151
|
de Bont J, Jaganathan S, Dahlquist M, Persson Å, Stafoggia M, Ljungman P. Ambient air pollution and cardiovascular diseases: An umbrella review of systematic reviews and meta-analyses. J Intern Med 2022; 291:779-800. [PMID: 35138681 PMCID: PMC9310863 DOI: 10.1111/joim.13467] [Citation(s) in RCA: 230] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The available evidence on the effects of ambient air pollution on cardiovascular diseases (CVDs) has increased substantially. In this umbrella review, we summarized the current epidemiological evidence from systematic reviews and meta-analyses linking ambient air pollution and CVDs, with a focus on geographical differences and vulnerable subpopulations. We performed a search strategy through multiple databases including articles between 2010 and 31 January 2021. We performed a quality assessment and evaluated the strength of evidence. Of the 56 included reviews, the most studied outcomes were stroke (22 reviews), all-cause CVD mortality, and morbidity (19). The strongest evidence was found between higher short- and long-term ambient air pollution exposure and all-cause CVD mortality and morbidity, stroke, blood pressure, and ischemic heart diseases (IHD). Short-term exposures to particulate matter <2.5 μm (PM2.5 ), <10 μm (PM10 ), and nitrogen oxides (NOx ) were consistently associated with increased risks of hypertension and triggering of myocardial infarction (MI), and stroke (fatal and nonfatal). Long-term exposures of PM2.5 were largely associated with increased risk of atherosclerosis, incident MI, hypertension, and incident stroke and stroke mortality. Few reviews evaluated other CVD outcomes including arrhythmias, atrial fibrillation, or heart failure but they generally reported positive statistical associations. Stronger associations were found in Asian countries and vulnerable subpopulations, especially among the elderly, cardiac patients, and people with higher weight status. Consistent with experimental data, this comprehensive umbrella review found strong evidence that higher levels of ambient air pollution increase the risk of CVDs, especially all-cause CVD mortality, stroke, and IHD. These results emphasize the importance of reducing the alarming levels of air pollution across the globe, especially in Asia, and among vulnerable subpopulations.
Collapse
Affiliation(s)
- Jeroen de Bont
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Suganthi Jaganathan
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
- Centre for Environmental HealthPublic Health Foundation of IndiaDelhi‐NCRIndia
- Centre for Chronic Disease ControlNew DelhiIndia
| | - Marcus Dahlquist
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Åsa Persson
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Massimo Stafoggia
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
- Department of EpidemiologyLazio Region Health ServiceRomeItaly
| | - Petter Ljungman
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
- Department of CardiologyDanderyd University HospitalDanderydSweden
| |
Collapse
|
152
|
Lee J, Lee WR, Yoo KB, Cho J, Yoon J. Risk of Cerebro-Cardiovascular Diseases among Police Officers and Firefighters: A Nationwide Retrospective Cohort Study. Yonsei Med J 2022; 63:585-590. [PMID: 35619583 PMCID: PMC9171666 DOI: 10.3349/ymj.2022.63.6.585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Police officers and firefighters are exposed to risk factors for cerebro-cardiovascular diseases, and the actual risk is expected to increase compared with other occupational groups. The present study aimed to estimate the risks of cerebro-cardiovascular diseases in police officers and firefighters compared to other occupational groups. MATERIALS AND METHODS Using the National Health Insurance Service data, we constructed a retrospective cohort of public officers. Three-year consecutive health insurance registration data were used to identify police officers and firefighters. Cerebro-cardiovascular diseases consisted of acute myocardial infarction, other ischemic heart disease, cardiac arrhythmia, and stroke. We compared the incidences of cerebro-cardiovascular diseases between each of the two occupational groups (police officers and firefighters) and other public officers by calculating standardized incidence ratios (SIRs). RESULTS SIRs and 95% confidence intervals of all cerebro-cardiovascular diseases for police officers and firefighters were 1.71 (1.66-1.76) and 1.22 (1.12-1.31), respectively, as compared with all public officers. The incidence ratios remained significantly higher compared to general and education officers. Subgroup analyses for myocardial infarction, stroke, and cardiac arrhythmia exhibited significant increases in incidence ratios among police officers and firefighters. CONCLUSION This study suggests that both police officers and firefighters are at high risk of cerebro-cardiovascular diseases. Therefore, medical protection measures for these occupational groups should be improved.
Collapse
Affiliation(s)
- Jongin Lee
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Woo-Ri Lee
- Department of Health Administration, Yonsei University Graduate School, Wonju, Korea
| | - Ki-Bong Yoo
- Department of Health Administration, Yonsei University Graduate School, Wonju, Korea
| | - Jaelim Cho
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | - Jinha Yoon
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
153
|
Xu Y, Bu H, Jiang Y, Zhuo X, Hu K, Si Z, Chen Y, Liu Q, Gong X, Sun H, Zhu Q, Cui L, Ma X, Cui Y. N‑acetyl cysteine prevents ambient fine particulate matter‑potentiated atherosclerosis via inhibition of reactive oxygen species‑induced oxidized low density lipoprotein elevation and decreased circulating endothelial progenitor cell. Mol Med Rep 2022; 26:236. [PMID: 35621139 PMCID: PMC9185698 DOI: 10.3892/mmr.2022.12752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/09/2022] [Indexed: 11/06/2022] Open
Abstract
Ambient fine particulate matter (PM) serves an important role in the development of cardiovascular disease, including atherosclerosis. Antioxidant N‑acetyl cysteine (NAC) has protective effects in the cardiovascular system. However, it is unknown if NAC prevents PM‑potentiated atherosclerosis in hyperlipidemia. Low‑density lipoprotein (LDL) receptor knockout mice were pretreated with 1 mg/ml NAC in drinking water for 1 week and continued to receive NAC, high‑fat diet and intranasal instillation of PM for 1 week or 6 months. Blood plasma was collected for lipid profile, oxidized (ox‑)LDL, blood reactive oxygen species (ROS) and inflammatory cytokine (TNF‑α, IL‑1β and IL‑6) measurement. Blood cells were harvested for endothelial progenitor cell (EPC) population and intracellular ROS analysis. Murine aorta was isolated for atherosclerotic plaque ratio calculation. NAC treatment maintained circulating EPC level and significantly decreased blood ox‑LDL and ROS, inflammatory cytokines, mononuclear and EPC intracellular ROS levels as well as aortic plaque ratio. NAC prevented PM‑potentiated atherosclerosis by inhibiting plasma ROS‑induced ox‑LDL elevation, mononuclear cell and EPC intracellular ROS‑induced circulating EPC reduction and inflammatory cytokine production.
Collapse
Affiliation(s)
- Yixin Xu
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Haoran Bu
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yufan Jiang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xiaoqing Zhuo
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Ke Hu
- Department of Emergency, Qianfoshan Hospital, Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Zhihua Si
- Department of Emergency, Qianfoshan Hospital, Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Yong Chen
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Qiwei Liu
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xianwei Gong
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Haihui Sun
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Qingyi Zhu
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lianqun Cui
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xiaochun Ma
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Yuqi Cui
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
154
|
Assessing the Impact of Local Policies on PM2.5 Concentration Levels: Application to 10 European Cities. SUSTAINABILITY 2022. [DOI: 10.3390/su14116384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, we propose a methodology to evaluate the effectiveness of local emission reduction policies on PM2.5 concentration levels. In particular, we look at the impact of emission reduction policies at different scales (from urban to EU scale) on different PM2.5 baseline concentration levels. The methodology, based on a post-processing of air quality model simulations, is applied to 10 cities in Europe to understand on which sources local actions are effective to improve air quality, and over which concentration ranges. The results show that local actions are effective on low-level concentrations in some cities (e.g., Rome), whereas in other cases, policies are more effective on high-level concentrations (e.g., Krakow). This means that, in specific geographical areas, a coordinated approach (among cities or even at different administration levels) would be needed to significantly improve air quality. At last, we show that the effectiveness of local actions on urban air pollution is highly city-dependent.
Collapse
|
155
|
Huh H, Kim E, Yoon UA, Choi MJ, Lee H, Kwon S, Kim CT, Kim DK, Kim YS, Lim CS, Lee JP, Kim H, Kim YC. Ambient carbon monoxide correlates with mortality risk of hemodialysis patients: comparing results of control selection in the case-crossover designs. Kidney Res Clin Pract 2022; 41:601-610. [PMID: 35545219 PMCID: PMC9576453 DOI: 10.23876/j.krcp.21.228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/14/2022] [Indexed: 11/04/2022] Open
Abstract
Background Growing evidence suggests that environmental air pollution adversely affects kidney health. To date, the association between carbon monoxide (CO) and mortality in patients with end-stage renal disease (ESRD) has not been examined. Methods Among 134,478 dialysis patients in the Korean ESRD cohort between 2001 and 2014, 8,130 deceased hemodialysis patients were enrolled, and data were analyzed using bidirectional, unidirectional, and time-stratified case-crossover design. We examined the association between short-term CO concentration and mortality in patients with ESRD. We used a two-pollutant model, adjusted for temperature as a climate factor and for nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and particulate matter less than 10 μm in diameter as air pollution variables other than CO. Results Characteristics of the study population included age (66.2 ± 12.1 years), sex (male, 59.1%; female, 40.9%), and comorbidities (diabetes, 55.6%; hypertension, 14.4%). Concentration of CO was significantly associated with all-cause mortality in the three case-crossover designs using the two-pollutant model adjusted for SO2. Patients with diabetes or age older than 75 years had a higher risk of mortality than patients without diabetes or those younger than 75 years. Conclusion Findings presented here suggest that higher CO concentration is correlated with increased all-cause mortality in hemodialysis patients, especially in older high-risk patients.
Collapse
Affiliation(s)
- Hyuk Huh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ejin Kim
- Institute of Health and Environment, Graduate School of Public Health Seoul National University, Seoul, Republic of Korea
| | - Una Amelia Yoon
- Department of Biostatistics and Epidemiology, Graduate School of Public Health, Seoul National University
| | - Mun Jeong Choi
- Department of Biostatistics and Epidemiology, Graduate School of Public Health, Seoul National University
| | - Hyewon Lee
- Department of Health Administration and Management, College of Medical Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Soie Kwon
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Clara Tammy Kim
- Institute of Life and Death Studies, Hallym University, Chuncheon, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yon Su Kim
- Kidney Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Chun Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Ho Kim
- Institute of Health and Environment, Graduate School of Public Health Seoul National University, Seoul, Republic of Korea
- Department of Biostatistics and Epidemiology, Graduate School of Public Health, Seoul National University
- Correspondence: Ho Kim Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Room 708, Building 220, 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea. E-mail:
| | - Yong Chul Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Yong Chul Kim Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea. E-mail:
| |
Collapse
|
156
|
Güresir E, Gräff I, Seidel M, Bauer H, Coch C, Diepenseifen C, Dohmen C, Engels S, Hadjiathanasiou A, Heister U, Heyer I, Lampmann T, Paus S, Petzold G, Pöhlau D, Putensen C, Schneider M, Schuss P, Textor J, Velten M, Wach J, Welchowski T, Vatter H. Aneurysmal Subarachnoid Hemorrhage during the Shutdown for COVID-19. J Clin Med 2022; 11:jcm11092555. [PMID: 35566681 PMCID: PMC9104869 DOI: 10.3390/jcm11092555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022] Open
Abstract
The aim was to evaluate hospitalization rates for aneurysmal subarachnoid hemorrhage (SAH) within an interdisciplinary multicenter neurovascular network (NVN) during the shutdown for the COVID-19 pandemic along with its modifiable risk factors. In this multicenter study, admission rates for SAH were compared for the period of the shutdown for the COVID-19 pandemic in Germany (calendar weeks (cw) 12 to 16, 2020), the periods before (cw 6–11) and after the shutdown (cw 17–21 and 22–26, 2020), as well as with the corresponding cw in the years 2015–2019. Data on all-cause and pre-hospital mortality within the area of the NVN were retrieved from the Department of Health, and the responsible emergency medical services. Data on known triggers for systemic inflammation, e.g., respiratory viruses and air pollution, were analyzed. Hospitalizations for SAH decreased during the shutdown period to one-tenth within the multicenter NVN. There was a substantial decrease in acute respiratory illness rates, and of air pollution during the shutdown period. The implementation of public health measures, e.g., contact restrictions and increased personal hygiene during the shutdown, might positively influence modifiable risk factors, e.g., systemic inflammation, leading to a decrease in the incidence of SAH.
Collapse
Affiliation(s)
- Erdem Güresir
- Department of Neurosurgery, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.H.); (T.L.); (M.S.); (P.S.); (J.W.); (H.V.)
- Correspondence: ; Tel.: +49-228-287-16500
| | - Ingo Gräff
- Emergency Department, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (I.G.); (M.S.)
| | - Matthias Seidel
- Emergency Department, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (I.G.); (M.S.)
| | - Hartmut Bauer
- Department of Neurology, Marien-Hospital Euskirchen, Gottfried-Disse Strasse 40, 53879 Euskirchen, Germany;
| | - Christoph Coch
- Clinical Study Core Unit, Study Center Bonn (SZB), University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany;
| | - Christian Diepenseifen
- Emergency Medical Service Rhein-Sieg-Kreis, Kaiser-Wilhelm-Platz 1, 53721 Siegburg, Germany;
| | - Christian Dohmen
- Department of Neurology, LVR-Clinic Bonn, Kaiser-Karl-Ring 20, 53111 Bonn, Germany;
| | - Susanne Engels
- Department of Health City of Bonn, Berliner Platz 2, 53103 Bonn, Germany; (S.E.); (I.H.)
| | - Alexis Hadjiathanasiou
- Department of Neurosurgery, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.H.); (T.L.); (M.S.); (P.S.); (J.W.); (H.V.)
| | - Ulrich Heister
- Emergency Medical Service City of Bonn, Berliner Platz 2, 53103 Bonn, Germany;
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (C.P.); (M.V.)
| | - Inge Heyer
- Department of Health City of Bonn, Berliner Platz 2, 53103 Bonn, Germany; (S.E.); (I.H.)
| | - Tim Lampmann
- Department of Neurosurgery, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.H.); (T.L.); (M.S.); (P.S.); (J.W.); (H.V.)
| | - Sebastian Paus
- Department of Neurology, St. Johannes-Hospital Troisdorf, Wilhelm-Busch-Strasse 9, 53844 Troisdorf, Germany;
| | - Gabor Petzold
- Department of Neurology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany;
| | - Dieter Pöhlau
- Department of Neurology, DRK-Kamillus-Clinic Asbach, Hospitalstraße 6, 53567 Asbach, Germany;
| | - Christian Putensen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (C.P.); (M.V.)
| | - Matthias Schneider
- Department of Neurosurgery, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.H.); (T.L.); (M.S.); (P.S.); (J.W.); (H.V.)
| | - Patrick Schuss
- Department of Neurosurgery, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.H.); (T.L.); (M.S.); (P.S.); (J.W.); (H.V.)
| | - Jochen Textor
- Department of Radiology, Gemeinschaftskrankenhaus Bonn, Prinz-Albert-Straße 40, 53113 Bonn, Germany;
| | - Markus Velten
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (C.P.); (M.V.)
| | - Johannes Wach
- Department of Neurosurgery, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.H.); (T.L.); (M.S.); (P.S.); (J.W.); (H.V.)
