151
|
Wilde EJ, Blagova EV, Sanderson TJ, Raines DJ, Thomas RP, Routledge A, Duhme-Klair AK, Wilson KS. Mimicking salmochelin S1 and the interactions of its Fe(III) complex with periplasmic iron siderophore binding proteins CeuE and VctP. J Inorg Biochem 2018; 190:75-84. [PMID: 30384009 DOI: 10.1016/j.jinorgbio.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/16/2022]
Abstract
A mimic of the tetradentate stealth siderophore salmochelin S1, was synthesised, characterised and shown to form Fe(III) complexes with ligand-to-metal ratios of 1:1 and 3:2. Circular dichroism spectroscopy confirmed that the periplasmic binding proteins CeuE and VctP of Campylobacter jejuni and Vibrio cholerae, respectively, bind the Fe(III) complex of the salmochelin mimic by preferentially selecting Λ-configured Fe(III) complexes. Intrinsic fluorescence quenching studies revealed that VctP binds Fe(III) complexes of the mimic and structurally-related catecholate ligands, such as enterobactin, bis(2, 3-dihydroxybenzoyl-l-serine) and bis(2, 3-dihydroxybenzoyl)-1, 5-pentanediamine with higher affinity than does CeuE. Both CeuE and VctP display a clear preference for the tetradentate bis(catecholates) over the tris(catecholate) siderophore enterobactin. These findings are consistent with reports that V. cholerae and C. jejuni utilise the enterobactin hydrolysis product bis(2, 3-dihydroxybenzoyl)-O-seryl serine for the acquisition of Fe(III) and suggest that the role of salmochelin S1 in the iron uptake of enteric pathogens merits further investigation.
Collapse
Affiliation(s)
- Ellis J Wilde
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK; Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Elena V Blagova
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Thomas J Sanderson
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Daniel J Raines
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Ross P Thomas
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Anne Routledge
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | | | - Keith S Wilson
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
152
|
Development of IgY-Based Sandwich ELISA as a Robust Tool for Rapid Detection and Discrimination of Toxigenic Vibrio cholerae. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2018; 2018:4032531. [PMID: 30386445 PMCID: PMC6189684 DOI: 10.1155/2018/4032531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/10/2018] [Accepted: 08/19/2018] [Indexed: 11/17/2022]
Abstract
Background The conventional methods for diagnosis of Vibrio cholerae are time consuming, complicated, and expensive. Development of rapid detection tests is critical for prevention and management of cholera. This study aimed to introduce two sensitive sandwich ELISAs based on avian antibodies (IgY) targeting outer membrane protein W (OmpW) and cytotoxin B (CtxB) antigens of V. cholerae. Methods The sequences of ompW and ctxB genes were cloned into pET28a vector. Escherichia coli BL21 (DE3) was transformed with the recombinant vectors, and gene expression was induced by IPTG. The expressed proteins were purified by affinity chromatography using Ni-NTA resins. Two groups of white Leghorn chickens were immunized by recombinant proteins, and the generated antibodies were purified from egg yolks of chickens by PEG precipitation. The antibodies were used for the development of α-OmpW and α-CtxB ELISAs. Results The expression and purification yielded 59 and 38 mg of recombinant OmpW and CtxB, respectively, per one liter of bacterial culture. PEG precipitation and purification of egg yolk antibodies yielded on average (±SD) 66.5 ± 1.80 and 50.9 ± 2.23 mg of purified α-OmpW and α-CtxB per egg, respectively. The analytical sensitivity of α-OmpW ELISA was 103 cfu/mL of V. cholerae and that of α-CtxB ELISA was 33 pg/mL of recombinant cytotoxin B. The two developed ELISAs did not show any cross-reactivity to any tested bacteria grown in common conditions. Discussion The current study is the first report on using IgY for detection of V. cholerae. The developed ELISAs were shown to have considerable analytical sensitivity and specificity. Therefore, the assays can be one of the convenient methods for sensitive and specific detection of toxigenic V. cholerae strains in clinical and environmental samples.
Collapse
|
153
|
Kobe J, Pritchard N, Short Z, Erovenko IV, Rychtář J, Rowell JT. A Game-Theoretic Model of Cholera with Optimal Personal Protection Strategies. Bull Math Biol 2018; 80:2580-2599. [PMID: 30203140 DOI: 10.1007/s11538-018-0476-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/23/2018] [Indexed: 11/27/2022]
Abstract
Cholera is an acute gastro-intestinal infection that affects millions of people throughout the world each year, primarily but not exclusively in developing countries. Because of its public health ramifications, considerable mathematical attention has been paid to the disease. Here we consider one neglected aspect of combating cholera: personal participation in anti-cholera interventions. We construct a game-theoretic model of cholera in which individuals choose whether to participate in either vaccination or clean water consumption programs under assumed costs. We find that relying upon individual compliance significantly lowers the incidence of the disease as long as the cost of intervention is sufficiently low, but does not eliminate it. The relative costs of the measures determined whether a population preferentially adopts a single preventative measure or employs the measure with the strongest early adoption.
Collapse
Affiliation(s)
- Julia Kobe
- Department of Applied Mathematics, Wentworth Institute of Technology, Boston, MA, 02115, USA
| | - Neil Pritchard
- Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Ziaqueria Short
- Department of Biological Sciences, Winston-Salem State University, Winston-Salem, NC, 27110, USA
| | - Igor V Erovenko
- Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA.
| | - Jan Rychtář
- Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Jonathan T Rowell
- Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| |
Collapse
|
154
|
Van der Henst C, Vanhove AS, Drebes Dörr NC, Stutzmann S, Stoudmann C, Clerc S, Scrignari T, Maclachlan C, Knott G, Blokesch M. Molecular insights into Vibrio cholerae's intra-amoebal host-pathogen interactions. Nat Commun 2018; 9:3460. [PMID: 30150745 PMCID: PMC6110790 DOI: 10.1038/s41467-018-05976-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 08/07/2018] [Indexed: 01/03/2023] Open
Abstract
Vibrio cholerae, which causes the diarrheal disease cholera, is a species of bacteria commonly found in aquatic habitats. Within such environments, the bacterium must defend itself against predatory protozoan grazers. Amoebae are prominent grazers, with Acanthamoeba castellanii being one of the best-studied aquatic amoebae. We previously showed that V. cholerae resists digestion by A. castellanii and establishes a replication niche within the host's osmoregulatory organelle. In this study, we decipher the molecular mechanisms involved in the maintenance of V. cholerae's intra-amoebal replication niche and its ultimate escape from the succumbed host. We demonstrate that minor virulence features important for disease in mammals, such as extracellular enzymes and flagellum-based motility, have a key role in the replication and transmission of V. cholerae in its aqueous environment. This work, therefore, describes new mechanisms that provide the pathogen with a fitness advantage in its primary habitat, which may have contributed to the emergence of these minor virulence factors in the species V. cholerae.
Collapse
Affiliation(s)
- Charles Van der Henst
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Audrey Sophie Vanhove
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Natália Carolina Drebes Dörr
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sandrine Stutzmann
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Candice Stoudmann
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Stéphanie Clerc
- Bioelectron Microscopy Core Facility (BioEM), School of Life Sciences, Station 19, EPFL-SV-PTBIOEM, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Tiziana Scrignari
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Catherine Maclachlan
- Bioelectron Microscopy Core Facility (BioEM), School of Life Sciences, Station 19, EPFL-SV-PTBIOEM, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Graham Knott
- Bioelectron Microscopy Core Facility (BioEM), School of Life Sciences, Station 19, EPFL-SV-PTBIOEM, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
155
|
Ford TE, Hamner S. A Perspective on the Global Pandemic of Waterborne Disease. MICROBIAL ECOLOGY 2018; 76:2-8. [PMID: 26022715 DOI: 10.1007/s00248-015-0629-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/14/2015] [Indexed: 05/26/2023]
Abstract
Waterborne diseases continue to take a heavy toll on the global community, with developing nations, and particularly young children carrying most of the burden of morbidity and mortality. Starting with the historical context, this article explores some of the reasons why this burden continues today, despite our advances in public health over the past century or so. While molecular biology has revolutionized our abilities to define the ecosystems and etiologies of waterborne pathogens, control remains elusive. Lack of basic hygiene and sanitation, and failing infrastructure, remain two of the greatest challenges in the global fight against waterborne disease. Emerging risks continue to be the specter of multiple drug resistance and the ease with which determinants of virulence appear to be transmitted between strains of pathogens, both within and outside the human host.
Collapse
Affiliation(s)
- Timothy E Ford
- School of Health Professions, Shenandoah University, Winchester, VA, 22601, USA.
| | - Steve Hamner
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|
156
|
Samanta P, Saha RN, Chowdhury G, Naha A, Sarkar S, Dutta S, Nandy RK, Okamoto K, Mukhopadhyay AK. Dissemination of newly emerged polymyxin B sensitive Vibrio cholerae O1 containing Haitian-like genetic traits in different parts of India. J Med Microbiol 2018; 67:1326-1333. [PMID: 29927375 DOI: 10.1099/jmm.0.000783] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Two natural epidemic biotypes of Vibrio cholerae O1, classical and El Tor, exhibit different patterns of sensitivity against the antimicrobial peptide polymyxin B. This difference in sensitivity has been one of the major markers in biotype classification system for several decades. A recent report regarding the emergence of polymyxin B-sensitive El Tor V. cholerae O1 in Kolkata has motivated us to track the spread of the strains containing this important trait, along with Haitian-like genetic content, in different parts of India. METHODOLOGY We have collected 260 clinical V. cholerae O1 strains from 12 states in India and screened them for polymyxin B susceptibility. Genetic characterization was also performed to study the tcpA, ctxB and rtxA genotypes by allele-specific polymerase chain reaction (PCR) and nucleotide sequencing. RESULTS Interestingly, 88.85 % of the isolates were found to be sensitive to polymyxin B. All of the states, with the exception of Assam, had polymyxin B-sensitive V. cholerae strains and complete replacement with this strain was found in eight of the states. However, from 2016 onwards, all the strains tested showed sensitivity to polymyxin B. Allele-specific PCR and sequencing confirmed that all strains possessed Haitian-like genetic traits. CONCLUSION Polymyxin B-sensitive strains have begun to spread throughout India and may lead to the revision of the biotype classification. The dissemination of these new variant strains needs to be carefully monitored in different endemic populations through active holistic surveillance to understand their clinical and epidemiological consequences.
Collapse
Affiliation(s)
- Prosenjit Samanta
- 1Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Rudra Narayan Saha
- 1Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Goutam Chowdhury
- 1Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Arindam Naha
- 1Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Sounak Sarkar
- 1Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Shanta Dutta
- 1Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Ranjan Kumar Nandy
- 1Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Keinosuke Okamoto
- 2Collaborative Research Center of Okayama University for Infectious Diseases in India, Kolkata 700010, India
| | - Asish Kumar Mukhopadhyay
- 1Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| |
Collapse
|
157
|
Okeyo AN, Nontongana N, Fadare TO, Okoh AI. Vibrio Species in Wastewater Final Effluents and Receiving Watershed in South Africa: Implications for Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061266. [PMID: 29914048 PMCID: PMC6025350 DOI: 10.3390/ijerph15061266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/21/2018] [Accepted: 06/07/2018] [Indexed: 11/17/2022]
Abstract
Wastewater treatment facilities in South Africa are obliged to make provision for wastewater effluent quality management, with the aim of securing the integrity of the surrounding watersheds and environments. The Department of Water Affairs has documented regulatory parameters that have, over the years, served as a guideline for quality monitoring/management purposes. However, these guidelines have not been regularly updated and this may have contributed to some of the water quality anomalies. Studies have shown that promoting the monitoring of the current routinely monitored parameters (both microbial and physicochemical) may not be sufficient. Organisms causing illnesses or even outbreaks, such as Vibrio pathogens with their characteristic environmental resilience, are not included in the guidelines. In South Africa, studies that have been conducted on the occurrence of Vibrio pathogens in domestic and wastewater effluent have made it apparent that these pathogens should also be monitored. The importance of effective wastewater management as one of the key aspects towards protecting surrounding environments and receiving watersheds, as well as protecting public health, is highlighted in this review. Emphasis on the significance of the Vibrio pathogen in wastewater is a particular focus.
