151
|
Rangel F, Santos RA, Monteiro M, Lavrador AS, Gasco L, Gai F, Oliva-Teles A, Enes P, Serra CR. Isolation of Chitinolytic Bacteria from European Sea Bass Gut Microbiota Fed Diets with Distinct Insect Meals. BIOLOGY 2022; 11:964. [PMID: 36101344 PMCID: PMC9312007 DOI: 10.3390/biology11070964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022]
Abstract
Insect meal (IM), recently authorized for use in aquafeeds, positions itself as a promising commodity for aquafeed inclusion. However, insects are also rich in chitin, a structural polysaccharide present in the exoskeleton, which is not digested by fish, resulting in lower fish performance. Through the application of a dietary pressure, this study aimed to modulate European sea bass gut microbiota towards the enrichment of chitinolytic bacteria to allow the isolation of novel probiotics capable of improving the use of IM-containing diets, overcoming chitin drawbacks. Five isoproteic (44%) and isolipidic (18%) diets were used: a fish meal (FM)-based diet (diet CTR), a chitin-supplemented diet (diet CHIT5), and three diets with either 25% of Hermetia illucens and Tenebrio molitor larvae meals (HM25 and TM25, respectively) or H. illucens exuviae meal (diet HEM25) as partial FM substitutes. After an 8-week feeding trial, the results showed a clear modulatory effect towards spore-forming bacteria by HM25 and HEM25 diets, with the latter being responsible for the majority of the chitinolytic fish isolates (FIs) obtained. Sequential evaluation of the FI hemolytic activity, antibiotic resistance, total chitinolytic activity, sporulation, and survival in gastrointestinal-like conditions identified FI645 and FI658 as the most promising chitinolytic probiotics for in vivo application.
Collapse
Affiliation(s)
- Fábio Rangel
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Ed. FC4, 4169-007 Porto, Portugal; (F.R.); (R.A.S.); (M.M.); (A.S.L.); (A.O.-T.)
- CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Rafaela A. Santos
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Ed. FC4, 4169-007 Porto, Portugal; (F.R.); (R.A.S.); (M.M.); (A.S.L.); (A.O.-T.)
- CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Marta Monteiro
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Ed. FC4, 4169-007 Porto, Portugal; (F.R.); (R.A.S.); (M.M.); (A.S.L.); (A.O.-T.)
- CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Ana Sofia Lavrador
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Ed. FC4, 4169-007 Porto, Portugal; (F.R.); (R.A.S.); (M.M.); (A.S.L.); (A.O.-T.)
- CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Torino, Italy;
| | - Francesco Gai
- Institute of Science of Food Production, National Research Council, Largo P. Braccini 2, 10095 Grugliasco, Torino, Italy;
| | - Aires Oliva-Teles
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Ed. FC4, 4169-007 Porto, Portugal; (F.R.); (R.A.S.); (M.M.); (A.S.L.); (A.O.-T.)
- CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Paula Enes
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Ed. FC4, 4169-007 Porto, Portugal; (F.R.); (R.A.S.); (M.M.); (A.S.L.); (A.O.-T.)
- CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Cláudia R. Serra
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Ed. FC4, 4169-007 Porto, Portugal; (F.R.); (R.A.S.); (M.M.); (A.S.L.); (A.O.-T.)
- CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
152
|
Owusu-Kwarteng J, Agyei D, Akabanda F, Atuna RA, Amagloh FK. Plant-Based Alkaline Fermented Foods as Sustainable Sources of Nutrients and Health-Promoting Bioactive Compounds. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.885328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traditional food fermentation is a practice that precedes human history. Acidic products such as yogurts and sourdoughs or alcoholic beverages produced through lactic acid or yeast fermentations, respectively, are widely described and documented. However, a relatively less popular group of fermented products known as alkaline fermented foods are common traditional products in Africa and Asia. These products are so called “alkaline” because the pH tends to increase during fermentation due to the formation of ammonia resulting from protein degradation by Bacillus species. Plant-based alkaline fermented foods (AFFs) are generally produced from legumes including soybean, non-soybean leguminous seeds, and other non-legume plant raw materials. Alkaline fermented food products such as natto, douchi, kinema, doenjang, chongkukjang, thua nao, meitauza, yandou, dawadawa/iru, ugba, kawal, okpehe, otiru, oso, ogiri, bikalga, maari/tayohounta, ntoba mbodi, cabuk, and owoh are produced at small industrial scale or household levels and widely consumed in Asia and Africa where they provide essential nutrients and health-promoting bioactive compounds for the population. Alkaline food fermentation is important for sustainable food security as it contributes to traditional dietary diversity, significantly reduces antinutritional components in raw plant materials thereby improving digestibility, improves health via the production of vitamins, and may confer probiotic and post-biotic effects onto consumers. In this review, we present currently available scientific information on plant-based AFFs and their role as sustainable sources of nutrients and bioactive compounds for improved health. Finally, we provide perspectives on research needs required to harness the full potential of AFFs in contributing to nutrition and health.
Collapse
|
153
|
Artificially sporulated Escherichia coli cells as a robust cell factory for interfacial biocatalysis. Nat Commun 2022; 13:3142. [PMID: 35668090 PMCID: PMC9170730 DOI: 10.1038/s41467-022-30915-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
The natural bacterial spores have inspired the development of artificial spores, through coating cells with protective materials, for durable whole-cell catalysis. Despite attractiveness, artificial spores developed to date are generally limited to a few microorganisms with their natural endogenous enzymes, and they have never been explored as a generic platform for widespread synthesis. Here, we report a general approach to designing artificial spores based on Escherichia coli cells with recombinant enzymes. The artificial spores are simply prepared by coating cells with polydopamine, which can withstand UV radiation, heating and organic solvents. Additionally, the protective coating enables living cells to stabilize aqueous-organic emulsions for efficient interfacial biocatalysis ranging from single reactions to multienzyme cascades. Furthermore, the interfacial system can be easily expanded to chemoenzymatic synthesis by combining artificial spores with metal catalysts. Therefore, this artificial-spore-based platform technology is envisioned to lay the foundation for next-generation cell factory engineering.
Collapse
|
154
|
Changes in Ambient Bacterial Community in Northern Taiwan during Long-Range Transport: Asian Dust Storm and Frontal Pollution. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Long-range transport (LRT) can carry air pollutants to downwind areas. However, studies about the impacts of LRT on bacterial communities are few. This study investigated the influence of Asian dust storms (ADS) and frontal pollution (FP) on bacterial communities in ambient air using next-generation sequencing (NGS) and Terminal Restriction Fragment Length Polymorphism (T-RFLP). Air samples were collected at Cape Fugui (CF) and National Taiwan University (NTU) in northern Taiwan before (or background days), during, and after LRTs from November 2013 to March 2015. The richness, H index, and evenness increased during FPs and then decreased after FPs. During and after ADS and FP, the prevalence of the phylum Proteobacteria decreased, but that of Firmicutes increased. The dominant class of Proteobacteria changed from Alphaproteobacteria on background days to Betaproteobacteria during LRTs. At the genus level, the high abundance of Ralstonia and Bacillus during FP and Clostridium during ADS were detected at both locations. Additionally, Ralstonia was dominant at CF during ADS. In conclusion, FP and ADS both changed the bacterial community. The indicator genus was Clostridium and Ralstonia for ADS as well as Bacillus and Ralstonia for FP. Given the potential health threats posed by the bioaerosols transported, people should avoid outdoor activities during LRTs.
Collapse
|
155
|
Li L, Jin J, Hu H, Deveau IF, Foley SL, Chen H. Optimization of Sporulation and Purification Methods for Sporicidal Efficacy Assessment on Bacillus Spores. J Ind Microbiol Biotechnol 2022; 49:6590047. [PMID: 35595506 DOI: 10.1093/jimb/kuac014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/03/2022] [Indexed: 11/14/2022]
Abstract
Validating the efficacy of sporicidal agents is a critical step in current good manufacturing practices for disinfection requirements. A limitation is that the poor quality of spores can lead to false positive sporicidal results. The aim of this study was to explore optimal sporulation and purification methods in Bacillus spores. Spores of seven Bacillus strains were produced in five different sporulation media. After density centrifugation, spore yields were measured by phase-contrast microscopy and enumeration assays. Effects of purification methods including heat, sonication and lysozyme, and maturation on spore qualities were determined by sodium hypochlorite sporicidal assay. Difco Sporulation Media was identified as the preferred sporulation medium for four out of seven tested Bacillus strains. Sporulation rates in B. cereus, B. sphaericus, and B. thuringiensis were higher at 30°C than the rates at 37°C at a difference of 5%, 65%, and 20%, respectively. B. licheniformis favored Mn2+-amended 10% Columbia Broth at 37°C for sporulation with 40-72% higher sporulation rates than other media. The maximum sporulation rates of B. cereus and B. thuringiensis were observed on double-strength Schaeffer's-glucose broth. All studied purification methods improved the spore purity with strain variations. However, intense heat (80°C for 20 min) and lysozyme (100 μg/mL) treatment impaired the spore quality of specific Bacillus strains by sensitizing them against sodium hypochlorite. The length of maturation period had impact on the spore resistance, and the most optimal maturation periods ranged from 7 to 21 days in Bacillus strains. The results of this study will pave the way for further evaluation of sporicidal activity of disinfectants.
Collapse
Affiliation(s)
- Liang Li
- Division of Microbiology, National Center for Toxicological Research, U.S. FDA, Jefferson, AR, USA
| | - Jinshan Jin
- Division of Microbiology, National Center for Toxicological Research, U.S. FDA, Jefferson, AR, USA
| | - Haijing Hu
- Office of Dietary Supplement Programs, Center for Food Safety and Applied Nutrition, U.S. FDA, College Park, MD, USA
| | - Ian F Deveau
- Office of Compounding Quality and Compliance, Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD, USA
| | - Steven L Foley
- Division of Microbiology, National Center for Toxicological Research, U.S. FDA, Jefferson, AR, USA
| | - Huizhong Chen
- Division of Microbiology, National Center for Toxicological Research, U.S. FDA, Jefferson, AR, USA
| |
Collapse
|
156
|
Castillo JA, Conde G, Claros M, Ortuño N. Diversity of cultivable microorganisms associated with Quinoa (Chenopodium quinoa) and their potential for plant growth-promotion. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.02.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Quinoa (Chenopodium quinoa) has grown since ancestral times in the Andean mountains and Altiplano, which are the center of origin of this pseudo-cereal. The interaction of Quinoa with native microorganisms may have contributed to the success of this plant in very adverse climatic and soil conditions. This study addressed the microbial diversity associated with Quinoa plants growing in traditional lands. We employed a cultivable-dependent approach to characterize the communities and identify bacterial strains with potential application in agriculture. We identified bacterial isolates belonging to phyla Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria. The genera Bacillus and Rhizobium/Agrobacterium were the predominant groups in the Quinoa bacterial communities, while various Trichoderma species were also found in the fungi group. The plant growth-promoting ability of selected bacterial strains was assessed by culturing them on media and the in planta test. We used different assays to test the capabilities of the isolates for nitrogen fixation, phosphorus solubilization, and production of the phytohormone indole-3-acetic acid. We inoculated Quinoa seeds with some Bacillus strains and then evaluated plant growth and grain production. Plants inoculated with bacterial strains usually show increased growth parameters and grain yield. Altogether, this work reveals that Quinoa harbors many diverse cultivable bacteria and fungi, which could be used as biological amendments to promote plant growth in a chemical-free way. Avoiding chemical fertilizers helps reduce environmental pollution and maintains the organic character of Quinoa production. International Quinoa markets highly appreciate the organic quality of Quinoa.