| | - Thomas Welchowski
- Institute of Medical Biometry, Informatics and Epidemiology (IMBIE), University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany;
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.H.); (T.L.); (M.S.); (P.S.); (J.W.); (H.V.)
| |
Collapse
|
157
|
Hu J, Li W, Gao Y, Zhao G, Jiang Y, Wang W, Cao M, Zhu Y, Niu Y, Ge J, Chen R. Fine particulate matter air pollution and subclinical cardiovascular outcomes: A longitudinal study in 15 Chinese cities. ENVIRONMENT INTERNATIONAL 2022; 163:107218. [PMID: 35378443 DOI: 10.1016/j.envint.2022.107218] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/06/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
AIMS Although previous studies have linked short-term exposure to fine particulate matter (PM2.5) air pollution with various molecular biomarkers of cardiovascular system, limited evidence is available for indicators at clinical or subclinical levels. We examined the associations between short-term PM2.5 exposure and a range of clinical or subclinical indicators of cardiovascular health in general population. METHODS AND RESULTS A longitudinal repeated-measure study was conducted among 247,640 participants who repeatedly visited health examination centers in 15 typical cities across China from 2013 to 2020. A total of 19 well-established indicators of cardiovascular risk or injury were evaluated and air quality data at nearest fixed-site monitors were collected. Linear mixed-effects models with distributed lag models were used to analyze the potentially lagged effects of PM2.5. The average daily PM2.5 concentration was 48 μg/m3 during the study period. PM2.5 exposure was associated with significant changes of 16 indicators with the effects generally peaked on lag 0 to 3 day. For an interquartile range (IQR) elevation (37 μg/m3) in PM2.5 concentrations over lag 0-7 day, the cumulative percentage changes were 0.50% to 1.27% in heart rates and blood pressure, 0.10% to 5.04% in inflammatory markers, -0.29% to 1.39% in blood viscosity parameters, -0.67% to 3.45% in blood lipids, 0.89% in blood homocysteine, 0.13% to 0.78% in myocardial enzymes, and 3.03% in pulse wave velocity. These associations were not substantially changed after adjusting concomitant exposures to gaseous pollutants. CONCLUSION Short-term exposure to PM2.5 may induce early cardiovascular effects in general population, including acute inflammation, myocardial injury, increased blood viscosity, vascular stiffness and hyperlipidemia.
Collapse
Affiliation(s)
- Jialu Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenshu Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Gang Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Mengying Cao
- Shanghai Institute of Cardiovascular Diseases, Shanghai Clinical Bioinformatics Research Institute, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yixiang Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| |
Collapse
|
158
|
Guo C, Yu T, Bo Y, Lin C, Chang LY, Wong MCS, Yu Z, Lau AKH, Tam T, Lao XQ. Long-term Exposure to Fine Particulate Matter and Mortality A Longitudinal Cohort Study of 400,459 Adults. Epidemiology 2022; 33:309-317. [PMID: 35067568 DOI: 10.1097/ede.0000000000001464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cohort studies on the association between long-term exposure to fine particulate matter (PM2.5) and mortality have been well established for America and Europe, but limited and inconsistent in Asia with much higher air pollution. This study aims to investigate the associations between ambient PM2.5 and all-cause and cause-specific mortality over a period of rising and then declining PM2.5. METHODS We enrolled a total of 400,459 adults from an open cohort between 2001 and 2016, and followed them up until 31 May 2019. We obtained mortality data from the National Death Registry maintained by the Ministry of Health and Welfare in Taiwan. We estimated ambient PM2.5 exposures using a satellite-based spatiotemporal model. We performed a Cox regression model with time-dependent covariates to investigate the associations of PM2.5 with deaths from all causes and specific causes. RESULTS This study identified 14,627 deaths and had a total of 5 million person-years of follow-up. Each 10 µg/m3 increase in PM2.5 was associated with an increased hazard risk of 29% (95% confidence interval: 24%-35%) in all-cause mortality. Risk of death increased by 30% for natural causes, 20% for cancer, 42% for cardiovascular disease (CVD) causes, and 53% for influenza and pneumonia causes, for each 10 µg/m3 increase in PM2.5. Sensitivity analyses generally yielded similar results. CONCLUSION Long-term exposure to ambient PM2.5 was associated with increased risks of all-cause mortality and deaths from cancers, natural causes, CVD, and influenza and pneumonia. Longitudinal study design should be encouraged for air pollution epidemiologic investigation.
Collapse
Affiliation(s)
- Cui Guo
- From the Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tsung Yu
- Department of Public Health, National Cheng Kung University, Tainan, Taiwan
| | - Yacong Bo
- From the Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Changqing Lin
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | | - Martin C S Wong
- From the Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
- The School of Public Health, The Chinese Academy of Medical Sciences and Peking Union Medical Colleges, Beijing, China
- The School of Public Health, The Peking University, Beijing, China
| | - Zengli Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Henan, China
| | - Alexis K H Lau
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Tony Tam
- Department of Sociology, the Chinese University of Hong Kong, Hong Kong
| | - Xiang Qian Lao
- From the Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
159
|
Larsen K, Black P, Palmer AL, Sheppard AJ, Jamal S, Plain S, Peters C. Screening-level assessment of cancer risk associated with ambient air exposure in Aamjiwnaang First Nation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1055-1066. [PMID: 33026840 DOI: 10.1080/09603123.2020.1827226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
The manuscript reports findings from a screening-level assessment of cancer risk from outdoor air in Aamjiwnaang First Nation. Ambient air pollution can contribute to cardiovascular/respiratory diseases, and certain types of cancer. Certain communities may be at higher risk to the negative health impacts due to their geographical proximity to pollution sources. Outdoor air concentrations were mapped and the Lifetime Excess Cancer Risks (LECR) associated with long-term exposure to known carcinogens were estimated. LECR results for both benzene and 1,3-butadiene were above one per million. The LECR for benzene was 6.4 per million when the Health Canada slope factor was applied and 12.0 when using the US EPA. For 1,3-butadiene the LECR estimate was 8.8 per million. This work provides a better understanding of environmental exposures and potential associated cancer risks for residents in the Aamjiwnaang community and highlights the need for further air monitoring and a more detailed risk assessment.
Collapse
Affiliation(s)
- Kristian Larsen
- CAREX Canada, Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada
- Department of Geography and Planning, University of Toronto, Toronto, ON, Canada
| | - Paleah Black
- CAREX Canada, Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Alison L Palmer
- CAREX Canada, Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Amanda J Sheppard
- Ontario Health, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | | | - Sara Plain
- Health Services, Aamjiwnaang First Nation, Sarnia, ON, Canada
| | - Cheryl Peters
- CAREX Canada, Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada
- Preventive Oncology & Community Health Sciences, University of Calgary, Calgary, AB, Canada
- Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, AB, Canada
| |
Collapse
|
160
|
Chen C, Chan A, Dominici F, Peng RD, Sabath B, Di Q, Schwartz J, Bell ML. Do temporal trends of associations between short-term exposure to fine particulate matter (PM 2.5) and risk of hospitalizations differ by sub-populations and urbanicity-a study of 968 U.S. counties and the Medicare population. ENVIRONMENTAL RESEARCH 2022; 206:112271. [PMID: 34710436 PMCID: PMC8810624 DOI: 10.1016/j.envres.2021.112271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 05/29/2023]
Abstract
While associations between short-term exposure to fine particulate matter (PM2.5) and risk of hospitalization are well documented and evidence suggests that such associations change over time, it is unclear whether these temporal changes exist in understudied less-urban areas or differ by sub-population. We analyzed daily time-series data of 968 continental U.S. counties for 2000-2016, with cause-specific hospitalization from Medicare claims and population-weighted PM2.5 concentrations originally estimated at 1km × 1 km from a hybrid model. Circulatory and respiratory hospitalizations were categorized based on primary diagnosis codes at discharge. Using modified Bayesian hierarchical modelling, we evaluated the temporal trend in association between PM2.5 and hospitalizations and whether disparities in this trend exist across individual-level characteristics (e.g., sex, age, race, and Medicaid eligibility as a proxy for socio-economic status) and urbanicity. Urbanicity was categorized into three levels by county-specific percentage of urban population based on urban rural delineation from the U.S. Census. In this cohort with understudied less-urban areas without regulatory monitors, we still found positive association between circulatory and respiratory hospitalization and short-term exposure to PM2.5, with higher effect estimates towards the end of study period. Consistent with current literature, we identified significant disparity in associations by race, socioeconomic status and urbanicity. We found that the percentage change in circulatory hospitalization rate per 10 μg/m3 increase in PM2.5 was higher in the 2008-2016 time period compared to the 2000-2007 period by 0.33% (95% posterior credible interval 0.22, 0.44%), 0.52% (0.33, 0.69%), and 0.67% (0.53, 0.83%) for low, medium and high tertiles of urban areas, respectively. We also observed significant differences in temporal trends of associations across socioeconomic status, sex, and age, indicating a possible widening in disparity of PM2.5-related health burden. This study raises the importance of considering environmental justice issues in PM2.5-related health impacts with respect to how associations may change over time.
Collapse
Affiliation(s)
- Chen Chen
- School of the Environment, Yale University, New Haven, USA.
| | - Alisha Chan
- School of Engineering and Applied Science, Yale University, New Haven, USA
| | | | - Roger D Peng
- Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Ben Sabath
- Harvard T.H. Chan School of Public Health, Boston, USA
| | - Qian Di
- School of Medicine, Tsinghua University, Beijing, China
| | - Joel Schwartz
- Harvard T.H. Chan School of Public Health, Boston, USA
| | | |
Collapse
|
161
|
Chen Z, Yu W, Xu R, Karoly PJ, Maturana MI, Payne DE, Li L, Nurse ES, Freestone DR, Li S, Burkitt AN, Cook MJ, Guo Y, Grayden DB. Ambient air pollution and epileptic seizures: a panel study in Australia. Epilepsia 2022; 63:1682-1692. [PMID: 35395096 PMCID: PMC9543609 DOI: 10.1111/epi.17253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Emerging evidence has shown that ambient air pollution affects brain health, but little is known about its effect on epileptic seizures. This work aimed to assess the association between daily exposure to ambient air pollution and the risk of epileptic seizures. METHODS This study used epileptic seizure data from two independent data sources (NeuroVista and Seer App seizure diary). In the NeuroVista dataset, 3273 seizures were recorded using intracranial electroencephalography (iEEG) from 15 participants with refractory focal epilepsy in Australia in 2010-2012. In the seizure diary dataset, 3419 self-reported seizures were collected through a mobile application from 34 participants with epilepsy in Australia in 2018-2021. Daily average concentrations of carbon monoxide (CO), nitrogen dioxide (NO2 ), ozone (O3 ), particulate matter ≤10 μm in diameter (PM10 ), and sulfur dioxide (SO2 ) were retrieved from the Environment Protection Authority (EPA) based on participants' postcodes. A patient-time-stratified case-crossover design with the conditional Poisson regression model was used to determine the associations between air pollutants and epileptic seizures. RESULTS A significant association between CO concentrations and epileptic seizure risks was observed, with an increased seizure risk of 4% (relative risk [RR]: 1.04, 95% confidence interval [CI]: 1.01-1.07) for an interquartile range (IQR) increase of CO concentrations (0.13 parts per million), while no significant associations were found for the other four air pollutants in the whole study population. Females had a significantly increased risk of seizures when exposing to elevated CO and NO2 , with RR of 1.05 (95% CI: 1.01-1.08) and 1.09 (95% CI: 1.01-1.16), respectively. Additionally, a significant association was observed between CO and the risk of subclinical seizures (RR: 1.20, 95% CI: 1.12-1.28). SIGNIFICANCE Daily exposure to elevated CO concentrations may be associated with the increased risk of epileptic seizures, especially for subclinical seizures.
Collapse
Affiliation(s)
- Zhuying Chen
- Department of Biomedical Engineering, The University of Melbourne, VIC, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, VIC, Australia
| | - Wenhua Yu
- School of Public Health and Preventive Medicine, Monash University, VIC, Australia
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, VIC, Australia
| | - Philippa J Karoly
- Department of Biomedical Engineering, The University of Melbourne, VIC, Australia.,Graeme Clark Institute, The University of Melbourne, VIC, Australia
| | - Matias I Maturana
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, VIC, Australia.,Seer Medical, Melbourne, VIC, Australia
| | - Daniel E Payne
- Department of Biomedical Engineering, The University of Melbourne, VIC, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, VIC, Australia.,Seer Medical, Melbourne, VIC, Australia
| | - Lyra Li
- Graeme Clark Institute, The University of Melbourne, VIC, Australia
| | - Ewan S Nurse
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, VIC, Australia.,Seer Medical, Melbourne, VIC, Australia
| | | | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, VIC, Australia
| | - Anthony N Burkitt
- Department of Biomedical Engineering, The University of Melbourne, VIC, Australia
| | - Mark J Cook
- Department of Biomedical Engineering, The University of Melbourne, VIC, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, VIC, Australia.,Graeme Clark Institute, The University of Melbourne, VIC, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, VIC, Australia
| | - David B Grayden
- Department of Biomedical Engineering, The University of Melbourne, VIC, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, VIC, Australia.,Graeme Clark Institute, The University of Melbourne, VIC, Australia
| |
Collapse
|
162
|
Vanchiere C, Thirumal R, Hendrani A, Dherange P, Bennett A, Shi R, Gopinathannair R, Olshansky B, Smith DL, Dominic P. Association Between Atrial Fibrillation and Occupational Exposure in Firefighters Based on Self-Reported Survey Data. J Am Heart Assoc 2022; 11:e022543. [PMID: 35319223 PMCID: PMC9075462 DOI: 10.1161/jaha.121.022543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/27/2022] [Indexed: 11/16/2022]
Abstract
Background Exposure to inhaled smoke, pollutants, volatile organic compounds, and polycyclic aromatic hydrocarbons in the firefighting environment has been associated with detrimental respiratory and cardiovascular effects, making firefighters a unique population with both personal and occupational risk factors for cardiovascular disease. Some of these exposures are also associated with development of atrial fibrillation. We aimed to study the association of atrial fibrillation and occupational exposure in firefighters. Methods and Results A cross-sectional survey was conducted between October 2018 and December 2019. Data were gathered electronically and stored in a secure REDCap database through Louisiana State University Health Shreveport. Firefighters who were members of at least 1 of 5 preselected professional organizations were surveyed via electronic links distributed by the organizations. The survey queried the number of fires fought per year as a measure of occupational exposure, as well as self-reported cardiovascular disease. A total of 10 860 active firefighters completed the survey, of whom 93.5% were men and 95.5% were aged ≤60 years. Firefighters who fought a higher number of fires per year had a significantly higher prevalence of atrial fibrillation (0-5 fires per year 2%, 6-10 fires per year 2.3%, 11-20 fires per year 2.7%, 21-30 fires per year 3%, 31 or more fires per year 4.5%; P<0.001). Multivariable logistic regression showed that a higher number of fires fought per year was associated with an increased risk of atrial fibrillation (odds ratio 1.14 [95% CI, 1.04-1.25]; P=0.006). Conclusions Firefighters may have an increased risk of atrial fibrillation associated with the number of fires they fight per year. Further clinical and translational studies are needed to explore causation and mechanisms.
Collapse
Affiliation(s)
- Catherine Vanchiere
- Department of Internal MedicineTemple University Health SystemPhiladelphiaPA
- Louisiana State University Health ShreveportSchool of MedicineShreveportLA
| | - Rithika Thirumal
- Louisiana State University Health ShreveportSchool of MedicineShreveportLA
- Department of Internal MedicineUniversity of CincinnatiCincinnatiOH
| | - Aditya Hendrani
- Louisiana State University Health ShreveportCenter for Cardiovascular Diseases and SciencesShreveportLA
- Department of CardiologyUniversity of Pittsburgh Medical Center SomersetSomersetPA
| | - Parinita Dherange
- Louisiana State University Health ShreveportCenter for Cardiovascular Diseases and SciencesShreveportLA
- Department of ElectrophysiologyBrigham and Women’s HospitalBostonMA
| | - Angela Bennett
- Louisiana State University Health ShreveportCenter for Cardiovascular Diseases and SciencesShreveportLA
- Overton Brooks VA Medical CenterShreveportLA
| | - Runhua Shi
- Louisiana State University Health ShreveportSchool of MedicineShreveportLA
- Louisiana State University Health ShreveportFeist‐Weiller Cancer CenterShreveportLA
| | | | - Brian Olshansky
- Department of Internal MedicineUniversity of Iowa Health CareCardiovascular MedicineIowa CityIA
| | - Denise L. Smith
- Department of Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNY
| | - Paari Dominic
- Louisiana State University Health ShreveportSchool of MedicineShreveportLA
- Louisiana State University Health ShreveportCenter for Cardiovascular Diseases and SciencesShreveportLA
| |
Collapse
|
163
|
|
164
|
He F, Tang J, Zhang T, Lin J, Li F, Gu X, Chen A, Nevill A, Chen R. Impact of air pollution exposure on the risk of Alzheimer's disease in China: A community-based cohort study. ENVIRONMENTAL RESEARCH 2022; 205:112318. [PMID: 34742710 DOI: 10.1016/j.envres.2021.112318] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Impact of air pollution (AP) on the risk of AD is unclear. It is unknown which air pollutants are independently associated with AD and whether fish consumption mitigated the association. We carried out a community-based cohort of 6115 participants aged ≥60 years in China to examine the association of PM2.5, PM10, CO, NO2, SO2 and O3 exposure with AD, and differences in the association between people with low and high consumption of fish. The participants were randomly recruited from six counties in Zhejiang province for health survey to document socio-demographic and disease risk factors in 2014, and were followed up to diagnose AD in 2019. A total of 986 cohort members were diagnosed with AD. Based on the daily mean air pollutants monitored in 2013-2015 in the counties, participants were divided into low, middle and high AP exposure groups for subsequent analysis. The multiple adjusted odds ratio (OR) of AD in participants living with the middle and high levels of PM2.5 exposure versus the low exposure were 1.50 (95% CI 0.90-2.50) and 3.92 (2.09-7.37). The increased ORs were also with PM10 (1.74, 0.65-4.64; 3.00, 1.22-7.41) and CO (2.86, 1.32-6.20; 1.19, 0.45-3.18), but not with NO2 (0.63, 0.17-2.27; 0.95, 0.28-3.19), SO2 (0.44, 0.19-1.001; 1.21, 0.56-2.62), and O3 (0.38, 0.20-0.74; 0.50, 0.21-1.21). There were no significant interaction effects of AP with fish consumption on AD. However, participants with low consumption of fish appeared to have higher ORs in PM2.5 exposure (1.80, 1.39-2.33; 5.18, 3.93-6.82) than those high consumption (1.38, 0.78-2.47; 2.89, 1.50-5.59). Our findings of PM2.5, PM10 and CO exposure significantly increased the risk of AD and the potential mitigating effect of fish consumption on the association provide evidence for developing effective strategies for AD reduction and air pollution control.
Collapse
Affiliation(s)
- Fan He
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Jie Tang
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, UK; Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Tao Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Junfen Lin
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Fudong Li
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xue Gu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Anthony Chen
- Institute of Epidemiology and Health Care, University College London, UK
| | - Alan Nevill
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, UK
| | - Ruoling Chen
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, UK.
| |
Collapse
|
165
|
Versaci F, Anticoli S, Pezzella FR, Mangiardi M, DI Giosa A, Marchegiani G, Calcagno S, DI Pietro R, Frati G, Sciarretta S, Perrotta A, Peruzzi M, Cavarretta E, Roever L, Antonazzo B, Ronzoni S, Versaci B, Biondi-Zoccai G. Impact of weather and pollution on the rate of cerebrovascular events in a large metropolitan area. Panminerva Med 2022; 64:17-23. [PMID: 35330556 DOI: 10.23736/s0031-0808.21.04525-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Despite mounting evidence, there is uncertainty on the impact of the interplay between weather and pollution features on the risk of acute cerebrovascular events (CVE). We aimed at appraising role of weather and pollution on the daily risk of CVE. METHODS Anonymized data from a hub CVE center in a large metropolitan area were collected and analyzed according to weather (temperature, pressure, humidity, and rainfall) and pollution (carbon monoxide [CO], nitrogen dioxide [NO2], nitrogen oxides [NOX], ozone [O3], and particulate matter [PM]) on the same and the preceding days. Poisson regression and time series analyses were used to appraise the association between environmental features and daily CVE, distinguishing also several subtypes of events. RESULTS We included a total of 2534 days, with 1363 days having ≥1 CVE, from 2012 to 2017. Average daily rate was 1.56 (95% confidence interval: 1.49; 1.63) for CVE, with other event rates ranging between 1.42 for stroke and 0.01 for ruptured intracranial aneurysm. Significant associations were found between CVE and temperature, pressure, CO, NO2, NOX, O3, and PM <10 µm (all P<0.05), whereas less stringent associations were found for humidity, rainfall, and PM <2.5 µm. Time series analysis exploring lag suggested that associations were stronger at same-day analysis (lag 0), but even environmental features predating several days or weeks were significantly associated with events. Multivariable analysis suggested that CO (point estimate 1.362 [1.011; 1.836], P=0.042) and NO2 (1.011 [1.005; 1.016], P<0.001) were the strongest independent predictors of CVE. CONCLUSIONS Environmental features are significantly associated with CVE, even several days before the actual event. Levels of CO and NO2 can be potentially leveraged for population-level interventions to reduce the burden of CVE.
Collapse
Affiliation(s)
- Francesco Versaci
- Unit of UTIC, Hemodynamics and Cardiology, Santa Maria Goretti Hospital, Latina, Italy
| | | | | | | | | | | | - Simone Calcagno
- Division of Cardiology, San Paolo Hospital, Civitavecchia, Rome, Italy
| | - Riccardo DI Pietro
- Unit of UTIC, Hemodynamics and Cardiology, Santa Maria Goretti Hospital, Latina, Italy
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy.,IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy.,IRCCS Neuromed, Pozzilli, Isernia, Italy
| | | | - Mariangela Peruzzi
- Mediterranea Cardiocentro, Naples, Italy.,Department of Clinical, Internal Anestesiology and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy.,Mediterranea Cardiocentro, Naples, Italy
| | - Leonardo Roever
- Department of Clinical Research, Federal University of Uberlândia, Uberlândia, Brazil
| | | | | | | | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy - .,Mediterranea Cardiocentro, Naples, Italy
| |
Collapse
|
166
|
Wang W, Zhang W, Ge H, Chen B, Zhao J, Wu J, Kang Z, Guo X, Deng F, Ma Q. Association between air pollution and emergency room visits for eye diseases and effect modification by temperature in Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22613-22622. [PMID: 34792769 DOI: 10.1007/s11356-021-17304-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
The growing burden of eye disease worldwide has aroused increasing concern upon its environmental etiology. This study aims to evaluate the associations of air pollutants with emergency room visits for eye diseases and the effect modification by temperature. Based on 24,389 cases from a general hospital during 2014-2019 in Beijing, China, this study used generalized additive models to examine the associations of air pollutants and emergency room visits for total eye diseases (ICD10: H00-H59) and conjunctivitis (ICD10: H10). Short-term exposures to PM2.5, PM10, CO, and NO2 were associated with increased visits for total eye diseases and conjunctivitis, and stronger effect estimates were observed in high (>75th) temperature group for PM2.5, PM10, CO, and NO2 and low (<75th) temperature group for CO and NO2. For instance, a 10 μg/m3 increase in PM2.5 at lag0-1 were associated with a 0.73% (95% CI: 0.23%, 1.24%) increase in total eye disease visits and a 1.34% (95% CI: 0.55%, 2.13%) increase in conjunctivitis visits, respectively. Meanwhile, a 10 μg/m3 increase in PM2.5 was associated with a 1.57% (95% CI: 0.49%, 2.64%) change in high temperature group and a 0.48% (95% CI: -0.24%, 1.19%) change in medium temperature group (P for interaction = 0.04) in total eye disease visits. Our study emphasizes the importance of controlling the potential hazards of air pollutants on eyes, especially on days with relatively higher or colder temperature.
Collapse
Affiliation(s)
- Wanzhou Wang
- Emergency Department, Peking University Third Hospital, Beijing, 100191, China
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Hongxia Ge
- Emergency Department, Peking University Third Hospital, Beijing, 100191, China
| | - Baiqi Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Jingjing Zhao
- Emergency Department, Peking University Third Hospital, Beijing, 100191, China
| | - Jun Wu
- Emergency Department, Peking University Third Hospital, Beijing, 100191, China
| | - Zefeng Kang
- Eye Hospital of China Academy of Chinese Medical Sciences, Beijing, 100040, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.
| | - Qingbian Ma
- Emergency Department, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
167
|
Grytting VS, Chand P, Låg M, Øvrevik J, Refsnes M. The pro-inflammatory effects of combined exposure to diesel exhaust particles and mineral particles in human bronchial epithelial cells. Part Fibre Toxicol 2022; 19:14. [PMID: 35189914 PMCID: PMC8862321 DOI: 10.1186/s12989-022-00455-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/04/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND People are exposed to ambient particulate matter (PM) from multiple sources simultaneously in both environmental and occupational settings. However, combinatory effects of particles from different sources have received little attention in experimental studies. In the present study, the pro-inflammatory effects of combined exposure to diesel exhaust particles (DEP) and mineral particles, two common PM constituents, were explored in human lung epithelial cells. METHODS Particle-induced secretion of pro-inflammatory cytokines (CXCL8 and IL-1β) and changes in expression of genes related to inflammation (CXCL8, IL-1α, IL-1β and COX-2), redox responses (HO-1) and xenobiotic metabolism (CYP1A1 and CYP1B1) were assessed in human bronchial epithelial cells (HBEC3-KT) after combined exposure to different samples of DEP and mineral particles. Combined exposure was also conducted using lipophilic organic extracts of DEP to assess the contribution of soluble organic chemicals. Moreover, the role of the aryl hydrocarbon receptor (AhR) pathway was assessed using an AhR-specific inhibitor (CH223191). RESULTS Combined exposure to DEP and mineral particles induced increases in pro-inflammatory cytokines and expression of genes related to inflammation and redox responses in HBEC3-KT cells that were greater than either particle sample alone. Moreover, robust increases in the expression of CYP1A1 and CYP1B1 were observed. The effects were most pronounced after combined exposure to α-quartz and DEP from an older fossil diesel, but enhanced responses were also observed using DEP generated from a modern biodiesel blend and several stone particle samples of mixed mineral composition. Moreover, the effect of combined exposure on cytokine secretion could also be induced by lipophilic organic extracts of DEP. Pre-incubation with an AhR-specific inhibitor reduced the particle-induced cytokine responses, suggesting that the effects were at least partially dependent on AhR. CONCLUSIONS Exposure to DEP and mineral particles in combination induces enhanced pro-inflammatory responses in human bronchial epithelial cells compared with exposure to the individual particle samples. The effects are partly mediated through an AhR-dependent pathway and lipophilic organic chemicals in DEP appear to play a central role. These possible combinatory effects between different sources and components of PM warrant further attention and should also be considered when assessing measures to reduce PM-induced health effects.
Collapse
Affiliation(s)
- Vegard Sæter Grytting
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO box 4404, 0403, Nydalen, Oslo, Norway.
| | - Prem Chand
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO box 4404, 0403, Nydalen, Oslo, Norway
| | - Marit Låg
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO box 4404, 0403, Nydalen, Oslo, Norway.
| | - Johan Øvrevik
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO box 4404, 0403, Nydalen, Oslo, Norway
| | - Magne Refsnes
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO box 4404, 0403, Nydalen, Oslo, Norway
| |
Collapse
|
168
|
Abstract
PURPOSE OF REVIEW With cardiovascular disease (CVD) being the top cause of deaths worldwide, it is important to ensure healthy cardiovascular aging through enhanced understanding and prevention of adverse health effects exerted by external factors. This review aims to provide an updated understanding of environmental influences on cardiovascular aging, by summarizing epidemiological and mechanistic evidence for the cardiovascular health impact of major environmental stressors, including air pollution, endocrine-disrupting chemicals (EDCs), metals, and climate change. RECENT FINDINGS Recent studies generally support positive associations of exposure to multiple chemical environmental stressors (air pollution, EDCs, toxic metals) and extreme temperatures with increased risks of cardiovascular mortality and morbidity in the population. Environmental stressors have also been associated with a number of cardiovascular aging-related subclinical changes including biomarkers in the population, which are supported by evidence from relevant experimental studies. The elderly and patients are the most vulnerable demographic groups to majority environmental stressors. Future studies should account for the totality of individuals' exposome in addition to single chemical pollutants or environmental factors. Specific factors most responsible for the observed health effects related to cardiovascular aging remain to be elucidated.
Collapse
Affiliation(s)
- Yang Lan
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi'an City, Shaanxi Province, 710061, People's Republic of China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi'an City, Shaanxi Province, 710061, People's Republic of China.
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China.
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China.
| |
Collapse
|
169
|
Zhang Y, Li Z, Wei J, Zhan Y, Liu L, Yang Z, Zhang Y, Liu R, Ma Z. Longitudinal association between ambient nitrogen dioxide exposure and all-cause mortality in Chinese adults. J Adv Res 2022; 41:13-22. [DOI: 10.1016/j.jare.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/18/2022] [Accepted: 02/16/2022] [Indexed: 12/01/2022] Open
|
170
|
Chandra M, Rai CB, Kumari N, Sandhu VK, Chandra K, Krishna M, Kota SH, Anand KS, Oudin A. Air Pollution and Cognitive Impairment across the Life Course in Humans: A Systematic Review with Specific Focus on Income Level of Study Area. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031405. [PMID: 35162428 PMCID: PMC8835599 DOI: 10.3390/ijerph19031405] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 02/01/2023]
Abstract
Cognitive function is a crucial determinant of human capital. The Lancet Commission (2020) has recognized air pollution as a risk factor for dementia. However, the scientific evidence on the impact of air pollution on cognitive outcomes across the life course and across different income settings, with varying levels of air pollution, needs further exploration. A systematic review was conducted, using Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) Guidelines to assess the association between air pollution and cognitive outcomes across the life course with a plan to analyze findings as per the income status of the study population. The PubMed search included keywords related to cognition and to pollution (in their titles) to identify studies on human participants published in English until 10 July 2020. The search yielded 84 relevant studies that described associations between exposure to air pollutants and an increased risk of lower cognitive function among children and adolescents, cognitive impairment and decline among adults, and dementia among older adults with supportive evidence of neuroimaging and inflammatory biomarkers. No study from low- and middle-income countries (LMICs)was identified despite high levels of air pollutants and high rates of dementia. To conclude, air pollution may impair cognitive function across the life-course, but a paucity of studies from reLMICs is a major lacuna in research.