Collapse
Affiliation(s)
- Allisen N Okeyo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa.
- Department of Biochemistry and Microbiology, University of Fort Hare, P/Bag X1314, Eastern Cape, Alice 5700, South Africa.
| | - Nolonwabo Nontongana
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa.
- Department of Biochemistry and Microbiology, University of Fort Hare, P/Bag X1314, Eastern Cape, Alice 5700, South Africa.
| | - Taiwo O Fadare
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa.
- Department of Biochemistry and Microbiology, University of Fort Hare, P/Bag X1314, Eastern Cape, Alice 5700, South Africa.
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa.
- Department of Biochemistry and Microbiology, University of Fort Hare, P/Bag X1314, Eastern Cape, Alice 5700, South Africa.
| |
Collapse
|
158
|
Rasti ES, Schappert ML, Brown AC. Association of Vibrio cholerae 569B outer membrane vesicles with host cells occurs in a GM1-independent manner. Cell Microbiol 2018; 20:e12828. [PMID: 29377560 PMCID: PMC5980675 DOI: 10.1111/cmi.12828] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/05/2018] [Accepted: 01/19/2018] [Indexed: 12/28/2022]
Abstract
The primary virulence factor of Vibrio cholerae, cholera toxin (CT), initiates a pathway in epithelial cells that leads to the severe diarrhoea characteristic of cholera. Secreted CT binds to GM1 on the surface of host cells to facilitate internalisation. Many bacterial toxins, including CT, have been shown to be additionally delivered via outer membrane vesicles (OMVs). A fraction of the closely related heat labile toxin produced by enterotoxigenic Escherichia coli has been demonstrated to reside on the surface of OMVs, where it binds GM1 to facilitate OMV internalisation by host cells. In this work, we investigated whether OMV-associated CT is likewise trafficked to host cells in a GM1-dependent mechanism. We demonstrated that a majority of CT is secreted in its OMV-associated form and is located exclusively inside the vesicle. Therefore, the toxin is unable to bind GM1 on the host cell surface, and the OMVs are trafficked to the host cells in a GM1-independent mechanism. These findings point to a secondary, noncompeting mechanism for secretion and delivery of CT, beyond its well-studied secretion via a Type II secretion system and underscore the importance of focusing future studies on understanding this GM1-independent delivery mechanism to fully understand Vibrio cholerae pathogenesis.
Collapse
Affiliation(s)
- Elnaz S. Rasti
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Megan L. Schappert
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
159
|
Liao F, Mo Z, Chen M, Pang B, Fu X, Xu W, Jing H, Kan B, Gu W. Comparison and Evaluation of the Molecular Typing Methods for Toxigenic Vibrio cholerae in Southwest China. Front Microbiol 2018; 9:905. [PMID: 29867816 PMCID: PMC5951969 DOI: 10.3389/fmicb.2018.00905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/18/2018] [Indexed: 11/15/2022] Open
Abstract
Vibrio cholerae O1 strains taken from the repository of Yunnan province, southwest China, were abundant and special. We selected 70 typical toxigenic V. cholerae (69 O1 and one O139 serogroup strains) isolated from Yunnan province, performed the pulsed field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and MLST of virulence gene (V-MLST) methods, and evaluated the resolution abilities for typing methods. The ctxB subunit sequence analysis for all strains have shown that cholera between 1986 and 1995 was associated with mixed infections with El Tor and El Tor variants, while infections after 1996 were all caused by El Tor variant strains. Seventy V. cholerae obtained 50 PFGE patterns, with a high resolution. The strains could be divided into three groups with predominance of strains isolated during 1980s, 1990s, and 2000s, respectively, showing a good consistency with the epidemiological investigation. We also evaluated two MLST method for V. cholerae, one was used seven housekeeping genes (adk, gyrB, metE, pntA, mdh, purM, and pyrC), and all the isolates belonged to ST69; another was used nine housekeeping genes (cat, chi, dnaE, gyrB, lap, pgm, recA, rstA, and gmd). A total of seven sequence types (STs) were found by using this method for all the strains; among them, rstA gene had five alleles, recA and gmd have two alleles, and others had only one allele. The virulence gene sequence typing method (ctxAB, tcpA, and toxR) showed that 70 strains were divided into nine STs; among them, tcpA gene had six alleles, toxR had five alleles, while ctxAB was identical for all the strains. The latter two sequences based typing methods also had consistency with epidemiology of the strains. PFGE had a higher resolution ability compared with the sequence based typing method, and MLST used seven housekeeping genes showed the lower resolution power than nine housekeeping genes and virulence genes methods. These two sequence typing methods could distinguish some epidemiological special strains in local area.
Collapse
Affiliation(s)
- Feng Liao
- Department of Respiratory Medicine, First People's Hospital of Yunnan Province, Kunming, China
| | - Zhishuo Mo
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Meiling Chen
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Bo Pang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Xiaoqing Fu
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China
| | - Wen Xu
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China
| | - Huaiqi Jing
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Biao Kan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Wenpeng Gu
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China.,Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical School, Kunming, China
| |
Collapse
|
160
|
Kim HY, Go J, Lee KM, Oh YT, Yoon SS. Guanosine tetra- and pentaphosphate increase antibiotic tolerance by reducing reactive oxygen species production in Vibrio cholerae. J Biol Chem 2018; 293:5679-5694. [PMID: 29475943 PMCID: PMC5900777 DOI: 10.1074/jbc.ra117.000383] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/16/2018] [Indexed: 02/06/2023] Open
Abstract
The pathogen Vibrio cholerae is the causative agent of cholera. Emergence of antibiotic-resistant V. cholerae strains is increasing, but the underlying mechanisms remain unclear. Herein, we report that the stringent response regulator and stress alarmone guanosine tetra- and pentaphosphate ((p)ppGpp) significantly contributes to antibiotic tolerance in V. cholerae We found that N16961, a pandemic V. cholerae strain, and its isogenic (p)ppGpp-overexpressing mutant ΔrelAΔspoT are both more antibiotic-resistant than (p)ppGpp0 (ΔrelAΔrelVΔspoT) and ΔdksA mutants, which cannot produce or utilize (p)ppGpp, respectively. We also found that additional disruption of the aconitase B-encoding and tricarboxylic acid (TCA) cycle gene acnB in the (p)ppGpp0 mutant increases its antibiotic tolerance. Moreover, expression of TCA cycle genes, including acnB, was increased in (p)ppGpp0, but not in the antibiotic-resistant ΔrelAΔspoT mutant, suggesting that (p)ppGpp suppresses TCA cycle activity, thereby entailing antibiotic resistance. Importantly, when grown anaerobically or incubated with an iron chelator, the (p)ppGpp0 mutant became antibiotic-tolerant, suggesting that reactive oxygen species (ROS) are involved in antibiotic-mediated bacterial killing. Consistent with that hypothesis, tetracycline treatment markedly increased ROS production in the antibiotic-susceptible mutants. Interestingly, expression of the Fe(III) ABC transporter substrate-binding protein FbpA was increased 10-fold in (p)ppGpp0, and fbpA gene deletion restored viability of tetracycline-exposed (p)ppGpp0 cells. Of note, FbpA expression was repressed in the (p)ppGpp-accumulating mutant, resulting in a reduction of intracellular free iron, required for the ROS-generating Fenton reaction. Our results indicate that (p)ppGpp-mediated suppression of central metabolism and iron uptake reduces antibiotic-induced oxidative stress in V. cholerae.
Collapse
Affiliation(s)
- Hwa Young Kim
- From the Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, and ,the Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea and
| | - Junhyeok Go
- From the Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, and ,the Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea and
| | - Kang-Mu Lee
- From the Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, and ,the Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea and
| | - Young Taek Oh
- From the Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, and ,the Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, SangJu 37242, Korea, To whom correspondence may be addressed:
Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, SangJu-si 37242, Korea. Tel.:
82-54-530-0932; Fax:
82-54-530-0949; E-mail:
| | - Sang Sun Yoon
- From the Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, and ,the Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea and , To whom correspondence may be addressed:
Dept. of Microbiology and Immunology, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu Seoul 120-752, Korea. Tel.:
82-2-2228-1824; Fax:
82-2-392-7088; E-mail:
| |
Collapse
|
161
|
Unusual Constriction Zones in the Major Porins OmpU and OmpT from Vibrio cholerae. Structure 2018; 26:708-721.e4. [PMID: 29657131 DOI: 10.1016/j.str.2018.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/15/2018] [Accepted: 03/16/2018] [Indexed: 01/26/2023]
Abstract
The outer membranes (OM) of many Gram-negative bacteria contain general porins, which form nonspecific, large-diameter channels for the diffusional uptake of small molecules required for cell growth and function. While the porins of Enterobacteriaceae (e.g., E. coli OmpF and OmpC) have been extensively characterized structurally and biochemically, much less is known about their counterparts in Vibrionaceae. Vibrio cholerae, the causative agent of cholera, has two major porins, OmpU and OmpT, for which no structural information is available despite their importance for the bacterium. Here we report high-resolution X-ray crystal structures of V. cholerae OmpU and OmpT complemented with molecular dynamics simulations. While similar overall to other general porins, the channels of OmpU and OmpT have unusual constrictions that create narrower barriers for small-molecule permeation and change the internal electric fields of the channels. Together with electrophysiological and in vitro transport data, our results illuminate small-molecule uptake within the Vibrionaceae.
Collapse
|
162
|
Abstract
This study was conducted to determine the prevalence of Vibrio spp. in retail seafood in Berlin, Germany. A total of 160 raw seafood samples from supermarkets and seafood shops, consisting of shrimp ( n = 80) and bivalves ( n = 80), were investigated for the presence of Vibrio spp. using the International Organization for Standardization ISO/TS 21872 method and a multiplex PCR. The overall prevalence of Vibrio spp. in retail seafood was 55% (95% CI: 47.2 to 62.8%). The prevalence of Vibrio spp. in shrimp was slightly higher than in bivalves (57.5 versus 52.5%); however, the difference was not statistically significant. Vibrio alginolyticus was the most prevalent species (35.6%), followed by Vibrio parahaemolyticus (27.5%), Vibrio cholerae (6.3%), and Vibrio vulnificus (0.6%). None of the V. parahaemolyticus ( n = 110) isolates encoded tdh/ trh genes, whereas all V. cholerae isolates ( n = 27) were lacking ctxA. Among the chilled samples ( n = 105), the prevalence of Vibrio spp. in unpacked samples was significantly higher than in packed samples ( P = 0.006). Among the packed samples ( n = 55), no significant difference in the prevalence of Vibrio spp. was observed between chilled or frozen products. The results of this study indicated a high prevalence of Vibrio spp. in retail seafood in Germany; positive samples were detected in all types of seafood investigated. The detection of tdh/ trh-negative V. parahaemolyticus isolates should not be neglected because of previous findings on pathogenic strains lacking these virulence markers. Even though thorough cooking might limit the risk of foodborne illness caused by Vibrio, potential cross-contamination during preparation or consumption of raw and undercooked seafood might represent a risk of Vibrio infections.