Keywords. Plant growth-promoting bacteria, Microbial diversity, Rhizosphere bacteria, Andean Altiplano, Trichoderma
Collapse
Affiliation(s)
- José A. Castillo
- Fundación PROINPA, Av. Meneces Km. 4, El Paso, Cochabamba, Bolivia. 2 School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Imbabura, Ecuador
| | | | - Mayra Claros
- Faculty of Agricultural and Livestock Sciences, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Noel Ortuño
- Faculty of Agricultural and Livestock Sciences, Universidad Mayor de San Simón, Cochabamba, Bolivia
| |
Collapse
|
157
|
Host-Associated Phages Disperse across the Extraterrestrial Analogue Antarctica. Appl Environ Microbiol 2022; 88:e0031522. [PMID: 35499326 DOI: 10.1128/aem.00315-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Extreme Antarctic conditions provide one of the closest analogues of extraterrestrial environments. Since air and snow samples, especially from polar regions, yield DNA amounts in the lower picogram range, binning of prokaryotic genomes is challenging and renders studying the dispersal of biological entities across these environments difficult. Here, we hypothesized that dispersal of host-associated bacteriophages (adsorbed, replicating, or prophages) across the Antarctic continent can be tracked via their genetic signatures, aiding our understanding of virus and host dispersal across long distances. Phage genome fragments (PGFs) reconstructed from surface snow metagenomes of three Antarctic stations were assigned to four host genomes, mainly Betaproteobacteria, including Ralstonia spp. We reconstructed the complete genome of a temperate phage with nearly complete alignment to a prophage in the reference genome of Ralstonia pickettii 12D. PGFs from different stations were related to each other at the genus level and matched similar hosts. Metagenomic read mapping and nucleotide polymorphism analysis revealed a wide dispersal of highly identical PGFs, 13 of which were detected in seawater from the Western Antarctic Peninsula at a distance of 5,338 km from the snow sampling stations. Our results suggest that host-associated phages, especially of Ralstonia sp., disperse over long distances despite the harsh conditions of the Antarctic continent. Given that 14 phages associated with two R. pickettii draft genomes isolated from space equipment were identified, we conclude that Ralstonia phages are ideal mobile genetic elements to track dispersal and contamination in ecosystems relevant for astrobiology. IMPORTANCE Host-associated phages of the bacterium Ralstonia identified in snow samples can be used to track microbial dispersal over thousands of kilometers across the Antarctic continent, which functions as an extraterrestrial analogue because of its harsh environmental conditions. Due to the presence of these bacteria carrying genome-integrated prophages on space-related equipment and the potential for dispersal of host-associated phages demonstrated here, our work has implications for planetary protection, a discipline in astrobiology interested in preventing contamination of celestial bodies with alien biomolecules or forms of life.
Collapse
|
158
|
Subirats J, Sharpe H, Topp E. Fate of Clostridia and other spore-forming Firmicute bacteria during feedstock anaerobic digestion and aerobic composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114643. [PMID: 35151135 DOI: 10.1016/j.jenvman.2022.114643] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Pathogenic spore-forming Firmicutes are commonly present in animal and human wastes that are used as fertilizers in crop production. Pre-treatments of organic waste prior to land application offer the potential to abate enteric microorganisms, and therefore reduce the risk of contamination of crops or adjacent water resources with pathogens carried in these materials. The inactivation and reduction of gram-positive spore formers such as Clostridium spp., Clostridioides spp. and Bacillus spp. from animal and human waste can be challenging given the recalcitrance of the spores these bacteria produce. Given the significance of these organisms to human and animal health, information concerning spore-forming bacteria inactivation during anaerobic digestion (AD) and aerobic composting (AC) is required as the basis for recommending safe organic waste management practices. In this review, an assessment of the inactivation of spore-forming Firmicutes during AD and AC was conducted to provide guidance for practical management of organic matrices of animal or human origin. Temperature and pH may be the main factors contributing to the inactivation of spore-forming Firmicutes during batch lab-scale AD (log reduction <0.5-5 log). In continuous digesters, wet AD systems do not effectively inactivate spore-forming Firmicutes even under thermopholic conditions (log reduction -1.09 - 0.98), but dry AD systems could be a feasible management practice to inactivate spore-forming Firmicutes from organic materials with high solid content (log reduction 1.77-3.1). In contrast, composting is an effective treatment to abate spore-forming Firmicutes (log reduction 1.7-6.5) when thermophilic conditions last at least six consecutive days. Temperature, moisture content and composting scale are the key operating conditions influencing the inactivation of spore-forming Firmicutes during composting. Where possible, undertaking AD with subsequent composting to ensure the biosafety of digestate before its downstream processing and recycling is recommended to abate recalcitrant bacteria in digestate.
Collapse
Affiliation(s)
- Jessica Subirats
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada.
| | - Hannah Sharpe
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Edward Topp
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
159
|
Bintarti AF, Kearns PJ, Sulesky-Grieb A, Shade A. Abiotic Treatment to Common Bean Plants Results in an Altered Endophytic Seed Microbiome. Microbiol Spectr 2022; 10:e0021021. [PMID: 35377190 PMCID: PMC9045313 DOI: 10.1128/spectrum.00210-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 03/10/2022] [Indexed: 11/30/2022] Open
Abstract
There has been a growing interest in the seed microbiome due to its important role as an end and starting point of plant microbiome assembly that can have consequences for plant health. However, the effect of abiotic conditions on the seed microbial community remains unknown. We performed a pilot study in a controlled growth chamber to investigate how the endophytic seed microbiome of the common bean (Phaseolus vulgaris L. [var. Red Hawk]) was altered under abiotic treatments relevant for crop management with changing climate. Bean plants were subjected to one of three treatments: 66% water withholding to simulate mild drought, 50% Hoagland nutrient solution to simulate fertilization, or control with sufficient water and baseline nutrition. We performed 16S rRNA gene amplicon sequencing and Internal Transcribed Spacer 1 (ITS1) amplicon sequencing of the endophytic DNA to assess seed bacterial/archaeal and fungal community structure, respectively. We found that variability in the seed microbiome structure was high, while α-diversity was low, with tens of taxa present. Water withholding and nutrient addition significantly altered the seed microbiome structure for bacterial/archaeal communities compared to the control, and each treatment resulted in a distinct microbiome structure. Conversely, there were no statistically supported differences in the fungal microbiome across treatments. These promising results suggest that further investigation is needed to better understand abiotic or stress-induced changes in the seed microbiome, the mechanisms that drive those changes, and their implications for the health and stress responses of the next plant generation. IMPORTANCE Seed microbiome members initiate the assembly of plant-associated microbial communities, but the environmental drivers of endophytic seed microbiome composition are unclear. Here, we exposed plants to short-term drought and fertilizer treatments during early vegetative growth and quantified the microbiome composition of the seeds that were ultimately produced. We found that seeds produced by plants stressed by water limitation or receiving nutrient addition had statistically different endophytic bacterial/archaeal microbiome compositions from each other and from seeds produced by control plants. This work suggests that the abiotic experience of a parental plant can influence the composition of its seed microbiome, with unknown consequences for the next plant generation.
Collapse
Affiliation(s)
- A. Fina Bintarti
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| | - Patrick J. Kearns
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| | - Abby Sulesky-Grieb
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Ashley Shade
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
160
|
Corona Ramírez A, Cailleau G, Fatton M, Dorador C, Junier P. Diversity of Lysis-Resistant Bacteria and Archaea in the Polyextreme Environment of Salar de Huasco. Front Microbiol 2022; 13:826117. [PMID: 36687602 PMCID: PMC9847572 DOI: 10.3389/fmicb.2022.826117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/07/2022] [Indexed: 01/25/2023] Open
Abstract
The production of specialized resting cells is a remarkable strategy developed by several organisms to survive unfavorable environmental conditions. Spores are specialized resting cells that are characterized by low to absent metabolic activity and higher resistance. Spore-like cells are known from multiple groups of bacteria, which can form spores under suboptimal growth conditions (e.g., starvation). In contrast, little is known about the production of specialized resting cells in archaea. In this study, we applied a culture-independent method that uses physical and chemical lysis, to assess the diversity of lysis-resistant bacteria and archaea and compare it to the overall prokaryotic diversity (direct DNA extraction). The diversity of lysis-resistant cells was studied in the polyextreme environment of the Salar de Huasco. The Salar de Huasco is a high-altitude athalassohaline wetland in the Chilean Altiplano. Previous studies have shown a high diversity of bacteria and archaea in the Salar de Huasco, but the diversity of lysis-resistant microorganisms has never been investigated. The underlying hypothesis was that the combination of extreme abiotic conditions might favor the production of specialized resting cells. Samples were collected from sediment cores along a saline gradient and microbial mats were collected in small surrounding ponds. A significantly different diversity and composition were found in the sediment cores or microbial mats. Furthermore, our results show a high diversity of lysis-resistant cells not only in bacteria but also in archaea. The bacterial lysis-resistant fraction was distinct in comparison to the overall community. Also, the ability to survive the lysis-resistant treatment was restricted to a few groups, including known spore-forming phyla such as Firmicutes and Actinobacteria. In contrast to bacteria, lysis resistance was widely spread in archaea, hinting at a generalized resistance to lysis, which is at least comparable to the resistance of dormant cells in bacteria. The enrichment of Natrinema and Halarchaeum in the lysis-resistant fraction could hint at the production of cyst-like cells or other resistant cells. These results can guide future studies aiming to isolate and broaden the characterization of lysis-resistant archaea.
Collapse
Affiliation(s)
- Andrea Corona Ramírez
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Guillaume Cailleau
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Mathilda Fatton
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Cristina Dorador
- Department of Biotechnology, University of Antofagasta, Antofagasta, Chile
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland,*Correspondence: Pilar Junier,
| |
Collapse
|
161
|
Bender KS, Madigan MT, Williamson KL, Mayer MH, Parenteau MN, Jahnke LL, Welander PV, Sanguedolce SA, Brown AC, Sattley WM. Genomic Features of the Bundle-Forming Heliobacterium Heliophilum fasciatum. Microorganisms 2022; 10:microorganisms10050869. [PMID: 35630314 PMCID: PMC9147875 DOI: 10.3390/microorganisms10050869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Eight species of heliobacteria have had their genomes sequenced. However, only two of these genomes have been analyzed in detail, those from the thermophilic Heliomicrobium (Hmi.) modesticaldum and the alkaliphilic Heliorestis (Hrs.) convoluta. Here we present analyses of the draft genome sequence of a species of heliobacterium that grows optimally at a moderate temperature and neutral pH. The organism, Heliophilum (Hph.) fasciatum, is phylogenetically unique among cultured heliobacteria and was isolated from rice soil, a common habitat for heliobacteria. The Hph. fasciatum genome contains 3.14 Mbp—similar to that of other reported heliobacteria—but has a G+C base ratio that lies between that of Hmi. modesticaldum and Hrs. convoluta. Many of the genomic features of Hmi. modesticaldum and Hrs. convoluta, such as the absence of genes encoding autotrophic pathways, the presence of a superoperonal cluster of photosynthesis-related genes, and genes encoding endospore-specific proteins, are also characteristic of the Hph. fasciatum genome. However, despite the fact that Hph. fasciatum is diazotrophic, classical nif genes encoding the alpha and beta subunits of dinitrogenase (nifDK) present in other heliobacteria could not be identified. Instead, genes encoding several highly divergent NifDK homologs were present, at least one of which likely encodes a functional dinitrogenase and another a methylthio-alkane reductase (MarDK) for sulfur assimilation. A classical NifH (dinitrogenase reductase) homolog was also absent in Hph. fasciatum, but a related protein was identified that likely carries out this function as well as electron delivery to MarDK. The N2-fixing system of Hph. fasciatum is therefore distinct from that of other heliobacteria and may have unusual properties.
Collapse
Affiliation(s)
- Kelly S. Bender
- Microbiology Program, School of Biological Sciences, Southern Illinois University, Carbondale, IL 62901, USA; (K.S.B.); (M.T.M.); (K.L.W.)
| | - Michael T. Madigan
- Microbiology Program, School of Biological Sciences, Southern Illinois University, Carbondale, IL 62901, USA; (K.S.B.); (M.T.M.); (K.L.W.)
| | - Kyleigh L. Williamson
- Microbiology Program, School of Biological Sciences, Southern Illinois University, Carbondale, IL 62901, USA; (K.S.B.); (M.T.M.); (K.L.W.)
| | - Marisa H. Mayer
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA 94035, USA; (M.H.M.); (M.N.P.); (L.L.J.)
| | - Mary N. Parenteau
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA 94035, USA; (M.H.M.); (M.N.P.); (L.L.J.)
| | - Linda L. Jahnke
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA 94035, USA; (M.H.M.); (M.N.P.); (L.L.J.)
| | - Paula V. Welander
- Department of Earth System Science, Stanford University, Stanford, CA 94305, USA;
| | - Sophia A. Sanguedolce
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA; (S.A.S.); (A.C.B.)
| | - Abigail C. Brown
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA; (S.A.S.); (A.C.B.)
| | - W. Matthew Sattley
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA; (S.A.S.); (A.C.B.)
- Correspondence: ; Tel.: +1-765-677-2128
| |
Collapse
|
162
|
Iakovides M, Tsiamis G, Tziaras T, Stathopoulou P, Nikolaki S, Iakovides G, Stephanou EG. Two-year systematic investigation reveals alterations induced on chemical and bacteriome profile of PM 2.5 by African dust incursions to the Mediterranean atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:151976. [PMID: 34843760 DOI: 10.1016/j.scitotenv.2021.151976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
PM2.5 atmospheric samples were regularly collected between January 2013 and March 2015 at a central location of Eastern Mediterranean (Island of Crete) during African dust events (DES) and periods of absence of such episodes as controls (CS). The elemental composition and microbiome DES and CS were thoroughly investigated. Fifty-six major and trace elements were determined by inductively coupled plasma-mass spectrometry. Relative mass abundances (RMA) of major crustal elements and lanthanoids were higher in DES than in CS. Conversely in CS, RMAs were higher for most anthropogenic transition metals. Lanthanum-to-other lanthanoids concentration ratios for DES approached the corresponding reference values for continental crust and several African dust source regions, while in CS they exceeded these values. USEPA's UNMIX receptor model, applied in all PM2.5 samples, established that African dust is the dominant contributing source (by 80%) followed by road dust/fuel oil emissions (17%) in the receptor area. Potential source contribution function (PSCF) identified dust hotspots in Tunisia, Libya and Egypt. The application of 16S rRNA gene amplicon sequencing revealed high variation of bacterial composition and diversity between DES and CS samples. Proteobacteria, Actinobacteria and Bacteroides were the most dominant in both DES and CS samples, representing ~88% of the total bacterial diversity. Cutibacterium, Tumebacillus and Sphingomonas dominated the CS samples, while Rhizobium and Brevundimonas were the most prevalent genera in DES. Mutual exclusion/co-occurrence network analysis indicated that Sphingomonas and Chryseobacterium exhibited the highest degrees of mutual exclusion in CS, while in DES the corresponding species were Brevundimonas, Delftia, Rubellimicrobium, Flavobacterium, Blastococcus, and Pseudarthrobacter. Some of these microorganisms are emerging global opportunistic pathogens and an increase in human exposure to them as a result of environmental changes, is inevitable.
Collapse
Affiliation(s)
- Minas Iakovides
- Department of Chemistry, University of Crete, 71003 Heraklion, Greece
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St, 30100 Agrinio, Greece
| | | | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St, 30100 Agrinio, Greece
| | - Sofia Nikolaki
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St, 30100 Agrinio, Greece
| | - Giannis Iakovides
- Department of Mathematics and Applied Mathematics, University of Crete, 71003 Heraklion, Greece
| | | |
Collapse
|
163
|
Song L, Xue X, Wang S, Li J, Jin K, Xia Y. MaAts, an Alkylsulfatase, Contributes to Fungal Tolerances against UV-B Irradiation and Heat-Shock in Metarhizium acridum. J Fungi (Basel) 2022; 8:jof8030270. [PMID: 35330272 PMCID: PMC8951457 DOI: 10.3390/jof8030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022] Open
Abstract
Sulfatases are commonly divided into three classes: type I, type II, and type III sulfatases. The type III sulfatase, alkylsulfatase, could hydrolyze the primary alkyl sulfates, such as sodium dodecyl sulfate (SDS) and sodium octyl sulfate. Thus, it has the potential application of SDS biodegradation. However, the roles of alkylsulfatase in biological control fungus remain unclear. In this study, an alkylsulfatase gene MaAts was identified from Metarhizium acridum. The deletion strain (ΔMaAts) and the complemented strain (CP) were constructed to reveal their functions in M. acridum. The activity of alkylsulfatase in ΔMaAts was dramatically reduced compared to the wild-type (WT) strain. The loss of MaAts delayed conidial germination, conidiation, and significantly declined the fungal tolerances to UV-B irradiation and heat-shock, while the fungal conidial yield and virulence were unaffected in M. acridum. The transcription levels of stress resistance-related genes were significantly changed after MaAts inactivation. Furthermore, digital gene expression profiling showed that 512 differential expression genes (DEGs), including 177 up-regulated genes and 335 down-regulated genes in ΔMaAts, were identified. Of these DEGs, some genes were involved in melanin synthesis, cell wall integrity, and tolerances to various stresses. These results indicate that MaAts and the DEGs involved in fungal stress tolerances may be candidate genes to be adopted to improve the stress tolerances of mycopesticides.
Collapse
Affiliation(s)
- Lei Song
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (L.S.); (X.X.); (S.W.); (J.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Xiaoning Xue
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (L.S.); (X.X.); (S.W.); (J.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Shuqin Wang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (L.S.); (X.X.); (S.W.); (J.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Juan Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (L.S.); (X.X.); (S.W.); (J.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (L.S.); (X.X.); (S.W.); (J.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
- Correspondence: (K.J.); (Y.X.); Tel.: +86-23-65120990 (Y.X.)
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (L.S.); (X.X.); (S.W.); (J.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
- Correspondence: (K.J.); (Y.X.); Tel.: +86-23-65120990 (Y.X.)
| |
Collapse
|
164
|
Coban O, De Deyn GB, van der Ploeg M. Soil microbiota as game-changers in restoration of degraded lands. Science 2022; 375:abe0725. [PMID: 35239372 DOI: 10.1126/science.abe0725] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Land degradation reduces soil functioning and, consequently, the services that soil provides. Soil hydrological functions are critical to combat soil degradation and promote soil restoration. Soil microorganisms affect soil hydrology, but the role of soil microbiota in forming and sustaining soil is not well explored. Case studies indicate the potential of soil microorganisms as game-changers in restoring soil functions. We review the state of the art of microorganism use in land restoration technology, the groups of microorganisms with the greatest potential for soil restoration, knowledge of the effect of microorganisms on soil physical properties, and proposed strategies for the long-term restoration of degraded lands. We also emphasize the need to advance the emerging research field of biophysical landscape interactions to support soil-plant ecosystem restoration practices.
Collapse
Affiliation(s)
- Oksana Coban
- Department of Environmental Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Gerlinde B De Deyn
- Department of Environmental Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Martine van der Ploeg
- Department of Environmental Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
165
|
Falaise C, Bouvattier C, Larigauderie G, Lafontaine V, Berchebru L, Marangon A, Vaude-Lauthier V, Raynaud F, Taysse L. Hydrogen Peroxide Vapor Decontamination of Hazard Group 3 Bacteria and Viruses in a Biosafety Level 3 Laboratory. APPLIED BIOSAFETY 2022; 27:15-22. [PMID: 36032319 PMCID: PMC9402245 DOI: 10.1089/apb.2021.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aim This study aimed to validate the efficacy of hydrogen peroxide vapor (HPV) decontamination technology set up in a biosafety level 3 (BSL-3) laboratory on surrogates and hazard group 3 (HG3) agents. Methods and Results The HPV decontamination system (Bioquell) was assessed with both qualitative and quantitative methods on (1) spore surrogates (Geobacillus stearothermophilus, Bacillus atrophaeus, and Bacillus thuringiensis) in the BSL-3 laboratory and in the material airlock and on (2) HG3 agents (Bacillus anthracis; SARS-CoV-2, Venezuelan equine encephalitis virus [VEE], and Vaccinia virus) in the BSL-3 laboratory. Other HG3 bacteria likely to be handled in the BSL-3 laboratory (Yersinia pestis, Burkholderia mallei, Brucella melitensis, and Francisella tularensis) were excluded from the HPV decontamination assays as preliminary viability tests demonstrated the total inactivation of these agents after 48 h drying on different materials. Conclusions The efficacy of HPV decontamination was validated with a reduction in viability of 5-7 log10 for the spores (surrogates and B. anthracis), and for the enveloped RNA viruses. Vaccinia showed a higher resistance to the decontamination process, being dependent on the biological indicator location in the BSL-3 laboratory.
Collapse
Affiliation(s)
- Charlotte Falaise
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, Vert-le-Petit, France
| | - Cécile Bouvattier
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, Vert-le-Petit, France
| | - Guilhem Larigauderie
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, Vert-le-Petit, France
| | - Valérie Lafontaine
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, Vert-le-Petit, France
| | - Laurent Berchebru
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, Vert-le-Petit, France
| | - Audrey Marangon
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, Vert-le-Petit, France
| | - Valérie Vaude-Lauthier
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, Vert-le-Petit, France
| | - Françoise Raynaud
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, Vert-le-Petit, France
| | - Laurent Taysse
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, Vert-le-Petit, France
| |
Collapse
|
166
|
Sporicidal mechanism of the combination of ortho-phthalaldehyde and benzyldimethyldodecylammonium chloride as a disinfectant against the Bacillus subtilis spores. Braz J Microbiol 2022; 53:547-556. [PMID: 35143017 PMCID: PMC9151947 DOI: 10.1007/s42770-022-00695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Previous studies have shown that the combination disinfectant, Ortho-phthalaldehyde and benzyldimethyldodecylammonium chloride (ODB), can effectively kill a variety of microorganisms, such as Escherichia coli, Staphylococcus aureus, and Candida albicans. To observe the sporicidal ability and mechanism of ODB for spores, Bacillus subtilis spores were used as the research object in this experiment. TEM images revealed that ODB destroyed the integrity of the coat, cortex, and inner membrane of the spores after 0.5-h treatment, and the nuclear material was also broken and exuded after 4-h treatment. The broken structure led to the release of dipicolinic acid (DPA) in large amount. The results show that B. subtilis spores can be effetely killed by ODB through destroying the structure of the spores.
