151
|
Khanna S, Sims M, Louie TJ, Fischer M, LaPlante K, Allegretti J, Hasson BR, Fonte AT, McChalicher C, Ege DS, Bryant JA, Straub TJ, Ford CB, Henn MR, Wang EEL, von Moltke L, Wilcox MH. SER-109: An Oral Investigational Microbiome Therapeutic for Patients with Recurrent Clostridioides difficile Infection (rCDI). Antibiotics (Basel) 2022; 11:1234. [PMID: 36140013 PMCID: PMC9495252 DOI: 10.3390/antibiotics11091234] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Clostridioides difficile infection (CDI) is classified as an urgent health threat by the Centers for Disease Control and Prevention (CDC), and affects nearly 500,000 Americans annually. Approximately 20−25% of patients with a primary infection experience a recurrence, and the risk of recurrence increases with subsequent episodes to greater than 40%. The leading risk factor for CDI is broad-spectrum antibiotics, which leads to a loss of microbial diversity and impaired colonization resistance. Current FDA-approved CDI treatment strategies target toxin or toxin-producing bacteria, but do not address microbiome disruption, which is key to the pathogenesis of recurrent CDI. Fecal microbiota transplantation (FMT) reduces the risk of recurrent CDI through the restoration of microbial diversity. However, FDA safety alerts describing hospitalizations and deaths related to pathogen transmission have raised safety concerns with the use of unregulated and unstandardized donor-derived products. SER-109 is an investigational oral microbiome therapeutic composed of purified spore-forming Firmicutes. SER-109 was superior to a placebo in reducing CDI recurrence at Week 8 (12% vs. 40%, respectively; p < 0.001) in adults with a history of recurrent CDI with a favorable observed safety profile. Here, we discuss the role of the microbiome in CDI pathogenesis and the clinical development of SER-109, including its rigorous manufacturing process, which mitigates the risk of pathogen transmission. Additionally, we discuss compositional and functional changes in the gastrointestinal microbiome in patients with recurrent CDI following treatment with SER-109 that are critical to a sustained clinical response.
Collapse
Affiliation(s)
- Sahil Khanna
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew Sims
- Section of Infectious Diseases and International Medicine, Department of Internal Medicine, Beaumont, Royal Oak, MI 48073, USA
- Department of Internal Medicine and Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Thomas J. Louie
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Monika Fischer
- Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, IN 46202, USA
| | - Kerry LaPlante
- Department of Pharmacy Practice, University of Rhode Island, Kingston, RI 02881, USA
- Division of Infectious Diseases, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Jessica Allegretti
- Division of Gastroenterology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | - Mark H. Wilcox
- University of Leeds, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| |
Collapse
|
152
|
Ma J, Chen S, Li Y, Wu X, Song Z. Arbutin improves gut development and serum lipids via Lactobacillus intestinalis. Front Nutr 2022; 9:948573. [PMID: 36159503 PMCID: PMC9502005 DOI: 10.3389/fnut.2022.948573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/02/2022] [Indexed: 01/10/2023] Open
Abstract
Arbutin has been widely studied in whitening, anti-inflammatory, and antioxidant. However, the interaction between arbutin and intestinal microbes has been rarely studied. Thus, mice were treated with arbutin concentrations of 0, 0.1, 0.2, 0.4, and 1 mg/ml. We found that arbutin promoted gut development such as villus length, villus areas, and villus length/crypt depth (L/D). Total cholesterol (TC), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) were significantly reduced by low concentrations of arbutin. Importantly, we analyzed the microbial composition in the control and 0.4 mg/ml arbutin group and found that the abundance of Lactobacillus intestinalis (L. intestinalis) was highest and enhanced in arbutin. Further, mice were fed with oral antibiotics and antibiotics + 0.4 mg/ml arbutin and then we transplanted fecal microbes from oral 0.4 mg/ml arbutin mice to mice pretreated with antibiotics. Our results showed that arbutin improves gut development, such as villus width, villus length, L/D, and villus areas. In addition, L. intestinalis monocolonization was carried out after a week of oral antibiotics and increased villus length, crypt depth, and villus areas. Finally, in vitro arbutin and L. intestinalis co-culture showed that arbutin promoted the growth and proliferation of L. intestinalis. Taken together, our results suggest that arbutin improves gut development and health of L. intestinalis. Future studies are needed to explore the function and mechanism of L. intestinalis affecting gut development.
Collapse
Affiliation(s)
- Jie Ma
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shuai Chen
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Yuying Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xin Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zehe Song
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- *Correspondence: Zehe Song,
| |
Collapse
|
153
|
Zhang L, Xiong S, Jin F, Zhou F, Zhou H, Guo J, Wen C, Huang B. Global trends in intestinal flora and ulcerative colitis research during the past 10 years: A bibliometric analysis. Front Microbiol 2022; 13:1003905. [PMID: 36160215 PMCID: PMC9490179 DOI: 10.3389/fmicb.2022.1003905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/19/2022] [Indexed: 12/20/2022] Open
Abstract
Background and aim Ulcerative colitis is a chronic inflammatory bowel disease, and intestinal flora plays an important role in ulcerative colitis. In this study, we conducted a bibliometric analysis of publications in the field of intestinal flora and ulcerative colitis research in the past 10 years to summarize the current status of the field and analyze the trends in the field. Methods On July 15, 2022, we chose the Web of Science Core Collection database as the study’s data source. CiteSpace.5.8.R3 and VOSviewer 1.6.17 were used to examine publications of research on intestinal flora and ulcerative colitis that were published between 2012 and 2021. We looked through the papers for journals, organizations, nations and regions, authors, and key terms. Results This analysis covered a total of 2,763 papers on studies into intestinal flora and ulcerative colitis. There were 13,913 authors, 93 nations, 3,069 organizations, and 759 journals in all of the articles. In the USA, 767 publications were the most. The university with the most publications was Harvard Medical School. The author with the most articles was Antonio Gasbarrini. Conclusion This study summarizes the global research trends in intestinal flora and ulcerative colitis. Publications in this field have increased year by year in the last decade and the field of research on intestinal flora and ulcerative colitis has good prospects for growth.
Collapse
Affiliation(s)
- Lu Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuai Xiong
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengchen Jin
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fan Zhou
- North Sichuan Medical College, Nanchong, China
| | - Hongjun Zhou
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhong Guo
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jinhong Guo,
| | - Chuanbiao Wen
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chuanbiao Wen,
| | - Biao Huang
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- Biao Huang,
| |
Collapse
|
154
|
Yao Z, Chen H, Wang X, Zhang Y, Jian M, Hu J, Yu B, Jiang L. Efficacy of the Short-Term versus Long-Term Administration of Antimicrobial Prophylaxis in Gastric Cancer Surgery: A Meta-Analysis of Randomized Controlled Trials. Surg Infect (Larchmt) 2022; 23:625-633. [PMID: 36049075 DOI: 10.1089/sur.2022.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: We performed a meta-analysis to confirm the efficacy of short-term compared with long-term administration of antimicrobial prophylaxis in gastric cancer surgery. Methods: Randomized controlled trials of the efficacy of short-term versus long-term administration of antimicrobial prophylaxis in gastric cancer surgery were searched using the MEDLINE, EMBASE, and the Cochrane Controlled Trials Register databases. The data were evaluated and statistically analyzed using RevMan version 5.3.0. Five studies including 2,053 participants who received short-term versus long-term administration of antimicrobial prophylaxis in gastric cancer surgery were considered. Results: There was no significant difference in the surgical site infection (SSI) rate between the short-term group and the long-term group (8.1% vs. 9.2%; odds ratio [OR], 0.87; 95% confidence interval [CI], 0.64-1.09; p = 0.39). Hierarchical analysis also showed no significant differences in incisional-site incisions, organ/space incisions, or leakage. Multivariable analysis showed no significant differences in gender, age (>65 years), body mass index (>25 kg/m2), D2, operation time (>3 hours), pathologic stage 3, blood loss, combined resection, diabetes mellitus, total gastrectomy, or blood transfusion between the two groups. Conclusions: Short-term administration of antimicrobial prophylaxis did not increase the incidence of SSIs after gastrectomy.
Collapse
Affiliation(s)
- Zengwu Yao
- Yantai Yuhuangding Hospital, Shandong University, Yantai, Shandong, China
- Department of Gastrointestinal Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Hongping Chen
- Qingdao University Medical College, Qingdao, Shandong, China
| | - Xixun Wang
- Department of Gastrointestinal Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yifei Zhang
- Department of Gastrointestinal Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Mi Jian
- Department of Gastrointestinal Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Jinchen Hu
- Department of Gastrointestinal Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Bin Yu
- Department of Gastrointestinal Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
- Qingdao University Medical College, Qingdao, Shandong, China
| | - Lixin Jiang
- Yantai Yuhuangding Hospital, Shandong University, Yantai, Shandong, China
- Department of Gastrointestinal Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
- General Surgery, Yantai Yeda Hospital, Yantai, Shandong, China
| |
Collapse
|
155
|
Huang YJ, Porsche C, Kozik AJ, Lynch SV. Microbiome-Immune Interactions in Allergy and Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2244-2251. [PMID: 35724951 PMCID: PMC10566566 DOI: 10.1016/j.jaip.2022.05.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/13/2022] [Accepted: 05/28/2022] [Indexed: 06/13/2023]
Abstract
The human microbiota has been established as a key regulator of host health, in large part owing to its constant interaction with and impact on host immunity. A range of environmental exposures spanning from the prenatal period through adulthood are known to affect the composition and molecular productivity of microbiomes across mucosal and dermal tissues with short- and long-term consequences for host immune function. Here we review recent findings in the field that provide insights into how microbial-immune interactions promote and sustain immune dysfunction associated with allergy and asthma. We consider both early life microbiome perturbation and the molecular underpinnings of immune dysfunction associated with subsequent allergy and asthma development in childhood, as well as microbiome features that relate to phenotypic attributes of allergy and asthma in older patients with established disease.
Collapse
Affiliation(s)
- Yvonne J Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, Mich; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Mich.
| | - Cara Porsche
- Department of Medicine, University of California San Francisco, San Francisco, Calif
| | - Ariangela J Kozik
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, Mich
| | - Susan V Lynch
- Department of Medicine, University of California San Francisco, San Francisco, Calif.
| |
Collapse
|
156
|
Li Z, Liu K, Zhao J, Yang L, Chen G, Liu A, Wang Q, Wang S, Li X, Cao H, Tao F, Zhang D. Antibiotics in elderly Chinese population and their relations with hypertension and pulse pressure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67026-67045. [PMID: 35513617 DOI: 10.1007/s11356-022-20613-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Although antibiotic exposure in the general population has been well documented by a biomonitoring approach, epidemiologic data on the relationships between urinary antibiotic burden in the elderly with blood pressure (BP) are still lacking. The current study revealed thirty-four antibiotics in urine specimens from 990 elderly patients in Lu'an City, China, with detection frequencies ranging from 0.2 to 35.5%. Among the elderly, the prevalence of hypertension was 72.0%, and 12 antibiotics were detected in more than 10% of individuals with hypertension. The elderly with hypertension had the maximum daily exposure (5450.45 μg/kg/day) to fluoroquinolones (FQs). Multiple linear regression analyses revealed significant associations of BP and pulse pressure (PP) with exposure to specific antibiotics. The estimated β values (95% confidence interval) of associations with systolic blood pressure (SBP) in the right arm were 4.42 (1.15, 7.69) for FQs, 4.26 (0.52, 8.01) for the preferred as human antibiotics (PHAs), and 3.48 (0.20, 6.77) for the mixtures (FQs + tetracyclines [TCs] (tertile 3 vs. tertile 1)), respectively. Increased concentrations of TCs were associated with decreased diastolic BP (DBP; tertile 3: -1.75 [-3.39, -0.12]) for the right arm. Higher levels of FQs (tertile 3: 4.28 [1.02, 7.54]), PHAs (tertile 3: 4.25 [0.49, 8.01]), and FQs + TCs (tertile 3: 3.99 [0.71, 7.26]) were associated with increased SBP, and an increase in DBP for FQs (tertile 3: 1.82 [0.22, 3.42]) was shown in the left arm. Also, higher urinary concentrations of FQs (tertile 3: 3.18 [0.53, 5.82]), PHAs (tertile 3: 3.42 [0.40, 6.45]), and FQs + TCs (tertile 3: 3.06 [0.40, 5.72]) were related to increased PP, whereas a decline in PP for TCs (tertile 2: -2.93 [-5.60, -0.25]) in the right arm. And increased concentrations of penicillin V (tertile 3: 5.31 [1.53, 9.10]) and FQs + TCs (tertile 3: 2.84 [0.19, 5.49]) were related to higher PP in the left arm. By utilizing restricted cubic splines, our current study revealed a potential nonlinear dose-response association between FQ exposure and hypertension risk. In conclusion, this investigation is the first to present antibiotic exposure using a biomonitoring approach, and informs understanding of impacts of antibiotic residues, as emerging hazardous pollutants, on the hypertension risk in the elderly.
Collapse
Affiliation(s)
- Zhenkun Li
- School of Health Management, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jianing Zhao
- The Fourth Affiliated Hospital of Anhui Medical University, Huaihai Road, Hefei, 230012, Anhui, China
| | - Linsheng Yang
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Guimei Chen
- School of Health Management, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Annuo Liu
- School of Nursing, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Qunan Wang
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Sufang Wang
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xiude Li
- Lu'an Center of Disease Control and Prevention, Lu'an, 237000, Anhui, China
| | - Hongjuan Cao
- Lu'an Center of Disease Control and Prevention, Lu'an, 237000, Anhui, China
| | - Fangbiao Tao
- School of Health Management, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dongmei Zhang
- School of Health Management, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
157
|
Wang H, Zhang H, Gao Z, Zhang Q, Gu C. The mechanism of berberine alleviating metabolic disorder based on gut microbiome. Front Cell Infect Microbiol 2022; 12:854885. [PMID: 36093200 PMCID: PMC9452888 DOI: 10.3389/fcimb.2022.854885] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
With socioeconomic advances and improved living standards, metabolic syndrome has increasingly come into the attention. In recent decades, a growing number of studies have shown that the gut microbiome and its metabolites are closely related to the occurrence and development of many metabolic diseases, and play an important role that cannot be ignored, for instance, obesity, type 2 diabetes (T2DM), non-alcoholic fatty liver disease (NAFLD), cardiovascular disease and others. The correlation between gut microbiota and metabolic disorder has been widely recognized. Metabolic disorder could cause imbalance in gut microbiota, and disturbance of gut microbiota could aggravate metabolic disorder as well. Berberine (BBR), as a natural ingredient, plays an important role in the treatment of metabolic disorder. Studies have shown that BBR can alleviate the pathological conditions of metabolic disorders, and the mechanism is related to the regulation of gut microbiota: gut microbiota could regulate the absorption and utilization of berberine in the body; meanwhile, the structure and function of gut microbiota also changed after intervention by berberine. Therefore, we summarize relevant mechanism research, including the expressions of nitroreductases-producing bacteria to promote the absorption and utilization of berberine, strengthening intestinal barrier function, ameliorating inflammation regulating bile acid signal pathway and axis of bacteria-gut-brain. The aim of our study is to clarify the therapeutic characteristics of berberine further and provide the theoretical basis for the regulation of metabolic disorder from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Han Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyu Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zezheng Gao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiqi Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chengjuan Gu
- Shenzhen Hospital (Futian), Guangzhou University of Chinese Medicine, Shenzhen, China
- *Correspondence: Chengjuan Gu,
| |
Collapse
|
158
|
Wang JF, Shi CY, Ying HZ. Cephalosporins-induced intestinal dysbiosis exacerbated pulmonary endothelial barrier disruption in streptococcus pneumoniae-infected mice. Front Cell Infect Microbiol 2022; 12:997368. [PMID: 36093187 PMCID: PMC9449322 DOI: 10.3389/fcimb.2022.997368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/02/2022] [Indexed: 11/19/2022] Open
Abstract
Antibiotic abuse is growing more severe in clinic, and even short-term antibiotic treatment can cause long-term gut dysbiosis, which may promote the development and aggravation of diseases. Cephalosporins as the broad-spectrum antibiotics are widely used for prevention and treatment of community-acquired respiratory tract infection in children. However, their potential consequences in health and disease have not been fully elaborated. In this study, the effects of cefaclor, cefdinir and cefixime on intestinal microbiota and lung injury were investigated in Streptococcus pneumoniae (Spn)-infected mice. The results showed that the proportion of coccus and bacillus in intestinal microbiota were changed after oral administration with cefaclor, cefdinir and cefixime twice for 10 days, respectively. Compared with the Spn-infected group, the proportion of Bifidobacterium and Lactobacillus in intestine were significantly reduced, while Enterococcus and Candida was increased after cephalosporin treatment. Furthermore, 3 cephalosporins could obviously increase the number of total cells, neutrophils and lymphocytes in BALF as well as the serum levels of endotoxin, IL-2, IL-1β, IL-6 and TNF-α. Mechanically, cephalosporins accelerated Spn-induced pulmonary barrier dysfunction via mediating the mRNA expressions of endothelial barrier-related proteins (Claudin 5, Occludin, and ZO-1) and inflammation-related proteins (TLR4, p38 and NF-κB). However, all of those consequences could be partly reversed by Bifidobacterium bifidum treatment, which was closely related to the elevated acetate production, indicating the protective effects of probiotic against antibiotic-induced intestinal dysbiosis. Therefore, the present study demonstrated that oral administration with cephalosporins not only disrupted intestinal microecological homeostasis, but also increased the risk of Spn infection, resulting in severer respiratory inflammation and higher bacterial loads in mice.
Collapse
|
159
|
Bai J, Wan Z, Zhang Y, Wang T, Xue Y, Peng Q. Composition and diversity of gut microbiota in diabetic retinopathy. Front Microbiol 2022; 13:926926. [PMID: 36081798 PMCID: PMC9445585 DOI: 10.3389/fmicb.2022.926926] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveDiabetic retinopathy (DR) is one of the most common complications of type 2 diabetes mellitus. The current study investigates the composition, structure, and function of gut microbiota in DR patients and explores the correlation between gut microbiota and clinical characteristics of DR.MethodsA total of 50 stool samples were collected from 50 participants, including 25 DR patients and 25 healthy controls (HCs). 16S ribosomal RNA gene sequencing was used to analyze the gut microbial composition in these two groups. DNA was extracted from the fecal samples using the MiSeq platform.ResultsThe microbial structure and composition of DR patients were different from that of HCs. The microbial richness of gut microbiota in DR was higher than that of normal individuals. The alterations of microbiome of DR patients were associated with disrupted Firmicutes, Bacteroidetes, Synergistota, and Desulfobacterota phyla. In addition, increased levels of Bacteroides, Megamonas, Ruminococcus_torques_group, Lachnoclostridium, and Alistipes, and decreased levels of Blautia, Eubacterium_ hallii_group, Collinsella, Dorea, Romboutsia, Anaerostipes, and Fusicatenibacter genera were observed in the DR groups. Additionally, a stochastic forest model was developed to identify a set of biomarkers with seven bacterial genera that can differentiate patients with DR from those HC. The microbial communities exhibited varied functions in these two groups because of the alterations of the above-mentioned bacterial genera.ConclusionThe altered composition and function of gut microbiota in DR patients indicated that gut microbiome could be used as non-invasive biomarkers, improve clinical diagnostic methods, and identify putative therapeutic targets for DR.
Collapse
|
160
|
Guo X, Sun L, Wang S, Shen Y. Effects of Irrational Use of Antibiotics on Intestinal Health of Children with Extraintestinal Infectious Diseases. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:9506490. [PMID: 36051926 PMCID: PMC9410831 DOI: 10.1155/2022/9506490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/02/2022] [Accepted: 07/09/2022] [Indexed: 11/21/2022]
Abstract
The effects of different antibiotic treatment regimens on intestinal function and flora distribution in children with extraintestinal infectious diseases are explored. A total of 150 cases of extraintestinal infectious diseases admitted to our hospital from January 2021 to January 2022 and 50 healthy subjects during the same period were selected for the study. These 150 children were randomly divided into cephalosporin group, piperacillin group, and combined group and were successively treated with ceftazidime, piperacillin, and two drug combination regimens. The efficacy of the drug, intestinal microflora, intestinal mucosal barrier function, and incidence of antibiotic-associated diarrhea (AAD) were compared among the different groups. The experimental results showed that ceftazidime combined with piperacillin can effectively improve the intestinal health of children with extraintestinal infectious diseases but destroy the microecological environment of intestinal flora, affect the intestinal mucosal barrier function, and increase the risk of AAD.
Collapse
Affiliation(s)
- Xiaomei Guo
- Pharmacy Department, Tongxiang Second People's Hospital, Tongxiang 314511, China
| | - Lifu Sun
- Pharmacy Department, Tongxiang Second People's Hospital, Tongxiang 314511, China
| | - Shengjiang Wang
- Pharmacy Department, Tongxiang Second People's Hospital, Tongxiang 314511, China
| | - Yan Shen
- Pharmacy Department, Tongxiang Second People's Hospital, Tongxiang 314511, China
| |
Collapse
|
161
|
Qu Q, Zhao C, Yang C, Zhou Q, Liu X, Yang P, Yang F, Shi X. Limosilactobacillus fermentum-fermented ginseng improved antibiotic-induced diarrhoea and the gut microbiota profiles of rats. J Appl Microbiol 2022; 133:3476-3489. [PMID: 35965438 DOI: 10.1111/jam.15780] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
AIMS This study investigated the efficacy of Limosilactobacillus fermentum-fermented ginseng for improving colitis and the gut microbiota profiles in rats and explored the benefits of the L. fermentum fermentation process to ginseng. METHODS AND RESULTS Ginseng polysaccharide and ginsenoside from fermented ginseng were analysed by UV and HPLC. Antibiotic-fed rats were treated with fermented ginseng and a L. fermentum-ginseng mixture. Histopathology- and immune-related factors (TNF-α, IL-1β, IL-6 and IL-10) of the colon were assayed by using pathological sections and ELISA. After treatment, fermented ginseng relieved the symptoms of antibiotic-induced diarrhoea and colon inflammation, and the expression of colon immune factors returned to normal. The gut microbial communities were identified by 16S rRNA gene sequencing. The results showed that the alterations in the gut microbiota returned to normal. In addition, the gut microbiota changes were correlated with immune factor expression after treatment. The fermented ginseng had better biological functions than a L. fermentum-ginseng mixture. CONCLUSIONS Fermented ginseng can relieve diarrhoea and colon inflammation and restore the gut microbiota to its original state. The process of L. fermentum fermentation can expand the therapeutic use of ginseng. SIGNIFICANCE AND IMPACT OF THE STUDY This research suggested the potential function of fermented ginseng to relieve diarrhoea and recover the gut microbiota to a normal level and explored the benefits of the Limosilactobacillus fermentum fermentation process to ginseng.
Collapse
Affiliation(s)
- Qingsong Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chongyan Zhao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Cuiting Yang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Qing Zhou
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Pengshuo Yang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Fang Yang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, China
| |
Collapse
|
162
|
Shi F, Huang Y, Yang M, Lu Z, Li Y, Zhan F, Lin L, Qin Z. Antibiotic-induced alternations in gut microflora are associated with the suppression of immune-related pathways in grass carp (Ctenopharyngodon idellus). Front Immunol 2022; 13:970125. [PMID: 36032163 PMCID: PMC9403240 DOI: 10.3389/fimmu.2022.970125] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022] Open
Abstract
Gut microbiota play a vital role in fish health homeostasis. Antibiotics are known to alter microbial community composition and diversity; however, the substantial effects of antibiotics upon the gut microbiome with respect to immune-related pathways in healthy fish remain unclear. Accordingly, here we explored the impact of two antibiotics on the intestinal health, immune response, microbiome dynamics, and transcriptome profiles of grass carp. A two-week feeding trial was carried out in which the basal diet was complemented with enrofloxacin (10 mg/kg) or florfenicol (10 mg/kg). The results showed that: (1) Enrofloxacin and florfenicol both induced intestinal oxidative stress and reduced the digestive enzyme activity of grass carp. (2) High-throughput sequencing of 16S rDNA revealed that enrofloxacin but not the florfenicol treatment influenced gut microbiota diversity in grass carp by shifting α/β-diversity with more abundant pathogens detected. (3) Transcriptome profiling demonstrated that florfenicol down-regulated the immune-related pathways of grass carp, and the network analysis revealed that IgA was negatively correlated with certain pathogens, such as Shewanella and Aeromonas. (4) Antibiotic-induced alternations of gut core microbes were revealed via immune-related transcripts, as were lower mRNA expression levels of mucosal-related genes. (5) Apoptosis and histopathological changes were detected in the enrofloxacin- and florfenicol-treated groups compared with the control group. Overall, administering antibiotics will promote oxidative stress, cause intestinal flora dysbiosis, inhibit the mucosal immune system, and induce apoptosis in grass carp.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Lin
- *Correspondence: Li Lin, ; Zhendong Qin,
| | | |
Collapse
|
163
|
Malfertheiner P, Megraud F, Rokkas T, Gisbert JP, Liou JM, Schulz C, Gasbarrini A, Hunt RH, Leja M, O'Morain C, Rugge M, Suerbaum S, Tilg H, Sugano K, El-Omar EM. Management of Helicobacter pylori infection: the Maastricht VI/Florence consensus report. Gut 2022; 71:gutjnl-2022-327745. [PMID: 35944925 DOI: 10.1136/gutjnl-2022-327745] [Citation(s) in RCA: 576] [Impact Index Per Article: 192.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023]
Abstract
Helicobacter pyloriInfection is formally recognised as an infectious disease, an entity that is now included in the International Classification of Diseases 11th Revision. This in principle leads to the recommendation that all infected patients should receive treatment. In the context of the wide clinical spectrum associated with Helicobacter pylori gastritis, specific issues persist and require regular updates for optimised management.The identification of distinct clinical scenarios, proper testing and adoption of effective strategies for prevention of gastric cancer and other complications are addressed. H. pylori treatment is challenged by the continuously rising antibiotic resistance and demands for susceptibility testing with consideration of novel molecular technologies and careful selection of first line and rescue therapies. The role of H. pylori and antibiotic therapies and their impact on the gut microbiota are also considered.Progress made in the management of H. pylori infection is covered in the present sixth edition of the Maastricht/Florence 2021 Consensus Report, key aspects related to the clinical role of H. pylori infection were re-evaluated and updated. Forty-one experts from 29 countries representing a global community, examined the new data related to H. pylori infection in five working groups: (1) indications/associations, (2) diagnosis, (3) treatment, (4) prevention/gastric cancer and (5) H. pylori and the gut microbiota. The results of the individual working groups were presented for a final consensus voting that included all participants. Recommendations are provided on the basis of the best available evidence and relevance to the management of H. pylori infection in various clinical fields.
Collapse
Affiliation(s)
- Peter Malfertheiner
- Medical Department 2, LMU, Munchen, Germany
- Department of Radiology, LMU, Munchen, Germany
| | - Francis Megraud
- INSERM U853 UMR BaRITOn, University of Bordeaux, Bordeaux, France
| | - Theodore Rokkas
- Gastroenterology, Henry Dunant Hospital Center, Athens, Greece
- Medical School, European University, Nicosia, Cyprus
| | - Javier P Gisbert
- Gastroenterology, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Jyh-Ming Liou
- Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Christian Schulz
- Medical Department 2, LMU, Munchen, Germany
- Partner Site Munich, DZIF, Braunschweig, Germany
| | - Antonio Gasbarrini
- Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Roma, Italy
| | - Richard H Hunt
- Medicine, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario, Canada
| | - Marcis Leja
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | - Colm O'Morain
- Faculty of Health Sciences, Trinity College Dublin, Dublin, Ireland
| | - Massimo Rugge
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padova, Padova, Italy
- Veneto Tumor Registry (RTV), Padova, Italy
| | - Sebastian Suerbaum
- Partner Site Munich, DZIF, Braunschweig, Germany
- Max von Pettenkofer Institute, LMU, Munchen, Germany
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medizinische Universitat Innsbruck, Innsbruck, Austria
| | - Kentaro Sugano
- Department of Medicine, Jichi Medical School, Tochigi, Japan
| | - Emad M El-Omar
- Department of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
164
|
Kopacz K, Phadtare S. Probiotics for the Prevention of Antibiotic-Associated Diarrhea. Healthcare (Basel) 2022; 10:1450. [PMID: 36011108 PMCID: PMC9408191 DOI: 10.3390/healthcare10081450] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 11/24/2022] Open
Abstract
Several communities have started using probiotic-rich fermented foods as therapeutic options with presumed medicinal powers. We now know the importance of microbiome balance and how probiotics can restore imbalances in the microbiome. Probiotics have been tested for a number of clinical uses such as the prevention of antibiotic-associated diarrhea (AAD), the treatment of various diseases such as H. pylori infection, irritable bowel disease, vaginitis, the prevention of allergies, and necrotizing enterocolitis in newborns. AAD has been the most indicated therapeutic use for probiotics. AAD is a common side effect of antibiotic usage, which affects up to 30% of patients. The hypothesis behind using probiotics for AAD is that they help normalize an unbalanced flora. There are many potential mechanisms by which probiotics support intestinal health such as (i) boosting immunity, (ii) increasing gut barrier integrity, (iii) producing antimicrobial substances, (iv) modulating the gut microbiome, (v) increasing water absorption, and (vi) decreasing opportunistic pathogens. Many randomized-controlled trials including the strain-specific trials that use Lactobacillus and Saccharomyces and meta-analyses have shown the benefits of probiotics in addressing AAD. Although adverse events have been reported for probiotics, these are broadly considered to be a safe and inexpensive preventative treatment option for AAD and other gastrointestinal disorders.
Collapse
|
165
|
Tabuchi Y, Katsushima M, Nishida Y, Shirakashi M, Tsuji H, Onizawa H, Kitagori K, Akizuki S, Nakashima R, Murakami K, Murata K, Yoshifuji H, Tanaka M, Morinobu A, Hashimoto M. Oral dextran sulfate sodium administration induces peripheral spondyloarthritis features in SKG mice accompanied by intestinal bacterial translocation and systemic Th1 and Th17 cell activation. Arthritis Res Ther 2022; 24:176. [PMID: 35879738 PMCID: PMC9310491 DOI: 10.1186/s13075-022-02844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spondyloarthritis (SpA) is an autoimmune and autoinflammatory musculoskeletal disease characterised by systemic enthesitis. Recent research has focused on subclinical inflammatory bowel disease (IBD) in SpA pathogenesis. SKG mice, harbouring the Zap70 W163C mutation, increase autoreactive Th17 cells intrinsically, and in a conventional environment, they exhibit spontaneous arthritis with fungal factors. Under SPF conditions, they show SpA features, including enteritis, after peritoneal injection of β-1,3-glucan. This study aimed to clarify whether oral dextran sulfate sodium (DSS) administration, utilised in IBD model mice, can provoke SpA features in SKG mice under SPF conditions, focusing on the relationship between gut microorganisms and SpA pathogenesis. METHODS BALB/c and SKG mice were administered oral DSS, and their body weights, arthritis, and enthesitis scores were recorded. In another cohort, antibiotics (meropenem and vancomycin) or an anti-fungal agent (amphotericin B) was administered orally before DSS administration. The splenic Th1 and Th17 cell populations were examined before and after DSS administration using flow cytometry. Furthermore, the amount of circulating bacterial DNA in whole blood was measured by absolute quantitative polymerase chain reaction (qPCR), and the number and characteristics of bacterial species corresponding to these circulating DNA were analysed by next-generation sequencing (NGS). RESULTS Ankle enthesitis as a peripheral SpA feature was elicited in half of DSS-administered SKG mice, and none of the BALB/c mice. Pre-administration of antibiotics suppressed enthesitis, whilst an anti-fungal agent could not. Th1 and Th17 cell levels in the spleen increased after DSS administration, and this was suppressed by pre-administration of antibiotics. SKG mice have a larger amount of bacterial DNA in whole blood than BALB/c mice before and 1 day after the initiation of DSS administration. The number of bacterial species in whole blood increased after DSS administration in BALB/c and SKG mice. Some genera and species significantly specific to the DSS-treated SKG mouse group were also detected. CONCLUSION Oral DSS administration alone elicited peripheral enthesitis in SKG mice with bacterial translocation accompanied by increased splenic Th1 and Th17 cell levels. Pre-administration of antibiotics ameliorated these DSS-induced SpA features. These findings suggest that intestinal bacterial leakage plays a pivotal role in SpA pathogenesis.
Collapse
Affiliation(s)
- Yuya Tabuchi
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Masao Katsushima
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Yuri Nishida
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Mirei Shirakashi
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Hideaki Tsuji
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Hideo Onizawa
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Koji Kitagori
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Shuji Akizuki
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Ran Nakashima
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Kosaku Murakami
- Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Koichi Murata
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Masao Tanaka
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Motomu Hashimoto
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, Kyoto, Japan. .,Department of Clinical Immunology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3, Asahi-machi, Abeno-ku, Osaka, Japan.
| |
Collapse
|
166
|
Chen B, Li XM, Cai T, Wang F. Short-term and long-term alterations of gastrointestinal microbiota with different H. pylori eradication regimens: A meta-analysis. Front Cell Infect Microbiol 2022. [DOI: 10.3389/fcimb.2022.913384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background and AimsThe impacts of Helicobacter pylori (H. pylori) eradication on the gastrointestinal microbiota are controversial, and whether the short-term and long-term changes in the gastrointestinal microbiota following different eradication regimens are consistent remains inconclusive. This study aimed to examine the effects of various eradication regimens on the gastrointestinal microflora at follow-up evaluations within 7 days, at 1–3 months, and over 6 months changes in the gastrointestinal microbiota.Materials and MethodsStudies reported on the PubMed, Embase, Cochrane Library, Web of Science, and ClinicalTrails.gov databases before March 2022 were collected. Data analysis and visualization were conducted using Review Manager 5.4.1. The tool of the Cochrane Collaboration to assess the risk of bias was suitable for randomized controlled trials with the Newcastle–Ottawa scale for nonrandomized controlled trials. In addition, the process was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.ResultsAfter a series of rigorous screenings, a total of 34 articles with 1,204 participants were included for this review analysis. The results showed changes in the gut microflora at the phylum level or the family and genus levels. After metronidazole-containing triple therapy, the number of Enterobacteriaceae increased at 1–3 months follow-up. After Metronidazole-free triple therapy, Actinobacteria decreased significantly, and this trend lasted for more than 6 months. Within 7 days after eradication treatment, the follow-up results showed a decrease in the number of Lactobacillus. After Bismuth-containing quadruple therapy, the changes in Actinobacteria fluctuated with the follow-up time. The changes in Proteobacteria showed a downward trend lasting for 1–3 months after eradication but returned to baseline levels over 6 months after eradication. Subgroup analyses indicated that host age could influence changes in the gut microbiota.ConclusionDifferent eradication regimens had varied effects on the short-term and long-term abundance of the gastrointestinal microbiota, but the decreasing trend of the microbiota diversity was the same for all regimens at the short-term follow-up. This study summarizes the changes of gut microbiota at different stages after different eradication regimens and hope to provide some references for supplementing probiotics, while further studies is needed to support these findings.Systematic Review Registrationhttps://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42021292726
Collapse
|
167
|
Cao J, Chen M, Xu R, Guo M. Therapeutic Mechanisms of Berberine to Improve the Intestinal Barrier Function via Modulating Gut Microbiota, TLR4/NF-κ B/MTORC Pathway and Autophagy in Cats. Front Microbiol 2022; 13:961885. [PMID: 35935245 PMCID: PMC9354406 DOI: 10.3389/fmicb.2022.961885] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/16/2022] [Indexed: 01/18/2023] Open
Abstract
Background Inflammatory bowel disease (IBD), a disease that seriously harms human and animal health, has attracted many researchers’ attention because of its complexity and difficulty in treatment. Most research has involved rats and dogs, and very little was cats. We should know that gut microbiota varies significantly from animal to animal. Traditional Chinese Medicine and its monomer component have many advantages compared with antibiotics used in pet clinics. Numerous studies have shown berberine (berberine hydrochloride) therapeutic value for IBD. However, the specific mechanism remains to consider. Results We assessed gut pathology and analyzed fecal bacterial composition using Histological staining and 16S rRNA sequence. Dioctyl sodium sulfosuccinate (DSS) administration destroyed intestinal mucosal structure and changed the diversity of intestinal flora relative to control. RT-PCR and western blot confirmed specific molecular mechanisms that trigger acute inflammation and intestinal mucosal barrier function disruption after DSS treatment. And autophagy inhibition is typical pathogenesis of IBD. Interestingly, berberine ameliorates inflammation during the development of the intestinal by modulating the toll-like receptors 4 (TLR4)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway and activating autophagy. Berberine significantly reduces tumor necrosis factor α (TNF-α), interleukin (IL)-6, and IL-1β expression in cats’ serum. Enhancing the antioxidant effect of IBD cats is one of the protective mechanisms of berberine. We demonstrated that berberine repairs intestinal barrier function by activating the mammalian target of rapamycin (mTOR) complex (MTORC), which inhibits autophagy. Conclusion Berberine can restore intestinal microbiota homeostasis and regulate the TLR4/NF-κB pathway, thereby controlling inflammatory responses. We propose a novel mechanism of berberine therapy for IBD, namely, berberine therapy can simultaneously activate MTORC and autophagy to restore intestinal mucosal barrier function in cats, which should be further studied to shed light on berberine to IBD.
Collapse
Affiliation(s)
- JingWen Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - MiaoYu Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ran Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - MengYao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- *Correspondence: MengYao Guo,
| |
Collapse
|
168
|
Arboleya S, Saturio S, Gueimonde M. Impact of intrapartum antibiotics on the developing microbiota: a review. MICROBIOME RESEARCH REPORTS 2022; 1:22. [PMID: 38046905 PMCID: PMC10688785 DOI: 10.20517/mrr.2022.04] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/26/2022] [Accepted: 07/07/2022] [Indexed: 12/02/2023]
Abstract
The perinatal period sets the basis for the later physiological and immune homeostasis of the individual, with the intestinal microbiota being an important contributor to driving this homeostasis development. Therefore, the initial establishment and later development of the microbiota during early life may play a key role in later health. This early establishment of the intestinal microbiota is known to be affected by several factors, with gestational age, delivery mode, and feeding habits being extensively studied ones. Other factors are not so well understood, although knowledge has been accumulating in the last years. Among them, a factor of great relevance is the effect of perinatal exposure to antibiotics. Administration of intrapartum antimicrobial prophylaxis (IAP) to women during the delivery process represents the most common form of exposure to antibiotics during the perinatal period, present in around 30% of deliveries. During the last decade, evidence has accumulated demonstrating that IAP alters intestinal microbiota development in neonates. Moreover, recent evidence indicates that this practice may also be altering the infant intestinal resistome by increasing the levels of some antibiotic resistance genes. This evidence, as reviewed in this manuscript, suggests the interest in promoting the rational use of IAP. This practice has significantly reduced the risk of neonatal infections, but now the accumulating knowledge suggests the need for strategies to minimize its impact on the neonatal microbiota establishment.
Collapse
Affiliation(s)
- Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC, Villaviciosa 33300, Spain
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo 33011, Spain
| | - Silvia Saturio
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo 33011, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC, Villaviciosa 33300, Spain
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo 33011, Spain
| |
Collapse
|
169
|
Li J, Wang B, Liu S, Zhang Y, Chen C, Jin Y, Shen Z, Yuan T, Yu X. Antibiotic exposure and risk of overweight/obesity in school children: A multicenter, case-control study from China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113702. [PMID: 35636235 DOI: 10.1016/j.ecoenv.2022.113702] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Although the use of antibiotics during early life has been associated with increased risk of adipogenesis, effect of antibiotic exposure from various sources, including food or drinking water, on adiposity in children is largely unknown. OBJECTIVE To investigate associations between urinary biomarkers of multiple antibiotics and risk of adipogenesis in school children. METHODS This case-control study recruited 410 overweight/obese school children aged 6-9 years and 410 controls from Shandong and Guangdong Province, China, matched on sex, age and school. Diagnosis of overweight and obesity was based on body mass index-based criteria derived from national data. Urinary concentrations of 45 antibiotics from 8 categories (macrolides, β-lactams, tetracyclines, fluoroquinolones, sulfonamides, phenicols, lincosamides, and quinoxalines), including 6 human antibiotics (HAs), 6 antibiotics preferred as HAs (PHAs), 16 veterinary antibiotics (VAs), and 17 antibiotics preferred as VA (PVAs), were measured by ultra-performance liquid chromatography coupled to triple-quadrupole tandem mass spectrometry. Conditional logistic regression analyses were used to assess odds ratios (ORs) of childhood overweight/obesity in relation to urinary antibiotic concentrations. RESULTS A total of 32 antibiotics were found in urine samples with an overall detection frequency of 92.93 %. Children with overweight/obesity have higher veterinary antibiotic levels than those with normal weight. Compared with undetected levels of antibiotics, the multivariable-adjusted ORs (95 % confidence interval) of overweight/obesity for high levels of antibiotics divided according to median values were 1.63 (1.02, 2.62) for florfenicol, 1.62 (1.04, 2.54) for phenicols, and 1.41 (0.97, 2.04) for sum of VAs and PVAs. These associations predominantly existed in boys and remained significant in florfenicol after FDR multiple testing correction (FDR adjusted p < 0.05). CONCLUSION Exposure to certain antibiotic for veterinary use mainly from food or drinking water was associated with an increased risk of adipogenesis in children. Further studies are needed to confirm our findings and clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Juan Li
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Bin Wang
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Shijian Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yue Zhang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chen Chen
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yihui Jin
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhemin Shen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Yuan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaodan Yu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Ministry of Education Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
170
|
Hobson CA, Vigue L, Naimi S, Chassaing B, Magnan M, Bonacorsi S, Gachet B, El Meouche I, Birgy A, Tenaillon O. MiniBioReactor Array (MBRA) in vitro gut model: a reliable system to study microbiota-dependent response to antibiotic treatment. JAC Antimicrob Resist 2022; 4:dlac077. [PMID: 35795241 PMCID: PMC9252984 DOI: 10.1093/jacamr/dlac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Antimicrobial drugs are mostly studied for their impact on emergence of bacterial antibiotic resistance, but their impact on the gut microbiota is also of tremendous interest. In vitro gut models are important tools to study such complex drug–microbiota interactions in humans. Methods The MiniBioReactor Array (MBRA) in vitro microbiota system; a single-stage continuous flow culture model, hosted in an anaerobic chamber; was used to evaluate the impact of three concentrations of a third-generation cephalosporin (ceftriaxone) on faecal microbiota from two healthy donors (treatment versus control: three replicates per condition). We conducted 16S microbiome profiling and analysed microbial richness, diversity and taxonomic changes. β-Lactamase activities were evaluated and correlated with the effects observed in the MBRA in vitro system. Results The MBRA preserved each donor’s specificities, and differences between the donors were maintained through time. Before treatment, all faecal cultures belonging to the same donor were comparable in composition, richness, and diversity. Treatment with ceftriaxone was associated with a decrease in α-diversity, and an increase in β-diversity index, in a concentration-dependent manner. The maximum effect on diversity was observed after 72 h of treatment. Importantly, one donor had a stronger microbiota β-lactamase activity that was associated with a reduced impact of ceftriaxone on microbiota composition. Conclusions MBRA can reliably mimic the intestinal microbiota and its modifications under antibiotic selective pressure. The impact of the treatment was donor- and concentration-dependent. We hypothesize these results could be explained, at least in part, by the differences in β-lactamase activity of the microbiota itself. Our results support the relevance and promise of the MBRA system to study drug–microbiota interactions.
Collapse
Affiliation(s)
- C A Hobson
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
| | - L Vigue
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
| | - S Naimi
- INSERM U1016, Team ‘Mucosal Microbiota in Chronic Inflammatory diseases’, CNRS UMR 8104, Université de Paris , Paris , France
| | - B Chassaing
- INSERM U1016, Team ‘Mucosal Microbiota in Chronic Inflammatory diseases’, CNRS UMR 8104, Université de Paris , Paris , France
| | - M Magnan
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
| | - S Bonacorsi
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
- Laboratoire de Microbiologie, Hôpital Robert Debré, AP-HP , 75019 Paris , France
| | - B Gachet
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
| | - I El Meouche
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
| | - A Birgy
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
- Laboratoire de Microbiologie, Hôpital Robert Debré, AP-HP , 75019 Paris , France
| | - O Tenaillon
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
| |
Collapse
|
171
|
Dwaib HS, AlZaim I, Ajouz G, Eid AH, El-Yazbi A. Sex Differences in Cardiovascular Impact of Early Metabolic Impairment: Interplay between Dysbiosis and Adipose Inflammation. Mol Pharmacol 2022; 102:481-500. [PMID: 34732528 DOI: 10.1124/molpharm.121.000338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/23/2021] [Indexed: 11/22/2022] Open
Abstract
The evolving view of gut microbiota has shifted toward describing the colonic flora as a dynamic organ in continuous interaction with systemic physiologic processes. Alterations of the normal gut bacterial profile, known as dysbiosis, has been linked to a wide array of pathologies. Of particular interest is the cardiovascular-metabolic disease continuum originating from positive energy intake and high-fat diets. Accumulating evidence suggests a role for sex hormones in modulating the gut microbiome community. Such a role provides an additional layer of modulation of the early inflammatory changes culminating in negative metabolic and cardiovascular outcomes. In this review, we will shed the light on the role of sex hormones in cardiovascular dysfunction mediated by high-fat diet-induced dysbiosis, together with the possible involvement of insulin resistance and adipose tissue inflammation. Insights into novel therapeutic interventions will be discussed as well. SIGNIFICANCE STATEMENT: Increasing evidence implicates a role for dysbiosis in the cardiovascular complications of metabolic dysfunction. This minireview summarizes the available data on the sex-based differences in gut microbiota alterations associated with dietary patterns leading to metabolic impairment. A role for a differential impact of adipose tissue inflammation across sexes in mediating the cardiovascular detrimental phenotype following diet-induced dysbiosis is proposed. Better understanding of this pathway will help introduce early approaches to mitigate cardiovascular deterioration in metabolic disease.
Collapse
Affiliation(s)
- Haneen S Dwaib
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ghina Ajouz
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ahmed El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| |
Collapse
|
172
|
Li Q, Zhou S, Wang Y, Cong J. Changes of intestinal microbiota and microbiota-based treatments in IBD. Arch Microbiol 2022; 204:442. [PMID: 35776212 DOI: 10.1007/s00203-022-03069-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD) has gained increasing attention from researchers in terms of its pathophysiology as a global disease with a growing incidence. Although the exact etiology of IBD is still unknown currently, various studies have made us realize that it is related to the dysbiosis of intestinal microbiota and the link between the two may not just be a simple causal relationship, but also a dynamic and complicated one. The intestinal microbiota has been confirmed to be closely related to the occurrence, development, and treatment of IBD. Therefore, this review focuses on the changes in the structure, function, and metabolites of intestinal bacteria, fungi, and viruses in influencing IBD, as well as various approaches to IBD treatment by changing disordered intestinal microbiota. Ultimately, more clinical studies will be needed to focus on the efficacy of intestinal microbiota-based treatments in IBD, because of the existence of both advantages and disadvantages.
Collapse
Affiliation(s)
- Qianyu Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Siyu Zhou
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yanna Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
173
|
Chen RA, Wu WK, Panyod S, Liu PY, Chuang HL, Chen YH, Lyu Q, Hsu HC, Lin TL, Shen TCD, Yang YT, Zou HB, Huang HS, Lin YE, Chen CC, Ho CT, Lai HC, Wu MS, Hsu CC, Sheen LY. Dietary Exposure to Antibiotic Residues Facilitates Metabolic Disorder by Altering the Gut Microbiota and Bile Acid Composition. mSystems 2022; 7:e0017222. [PMID: 35670534 PMCID: PMC9239188 DOI: 10.1128/msystems.00172-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/22/2022] [Indexed: 12/30/2022] Open
Abstract
Antibiotics used as growth promoters in livestock and animal husbandry can be detected in animal-derived food. Epidemiological studies have indicated that exposure to these antibiotic residues in food may be associated with childhood obesity. Herein, the effect of exposure to a residual dose of tylosin-an antibiotic growth promoter-on host metabolism and gut microbiota was explored in vivo. Theoretical maximal daily intake (TMDI) doses of tylosin were found to facilitate high-fat-diet-induced obesity, induce insulin resistance, and perturb gut microbiota composition in mice. The obesity-related phenotypes were transferrable to germfree recipient mice, indicating that the effects of a TMDI dose of tylosin on obesity and insulin resistance occurred mainly via alteration of the gut microbiota. Tylosin TMDI exposure restricted to early life, the critical period of gut microbiota development, altered the abundance of specific bacteria related to host metabolic homeostasis later in life. Moreover, early-life exposure to tylosin TMDI doses was sufficient to modify the ratio of primary to secondary bile acids, thereby inducing lasting metabolic consequences via the downstream FGF15 signaling pathway. Altogether, these findings demonstrate that exposure to very low doses of antibiotic residues, whether continuously or in early life, could exert long-lasting effects on host metabolism by altering the gut microbiota and its metabolites. IMPORTANCE This study demonstrates that even with limited exposure in early life, a residual dose of tylosin might cause long-lasting metabolic disturbances by altering the gut microbiota and its metabolites. Our findings reveal that the gut microbiota is susceptible to previously ignored environmental factors.
Collapse
Affiliation(s)
- Rou-An Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Wei-Kai Wu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Suraphan Panyod
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Po-Yu Liu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Yi-Hsun Chen
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Qiang Lyu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Hsiu-Ching Hsu
- The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Lung Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Chin David Shen
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yu-Tang Yang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Bai Zou
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Huai-Syuan Huang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yu-En Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chieh-Chang Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
- Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan
- National Center for Food Safety Education and Research, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
174
|
Olyaiee A, Sadeghi A, Yadegar A, Mirsamadi ES, Mirjalali H. Gut Microbiota Shifting in Irritable Bowel Syndrome: The Mysterious Role of Blastocystis sp. Front Med (Lausanne) 2022; 9:890127. [PMID: 35795640 PMCID: PMC9251125 DOI: 10.3389/fmed.2022.890127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a chronic disorder, which its causative agent is not completely clear; however, the interaction between microorganisms and gastrointestinal (GI) epithelial cells plays a critical role in the development of IBS and presenting symptoms. During recent decades, many studies have highlighted the high prevalence of Blastocystis sp. in patients with IBS and suggested a probable role for this protist in this disease. Recent studies have documented changes in the gut microbiota composition in patients with IBS regarding the presence of Blastocystis sp., but it is not clear that either disturbance of the gut during GI disorders is a favorable condition for Blastocystis sp. colonization or the presence of this protist may lead to alteration in the gut microbiota in IBS patients. In this review, we comprehensively gather and discuss scientific findings covering the role of Blastocystis sp. in IBS via gut microbiota shifting.
Collapse
Affiliation(s)
- Alireza Olyaiee
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Sadat Mirsamadi
- Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
175
|
Li D, Li Y, Yang S, Lu J, Jin X, Wu M. Diet-gut microbiota-epigenetics in metabolic diseases: From mechanisms to therapeutics. Biomed Pharmacother 2022; 153:113290. [PMID: 35724509 DOI: 10.1016/j.biopha.2022.113290] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022] Open
Abstract
The prevalence of metabolic diseases, including obesity, dyslipidemia, type 2 diabetes mellitus (T2DM), and non-alcoholic fatty liver disease (NAFLD), is a severe burden in human society owing to the ensuing high morbidity and mortality. Various factors linked to metabolic disorders, particularly environmental factors (such as diet and gut microbiota) and epigenetic modifications, contribute to the progression of metabolic diseases. Dietary components and habits regulate alterations in gut microbiota; in turn, microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), are influenced by diet. Interestingly, diet-derived microbial metabolites appear to produce substrates and enzymatic regulators for epigenetic modifications (such as DNA methylation, histone modifications, and non-coding RNA expression). Epigenetic changes mediated by microbial metabolites participate in metabolic disorders via alterations in intestinal permeability, immune responses, inflammatory reactions, and insulin resistance. In addition, microbial metabolites can trigger inflammatory immune responses and microbiota dysbiosis by directly binding to G-protein-coupled receptors (GPCRs). Hence, diet-gut microbiota-epigenetics may play a role in metabolic diseases. However, their complex relationships with metabolic diseases remain largely unknown and require further investigation. This review aimed to elaborate on the interactions among diet, gut microbiota, and epigenetics to uncover the mechanisms and therapeutics of metabolic diseases.
Collapse
Affiliation(s)
- Dan Li
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yujuan Li
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Shengjie Yang
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Jing Lu
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiao Jin
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Min Wu
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
176
|
Hu Y, Xu X, Ouyang YB, He C, Li NS, Xie C, Peng C, Zhu ZH, Shu X, Xie Y, Lu NH, Zhu Y. Altered Gut Microbiota and Short-Chain Fatty Acids After Vonoprazan-Amoxicillin Dual Therapy for Helicobacter pylori Eradication. Front Cell Infect Microbiol 2022; 12:881968. [PMID: 35719338 PMCID: PMC9201212 DOI: 10.3389/fcimb.2022.881968] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
The combination of vonoprazan (VPZ) and amoxicillin (VA therapy) has been shown to achieve acceptable eradication rates for Helicobacter pylori (H. pylori). Herein, our aim was to explore the short-term effect of VA therapy on the gut microbiota and short-chain fatty acids (SCFAs) using human fecal samples. A total of 119 H. pylori-positive patients were randomized into low- or high-dose VA therapy (i.e., amoxicillin 1 g b.i.d. or t.i.d. and VPZ 20 mg b.i.d.) for 7 or 10 days. Thirteen H. pylori-negative patients served as controls. Fecal samples were collected from H. pylori-positive and H. pylori-negative patients. The gut microbiota and SCFAs were analyzed using 16S rRNA gene sequencing and gas chromatography-mass spectrometry, respectively. The gut microbiota in H. pylori-positive patients exhibited increased richness, diversity, and better evenness than matched patients. Fifty-three patients studied before and after H. pylori eradication were divided into low (L-VA) and high (H-VA) amoxicillin dose groups. The diversity and composition of the gut microbiota among L-VA patients exhibited no differences at the three time points. However, among H-VA patients, diversity was decreased, and the microbial composition was altered immediately after H-VA eradication but was restored by the confirmation time point. The decreased abundance of Anaerostipes, Dialister, and Lachnospira induced by H-VA was associated with altered SCFA levels. VA dual therapy for H. pylori eradication has minimal negative effects on gut microbiota and SCFAs.
Collapse
Affiliation(s)
- Yi Hu
- Department Of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Xin Xu
- Department Of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Yao-Bin Ouyang
- Department Of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Cong He
- Department Of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Nian-Shuang Li
- Department Of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Chuan Xie
- Department Of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Chao Peng
- Department Of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Zhen-Hua Zhu
- Department Of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Xu Shu
- Department Of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Yong Xie
- Department Of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Nong-Hua Lu
- Department Of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Yin Zhu
- Department Of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, Nanchang, China
| |
Collapse
|
177
|
Abstract
OBJECTIVES Antibiotics may contribute to the development of functional gastrointestinal disorders (FGIDs). This study aimed to determine whether antibiotics during the first week of life, infantile colic in the first year of life, gut-associated immune markers at 1 year of age, and allergies at 4-6 years of age in term-born children were associated with a higher prevalence of FGIDs at 4-6 years of age. METHODS A prospective observational cohort of 436 term-born infants was followed up at the age of 4-6 years; 151 received broad-spectrum antibiotics (AB+), and 285 healthy controls (AB-). Validated Questionnaire On Pediatric Gastrointestinal Symptoms-Rome III and International Study of Asthma and Allergy in Childhood questionnaires were sent to parents of 418 available children. The independent t-test, chi-squared test or non-parametric test and logistic multivariate regression analyses were used. RESULTS In total, 340 of 418 (81%) questionnaires were completed. Only the presence of functional abdominal pain was significantly higher in AB+ than AB- (4% vs 0.4%, respectively, P = 0.045). Children with food allergy fulfilled significantly more often the criteria for irritable bowel syndrome (IBS) and abdominal migraine (26% vs 9%, P = 0.002 and 7% vs 1%, P = 0.043, respectively) compared to non-allergic children. No differences in FGIDs existed at the age of 4-6 years between children with and without a history of infantile colic. There were significant differences in gut-associated immune markers between children with and without FGIDs. CONCLUSION Antibiotics during the first week of life resulted in a higher risk for functional abdominal pain at 4-6 years. Furthermore, food allergy was associated with IBS and abdominal migraine at 4-6years.
Collapse
|
178
|
Meliț LE, Mărginean CO, Săsăran MO. The Challenges of Eradicating Pediatric Helicobacter pylori Infection in the Era of Probiotics. CHILDREN 2022; 9:children9060795. [PMID: 35740732 PMCID: PMC9222169 DOI: 10.3390/children9060795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 01/10/2023]
Abstract
Helicobacter pylori (H. pylori), the most common infection of childhood, results in life-threatening complications during adulthood if left untreated. Most of these complications are related to H. pylori-induced chronic inflammation. The dysbiosis caused by H. pylori is not limited to the gastric microenvironment, but it affects the entire gastrointestinal tract. Eradication of H. pylori has recently become a real challenge for clinicians due to both the persistent increase in antibiotic resistance worldwide and the wide spectrum of side effects associated with the eradication regimens resulting; therefore, there is an urgent need for more effective and less noxious treatment options. Thus, probiotics might be a promising choice in both adults and children with H. pylori infection since their role in improving the eradication rate of this infection has been proved in multiple studies. The positive effects of probiotics might be explained by their abilities to produce antimicrobial compounds and antioxidants, alter local gastric pH, and subsequently decrease H. pylori colonization and adherence to gastric epithelial cells. Nevertheless, if used alone probiotics do not considerably increase the eradication rate.
Collapse
Affiliation(s)
- Lorena Elena Meliț
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Târgu Mureș, Romania;
| | - Cristina Oana Mărginean
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Târgu Mureș, Romania;
- Correspondence:
| | - Maria Oana Săsăran
- Department of Pediatrics III, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Târgu Mureș, Romania;
| |
Collapse
|
179
|
Desruelle AV, de Maistre S, Gaillard S, Richard S, Tardivel C, Martin JC, Blatteau JE, Boussuges A, Rives S, Risso JJ, Vallee N. Cecal Metabolomic Fingerprint of Unscathed Rats: Does It Reflect the Good Response to a Provocative Decompression? Front Physiol 2022; 13:882944. [PMID: 35655958 PMCID: PMC9152359 DOI: 10.3389/fphys.2022.882944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
On one side, decompression sickness (DCS) with neurological disorders lead to a reshuffle of the cecal metabolome of rats. On the other side, there is also a specific and different metabolomic signature in the cecum of a strain of DCS-resistant rats, that are not exposed to hyperbaric protocol. We decide to study a conventional strain of rats that resist to an accident-provoking hyperbaric exposure, and we hypothesize that the metabolomic signature put forward may correspond to a physiological response adapted to the stress induced by diving. The aim is to verify and characterize whether the cecal compounds of rats resistant to the provocative dive have a cecal metabolomic signature different from those who do not dive. 35 asymptomatic diver rats are selected to be compared to 21 rats non-exposed to the hyperbaric protocol. Because our aim is essentially to study the differences in the cecal metabolome associated with the hyperbaric exposure, about half of the rats are fed soy and the other half of maize in order to better rule out the effect of the diet itself. Lower levels of IL-1β and glutathione peroxidase (GPX) activity are registered in blood of diving rats. No blood cell mobilization is noted. Conventional and ChemRICH approaches help the metabolomic interpretation of the 185 chemical compounds analyzed in the cecal content. Statistical analysis show a panel of 102 compounds diet related. 19 are in common with the hyperbaric protocol effect. Expression of 25 compounds has changed in the cecal metabolome of rats resistant to the provocative dive suggesting an alteration of biliary acids metabolism, most likely through actions on gut microbiota. There seem to be also weak changes in allocations dedicated to various energy pathways, including hormonal reshuffle. Some of the metabolites may also have a role in regulating inflammation, while some may be consumed for the benefit of oxidative stress management.
Collapse
Affiliation(s)
- Anne-Virginie Desruelle
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Sébastien de Maistre
- Service de Médecine Hyperbare Expertise Plongée, Hôpital d'Instruction des Armées Sainte-Anne, Toulon Cedex, France
| | | | | | - Catherine Tardivel
- C2VN, INRAE, INSERM, BIOMET, Aix Marseille University, Faculté de Médecine La Timone, Marseille, France
| | - Jean-Charles Martin
- C2VN, INRAE, INSERM, BIOMET, Aix Marseille University, Faculté de Médecine La Timone, Marseille, France
| | - Jean-Eric Blatteau
- Service de Médecine Hyperbare Expertise Plongée, Hôpital d'Instruction des Armées Sainte-Anne, Toulon Cedex, France
| | - Alain Boussuges
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Sarah Rives
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Jean-Jacques Risso
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Nicolas Vallee
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
- *Correspondence: Nicolas Vallee,
| |
Collapse
|
180
|
Wang Y, Wu S, Wang L, Wang Y, Liu D, Fu Y, Xie Y. The Activity of Liposomal Linolenic Acid Against Helicobacter pylori In Vitro and Its Impact on Human Fecal Bacteria. Front Cell Infect Microbiol 2022; 12:865320. [PMID: 35656035 PMCID: PMC9152453 DOI: 10.3389/fcimb.2022.865320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is associated with a variety of gastrointestinal diseases. Here, we focused on the activity of a novel nanomedicine-liposomal linolenic acid (LipoLLA) against H. pylori and its impact on human fecal bacteria in vitro. The minimum inhibitory concentrations (MICs) of LipoLLA against 30 H. pylori clinical strains were determined in combination with amoxicillin (AMX), metronidazole (MTZ), levofloxacin (LVFX) and clarithromycin (CAM). Bactericidal activity was measured by generating concentration-bactericidal curves at different times and pH values. Leakage of glucose (GLU) and aspartate aminotransferase (AST) was detected, combined with detection of changes in morphology by electron microscopy, to study the mechanism of action of LipoLLA against H. pylori. The effect of LipoLLA on human fecal bacteria was studied by high-throughput sequencing of fecal samples. We observed a synergistic or additive effect when LipoLLA was combined with AMX, MTZ, LVFX and CAM. The concentration-sterilization curves were pH and time dependent. After treatment with LipoLLA, GLU and AST levels were increased (P<0.05), and the morphology of H. pylori changed significantly. Moreover, LipoLLA activity led to no significant changes in the intestinal flora in terms of alpha diversity, species composition, beta diversity, etc. In conclusion, LipoLLA showed good anti-H. pylori effects. It destroyed the outer membrane barrier and caused leakage of the bacterial contents to achieve anti-H. pylori effects. And LipoLLA had little effect on human fecal bacteria in vitro.
Collapse
Affiliation(s)
- Ya Wang
- Key Laboratory of Digestive Diseases of Jiangxi, Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Shuang Wu
- Key Laboratory of Digestive Diseases of Jiangxi, Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Le Wang
- Key Laboratory of Digestive Diseases of Jiangxi, Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Youhua Wang
- Key Laboratory of Digestive Diseases of Jiangxi, Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dongsheng Liu
- Key Laboratory of Digestive Diseases of Jiangxi, Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yingjun Fu
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Yong Xie
- Key Laboratory of Digestive Diseases of Jiangxi, Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Yong Xie,
| |
Collapse
|
181
|
Phage Cocktail Targeting STEC O157:H7 Has Comparable Efficacy and Superior Recovery Compared with Enrofloxacin in an Enteric Murine Model. Microbiol Spectr 2022; 10:e0023222. [PMID: 35536028 PMCID: PMC9241756 DOI: 10.1128/spectrum.00232-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
O157:H7 is the most important Shiga toxin-producing Escherichia coli (STEC) serotype in relation to public health. Given that antibiotics may contribute to the exacerbation of STEC-related disease and an increased frequency of antibiotic-resistant strains, bacteriophage (phage) therapy is considered a promising alternative. However, phage therapy targeting enteric pathogens is still underdeveloped with many confounding effects from the microbiota. Here we comprehensively compared the therapeutic efficacy of a phage cocktail with the antibiotic enrofloxacin in a mouse model of STEC O157:H7 EDL933 infection. Enrofloxacin treatment provided 100% survival and the phage cocktail treatment provided 90% survival. However, in terms of mouse recovery, the phage cocktail outperformed enrofloxacin in all measured outcomes. Compared with enrofloxacin treatment, phage treatment led to a faster elimination of enteric pathogens, decreased expression levels of inflammatory markers, increased weight gain, maintenance of a stable relative organ weight, and improved homeostasis of the gut microbiota. These results provide support for the potential of phage therapy to combat enteric pathogens and suggest that phage treatment leads to enhanced recovery of infected mice compared with antibiotics. IMPORTANCE With the increasing severity of antibiotic resistance and other adverse consequences, animal experiments and clinical trials investigating the use of phages for the control and prevention of enteric bacterial infections are growing. However, the effects of phages and antibiotics on organisms when treating intestinal infections have not been precisely studied. Here, we comprehensively compared the therapeutic efficacy of a phage cocktail to the antibiotic enrofloxacin in a mouse model of STEC O157:H7 EDL933 infection. We found that, despite a slightly lower protection rate, phage treatment contributed to a faster recovery of infected mice compared with enrofloxacin. These results highlight the potential benefits of phage therapy to combat enteric infections.
Collapse
|
182
|
Li L, Wang Y, Huang T, He X, Zhang K, Kang ET, Xu L. Cationic porphyrin-based nanoparticles for photodynamic inactivation and identification of bacteria strains. Biomater Sci 2022; 10:3006-3016. [PMID: 35522076 DOI: 10.1039/d2bm00265e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emergence of antibiotic drug resistance has undermined the efficacy of antibiotics, and is becoming a severe threat to public health. To combat antibiotic drug resistance and to replace traditional antibiotic treatment, an alternative strategy based on antibacterial photodynamic therapy (APDT), which has broad applicability, high efficiency and less potential of developing antibiotic drug resistance, has been developed. In this work, the cationic porphyrin-based nanoparticles (NPs) were prepared by epoxy-amine chain extension polymerization of diepoxy-terminated poly(ethylene glycol) (PEG) and tetraamino-containing porphyrin, followed by quaternization with methyl iodine and butyl bromide. The as-obtained cationic porphyrin NPs preserved the photophysical properties of porphyrin derivatives, and can efficiently generate singlet oxygen (1O2) under 635 nm laser irradiation. The cationic porphyrin-based NPs displayed intrinsic antibacterial properties, and exhibited strong APDT effect on Gram-positive bacteria by destroying the bacterial cell membranes. Upon incubation with different bacterial strains, it was found that they could be utilized to identify Gram-positive bacteria by observing the sedimentation behavior of their mixtures, and visualizing their co-cultured and centrifugal bacteria cakes. In addition, the cationic porphyrin-based NPs had good hemocompatibility and low dark cytotoxicity.
Collapse
Affiliation(s)
- Lin Li
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P.R. China 400715.
| | - Yan Wang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P.R. China 400715.
| | - Tao Huang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P.R. China 400715.
| | - Xiaodong He
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P.R. China 400715.
| | - Kai Zhang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P.R. China 400715.
| | - En-Tang Kang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P.R. China 400715. .,Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576
| | - Liqun Xu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P.R. China 400715. .,Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P.R. China 571158
| |
Collapse
|
183
|
Kim WS, Choi Y, Kim N, Lim SH, Noh G, Kim KW, Park J, Jo H, Yoon H, Shin CM, Park YS, Lee DH. Long-term effect of the eradication of Helicobacter pylori on the hemoglobin A1c in type 2 diabetes or prediabetes patients. Korean J Intern Med 2022; 37:579-590. [PMID: 34991230 PMCID: PMC9082431 DOI: 10.3904/kjim.2021.194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 10/25/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS The long-term effect of Helicobacter pylori eradication on the metabolic syndrome or diabetes are unclear. The aim of this study was to evaluate the effect of H. pylori eradication on glycemic control in type 2 diabetes mellitus (T2DM) or prediabetes mellitus (preDM). METHODS A total of 124 asymptomatic subjects with T2DM or preDM were divided into H. pylori-negative (n = 40), H. pylori-positive with non-eradicated (n = 34), and eradicated (n = 50) groups. We measured H. pylori status (culture, histology, and rapid urease test) and glycated hemoglobin A1c (A1C) levels and followed-up at the 1st year and the 5th year of follow-up. RESULTS The A1C levels significantly decreased in the eradicated group compared to the negative group and the non-eradicated groups (at the 1st year, p = 0.024; at the 5th year, p = 0.009). The A1C levels decreased in male, and/or subjects < 65 years of age in subgroup analyses (in male subjects, p = 0.047 and p = 0.020 at the 1st and the 5th year; in subjects < 65 years of age, p = 0.028 and p = 0.006 at the 1st and the 5th year; in male subjects < 65 years of age, p = 0.039 and p = 0.032 at the 1st and the 5th year). The eradication of H. pylori was related to the decrease in A1C values throughout the follow-up period, compared to the non-eradicated group (p = 0.017). CONCLUSION H. pylori eradication was related to the decreasing of A1C levels in patients with T2DM or preDM over a long-term follow-up period, especially in male and subjects < 65 years of age.
Collapse
Affiliation(s)
- Won Seok Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yonghoon Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Seon Hee Lim
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center and Healthcare Research Institute, Seoul, Korea
| | - Gitark Noh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ki Wook Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jaehyung Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyeongho Jo
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Young Soo Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
184
|
Cui L, Huang H, Zhang H, Wang X, Qin X, Tu T, Zhang J, Su X, Yu H, Bai Y, Luo H, Yao B, Wang Y. Recombinant expression of hen egg white lysozyme with the assistance of xylanase fusion partner in Pichia pastoris. Bioengineered 2022; 13:13860-13871. [PMID: 35726822 PMCID: PMC9275996 DOI: 10.1080/21655979.2022.2084496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Due to its bacteriolytic activity, hen egg white lysozyme (HEWL) is widely used in the feed, food, and pharmaceutical industries. However, its application is hindered by low protein expression levels in microbial expression systems. In this work, a novel fusion protein expression strategy was proposed for increasing the expression level of HEWL. First, HEWL, fused with a highly expressed fusion protein partner xylanase XynCDBFV, is expressed in Pichia pastoris. Secondly, a linker including endogenous protease cleavage sites was introduced between two fusion proteins in order to separate them directly during the secretion process. Finally, the results show that the supernatant of XynCDBFV-HEWL has a higher HEWL expression level and activity compared with HEWL only. It should be noted that the expression of HEWL reaches to about 3.5 g/L, and the activity of HEWL against Micrococcus lysodeikticus reaches to 1.50 × 105 U/mL in a fed-batch fermentation, which is currently the highest level of recombinant expression of an egg white-derived lysozyme. Taken together, we acquired bioactive HEWL for large-scale recombinant production in Pichia pastoris using a novel fusion protein expression strategy, which could then be used for a variety of applications.
Collapse
Affiliation(s)
- Lin Cui
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R.China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R.China
| | - Honglian Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R.China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R.China
| | - Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R.China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R.China
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R.China
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R.China
| | - Huimin Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R.China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R.China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R.China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R.China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R.China
| |
Collapse
|
185
|
Lin TL, Fan YH, Chang YL, Ho HJ, Liang LL, Chen YJ, Wu CY. Early-Life Antibiotic Exposure Associated With Varicella Occurrence and Breakthrough Infections: Evidence From Nationwide Pre-Vaccination and Post-Vaccination Cohorts. Front Immunol 2022; 13:848835. [PMID: 35432330 PMCID: PMC9011717 DOI: 10.3389/fimmu.2022.848835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/10/2022] [Indexed: 12/02/2022] Open
Abstract
Background Antibiotic-driven dysbiosis may impair immune function and reduce vaccine-induced antibody titers. Objectives This study aims to investigate the impacts of early-life antibiotic exposure on subsequent varicella and breakthrough infections. Methods This is a nationwide matched cohort study. From Taiwan’s National Health Insurance Research Database, we initially enrolled 187,921 children born from 1997 to 2010. Since 2003, the Taiwan government has implemented a one-dose universal varicella vaccination program for children aged 1 year. We identified 82,716 children born during the period 1997 to 2003 (pre-vaccination era) and 48,254 children born from July 1, 2004, to 2009 (vaccination era). In the pre-vaccination era, 4,246 children exposed to antibiotics for at least 7 days within the first 2 years of life (Unvaccinated A-cohort) were compared with reference children not exposed to antibiotics (Unvaccinated R-cohort), with 1:1 matching for gender, propensity score, and non-antibiotic microbiota-altering medications. Using the same process, 9,531 children in the Vaccinated A-cohort and Vaccinated R-cohort were enrolled from the vaccination era and compared. The primary outcome was varicella. In each era, demographic characteristics were compared, and cumulative incidences of varicella were calculated. Cox proportional hazards model was used to examine associations. Results In the pre-vaccination era, the 5-year cumulative incidence of varicella in the Unvaccinated A-cohort (23.45%, 95% CI 22.20% to 24.70%) was significantly higher than in the Unvaccinated R-cohort (16.72%, 95% CI 15.62% to 17.82%) (p<.001). In the vaccination era, a significantly higher 5-year cumulative incidence of varicella was observed in the Vaccinated A-cohort (1.63%, 95% 1.32% to 1.93%) than in the Vaccinated R-cohort (1.19%, 95% CI 0.90% to 0.45%) (p=0.006). On multivariate analyses, early-life antibiotic exposure was an independent risk factor for varicella occurrence in the pre-vaccination (adjusted hazard ratio [aHR] 1.92, 95% CI 1.74 to 2.12) and vaccination eras (aHR 1.66, 95% CI 1.24 to 2.23). The use of penicillins, cephalosporins, macrolides, or sulfonamides in infancy was all positively associated with childhood varicella regardless of vaccine administration. Conclusions Antibiotic exposure in early life is associated with varicella occurrence and breakthrough infections.
Collapse
Affiliation(s)
- Teng-Li Lin
- Department of Dermatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.,Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Hsuan Fan
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Ling Chang
- Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsiu J Ho
- Institute of Biomedical Informatics and Research Center for Epidemic Prevention, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Lin Liang
- Institute of Public Health, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ju Chen
- Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Life Sciences, National Chung-Hsing University, Taichung, Taiwan.,Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Ying Wu
- Institute of Biomedical Informatics and Research Center for Epidemic Prevention, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Translational Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Public Health, China Medical University, Taichung, Taiwan.,National Institute of Cancer Research and Institute of Population Health Science, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
186
|
Zheng SJ, Luo Y, Xiao JH. The Impact of Intestinal Microorganisms and Their Metabolites on Type 1 Diabetes Mellitus. Diabetes Metab Syndr Obes 2022; 15:1123-1139. [PMID: 35431564 PMCID: PMC9012311 DOI: 10.2147/dmso.s355749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) is an autoimmune disease with a complex etiology comprising numerous genetic and environmental factors; however, many of the mechanisms underlying disease development remain unclear. Nevertheless, a critical role has recently been assigned to intestinal microorganisms in T1DM disease pathogenesis. In particular, a decrease in intestinal microbial diversity, increase in intestinal permeability, and the translocation of intestinal bacteria to the pancreas have been reported in patients and animal models with T1DM. Moreover, intestinal microbial metabolites differ between healthy individuals and patients with T1DM. Specifically, short-chain fatty acid (SCFA) production, which contributes to intestinal barrier integrity and immune response regulation, is significantly reduced in patients with T1DM. Considering this correlation between intestinal microorganisms and T1DM, many studies have investigated the potential of intestinal microbiota in preventive and therapeutic strategies for T1DM. OBJECTIVE The aim of this review is to provide further support for the notion that intestinal microbiota contributes to the regulation of T1DM occurrence and development. In particular, this article reviews the involvement of the intestinal microbiota and the associated metabolites in T1DM pathogenesis, as well as recent studies on the involvement of the intestinal microbiota in T1DM prevention and treatment. CONCLUSION Intestinal microbes and their metabolites contribute to T1DM occurrence and development and may become a potential target for novel therapeutics.
Collapse
Affiliation(s)
- Shu-Juan Zheng
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Yi Luo
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
- Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Jian-Hui Xiao
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
- Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| |
Collapse
|
187
|
Li M, Yang L, Mu C, Sun Y, Gu Y, Chen D, Liu T, Cao H. Gut microbial metabolome in inflammatory bowel disease: From association to therapeutic perspectives. Comput Struct Biotechnol J 2022; 20:2402-2414. [PMID: 35664229 PMCID: PMC9125655 DOI: 10.1016/j.csbj.2022.03.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is a set of clinically chronic, relapsing gastrointestinal inflammatory disease and lacks of an absolute cure. Although the precise etiology is unknown, developments in high-throughput microbial genomic sequencing significantly illuminate the changes in the intestinal microbial structure and functions in patients with IBD. The application of microbial metabolomics suggests that the microbiota can influence IBD pathogenesis by producing metabolites, which are implicated as crucial mediators of host-microbial crosstalk. This review aims to elaborate the current knowledge of perturbations of the microbiome-metabolome interface in IBD with description of altered composition and metabolite profiles of gut microbiota. We emphasized and elaborated recent findings of several potentially protective metabolite classes in IBD, including fatty acids, amino acids and derivatives and bile acids. This article will facilitate a deeper understanding of the new therapeutic approach for IBD by applying metabolome-based adjunctive treatment.
Collapse
Key Words
- AMPs, Antimicrobial peptides
- BAs, Bile acids
- BC, Bray Curtis
- CD, Crohn’s disease
- CDI, Clostridioides difficile infection
- DC, Diversion colitis
- DCA, Deoxycholic acid
- DSS, Dextran sulfate sodium
- FAs, Fatty acid
- FMT, Fecal microbiota transplantation
- FODMAP, Fermentable oligosaccharide, disaccharide, monosaccharide, and polyol
- GC–MS, Gas chromatography-mass spectrometry
- Gut microbiota
- HDAC, Histone deacetylase
- IBD, Inflammatory bowel disease
- Inflammatory bowel diseases
- LC-MS, Liquid chromatography-mass spectrometry
- LCA, Lithocholic acid
- LCFAs, Long-chain fatty acids
- MCFAs, Medium-chain fatty acids
- MD, Mediterranean diet
- MS, Mass spectrometry
- Metabolite
- Metabolomics
- Metagenomics
- Microbial therapeutics
- NMR, Nuclear magnetic resonance
- PBAs, Primary bile acids
- SBAs, Secondary bile acids
- SCD, Special carbohydrate diet
- SCFAs, Short-chain fatty acids
- TNBS, 2,4,6-trinitro-benzene sulfonic acid
- UC, Ulcerative colitis
- UDCA, Ursodeoxycholic acid
- UPLC-MS, ultraperformance liquid chromatography coupled to mass spectrometry
- UU, Unweighted UniFrac
- WMS, Whole-metagenome shotgun
Collapse
Affiliation(s)
| | | | | | - Yue Sun
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yu Gu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Danfeng Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
188
|
Cao Y, Kan H, Wang X, Zhi Y. Gut microbiome alterations in hereditary angioedema. Ann Allergy Asthma Immunol 2022; 128:451-458.e6. [PMID: 35093554 DOI: 10.1016/j.anai.2022.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/05/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hereditary angioedema (HAE) is a rare disease with wide intra- and interindividual clinical variation. There are no reliable indicators available in clinical practice to predict the onset and severity of HAE. Uncovering the changes in the gut microbiota in HAE patients may offer insight into a missing piece of the pathogenesis and help explain the clinical heterogeneity. OBJECTIVE Explore whether dysbiosis exists in patients with HAE and whether there are biomarkers to indicate the episodes. METHODS Fecal samples and clinical data were collected from patients with C1-inhibitor-related HAE and their healthy family members. Patients were grouped on the basis of the most recent conditions of HAE episodes and major clinical manifestations. The gut microbiota was evaluated by sequencing the 16S ribosomal RNA gene and analyzed for diversity. RESULTS Microbial richness and diversity were significantly reduced among patients who had recent HAE attacks, especially for those presenting with abdominal symptoms (P = .003 and P = .048 compared with healthy controls and patients with no recent episodes, respectively). Decreased Firmicutes and increased Proteobacteria were found among the individuals with a recent episode, along with a marked increase of pathogenic bacteria on the basis of the predictive functional profiling. Dysbiosis was restored after regular use of danazol or tranexamic acid. A combined biomarker composed of Bifidobacterium, Lachnospira, Paraprevotella, Desulfovibrio, and Staphylococcus was proposed to detect the recent edema episodes. CONCLUSION We reported alterations of the gut microbiome in patients with HAE and explored the possible role of bacteria in the etiology of edema episodes, which may provide new clues for the prediction of disease course, clinical treatment, and therapeutic evaluation.
Collapse
Affiliation(s)
- Yang Cao
- Department of Allergy and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Immunologic Diseases, Beijing, People's Republic of China; School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Haoxuan Kan
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xue Wang
- Department of Allergy and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Immunologic Diseases, Beijing, People's Republic of China; School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yuxiang Zhi
- Department of Allergy and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Immunologic Diseases, Beijing, People's Republic of China.
| |
Collapse
|
189
|
Wang L, Yao H, Tong T, Lau K, Leung SY, Ho JWK, Leung WK. Dynamic changes in antibiotic resistance genes and gut microbiota after Helicobacter pylori eradication therapies. Helicobacter 2022; 27:e12871. [PMID: 34969161 DOI: 10.1111/hel.12871] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Short-term antibiotics exposure is associated with alterations in microbiota and antibiotic resistance genes (ARGs) in the human gut. While antibiotics are critical in the successful eradication of Helicobacter pylori, the short-term and long-term impacts on the composition and quantity of antibiotics resistance genes after H. pylori eradication are unclear. This study used whole-genome shotgun metagenomic of stool samples to characterize the gut microbiota and ARGs, before and after H. pylori eradication therapy. RESULTS Forty-four H. pylori-infected patients were recruited, including 21 treatment naïve patients who received clarithromycin-based triple therapy (CLA group) and 23 patients who failed previous therapies, in which 10 received levofloxacin-based quadruple therapy (LEVO group) and 13 received other combinations (OTHER group). Stool samples were collected at baseline (before current treatment), 6 week and 6 month after eradication therapy. At baseline, there was only a slight difference among the three groups on ARGs and gut microbiota. After eradication therapy, there was a transient but significant increase in gut ARGs 6 week post-therapy, among which the LEVO group had the most significant ARGs alteration compared to other two groups. For treatment naïve patients, those with higher ErmF abundance were prone to fail CLA eradication and gain more ARGs after treatment. For gut microbiota, the bacteria richness decreased at 6 week and there was a significant difference in microbiota community among the three groups at 6 week. CONCLUSIONS Our findings demonstrated the dynamic alterations in gut microbiota and ARGs induced by different eradication therapies, which could influence the choices of antibiotics in eradication therapy.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haobin Yao
- School of Biomedical Science, The University of Hong Kong, Hong Kong, China.,Laboratory of Data Discovery for Health, Hong Kong Science Park, Hong Kong, China
| | - Teresa Tong
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - KamShing Lau
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Suet Yi Leung
- Centre for PanorOmic Sciences (CPOS), The University of Hong Kong, Hong Kong, China.,Department of Pathology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.,The Jockey Club Centre for Clinical Innovation and Discovery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Joshua W K Ho
- School of Biomedical Science, The University of Hong Kong, Hong Kong, China.,Laboratory of Data Discovery for Health, Hong Kong Science Park, Hong Kong, China.,Centre for PanorOmic Sciences (CPOS), The University of Hong Kong, Hong Kong, China
| | - Wai K Leung
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
190
|
Liu YB, Chen MK. The impact of proton pump inhibitors in liver diseases and the effects on the liver. J Dig Dis 2022; 23:196-208. [PMID: 35357775 DOI: 10.1111/1751-2980.13093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 12/11/2022]
Abstract
In this systematic and comprehensive overview, we aimed to evaluate the impact of proton pump inhibitors (PPIs) on chronic liver diseases, especially on cirrhosis. A manual and comprehensive search of the PubMed database was conducted to obtain relevant literatures. PPIs altered the composition and function of the intestinal microflora and might lead to small intestinal bacterial overgrowth and bacterial translocation, which were associated with adverse effects in liver diseases. They might increase the risk of hepatic encephalopathy, spontaneous bacterial peritonitis, infections, and are related to an increased mortality in cirrhosis. PPIs might lead to an increased risk of hepatocellular carcinoma, although the mechanism is unknown, and the results are controversial. PPIs also had an impact on the direct-acting antiviral regimen in patients with chronic hepatitis C. They were associated with an increased risk of liver abscess and increased mortality. Additionally, PPIs might lead to metabolic risk events, such as liver steatosis and weight gain. PPIs are associated with several adverse outcomes in liver diseases. Cautious use of PPIs is recommended and clinicians should be aware of the indications for their use in patients with liver diseases.
Collapse
Affiliation(s)
- Yuan Bin Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Ming Kai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
191
|
Mamieva Z, Poluektova E, Svistushkin V, Sobolev V, Shifrin O, Guarner F, Ivashkin V. Antibiotics, gut microbiota, and irritable bowel syndrome: What are the relations? World J Gastroenterol 2022; 28:1204-1219. [PMID: 35431513 PMCID: PMC8968486 DOI: 10.3748/wjg.v28.i12.1204] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/01/2021] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder in which recurrent abdominal pain is associated with defecation or a change in bowel habits (constipation, diarrhea, or both), and it is often accompanied by symptoms of abdominal bloating and distension. IBS is an important health care issue because it negatively affects the quality of life of patients and places a considerable financial burden on health care systems. Despite extensive research, the etiology and underlying pathophysiology of IBS remain incompletely understood. Proposed mechanisms involved in its pathogenesis include increased intestinal permeability, changes in the immune system, visceral hypersensitivity, impaired gut motility, and emotional disorders. Recently, accumulating evidence has highlighted the important role of the gut microbiota in the development of IBS. Microbial dysbiosis within the gut is thought to contribute to all aspects of its multifactorial pathogenesis. The last few decades have also seen an increasing interest in the impact of antibiotics on the gut microbiota. Moreover, antibiotics have been suggested to play a role in the development of IBS. Extensive research has established that antibacterial therapy induces remarkable shifts in the bacterial community composition that are quite similar to those observed in IBS. This suggestion is further supported by data from cohort and case-control studies, indicating that antibiotic treatment is associated with an increased risk of IBS. This paper summarizes the main findings on this issue and contributes to a deeper understanding of the link between antibiotic use and the development of IBS.
Collapse
Affiliation(s)
- Zarina Mamieva
- Department of Internal Disease Propaedeutics, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Elena Poluektova
- Department of Internal Disease Propaedeutics, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Valery Svistushkin
- Department of Ear, Throat and Nose Diseases, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Vasily Sobolev
- Department of Ear, Throat and Nose Diseases, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Oleg Shifrin
- Department of Internal Disease Propaedeutics, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Francisco Guarner
- Digestive System Research Unit, Vall d’Hebron Research Institute, Barcelona 08035, Spain
| | - Vladimir Ivashkin
- Department of Internal Disease Propaedeutics, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| |
Collapse
|
192
|
St Jean DT, Rogawski McQuade ET, Edwards JK, Thompson P, Thomas J, Becker-Dreps S. Effect of early life antibiotic use on serologic responses to oral rotavirus vaccine in the MAL-ED birth cohort study. Vaccine 2022; 40:2580-2587. [PMID: 35341645 PMCID: PMC9045361 DOI: 10.1016/j.vaccine.2022.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Oral rotavirus vaccine efficacy is lower in low- and middle-income countries (LMICs) than in high-income countries. The degree to which antibiotic use impacts rotavirus vaccine immunogenicity in LMICs is unknown. Using data from a multisite prospective birth cohort study of malnutrition and enteric disease, MAL-ED, we examined the effect of early life antibiotic use on the immune response to rotavirus vaccine. METHODS We assessed whether antibiotic use from birth up to 7 days following rotavirus vaccine series completion was associated with rotavirus seropositivity at 7 months of age in Brazil, Peru, and South Africa using a modified Poisson regression. We then used parametric g-computation to estimate the impact of hypothetical interventions that treated all children and alternatively prevented inappropriate antibiotic treatments on seropositivity. RESULTS Of 537 children, 178 (33%) received at least one antibiotic course during the exposure window. Probability of seropositivity was 40% higher among children who had at least one course of antibiotics compared with those with no antibiotic exposure (PR: 1.40, 95% CI: 1.04, 1.89). There was no significant difference by the number of antibiotic courses received or total duration of antibiotics. Treating all children with antibiotics would be associated with a 19% (95% CI: 18%, 21%) absolute increase in seropositivity at 7 months. In contrast, removing inappropriate antibiotics would result in a 4% absolute reduction (95% CI: -5%, -2%) in seropositivity. CONCLUSIONS Early life antibiotic use was associated with increased seropositivity. However, a hypothetical intervention to remove inappropriate antibiotics would have little effect on overall seropositivity. Further investigation into the underlying mechanisms of antibiotic use on the infant gut microbiome and immune response are needed.
Collapse
Affiliation(s)
- Denise T St Jean
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | - Jessie K Edwards
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peyton Thompson
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James Thomas
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sylvia Becker-Dreps
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Family Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
193
|
Dietary Plant and Animal Protein Sources Oppositely Modulate Fecal Bilophila and Lachnoclostridium in Vegetarians and Omnivores. Microbiol Spectr 2022; 10:e0204721. [PMID: 35285706 PMCID: PMC9045121 DOI: 10.1128/spectrum.02047-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The food we eat not only nourishes our bodies but also provides nutrients to the bacteria living in our guts. Gut bacterial communities are known to be affected by many factors, including diet and bowel cleansing, but the impacts of vegetarian and omnivore diets on fecal bacterial composition are still uncertain. In this study, we analyzed the bacterial compositions of fecal samples from vegetarians and omnivores 5 to 7 days after bowel cleansing, and we correlated specific dietary constituents with the relative abundances of specialized fecal bacteria. A total of 46 participants (23 vegetarians and 23 omnivores) were recruited. All participants underwent standard bowel cleansing before colonoscopy screening. Fecal samples were collected from each participant 5 to 7 days after bowel cleansing, and the fecal microbiota compositions were analyzed with next-generation sequencing. Sixteen participants also provided an image-based dietary record for nutritional assessment. No major differences between dietary groups were observed in terms of fecal bacterial richness, alpha diversity, or beta diversity. A minority of potential pathobionts tended to be elevated in omnivores compared to vegetarians, whereas potential probiotic species tended to be higher in the vegetarians. Detailed dietary assessments further revealed that the plant- and animal-derived proteins may oppositely modulate the relative abundances of pathobionts Bilophila and Lachnoclostridium. However, these results were not statistically significant after multiple-comparison correction. These results suggest that specialized probiotic and pathobiont microbiota constituents are sensitive to the plant- or animal-derived dietary components ingested by vegetarians and omnivores after bowel cleansing. IMPORTANCE Dietary pattern and food choice are associated with expansion of gut pathobionts and risk for metabolic and colonic disease. However, the effects of dietary interventions on intestinal microbiota remain unclear. After bowel cleansing, potential pathobionts and probiotic bacteria were increased in omnivores and vegetarians, respectively. The pathobionts Bilophila and Lachnoclostridium were oppositely modulated by dietary animal and plant protein. From a clinical perspective, fecal pathobionts that may indicate risk for metabolic and colonic disease can potentially be modulated with dietary interventions.
Collapse
|
194
|
You K, Yang L, Shen J, Liu B, Guo Y, Chen T, Li G, Lu H. Relationship between Gut Microbiota and Bone Health. Mini Rev Med Chem 2022; 22:2406-2418. [PMID: 35249483 DOI: 10.2174/1389557522666220304230920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
Gut microbiota (GM) are microorganisms that live in the host gastrointestinal tract, and their abundance varies throughout the host's life. With the development of sequencing technology, the role of GM in various diseases has been increasingly elucidated. Unlike earlier studies on orthopedic diseases, this review elucidates the correlation between GM health and bone health, and discusses the potential mechanism of GM effects on host metabolism, inflammation, and ability to induce or aggravate some common orthopedic diseases such as osteoarthritis, osteoporosis, rheumatoid arthritis, etc. Finally, the prospective methods of GM manipulation and evaluation of potential GM-targeting strategies in the diagnosis and treatment of orthopedic diseases are reviewed.
Collapse
Affiliation(s)
- Ke You
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Lianjun Yang
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Jun Shen
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Bin Liu
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Yuanqing Guo
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Tao Chen
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Guowei Li
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Hai Lu
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| |
Collapse
|
195
|
Xu L, Li X, Li X, Wang X, Ma Q, She D, Lu X, Zhang J, Yang Q, Lei S, Wang L, Wang Z. RNA profiling of blood platelets noninvasively differentiates colorectal cancer from healthy donors and noncancerous intestinal diseases: a retrospective cohort study. Genome Med 2022; 14:26. [PMID: 35236405 PMCID: PMC8889759 DOI: 10.1186/s13073-022-01033-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background The RNA profiles of tumor-educated platelets (TEPs) possess pathological features that could be used for early cancer detection. However, the utility of TEP RNA profiling in detecting early colorectal cancer (CRC) versus noncancerous colorectal diseases has not yet been investigated. This study assesses the diagnostic capacity of TEP RNA profiles in a cohort of patients with CRC and noncancerous diseases. Methods Transcriptome sequencing for platelets isolated from 132 patients with CRC at early and late stages and 190 controls consisting of healthy donors and patients with ulcerative disease, Crohn’s disease, polyps, and adenomas was performed and analyzed using binary particle swarm optimization coupled with support vector machine to identify genes that contributed to the classification of CRC patients versus controls. The area under the receiver operating curves (AUROCs) and the accuracy of TEP RNA profiles in CRC diagnosis were assessed. Results TEP RNA profiling achieved high performance in distinguishing and staging CRC patients from the controls. Using the swarm intelligence algorithm, the 921 most contributive genes that classified CRC patients from the controls were identified. AUROCs of 0.928 for the training set via leave-one-out cross-validation and 0.92 for the validation set were achieved, both of which were significantly higher than the clinically utilized serum biomarkers: carcinoembryonic antigen and cancer antigen 19-9. Notably, an AUROC of 0.915 in an external validation set was achieved. For predicting different CRC stages, an AUROC of 0.984 was achieved in the training set and 1.000 in the internal validation set. Conclusions RNA profiles of TEPs are of potential diagnostic value for identifying early CRC from noncancerous diseases. Prospective studies are needed to validate its clinical relevance. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01033-x.
Collapse
Affiliation(s)
- Luming Xu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinbo Li
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangchun Li
- Tianjin Cancer Institute, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University, Tianjin, 300060, China
| | - Xingyue Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qian Ma
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dan She
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohuan Lu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiao Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qianqian Yang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shijun Lei
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
196
|
Cronin O, Lanham-New SA, Corfe BM, Gregson CL, Darling AL, Ahmadi KR, Gibson PS, Tobias JH, Ward KA, Traka MH, Rossi M, Williams C, Harvey NC, Cooper C, Whelan K, Uitterlinden AG, O'Toole PW, Ohlsson C, Compston JE, Ralston SH. Role of the Microbiome in Regulating Bone Metabolism and Susceptibility to Osteoporosis. Calcif Tissue Int 2022; 110:273-284. [PMID: 34870723 PMCID: PMC8860778 DOI: 10.1007/s00223-021-00924-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022]
Abstract
The human microbiota functions at the interface between diet, medication-use, lifestyle, host immune development and health. It is therefore closely aligned with many of the recognised modifiable factors that influence bone mass accrual in the young, and bone maintenance and skeletal decline in older populations. While understanding of the relationship between micro-organisms and bone health is still in its infancy, two decades of broader microbiome research and discovery supports a role of the human gut microbiome in the regulation of bone metabolism and pathogenesis of osteoporosis as well as its prevention and treatment. Pre-clinical research has demonstrated biological interactions between the microbiome and bone metabolism. Furthermore, observational studies and randomized clinical trials have indicated that therapeutic manipulation of the microbiota by oral administration of probiotics may influence bone turnover and prevent bone loss in humans. In this paper, we summarize the content, discussion and conclusions of a workshop held by the Osteoporosis and Bone Research Academy of the Royal Osteoporosis Society in October, 2020. We provide a detailed review of the literature examining the relationship between the microbiota and bone health in animal models and in humans, as well as formulating the agenda for key research priorities required to advance this field. We also underscore the potential pitfalls in this research field that should be avoided and provide methodological recommendations to facilitate bridging the gap from promising concept to a potential cause and intervention target for osteoporosis.
Collapse
Affiliation(s)
- Owen Cronin
- Rheumatic Diseases Unit, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Susan A Lanham-New
- Nutrition, Food and Exercise Sciences Department, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Bernard M Corfe
- Population Health Sciences Institute, Human Nutrition Research Centre, Faculty of Medical Sciences, Newcastle University, Newcastle, NE2 4HH, UK
| | - Celia L Gregson
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Andrea L Darling
- Nutrition, Food and Exercise Sciences Department, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Kourosh R Ahmadi
- Nutrition, Food and Exercise Sciences Department, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Philippa S Gibson
- Department of Nutritional Sciences, King's College London, London, UK
| | - Jon H Tobias
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kate A Ward
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Maria H Traka
- Food Databanks National Capability, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Megan Rossi
- Department of Nutritional Sciences, King's College London, London, UK
| | - Claire Williams
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Kevin Whelan
- Department of Nutritional Sciences, King's College London, London, UK
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Paul W O'Toole
- School of Microbiology and APC Microbiome Ireland, University College Cork, Room 447, Food Science Building, Cork, T12 K8AF, Ireland
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Stuart H Ralston
- Rheumatic Diseases Unit, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK.
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
197
|
Rodenhouse A, Talukder MAH, Lee JI, Govindappa PK, O'Brien M, Manto KM, Lloyd K, Wandling GD, Wright JR, Chen See JR, Anderson SL, Lamendella R, Hegarty JP, Elfar JC. Altered gut microbiota composition with antibiotic treatment impairs functional recovery after traumatic peripheral nerve crush injury in mice: effects of probiotics with butyrate producing bacteria. BMC Res Notes 2022; 15:80. [PMID: 35197129 PMCID: PMC8867741 DOI: 10.1186/s13104-022-05967-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Antibiotics (ABX) are widely used for life-threatening infections and also for routine surgical operations. Compelling evidence suggests that ABX-induced alterations of gut microbiota composition, termed dysbiosis, are linked with diverse disease states including neurological and neurodegenerative conditions. To combat the consequences of dysbiosis, probiotics (PBX) are widely used. ABX-induced dysbiosis is reported to impair neurological function after spinal cord injury. Traumatic peripheral nerve injury (TPNI) results in profound neurologic impairment and permanent disability. It is unknown whether ABX treatment-induced dysbiosis has any impact on TPNI-induced functional recovery, and if so, what role medical-grade PBX could have on TPNI recovery. RESULTS In this study, ABX-induced dysbiosis and PBX-induced microbiota enrichment models were used to explore the potential role of gut microbiome in TPNI. Stool analysis with 16S ribosomal RNA (rRNA) gene sequencing confirmed ABX-induced dysbiosis and revealed that ABX-induced changes could be partially restored by PBX administration with an abundance of butyrate producing bacteria. Pre-injury ABX significantly impaired, but pre-injury PBX significantly improved post-TPNI functional recovery. Importantly, post-injury PBX protected against pre-injury ABX-induced functional impairment. These findings demonstrate that reestablishment of gut microbiota composition with butyrate producing PBX during ABX-induced dysbiosis could be a useful adjuvant therapy for TPNI.
Collapse
Affiliation(s)
- Andrew Rodenhouse
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA
| | - M A Hassan Talukder
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA.
| | - Jung Il Lee
- Department of Orthopedic Surgery, Korea University Guro Hospital, Seoul, South Korea
| | - Prem Kumar Govindappa
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA
| | - Mary O'Brien
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA
| | - Kristen M Manto
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA
| | - Kelsey Lloyd
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA
| | - Grant D Wandling
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA
| | | | | | | | - Regina Lamendella
- Wright Labs LLC, Huntingdon, PA, USA
- Juniata College, Huntingdon, PA, USA
| | - John P Hegarty
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA
| | - John C Elfar
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA.
| |
Collapse
|
198
|
de Sire A, de Sire R, Curci C, Castiglione F, Wahli W. Role of Dietary Supplements and Probiotics in Modulating Microbiota and Bone Health: The Gut-Bone Axis. Cells 2022; 11:cells11040743. [PMID: 35203401 PMCID: PMC8870226 DOI: 10.3390/cells11040743] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Osteoporosis is characterized by an alteration of bone microstructure with a decreased bone mineral density, leading to the incidence of fragility fractures. Around 200 million people are affected by osteoporosis, representing a major health burden worldwide. Several factors are involved in the pathogenesis of osteoporosis. Today, altered intestinal homeostasis is being investigated as a potential additional risk factor for reduced bone health and, therefore, as a novel potential therapeutic target. The intestinal microflora influences osteoclasts’ activity by regulating the serum levels of IGF-1, while also acting on the intestinal absorption of calcium. It is therefore not surprising that gut dysbiosis impacts bone health. Microbiota alterations affect the OPG/RANKL pathway in osteoclasts, and are correlated with reduced bone strength and quality. In this context, it has been hypothesized that dietary supplements, prebiotics, and probiotics contribute to the intestinal microecological balance that is important for bone health. The aim of the present comprehensive review is to describe the state of the art on the role of dietary supplements and probiotics as therapeutic agents for bone health regulation and osteoporosis, through gut microbiota modulation.
Collapse
Affiliation(s)
- Alessandro de Sire
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
- Correspondence: (A.d.S.); (W.W.)
| | - Roberto de Sire
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80126 Naples, Italy; (R.d.S.); (F.C.)
| | - Claudio Curci
- Physical Medicine and Rehabilitation Unit, Department of Neurosciences, ASST Carlo Poma, 46100 Mantova, Italy;
| | - Fabiana Castiglione
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80126 Naples, Italy; (R.d.S.); (F.C.)
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, Singapore 308232, