerase-null type II survivors and that telomerase is likely a superior telomere maintenance pathway in sustaining yeast replicative life span. Telomeres are the specialized structures at the ends of eukaryotic linear chromosomes. The simple guanine-rich DNA repeats at telomeres and their associated proteins are important for chromosome stability. Most eukaryotic species have evolved an enzyme named telomerase to replicate their telomeric DNA. Telomerase usually contains a protein catalytic subunit and a RNA template subunit. A few eukaryotic species can use either telomere recombination or retrotransposon-mediated transposition to accomplish telomere elongation. Interestingly, the baker's yeast Saccharomyces cerevisiae can use both telomerase and recombination to replicate telomeres. In this study, we utilize this unique eukaryotic model system to compare the efficiency of these two mechanisms in the maintenance of cellular function and life span. Telomerase-null cells that used recombination to elongate telomeres were able to maintain relatively stable chromosomes; however, they exhibited a shortened replicative life span which may represent a novel aging pathway. Reintroduction of telomerase inhibited telomere recombination and restored the replicative life span of these cells, implying that telomerase is superior to telomere recombination in the regulation of yeast replicative life span.
Collapse
Affiliation(s)
- Xiao-Fen Chen
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Fei-Long Meng
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- * E-mail:
| |
Collapse
|
185
|
|
186
|
Rehmeyer CJ, Li W, Kusaba M, Farman ML. The telomere-linked helicase (TLH) gene family in Magnaporthe oryzae: revised gene structure reveals a novel TLH-specific protein motif. Curr Genet 2009; 55:253-62. [PMID: 19360408 DOI: 10.1007/s00294-009-0240-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 03/04/2009] [Accepted: 03/10/2009] [Indexed: 11/26/2022]
Abstract
Telomere-linked RecQ helicase (TLH) genes have been identified in several fungi, where they occur as small gene families with each member copy residing within ~10 kb of a telomere. Here we describe the characterization of all 11 TLH gene copies in the reference strain of the fungus Magnaporthe oryzae. A consensus gene prediction revealed that the previously reported TLH1 gene is actually a mutated copy, and the full-length gene is almost two times longer. Only four full-length TLH genes were present in the strain that was analyzed, with the remaining copies containing premature stops caused by point mutations, indels, transposon insertions, and a telomere truncation. Interestingly, all of the TLH gene copies possessed numerous mutations indicative of the action of the repeat-induced point mutation process. However, there was evidence of purifying selection indicating maintenance of gene function. Alignment of full-length proteins from M. oryzae, Schizosaccharomyces pombe and M. anisopliae revealed the presence of a novel, highly conserved protein motif which suggests that the telomere-linked helicases have different functions and/or substrates to the RecQ helicases encoded by "internal" genes.
Collapse
Affiliation(s)
- Cathryn J Rehmeyer
- Department of Plant Pathology, University of Kentucky, Lexington, 40546, USA.
| | | | | | | |
Collapse
|
187
|
Tseng SF, Shen ZJ, Tsai HJ, Lin YH, Teng SC. Rapid Cdc13 turnover and telomere length homeostasis are controlled by Cdk1-mediated phosphorylation of Cdc13. Nucleic Acids Res 2009; 37:3602-11. [PMID: 19359360 PMCID: PMC2699520 DOI: 10.1093/nar/gkp235] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Budding yeast telomerase is mainly activated by Tel1/Mec1 (yeast ATM/ATR) on Cdc13 from late S to G2 phase of the cell cycle. Here, we demonstrated that the telomerase-recruitment domain of Cdc13 is also phosphorylated by Cdk1 at the same cell cycle stage as the Tel1/Mec1-dependent regulation. Phosphor-specific gel analysis demonstrated that Cdk1 phosphorylates residues 308 and 336 of Cdc13. The residue T308 of Cdc13 is critical for efficient Mec1-mediated S306 phosphorylation in vitro. Phenotypic analysis in vivo revealed that the mutations in the Cdc13 S/TP motifs phosphorylated by Cdk1 caused cell cycle delay and telomere shortening and these phenotypes could be partially restored by the replacement with a negative charge residue. In the absence of Ku or Tel1, Cdk1-mediated phosphorylation of Cdc13 showed no effect on telomere length maintenance. Moreover, this Cdk1-mediated phosphorylation was required to promote the regular turnover of Cdc13. Together these results demonstrate that Cdk1 phosphorylates the telomerase recruitment domain of Cdc13, thereby preserves optimal function and expression level of Cdc13 for precise telomere replication and cell cycle progression.