Collapse
|
167
|
Mahapatra S, Yadav R, Ramakrishna W. Bacillus subtilis Impact on Plant Growth, Soil Health and Environment: Dr. Jekyll and Mr. Hyde. J Appl Microbiol 2022; 132:3543-3562. [PMID: 35137494 DOI: 10.1111/jam.15480] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/04/2022] [Indexed: 11/29/2022]
Abstract
The increased dependence of farmers on chemical fertilizers poses a risk to soil fertility and ecosystem stability. Plant growth-promoting rhizobacteria (PGPR) are at the forefront of sustainable agriculture, providing multiple benefits for the enhancement of crop production and soil health. Bacillus subtilis is a common PGPR in soil that plays a key role in conferring biotic and abiotic stress tolerance to plants by induced systemic resistance (ISR), biofilm formation, and lipopeptide production. As a part of bioremediating technologies, Bacillus spp. can purify metal contaminated soil. It acts as a potent denitrifying agent in agroecosystems while improving the carbon sequestration process when applied in a regulated concentration. Although it harbors several antibiotic resistance genes (ARGs), it can reduce the horizontal transfer of ARGs during manure composting by modifying the genetic makeup of existing microbiota. In some instances, it affects the beneficial microbes of the rhizosphere. External inoculation of B. subtilis has both positive and negative impacts on the endophytic and semi-synthetic microbial community. Soil texture, type, pH, and bacterial concentration play a crucial role in the regulation of all these processes. Soil amendments and microbial consortia of Bacillus produced by microbial engineering could be used to lessen the negative effect on soil microbial diversity. The complex plant-microbe interactions could be decoded using transcriptomics, proteomics, metabolomics, and epigenomics strategies which would be beneficial for both crop productivity and the well-being of soil microbiota. Bacillus subtilis has more positive attributes similar to the character of Dr. Jekyll and some negative attributes on plant growth, soil health, and the environment akin to the character of Mr. Hyde.
Collapse
|
168
|
de Souza LC, Procópio L. The adaptations of the microbial communities of the savanna soil over a period of wildfire, after the first rains, and during the rainy season. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14070-14082. [PMID: 34601674 DOI: 10.1007/s11356-021-16731-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Annually, the Cerrado ecosystem alternates between dry periods and long rainy seasons. During the dry season, severe forest fires occur, consuming a considerable part of the native vegetation, which impacts directly on the microbiome of the soil. Evaluate the adaptations of the soil microbiome to drought, rain and wildfire. Sequencing of the 16S rRNA gene was carried out for three significant conditions: drought and forest fires ("Fire"), after the first recorded rains ("First_Rain"), and during the rainy season ("Rainy"). It has been shown that under the "Fire" condition, there was a predominance of Phylum Actinobacteria, followed by Proteobacteria and Firmicutes. With the advent of the rainy season, "First_Rain," there was a change in the predominant taxonomic groups, with a higher prevalence of members of Proteobacteria and Firmicutes. During the rainy season, Proteobacteria and Firmicutes continued as the most prevalent groups. However, it was noted that in this period, there was an increase in bacterial diversity when compared with other periods analyzed. These results show how environmental factors influence adaptations in microbial communities. This allows for a better understanding of how to link the structure of the microbial community to the performance of ecosystems, and assist in preventing the consequences of increased frequency of wildfires, and long periods of drought.
Collapse
Affiliation(s)
- Lucas Conceição de Souza
- Faculty of Geosciences (FAGEO), Universidade Federal do Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil
| | - Luciano Procópio
- Industrial Microbiology and Bioremediation Department, Universidade Federal do Rio de Janeiro (UFRJ), Caxias, Rio de Janeiro, Brazil.
| |
Collapse
|
169
|
Ikeno S, Maekawa T, Hara N. Multi-Functional Silver Nanoparticles for High-Throughput Endospore Sensing. BIOSENSORS 2022; 12:68. [PMID: 35200328 PMCID: PMC8869755 DOI: 10.3390/bios12020068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
In spore-forming bacteria such as Bacillus and Clostridium, the vegetative cells form highly durable hard shells called endospores inside the bacteria to survive as the growth environment deteriorates. Because of these properties, endospores can cause food poisoning and medical accidents if they contaminate food, medicine, or other products, and it is required for technology to detect the spores at the manufacturing site. In this study, we focused on the surface-enhanced Raman scattering (SERS) method for the sensitive detection of dipicolinic acid (DPA), a molecular marker of endospores. We constructed Fe3O4/Ag core-shell functional silver nanoparticles that specifically bind to DPA, and investigated a method for the qualitative detection of DPA by SERS and the quantitative detection of DPA by fluorescence method using a terbium complex formed on the surface. As a result, the concentration of the functional silver nanoparticles constructed could detect spore-derived DPA by fluorescence detection method, and SERS was several tens of nM. The functionalized nanoparticles can detect DPA quantitatively and qualitatively, and are expected to be applied to detection technology in the production of food and pharmaceuticals.
Collapse
Affiliation(s)
- Shinya Ikeno
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan; (T.M.); (N.H.)
| | | | | |
Collapse
|
170
|
Ayrıç Danışman F, Taştan Ö, Baysal T. Development of intermediate‐moisture apricot with impregnation of
Bacillus coagulans
GBI‐30 6086 as a functional snack: Quality assessment during storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Fahriye Ayrıç Danışman
- Graduate School of Natural and Applied Sciences Food Engineering Section Ege University İzmir Turkey
| | - Özge Taştan
- Faculty of Engineering Department of Food Engineering Yeditepe University İstanbul Turkey
| | - Taner Baysal
- Faculty of Engineering Department of Food Engineering Ege University İzmir Turkey
| |
Collapse
|
171
|
Luu J, Mott CM, Schreiber OR, Giovinco HM, Betchen M, Carabetta VJ. Nε-Lysine Acetylation of the Histone-Like Protein HBsu Regulates the Process of Sporulation and Affects the Resistance Properties of Bacillus subtilis Spores. Front Microbiol 2022; 12:782815. [PMID: 35111139 PMCID: PMC8801598 DOI: 10.3389/fmicb.2021.782815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Bacillus subtilis produces dormant, highly resistant endospores in response to extreme environmental stresses or starvation. These spores are capable of persisting in harsh environments for many years, even decades, without essential nutrients. Part of the reason that these spores can survive such extreme conditions is because their chromosomal DNA is well protected from environmental insults. The α/β-type small acid-soluble proteins (SASPs) coat the spore chromosome, which leads to condensation and protection from such insults. The histone-like protein HBsu has been implicated in the packaging of the spore chromosome and is believed to be important in modulating SASP-mediated alterations to the DNA, including supercoiling and stiffness. Previously, we demonstrated that HBsu is acetylated at seven lysine residues, and one physiological function of acetylation is to regulate chromosomal compaction. Here, we investigate if the process of sporulation or the resistance properties of mature spores are influenced by the acetylation state of HBsu. Using our collection of point mutations that mimic the acetylated and unacetylated forms of HBsu, we first determined if acetylation affects the process of sporulation, by determining the overall sporulation frequencies. We found that specific mutations led to decreases in sporulation frequency, suggesting that acetylation of HBsu at some sites, but not all, is required to regulate the process of sporulation. Next, we determined if the spores produced from the mutant strains were more susceptible to heat, ultraviolet (UV) radiation and formaldehyde exposure. We again found that altering acetylation at specific sites led to less resistance to these stresses, suggesting that proper HBsu acetylation is important for chromosomal packaging and protection in the mature spore. Interestingly, the specific acetylation patterns were different for the sporulation process and resistance properties of spores, which is consistent with the notion that a histone-like code exists in bacteria. We propose that specific acetylation patterns of HBsu are required to ensure proper chromosomal arrangement, packaging, and protection during the process of sporulation.
Collapse
Affiliation(s)
- Jackson Luu
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Connor M. Mott
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Olivia R. Schreiber
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Holly M. Giovinco
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Melanie Betchen
- Department of Internal Medicine, Cooper University Hospital, Camden, NJ, United States
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
- *Correspondence: Valerie J. Carabetta,
| |
Collapse
|
172
|
Kusuma SAF, Septyadi R, Sofian FF. Inhibition of bacillus spores germination by cinnamon bark, fingerroot, and moringa leaves extract. J Adv Pharm Technol Res 2022; 13:7-10. [PMID: 35223434 PMCID: PMC8820351 DOI: 10.4103/japtr.japtr_286_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 09/30/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
This study was intended to discover the natural food preservatives by comparing the antibacterial effect of the ethanolic extract of cinnamon bark, finger root, and moringa leaves toward Bacillus cereus both the vegetative cells and spores. The antibacterial activities of the investigated extracts were assessed against cells using the agar diffusion method. Whereas the sporicidal test was performed by observing the colony growth, after various times of incubation (1, 3, and 5 h). The investigated extracts produced inhibition in a diameter ranging from 10.6 to 35.3 mm, and it can be classified that the extract of cinnamon bark was the most potent extract to inhibit the vegetative cells form, followed by fingerroot and the moringa leaves extract. Consistently, the ethanolic extract of cinnamon bark and fingerroot significantly yielded sporicidal activities higher than the moringa leaves extract. Both extracts exerted sporicidal activity within 1 h of contact time at the lowest test concentration of 5% w/v, whereas moringa leaves extract required a longer contact time (5 h) at higher concentration of 20% w/v. It can be concluded that cinnamon bark and fingerroot extract have great potential as effective food preservative candidates to inhibit the B. cereus growth than moringa leaves extract.
Collapse
Affiliation(s)
- Sri Agung Fitri Kusuma
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, West Java, Indonesia,Address for correspondence: Dr. Sri Agung Fitri Kusuma, Komplek Permata Biru, 71D, West Java, Indonesia. E-mail:
| | - Rendy Septyadi
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, West Java, Indonesia
| | - Ferry Ferdiansyah Sofian
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, West Java, Indonesia
| |
Collapse
|
173
|
Yadav U, Abbas Z, Butcher RJ, Patra AK. A luminescent terbium( iii) probe as an efficient ‘Turn-ON’ sensor for dipicolinic acid, a Bacillus Anthracis biomarker. NEW J CHEM 2022. [DOI: 10.1039/d2nj03437a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work drives the potential of lanthanide luminescence in the quantification and detection of the B. Anthracis bacterial spore by targeting dipicolinic acid (DPA), a principal component of anthrax spores.
Collapse
Affiliation(s)
- Usha Yadav
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Zafar Abbas
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Ray J. Butcher
- Department of Chemistry, Howard University, Washington, DC 20059, USA
| | - Ashis K. Patra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
174
|
Moteshareie H, Hassen WM, Vermette J, Dubowski JJ, Tayabali AF. Strategies for capturing Bacillus thuringiensis spores on surfaces of (001) GaAs-based biosensors. Talanta 2022; 236:122813. [PMID: 34635209 DOI: 10.1016/j.talanta.2021.122813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/18/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022]
Abstract
Bacillus thuringiensis (Bt) is used as a bioinsecticide since it effectively kills insect larvae. Bt is also genetically similar to Bacillus cereus (Bc), a well recognized foodborne human pathogen; they are both members of the Bacillus cereus group (BC group). Although approved Bt bioinsecticide products have been confirmed to be non-pathogenic to humans, close monitoring of Bt during dissemination is important for cost considerations and to limit impact on biodiversity towards nontarget organisms. As such, developing rapid, sensitive, and specific tools for quantitative detection of Bt spores during and following spray operations is highly desirable. The goals of this study were to investigate commercially available detection reagents for sensitivity and selectivity in detecting Bt spores, and then functionalize a surface of (001) GaAs used in photonic biosensing. To achieve these goals, we (1) screened commercial antibodies for their capacity to bind recombinant proteins from Bt spores, (2) screened antibodies and aptamers for their sensitivity and selectivity against Bt spores, and (3) tested the efficiency of selected antibodies and aptamers in capturing Bt spores on the surface of functionalized GaAs biochips. Seven genes encoding Bt spore proteins were cloned and expressed in Escherichia coli. The binding of each purified spore antigen was tested by commercially available polyclonal and monoclonal antibodies claimed to exclusively target spores. Of the seven targets, Bacillus collagen-like protein A, was the most abundant protein on Bt spores and demonstrated the strongest binding affinity to all test antibodies. The commercial antibodies (Abs) were also tested for specificity to BC Group versus non-BC Group spores. Three of six commercial antibodies showed selectivity to Bt spores, with recombinant Abs providing the most robust lower range of detection (102 to 6 × 103 spores/mL). The sensitivity and selectivity of three published DNA aptamer sequences demonstrated a wide range of detection sensitivity for Bt spores. Two of the three test aptamers also showed reasonable selectivity towards Bt spores while the third demonstrated reactivity to non-BC Group B. megaterium and B. subtilis. Of the reagents tested, a thiolated aptamer and llama recombinant Ab showed highest Bt spore capture efficiency as measured by spore coverage of the GaAs surface. These results confirm that the selected aptamer and llama rAb can be considered strong candidates for the development of GaAs-based biosensing devices.
Collapse
Affiliation(s)
- Houman Moteshareie
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada; Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Department of Electrical and Computer Engineering, Sherbrooke, Québec, Canada.
| | - Walid M Hassen
- Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Department of Electrical and Computer Engineering, Sherbrooke, Québec, Canada
| | - Jonathan Vermette
- Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Department of Electrical and Computer Engineering, Sherbrooke, Québec, Canada
| | - Jan J Dubowski
- Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Department of Electrical and Computer Engineering, Sherbrooke, Québec, Canada.
| | - Azam F Tayabali
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada; Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Department of Electrical and Computer Engineering, Sherbrooke, Québec, Canada.
| |
Collapse
|
175
|
Nudelman R, Gavriely S, Bychenko D, Barzilay M, Gulakhmedova T, Gazit E, Richter S. Bio-assisted synthesis of bimetallic nanoparticles featuring antibacterial and photothermal properties for the removal of biofilms. J Nanobiotechnology 2021; 19:452. [PMID: 34963478 PMCID: PMC8715638 DOI: 10.1186/s12951-021-01183-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/04/2021] [Indexed: 12/02/2022] Open
Abstract
Biofilms are responsible for about considerable amounts of cases of bacterial infections in humans. They are considered a major threat to transplant and chronic wounds patients due to their highly resistant nature against antibacterial materials and due to the limited types of techniques that can be applied to remove them. Here we demonstrate a successful in-situ bio-assisted synthesis of dual functionality nanoparticles composed of Silver and Gold. This is done using a jellyfish-based scaffold, an antibacterial material as the templating host in the synthesis. We further explore the scaffold’s antibacterial and photothermal properties against various gram-negative and positive model bacteria with and without photo-induced heating at the Near-IR regime. We show that when the scaffold is loaded with these bimetallic nanoparticles, it exhibits dual functionality: Its photothermal capabilities help to disrupt and remove bacterial colonies and mature biofilms, and its antibacterial properties prevent the regrowth of new biofilms. ![]()
Collapse
Affiliation(s)
- Roman Nudelman
- Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, 69978, Tel-Aviv, Israel.,University Center for Nano Science and Nanotechnology, Tel-Aviv, Israel
| | - Shira Gavriely
- Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, 69978, Tel-Aviv, Israel.,University Center for Nano Science and Nanotechnology, Tel-Aviv, Israel
| | - Darya Bychenko
- University Center for Nano Science and Nanotechnology, Tel-Aviv, Israel.,The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, The George S. Wise, Tel-Aviv, Israel
| | - Michal Barzilay
- Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, 69978, Tel-Aviv, Israel.,University Center for Nano Science and Nanotechnology, Tel-Aviv, Israel
| | - Tamilla Gulakhmedova
- Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, 69978, Tel-Aviv, Israel.,University Center for Nano Science and Nanotechnology, Tel-Aviv, Israel
| | - Ehud Gazit
- University Center for Nano Science and Nanotechnology, Tel-Aviv, Israel.,The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, The George S. Wise, Tel-Aviv, Israel
| | - Shachar Richter
- Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, 69978, Tel-Aviv, Israel. .,University Center for Nano Science and Nanotechnology, Tel-Aviv, Israel.
| |
Collapse
|
176
|
Van Looveren N, Vandeweyer D, Van Campenhout L. Impact of Heat Treatment on the Microbiological Quality of Frass Originating from Black Soldier Fly Larvae ( Hermetia illucens). INSECTS 2021; 13:22. [PMID: 35055865 PMCID: PMC8778178 DOI: 10.3390/insects13010022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
Since black soldier fly larvae (BSFL, Hermetia illucens) are being produced at substantial volumes, concomitantly large amounts of the resulting by-product, called frass, are generated. This frass can potentially be applied as valuable plant fertilizer or soil improver. Since frass carries high microbial counts, potentially including foodborne pathogens, safety problems for consumers should be prevented. A heat treatment of 70 °C for 60 min is proposed to reduce harmful organisms in insect frass, based on EU regulations ((EU) No. 2021/1925). This study evaluated for the first time the impact of the proposed heat treatment on BSFL frass. This was done by applying the treatment on uninoculated frass as well as on frass inoculated with Salmonella or Clostridium perfringens at 5.0 log cfu/g. The heat treatment resulted in a reduction (maximum one log-cycle) of total viable counts and did not noticeably reduce bacterial endospores. In contrast, Enterobacteriaceae counts were reduced to below the detection limit (10 cfu/g). Heat treatment of inoculated frass resulted in absence of Salmonella in 25 g of frass and reduction of vegetative C. perfringens to below the detection limit (1 cfu/g). The proposed heat treatment appears to be appropriate to meet the microbiological regulations for insect frass.
Collapse
Affiliation(s)
- Noor Van Looveren
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M2S), Geel Campus, KU Leuven, Kleinhoefstraat 4, 2440 Geel, Belgium; (N.V.L.); (D.V.)
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 2463, 3001 Leuven, Belgium
| | - Dries Vandeweyer
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M2S), Geel Campus, KU Leuven, Kleinhoefstraat 4, 2440 Geel, Belgium; (N.V.L.); (D.V.)
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 2463, 3001 Leuven, Belgium
| | - Leen Van Campenhout
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M2S), Geel Campus, KU Leuven, Kleinhoefstraat 4, 2440 Geel, Belgium; (N.V.L.); (D.V.)
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 2463, 3001 Leuven, Belgium
| |
Collapse
|
177
|
Wang KX, Li C, He YQ, Cui LQ, Chen RW, Long LJ, Tian XP. Brevibacillus marinus sp. nov., a thermophilic bacterium isolated from deep sea sediment in the South China Sea. Int J Syst Evol Microbiol 2021; 71. [PMID: 34904940 DOI: 10.1099/ijsem.0.005154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel thermophilic bacterium, designated SCSIO 07484T, was isolated from marine sediment sampled in the South China Sea. Growth occurred at 30-60 °C, pH 6.0-8.0 and in the presence of 0-3 % (w/v) NaCl. Cells of strain SCSIO 07484T were rod-shaped and flagellum-forming. No soluble pigment was observed. The phylogenetic analysis of the 16S rRNA gene sequences indicated that SCSIO 07484T belonged to the family Paenibacillaceae and clustered with members of the genus Brevibacillus in the phylogenetic trees with less than 96.2 % similarities. The cell wall contained meso-diaminopimelic acid. Whole-cell hydrolysates contained arabinose, glucose and ribose. The predominant menaquinone was MK-7. Major fatty acids were iso-C16 : 0, iso-C15 : 0, C16 : 0 and iso-C14 : 0. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylmonomethylethanolamine were its diagnostic polar lipids. The whole genome size of strain SCSIO 07484T was 4 079 826 bp with a DNA G+C content of 56.2 mol%, including one circular chromosome of 3 978392 bp and one plasmid of 101434 bp. Based on the polyphasic analysis of strain SCSIO 07484T, it is considered to represent a novel species of the genus Brevibacillus, for which the name Brevibacillus marinus sp. nov. is proposed with the type strain SCSIO 07484T (=DSM 106769T=CGMCC 1.15814T).
Collapse
Affiliation(s)
- Ke-Xin Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China.,School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Cun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuan-Qiu He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China.,The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Hong Kong, PR China
| | - Lin-Qing Cui
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rou-Wen Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Li-Juan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, PR China
| | - Xin-Peng Tian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, PR China
| |
Collapse
|
178
|
Ran X, Zhu Z, Long H, Tian Q, You L, Wu X, Liu Q, Huang S, Li S, Niu X, Wang J. Manganese Stress Adaptation Mechanisms of Bacillus safensis Strain ST7 From Mine Soil. Front Microbiol 2021; 12:758889. [PMID: 34899642 PMCID: PMC8656422 DOI: 10.3389/fmicb.2021.758889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/21/2021] [Indexed: 11/23/2022] Open
Abstract
The mechanism of bacterial adaption to manganese-polluted environments was explored using 50 manganese-tolerant strains of bacteria isolated from soil of the largest manganese mine in China. Efficiency of manganese removal by the isolated strains was investigated using atomic absorption spectrophotometry. Bacillus safensis strain ST7 was the most effective manganese-oxidizing bacteria among the tested isolates, achieving up to 82% removal at a Mn(II) concentration of 2,200 mg/L. Bacteria-mediated manganese oxide precipitates and high motility were observed, and the growth of strain ST7 was inhibited while its biofilm formation was promoted by the presence of Mn(II). In addition, strain ST7 could grow in the presence of high concentrations of Al(III), Cr(VI), and Fe(III). Genome-wide analysis of the gene expression profile of strain ST7 using the RNA-seq method revealed that 2,580 genes were differently expressed under Mn(II) exposure, and there were more downregulated genes (n = 2,021) than upregulated genes (n = 559) induced by Mn stress. KAAS analysis indicated that these differently expressed genes were mainly enriched in material metabolisms, cellular processes, organism systems, and genetic and environmental information processing pathways. A total of twenty-six genes from the transcriptome of strain ST7 were involved in lignocellulosic degradation. Furthermore, after 15 genes were knocked out by homologous recombination technology, it was observed that the transporters, multicopper oxidase, and proteins involved in sporulation and flagellogenesis contributed to the removal of Mn(II) in strain ST7. In summary, B. safensis ST7 adapted to Mn exposure by changing its metabolism, upregulating cation transporters, inhibiting sporulation and flagellogenesis, and activating an alternative stress-related sigB pathway. This bacterial strain could potentially be used to restore soil polluted by multiple heavy metals and is a candidate to support the consolidated bioprocessing community.
Collapse
Affiliation(s)
- Xueqin Ran
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Zhongmei Zhu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Hong Long
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Qun Tian
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Longjiang You
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Xingdiao Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Qin Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Shihui Huang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Sheng Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Xi Niu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Jiafu Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| |
Collapse
|
179
|
Yamazawa R, Kuwana R, Takeuchi K, Takamatsu H, Nakajima Y, Ito K. Identification of the active site and characterization of a novel sporulation-specific cysteine protease YabG from Bacillus subtilis. J Biochem 2021; 171:315-324. [PMID: 34865059 DOI: 10.1093/jb/mvab135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/28/2021] [Indexed: 11/15/2022] Open
Abstract
In order to characterize the probable protease gene yabG found in the genomes of spore-forming bacteria, Bacillus subtilis yabG was expressed as a 35 kDa His-tagged protein (BsYabG) in Escherichia coli cells. During purification using Ni-affinity chromatography, the 35 kDa protein was degraded via several intermediates to form a 24 kDa protein. Furthermore, it was degraded after an extended incubation period. The effect of protease inhibitors, including certain chemical modification reagents, on the conversion of the 35 kDa protein to the 24 kDa protein was investigated. Reagents reacting with sulfhydryl groups exerted significant effects, strongly suggesting that the yabG gene product is a cysteine protease with autolytic activity. Site-directed mutagenesis of the conserved Cys and His residues indicated that Cys218 and His172 are active site residues. No degradation was observed in the C218A/S and H172A mutants. In addition to the chemical modification reagents, benzamidine inhibited the degradation of the 24 kDa protein. Determination of the N-terminal amino acid sequences of the intermediates revealed trypsin-like specificity for YabG protease. Based on the relative positions of His172 and Cys218 and their surrounding sequences, we propose the classification of YabG as a new family of clan CD in the Merops peptidase database.