Collapse
Affiliation(s)
- Thi Thu Tra Vu
- 1 Institute of Food Safety and Food Hygiene, Freie Universität Berlin, 14163 Berlin, Germany
| | - Thomas Alter
- 1 Institute of Food Safety and Food Hygiene, Freie Universität Berlin, 14163 Berlin, Germany
| | - Stephan Huehn
- 1 Institute of Food Safety and Food Hygiene, Freie Universität Berlin, 14163 Berlin, Germany.,2 Life Sciences and Technology, Beuth University of Applied Sciences, 13353 Berlin, Germany
| |
Collapse
|
163
|
Lu WJ, Lin HJ, Janganan TK, Li CY, Chin WC, Bavro VN, Lin HTV. ATP-Binding Cassette Transporter VcaM from Vibrio cholerae is Dependent on the Outer Membrane Factor Family for Its Function. Int J Mol Sci 2018; 19:ijms19041000. [PMID: 29584668 PMCID: PMC5979437 DOI: 10.3390/ijms19041000] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 11/16/2022] Open
Abstract
Vibrio cholerae ATP-binding cassette transporter VcaM (V. cholerae ABC multidrug resistance pump) has previously been shown to confer resistance to a variety of medically important drugs. In this study, we set to analyse its properties both in vitro in detergent-solubilised state and in vivo to differentiate its dependency on auxiliary proteins for its function. We report the first detailed kinetic parameters of purified VcaM and the rate of phosphate (Pi) production. To determine the possible functional dependencies of VcaM on the tripartite efflux pumps we then utilized different E. coli strains lacking the principal secondary transporter AcrB (Acriflavine resistance protein), as well as cells lacking the outer membrane factor (OMF) TolC (Tolerance to colicins). Consistent with the ATPase function of VcaM we found it to be susceptible to sodium orthovanadate (NaOV), however, we also found a clear dependency of VcaM function on TolC. Inhibitors targeting secondary active transporters had no effects on either VcaM-conferred resistance or Hoechst 33342 accumulation, suggesting that VcaM might be capable of engaging with the TolC-channel without periplasmic mediation by additional transporters. Our findings are indicative of VcaM being capable of a one-step substrate translocation from cytosol to extracellular space utilising the TolC-channel, making it the only multidrug ABC-transporter outside of the MacB-family with demonstrable TolC-dependency.
Collapse
Affiliation(s)
- Wen-Jung Lu
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| | - Hsuan-Ju Lin
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| | - Thamarai K Janganan
- School of Life Sciences, University of Bedfordshire, University Square, Luton LU1 3JU, UK.
| | - Cheng-Yi Li
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| | - Wei-Chiang Chin
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| | - Vassiliy N Bavro
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| | - Hong-Ting Victor Lin
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| |
Collapse
|
164
|
A real-time multiplex PCR for the identification and typing of Vibrio cholerae. Diagn Microbiol Infect Dis 2018; 90:171-176. [DOI: 10.1016/j.diagmicrobio.2017.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 11/23/2022]
|
165
|
Abstract
Lactococcus lactis is a lactic acid bacterium that is intensively and globally exploited in commercial dairy food fermentations. Though the presence of prophages in lactococcal genomes is widely reported, only limited studies pertaining to the stability of prophages in lactococcal genomes have been performed. The current study reports on the complete genome exploration of thirty lactococcal strains for the presence of potentially intact prophages, so as to assess their genomic diversity and the associated risk or benefit of harbouring such prophages. Genomic predictions partnered with mitomycin C inductions and flow cytometric analysis of the induced cell lysates confirmed that only four strains consistently produced intact phage particles, thus indicating a relatively low risk associated with prophage induction in the fermentation setting. Our analysis revealed the widespread presence of putative phage-resistance systems encoded by lactococcal prophages, thus highlighting the potential benefits for host fitness. Many of the identified lactococcal prophages belong to the so-called P335 phage group, while a large group of phage remnants bear similarity to members of the 936 phage group. The P335 phage group was recently shown to encompass four distinct genetic lineages. Our study identified an additional lineage, thus expanding the diversity of this industrially significant phage group.
Collapse
|
166
|
Hettiarachchi SA, Lee SJ, Lee Y, Kwon YK, Kwon KK, Yang SH, Jo E, Kang DH, Oh C. Corallibacterium pacifica gen. nov., sp. nov., a Novel Bacterium of the Family Vibrionaceae Isolated from Hard Coral. Curr Microbiol 2018; 75:835-841. [PMID: 29464363 DOI: 10.1007/s00284-018-1455-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/13/2018] [Indexed: 12/19/2022]
Abstract
A gram-negative, rod-shaped, motile, oxidase- and catalase-positive, non-pigmented marine bacterium, designated strain OS-11M-2T, was isolated from a coral sample collected from the Osakura coastal area in Micronesia. Phylogenetic analysis based on 16S ribosomal RNA (rRNA) gene sequences indicated that strain OS-11M-2T is a member of the family Vibrionaceae, its closest neighbors being Photobacterium damselae subsp. piscicida NCIMB 2058T (94.9%), Photobacterium damselae subsp. damselae CIP 102761T (94.75%), Grimontia marina IMCC5001T (94.5%), Enterovibrio coralii LMG 22228T (94.5%), and Grimontia celer 96-237T (94.5%). The major cellular fatty acids were summed feature 3 (21.4%), summed feature 8 (18.5%), iso-C16:0 (13.8%), and C16:0 (11.9%). The major respiratory quinone of the bacterium was ubiquinone-8 (Q-8) and its major polar lipid phosphatidylethanolamine. Six amino lipids, two phospholipids, and one polar lipid, all unidentified, were detected. The DNA G+C content was 49.7 mol%. The 16S rRNA gene sequence of OS-11M-2T was registered in GenBank under accession number MF359550. On the basis of phenotypic, genotypic, and phylogenetic analyses, strain OS-11M-2T represents a novel genus of the family Vibrionaceae, for which we propose the name Corallibacterium pacifica gen. nov., sp. nov., with the type strain of the type species being OS-11M-2T (= KCCM 43265T). The digital protologue database (DPD) taxon number for strain OS-11M-2T is GA00041.
Collapse
Affiliation(s)
- Sachithra Amarin Hettiarachchi
- Korea Institute of Ocean Science & Technology, Jeju, Jeju Province, 63349, Republic of Korea.,Department of Marine Biology, Korea University of Science and Technology, Jeju, Jeju Province, 63349, Republic of Korea
| | - Su-Jin Lee
- Korea Institute of Ocean Science & Technology, Jeju, Jeju Province, 63349, Republic of Korea
| | - Youngdeuk Lee
- Korea Institute of Ocean Science & Technology, Jeju, Jeju Province, 63349, Republic of Korea
| | - Young-Kyung Kwon
- Korea Institute of Ocean Science & Technology, Jeju, Jeju Province, 63349, Republic of Korea
| | - Kae Kyoung Kwon
- Korea Institute of Ocean Science & Technology, Busan, 49111, Republic of Korea
| | - Sung-Hyun Yang
- Korea Institute of Ocean Science & Technology, Busan, 49111, Republic of Korea
| | - Eunyoung Jo
- Korea Institute of Ocean Science & Technology, Jeju, Jeju Province, 63349, Republic of Korea
| | - Do-Hyung Kang
- Korea Institute of Ocean Science & Technology, Jeju, Jeju Province, 63349, Republic of Korea.,Department of Marine Biology, Korea University of Science and Technology, Jeju, Jeju Province, 63349, Republic of Korea
| | - Chulhong Oh
- Korea Institute of Ocean Science & Technology, Jeju, Jeju Province, 63349, Republic of Korea. .,Department of Marine Biology, Korea University of Science and Technology, Jeju, Jeju Province, 63349, Republic of Korea.
| |
Collapse
|
167
|
Hossain ZZ, Farhana I, Tulsiani SM, Begum A, Jensen PKM. Transmission and Toxigenic Potential of Vibrio cholerae in Hilsha Fish ( Tenualosa ilisha) for Human Consumption in Bangladesh. Front Microbiol 2018. [PMID: 29515532 PMCID: PMC5826273 DOI: 10.3389/fmicb.2018.00222] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fish have been considered natural reservoirs of Vibrio cholerae, the deadly diarrheal pathogen. However, little is known about the role of fish in the transmission of V. cholerae from the Bay of Bengal to the households of rural and urban Bangladesh. This study analyzes the incidence and pathogenic potential of V. cholerae in Hilsha (Tenualosa ilisha), a commonly caught and consumed fish that exhibits a life cycle in both freshwater and marine environments in Bangladesh. During the period from October 2014 to October 2015, samples from the gills, recta, intestines, and scale swabs of a total of 48 fish were analyzed. The fish were collected both at local markets in the capital city Dhaka and directly from fishermen at the river. PCR analysis by targeting V. cholerae species-specific ompW gene revealed that 39 of 48 (81%) fish were positive in at least one of the sample types. Real-time PCR analysis demonstrated that the cholera-causing ctxA gene was detected in 20% (8 of 39) of V. cholerae-positive fish. A total of 158 V. cholerae isolates were obtained which were categorized into 35 genotypic groups. Altogether, 25 O1 and 133 non-O1/O139 strains were isolated, which were negative for the cholera toxin gene. Other pathogenic genes such as stn/sto, hlyA, chxA, SXT, rtxC, and HA-P were detected. The type three secretion system gene cluster (TTSS) was present in 18% (24 of 133) of non-O1/O139 isolates. The antibiotic susceptibility test revealed that the isolates conferred high resistance to sulfamethoxazole-trimethoprim and kanamycin. Both O1 and non-O1/O139 strains were able to accumulate fluid in rabbit ileal loops and caused distinctive cell death in HeLa cell. Multilocus sequence typing (MLST) showed clonal diversity among fish isolates with pandemic clones. Our data suggest a high prevalence of V. cholerae in Hilsha fish, which indicates that this fish could serve as a potential vehicle for V. cholerae transmission. Moreover, the indigenous V. cholerae strains isolated from Hilsha fish possess considerable virulence potential despite being quite diverse from current epidemic strains. This represents the first study of the population structure of V. cholerae associated with fish in Bangladesh.
Collapse
Affiliation(s)
- Zenat Z Hossain
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh.,Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Israt Farhana
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Suhella M Tulsiani
- Institute of Public Health, University of Copenhagen, Copenhagen, Denmark.,Copenhagen Centre for Disaster Research, University of Copenhagen, Copenhagen, Denmark
| | - Anowara Begum
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Peter K M Jensen
- Institute of Public Health, University of Copenhagen, Copenhagen, Denmark.,Copenhagen Centre for Disaster Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
168
|
Okiki PA, Adeniji CA, Oyetunji OA, Yusuf OA, Peters O. Assessment of the physicochemical and bacteriological qualities of Nono - a fermented cow milk. POTRAVINARSTVO 2018. [DOI: 10.5219/839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nono is a spontaneously fermented yoghurt-like milk product consumed is a staple food commodity in parts of the Sub-Saharan West Africa. Nono is usually consumed along with 'Fura' as 'Fura da Nono' in Nigeria. Studies on physicochemical and bacteriological qualities were carried out on samples of Nono obtained from 5 different sources in Ado-Ekiti, Nigeria. The Nono samples were found to be nutritious, containing moderate levels of ash, crude fat, crude protein and carbohydrate. The pH of the Nono samples was relatively low (4.04 ±0.04), while the density and specific density were close to that of distilled water at room temperature. Total aerobic plate count of Nono samples was 1.8 ±0.02 × 106 CFU.mL-1. A total of 15 bacteria species namely Eubacterium nodatum, Bacillus subtilis, Chromobacterium violaceum, Propionibacterium acnes, Amycolatopsis benzotilytica, Tropheryma whipplei, Moraxella catarrhalis, Campylobacter gracilis, Neisseria sicca, Vibrio natiensis, Photobacterium damselae, Corynebacterium kutsceri, Corynebacterium xerosis, Lactobacillus fermentum and Lactobacillus casei were isolated from the Nono samples. The gram-positive bacterial isolates were resistant to all antibiotics tested with the exception of Erythromycin where 40% susceptibility was obtained, while the gram-negative bacteria showed high resistance to the tested antibiotics, but with 80% susceptibility to Ofloxacin. The nono samples were observed to exhibit antibacterial activity against cultures of Salmonella typhimurium ATCC 14028, Escherichia coli ATCC 29929 and Staphylococcus aureus ATCC 29293. Most of the bacteria isolated were of less public health importance, but the high prevalence of multi-drug resistance is of great concern.
Collapse
|
169
|
Acosta-Smith E, Viveros-Jiménez K, Canizalez-Román A, Reyes-Lopez M, Bolscher JGM, Nazmi K, Flores-Villaseñor H, Alapizco-Castro G, de la Garza M, Martínez-Garcia JJ, Velazquez-Roman J, Leon-Sicairos N. Bovine Lactoferrin and Lactoferrin-Derived Peptides Inhibit the Growth of Vibrio cholerae and Other Vibrio species. Front Microbiol 2018; 8:2633. [PMID: 29375503 PMCID: PMC5768654 DOI: 10.3389/fmicb.2017.02633] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 12/15/2017] [Indexed: 12/18/2022] Open
Abstract
Vibrio is a genus of Gram-negative bacteria, some of which can cause serious infectious diseases. Vibrio infections are associated with the consumption of contaminated food and classified in Vibrio cholera infections and non-cholera Vibrio infections. In the present study, we investigate whether bovine lactoferrin (bLF) and several synthetic peptides corresponding to bLF sequences, are able to inhibit the growth or have bactericidal effect against V. cholerae and other Vibrio species. The antibacterial activity of LF and LF-peptides was assessed by kinetics of growth or determination of colony forming unit in bacteria treated with the peptides and antibiotics. To get insight in the mode of action, the interaction between bLF and bLF-peptides (coupled to FITC) and V. cholera was evaluated. The damage of effector-induced bacterial membrane permeability was measured by inclusion of the fluorescent dye propidium iodide using flow cytometry, whereas the bacterial ultrastructural damage in bacteria treated was observed by transmission electron microscopy. The results showed that bLF and LFchimera inhibited the growth of the V. cholerae strains; LFchimera permeabilized the bacteria which membranes were seriously damaged. Assays with a multidrug-resistant strain of Vibrio species indicated that combination of sub-lethal doses of LFchimera with ampicillin or tetracycline strongly reduced the concentration of the antibiotics to reach 95% growth inhibition. Furthermore, LFchimera were effective to inhibit the V. cholerae counts and damage due to this bacterium in a model mice. These data suggest that LFchimera and bLF are potential candidates to combat the V. cholerae and other multidrug resistant Vibrio species.
Collapse
Affiliation(s)
- Erika Acosta-Smith
- Programa Regional Para el Doctorado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Karina Viveros-Jiménez
- Centro de Investigación Aplicada para la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Adrian Canizalez-Román
- Centro de Investigación Aplicada para la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico.,Hospital de la Mujer, Servicios de Salud de Sinaloa, Culiacán, Mexico
| | - Magda Reyes-Lopez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico, Mexico
| | - Jan G M Bolscher
- Department of Oral Biochemistry ACTA, University of Amsterdam and VU University, Amsterdam, Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry ACTA, University of Amsterdam and VU University, Amsterdam, Netherlands
| | - Hector Flores-Villaseñor
- Centro de Investigación Aplicada para la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico.,Laboratorio Estatal de Salud Pública de Sinaloa, Culiacán, Mexico
| | - Gerardo Alapizco-Castro
- Centro de Investigación Aplicada para la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico, Mexico
| | - Jesús J Martínez-Garcia
- Centro de Investigación Aplicada para la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico.,Departamento de Investigación, Hospital Pediátrico de Sinaloa, Culiacán, Mexico
| | - Jorge Velazquez-Roman
- Centro de Investigación Aplicada para la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Nidia Leon-Sicairos
- Centro de Investigación Aplicada para la Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico.,Departamento de Investigación, Hospital Pediátrico de Sinaloa, Culiacán, Mexico
| |
Collapse
|
170
|
Bhunia AK. Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus. FOODBORNE MICROBIAL PATHOGENS 2018. [DOI: 10.1007/978-1-4939-7349-1_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
171
|
|
172
|
Bernstein H, Bernstein C, Michod RE. Sex in microbial pathogens. INFECTION GENETICS AND EVOLUTION 2018; 57:8-25. [DOI: 10.1016/j.meegid.2017.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
|
173
|
On the intrinsic dynamics of bacteria in waterborne infections. Math Biosci 2017; 296:71-81. [PMID: 29291431 DOI: 10.1016/j.mbs.2017.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 12/02/2017] [Accepted: 12/26/2017] [Indexed: 11/23/2022]
Abstract
The intrinsic dynamics of bacteria often play an important role in the transmission and spread of waterborne infectious diseases. In this paper, we construct mathematical models for waterborne infections and analyze two types of nontrivial bacterial dynamics: logistic growth, and growth with Allee effects. For the model with logistic growth, we find that regular threshold dynamics take place, and the basic reproduction number can be used to characterize disease extinction and persistence. In contrast, the model with Allee effects exhibits much more complex dynamics, including the existence of multiple endemic equilibria and the presence of backward bifurcation and forward hysteresis.
Collapse
|
174
|
A Highly Promiscuous Integron, Plasmids, Extended Spectrum Beta Lactamases and Efflux Pumps as Factors Governing Multidrug Resistance in a Highly Drug Resistant Vibrio fluvialis Isolate BD146 from Kolkata, India. Indian J Microbiol 2017; 58:60-67. [PMID: 29434398 DOI: 10.1007/s12088-017-0687-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022] Open
Abstract
In an earlier study from this laboratory, Vibrio fluvialis BD146, a clinical isolate from Kolkata, India, 2002, was found to be resistant to all the fourteen antibiotics tested. It harboured a high copy number plasmid pBD146 and a low copy number plasmid. In the present study, a more detailed analysis was carried out to unravel different resistance mechanisms in this isolate. Sequencing showed that variable region of class 1 integron located on low copy number plasmid harbored arr3-cmlA-blaOXA10-aadA1 gene cassettes. Analysis for extended spectrum beta lactamases (ESBLs) revealed that BD146 was ESBL positive. Efflux pumps were involved in the drug resistance phenotype for chloramphenicol, kanamycin, streptomycin and tetracycline. Sequence analysis of pBD146 revealed the presence of genes encoding BDint an integrase with a unique sequence having little similarity to other known integrases, toxin-antitoxin (parE/parD), a replicase, trimethoprim resistance (dfrVI) and quinolone resistance (qnrVC5). Presence of cmlA, putative novel integrase and toxin-antitoxin system in V. fluvialis has been documented for the first time in this report. pBD146 showed 99% sequence similarity with pVN84 from V. cholerae O1 of Vietnam, 2004 and a plasmid from V. parahaemolyticus v110 of Hong Kong, 2010. Conjugation experiments proved the ability of pBD146 and the low copy number plasmid, to get transferred to another host imparting their antibiotic resistance traits to the transconjugants. Therefore, present study has indicated that plasmids played an important role for dissemination of drug resistance.
Collapse
|
175
|
Hall V, Medus C, Wahl G, Sorenson A, Orth M, Santovenia M, Burdette E, Smith K. Notes from the Field: Vibrio choleraeSerogroup O1, Serotype Inaba — Minnesota, August 2016. MMWR. MORBIDITY AND MORTALITY WEEKLY REPORT 2017; 66:961-962. [PMID: 28910274 PMCID: PMC5657919 DOI: 10.15585/mmwr.mm6636a6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
176
|
Sinha-Ray S, Ali A. Mutation in flrA and mshA Genes of Vibrio cholerae Inversely Involved in vps-Independent Biofilm Driving Bacterium Toward Nutrients in Lake Water. Front Microbiol 2017; 8:1770. [PMID: 28959249 PMCID: PMC5604084 DOI: 10.3389/fmicb.2017.01770] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/31/2017] [Indexed: 12/25/2022] Open
Abstract
Many bacterial pathogens promote biofilms that confer resistance against stressful survival conditions. Likewise Vibrio cholerae O1, the causative agent of cholera, and ubiquitous in aquatic environments, produces vps-dependent biofilm conferring resistance to environmental stressors and predators. Here we show that a 49-bp deletion mutation in the flrA gene of V. cholerae N16961S strain resulted in promotion of vps-independent biofilm in filter sterilized lake water (FSLW), but not in nutrient-rich L-broth. Complementation of flrA mutant with the wild-type flrA gene inhibited vps-independent biofilm formation. Our data demonstrate that mutation in the flrA gene positively contributed to vps-independent biofilm production in FSLW. Furthermore, inactivation of mshA gene, encoding the main pilin of mannose sensitive hemagglutinin (MSHA pilus) in the background of a ΔflrA mutant, inhibited vps-independent biofilm formation. Complementation of ΔflrAΔmshA double mutant with wild-type mshA gene restored biofilm formation, suggesting that mshA mutation inhibited ΔflrA-driven biofilm. Taken together, our data suggest that V. cholerae flrA and mshA act inversely in promoting vps-independent biofilm formation in FSLW. Using a standard chemotactic assay, we demonstrated that vps-independent biofilm of V. cholerae, in contrast to vps-dependent biofilm, promoted bacterial movement toward chitin and phosphate in FSLW. A ΔflrAΔmshA double mutant inhibited the bacterium from moving toward nutrients; this phenomenon was reversed with reverted mutants (complemented with wild-type mshA gene). Movement to nutrients was blocked by mutation in a key chemotaxis gene, cheY-3, although, cheY-3 had no effect on vps-independent biofilm. We propose that in fresh water reservoirs, V. cholerae, on repression of flagella, enhances vps-independent biofilm that aids the bacterium in acquiring nutrients, including chitin and phosphate; by doing so, the microorganism enhances its ability to persist under nutrient-limited conditions.
Collapse
Affiliation(s)
- Shrestha Sinha-Ray
- Emerging Pathogens Institute, University of Florida, GainesvilleFL, United States.,Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, GainesvilleFL, United States
| | - Afsar Ali
- Emerging Pathogens Institute, University of Florida, GainesvilleFL, United States.,Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, GainesvilleFL, United States
| |
Collapse
|
177
|
Kaboré S, Cecchi P, Mosser T, Toubiana M, Traoré O, Ouattara AS, Traoré AS, Barro N, Colwell RR, Monfort P. Occurrence of Vibrio cholerae in water reservoirs of Burkina Faso. Res Microbiol 2017; 169:1-10. [PMID: 28888938 DOI: 10.1016/j.resmic.2017.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 11/26/2022]
Abstract
Africa is currently an important region in which cholera epidemics occur. Little is known about the presence of Vibrio cholerae in freshwater bodies in Africa. There are ca. 1700 lakes and reservoirs in Burkina Faso, most of which have been built within recent decades to secure water resources. The purpose of this study was to investigate the presence of V. cholerae in the water of reservoirs, using the most-probable-number polymerase chain reaction. Results showed that V. cholerae could be detected in water samples collected from 14 of 39 sampled reservoirs. The concentrations varied from 0 MPN/l to more than 1100 MPN/l. Fifty strains of V. cholerae isolated on CHROMagar™ vibrio were identified as V. cholerae non-O1/non-O139, none of which carried the ctxA gene. A significant positive correlation was found between the presence of V. cholerae in the reservoirs and both alkaline pH and phytoplankton biomass. V. cholerae was present in significantly higher numbers in reservoirs of urban areas than in rural areas. Since V. cholerae non-O1/non-O139 has been shown to be a causative agent of endemic diarrheal outbreaks, their presence in Burkina Faso reservoirs suggests they may play a role in gastroenteritis in that country.
Collapse
Affiliation(s)
- Saidou Kaboré
- Laboratoire de Biologie Moléculaire, d'Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles Par Les Aliments (LaBESTA), Centre de Recherches en Sciences Biologiques, Alimentaires et Nutritionnelles (CRSBAN), Université de Ouagadougou, 03 BP 7021 Ouagadougou 03, Burkina Faso.
| | - Philippe Cecchi
- MARBEC UMR 248 IRD, CNRS, Ifremer, Université de Montpellier, Centre de Recherches Océanologiques, Abidjan, Côte d'Ivoire.
| | - Thomas Mosser
- HydroSciences Montpellier, UMR 5569 CNRS, IRD, Université de Montpellier, 34093 Montpellier Cedex 05, France
| | - Mylène Toubiana
- HydroSciences Montpellier, UMR 5569 CNRS, IRD, Université de Montpellier, 34093 Montpellier Cedex 05, France.
| | - Oumar Traoré
- Laboratoire de Biologie Moléculaire, d'Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles Par Les Aliments (LaBESTA), Centre de Recherches en Sciences Biologiques, Alimentaires et Nutritionnelles (CRSBAN), Université de Ouagadougou, 03 BP 7021 Ouagadougou 03, Burkina Faso; Laboratoire National de Santé Publique, 09 BP 24 Ouagadougou 09, Burkina Faso.
| | - Aboubakar S Ouattara
- Laboratoire de Biologie Moléculaire, d'Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles Par Les Aliments (LaBESTA), Centre de Recherches en Sciences Biologiques, Alimentaires et Nutritionnelles (CRSBAN), Université de Ouagadougou, 03 BP 7021 Ouagadougou 03, Burkina Faso.
| | - Alfred S Traoré
- Laboratoire de Biologie Moléculaire, d'Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles Par Les Aliments (LaBESTA), Centre de Recherches en Sciences Biologiques, Alimentaires et Nutritionnelles (CRSBAN), Université de Ouagadougou, 03 BP 7021 Ouagadougou 03, Burkina Faso.
| | - Nicolas Barro
- Laboratoire de Biologie Moléculaire, d'Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles Par Les Aliments (LaBESTA), Centre de Recherches en Sciences Biologiques, Alimentaires et Nutritionnelles (CRSBAN), Université de Ouagadougou, 03 BP 7021 Ouagadougou 03, Burkina Faso.
| | - Rita R Colwell
- Center for Bioinformatics and Computational Biology and Institute for Advanced Computer Studies, 3103 Biomolecular Sciences Building, 8314 Paint Branch Drive, University of Maryland, College Park, MD 20742, USA.
| | - Patrick Monfort
- HydroSciences Montpellier, UMR 5569 CNRS, IRD, Université de Montpellier, 34093 Montpellier Cedex 05, France.
| |
Collapse
|
178
|
Chatterjee T, Chatterjee BK, Chakrabarti P. Modelling of growth kinetics of Vibrio cholerae in presence of gold nanoparticles: effect of size and morphology. Sci Rep 2017; 7:9671. [PMID: 28851910 PMCID: PMC5575114 DOI: 10.1038/s41598-017-09357-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/25/2017] [Indexed: 01/05/2023] Open
Abstract
Emergence of multiple drug resistant strains of pathogenic bacteria calls for new initiatives to combat infectious diseases. Gold nanoparticles (AuNPs), because of their non-toxic nature and size/shape dependent optical properties, offer interesting possibility. Here we report the antibacterial efficacy of AuNPs of different size and shape (AuNS10, AuNS100 and AuNR10; the number indicating the diameter in nm; S stands for sphere and R for rod) against the classical (O395) and El Tor (N16961) biotypes of Vibrio cholerae, the etiological agent responsible for cholera. Growth kinetics was monitored by measuring optical density at different time intervals and fitted by non-linear regression of modified Buchanan model. Sigmoidal growth curve for VcO395 indicated the existence of single phenotype population and was affected by AuNR10 only, implying the importance of morphology of AuNP. Growth of VcN16961 was affected by all three AuNPs indicating the vulnerability of El Tor biotype. Interestingly, VcN16961 exhibited the occurrence of two phenotypic subpopulations - one with shorter (vulnerable Type 1) and the other with extended (tolerant Type 2) lag phase. Various assays were conducted to probe the impact of AuNPs on bacterial cells. Apart from AuNR10, antimicrobial efficacy of AuNS10 was better compared to AuNS100.
Collapse
Affiliation(s)
- Tanaya Chatterjee
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata, 700054, India.
| | - Barun K Chatterjee
- Department of Physics, Bose Institute, 93/1A.P.C. Road, Kolkata, 700009, India
| | - Pinak Chakrabarti
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata, 700054, India
- Bioinformatics Centre, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata, 700054, India
| |
Collapse
|
179
|
Kechker P, Senderovich Y, Ken-Dror S, Laviad-Shitrit S, Arakawa E, Halpern M. Otitis Media Caused by V. cholerae O100: A Case Report and Review of the Literature. Front Microbiol 2017; 8:1619. [PMID: 28894440 PMCID: PMC5581382 DOI: 10.3389/fmicb.2017.01619] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/09/2017] [Indexed: 12/20/2022] Open
Abstract
Infections due to Vibrio cholerae are rarely documented in Israel. Here we report a case of recurrent otitis media in a young male, caused by V. cholerae non-O1/O139. This extra-intestinal infection was caused by V. cholerae O100 and has been associated with freshwater exposure and travel. Symptoms of chronic periodic earaches along with purulent exudate began about one week after the patient suffered a water skiing accident on a river in Australia. The condition lasted for three years, until his ear exudate was examined in a clinical laboratory, diagnosed and treated. Five bacterial isolates were identified as V. cholerae O100. The isolates were screened for genetic characteristics and were found positive for the presence of hapA, hlyA, and ompU virulence genes. All isolates were negative for the presence of ctxA. Based on antibiogram susceptibility testing, ciprofloxacin ear drops were used until the patient’s symptoms disappeared. This case demonstrates that exposure to freshwater can cause otitis media by V. cholerae non-O1/O139 in young and otherwise healthy humans.
Collapse
Affiliation(s)
- Peter Kechker
- W. Hirsch Regional Microbiology Laboratory, Clalit Health ServicesHaifa, Israel
| | - Yigal Senderovich
- W. Hirsch Regional Microbiology Laboratory, Clalit Health ServicesHaifa, Israel
| | - Shifra Ken-Dror
- W. Hirsch Regional Microbiology Laboratory, Clalit Health ServicesHaifa, Israel
| | - Sivan Laviad-Shitrit
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of HaifaHaifa, Israel
| | - Eiji Arakawa
- National Institute of Infectious DiseasesToyama, Japan
| | - Malka Halpern
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of HaifaHaifa, Israel.,Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa at OranimTivon, Israel
| |
Collapse
|
180
|
The Two-Component Signal Transduction System VxrAB Positively Regulates Vibrio cholerae Biofilm Formation. J Bacteriol 2017; 199:JB.00139-17. [PMID: 28607158 DOI: 10.1128/jb.00139-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/05/2017] [Indexed: 11/20/2022] Open
Abstract
Two-component signal transduction systems (TCSs), typically composed of a sensor histidine kinase (HK) and a response regulator (RR), are the primary mechanism by which pathogenic bacteria sense and respond to extracellular signals. The pathogenic bacterium Vibrio cholerae is no exception and harbors 52 RR genes. Using in-frame deletion mutants of each RR gene, we performed a systematic analysis of their role in V. cholerae biofilm formation. We determined that 7 RRs impacted the expression of an essential biofilm gene and found that the recently characterized RR, VxrB, regulates the expression of key structural and regulatory biofilm genes in V. choleraevxrB is part of a 5-gene operon, which contains the cognate HK vxrA and three genes of unknown function. Strains carrying ΔvxrA and ΔvxrB mutations are deficient in biofilm formation, while the ΔvxrC mutation enhances biofilm formation. The overexpression of VxrB led to a decrease in motility. We also observed a small but reproducible effect of the absence of VxrB on the levels of cyclic di-GMP (c-di-GMP). Our work reveals a new function for the Vxr TCS as a regulator of biofilm formation and suggests that this regulation may act through key biofilm regulators and the modulation of cellular c-di-GMP levels.IMPORTANCE Biofilms play an important role in the Vibrio cholerae life cycle, providing protection from environmental stresses and contributing to the transmission of V. cholerae to the human host. V. cholerae can utilize two-component systems (TCS), composed of a histidine kinase (HK) and a response regulator (RR), to regulate biofilm formation in response to external cues. We performed a systematic analysis of V. cholerae RRs and identified a new regulator of biofilm formation, VxrB. We demonstrated that the VxrAB TCS is essential for robust biofilm formation and that this system may regulate biofilm formation via its regulation of key biofilm regulators and cyclic di-GMP levels. This research furthers our understanding of the role that TCSs play in the regulation of V. cholerae biofilm formation.
Collapse
|
181
|
Privett BR, Pellegrini M, Kovacikova G, Taylor RK, Skorupski K, Mierke D, Jon Kull F. Identification of a Small Molecule Activator for AphB, a LysR-Type Virulence Transcriptional Regulator in Vibrio cholerae. Biochemistry 2017; 56:3840-3849. [PMID: 28640592 PMCID: PMC5963692 DOI: 10.1021/acs.biochem.7b00337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AphB is a LysR-type transcriptional regulator (LTTR) that cooperates with a second transcriptional activator, AphA, at the tcpPH promoter to initiate expression of the virulence cascade in Vibrio cholerae. Because it is not yet known whether AphB responds to a natural ligand in V. cholerae that influences its ability to activate transcription, we used a computational approach to identify small molecules that influence its activity. In silico docking was used to identify potential ligands for AphB, and saturation transfer difference nuclear magnetic resonance was subsequently employed to access the validity of promising targets. We identified a small molecule, BP-15, that specifically binds the C-terminal regulatory domain of AphB and increases its activity. Interestingly, molecular docking predicts that BP-15 does not bind in the putative primary effector-binding pocket located at the interface of RD-I and RD-II as in other LTTRs, but rather at the dimerization interface. The information gained in this study helps us to further understand the mechanism by which transcriptional activation by AphB is regulated by suggesting that AphB has a secondary ligand binding site, as observed in other LTTRs. This study also lays the groundwork for the future design of inhibitory molecules to block the V. cholerae virulence cascade, thereby preventing the devastating symptoms of cholera infection.
Collapse
Affiliation(s)
| | - Maria Pellegrini
- Department of Chemistry, Dartmouth College, Hanover NH 03755, USA
| | - Gabriela Kovacikova
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover NH 03755, USA
| | - Ronald K. Taylor
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover NH 03755, USA
| | - Karen Skorupski
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover NH 03755, USA
| | - Dale Mierke
- Department of Chemistry, Dartmouth College, Hanover NH 03755, USA
| | - F. Jon Kull
- Department of Chemistry, Dartmouth College, Hanover NH 03755, USA
| |
Collapse
|
182
|
Abstract
Infectious diseases kill nearly 9 million people annually. Bacterial pathogens are responsible for a large proportion of these diseases, and the bacterial agents of pneumonia, diarrhea, and tuberculosis are leading causes of death and disability worldwide. Increasingly, the crucial role of nonhost environments in the life cycle of bacterial pathogens is being recognized. Heightened scrutiny has been given to the biological processes impacting pathogen dissemination and survival in the natural environment, because these processes are essential for the transmission of pathogenic bacteria to new hosts. This chapter focuses on the model environmental pathogen Vibrio cholerae to describe recent advances in our understanding of how pathogens survive between hosts and to highlight the processes necessary to support the cycle of environmental survival, transmission, and dissemination. We describe the physiological and molecular responses of V. cholerae to changing environmental conditions, focusing on its survival in aquatic reservoirs between hosts and its entry into and exit from human hosts.