Collapse
Affiliation(s)
- Mina Chandra
- Department of Psychiatry, Centre of Excellence in Mental Health, Atal Bihari Vajpayee Institute of Medical Sciences (formerly PGIMER) and Dr. Ram Manohar Lohia Hospital, New Delhi 110001, India; (C.B.R.); (N.K.); (V.K.S.)
- Correspondence: ; Tel.: +91-98-1183-1902
| | - Chandra Bhushan Rai
- Department of Psychiatry, Centre of Excellence in Mental Health, Atal Bihari Vajpayee Institute of Medical Sciences (formerly PGIMER) and Dr. Ram Manohar Lohia Hospital, New Delhi 110001, India; (C.B.R.); (N.K.); (V.K.S.)
| | - Neelam Kumari
- Department of Psychiatry, Centre of Excellence in Mental Health, Atal Bihari Vajpayee Institute of Medical Sciences (formerly PGIMER) and Dr. Ram Manohar Lohia Hospital, New Delhi 110001, India; (C.B.R.); (N.K.); (V.K.S.)
| | - Vipindeep Kaur Sandhu
- Department of Psychiatry, Centre of Excellence in Mental Health, Atal Bihari Vajpayee Institute of Medical Sciences (formerly PGIMER) and Dr. Ram Manohar Lohia Hospital, New Delhi 110001, India; (C.B.R.); (N.K.); (V.K.S.)
| | - Kalpana Chandra
- Delhi Jal Board, Government of National Capital Territory of Delhi, New Delhi 110094, India;
| | - Murali Krishna
- JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India;
| | - Sri Harsha Kota
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India;
| | - Kuljeet Singh Anand
- Department of Neurology, Atal Bihari Vajpayee Institute of Medical Sciences (Formerly PGIMER) and Dr. Ram Manohar Lohia Hospital, New Delhi 110001, India;
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umea, Sweden;
- Department of Laboratory Medicine, Lund University, 901 87 Umea, Sweden
| |
Collapse
|
171
|
Furlong MA, Alexander GE, Klimentidis YC, Raichlen DA. Association of Air Pollution and Physical Activity With Brain Volumes. Neurology 2022; 98:e416-e426. [PMID: 34880089 PMCID: PMC8793107 DOI: 10.1212/wnl.0000000000013031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/22/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES In high-pollution areas, physical activity may have a paradoxical effect on brain health by increasing particulate deposition in the lungs. We examined whether physical activity modifies associations of air pollution (AP) with brain volumes in an epidemiologic framework. METHODS The UK Biobank enrolled >500,000 adult participants from 2006 to 2010. Wrist accelerometers, multimodal MRI with T1 images and T2 fluid-attenuated inversion recovery data, and land use regression were used to estimate vigorous physical activity (VigPA), structural brain volumes, and AP, respectively, in subsets of the full sample. We evaluated associations among AP interquartile ranges, VigPA, and brain structure volumes and assessed interactions between AP and VigPA. RESULTS Eight thousand six hundred participants were included, with an average age of 55.55 (SD 7.46) years. After correction for multiple testing, in overall models, VigPA was positively associated with gray matter volume (GMV) and negatively associated with white matter hyperintensity volume (WMHV), while NO2, PM2.5absorbance, and PM2.5 were negatively associated with GMV. NO2 and PM2.5absorbance interacted with VigPA on WMHV (false discovery rate-corrected interaction p = 0.037). Associations between these air pollutants and WMHVs were stronger among participants with high VigPA. Similarly, VigPA was negatively associated with WMHV for those in areas of low NO2 and PM2.5absorbance but was null among those living in areas of high NO2 and PM2.5absorbance. DISCUSSION: Physical activity is associated with beneficial brain outcomes, while AP is associated with detrimental brain outcomes. VigPA may exacerbate associations of AP with white matter hyperintensity lesions, and AP may attenuate the beneficial associations of physical activity with these lesions.
Collapse
Affiliation(s)
- Melissa A Furlong
- From the Department of Community, Environment, and Policy (M.A.F.), Mel and Enid Zuckerman College of Public Health, Departments of Psychology and Psychiatry (G.E.A.), Evelyn F. McKnight Brain Institute (G.E.A.), BIO5 Institute (G.E.A., Y.C.K.), Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs (G.E.A.), and Department of Epidemiology and Biostatistics (Y.C.K.), University of Arizona, Tucson; Arizona Alzheimer's Consortium (G.E.A.), Phoenix; and Human and Evolutionary Biology Section (D.A.R.), Department of Biological Sciences, University of Southern California, Los Angeles.
| | - Gene E Alexander
- From the Department of Community, Environment, and Policy (M.A.F.), Mel and Enid Zuckerman College of Public Health, Departments of Psychology and Psychiatry (G.E.A.), Evelyn F. McKnight Brain Institute (G.E.A.), BIO5 Institute (G.E.A., Y.C.K.), Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs (G.E.A.), and Department of Epidemiology and Biostatistics (Y.C.K.), University of Arizona, Tucson; Arizona Alzheimer's Consortium (G.E.A.), Phoenix; and Human and Evolutionary Biology Section (D.A.R.), Department of Biological Sciences, University of Southern California, Los Angeles
| | - Yann C Klimentidis
- From the Department of Community, Environment, and Policy (M.A.F.), Mel and Enid Zuckerman College of Public Health, Departments of Psychology and Psychiatry (G.E.A.), Evelyn F. McKnight Brain Institute (G.E.A.), BIO5 Institute (G.E.A., Y.C.K.), Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs (G.E.A.), and Department of Epidemiology and Biostatistics (Y.C.K.), University of Arizona, Tucson; Arizona Alzheimer's Consortium (G.E.A.), Phoenix; and Human and Evolutionary Biology Section (D.A.R.), Department of Biological Sciences, University of Southern California, Los Angeles
| | - David A Raichlen
- From the Department of Community, Environment, and Policy (M.A.F.), Mel and Enid Zuckerman College of Public Health, Departments of Psychology and Psychiatry (G.E.A.), Evelyn F. McKnight Brain Institute (G.E.A.), BIO5 Institute (G.E.A., Y.C.K.), Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs (G.E.A.), and Department of Epidemiology and Biostatistics (Y.C.K.), University of Arizona, Tucson; Arizona Alzheimer's Consortium (G.E.A.), Phoenix; and Human and Evolutionary Biology Section (D.A.R.), Department of Biological Sciences, University of Southern California, Los Angeles
| |
Collapse
|
172
|
Chen H, Cheng Z, Li M, Luo P, Duan Y, Fan J, Xu Y, Pu K, Zhou L. Ambient Air Pollution and Hospitalizations for Ischemic Stroke: A Time Series Analysis Using a Distributed Lag Nonlinear Model in Chongqing, China. Front Public Health 2022; 9:762597. [PMID: 35118040 PMCID: PMC8804166 DOI: 10.3389/fpubh.2021.762597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/02/2021] [Indexed: 01/11/2023] Open
Abstract
Short-term exposure to air pollution has been associated with ischemic stroke (IS) hospitalizations, but the evidence of its effects on IS in low- and middle-income countries is limited and inconsistent. We aimed to quantitatively estimate the association between air pollution and hospitalizations for IS in Chongqing, China. This time series study included 2,299 inpatients with IS from three hospitals in Chongqing from January 2015 to December 2016. Generalized linear regression models combined with a distributed lag nonlinear model (DLNM) were used to investigate the impact of air pollution on IS hospitalizations. Stratification analysis was further implemented by sex, age, and season. The maximum lag-specific and cumulative percentage changes of IS were 1.2% (95% CI: 0.4–2.1%, lag 3 day) and 3.6% (95% CI: 0.5–6.7%, lag 05 day) for each 10 μg/m3 increase in PM2.5; 1.0% (95% CI: 0.3–1.7%, lag 3 day) and 2.9% (95% CI: 0.6–5.2%, lag 05 day) for each 10 μg/m3 increase in PM10; 4.8% (95% CI: 0.1–9.7%, lag 4 day) for each 10 μg/m3 increase in SO2; 2.5% (95% CI: 0.3–4.7%, lag 3 day) and 8.2% (95% CI: 0.9–16.0%, lag 05 day) for each 10 μg/m3 increase in NO2; 0.7% (95% CI: 0.0–1.5%, lag 6 day) for each 10 μg/m3 increase in O3. No effect modifications were detected for sex, age, and season. Our findings suggest that short-term exposure to PM2.5, PM10, SO2, NO2, and O3 contributes to more IS hospitalizations, which warrant the government to take effective actions in addressing air pollution issues.
Collapse
Affiliation(s)
- Hao Chen
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Zheng Cheng
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Mengmeng Li
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Pan Luo
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yong Duan
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Jie Fan
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Ying Xu
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Kexue Pu
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Li Zhou
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- *Correspondence: Li Zhou
| |
Collapse
|
173
|
Association of short-term exposure to air pollution with recurrent ischemic cerebrovascular events in older adults. Int J Hyg Environ Health 2022; 240:113925. [PMID: 35045384 DOI: 10.1016/j.ijheh.2022.113925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/22/2022]
Abstract
The acute effects of ambient air pollution on recurrence of ischemic cerebrovascular events (ICEs) remains largely unknown. We therefore conducted a time-stratified case-crossover study of 43,896 patients who were 60 years or older and were admitted to hospital for recurrent ICEs including ischemic stroke and transient ischemic attack in Guangzhou, China during 2016-2019. Based on each patient's home address and pollutant data from its neighboring air quality monitoring stations, we used an inverse distance weighting method to assess exposures to particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5), particulate matter with an aerodynamic diameter ≤10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO) and ozone (O3). Conditional logistic regression models were used to quantify exposure-response associations. During the study period, there were 43,896 case days and 149,131 control days. In single-pollutant models, each 10 μg/m3 increase in exposure to PM10, NO2 and CO (mean exposure on date of admission and 1 day prior) was significantly associated with a 0.74% (95% confidence interval [CI]: 0.13-1.36%), 2.15% (1.38-2.93%) and 0.14% (0.07-0.21%) increase in odds of hospital admissions for recurrent ICEs, respectively, and no significant departures from linearity were detected. The association for NO2 exposure remained consistent in 2-pollutant models, while the associations for PM10 and CO disappeared or changed materially with adjustment for other pollutants. Stronger association for NO2 exposure was observed in cool season than that in warm season. We found that short-term exposure to ambient air pollutants, especially NO2, was associated with increased risk of hospital admissions for recurrent ICEs in older adults.
Collapse
|
174
|
Ho AFW, Tan BYQ, Zheng H, Leow AST, Pek PP, Liu N, Raju Y, Yeo LLL, Sharma VK, Ong MEH, Aik J. Association of air pollution with acute ischemic stroke risk in Singapore: a time-stratified case-crossover study. Int J Stroke 2022; 17:983-989. [DOI: 10.1177/17474930211066745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Air quality is an important determinant of cardiovascular health such as ischemic heart disease and acute ischemic stroke (AIS) with substantial mortality and morbidity reported across the globe. However, associations between air quality and AIS in the current literature remain inconsistent, with few studies undertaken in cosmopolitan cities located in the tropics. Objectives: We evaluated the associations between individual ambient air pollutants and AIS. Methods: We performed a nationwide, population-based, time-stratified case-crossover analysis on all AIS cases reported to the Singapore Stroke Registry from 2009 to 2018. We estimated the incidence rate ratio (IRR) of AIS across different concentrations of each pollutant by quartiles (referencing the 25th percentile), in single-pollutant conditional Poisson models adjusted for time-varying meteorological effects. We stratified our analysis by predetermined subgroups deemed at higher risk. Results: A total of 51,675 episodes of AIS were included. Ozone (O3) (IRR4th quartile: 1.05, 95% confidence interval (CI): 1.01–1.08) and carbon monoxide (CO) (IRR2nd quartile: 1.05, 95% CI: 1.02–1.08, IRR3rd quartile: 1.07, 95% CI: 1.04–1.10, IRR4th quartile: 1.07, 95% CI: 1.04–1.11) were positively associated with AIS incidence. The increased incidence of AIS due to O3 and CO persisted for 5 days after exposure. Those under 65 years of age were more likely to experience AIS when exposed to CO. Individuals with atrial fibrillation (AF) were more susceptible to exposure from O3, CO, and PM10. Current/ex-smokers were more vulnerable to the effect of O3. Conclusion: Air pollution increases the incidence of AIS, especially in those with AF and in those who are current or ex-smokers.
Collapse
Affiliation(s)
- Andrew Fu Wah Ho
- Department of Emergency Medicine, Singapore General Hospital, Singapore
- Pre-hospital & Emergency Research Centre, Health Services and Systems Research, Duke-NUS Medical School, Singapore
| | | | - Huili Zheng
- National Registry of Diseases Office, Health Promotion Board, Singapore
| | | | - Pin Pin Pek
- Pre-hospital & Emergency Research Centre, Health Services and Systems Research, Duke-NUS Medical School, Singapore
| | - Nan Liu
- Pre-hospital & Emergency Research Centre, Health Services and Systems Research, Duke-NUS Medical School, Singapore
| | - Yogeswari Raju
- Environmental Quality Monitoring Department, Environmental Monitoring and Modelling Division, National Environment Agency, Singapore
| | - Leonard Leong-Litt Yeo
- Division of Neurology, Department of Medicine, National University Health System, Singapore
| | - Vijay K Sharma
- Division of Neurology, Department of Medicine, National University Health System, Singapore
| | - Marcus Eng-Hock Ong
- Department of Emergency Medicine, Singapore General Hospital, Singapore
- Pre-hospital & Emergency Research Centre, Health Services and Systems Research, Duke-NUS Medical School, Singapore
| | - Joel Aik
- Pre-hospital & Emergency Research Centre, Health Services and Systems Research, Duke-NUS Medical School, Singapore
- Environmental Epidemiology and Toxicology Division, National Environment Agency, Singapore
| |
Collapse
|
175
|
Short-Term Joint Effects of PM 10, NO 2 and SO 2 on Cardio-Respiratory Disease Hospital Admissions in Cape Town, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19010495. [PMID: 35010755 PMCID: PMC8744938 DOI: 10.3390/ijerph19010495] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/10/2022]
Abstract
Background/Aim: In sub-Sahara Africa, few studies have investigated the short-term association between hospital admissions and ambient air pollution. Therefore, this study explored the association between multiple air pollutants and hospital admissions in Cape Town, South Africa. Methods: Generalized additive quasi-Poisson models were used within a distributed lag linear modelling framework to estimate the cumulative effects of PM10, NO2, and SO2 up to a lag of 21 days. We further conducted multi-pollutant models and stratified our analysis by age group, sex, and season. Results: The overall relative risk (95% confidence interval (CI)) for PM10, NO2, and SO2 at lag 0–1 for hospital admissions due to respiratory disease (RD) were 1.9% (0.5–3.2%), 2.3% (0.6–4%), and 1.1% (−0.2–2.4%), respectively. For cardiovascular disease (CVD), these values were 2.1% (0.6–3.5%), 1% (−0.8–2.8%), and −0.3% (−1.6–1.1%), respectively, per inter-quartile range increase of 12 µg/m3 for PM10, 7.3 µg/m3 for NO2, and 3.6 µg/m3 for SO2. The overall cumulative risks for RD per IQR increase in PM10 and NO2 for children were 2% (0.2–3.9%) and 3.1% (0.7–5.6%), respectively. Conclusion: We found robust associations of daily respiratory disease hospital admissions with daily PM10 and NO2 concentrations. Associations were strongest among children and warm season for RD.