Collapse
Affiliation(s)
- Ryuji Yamazawa
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotouge-cho, Hirakata, Osaka 573-0101, Japan
| | - Ritsuko Kuwana
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotouge-cho, Hirakata, Osaka 573-0101, Japan
| | - Kenji Takeuchi
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotouge-cho, Hirakata, Osaka 573-0101, Japan
| | - Hiromu Takamatsu
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotouge-cho, Hirakata, Osaka 573-0101, Japan
| | - Yoshitaka Nakajima
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, 17-8 Ikeda-nakamachi, Neyagawa, Osaka 572-8508, Japan
| | - Kiyoshi Ito
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotouge-cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
180
|
von Hegner I. Evolutionary Processes Transpiring in the Stages of Lithopanspermia. Acta Biotheor 2021; 69:783-798. [PMID: 33839964 DOI: 10.1007/s10441-021-09411-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/30/2021] [Indexed: 11/28/2022]
Abstract
Lithopanspermia is a theory proposing a natural exchange of organisms between solar system bodies as a result of asteroidal or cometary impactors. Research has examined not only the physics of the stages themselves but also the survival probabilities for life in each stage. However, although life is the primary factor of interest in lithopanspermia, this life is mainly treated as a passive cargo. Life, however, does not merely passively receive an onslaught of stress from surroundings; instead, it reacts. Thus, planetary ejection, interplanetary transport, and planetary entry are only the first three factors in the equation. The other factors are the quality, quantity, and evolutionary strategy of the transported organisms. Thus, a reduction in organism quantity in stage 1 might increase organism quality towards a second stress challenge in stage 3. Thus, robustness towards a stressor might in fact be higher in the bacterial population surviving after transport in stage 3 than at the beginning in stage 1. Therefore, the stages of lithopanspermia can themselves facilitate evolutionary processes that enhance the ability of the collected organisms to survive stresses such as pressure and heat shock. Thus, the multiple abiotic pressures that the population encounters through the three stages can potentially lead to very robust bacteria with survival capacities considerably higher than might otherwise be expected. This analysis details an outcome that is possible but probably rare. However, in addition to lithopanspermia, spacecraft mediated panspermia may also exist. The analogous stages in a spacecraft would result in a greater likelihood of increasing the stress tolerance of hitchhiking organisms. Furthermore, missions seeking life elsewhere will frequently be sent to places where the possibility of life as we know it is assumed to exist. Thus, we not only can transport terrestrial organisms to places where they are potentially more likely to survive but also may increase their invasive potential along the way. This analysis highlights further requirements that planetary protection protocols must implement and also provides a framework for analyses of ecological scenarios regarding the transmission of life, natural or artificial, between worlds in a solar system.
Collapse
Affiliation(s)
- Ian von Hegner
- Aarhus University, Ny Munkegade 116, DK-8000, Aarhus, Denmark.
| |
Collapse
|
181
|
De Bock T, Zhao X, Jacxsens L, Devlieghere F, Rajkovic A, Spanoghe P, Höfte M, Uyttendaele M. Evaluation of B. thuringiensis-based biopesticides in the primary production of fresh produce as a food safety hazard and risk. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
182
|
Farooq S, Nazir R, Ganai BA, Mushtaq H, Dar GJ. Psychrophilic and psychrotrophic bacterial diversity of Himalayan Thajwas glacial soil, India. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
183
|
Bennet D, Vo‐Dinh T, Zenhausern F. Current and emerging opportunities in biological medium‐based computing and digital data storage. NANO SELECT 2021. [DOI: 10.1002/nano.202100275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Devasier Bennet
- Center for Applied NanoBioscience and Medicine College of Medicine Phoenix The University of Arizona Phoenix USA
| | - Tuan Vo‐Dinh
- Department of Biomedical Engineering Department of Chemistry Fitzpatrick Institute for Photonics Duke University Durham North Carolina USA
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine College of Medicine Phoenix The University of Arizona Phoenix USA
- Department of Basic Medical Sciences College of Medicine Phoenix The University of Arizona Phoenix Arizona USA
- Department of Biomedical Engineering; and BIO5 Institute College of Engineering The University of Arizona Tucson Arizona USA
- School of Pharmaceutical Sciences University of Geneva Geneva Switzerland
| |
Collapse
|
184
|
Impact of factors affecting the efficacy of intense pulsed light for reducing Bacillus subtilis spores. Food Sci Biotechnol 2021; 30:1321-1329. [PMID: 34721927 DOI: 10.1007/s10068-021-00971-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 10/25/2022] Open
Abstract
This study investigated how the following four intense pulsed light (IPL) treatment factors affect the inactivation of Bacillus subtilis (KCCM 11,315) spores: distance between the sample and IPL lamp (8, 13, and 18 cm), pulse width (0.5, 1.3, and 2.1 ms), charging voltage (1000, 1200, and 1400 V), and processing time (10, 20, and 30 s). The results showed that all four factors considerably influenced the spore inactivation rate in different ways. Excluding processing time, which does not affect the pulse itself, the effect was largest for pulse width, followed by distance, and charging voltage. The optimal treatment condition that maximized the inactivation rate was a distance of 8 cm, a pulse width of 2.1 ms, a charging voltage of 1000 V, and a processing time of 30 s, which together produced a 6 log reduction. It revealed that individual factors need to be investigated together for achieving the optimal condition of IPL.
Collapse
|
185
|
Genomic insights into biocontrol potential of Bacillus stercoris LJBS06. 3 Biotech 2021; 11:458. [PMID: 34692367 DOI: 10.1007/s13205-021-03000-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/25/2021] [Indexed: 01/20/2023] Open
Abstract
Bacillus spp. have been widely reported with the ability to control plant diseases. In this work, we analyzed the whole genome of LJBS06, which was isolated from grapevine rhizosphere soil. In view of physiological and biochemical characteristics, genome data, and phylogenetic analysis of 16S rRNA, LJBS06 was affiliated with Bacillus stercoris. LJBS06 showed antagonistic activities against a variety of plant pathogens. The inhibition rate of Magnaporthe oryzae was up to 75.05% and the inhibition rates of Colletotrichum gloeosporioides, Coniothyrium diplodiella, and Botrytis cinerea were all above 50% in the plate assays. The genome of LJBS06 had a 4,154,362-bp circular chromosome, with an average GC content of 43.96%, containing an 82,935-bp plasmid with a GC content of 35.18%. The circular chromosome of LJBS06 contained 4231 protein-coding genes, 30 rRNA genes, and 87 tRNA genes, including genes related to the synthesis of plant defense-related enzymes and the promotion of plant growth. Meanwhile, 11 gene clusters involved in biosynthesis of secondary metabolites were present in the genome of LJBS06. In conclusion, our findings indicated that LJBS06 strain had the necessary genetic machinery to control plant pathogens and provided insights for future studies of the biocontrol mechanisms of B. stercoris LJBS06. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03000-6.
Collapse
|
186
|
Sinnelä MT, Pawluk AM, Jin YH, Kim D, Mah JH. Effect of Calcium and Manganese Supplementation on Heat Resistance of Spores of Bacillus Species Associated With Food Poisoning, Spoilage, and Fermentation. Front Microbiol 2021; 12:744953. [PMID: 34707595 PMCID: PMC8542979 DOI: 10.3389/fmicb.2021.744953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
Bacterial spores often survive thermal processing used in the food industry, while heat treatment leads not only to a decrease in the nutritional and organoleptic properties of foods, but also to a delay in fermentation of fermented foods. Selective reduction of undesirable spores without such impediments is an ongoing challenge for food scientists. Thus, increased knowledge of the spore-forming bacteria is required to control them. In this study, the heat resistance results (D100°C) of the spores of four Bacillus species were determined and compared to previous literature, and found that B. cereus has significantly lower heat resistance than the other Bacillus species, B. coagulans, B. subtilis, and B. licheniformis. Using the spores of these strains, this study also evaluated the effects of single and combined supplementation of calcium (0.00–2.00 mM) and manganese (0.00–0.50 mM) on heat resistance (D100°C). The results revealed that the spores of B. licheniformis and B. cereus displayed the smallest heat resistance when sporulated on media rich in calcium. Conversely, B. coagulans spores and B. subtilis spores exhibited the greatest heat resistance when sporulated under calcium-rich conditions. The opposite results (stronger heat resistance for B. licheniformis spores and B. cereus spores, and smaller heat resistance for B. coagulans spores and B. subtilis spores) were obtained when the spores were formed on media poor in the minerals (particularly calcium). Based on the results, the Bacillus species were divided into two groups: B. licheniformis and B. cereus; and B. coagulans and B. subtilis. The study provides valuable insight to selectively reduce spores of undesirable Bacillus species in the food industry.
Collapse
Affiliation(s)
| | | | - Young Hun Jin
- Department of Food and Biotechnology, Korea University, Sejong, South Korea
| | - Dabin Kim
- Department of Food and Biotechnology, Korea University, Sejong, South Korea
| | - Jae-Hyung Mah
- Department of Food and Biotechnology, Korea University, Sejong, South Korea
| |
Collapse
|
187
|
Fajardo-Cavazos P, Nicholson WL. Shelf Life and Simulated Gastrointestinal Tract Survival of Selected Commercial Probiotics During a Simulated Round-Trip Journey to Mars. Front Microbiol 2021; 12:748950. [PMID: 34690999 PMCID: PMC8529248 DOI: 10.3389/fmicb.2021.748950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022] Open
Abstract
To enhance the gastrointestinal health of astronauts, probiotic microorganisms are being considered for inclusion on long-duration human missions to the Moon and Mars. Here we tested three commercial probiotics—Bifidobacterium longum strain BB536, Lactobacillus acidophilus strain DDS-1, and spores of Bacillus subtilis strain HU58—for their survival to some of the conditions expected to be encountered during a 3-year, round trip voyage to Mars. All probiotics were supplied as freeze-dried cells in capsules at a titer of >109 colony forming units per capsule. Parameters tested were survival to: (i) long-term storage at ambient conditions, (ii) simulated Galactic Cosmic Radiation and Solar Particle Event radiation provided by the NASA Space Radiation Laboratory, (iii) exposure to simulated gastric fluid, and (iv) exposure to simulated intestinal fluid. We found that radiation exposure produced minimal effects on the probiotic strains. However, we found that that the shelf-lives of the three strains, and their survival during passage through simulations of the upper GI tract, differed dramatically. We observed that only spores of B. subtilis were capable of surviving all conditions and maintaining a titer of >109 spores per capsule. The results indicate that probiotics consisting of bacterial spores could be a viable option for long-duration human space travel.