Collapse
|
183
|
Galleria mellonella is low cost and suitable surrogate host for studying virulence of human pathogenic Vibrio cholerae. Gene 2017; 628:1-7. [PMID: 28698162 DOI: 10.1016/j.gene.2017.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 01/05/2023]
Abstract
Vibrio cholerae causes a severe diarrheal disease affecting millions of people worldwide, particularly in low income countries. V. cholerae successfully persist in aquatic environment and its pathogenic strains results in sever enteric disease in humans. This dual life style contributes towards its better survival and persistence inside host gut and in the environment. Alternative animal replacement models are of great value in studying host-pathogen interaction and for quick screening of various pathogenic strains. One such model is Galleria mellonella, a wax moth which has a complex innate immune system and here we investigate its suitability as a model for clinical human isolates of O1 El TOR, Ogawa serotype belonging to two genetically distinct subclades found in Pakistan (PSC-1 and PSC-2). We demonstrate that the PSC-2 strain D59 frequently isolated from inland areas, was more virulent than PSC-1 strain K7 mainly isolated from coastal areas (p=0.0001). In addition, we compared the relative biofilm capability of the representative strains as indicators of their survival and persistence in the environment and K7 showed enhanced biofilm forming capabilities (p=0.004). Finally we present the annotated genomes of the strains D59 and K7, and compared them with the reference strain N16961.
Collapse
|
184
|
Transcriptional and post-transcriptional regulation of pst2 operon expression in Vibrio cholerae O1. INFECTION GENETICS AND EVOLUTION 2017; 51:10-16. [DOI: 10.1016/j.meegid.2017.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 11/23/2022]
|
185
|
Takemura T, Murase K, Maruyama F, Tran TL, Ota A, Nakagawa I, Nguyen DT, Ngo TC, Nguyen TH, Tokizawa A, Morita M, Ohnishi M, Nguyen BM, Yamashiro T. Genetic diversity of environmental Vibrio cholerae O1 strains isolated in Northern Vietnam. INFECTION GENETICS AND EVOLUTION 2017. [PMID: 28642158 DOI: 10.1016/j.meegid.2017.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cholera epidemics have been recorded periodically in Vietnam during the seventh cholera pandemic. Since cholera is a water-borne disease, systematic monitoring of environmental waters for Vibrio cholerae presence is important for predicting and preventing cholera epidemics. We conducted monitoring, isolation, and genetic characterization of V. cholerae strains in Nam Dinh province of Northern Vietnam from Jul 2013 to Feb 2015. In this study, four V. cholerae O1 strains were detected and isolated from 110 analyzed water samples (3.6%); however, none of them carried the cholera toxin gene, ctxA, in their genomes. Whole genome sequencing and phylogenetic analysis revealed that the four O1 isolates were separated into two independent clusters, and one of them diverged from a common ancestor with pandemic strains. The analysis of pathogenicity islands (CTX prophage, VPI-I, VPI-II, VSP-I, and VSP-II) indicated that one strain (VNND_2014Jun_6SS) harbored an unknown prophage-like sequence with high homology to vibriophage KSF-1 phi and VCY phi, identified from Bangladesh and the USA, respectively, while the other three strains carried tcpA gene with a distinct sequence demonstrating a separate clonal lineage. These results suggest that the aquatic environment can harbor highly divergent V. cholera strains and serve as a reservoir for multiple V. cholerae virulence-associated genes which may be exchanged via mobile genetic elements. Therefore, continuous monitoring and genetic characterization of V. cholerae strains in the environment should contribute to the early detection of the sources of infection and prevention of cholera outbreaks as well as to understanding the natural ecology and evolution of V. cholerae.
Collapse
Affiliation(s)
- Taichiro Takemura
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Japan
| | - Kazunori Murase
- Section of Microbiology, Graduated School of Medicine, Kyoto University, Japan
| | - Fumito Maruyama
- Section of Microbiology, Graduated School of Medicine, Kyoto University, Japan
| | - Thi Luong Tran
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Japan
| | - Atsushi Ota
- Section of Microbiology, Graduated School of Medicine, Kyoto University, Japan
| | - Ichiro Nakagawa
- Section of Microbiology, Graduated School of Medicine, Kyoto University, Japan
| | - Dong Tu Nguyen
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Vietnam
| | - Tu Cuong Ngo
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Vietnam
| | - Thi Hang Nguyen
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Japan
| | - Asako Tokizawa
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Japan
| | - Masatomo Morita
- Department of Bacteriology, National Institute of Infectious Diseases, Japan
| | - Makoto Ohnishi
- Department of Bacteriology, National Institute of Infectious Diseases, Japan
| | - Binh Minh Nguyen
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Vietnam
| | - Tetsu Yamashiro
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Japan; Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Japan.
| |
Collapse
|
186
|
Bhattaram V, Upadhyay A, Yin HB, Mooyottu S, Venkitanarayanan K. Effect of Dietary Minerals on Virulence Attributes of Vibrio cholerae. Front Microbiol 2017; 8:911. [PMID: 28579983 PMCID: PMC5437166 DOI: 10.3389/fmicb.2017.00911] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 05/04/2017] [Indexed: 12/22/2022] Open
Abstract
Vibrio cholerae is a water-borne pathogen responsible for causing a toxin-mediated profuse diarrhea in humans, leading to severe dehydration and death in unattended patients. With increasing reports of antibiotic resistance in V. cholerae, there is a need for alternate interventional strategies for controlling cholera. A potential new strategy for treating infectious diseases involves targeting bacterial virulence rather than growth, where a pathogen’s specific mechanisms critical for causing infection in hosts are inhibited. Since bacterial motility, intestinal colonization and cholera toxin are critical components in V. cholerae pathogenesis, attenuating these virulence factors could potentially control cholera in humans. In this study, the efficacy of sub-inhibitory concentration (SIC, highest concentration not inhibiting bacterial growth) of essential minerals, zinc (Zn), selenium (Se), and manganese (Mn) in reducing V. cholerae motility and adhesion to intestinal epithelial cells (Caco-2), cholera toxin production, and toxin binding to the ganglioside receptor (GM1) was investigated. Additionally, V. cholerae attachment and toxin production in an ex vivo mouse intestine model was determined. Further, the effect of Zn, Se and Mn on V. cholerae virulence genes, ctxAB (toxin production), fliA (motility), tcpA (intestinal colonization), and toxR (master regulon) was determined using real-time quantitative PCR. All three minerals significantly reduced V. cholerae motility, adhesion to Caco-2 cells, and cholera toxin production in vitro, and decreased adhesion and toxin production in mouse intestine ex vivo (P < 0.05). In addition, Zn, Se, and Mn down-regulated the transcription of virulence genes, ctxAB, fliA, and toxR. Results suggest that Zn, Se, and Mn could be potentially used to reduce V. cholerae virulence. However, in vivo studies in an animal model are necessary to validate these results.
Collapse
Affiliation(s)
- Varunkumar Bhattaram
- Department of Animal Science, University of Connecticut, StorrsCT, United States
| | - Abhinav Upadhyay
- Department of Animal Science, University of Connecticut, StorrsCT, United States.,Department of Poultry Science, University of Arkansas, FayettevilleAR, United States
| | - Hsin-Bai Yin
- Department of Animal Science, University of Connecticut, StorrsCT, United States
| | - Shankumar Mooyottu
- Department of Animal Science, University of Connecticut, StorrsCT, United States
| | | |
Collapse
|
187
|
Disarming the enemy: targeting bacterial toxins with small molecules. Emerg Top Life Sci 2017; 1:31-39. [PMID: 33525814 DOI: 10.1042/etls20160013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/17/2022]
Abstract
The rapid emergence of antibiotic-resistant bacterial strains has prompted efforts to find new and more efficacious treatment strategies. Targeting virulence factors produced by pathogenic bacteria has gained particular attention in the last few years. One of the inherent advantages of this approach is that it provides less selective pressure for the development of resistance mechanisms. In addition, antivirulence drugs could potentially be the answer for diseases in which the use of conventional antibiotics is counterproductive. That is the case for bacterial toxin-mediated diseases, in which the severity of the symptoms is a consequence of the exotoxins produced by the pathogen. Examples of these are haemolytic-uraemic syndrome produced by Shiga toxins, the profuse and dangerous dehydration caused by Cholera toxin or the life-threatening colitis occasioned by clostridial toxins. This review focuses on the recent advances on the development of small molecules with antitoxin activity against Enterohaemorrhagic Escherichia coli, Vibrio cholerae and Clostridium difficile given their epidemiological importance. The present work includes studies of small molecules with antitoxin properties that act directly on the toxin (direct inhibitors) or that act by preventing expression of the toxin (indirect inhibitors).
Collapse
|
188
|
Bruns MM, Kakarla P, Floyd JT, Mukherjee MM, Ponce RC, Garcia JA, Ranaweera I, Sanford LM, Hernandez AJ, Willmon TM, Tolson GL, Varela MF. Modulation of the multidrug efflux pump EmrD-3 from Vibrio cholerae by Allium sativum extract and the bioactive agent allyl sulfide plus synergistic enhancement of antimicrobial susceptibility by A. sativum extract. Arch Microbiol 2017; 199:1103-1112. [PMID: 28432381 DOI: 10.1007/s00203-017-1378-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/25/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
The causative agent of cholera, Vibrio cholerae, is a public health concern. Multidrug-resistant V. cholerae variants may reduce chemotherapeutic efficacies of severe cholera. We previously reported that the multidrug efflux pump EmrD-3 from V. cholerae confers resistance to multiple structurally distinct antimicrobials. Medicinal plant compounds are potential candidates for EmrD-3 efflux pump modulation. The antibacterial activities of garlic Allium sativum, although poorly understood, predicts that a main bioactive component, allyl sulfide, modulates EmrD-3 efflux. Thus, we tested whether A. sativum extract acts in synergy with antimicrobials and that a main bioactive component allyl sulfide inhibits EmrD-3 efflux. We found that A. sativum extract and allyl sulfide inhibited ethidium bromide efflux in cells harboring EmrD-3 and that A. sativum lowered the MICs of multiple antibacterials. We conclude that A. sativum and allyl sulfide inhibit EmrD-3 and that A. sativum extract synergistically enhances antibacterial agents.
Collapse
Affiliation(s)
- Merissa M Bruns
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Prathusha Kakarla
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Jared T Floyd
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Mun Mun Mukherjee
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Robert C Ponce
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - John A Garcia
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Indrika Ranaweera
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Leslie M Sanford
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Alberto J Hernandez
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - T Mark Willmon
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Grace L Tolson
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Manuel F Varela
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA.
| |
Collapse
|
189
|
Survival of the Fittest: How Bacterial Pathogens Utilize Bile To Enhance Infection. Clin Microbiol Rev 2017; 29:819-36. [PMID: 27464994 DOI: 10.1128/cmr.00031-16] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacterial pathogens have coevolved with humans in order to efficiently infect, replicate within, and be transmitted to new hosts to ensure survival and a continual infection cycle. For enteric pathogens, the ability to adapt to numerous host factors under the harsh conditions of the gastrointestinal tract is critical for establishing infection. One such host factor readily encountered by enteric bacteria is bile, an innately antimicrobial detergent-like compound essential for digestion and nutrient absorption. Not only have enteric pathogens evolved to resist the bactericidal conditions of bile, but these bacteria also utilize bile as a signal to enhance virulence regulation for efficient infection. This review provides a comprehensive and up-to-date analysis of bile-related research with enteric pathogens. From common responses to the unique expression of specific virulence factors, each pathogen has overcome significant challenges to establish infection in the gastrointestinal tract. Utilization of bile as a signal to modulate virulence factor expression has led to important insights for our understanding of virulence mechanisms for many pathogens. Further research on enteric pathogens exposed to this in vivo signal will benefit therapeutic and vaccine development and ultimately enhance our success at combating such elite pathogens.
Collapse
|
190
|
Elmberg J, Berg C, Lerner H, Waldenström J, Hessel R. Potential disease transmission from wild geese and swans to livestock, poultry and humans: a review of the scientific literature from a One Health perspective. Infect Ecol Epidemiol 2017; 7:1300450. [PMID: 28567210 PMCID: PMC5443079 DOI: 10.1080/20008686.2017.1300450] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 12/23/2016] [Indexed: 12/16/2022] Open
Abstract
There are more herbivorous waterfowl (swans and geese) close to humans, livestock and poultry than ever before. This creates widespread conflict with agriculture and other human interests, but also debate about the role of swans and geese as potential vectors of disease of relevance for human and animal health. Using a One Health perspective, we provide the first comprehensive review of the scientific literature about the most relevant viral, bacterial, and unicellular pathogens occurring in wild geese and swans. Research thus far suggests that these birds may play a role in transmission of avian influenza virus, Salmonella, Campylobacter, and antibiotic resistance. On the other hand, at present there is no evidence that geese and swans play a role in transmission of Newcastle disease, duck plague, West Nile virus, Vibrio, Yersinia, Clostridium, Chlamydophila, and Borrelia. Finally, based on present knowledge it is not possible to say if geese and swans play a role in transmission of Escherichia coli, Pasteurella, Helicobacter, Brachyspira, Cryptosporidium, Giardia, and Microsporidia. This is largely due to changes in classification and taxonomy, rapid development of identification methods and lack of knowledge about host specificity. Previous research tends to overrate the role of geese and swans as disease vectors; we do not find any evidence that they are significant transmitters to humans or livestock of any of the pathogens considered in this review. Nevertheless, it is wise to keep poultry and livestock separated from small volume waters used by many wild waterfowl, but there is no need to discourage livestock grazing in nature reserves or pastures where geese and swans are present. Under some circumstances it is warranted to discourage swans and geese from using wastewater ponds, drinking water reservoirs, and public beaches. Intensified screening of swans and geese for AIV, West Nile virus and anatid herpesvirus is warranted.
Collapse
Affiliation(s)
- Johan Elmberg
- Division of Natural Sciences, Kristianstad University, Kristianstad, Sweden
| | - Charlotte Berg
- Department of Animal Environment and Health, SLU Swedish University of Agricultural Sciences, Skara, Sweden
| | - Henrik Lerner
- Department of Health Care Sciences, Ersta Sköndal Bräcke University College, Stockholm, Sweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linneaus University, Kalmar, Sweden
| | - Rebecca Hessel
- Division of Natural Sciences, Kristianstad University, Kristianstad, Sweden
| |
Collapse
|
191
|
Burke TA, Harker AJ, Dominguez R, Kovar DR. The bacterial virulence factors VopL and VopF nucleate actin from the pointed end. J Cell Biol 2017; 216:1267-1276. [PMID: 28363971 PMCID: PMC5412564 DOI: 10.1083/jcb.201608104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/31/2017] [Accepted: 02/16/2017] [Indexed: 11/22/2022] Open
Abstract
How the bacterial virulence factors VopL/F from Vibrio catalyze actin nucleation is unclear. Using multicolor TIRF microscopy imaging, Burke et al. find that VopL and VopF stimulate actin assembly via identical pointed-end nucleation mechanisms. VopL and VopF (VopL/F) are tandem WH2-domain actin assembly factors used by infectious Vibrio species to induce actin assembly in host cells. There is disagreement about the filament assembly mechanism of VopL/F, including whether they associate with the filament barbed or pointed end. Here, we used multicolor total internal reflection fluorescence microscopy to directly observe actin assembly with fluorescently labeled VopL/F. In actin monomer assembly reactions, VopL/F exclusively nucleate actin filament assemblies, remaining only briefly associated with the pointed end. VopL/F do not associate with the ends of preassembled filaments. In assembly reactions with saturating profilin, ∼85% of VopL/F molecules also promote nucleation from the pointed end, whereas a smaller fraction (<15%) associate for ∼25 s with the barbed end of preassembled filaments, inhibiting their elongation. We conclude that VopL/F function primarily as actin nucleation factors that remain briefly (∼100 s) associated with the pointed end.
Collapse
Affiliation(s)
- Thomas A Burke
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Alyssa J Harker
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637 .,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
192
|
Induction of immunomodulatory miR-146a and miR-155 in small intestinal epithelium of Vibrio cholerae infected patients at acute stage of cholera. PLoS One 2017; 12:e0173817. [PMID: 28319200 PMCID: PMC5358779 DOI: 10.1371/journal.pone.0173817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/27/2017] [Indexed: 12/30/2022] Open
Abstract
The potential immunomodulatory role of microRNAs in small intestine of patients with acute watery diarrhea caused by Vibrio cholerae O1 or enterotoxigenic Escherichia coli (ETEC) infection was investigated. Duodenal biopsies were obtained from study-participants at the acute (day 2) and convalescent (day 21) stages of disease, and from healthy individuals. Levels of miR-146a, miR-155 and miR-375 and target gene (IRAK1, TRAF6, CARD10) and 11 cytokine mRNAs were determined by qRT-PCR. The cellular source of microRNAs in biopsies was analyzed by in situ hybridization. The ability of V. cholerae bacteria and their secreted products to cause changes in microRNA- and mRNA levels in polarized tight monolayers of intestinal epithelial cells was investigated. miR-146a and miR-155 were expressed at significantly elevated levels at acute stage of V. cholerae infection and declined to normal at convalescent stage (P<0.009 versus controls; P = 0.03 versus convalescent stage, pairwise). Both microRNAs were mainly expressed in the epithelium. Only marginal down-regulation of target genes IRAK1 and CARD10 was seen and a weak cytokine-profile was identified in the acute infected mucosa. No elevation of microRNA levels was seen in ETEC infection. Challenge of tight monolayers with the wild type V. cholerae O1 strain C6706 and clinical isolates from two study-participants, caused significant increase in miR-155 and miR-146a by the strain C6706 (P<0.01). One clinical isolate caused reduction in IRAK1 levels (P<0.05) and none of the strains induced inflammatory cytokines. In contrast, secreted factors from these strains caused markedly increased levels of IL-8, IL-1β, and CARD10 (P<0.001), without inducing microRNA expression. Thus, miR-146a and miR-155 are expressed in the duodenal epithelium at the acute stage of cholera. The inducer is probably the V. cholerae bacterium. By inducing microRNAs the bacterium can limit the innate immune response of the host, including inflammation evoked by its own secreted factors, thereby decreasing the risk of being eliminated.
Collapse
|
193
|
Kaki R, El-Hossary D, Jiman-Fatani A, Al-Ghamdi R. Non-O1/non-O139 Vibrio cholerae septicaemia in a Saudi man: a case report. JMM Case Rep 2017; 4:e005077. [PMID: 28348803 PMCID: PMC5361633 DOI: 10.1099/jmmcr.0.005077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/12/2016] [Indexed: 01/19/2023] Open
Abstract
Background. The non-O1/non-O139 serogroups of Vibrio cholerae occur in diverse natural niches, and usually cause mild and self-limiting gastrointestinal illness. However, they have well-documented potential to cause invasive and extra-intestinal infections among immunocompromised patients. Furthermore, their ability to grow in low-salinity surface water, and the existence of asymptomatic human carriers, suggest novel acquisition routes for this unusual infection, even in people without obvious risk factors. Case presentation. A 62-year-old man presented with epigastric pain, vomiting and fever. The patient had a history of diabetes and cholecystectomy, although our initial examination did not reveal any significant findings that might indicate V. cholerae infection. However, blood cultures subsequently revealed the presence of V. cholerae, which was positively identified using both conventional and modern non-conventional technologies. The identity of the V. cholerae isolate was confirmed using Vitek MS (matrix–assisted laser desorption ionization-time of flight MS) and the FilmArray system, in addition to its initial identification using the Vitek 2 system. The septicaemia was successfully treated using a 14 day course of ciprofloxacin. Conclusion. The present case highlights the need to remain highly suspicious of non-O1/non-O139 V. cholerae infections in patients with known risk factors, as well as in healthy individuals with epidemiological exposure and compatible clinical symptoms. Special care should be taken to avoid false-positive results from confirmatory laboratory tests, as the organism can grow in fresh water, and the results should be verified using multiple methods.
Collapse
Affiliation(s)
- Reham Kaki
- Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Infection Control and Environmental Health, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Dalia El-Hossary
- Clinical and Molecular Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, Saudi Arabia; Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Asif Jiman-Fatani
- Clinical and Molecular Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, Saudi Arabia; Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rahaf Al-Ghamdi
- Department of Medicine, Faculty of Medicine, King Abdulaziz University , Jeddah , Saudi Arabia
| |
Collapse
|
194
|
Bhotra T, Das MM, Pal BB, Singh DV. Genomic profile of antibiotic resistant, classical ctxB positive Vibrio cholerae O1 biotype El Tor isolated in 2003 and 2005 from Puri, India: A retrospective study. Indian J Med Microbiol 2017; 34:462-470. [PMID: 27934824 DOI: 10.4103/0255-0857.195356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To examine eight strains of Vibrio cholerae O1 isolated in 2003 and 2005 from Puri, India, for antibiotic susceptibility, presence of virulence and regulatory genes, cholera toxin (CT) production, CTX arrangement and genomic profiles. MATERIALS AND METHODS Bacterial strains were tested for antibiotic susceptibility using disc diffusion assay. Polymerase chain reaction determined the presence of antibiotic resistance, virulence and regulatory genes. To determine the type of cholera toxin subunit B (ctxB), nucleotide sequencing was performed. Southern hybridisation determined the number and arrangement of CTXΦ. Ribotyping and pulsed-field gel electrophoresis (PFGE) were used to determine the genomic profile of isolates. RESULTS All the eight strains, except one strain, showed resistant to nalidixic acid, sulphamethoxazole, streptomycin and trimethoprim and possessed the sullI, strB, dfrA1 and int SXT genes. All the strains carried the toxin-co-regulated pilus pathogenicity island, the CTX genetic element, the repeat in toxin and produced CT. Restriction fragment length polymorphism (RFLP) analysis showed that V. cholerae O1 possess a single copy of the CTX element flanked by tandemly arranged RS element. Nucleotide sequencing of the ctxB gene showed the presence of classical ctxB. RFLP analysis of conserved rRNA gene showed two ribotype patterns. PFGE analysis also showed at least three PFGE patterns, irrespective of year of isolations, indicating the genomic relatedness among them. CONCLUSION Overall, these data suggest that classical ctxB-positive V. cholerae O1 El Tor strains that appeared in 2003 continue to cause infection in 2005 in Puri, India, and belong to identical ribotype(s) and/or pulsotype(s). There is need to continuous monitor the emergence of variant of El Tor because it will improve our understanding of the evolution of new clones of variant of V. cholerae.
Collapse
Affiliation(s)
- T Bhotra
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - M M Das
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - B B Pal
- Department of Infectious Disease Biology, Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - D V Singh
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
195
|
Comparative genome analysis of VSP-II and SNPs reveals heterogenic variation in contemporary strains of Vibrio cholerae O1 isolated from cholera patients in Kolkata, India. PLoS Negl Trop Dis 2017; 11:e0005386. [PMID: 28192431 PMCID: PMC5349696 DOI: 10.1371/journal.pntd.0005386] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/14/2017] [Accepted: 02/04/2017] [Indexed: 12/20/2022] Open
Abstract
Cholera is an acute diarrheal disease and a major public health problem in many developing countries in Asia, Africa, and Latin America. Since the Bay of Bengal is considered the epicenter for the seventh cholera pandemic, it is important to understand the genetic dynamism of Vibrio cholerae from Kolkata, as a representative of the Bengal region. We analyzed whole genome sequence data of V. cholerae O1 isolated from cholera patients in Kolkata, India, from 2007 to 2014 and identified the heterogeneous genomic region in these strains. In addition, we carried out a phylogenetic analysis based on the whole genome single nucleotide polymorphisms to determine the genetic lineage of strains in Kolkata. This analysis revealed the heterogeneity of the Vibrio seventh pandemic island (VSP)-II in Kolkata strains. The ctxB genotype was also heterogeneous and was highly related to VSP-II types. In addition, phylogenetic analysis revealed the shifts in predominant strains in Kolkata. Two distinct lineages, 1 and 2, were found between 2007 and 2010. However, the proportion changed markedly in 2010 and lineage 2 strains were predominant thereafter. Lineage 2 can be divided into four sublineages, I, II, III and IV. The results of this study indicate that lineages 1 and 2-I were concurrently prevalent between 2007 and 2009, and lineage 2-III observed in 2010, followed by the predominance of lineage 2-IV in 2011 and continued until 2014. Our findings demonstrate that the epidemic of cholera in Kolkata was caused by several distinct strains that have been constantly changing within the genetic lineages of V. cholerae O1 in recent years. Seven cholera pandemics have been recorded throughout history, and the sixth, and presumably earlier pandemics, emerged from the Bay of Bengal. The seventh pandemic strain also appeared and spread from this area to different area of the world. Thus, the Bay of Bengal has always been considered the epicenter of cholera pandemics. In this report, we characterized the V. cholerae strains isolated from patients with cholera in Kolkata as a representative area of the Bay of Bengal between 2007 and 2014. The analysis revealed that the cholera epidemics were caused by several distinct V. cholerae O1 strains and that the predominant strains have genetically changed several times in recent years.
Collapse
|
196
|
Rajwar A, Srivastava P, Sahgal M. Microbiology of Fresh Produce: Route of Contamination, Detection Methods, and Remedy. Crit Rev Food Sci Nutr 2017; 56:2383-90. [PMID: 25831486 DOI: 10.1080/10408398.2013.841119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Fresh fruits and vegetables are an important part of a healthful diet. They provide vitamins, minerals and fiber to help keep our body healthy. Occasionally, fresh fruits and vegetables can become contaminated with harmful bacteria or viruses, which are also known as pathogens. The major family of pathogen associated with food are members of Enterobacteriaceae which commonly form a part of microbiological criteria and their presence is traditionally related to hygiene and safety of foods. Organic fertilizers, irrigation water quality and soil are major source of contamination. For removal of pathogens, various decontamination procedures are also followed to reduce microbial load on the fruits. These are chemical preservatives and irradiation. Microbiological study of fresh produce can be done by various phenotypic, biochemical and molecular techniques so that pathogen can properly be identified. The World Health Organization (WHO) developed global risk communication message and training materials to assist countries in strengthening their food educating programs. There is a need for improved surveillance systems on food-borne pathogens, on food products and on outbreaks so that comparable data are available from a wider range of countries.
Collapse
Affiliation(s)
- Asmita Rajwar
- a Department of Microbiology , G. B. Pant University of Agriculture and Technology , Pantnagar, Uddham Singh Nagar , Uttarakhand , India
| | - Pragati Srivastava
- a Department of Microbiology , G. B. Pant University of Agriculture and Technology , Pantnagar, Uddham Singh Nagar , Uttarakhand , India
| | - Manvika Sahgal
- a Department of Microbiology , G. B. Pant University of Agriculture and Technology , Pantnagar, Uddham Singh Nagar , Uttarakhand , India
| |
Collapse
|
197
|
Xia X, Larios-Valencia J, Liu Z, Xiang F, Kan B, Wang H, Zhu J. OxyR-activated expression of Dps is important for Vibrio cholerae oxidative stress resistance and pathogenesis. PLoS One 2017; 12:e0171201. [PMID: 28151956 PMCID: PMC5289545 DOI: 10.1371/journal.pone.0171201] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 01/18/2017] [Indexed: 11/19/2022] Open
Abstract
Vibrio cholerae is the causative agent of cholera, a dehydrating diarrheal disease. This Gram-negative pathogen is able to modulate its gene expression in order to combat stresses encountered in both aquatic and host environments, including stress posed by reactive oxygen species (ROS). In order to further the understanding of V. cholerae’s transcriptional response to ROS, we performed an RNA sequencing analysis to determine the transcriptional profile of V. cholerae when exposed to hydrogen hydroperoxide. Of 135 differentially expressed genes, VC0139 was amongst the genes with the largest induction. VC0139 encodes a protein homologous to the DPS (DNA-binding protein from starved cells) protein family, which are widely conserved and are implicated in ROS resistance in other bacteria. Using a promoter reporter assay, we show that during exponential growth, dps is induced by H2O2 in a manner dependent on the ROS-sensing transcriptional regulator, OxyR. Upon entry into stationary phase, the major stationary phase regulator RpoS is required to transcribe dps. Deletion of dps impaired V. cholerae resistance to both inorganic and organic hydroperoxides. Furthermore, we show that Dps is involved in resistance to multiple environmental stresses. Finally, we found that Dps is important for V. cholerae adult mouse colonization, but becomes dispensable in the presence of antioxidants. Taken together, our results suggest that Dps plays vital roles in both V. cholerae stress resistance and pathogenesis.
Collapse
Affiliation(s)
- Xiaoyun Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jessie Larios-Valencia
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Zhi Liu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Biotechnology, Huazhong University of Science and Technology, Wuhan, China
| | - Fu Xiang
- College of Life Sciences, Huanggang Normal University, Huanggang, China
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hui Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- * E-mail: (HW); (JZ)
| | - Jun Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (HW); (JZ)
| |
Collapse
|
198
|
Kopprio GA, Streitenberger ME, Okuno K, Baldini M, Biancalana F, Fricke A, Martínez A, Neogi SB, Koch BP, Yamasaki S, Lara RJ. Biogeochemical and hydrological drivers of the dynamics of Vibrio species in two Patagonian estuaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:646-656. [PMID: 27871750 DOI: 10.1016/j.scitotenv.2016.11.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
The ecology of the most relevant Vibrio species for human health and their relation to water quality and biogeochemistry were studied in two estuaries in Argentinian Patagonia. Vibrio cholerae and Vibrio parahaemolyticus were reported in >29% of cases at the Río Colorado and Río Negro estuaries. Neither the pandemic serogroups of Vibrio cholerae O1, Vibrio cholerae O139 nor the cholera toxin gene were detected in this study. However, several strains of V. cholerae (not O1 or O139) are able to cause human disease or acquire pathogenic genes by horizontal transfer. Vibrio vulnificus was detected only in three instances in the microplankton fraction of the Río Negro estuary. The higher salinity in the Río Colorado estuary and in marine stations at both estuaries favours an abundance of culturable Vibrio. The extreme peaks for ammonium, heterotrophic bacteria and faecal coliforms in the Río Negro estuary supported a marked impact on sewage discharge. Generally, the more pathogenic strains of Vibrio have a faecal origin. Salinity, pH, ammonium, chlorophyll a, silicate and carbon/nitrogen ratio of suspended organic particulates were the primary factors explaining the distribution of culturable bacteria after distance-based linear models. Several effects of dissolved organic carbon on bacterial distribution are inferred. Global change is expected to increase the trophic state and the salinisation of Patagonian estuaries. Consequently, the distribution and abundance of Vibrio species is projected to increase under future changing baselines. Adaptation strategies should contribute to sustaining good water quality to buffer climate- and anthropogenic- driven impacts.
Collapse
Affiliation(s)
- Germán A Kopprio
- Instituto Argentino de Oceanografía, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional del Sur, Florida 4750, B8000FWB Bahía Blanca, Argentina; Leibniz Center for Tropical Marine Ecology, Fahrenheitstr. 6, 28359 Bremen, Germany.
| | - M Eugenia Streitenberger
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Kentaro Okuno
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku orai-kita, Izumisano-shi, Osaka 598-8531, Japan
| | - Mónica Baldini
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Florencia Biancalana
- Instituto Argentino de Oceanografía, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional del Sur, Florida 4750, B8000FWB Bahía Blanca, Argentina
| | - Anna Fricke
- Instituto Argentino de Oceanografía, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional del Sur, Florida 4750, B8000FWB Bahía Blanca, Argentina; Leibniz Center for Tropical Marine Ecology, Fahrenheitstr. 6, 28359 Bremen, Germany
| | - Ana Martínez
- Department of Chemistry, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca, Argentina
| | - Sucharit B Neogi
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku orai-kita, Izumisano-shi, Osaka 598-8531, Japan
| | - Boris P Koch
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Marine Chemistry, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Shinji Yamasaki
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku orai-kita, Izumisano-shi, Osaka 598-8531, Japan
| | - Rubén J Lara
- Instituto Argentino de Oceanografía, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional del Sur, Florida 4750, B8000FWB Bahía Blanca, Argentina
| |
Collapse
|
199
|
Dojun N, Sekine Y, Ishimori K, Uchida T. Iron chelators inhibit the heme-degradation reaction by HutZ from Vibrio cholerae. Dalton Trans 2017; 46:5147-5150. [DOI: 10.1039/c7dt00121e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The heme-degradation reaction by HutZ fromVibrio choleraeis inhibited by the iron chelators.
Collapse
Affiliation(s)
- Nobuhiko Dojun
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Yukari Sekine
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
- Department of Chemistry
| | - Takeshi Uchida
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
- Department of Chemistry
| |
Collapse
|
200
|
Calcium Enhances Bile Salt-Dependent Virulence Activation in Vibrio cholerae. Infect Immun 2016; 85:IAI.00707-16. [PMID: 27849180 DOI: 10.1128/iai.00707-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/04/2016] [Indexed: 12/17/2022] Open
Abstract
Vibrio cholerae is the causative bacteria of the diarrheal disease cholera, but it also persists in aquatic environments, where it displays an expression profile that is distinct from that during infection. Upon entry into the host, a tightly regulated circuit coordinates the induction of two major virulence factors: cholera toxin and a toxin-coregulated pilus (TCP). It has been shown that a set of bile salts, including taurocholate, serve as host signals to activate V. cholerae virulence through inducing the activity of the transmembrane virulence regulator TcpP. In this study, we investigated the role of calcium, an abundant mental ion in the gut, in the regulation of virulence. We show that whereas Ca2+ alone does not affect virulence, Ca2+ enhances bile salt-dependent virulence activation for V. cholerae The induction of TCP by murine intestinal contents is counteracted when Ca2+ is depleted by the high-affinity calcium chelator EGTA, suggesting that the calcium present in the gut is a relevant signal for V. cholerae virulence induction in vivo We further show that Ca2+ enhances virulence by promoting bile salt-induced TcpP-TcpP interaction. Moreover, fluorescence recovery after photobleaching (FRAP) analysis demonstrated that exposure to bile salts and Ca2+ together decreases the recovery rate for fluorescently labeled TcpP, but not for another inner membrane protein (TatA). Together, these data support a model in which physiological levels of Ca2+ may result in altered bile salt-induced TcpP protein movement and activity, ultimately leading to an increased expression of virulence.
Collapse
|