Collapse
|
176
|
No substantial excess all-cause mortality among cardiac implantable electronic device patients during the first COVID‑19 lockdown in the Leiden area. Neth Heart J 2022; 30:76-83. [PMID: 34978678 PMCID: PMC8721632 DOI: 10.1007/s12471-021-01650-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 12/04/2022] Open
Abstract
In the Netherlands, the coronavirus disease 2019 (COVID‑19) pandemic has resulted in excess mortality nationwide. Chronic heart disease patients are at risk for a complicated COVID‑19 course. The current study investigates all-cause mortality among cardiac implantable electronic device (CIED) patients during the first peak of the pandemic and compares the data to the statistics for the corresponding period in the two previous years. Data of adult CIED patients undergoing follow-up at the Leiden University Medical Centre were analysed. All-cause mortality between 1 March and 31 May 2020 was evaluated and compared to the data for the same period in 2019 and 2018. At the beginning of the first peak of the pandemic, 3,171 CIED patients (median age 70 years; 68% male; 41% ischaemic aetiology) were alive. Baseline characteristics of the 2019 (n = 3,216) and 2018 (n = 3,169) cohorts were comparable. All-cause mortality during the peak of the pandemic was 1.4% compared to 1.6% and 1.4% in the same period in 2019 and 2018, respectively (p = 0.84). During the first peak of the COVID‑19 pandemic, there was no substantial excess mortality among CIED patients in the Leiden area, despite the fact that this is group at high risk for a complicated course of a COVID‑19 infection. Strict adherence to the preventive measures may have prevented substantial excess mortality in these vulnerable patients.
Collapse
|
177
|
Ho AFW, Lim MJR, Zheng H, Leow AST, Tan BYQ, Pek PP, Raju Y, Seow WJ, Yeo TT, Sharma VK, Aik J, Ong MEH. Association of ambient air pollution with risk of hemorrhagic stroke: A time-stratified case crossover analysis of the Singapore stroke registry. Int J Hyg Environ Health 2021; 240:113908. [PMID: 34974273 DOI: 10.1016/j.ijheh.2021.113908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Haemorrhagic stroke (HS) is a major cause of mortality and disability. Previous studies reported inconsistent associations between ambient air pollutants and HS risk. OBJECTIVE We evaluated the association between air pollutant exposure and the risk of HS in a cosmopolitan city in the tropics. METHODS We performed a nationwide, population-based, time-stratified case-crossover analysis on all HS cases reported to the Singapore Stroke Registry from 2009 to 2018 (n = 12,636). We estimated the risk of HS across tertiles of air pollutant concentrations in conditional Poisson models, adjusting for meteorological confounders. We stratified our analysis by age, atrial fibrillation and smoking status, and investigated the lagged effects of each pollutant on the risk of HS up to 5 days. RESULTS All 12,636 episodes of HS were included. The median (1st-to 3rd-quartile) daily pollutant levels from 22 remote stations deployed across the island were as follows: (PM2.5 = 15.9 (12.7-20.5), PM10 = 27.3 (22.7-33.4), O3 = 22.5 (17.3-29.8), NO2 = 23.3 (18.8-28.4), SO2 = 10.2 (5.6-14.4), CO = 0.5 (0.5-0.6). The median (1st-to 3rd-quartile) temperature (°C) was 27.9 (27.1-28.7), that of relative humidity (%) was 79.4 (75.6-83.2), and that of total rainfall (mm) was 0.0 (0.0-4.2). Higher levels of CO were significantly associated with an increased risk of HS (3rd tertile vs 1st tertile: Incidence Rate Ratio (IRR) = 1.06, 95% CI = 1.01-1.12). The increased risk of HS due to CO persisted for at least 5 days after exposure. Individuals under 65 years old and non-smokers had a higher risk of HS when exposed to CO. O3 was associated with increased risk of HS up to 5 days (3rd tertile vs 1st tertile: IRRday 1 = 1.07, 95% CI = 1.02-1.12; IRRday 5 = 1.07, 95% CI = 1.02-1.13). CONCLUSION Short-term exposure to ambient CO levels was associated with an increased risk of HS. A reduction in CO emissions may reduce the burden of HS in the population.
Collapse
Affiliation(s)
- Andrew Fu Wah Ho
- Department of Emergency Medicine, Singapore General Hospital, Singapore; Pre-hospital and Emergency Research Centre, Health Services and Systems Research, Duke-NUS Medical School, Singapore.
| | - Mervyn Jun Rui Lim
- Division of Neurosurgery, Department of Surgery, National University Hospital, Singapore
| | - Huili Zheng
- Division of Neurology, Department of Medicine, National University Health System, Singapore
| | | | | | - Pin Pin Pek
- Pre-hospital and Emergency Research Centre, Health Services and Systems Research, Duke-NUS Medical School, Singapore
| | - Yogeswari Raju
- Environmental Quality Monitoring Department, Environmental Monitoring and Modelling Division, National Environment Agency, Singapore
| | - Wei-Jie Seow
- National Registry of Diseases Office, Health Promotion Board, Singapore; Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Tseng Tsai Yeo
- Division of Neurosurgery, Department of Surgery, National University Hospital, Singapore
| | - Vijay K Sharma
- Division of Neurology, Department of Medicine, National University Health System, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Joel Aik
- Pre-hospital and Emergency Research Centre, Health Services and Systems Research, Duke-NUS Medical School, Singapore; Environmental Epidemiology and Toxicology Division, National Environment Agency, Singapore
| | - Marcus Eng Hock Ong
- Department of Emergency Medicine, Singapore General Hospital, Singapore; Pre-hospital and Emergency Research Centre, Health Services and Systems Research, Duke-NUS Medical School, Singapore
| |
Collapse
|
178
|
Peralta AA, Schwartz J, Gold DR, Coull B, Koutrakis P. Associations between acute and long-term exposure to PM2.5 components and temperature with QT interval length in the VA Normative Aging Study. Eur J Prev Cardiol 2021; 28:1610-1617. [PMID: 33580791 PMCID: PMC8289946 DOI: 10.1093/eurjpc/zwaa161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/30/2020] [Accepted: 12/15/2020] [Indexed: 11/12/2022]
Abstract
AIMS Our study adds to the sparse literature on the effect of multiple fine particulate matter (PM2.5) components on QT interval length, an outcome with high clinical relevance in vulnerable populations. To our knowledge, this is the first study to examine the association between spatiotemporally resolved exposures to PM2.5 components and QT interval length. METHODS AND RESULTS Among 578 men living in Eastern Massachusetts between 2000 and 2011, we utilized time-varying linear mixed-effects regressions with a random intercept to examine associations between acute (0-3 days), intermediate (4-28 days), and long-term (1 year) exposure to PM2.5 components, temperature, and heart-rate corrected QT interval (QTc). Each of the PM2.5 components and temperature was geocoded to the participant's residential address using validated ensemble and hybrid exposure models and gridMET predictions. We also evaluated whether diabetic status modified the association between PM2.5 components and QTc interval. We found consistent results that higher sulfate levels and colder temperatures were associated with significant longer QTc across all moving averages except the day of exposure. The greatest effect of sulfate and temperature was detected for the 28-day moving average. In the multi-pollutant model, each 1.5 µg/m3 IQR increase in daily sulfate was associated with a 15.1 ms [95% confidence interval (CI): 10.2-20.0] increase in QTc interval and in the single-pollutant models a 15.3 ms (95% CI: 11.6-19.1) increase in QTc interval. Other secondary particles, such as nitrate and organic carbon, also prolonged QT interval, while elemental carbon decreased QT interval. We found that diabetic status did not modify the association between PM2.5 components and QTc interval. CONCLUSION Acute and long-term exposure to PM2.5 components and temperature are associated with changes in ventricular repolarization as measured by QT interval.
Collapse
Affiliation(s)
- Adjani A. Peralta
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue Building 1, Boston, Massachusetts 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue Building 1, Boston, Massachusetts 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Diane R. Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue Building 1, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Brent Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue Building 1, Boston, Massachusetts 02115, USA
| |
Collapse
|
179
|
Wu Y, Song P, Lin S, Peng L, Li Y, Deng Y, Deng X, Lou W, Yang S, Zheng Y, Xiang D, Hu J, Zhu Y, Wang M, Zhai Z, Zhang D, Dai Z, Gao J. Global Burden of Respiratory Diseases Attributable to Ambient Particulate Matter Pollution: Findings From the Global Burden of Disease Study 2019. Front Public Health 2021; 9:740800. [PMID: 34888281 PMCID: PMC8650086 DOI: 10.3389/fpubh.2021.740800] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Exposure to ambient particulate matter pollution (APMP) is a global health issue that directly affects the human respiratory system. Thus, we estimated the spatiotemporal trends in the burden of APMP-related respiratory diseases from 1990 to 2019. Methods: Based on the Global Burden of Disease Study 2019, data on the burden of APMP-related respiratory diseases were analyzed by age, sex, cause, and location. Joinpoint regression analysis was used to analyze the temporal trends in the burden of different respiratory diseases over the 30 years. Results: Globally, in 2019, APMP contributed the most to chronic obstructive pulmonary disease (COPD), with 695.1 thousand deaths and 15.4 million disability-adjusted life years (DALYs); however, the corresponding age-standardized death and DALY rates declined from 1990 to 2019. Similarly, although age-standardized death and DALY rates since 1990 decreased by 24% and 40%, respectively, lower respiratory infections (LRIs) still had the second highest number of deaths and DALYs attributable to APMP. This was followed by tracheal, bronchus, and lung (TBL) cancer, which showed increased age-standardized death and DALY rates during the past 30 years and reached 3.78 deaths per 100,000 persons and 84.22 DALYs per 100,000 persons in 2019. Among children aged < 5 years, LRIs had a huge burden attributable to APMP, whereas for older people, COPD was the leading cause of death and DALYs attributable to APMP. The APMP-related burdens of LRIs and COPD were relatively higher among countries with low and low-middle socio-demographic index (SDI), while countries with high-middle SDI showed the highest burden of TBL cancer attributable to APMP. Conclusions: APMP contributed substantially to the global burden of respiratory diseases, posing a significant threat to human health. Effective actions aimed at air pollution can potentially avoid an increase in the PM2.5-associated disease burden, especially in highly polluted areas.
Collapse
Affiliation(s)
- Ying Wu
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ping Song
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuai Lin
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ling Peng
- Department of Respiratory Disease, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Yizhen Li
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yujiao Deng
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyue Deng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Weiyang Lou
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Si Yang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Zheng
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dong Xiang
- Celilo Cancer Center, Oregon Health Science Center Affiliated Mid-Columbia Medical Center, The Dalles, OR, United States
| | - Jingjing Hu
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Yuyao Zhu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhen Zhai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dai Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Gao
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
180
|
De Marchis GM, Wright PR, Michel P, Strambo D, Carrera E, Dirren E, Luft AR, Wegener S, Cereda CW, Kägi G, Vehoff J, Gensicke H, Lyrer P, Nedeltchev K, Khales T, Bolognese M, Salmen S, Sturzenegger R, Bonvin C, Berger C, Schelosky L, Mono ML, Rodic B, von Reding A, Schwegler G, Tarnutzer AA, Medlin F, Humm AM, Peters N, Beyeler M, Kriemler L, Bervini D, Fandino J, Hemkens LG, Mordasini P, Arnold M, Fischer U, Bonati LH. Association of the COVID-19 Outbreak with Acute Stroke Care in Switzerland. Eur J Neurol 2021; 29:724-731. [PMID: 34894018 PMCID: PMC9305499 DOI: 10.1111/ene.15209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/02/2022]
Abstract
Background and purpose In Switzerland, the COVID‐19 incidence during the first pandemic wave was high. Our aim was to assess the association of the outbreak with acute stroke care in Switzerland in spring 2020. Methods This was a retrospective analysis based on the Swiss Stroke Registry, which includes consecutive patients with acute cerebrovascular events admitted to Swiss Stroke Units and Stroke Centers. A linear model was fitted to the weekly admission from 2018 and 2019 and was used to quantify deviations from the expected weekly admissions from 13 March to 26 April 2020 (the “lockdown period”). Characteristics and 3‐month outcome of patients admitted during the lockdown period were compared with patients admitted during the same calendar period of 2018 and 2019. Results In all, 28,310 patients admitted between 1 January 2018 and 26 April 2020 were included. Of these, 4491 (15.9%) were admitted in the periods March 13–April 26 of the years 2018–2020. During the lockdown in 2020, the weekly admissions dropped by up to 22% compared to rates expected from 2018 and 2019. During three consecutive weeks, weekly admissions fell below the 5% quantile (likelihood 0.38%). The proportion of intracerebral hemorrhage amongst all registered admissions increased from 7.1% to 9.3% (p = 0.006), and numerically less severe strokes were observed (median National Institutes of Health Stroke Scale from 3 to 2, p = 0.07). Conclusions Admissions and clinical severity of acute cerebrovascular events decreased substantially during the lockdown in Switzerland. Delivery and quality of acute stroke care were maintained.
Collapse
Affiliation(s)
- Gian Marco De Marchis
- Department of Neurology and Stroke Center, University Hospital Basel, Switzerland.,Department of Clinical Research, University of Basel, Switzerland
| | - Patrick R Wright
- Department of Clinical Research, University of Basel, Switzerland
| | - Patrik Michel
- Department of Neurology, Lausanne University Hospital - Centre Hospitalier Universitaire Vaudois (CHUV)
| | - Davide Strambo
- Department of Neurology, Lausanne University Hospital - Centre Hospitalier Universitaire Vaudois (CHUV)
| | - Emmanuel Carrera
- Department of Neurology, University Hospital Geneva, Switzerland
| | - Elisabeth Dirren
- Department of Neurology, University Hospital Geneva, Switzerland
| | - Andreas R Luft
- Department of Neurology, University Hospital Zurich and University of Zurich, Switzerland.,Cereneo Center for Neurology and Rehabilitation, Vitznau, Switzerland
| | - Susanne Wegener
- Department of Neurology, University Hospital Zurich and University of Zurich, Switzerland
| | - Carlo W Cereda
- Department of Neurology and Stroke Center, Neurocenter of Southern Switzerland, Lugano, Switzerland
| | - Georg Kägi
- Department of Neurology, Cantonal Hospital St, Gallen, Switzerland.,Department of Neurology and Stroke Center, University Hospital Berne - Inselspital, Switzerland
| | - Jochen Vehoff
- Department of Neurology, Cantonal Hospital St, Gallen, Switzerland
| | - Henrik Gensicke
- Department of Neurology and Stroke Center, University Hospital Basel, Switzerland
| | - Philippe Lyrer
- Department of Neurology and Stroke Center, University Hospital Basel, Switzerland.,Department of Clinical Research, University of Basel, Switzerland
| | | | - Timo Khales
- Department of Neurology, Cantonal Hospital Aarau, Switzerland
| | | | | | | | | | | | | | | | - Biljana Rodic
- Stroke Unit, Cantonal Hospital Winterthur, Switzerland
| | | | | | | | | | - Andrea M Humm
- Stroke Unit, HFR Fribourg - Hôpital Cantonal, Switzerland
| | - Nils Peters
- Department of Neurology and Stroke Center, Hirslanden Clinic Zurich, Switzerland
| | - Morin Beyeler
- Department of Neurology and Stroke Center, University Hospital Berne - Inselspital, Switzerland
| | - Lilian Kriemler
- Department of Neurology and Stroke Center, University Hospital Basel, Switzerland
| | - David Bervini
- Department of Neurosurgery, University Hospital Berne, Switzerland
| | - Javier Fandino
- Department of Neurosurgery, Hirslanden Clinic Aarau & Zurich, Switzerland
| | - Lars G Hemkens
- Department of Clinical Research, University of Basel, Switzerland.,Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, CA, USA.,Meta-Research Innovation Center Berlin (METRIC-B), Berlin Institute of Health, Berlin, Germany
| | | | - Marcel Arnold
- Department of Neurology and Stroke Center, University Hospital Berne - Inselspital, Switzerland
| | - Urs Fischer
- Department of Neurology and Stroke Center, University Hospital Basel, Switzerland.,Department of Clinical Research, University of Basel, Switzerland.,Department of Neurology and Stroke Center, University Hospital Berne - Inselspital, Switzerland
| | - Leo H Bonati
- Department of Neurology and Stroke Center, University Hospital Basel, Switzerland.,Department of Clinical Research, University of Basel, Switzerland
| | | |
Collapse
|
181
|
Cao L, Ping F, Zhang F, Gao H, Li P, Ning X, Cui G, Ma Z, Jiang X, Li S, Han S. Tissue-Protective Effect of Erdosteine on Multiple-Organ Injuries Induced by Fine Particulate Matter. Med Sci Monit 2021; 27:e930909. [PMID: 34873140 PMCID: PMC8665604 DOI: 10.12659/msm.930909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background Fine particulate matter (PM2.5) is the air pollutant that most threatens global public health. The purpose of this study was to observe the inflammatory and oxidative stress injury of multiple organs induced by PM2.5 in rats and to explore the tissue-protective effect of erdosteine. Material/Methods We randomly divided 40 male Wistar rats into a blank control group, a saline group, a PM2.5 exposure group, and an erdosteine intervention group. We assessed changes in organs tissue homogenate and biomarkers of inflammation and oxidative stress in serum and bronchoalveolar lavage fluid (BALF). Results (1) The expressions of IL-6, IL-1β, TNF-α, 8-OHdG, 4-HNE, and PCC in serum and BALF of the PM2.5 exposure group increased, but decreased after treatment with erdosteine, suggesting that erdosteine treatment attenuates inflammatory and oxidative stress injury. (2) The expression of γ-GCS in serum and lungs in the PM2.5 exposure group increased, but did not change significantly after treatment with erdosteine. This suggests that PM2.5 upregulates the level of γ-GCS, while erdosteine does not affect this protective response. (3) The expression of T-AOC in serum, lungs, spleens, and kidneys of the PM2.5 exposure group decreased, but increased after treatment with erdosteine. Our results suggest that PM2.5 can cause imbalance of oxidation/anti-oxidation in multiple organs, and erdosteine can alleviate this imbalance. Conclusions PM2.5 exposure can lead to inflammatory and oxidative stress damage in serum and organ tissues of rats. Erdosteine may be an effective anti-inflammatory and antioxidant that can reduce this injury.
Collapse
Affiliation(s)
- Lei Cao
- Third Department of Geriatrics, Hebei General Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Fen Ping
- Third Department of Geriatrics, Hebei General Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Fengrui Zhang
- Third Department of Geriatrics, Hebei General Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Haixiang Gao
- Department of Respiratory Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Ping Li
- Third Department of Geriatrics, Hebei General Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Xiaohui Ning
- Third Department of Geriatrics, Hebei General Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Guohuan Cui
- Third Department of Geriatrics, Hebei General Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Zheng Ma
- International Department, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, China (mainland)
| | - Xin Jiang
- Third Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Suyan Li
- Department of General Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Shuzhi Han
- Third Department of Geriatrics, Hebei General Hospital, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
182
|
Yang X, Shen S, Deng Y, Wang C, Zhang L. Air Pollution Exposure Affects Severity and Cellular Endotype of Chronic Rhinosinusitis With Nasal Polyps. Laryngoscope 2021; 132:2103-2110. [PMID: 34870326 DOI: 10.1002/lary.29974] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVES/HYPOTHESIS Air pollution has emerged as an important environmental risk factor for chronic rhinosinusitis (CRS) progression. This study assessed exposure to five types of air pollution (PM2.5/10 , SO2 , NO2 , CO, O3 ) and explored their effects on CRS with nasal polyps (CRSwNP) severity and endotype. STUDY DESIGN Retrospective cohort study. METHODS Air pollution data from monitoring sites in Beijing were obtained to assess individual air pollution exposure. Outcomes of CRSwNP (n = 282) including Lund-Mackay (L-M) score, Lund-Kennedy (L-K) score, visual analogue scale (VAS) score and nasal patency/airflow resistance and so on were measured to analyze correlations with air pollution and compare groups with different exposure types. Multivariable-adjusted binary logistic regression was used to determine potential air pollution risk factors of the endotype of eosinophilic CRSwNP (ECRSwNP). RESULTS Short-term exposures to PM2.5/10 , SO2 , CO, NO2 , and O3 were weak but significantly associated with increased L-M scores. Short-term exposures to PM10 , CO, and NO2 were correlated with increased VAS headache/facial pain scores. The L-M scores of the group of the highest PM2.5 (≥150 μg/m3 ) exposure were significantly higher than those of control group. For each increased unit of the average concentration of PM2.5 , there was a 1.047-fold (95% confidence interval, 1.005-1.091) increased risk of the endotype of ECRSwNP. CONCLUSIONS Air pollution exposure exacerbated CRSwNP severity and PM2.5 could be a risk factor for endotype of ECRSwNP, suggesting the role of air pollution in CRSwNP pathogenesis. LEVEL OF EVIDENCE 4 Laryngoscope, 2021.
Collapse
Affiliation(s)
- Xiaozhe Yang
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shen Shen
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuzhoujia Deng
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chengshuo Wang
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Luo Zhang
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
183
|
Kumar N, Phillip E, Cooper H, Davis M, Langevin J, Clifford M, Stanistreet D. Do improved biomass cookstove interventions improve indoor air quality and blood pressure? A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117997. [PMID: 34450490 DOI: 10.1016/j.envpol.2021.117997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES This systematic review and meta-analysis evaluates the most recent evidence to examine whether use of improved biomass cookstoves in households in low-middle income countries results in reduction in mean concentrations of carbon monoxide (CO) and particulate matter of size 2.5 μm (PM2.5) in the cooking area, as well as reduction in mean systolic (SBP) and diastolic blood pressure (DBP) of adults using the cookstoves when compared to adults who use traditional three stone fire or traditional biomass cookstoves. METHODS We searched databases of scientific and grey literature. We included studies if published between January 2012 and June 2021, reported impact of ICS interventions in non-pregnant adults in low/middle-income countries, and reported post-intervention results along with baseline of traditional cookstoves. Outcomes included 24- or 48-h averages of kitchen area PM2.5, CO, mean SBP and DBP. Meta-analyses estimated weighted mean differences between baseline and post-intervention values for all outcome measures. RESULTS Eleven studies were included; ten contributed estimates for HAP and four for BP. Interventions lead to significant reductions in PM2.5 (-0.73 mg/m3, 95% CI: -1.33, -0.13), CO (-8.37 ppm, 95%CI: -13.20, -3.54) and SBP (-2.82 mmHg, 95% CI: -5.53, -0.11); and a non-significant reduction in DBP (-0.80 mmHg, 95%CI: -2.33, 0.73), when compared to baseline of traditional cookstoves. Except for DBP, greatest reductions in all outcomes came from standard combustion ICS with a chimney, compared to ICS without a chimney and advanced combustion ICS. CONCLUSION Among the reviewed biomass stove types, ICS with a chimney feature resulted in greatest reductions in HAP and BP.
Collapse
Affiliation(s)
- Nitya Kumar
- Department of Medicine, Royal College of Surgeons in Ireland - Bahrain, Manama, Bahrain.
| | - Eunice Phillip
- Department of Public Health and Epidemiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Helen Cooper
- Department of Medicine, Royal College of Surgeons in Ireland - Bahrain, Manama, Bahrain
| | - Megan Davis
- Department of Public Health and Epidemiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jessica Langevin
- Department of Public Health and Epidemiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mike Clifford
- Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Debbi Stanistreet
- Department of Public Health and Epidemiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
184
|
Song L, Pan K, Du X, Jiang S, Zeng X, Zhang J, Lei L, Zhang M, Zhang Y, Fan D, Liu Z, Zhou J, Zhao J. Ambient PM 2.5-induced brain injury is associated with the activation of PI3K/AKT/FoxO1 pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68276-68287. [PMID: 34268684 DOI: 10.1007/s11356-021-15405-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
PM2.5-related neurological and mental diseases, such as cognitive impairment and stroke, tend to cause disability. Six-week-old male C57BL/6 mice were divided into 6 groups and exposed to concentrated PM2.5 or filtered air for 2, 4, and 6 months, respectively. The neurobehavioral changes of mice were tested. The weight of the whole brain and olfactory bulbs were recorded at the end of exposure, and the brain structure was observed by hematoxylin and eosin (HE) staining. Serum indicators, mRNA, and protein expressions were detected. The spatial learning memory ability was impaired, and the mice were more anxious after PM2.5 exposure. Relative brain weight decreased with age, and PM2.5 exposure exceeded the decrease of relative brain weight. Interestingly, superoxide dismutase (SOD) and albumin decreased in the PM2.5-exposed groups although neuronal morphology and other serum indicators did not show significant difference between PM and FA groups. Moreover, PM2.5 induced the increase of plasminogen at 2 months but recovered at 4 months and then increased at 6 months again. The results from protein expression and transcriptomic test demonstrated that PI3K/AKT/FoxO1 pathway might be activated after 6-month PM2.5 exposure in mice. Indicators albumin, the percentage of albumin over IgG (A/G value), and plasminogen were the main serous changes in mice after early-stage (2 months) and long-term (6 months) PM2.5 exposure. In addition, early-stage injury induced by PM2.5 might recover at later time point and display significant injury again with the exposure time. PM2.5 exposure-induced brain injury might be associated with the activation of PI3K/AKT/FoxO1 pathway.
Collapse
Affiliation(s)
- Liying Song
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Box 249, 130 Dong'an Road, Shanghai, 200032, China
| | - Kun Pan
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Box 249, 130 Dong'an Road, Shanghai, 200032, China
| | - Xihao Du
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Box 249, 130 Dong'an Road, Shanghai, 200032, China
| | - Shuo Jiang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Box 249, 130 Dong'an Road, Shanghai, 200032, China
| | - Xuejiao Zeng
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Box 249, 130 Dong'an Road, Shanghai, 200032, China
| | - Jia Zhang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Box 249, 130 Dong'an Road, Shanghai, 200032, China
| | - Lei Lei
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Box 249, 130 Dong'an Road, Shanghai, 200032, China
| | - Mengdi Zhang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Box 249, 130 Dong'an Road, Shanghai, 200032, China
| | - Yuwen Zhang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Box 249, 130 Dong'an Road, Shanghai, 200032, China
| | - Dongxia Fan
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Box 249, 130 Dong'an Road, Shanghai, 200032, China
| | - Zhixiu Liu
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Box 249, 130 Dong'an Road, Shanghai, 200032, China
| | - Ji Zhou
- Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, China
| | - Jinzhuo Zhao
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Box 249, 130 Dong'an Road, Shanghai, 200032, China.
- Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, China.
- IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
185
|
Excess Morbidity and Mortality Associated with Air Pollution above American Thoracic Society Recommended Standards, 2017-2019. Ann Am Thorac Soc 2021; 19:603-613. [PMID: 34847333 DOI: 10.1513/annalsats.202107-860oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rationale: Over the past year, the American Thoracic Society (ATS), led by its Environmental Health Policy Committee, has reviewed the most current air quality scientific evidence and has revised their recommendations to 8 µg/m3 and 25 µg/m3 for long- and short-term fine particulate matter (PM2.5) and reaffirmed the recommendation of 60 ppb for ozone to protect the American public from the known adverse health effects of air pollution. The current EPA standards, in contrast, expose the American public to pollution levels that are known to result in significant morbidity and mortality. Objectives: To provide county-level estimates of annual air pollution-related health outcomes across the United States using the most recent federal air quality data, and to support the ATS's recent update to the long-term PM2.5 recommended standard. This study is presented as part of the annual ATS/Marron Institute "Health of the Air" report. Methods: Daily air pollution values were obtained from the U.S. Environmental Protection Agency's (EPA) Air Quality System for monitored counties in the United States from 2017-2019. Concentration-response functions used in the EPA's regulatory review process were applied to pollution increments corresponding to differences between the rolling 3-year design values and ATS-recommended levels for long-term PM2.5 (8 µg/m3), short-term PM2.5 (25 µg/m3), and ground-level ozone (O3; 60 ppb). Health impacts were estimated at the county level in locations with valid monitoring data. Results: Meeting ATS recommendations throughout the country prevents an estimated 14,650 (95% CI: 8,660 - 22,610) deaths; 2,950 (95% CI: 1,530 - 4,330) lung cancer incidence events; 33,100 (95% CI: 7,300 - 71,000) morbidities, and 39.8 million (95% CI: 14.6 - 63.3 million) impacted days annually (see Table 1). This prevents 11,850 more deaths; 2,580 more lung cancer incidence events; 25,400 more morbidities; and 27.2 million more impacted days than meeting EPA standards alone. Conclusions: Significant health benefits to be gained by U.S. communities that work to meet ATS-recommended air quality standards have now been identified under scenarios meeting the new ATS recommendation for long-term PM2.5 (8 µg/m3). The "Health of the Air" report presents an opportunity for air quality managers to quantify local health burdens and EPA officials to update their standards to reflect the latest science.
Collapse
|
186
|
Short- and medium-term impacts of strict anti-contagion policies on non-COVID-19 mortality in China. Nat Hum Behav 2021; 6:55-63. [PMID: 34845358 DOI: 10.1038/s41562-021-01189-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/23/2021] [Indexed: 11/09/2022]
Abstract
The effects of coronavirus disease-19 (COVID-19) public health policies on non-COVID-19-related mortality are unclear. Here, using death registries based on 300 million Chinese people and a difference-in-differences design, we find that China's strict anti-contagion policies during the COVID-19 pandemic significantly reduced non-COVID-19 mortality outside Wuhan (by 4.6%). The health benefits persisted and became even greater after the measures were loosened: mortality was reduced by 12.5% in the medium term. Significant changes in people's behaviours (for example, wearing masks and practising social distancing) and reductions in air pollution and traffic accidents could have driven these results. We estimate that 54,000 lives could have been saved from non-COVID-19 causes during the 50 days of strict policies and 293,000 in the subsequent 115 days. The results suggest that virus countermeasures not only effectively controlled COVID-19 in China but also brought about unintended and substantial public health benefits.
Collapse
|
187
|
Wu M, Liu C, Wang H, Nie J, Yang J. Dose-response relationship between urinary PAH metabolites and blood viscosity among coke oven workers: a cross-sectional study. BMJ Open 2021; 11:e046682. [PMID: 34794984 PMCID: PMC8603277 DOI: 10.1136/bmjopen-2020-046682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES Polycyclic aromatic hydrocarbons (PAHs) have been proven to be a risk factor for cardiovascular disease in coke oven workers, and increased plasma viscosity is a signal for higher risk of catching up cardiovascular disease. We want to explore whether the plasma viscosity is affected by the concentration of PAHs. DESIGN Our study is a cross-sectional dose-response study. SETTING Participants in this study came from a coke plant in Taiyuan, Shanxi. PARTICIPANTS We used data of 693 coke oven workers in Taiyuan. PRIMARY AND SECONDARY OUTCOME MEASURES We assumed that plasma viscosity would increase as the concentration of PAHs metabolites in urine increases. We found that 2-hydroxyfluorene (OHFLU2) and plasma viscosity have a stable linear relationship in different statistical methods. RESULTS We found that plasma viscosity increased by 1.14 (mPa.s,30/s) for each ng/mL of 2-OHFLU urinary (correlation coefficient range: 0.54-1.74, p<0.05). CONCLUSIONS The results of this study could provide evidence for coke oven workers to prevent cardiovascular disease by checking whether plasma viscosity is elevated.
Collapse
Affiliation(s)
- Min Wu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chengjuan Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huimin Wang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jisheng Nie
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jin Yang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
188
|
Park J, Lee KH, Kim H, Woo J, Heo J, Lee CH, Yi SM, Yoo CG. The impact of organic extracts of seasonal PM 2.5 on primary human lung epithelial cells and their chemical characterization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59868-59880. [PMID: 34148195 PMCID: PMC8541986 DOI: 10.1007/s11356-021-14850-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/08/2021] [Indexed: 05/13/2023]
Abstract
Lung epithelial cells serve as the first line of defense against various inhaled pollutant particles. To investigate the adverse health effects of organic components of fine particulate matter (PM2.5) collected in Seoul, South Korea, we selected 12 PM2.5 samples from May 2016 to January 2017 and evaluated the effects of organic compounds of PM2.5 on inflammation, cellular aging, and macroautophagy in human lung epithelial cells isolated directly from healthy donors. Organic extracts of PM2.5 specifically induced neutrophilic chemokine and interleukin-8 expression via extracellular signal-regulated kinase activation. Moreover, PM2.5 significantly increased the expression of aging markers (p16, p21, and p27) and activated macroautophagy. Average mass concentrations of organic and elemental carbon had no significant correlations with PM2.5 effects. However, polycyclic aromatic hydrocarbons and n-alkanes were the most relevant components of PM2.5 that correlated with neutrophilic inflammation. Vegetative detritus and residential bituminous coal combustion sources strongly correlated with neutrophilic inflammation, aging, and macroautophagy activation. These data suggest that the chemical composition of PM2.5 is important for determining the adverse health effects of PM2.5. Our study provides encouraging evidence to regulate the harmful components of PM2.5 in Seoul.
Collapse
Affiliation(s)
- Jieun Park
- Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Kyoung-Hee Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 101 Daehakno, Jongno-gu, Seoul, 03080, Korea
| | - Hyewon Kim
- Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Jisu Woo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 101 Daehakno, Jongno-gu, Seoul, 03080, Korea
| | - Jongbae Heo
- Busan Development Institute, 955 Jungangdae-ro, Busanjin-gu, Busan, 47210, Korea.
| | - Chang-Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 101 Daehakno, Jongno-gu, Seoul, 03080, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Muk Yi
- Graduate School of Public Health, Seoul National University, Seoul, Korea
- Institute of Health and Environment, Seoul National University, Seoul, Korea
| | - Chul-Gyu Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 101 Daehakno, Jongno-gu, Seoul, 03080, Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
189
|
Lin CH, Nicol CJB, Wan C, Chen SJ, Huang RN, Chiang MC. Exposure to PM 2.5 induces neurotoxicity, mitochondrial dysfunction, oxidative stress and inflammation in human SH-SY5Y neuronal cells. Neurotoxicology 2021; 88:25-35. [PMID: 34718062 DOI: 10.1016/j.neuro.2021.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
Ambient air pollution is a global public health issue. Recent evidence suggests that exposure to fine aerosolized particulate matter (PM) as small as ≤2.5 microns (PM2.5) is neurotoxic to brain structures. Many studies also suggest exposure to PM2.5 may cause neurotoxicity and affect brain function. However, the molecular mechanisms by which PM2.5 exerts these effects are not fully understood. Thus, we evaluated the hypothesis that PM2.5 exposure exerts its neurotoxic effects via increased oxidative and inflammatory cellular damage and mitochondrial dysfunction using human SH-SY5Y neuronal cells. Here, we show PM2.5 exposure significantly decreases viability, and increases caspase 3 and 9 protein expression and activity in SH-SY5Y cells. In addition, PM2.5 exposure decreases SH-SY5Y survival, disrupts cell and mitochondrial morphology, and significantly decreases ATP levels, D-loop levels, and mitochondrial mass and function (maximal respiratory function, COX activity, and mitochondrial membrane potential) in SH-SY5Y cells. Moreover, SH-SY5Y cells exposed to PM2.5 have significantly decreased mRNA and protein expression levels of survival genes (CREB and Bcl-2) and neuroprotective genes (PPARγ and AMPK). We further show SH-SY5Y cells exposure to PM2.5 induces significant increases in the levels of oxidative stress, and expression levels of the inflammatory mediator's TNF-α, IL-1β, and NF-κB. Taken together, these results provide the first evidence of the biochemical, molecular and morphological effects of PM2.5 on human neuronal SH-SY5Y cells, and support our hypothesis that increased mitochondrial disruption, oxidative stress and inflammation are critical mediators of its neurotoxic effects. These findings further improve our understanding of the neuronal cell impact of PM2.5 exposure, and may be useful in the design of strategies for the treatment and prevention of human neurodegenerative disorders.
Collapse
Affiliation(s)
- Chien-Hung Lin
- Division of Pediatric Immunology and Nephrology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Pediatrics, Taipei City Hospital, Zhongxing Branch, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; College of Science and Engineering, Fu Jen Catholic University, New Taipei, Taiwan
| | - Christopher J B Nicol
- Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, and Cancer Biology and Genetics Division, Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Chuan Wan
- Department of Pediatrics, Taipei City Hospital, Zhongxing Branch, Taipei, Taiwan
| | - Shiang-Jiuun Chen
- Department of Life Science and Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Rong-Nan Huang
- Department of Entomology and Research Center for Plant-Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City, 242, Taiwan.
| |
Collapse
|
190
|
Weng L, Li N, Feng T, Zhu R, Zheng ZJ. Short-Term Association of Air Pollutant Levels and Hospital Admissions for Stroke and Effect Modification by Apparent Temperature: Evidence From Shanghai, China. Front Public Health 2021; 9:716153. [PMID: 34646803 PMCID: PMC8503471 DOI: 10.3389/fpubh.2021.716153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/23/2021] [Indexed: 11/19/2022] Open
Abstract
The epidemiological evidence on relationships between air pollution, temperature, and stroke remains inconclusive. Limited evidence is available for the effect modification by apparent temperature, an indicator reflecting reactions to the thermal environment, on short-term associations between air pollution and hospital admissions for stroke. We used a generalized additive model with Poisson regression to estimate the relative risk (RR) of stroke admissions in Shanghai, China, between 2014 and 2016 associated with air pollutants, with subgroup analyses by age, sex, apparent temperature, and season. During the study period, changes in the daily number of stroke admissions per 10 μg/m3 increase in nitrogen dioxide (at lags 0, 1, 0–1, and 0–2) ranged from 1.05 (95% CI: 0.82%, 2.88%) to 2.24% (95% CI: 0.84%, 3.65%). For each 10 μg/m3 increase in sulfur dioxide concentrations at lags 1, 2, 0–1, and 0–2, the RR of daily stroke admissions increased by 3.34 (95% CI: 0.955%, 5.79%), 0.32 (95% CI: −1.97%, 2.67%), 3.33 (95% CI: 0.38%, 6.37%), and 2.86% (95% CI: −0.45%, 6.28%), respectively. The associations of same-day exposure to nitrogen dioxide with stroke admissions remained significant after adjustment for ozone levels. These associations were not modified by sex, age, apparent temperature, or season. More research is warranted to determine whether apparent temperature modifies the associations between air pollution and stroke admissions.
Collapse
Affiliation(s)
- Lvkan Weng
- Department of Epidemiology and Biostatistics, School of Public Health, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Chest Hospital, Shanghai, China
| | - Na Li
- Department of Global Health, School of Public Health, Peking University, Beijing, China
| | - Tienan Feng
- Clinic Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongjia Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Shanghai Jiao Tong University, Shanghai, China.,Clinic Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Jie Zheng
- Department of Global Health, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
191
|
Münzel T, Hahad O, Sørensen M, Lelieveld J, Duerr GD, Nieuwenhuijsen M, Daiber A. Environmental risk factors and cardiovascular diseases: a comprehensive review. Cardiovasc Res 2021; 118:2880-2902. [PMID: 34609502 PMCID: PMC9648835 DOI: 10.1093/cvr/cvab316] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/02/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Noncommunicable diseases (NCDs) are fatal for more than 38 million people each year and are thus the main contributors to the global burden of disease accounting for 70% of mortality. The majority of these deaths are caused by cardiovascular disease. The risk of NCDs is strongly associated with exposure to environmental stressors such as pollutants in the air, noise exposure, artificial light at night and climate change, including heat extremes, desert storms and wildfires. In addition to the traditional risk factors for cardiovascular disease such as diabetes, arterial hypertension, smoking, hypercholesterolemia and genetic predisposition, there is a growing body of evidence showing that physicochemical factors in the environment contribute significantly to the high NCD numbers. Furthermore, urbanization is associated with accumulation and intensification of these stressors. This comprehensive expert review will summarize the epidemiology and pathophysiology of environmental stressors with a focus on cardiovascular NCDs. We will also discuss solutions and mitigation measures to lower the impact of environmental risk factors with focus on cardiovascular disease.
Collapse
Affiliation(s)
- Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany
| | - Omar Hahad
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany
| | - Mette Sørensen
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - Georg Daniel Duerr
- Department of Cardiac Surgery, University Medical Center Mainz, Johannes Gutenberg University, Germany
| | - Mark Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany
| |
Collapse
|
192
|
Yu S, Alper HE, Nguyen A, Maqsood J, Brackbill RM. Stroke hospitalizations, posttraumatic stress disorder, and 9/11-related dust exposure: Results from the World Trade Center Health Registry. Am J Ind Med 2021; 64:827-836. [PMID: 34558721 DOI: 10.1002/ajim.23271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Few studies have examined the association between disaster-related factors and stroke by subtype or number. We investigated the association between 9/11-related posttraumatic stress disorder (PTSD), dust exposure, and stroke subtype as well as recurrent strokes. METHODS The study included 29,012 individuals enrolled in the World Trade Center Health Registry. Stroke cases were obtained by matching Registry enrollees to the New York State Department of Health's discharge records for inpatient visits between 2000 and 2016. Cox proportional hazards regression models were performed to examine the association between 9/11-related risk factors and stroke by subtype. Multinomial logistic regression models were conducted to assess the associations between the same risk factors and the number of stroke hospitalizations. RESULTS Having PTSD significantly increased the risk of developing ischemic and hemorrhagic stroke, with adjusted hazards ratios (AHRs) of 1.64 (95% confidence interval [CI]: 1.28-2.10) and 1.73 (95% CI: 1.10-2.71), respectively. The point estimate for dust cloud exposure, although not significant statistically, suggested an increased risk of ischemic stroke (AHR = 1.20, 95% CI: 0.96-1.50). PTSD was significantly associated with recurrent strokes with an adjusted odds ratio of 1.79 (95% CI: 1.09-2.95). CONCLUSIONS PTSD is a risk factor for both ischemic and hemorrhagic stroke and is associated with recurrent strokes. Dust exposure on 9/11 is a possible risk factor for ischemic stroke but not for hemorrhagic stroke, and was not associated with recurrent strokes. Our findings warrant additional research on stroke-morbidity and mortality associated with 9/11-related PTSD and dust exposure.
Collapse
Affiliation(s)
- Shengchao Yu
- New York City Department of Health and Mental Hygiene Long Island City New York USA
| | - Howard E. Alper
- New York City Department of Health and Mental Hygiene Long Island City New York USA
| | - Angela‐Maithy Nguyen
- Interdisciplinary Division, School of Public Health University of California‐Berkeley Berkeley California USA
| | - Junaid Maqsood
- New York City Department of Health and Mental Hygiene Long Island City New York USA
| | - Robert M. Brackbill
- New York City Department of Health and Mental Hygiene Long Island City New York USA
| |
Collapse
|
193
|
Chang SH, Merzkani M, Murad H, Wang M, Bowe B, Lentine KL, Al-Aly Z, Alhamad T. Association of Ambient Fine Particulate Matter Air Pollution With Kidney Transplant Outcomes. JAMA Netw Open 2021; 4:e2128190. [PMID: 34618038 PMCID: PMC8498852 DOI: 10.1001/jamanetworkopen.2021.28190] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
IMPORTANCE Increased levels of ambient fine particulate matter (PM2.5) air pollution are associated with increased risks for detrimental health outcomes, but risks for patients with kidney transplants (KTs) remain unknown. OBJECTIVE To investigate the association of PM2.5 exposure with KT outcomes. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study was conducted using data on patients who received KTs from 2004 to 2016 who were identified in the national US transplant registry and followed up through March 2021. Multiple databases were linked to obtain data on PM2.5 concentration, KT outcomes, and patient clinical, transplant, and contextual factors. Data were analyzed from April 2020 through July 2021. EXPOSURES Exposures included post-KT time-dependent annual mean PM2.5 level (in 10 μg/m3) and mean PM2.5 level in the year before KT (ie, baseline levels) in quartiles, as well as baseline annual mean PM2.5 level (in 10 μg/m3). MAIN OUTCOMES AND MEASURES Acute kidney rejection (ie, rejection within 1 year after KT), time to death-censored graft failure, and time to all-cause death. Multivariable logistic regression for kidney rejection and Cox analyses with nonlinear assessment of exposure-response for death-censored graft failure and all-cause death were performed. The national burden of graft failure associated with PM2.5 levels greater than the Environmental Protection Agency recommended level of 12 μg/m3 was estimated. RESULTS Among 112 098 patients with KTs, 70 522 individuals (62.9%) were older than age 50 years at the time of KT, 68 117 (60.8%) were men, and the median (IQR) follow-up was 6.0 (3.9-8.9) years. There were 37 265 Black patients (33.2%), 17 047 Hispanic patients (15.2%), 48 581 White patients [43.3%]), and 9205 patients (8.2%) of other race or ethnicity. The median (IQR) baseline PM2.5 level was 9.8 (8.3-11.9) μg/m3. Increased baseline PM2.5 level, compared with quartile 1 baseline PM2.5 level, was not associated with higher odds of acute kidney rejection for quartile 2 (adjusted odds ratio [aOR], 0.99; 95% CI, 0.92-1.06) but was associated with increased odds for quartile 3 (aOR, 1.11; 95% CI, 1.04-1.20) and quartile 4 (aOR, 1.13; 95% CI, 1.05-1.23). Nonlinear assessment of exposure-response for graft failure and death showed no evidence for nonlinearity. Increased PM2.5 levels were associated with increased risk of death-censored graft failure (adjusted hazard ratio [aHR] per 10 μg/m3 increase, 1.17; 95% CI, 1.09-1.25) and all-cause death (aHR per 10 μg/m3 increase, 1.21; 95% CI, 1.14-1.28). The national burden of death-censored graft failure associated with PM2.5 above 12 μg/m3 was 57 failures (95% uncertainty interval, 48-67 failures) per year among patients with KTs. CONCLUSIONS AND RELEVANCE This cohort study found that PM2.5 level was an independent risk factor associated with acute rejection, graft failure, and death among patients with KTs. These findings suggest that efforts toward decreasing levels of PM2.5 concentration may be associated with improved outcomes after KT.
Collapse
Affiliation(s)
- Su-Hsin Chang
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine in St. Louis, Missouri
- Institute for Public Health, Washington University School of Medicine in St. Louis, Missouri
| | - Massini Merzkani
- Institute for Public Health, Washington University School of Medicine in St. Louis, Missouri
- Division of Nephrology, Washington University School of Medicine in St. Louis, Missouri
| | - Haris Murad
- Division of Nephrology, Washington University School of Medicine in St. Louis, Missouri
- Transplant Epidemiology Research Collaboration (TERC), Institute for Public Health, Washington University School of Medicine in St. Louis, Missouri
| | - Mei Wang
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine in St. Louis, Missouri
| | - Benjamin Bowe
- Clinical Epidemiology Center, Research and Education Service, VA St. Louis Health Care System, St. Louis, Missouri
| | - Krista L. Lentine
- Center for Abdominal Transplantation, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Ziyad Al-Aly
- Institute for Public Health, Washington University School of Medicine in St. Louis, Missouri
- Clinical Epidemiology Center, Research and Education Service, VA St. Louis Health Care System, St. Louis, Missouri
| | - Tarek Alhamad
- Institute for Public Health, Washington University School of Medicine in St. Louis, Missouri
- Division of Nephrology, Washington University School of Medicine in St. Louis, Missouri
- Transplant Epidemiology Research Collaboration (TERC), Institute for Public Health, Washington University School of Medicine in St. Louis, Missouri
| |
Collapse
|
194
|
Liu Y, Zhu K, Li RL, Song Y, Zhang ZJ. Air Pollution Impairs Subjective Happiness by Damaging Their Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910319. [PMID: 34639620 PMCID: PMC8507867 DOI: 10.3390/ijerph181910319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
Background: The impact of air pollution on residents' happiness remains unclear and the underlying mechanism remains unknown. We aimed to examine the direct effect of air pollution on residents' happiness and indirect effect through mediating their health. Methods: Based on the 2017 China Comprehensive Social Survey Data (CGSS), data on happiness were retrieved from 11,997 residents in 28 provinces in China. An ordered-probit model was used to examine the effect of air pollution on residents' happiness and health, respectively. A stepwise regression was used to derive the direct effect of air pollution on residents' happiness and indirect effect from health impairment attributable to air pollution. Results: Air pollution was associated with lower levels of health (coef. -0.190, 95% CI -0.212, -0.167, p < 0.001), while health was positively associated with happiness (coef. 0.215, 95% CI 0.196, 0.234, p < 0.001). Mediation analysis methods showed that air pollution impacted residents' happiness directly and indirectly: the percent of total effect that was mediated through health was 36.97%, and the ratio of indirect to direct effect was 0.5864. Conclusions: Health plays a major mediating role in the relation between air pollution and residents' happiness. In order to alleviate the impact of air pollution on residents' happiness, future strategies should focus on health promotion besides reducing air pollutant emission.
Collapse
Affiliation(s)
- Yu Liu
- College of Management, Wuhan Institute of Technology, Wuhan 430205, China; (Y.L.); (K.Z.); (R.-L.L.); (Y.S.)
| | - Ke Zhu
- College of Management, Wuhan Institute of Technology, Wuhan 430205, China; (Y.L.); (K.Z.); (R.-L.L.); (Y.S.)
| | - Rong-Lin Li
- College of Management, Wuhan Institute of Technology, Wuhan 430205, China; (Y.L.); (K.Z.); (R.-L.L.); (Y.S.)
| | - Yang Song
- College of Management, Wuhan Institute of Technology, Wuhan 430205, China; (Y.L.); (K.Z.); (R.-L.L.); (Y.S.)
| | - Zhi-Jiang Zhang
- Department of Epidemiology, School of Public Health, Wuhan University, Wuhan 430071, China
- Correspondence: ; Tel.: +86-27-68758591
| |
Collapse
|
195
|
Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, Benetos A, Biffi A, Boavida JM, Capodanno D, Cosyns B, Crawford C, Davos CH, Desormais I, Di Angelantonio E, Franco OH, Halvorsen S, Hobbs FDR, Hollander M, Jankowska EA, Michal M, Sacco S, Sattar N, Tokgozoglu L, Tonstad S, Tsioufis KP, van Dis I, van Gelder IC, Wanner C, Williams B. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur J Prev Cardiol 2021; 29:5-115. [PMID: 34558602 DOI: 10.1093/eurjpc/zwab154] [Citation(s) in RCA: 280] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Alessandro Biffi
- European Federation of Sports Medicine Association (EFSMA).,International Federation of Sport Medicine (FIMS)
| | | | | | | | | | | | | | | | | | | | - F D Richard Hobbs
- World Organization of National Colleges, Academies and Academic Associations of General Practitioners/Family Physicians (WONCA) - Europe
| | | | | | | | | | | | | | | | | | | | | | - Christoph Wanner
- European Renal Association - European Dialysis and Transplant Association (ERA-EDTA)
| | | | | |
Collapse
|
196
|
Short-Term Ambient Particulate Air Pollution and Hospitalization Expenditures of Cause-Specific Cardiorespiratory Diseases in China: A Multicity Analysis. LANCET REGIONAL HEALTH-WESTERN PACIFIC 2021; 15:100232. [PMID: 34528013 PMCID: PMC8342975 DOI: 10.1016/j.lanwpc.2021.100232] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 01/23/2023]
Abstract
Background Ambient air pollution is leading risk factor for health burden in China. Few studies in China have investigated the economic loss related to short-term exposure to ambient PM2.5, which could trigger acute onset of cardiorespiratory diseases within a few days. Methods Daily ambient air pollutants data are obtained for each city from the National Air Quality Monitoring System and daily hospitalization data are obtained from the urban employee-based basic medical insurance scheme database in 74 Chinese cities with an average coverage of 88.5 million urban employees during 2016-2017. A three-stage time-series analytic approach is used in this study to investigate the impact of short-term exposure to ambient fine particulate (PM2.5) air pollution on hospital admissions, expenses and hospital stays of three cause-specific cardiorespiratory diseases, including lower respiratory infections (LRI), coronary heart disease (CHD) and stroke in the included cities. Findings Based on the time-series analysis using daily hospitalization data, 28,560 LRI cases, 54,600 CHD cases, and 23,989 stroke cases are attributable to ambient PM2.5 in the 74 cities during the study period, and the related attributable expenses are 220 million CNY (US$ 32.9 million) for LRI, 458 million CNY (US$ 68.5 million) for CHD, and 410 million CNY (US$ 65.8 million) for stroke, respectively. These attributable numbers account for 1.45% to 2.05% of total hospital admissions and 1.10% to 1.51% of total expenses for the three diseases during 2016-2017, respectively. The attributable numbers for the three cause-specific cardiorespiratory diseases would increase to 362,007 hospital admission cases and 3.68 billion CNY expenses ($US550 million) in the entire urban employee population (299 million) in China during 2016-2017, and the related direct economic loss of absence from work would be 798 million CNY (US$ 119.3 million). Interpretation Our results support that short-term exposure to ambient PM2.5 pollution could lead to significant health and economic impacts in China. Reducing levels of ambient PM2.5 can avoid substantial health damage and expenditures, and generate appreciable economic benefits from decreasing absence from work. Funding Natural Science Foundation of China (82073509, 71903010, 71903011), and the National Key Research and Development Program of China (2017YFC0211600, 2017YFC0211601).
Collapse
|
197
|
Song J, Lim Y, Ko I, Kim JY, Kim DK. Association between Air Pollutants and Initial Hospital Admission for Ischemic Stroke in Korea from 2002 to 2013. J Stroke Cerebrovasc Dis 2021; 30:106080. [PMID: 34496310 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES There is limited information regarding the association between air pollution exposure and stroke incidence. Therefore, this study aimed to assess the associations between short-term exposure to ambient air pollutants and initial hospital admission for ischemic stroke. MATERIALS AND METHODS From the Korea National Health Insurance Service-National Sample Cohort 2002-2013 database in South Korea, 55,852 first hospital admissions for ischemic stroke were identified. A generalized additive Poisson model was used to explore the association between air pollutants, including particulate matter, sulfur dioxide, nitrogen dioxide, and carbon monoxide and admissions for ischemic stroke. RESULTS All air pollutant models showed significant associations with ischemic stroke in the single lag model. In all air pollutant models excluding particulate matter 10 μm, a significant association was found between nitrogen dioxide exposure and initial admission for ischemic stroke after adjusting for other pollutants. An increment of 10 μg/m3 in nitrogen dioxide concentration at lag 0 and 14 days corresponded to a 0.259% (95% confidence interval, 0.231-0.287%) and 0.110% (95% confidence interval, 0.097-0.124) increase in initial admission for ischemic stroke, respectively. CONCLUSIONS The exposure-response relationship between nitrogen dioxide and initial admissions for ischemic stroke was approximately linear, with a sharper response at higher concentrations. Short-term exposure to nitrogen dioxide was positively associated with initial hospital admission for ischemic stroke.
Collapse
Affiliation(s)
- Jihye Song
- Department of Neurosurgery, Ajou College of Medicine, Ajou University Hospital, Suwon, Republic of Korea
| | - Yong Lim
- Department of Neurosurgery, Ajou College of Medicine, Ajou University Hospital, Suwon, Republic of Korea
| | - Inseok Ko
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Jong-Yeup Kim
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon, Republic of Korea.
| | - Dong-Kyu Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea; Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea.
| |
Collapse
|
198
|
Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, Benetos A, Biffi A, Boavida JM, Capodanno D, Cosyns B, Crawford C, Davos CH, Desormais I, Di Angelantonio E, Franco OH, Halvorsen S, Hobbs FDR, Hollander M, Jankowska EA, Michal M, Sacco S, Sattar N, Tokgozoglu L, Tonstad S, Tsioufis KP, van Dis I, van Gelder IC, Wanner C, Williams B. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 2021; 42:3227-3337. [PMID: 34458905 DOI: 10.1093/eurheartj/ehab484] [Citation(s) in RCA: 3080] [Impact Index Per Article: 770.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | - Alessandro Biffi
- European Federation of Sports Medicine Association (EFSMA)
- International Federation of Sport Medicine (FIMS)
| | | | | | | | | | | | | | | | | | | | - F D Richard Hobbs
- World Organization of National Colleges, Academies and Academic Associations of General Practitioners/Family Physicians (WONCA) - Europe
| | | | | | | | | | | | | | | | | | | | | | - Christoph Wanner
- European Renal Association - European Dialysis and Transplant Association (ERA-EDTA)
| | | |
Collapse
|
199
|
Wolhuter K, Arora M, Kovacic JC. Air pollution and cardiovascular disease: Can the Australian bushfires and global COVID-19 pandemic of 2020 convince us to change our ways? Bioessays 2021; 43:e2100046. [PMID: 34106476 PMCID: PMC8209912 DOI: 10.1002/bies.202100046] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Air pollution is a major global challenge for a multitude of reasons. As a specific concern, there is now compelling evidence demonstrating a causal relationship between exposure to airborne pollutants and the onset of cardiovascular disease (CVD). As such, reducing air pollution as a means to decrease cardiovascular morbidity and mortality should be a global health priority. This review provides an overview of the cardiovascular effects of air pollution and uses two major events of 2020-the Australian bushfires and COVID-19 pandemic lockdown-to illustrate the relationship between air pollution and CVD. The bushfires highlight the substantial human and economic costs associated with elevations in air pollution. Conversely, the COVID-19-related lockdowns demonstrated that stringent measures are effective at reducing airborne pollutants, which in turn resulted in a potential reduction in cardiovascular events. Perhaps one positive to come out of 2020 will be the recognition that tough measures are effective at reducing air pollution and that these measures have the potential to stop thousands of deaths from CVD.
Collapse
Affiliation(s)
| | - Manish Arora
- Department of Environmental Medicine and Public HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jason C. Kovacic
- Victor Chang Cardiac Research InstituteSydneyAustralia
- St Vincent's Clinical SchoolUniversity of New South WalesSydneyAustralia
- Zena and Michael A. Wiener Cardiovascular InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
200
|
Yang CP, Li CY, Huang WJ, Yu HL, Yang CC, Lu MC, Lang HC, Yan YH. Short-, Mid-, and Long-Term Associations Between PM2.5 and Stroke Incidence in Taiwan. J Occup Environ Med 2021; 63:742-751. [PMID: 33852547 DOI: 10.1097/jom.0000000000002222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate the association between the risk of stroke and exposure to particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5) over various exposure periods. METHODS This was a nationwide population-based case-control study in which 10,035 incident patients with a primary diagnosis of ischemic stroke each were matched with two randomly selected controls for sex, age, Charlson Comorbidity Index, year of stroke diagnosis, and level of urbanization. Multiple logistic models adjusted for potential confounders were used to assess the association of PM2.5 with ischemic stroke incidence. RESULTS There were significant short-term, medium-term, and long-term relationships between PM2.5 exposure and ischemic stroke incidence. CONCLUSIONS This study supports existing evidence that PM2.5 should be considered a risk factor for ischemic stroke.
Collapse
Affiliation(s)
- Chun-Pai Yang
- From the Department of Neurology (Dr Yang); Department of Medical Research (Dr Yang, Ms Lu, Dr Yan), Kuang Tien General Hospital, Taichung, Taiwan; Institute of Biomedical Nutrition, Hung Kuang University, Taichung, Taiwan (Dr Yang, Dr Yan); Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan (Dr Li); Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan (Dr Li); Department of Safety, Health, and Environmental Engineering, Hung Kuang University, Taichung, Taiwan (Dr Huang); Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan (Dr Yu); Department of Healthcare Administration, Asia University, Taichung, Taiwan (Dr Yang); Institute of Hospital and Health Care Administration, National Yang-Ming University, Taipei, Taiwan (Dr Lang); National Yang Ming Chiao Tung University, Taipei, Taiwan (Dr Lang); Department of Endocrinology and Metabolism, Kuang Tien General Hospital, Taichung, Taiwan (Dr Yan)
| | | | | | | | | | | | | | | |
Collapse
|