Collapse
Affiliation(s)
- Patricia Fajardo-Cavazos
- Space Life Sciences Laboratory, Department of Microbiology and Cell Science, Exploration Park at Kennedy Space Center, University of Florida, Merritt Island, FL, United States
| | - Wayne L Nicholson
- Space Life Sciences Laboratory, Department of Microbiology and Cell Science, Exploration Park at Kennedy Space Center, University of Florida, Merritt Island, FL, United States
| |
Collapse
|
188
|
Gaballa A, Cheng RA, Trmcic A, Kovac J, Kent DJ, Martin NH, Wiedmann M. Development of a database and standardized approach for rpoB sequence-based subtyping and identification of aerobic spore-forming Bacillales. J Microbiol Methods 2021; 191:106350. [PMID: 34710512 DOI: 10.1016/j.mimet.2021.106350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 10/20/2022]
Abstract
Aerobic spore-forming Bacillales are a highly diverse and ubiquitous group that includes organisms that cause foodborne illnesses and food spoilage. Classical microbiological and biochemical identification of members of the order Bacillales represents a challenge due to the diversity of organisms in this group as well as the fact that the phenotypic-based taxonomic assignment of some named species in this group is not consistent with their phylogenomic characteristics. DNA-sequencing-based tools, on the other hand, can be fast and cost-effective, and can provide for a more reliable identification and characterization of Bacillales isolates. In comparison to 16S rDNA, rpoB was shown to better discriminate between Bacillales isolates and to allow for improved taxonomic assignment to the species level. However, the lack of a publicly accessible rpoB database, as well as the lack of standardized protocols for rpoB-based typing and strain identification, is a major challenge. Here, we report (i) the curation of a DNA sequence database for rpoB-based subtype classification of Bacillales isolates; (ii) the development of standardized protocols for generating rpoB sequence data, and a scheme for rpoB-based initial taxonomic identification of Bacillales isolates at the species level; and (iii) the integration of the database in a publicly accessible online platform that allows for the analysis of rpoB sequence data from uncharacterized Bacillales isolates. Specifically, we curated a database of DNA sequences for a 632-nt internal variable region within the rpoB gene from representative Bacillales reference type strains and a large number of isolates that we have previously isolated and characterized through multiple projects. As of May 21, 2021, the rpoB database contained more than 8350 rpoB sequences representing 1902 distinct rpoB allelic types that can be classified into 160 different genera. The database also includes 1129 rpoB sequences for representative Bacillales reference type strains as available on May 21, 2021 in the NCBI database. The rpoB database is integrated into the online Food Microbe Tracker platform (www.foodmicrobetracker.com) and can be queried using the integrated BLAST tool to initially subtype and taxonomically identify aerobic and facultative anaerobic spore-formers. While whole-genome sequencing is increasingly used in bacterial taxonomy, the rpoB sequence-based identification scheme described here provides a valuable tool as it allows for rapid and cost-effective initial isolate characterization, which can help to identify and characterize foodborne pathogens and food spoilage bacteria. In addition, the database and primers described here can also be adopted for metagenomics approaches that include rpoB as a target, improving discriminatory power and identification over what can be achieved using 16S rDNA as a target.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | - Rachel A Cheng
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Aljosa Trmcic
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Jasna Kovac
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - David J Kent
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Nicole H Martin
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
189
|
Chiang ELC, Lee S, Medriano CA, Li L, Bae S. Assessment of physiological responses of bacteria to chlorine and UV disinfection using a plate count method, flow cytometry and viability PCR. J Appl Microbiol 2021; 132:1788-1801. [PMID: 34637587 DOI: 10.1111/jam.15325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 11/28/2022]
Abstract
AIMS This study aimed to investigate the physiological responses of two gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and two gram-positive bacteria (Enterococcus faecalis and Bacillus sphaericus) to ultraviolet (UV) and chlorine disinfection. METHODS AND RESULTS Bacterial inactivation by UV and chlorine disinfection were evaluated with a plate count method for culturability, FCM and PMA-qPCR for membrane integrity and DyeTox13-qPCR for enzymatic activity, respectively. Both UV and chorine disinfection caused complete loss of culturability while membrane integrity remained intact after UV disinfection. Both DyeTox13-qPCR and PMA-qPCR showed high ΔCt values up to 8.9 after chlorine disinfection, indicating that both methods were able to distinguish non-treated from chlorine-treated cells. Although PMA-qPCR could not differentiate membrane integrity of cells on UV exposure, DyeTox13-qPCR showed significant differences in ΔCt values of 5.05 and 10.4 for gram-negative (E. coli) and gram-positive (Enterococcus) bacteria, respectively. However, DyeTox13-qPCR for gram-negative bacteria displayed relatively small differences in ΔCt values compared with gram-positive bacteria. CONCLUSION UV and chlorine disinfection led to changes in physiological state of gram-negative and gram-positive bacteria. Particularly, UV disinfection could induce active but non-culturable (ABNC) for gram-negative bacteria and dormant cell for gram-positive bacteria where intact cells no longer showed the enzymatic activity. SIGNIFICANCE AND IMPACT OF THE STUDY UV and chlorine are commonly used to disinfect water, food and fomites to inactivate pathogenic bacteria. However, a viable but non-culturable (VBNC) state of bacteria induced by disinfection may underestimate the health risks because of the potential resuscitation of VBNC cells. This study highlighted that bacteria could undergo different physiological (ABNC or dormant) states during UV and chlorine disinfection. In addition, viability PCR techniques could provide insight into the changes in physiological states during disinfection processes.
Collapse
Affiliation(s)
- Elaine L C Chiang
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Seunguk Lee
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Carl A Medriano
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Liyan Li
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Sungwoo Bae
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
190
|
Todorov SD, Ivanova IV, Popov I, Weeks R, Chikindas ML. Bacillus spore-forming probiotics: benefits with concerns? Crit Rev Microbiol 2021; 48:513-530. [PMID: 34620036 DOI: 10.1080/1040841x.2021.1983517] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Representatives of the genus Bacillus are multifunctional microorganisms with a broad range of applications in both traditional fermentation and modern biotechnological processes. Bacillus spp. has several beneficial properties. They serve as starter cultures for various traditional fermented foods and are important biotechnological producers of enzymes, antibiotics, and bioactive peptides. They are also used as probiotics for humans, in veterinary medicine, and as feed additives for animals of agricultural importance. The beneficial effects of bacilli are well-reported and broadly acknowledged. However, with a better understanding of their positive role, many questions have been raised regarding their safety and the relevance of spore formation in the practical application of this group of microorganisms. What is the role of Bacillus spp. in the human microbial consortium? When and why did they start colonizing the gastrointestinal tract (GIT) of humans and other animals? Can spore-forming probiotics be considered as truly beneficial organisms, or should they still be approached with caution and regarded as "benefits with concerns"? In this review, we not only hope to answer the above questions but to expand the scope of the conversation surrounding bacilli probiotics.
Collapse
Affiliation(s)
| | - Iskra Vitanova Ivanova
- Department of General and Applied Microbiology, Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia, Bulgaria
| | - Igor Popov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
| | - Michael Leonidas Chikindas
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia.,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
191
|
Esteves E, Whyte P, Gupta TB, Bolton D. The survival of blown pack spoilage associated Clostridium estertheticum and Clostridium gasigenes spores during the ensiling of grass. FEMS MICROBES 2021. [DOI: 10.1093/femsmc/xtab013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
ABSTRACT
Blown pack spoilage (BPS) of vacuum packaged primals, caused by Clostridium estertheticum and Clostridium gasigenes, is a serious issue for the beef industry. There are multiple sources of these bacteria on beef farms, including grass and associated feed preparations. The aim of this study was to investigate the survival of C. estertheticum and C. gasigenes spores during the ensiling of grass and the subsequent opening of the silos. Grass, harvested from fields, with and without cattle slurry amendment, was inoculated with approximately 100 spores/g and ensiled using a laboratory (silo) model system at 20°C in the dark. Adding formic acid or sucrose resulted in six treatment combination as follows: no slurry (NS), no slurry plus formic acid (NSFA), no slurry plus sucrose (NSS), slurry (S), slurry plus formic acid (SFA) and slurry plus sucrose (SS). During the silage fermentation, samples were removed periodically and tested for C. estertheticum, C. gasigenes, total viable, Escherichia coli, Enterobacteriaceae and lactic acid bacteria (LAB) counts. The pH, ethanol, volatile fatty acids (VFA), lactic acid and ammonia concentrations were also monitored throughout the experiment. C. estertheticum did not survive the ensiling process, regardless of treatment. In contrast, C. gasigenes grew in the early stages and was detected during the entirety of the fermentation for all treatments. Based on these observations, it was concluded that the silage fermentation process described would not remove C. gasigenes and contaminated grass may result in contaminated feed for animals.
Collapse
Affiliation(s)
- Eden Esteves
- Department of Food Safety, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Food Assurance Team, AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North 4472, New Zealand
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tanushree B Gupta
- Food Assurance Team, AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North 4472, New Zealand
| | - Declan Bolton
- Department of Food Safety, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| |
Collapse
|
192
|
Seager S, Petkowski JJ, Gao P, Bains W, Bryan NC, Ranjan S, Greaves J. The Venusian Lower Atmosphere Haze as a Depot for Desiccated Microbial Life: A Proposed Life Cycle for Persistence of the Venusian Aerial Biosphere. ASTROBIOLOGY 2021; 21:1206-1223. [PMID: 32787733 DOI: 10.1089/ast.2020.2244] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We revisit the hypothesis that there is life in the venusian clouds to propose a life cycle that resolves the conundrum of how life can persist aloft for hundreds of millions to billions of years. Most discussions of an aerial biosphere in the venusian atmosphere temperate layers never address whether the life-small microbial-type particles-is free floating or confined to the liquid environment inside cloud droplets. We argue that life must reside inside liquid droplets such that it will be protected from a fatal net loss of liquid to the atmosphere, an unavoidable problem for any free-floating microbial life forms. However, the droplet habitat poses a lifetime limitation: Droplets inexorably grow (over a few months) to large enough sizes that are forced by gravity to settle downward to hotter, uninhabitable layers of the venusian atmosphere. (Droplet fragmentation-which would reduce particle size-does not occur in venusian atmosphere conditions.) We propose for the first time that the only way life can survive indefinitely is with a life cycle that involves microbial life drying out as liquid droplets evaporate during settling, with the small desiccated "spores" halting at, and partially populating, the venusian atmosphere stagnant lower haze layer (33-48 km altitude). We, thus, call the venusian lower haze layer a "depot" for desiccated microbial life. The spores eventually return to the cloud layer by upward diffusion caused by mixing induced by gravity waves, act as cloud condensation nuclei, and rehydrate for a continued life cycle. We also review the challenges for life in the extremely harsh conditions of the venusian atmosphere, refuting the notion that the "habitable" cloud layer has an analogy in any terrestrial environment.
Collapse
Affiliation(s)
- Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Janusz J Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Peter Gao
- Department of Astronomy, University of California at Berkeley, California, USA
| | - William Bains
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Noelle C Bryan
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sukrit Ranjan
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jane Greaves
- School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
- Institute of Astronomy, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
193
|
Swanson J, Navarrette A, Hazelton C, Richmann M, Stanley F. Biomass and salt-dependent effects of Bacillus spores on radionuclide migration from the Waste Isolation Pilot Plant. CHEMOSPHERE 2021; 280:130680. [PMID: 34162079 DOI: 10.1016/j.chemosphere.2021.130680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 06/13/2023]
Abstract
Spores of a Bacillus sp., isolated from radioactive waste, were tested for their ability to influence the fate and transport of neodymium (Nd3+) under high salt conditions expected at the Waste Isolation Pilot Plant (WIPP) nuclear waste repository. Spores were suspended in neodymium-spiked saline solutions up to 4 M NaCl, and concentrations of Nd and the complexing agent dipicolinic acid (DPA), a component of spores, were monitored along with optical densities and spore numbers. Results support neodymium bioassociation that is dependent upon biomass, with more apparent adsorption occurring at higher spore concentrations. However, probable spore lysis in 2 and 4 M NaCl solutions and possible germination at 0.15 M NaCl appear to drive the release of DPA and subsequent return of Nd to solution. The implications of this work for the WIPP will depend on actual biomass levels and the ionic strength of the repository brines.
Collapse
Affiliation(s)
- Juliet Swanson
- Los Alamos National Laboratory-Carlsbad Operations, 1400 University Drive, Carlsbad, NM, 88220, USA.
| | - Adrianne Navarrette
- Los Alamos National Laboratory-Carlsbad Operations, 1400 University Drive, Carlsbad, NM, 88220, USA
| | - Cindi Hazelton
- Los Alamos National Laboratory-Carlsbad Operations, 1400 University Drive, Carlsbad, NM, 88220, USA
| | - Michael Richmann
- Los Alamos National Laboratory-Carlsbad Operations, 1400 University Drive, Carlsbad, NM, 88220, USA
| | - Floyd Stanley
- Los Alamos National Laboratory-Carlsbad Operations, 1400 University Drive, Carlsbad, NM, 88220, USA
| |
Collapse
|
194
|
Singh P, Xie J, Qi Y, Qin Q, Jin C, Wang B, Fang W. A Thermotolerant Marine Bacillus amyloliquefaciens S185 Producing Iturin A5 for Antifungal Activity against Fusarium oxysporum f. sp. cubense. Mar Drugs 2021; 19:md19090516. [PMID: 34564178 PMCID: PMC8472358 DOI: 10.3390/md19090516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Fusarium wilt of banana (also known as Panama disease), is a severe fungal disease caused by soil-borne Fusarium oxysporum f. sp. cubense (Foc). In recent years, biocontrol strategies using antifungal microorganisms from various niches and their related bioactive compounds have been used to prevent and control Panama disease. Here, a thermotolerant marine strain S185 was identified as Bacillus amyloliquefaciens, displaying strong antifungal activity against Foc. The strain S185 possesses multiple plant growth-promoting (PGP) and biocontrol utility properties, such as producing indole acetic acid (IAA) and ammonia, assimilating various carbon sources, tolerating pH of 4 to 9, temperature of 20 to 50 °C, and salt stress of 1 to 5%. Inoculation of S185 colonized the banana plants effectively and was mainly located in leaf and root tissues. To further investigate the antifungal components, compounds were extracted, fractionated, and purified. One compound, inhibiting Foc with minimum inhibitory concentrations (MICs) of 25 μg/disk, was identified as iturin A5 by high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and nuclear magnetic resonance (NMR). The isolated iturin, A5, resulted in severe morphological changes during spore germination and hyphae growth of Foc. These results specify that B. amyloliquefaciens S185 plays a key role in preventing the Foc pathogen by producing the antifungal compound iturin A5, and possesses potential as a cost-effective and sustainable biocontrol strain for Panama disease in the future. This is the first report of isolation of the antifungal compound iturin A5 from thermotolerant marine B. amyloliquefaciens S185.
Collapse
Affiliation(s)
- Pratiksha Singh
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
| | - Jin Xie
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
| | - Yanhua Qi
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
| | - Qijian Qin
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
| | - Cheng Jin
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Wang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China
- Correspondence: (B.W.); (W.F.)
| | - Wenxia Fang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (P.S.); (J.X.); (Y.Q.); (Q.Q.); (C.J.)
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China
- Correspondence: (B.W.); (W.F.)
| |
Collapse
|
195
|
Bioremediation of Polycyclic Aromatic Hydrocarbons from Industry Contaminated Soil Using Indigenous Bacillus spp. Processes (Basel) 2021. [DOI: 10.3390/pr9091606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are reportedly toxic, ubiquitous and organic compounds that can persist in the environment and are released largely due to the incomplete combustion of fossil fuel. There is a range of microorganisms that are capable of degrading low molecular weight PAHs, such as naphthalene; however, fewer were reported to degrade higher molecular weight PAHs. Bacillus spp. has shown to be effective in neutralizing polluted streams containing hydrocarbons. Following the growing regulatory requirement to meet the PAH specification upon disposal of contaminated soil, the following study aimed to identify potential Bacillus strains that could effectively remediate low and high molecular weight PAHs from the soil. Six potential hydrocarbon-degrading strains were formulated into two prototypes and tested for the ability to remove PAHs from industry-contaminated soil. Following the dosing of each respective soil system with prototypes 1 and 2, the samples were analyzed for PAH concentration over 11 weeks against an un-augmented control system. After 11 weeks, the control system indicated the presence of naphthalene (3.11 µg·kg−1), phenanthrene (24.47 µg·kg−1), fluoranthene (17.80 µg·kg−1) and pyrene (28.92 µg·kg−1), which illustrated the recalcitrant nature of aromatic hydrocarbons. The soil system dosed with prototype 2 was capable of completely degrading (100%) naphthalene, phenanthrene and pyrene over the experimental period. However, the accumulation of PAHs, namely phenanthrene, fluoranthene and pyrene, were observed using prototype 1. The results showed that prototype 2, consisting of a combination of Bacillus cereus and Bacillus subtilis strains, was more effective in the biodegradation of PAHs and intermediate products. Furthermore, the bio-augmented system dosed with prototype 2 showed an improvement in the overall degradation (10–50%) of PAHs, naphthalene, phenanthrene and pyrene, over the un-augmented control system. The following study demonstrates the potential of using Bacillus spp. in a bioremediation solution for sites contaminated with PAHs and informs the use of biological additives for large-scale environmental remediation.
Collapse
|
196
|
Geochemical, Geotechnical, and Microbiological Changes in Mg/Ca Bentonite after Thermal Loading at 150 °C. MINERALS 2021. [DOI: 10.3390/min11090965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bentonite buffers at temperatures beyond 100 °C could reduce the amount of high-level radioactive waste in a deep geological repository. However, it is necessary to demonstrate that the buffer surrounding the canisters withstands such elevated temperatures, while maintaining its safety functions (regarding long-term performance). For this reason, an experiment with thermal loading of bentonite powder at 150 °C was arranged. The paper presents changes that the Czech Mg/Ca bentonite underwent during heating for one year. These changes were examined by X-ray diffraction (XRD), thermal analysis with evolved gas analysis (TA-EGA), aqueous leachates, Cs sorption, cation exchange capacity (CEC), specific surface area (SSA), free swelling, saturated hydraulic conductivity, water retention curves (WRC), quantitative polymerase chain reaction (qPCR), and next-generation sequencing (NGS). It was concluded that montmorillonite was partially altered, in terms of the magnitude of the surface charge density of montmorillonite particles, based on the measurement interpretations of CEC, SSA, and Cs sorption. Montmorillonite alteration towards low- or non-swelling clay structures corresponded well to significantly lower swelling ability and water uptake ability, and higher saturated hydraulic conductivity of thermally loaded samples. Microbial survivability decreased with the thermal loading time, but it was not completely diminished, even in samples heated for one year.
Collapse
|
197
|
Proton-Cluster-Beam Lethality and Mutagenicity in Bacillus subtilis Spores. QUANTUM BEAM SCIENCE 2021. [DOI: 10.3390/qubs5030025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The unique energy transfer characteristics of swift cluster ions have attracted the attention of many researchers working on the analysis or processing of material surfaces, but the effects on living organisms remain unclear. We irradiated B. subtilis spores with monomer and cluster proton beams and examined their lethality; the 2 MeV H2+ shows a clearly lower lethality than 340 keV H+, even though both have a comparable linear energy transfer. The 2 MeV H2+ dissociates into a pair of 1 MeV H+ by losing the bonding electrons at the target surface. The estimated internuclear distance and the radial dose distribution suggest that the spread of deposited total energy over two areas separated by just several nanometers greatly diminishes beam lethality and that the energy density in the very center of the trajectory, possibly within a 1 nm radius, has a great impact on lethality. We also performed a whole genome resequencing of the surviving colonies to compare the molecular nature of mutations but failed to find a clear difference in overall characteristics. Our results suggest that cluster beams may be a useful tool for understanding biological effects of high linear energy transfer radiation.
Collapse
|
198
|
Bentonite Alteration in Batch Reactor Experiments with and without Organic Supplements: Implications for the Disposal of Radioactive Waste. MINERALS 2021. [DOI: 10.3390/min11090932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bentonite is currently proposed as a potential backfill material for sealing high-level radioactive waste in underground repositories due to its low hydraulic conductivity, self-sealing ability and high adsorption capability. However, saline pore waters, high temperatures and the influence of microbes may cause mineralogical changes and affect the long-term performance of the bentonite barrier system. In this study, long-term static batch experiments were carried out at 25 °C and 90 °C for one and two years using two different industrial bentonites (SD80 from Greece, B36 from Slovakia) and two types of aqueous solutions, which simulated (a) Opalinus clay pore water with a salinity of 19 g·L−1, and (b) diluted cap rock solution with a salinity of 155 g·L−1. The bentonites were prepared with and without organic substrates to study the microbial community and their potential influence on bentonite mineralogy. Smectite alteration was dominated by metal ion substitutions, changes in layer charge and delamination during water–clay interaction. The degree of smectite alteration and changes in the microbial diversity depended largely on the respective bentonite and the experimental conditions. Thus, the low charged SD80 with 17% tetrahedral charge showed nearly no structural change in either of the aqueous solutions, whereas B36 as a medium charged smectite with 56% tetrahedral charge became more beidellitic with increasing temperature when reacted in the diluted cap rock solution. Based on these experiments, the alteration of the smectite is mainly attributed to the nature of the bentonite, pore water chemistry and temperature. A significant microbial influence on the here analyzed parameters was not observed within the two years of experimentation. However, as the detected genera are known to potentially influence geochemical processes, microbial-driven alteration occurring over longer time periods cannot be ruled out if organic nutrients are available at appropriate concentrations.
Collapse
|
199
|
Shoemaker WR, Jones SE, Muscarella ME, Behringer MG, Lehmkuhl BK, Lennon JT. Microbial population dynamics and evolutionary outcomes under extreme energy limitation. Proc Natl Acad Sci U S A 2021; 118:e2101691118. [PMID: 34385301 PMCID: PMC8379937 DOI: 10.1073/pnas.2101691118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Microorganisms commonly inhabit energy-limited ecosystems where cellular maintenance and reproduction is highly constrained. To gain insight into how individuals persist under such conditions, we derived demographic parameters from a collection of 21 heterotrophic bacterial taxa by censusing 100 populations in an effectively closed system for 1,000 d. All but one taxon survived prolonged resource scarcity, yielding estimated times to extinction ranging over four orders of magnitude from 100 to 105 y. Our findings corroborate reports of long-lived bacteria recovered from ancient environmental samples, while providing insight into mechanisms of persistence. As death rates declined over time, lifespan was extended through the scavenging of dead cells. Although reproduction was suppressed in the absence of exogenous resources, populations continued to evolve. Hundreds of mutations were acquired, contributing to genome-wide signatures of purifying selection as well as molecular signals of adaptation. Consistent ecological and evolutionary dynamics indicate that distantly related bacteria respond to energy limitation in a similar and predictable manner, which likely contributes to the stability and robustness of microbial life.
Collapse
Affiliation(s)
- William R Shoemaker
- Department of Biology, Indiana University, Bloomington, IN, 47405;
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095
| | - Stuart E Jones
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | | | | | - Brent K Lehmkuhl
- Department of Biology, Indiana University, Bloomington, IN, 47405
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN, 47405;
| |
Collapse
|
200
|
UV Light Application as a Mean for Disinfection Applied in the Dairy Industry. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167285] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Thermal treatment is the most popular decontamination technique used in the dairy industry to ensure food protection and prolong shelf life. But it also causes nutrient and aroma degradation, non-enzymatic browning, and organoleptic changes of dairy products. Non-thermal solutions, on the other hand, have been extensively explored in a response to rising market demand for more sustainable and safe goods. For a long time, the use of ultraviolet (UV) light in the food industry has held great promise. Irradiation with shortwave UV light has excellent germicidal properties, which can destroy a variety of microbial pathogens (for example bacteria, fungi, molds, yeasts, and viruses), at low maintenance and installation costs with minimal use of energy to preserve food without undesirable effects of heat treatment. The purpose of this review is to update the studies made on the possibilities of UV-C radiation while also addressing the essential processing factors involved in the disinfection. It also sheds light on the promise of UV light-emitting diodes (UV-LEDs) as a microbial inactivation alternative to conventional UV lamps.
Collapse
|