Collapse
Affiliation(s)
- Shun-Fu Tseng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
188
|
A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 2009; 5:e1000327. [PMID: 19180184 PMCID: PMC2621351 DOI: 10.1371/journal.pgen.1000327] [Citation(s) in RCA: 635] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Chromosome structural changes with nonrecurrent endpoints associated with genomic disorders offer windows into the mechanism of origin of copy number variation (CNV). A recent report of nonrecurrent duplications associated with Pelizaeus-Merzbacher disease identified three distinctive characteristics. First, the majority of events can be seen to be complex, showing discontinuous duplications mixed with deletions, inverted duplications, and triplications. Second, junctions at endpoints show microhomology of 2–5 base pairs (bp). Third, endpoints occur near pre-existing low copy repeats (LCRs). Using these observations and evidence from DNA repair in other organisms, we derive a model of microhomology-mediated break-induced replication (MMBIR) for the origin of CNV and, ultimately, of LCRs. We propose that breakage of replication forks in stressed cells that are deficient in homologous recombination induces an aberrant repair process with features of break-induced replication (BIR). Under these circumstances, single-strand 3′ tails from broken replication forks will anneal with microhomology on any single-stranded DNA nearby, priming low-processivity polymerization with multiple template switches generating complex rearrangements, and eventual re-establishment of processive replication.
Collapse
|
189
|
Morrish TA, Greider CW. Short telomeres initiate telomere recombination in primary and tumor cells. PLoS Genet 2009; 5:e1000357. [PMID: 19180191 PMCID: PMC2627939 DOI: 10.1371/journal.pgen.1000357] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 12/23/2008] [Indexed: 01/24/2023] Open
Abstract
Human tumors that lack telomerase maintain telomeres by alternative lengthening mechanisms. Tumors can also form in telomerase-deficient mice; however, the genetic mechanism responsible for tumor growth without telomerase is unknown. In yeast, several different recombination pathways maintain telomeres in the absence of telomerase-some result in telomere maintenance with minimal effects on telomere length. To examine non-telomerase mechanisms for telomere maintenance in mammalian cells, we used primary cells and lymphomas from telomerase-deficient mice (mTR-/- and Emumyc+mTR-/-) and CAST/EiJ mouse embryonic fibroblast cells. These cells were analyzed using pq-ratio analysis, telomere length distribution outliers, CO-FISH, Q-FISH, and multicolor FISH to detect subtelomeric recombination. Telomere length was maintained during long-term growth in vivo and in vitro. Long telomeres, characteristic of human ALT cells, were not observed in either late passage or mTR-/- tumor cells; instead, we observed only minimal changes in telomere length. Telomere length variation and subtelomeric recombination were frequent in cells with short telomeres, indicating that length maintenance is due to telomeric recombination. We also detected telomere length changes in primary mTR-/- cells that had short telomeres. Using mouse mTR+/- and human hTERT+/- primary cells with short telomeres, we found frequent length changes indicative of recombination. We conclude that telomere maintenance by non-telomerase mechanisms, including recombination, occurs in primary cells and is initiated by short telomeres, even in the presence of telomerase. Most intriguing, our data indicate that some non-telomerase telomere maintenance mechanisms occur without a significant increase in telomere length.
Collapse
Affiliation(s)
- Tammy A. Morrish
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Carol W. Greider
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
190
|
Bisht KK, Arora S, Ahmed S, Singh J. Role of heterochromatin in suppressing subtelomeric recombination in fission yeast. Yeast 2009; 25:537-48. [PMID: 18615848 DOI: 10.1002/yea.1603] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Telomere length is regulated by a complex interplay of several factors, including telomerase, telomere-binding proteins, DNA replication machinery and recombination. In yeast, DNA polymerase alpha is required for de novo synthesis of telomeres from broken ends of DNA, and it also suppresses the elongation of normal telomeric repeats. Heterochromatin proteins Clr1-Clr4 and Swi6 and DNA polalpha organize heterochromatin structure at mating type, centromere, rDNA and telomere regions that are refractory to transcription and recombination in Schizosaccharomyces pombe. Here, we have addressed the role of heterochromatin structure in regulating the integrity and organization of telomeric regions. Here, we show that subtelomeric duplication and rearrangements occur in polalpha and heterochromatin mutants and find that some of the putative duplication events are dependent on the Rad50 pathway. Thus, our study shows a role of heterochromatin in maintaining the integrity of the subtelomeric regions by suppressing their recombination in Sz. pombe.
Collapse
|
191
|
Telomerase- and Rad52-independent immortalization of budding yeast by an inherited-long-telomere pathway of telomeric repeat amplification. Mol Cell Biol 2008; 29:965-85. [PMID: 19047370 DOI: 10.1128/mcb.00817-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the absence of telomerase, telomeres erode, provoking accumulation of DNA damage and death by senescence. Rare survivors arise, however, due to Rad52-based amplification of telomeric sequences by homologous recombination. The present study reveals that in budding yeast cells, postsenescence survival relying on amplification of the TG(1-3) telomeric repeats can take place in the absence of Rad52 when overelongated telomeres are present during senescence (hence its designation ILT, for inherited-long-telomere, pathway). By growth competition, the Rad52-independent pathway was almost as efficient as the Rad51- and Rad52-dependent pathway that predominates in telomerase-negative cells. The ILT pathway could also be triggered by increased telomerase accessibility before telomerase removal, combined with loss of telomere protection, indicating that prior accumulation of recombination proteins was not required. The ILT pathway was dependent on Rad50 and Mre11 but not on the Rad51 recombinase and Rad59, thus making it distinct from both the type II (budding yeast ALT [alternative lengthening of telomeres]) and type I pathways amplifying the TG(1-3) repeats and subtelomeric sequences, respectively. The ILT pathway also required the Rad1 endonuclease and Elg1, a replication factor C (RFC)-like complex subunit, but not Rad24 or Ctf18 (two subunits of two other RFC-like complexes), the Dnl4 ligase, Yku70, or Nej1. Possible mechanisms for this Rad52-independent pathway of telomeric repeat amplification are discussed. The effects of inherited long telomeres on Rad52-dependent recombination are also reported.
Collapse
|
192
|
Gagos S, Chiourea M, Christodoulidou A, Apostolou E, Raftopoulou C, Deustch S, Jefford CE, Irminger-Finger I, Shay JW, Antonarakis SE. Pericentromeric instability and spontaneous emergence of human neoacrocentric and minute chromosomes in the alternative pathway of telomere lengthening. Cancer Res 2008; 68:8146-55. [PMID: 18829574 DOI: 10.1158/0008-5472.can-08-0945] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the alternative pathway of telomere lengthening (ALT), neoplastic cell growth is prolonged by telomere recombination. We show that ALT is unexpectedly characterized by high rates of ongoing pericentromeric chromosomal instability. Combined with telomeric recombination, ALT pericentromeric instability generates neoacrocentric chromosomes. In the present studies, we describe a subgroup of ALT neoacrocentric minute chromosomes, composed of DNA entities two to five times smaller in size than human chromosome 21. The frequencies of ALT minute chromosomes were increased by gamma-irradiation and suppressed by telomerase. Continuous growth after telomerase inhibition/depletion was followed by increased rates of telomeric sister chromatid recombination and the emergence of minute chromosomes. We show that ALT minute chromosomes were derived from true centromeric fissions and/or chromosomal breakage/fusion/bridge cycles. They exhibit a two-chromatid structure, carry genomic DNA, centromeric and telomeric repeats, and display regular mitotic functionality. These observations are important in understanding the global genomic instability that characterizes most human advanced malignancies.
Collapse
Affiliation(s)
- Sarantis Gagos
- Laboratory of Genetics, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Mutant telomeric repeats in yeast can disrupt the negative regulation of recombination-mediated telomere maintenance and create an alternative lengthening of telomeres-like phenotype. Mol Cell Biol 2008; 29:626-39. [PMID: 19029249 DOI: 10.1128/mcb.00423-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some human cancers maintain telomeres using alternative lengthening of telomeres (ALT), a process thought to be due to recombination. In Kluyveromyces lactis mutants lacking telomerase, recombinational telomere elongation (RTE) is induced at short telomeres but is suppressed once telomeres are moderately elongated by RTE. Recent work has shown that certain telomere capping defects can trigger a different type of RTE that results in much more extensive telomere elongation that is reminiscent of human ALT cells. In this study, we generated telomeres composed of either of two types of mutant telomeric repeats, Acc and SnaB, that each alter the binding site for the telomeric protein Rap1. We show here that arrays of both types of mutant repeats present basally on a telomere were defective in negatively regulating telomere length in the presence of telomerase. Similarly, when each type of mutant repeat was spread to all chromosome ends in cells lacking telomerase, they led to the formation of telomeres produced by RTE that were much longer than those seen in cells with only wild-type telomeric repeats. The Acc repeats produced the more severe defect in both types of telomere maintenance, consistent with their more severe Rap1 binding defect. Curiously, although telomerase deletion mutants with telomeres composed of Acc repeats invariably showed extreme telomere elongation, they often also initially showed persistent very short telomeres with few or no Acc repeats. We suggest that these result from futile cycles of recombinational elongation and truncation of the Acc repeats from the telomeres. The presence of extensive 3' overhangs at mutant telomeres suggests that Rap1 may normally be involved in controlling 5' end degradation.
Collapse
|
194
|
Abstract
A significant fraction of human cancer cells and immortalized cells maintain telomeres in a telomerase-independent manner called alternative lengthening of telomeres (ALT). It has been suggested that ALT involves homologous recombination that is expected to generate unique intermediate DNAs. However, the precise molecular mechanism of ALT is not known. To gain insight into how telomeric DNAs (T-DNAs) are maintained in ALT, we examined the physical structures of T-DNAs in ALT cells. We found abundant single-stranded regions in both G and C strands of T-DNAs. Moreover, two-dimensional gel electrophoreses and native in-gel hybridization analyses revealed novel ALT-specific single-stranded T-DNAs, in addition to previously reported t-circles. These newly identified ALT-specific T-DNAs include (i) the t-complex, which consists of highly branched T-DNAs with large numbers of internal single-stranded portions; (ii) ss-G, which consists of mostly linear single-G-strand T-DNAs; and (iii) ss-C, which consists of most likely circular single-C-strand T-DNAs. Cellular-DNA fractionation by the Hirt protocol revealed that t-circles and ss-G exist in ALT cells as extrachromosomal and chromatin-associated DNAs. We propose that such ALT-specific T-DNAs are produced by telomere metabolism specific to ALT, namely, homologous recombination and the rolling-circle replication mechanism.
Collapse
|
195
|
Qi H, Chen Y, Fu X, Lin CP, Zheng XFS, Liu LF. TOR regulates cell death induced by telomere dysfunction in budding yeast. PLoS One 2008; 3:e3520. [PMID: 18949037 PMCID: PMC2567032 DOI: 10.1371/journal.pone.0003520] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 08/02/2008] [Indexed: 01/03/2023] Open
Abstract
Telomere dysfunction is known to induce growth arrest (senescence) and cell death. However, the regulation of the senescence-death process is poorly understood. Here using a yeast dysfunctional telomere model cdc13-1, which carries a temperature sensitive-mutant telomere binding protein Cdc13p, we demonstrate that inhibition of TOR (Target of Rapamycin), a central regulator of nutrient pathways for cell growth, prevents cell death, but not growth arrest, induced by inactivation of Cdc13-1p. This function of TOR is novel and separable from its G1 inhibition function, and not associated with alterations in the telomere length, the amount of G-tails, and the telomere position effect (TPE) in cdc13-1 cells. Furthermore, antioxidants were also shown to prevent cell death initiated by inactivation of cdc13-1. Moreover, inhibition of TOR was also shown to prevent cell death induced by inactivation of telomerase in an est1 mutant. Interestingly, rapamycin did not prevent cell death induced by DNA damaging agents such as etoposide and UV. In the aggregate, our results suggest that the TOR signaling pathway is specifically involved in the regulation of cell death initiated by telomere dysfunction.
Collapse
Affiliation(s)
- Haiyan Qi
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ, USA.
| | | | | | | | | | | |
Collapse
|
196
|
Lee JY, Mogen JL, Chavez A, Johnson FB. Sgs1 RecQ helicase inhibits survival of Saccharomyces cerevisiae cells lacking telomerase and homologous recombination. J Biol Chem 2008; 283:29847-58. [PMID: 18757364 DOI: 10.1074/jbc.m804760200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In yeast telomerase mutants, the Sgs1 RecQ helicase slows the rate of senescence and also facilitates the appearance of certain types of survivors of critical telomere shortening via mechanisms dependent on Rad52-dependent homologous recombination (HR). Here we describe a third function for Sgs1 in telomerase-deficient cells, inhibition of survivors that grow independent of Rad52. Unlike tlc1 rad52 double mutants, which do not form survivors of telomere dysfunction, tlc1 rad52 sgs1 triple mutants readily generated survivors. After emerging from growth crisis, the triple mutants progressively lost telomeric and subtelomeric sequences, yet grew for more than 1 year. Analysis of cloned chromosome termini and of copy number changes of loci genome-wide using tiling arrays revealed terminal deletions extending up to 57 kb, as well as changes in Ty retrotransposon copy numbers. Amplification of the remaining terminal sequences generated large palindromes at some chromosome termini. Sgs1 helicase activity but not checkpoint function was essential for inhibiting the appearance of the survivors, and the continued absence of Sgs1 was required for the growth of the established survivors. Thus, in addition to facilitating the maintenance of telomere repeat sequences via HR-dependent mechanisms, a RecQ helicase can prevent the adoption of HR-independent mechanisms that stabilize chromosome termini without the use of natural telomere sequences. This provides a novel mechanism by which RecQ helicases may help maintain genome integrity and thus prevent age-related diseases and cancer.
Collapse
Affiliation(s)
- Julia Y Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
197
|
Defective break-induced replication leads to half-crossovers in Saccharomyces cerevisiae. Genetics 2008; 179:1845-60. [PMID: 18689895 DOI: 10.1534/genetics.108.087940] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Break-induced replication (BIR) is an important process of DNA metabolism that has been implicated in the restart of collapsed replication forks, as well as in various chromosomal instabilities, including loss of heterozygosity, translocations, and alternative telomere lengthening. Therefore, knowledge of how BIR is carried out and regulated is important for better understanding the maintenance of genomic stability in eukaryotes. Here we present a new yeast experimental system that enables the genetic control of BIR to be investigated. Analysis of mutations selected on the basis of their sensitivity to various DNA-damaging agents demonstrated that deletion of POL32, which encodes a third, nonessential subunit of polymerase delta, significantly reduced the efficiency of BIR, although some POL32-independent BIR was still observed. Importantly, the BIR defect in pol32Delta cells was associated with the formation of half-crossovers. We propose that these half-crossovers resulted from aberrant processing of BIR intermediates. Furthermore, we suggest that the half-crossovers observed in our system are analogous to nonreciprocal translocations (NRTs) described in mammalian tumor cells and, thus, our system could represent an opportunity to further study the NRT mechanism in yeast.
Collapse
|
198
|
Incorporation of Y'-Ty1 cDNA destabilizes telomeres in Saccharomyces cerevisiae telomerase-negative mutants. Genetics 2008; 179:2313-7. [PMID: 18660531 DOI: 10.1534/genetics.108.089052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ty1 retrotransposons in Saccharomyces cerevisiae are activated by telomere erosion. Ty1-dependent reverse transcription of mRNA from subtelomeric Y' repeats generates chimeric Y'-Ty1 cDNA. Here, we show that Y'-Ty1 cDNA is incorporated at eroding telomeres in the absence of telomerase. Telomeric incorporation of Y'-Ty1 cDNA promotes genome rearrangements.
Collapse
|
199
|
High rates of "unselected" aneuploidy and chromosome rearrangements in tel1 mec1 haploid yeast strains. Genetics 2008; 179:237-47. [PMID: 18458104 DOI: 10.1534/genetics.107.086603] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The yeast TEL1 and MEC1 genes (homologous to the mammalian ATM and ATR genes, respectively) serve partially redundant roles in the detection of DNA damage and in the regulation of telomere length. Haploid yeast tel1 mec1 strains were subcultured nonselectively for approximately 200 cell divisions. The subcultured strains had very high rates of chromosome aberrations: duplications, deletions, and translocations. The breakpoints of the rearranged chromosomes were within retrotransposons (Ty or delta-repeats), and these chromosome aberrations nonrandomly involved chromosome III. In addition, we showed that strains with the hypomorphic mec1-21 allele often became disomic for chromosome VIII. This property of the mec1-21 strains is suppressed by a plasmid containing the DNA2 gene (located on chromosome VIII) that encodes an essential nuclease/helicase involved in DNA replication and DNA repair.
Collapse
|
200
|
The telotype defines the telomere state in Saccharomyces cerevisiae and is inherited as a dominant non-Mendelian characteristic in cells lacking telomerase. Genetics 2008; 178:245-57. [PMID: 18202371 DOI: 10.1534/genetics.107.083030] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomeres are an unusual component of the genome because they do not encode genes, but their structure and cellular maintenance machinery (which we define as "telotype") are essential for chromosome stability. Cells can switch between different phenotypic states. One such example is when they switch from maintenance mediated by telomerase (TERT telotype) to one of the two alternative mechanisms of telomere preservation (ALT I and ALT II telotype). The nature of this switch is largely unknown. Reintroduction of telomerase into ALT II, but not ALT I, yeast led to the loss of their ability to survive a second round of telomerase withdrawal. Mating-based genetic analysis of ALT I and II revealed that both types of telomerase-independent telomere maintenance are inherited as a non-Mendelian trait dominant over senescence (SEN telotype). Additionally, inheritance of ALT I and ALT II did not depend on either the mitochondrial genome or a prion-based mechanism. Type I, but not type II, survivor cells exhibited impaired gene silencing, potentially connecting the switch to the ALT telotype epigenetic changes. These data provide evidence that nonprion epigenetic-like mechanisms confer flexibility on cells as a population to adjust to the life-threatening situation of telomerase loss, allowing cells to switch from TERT to ALT telotypes that can sustain viable populations.
Collapse
|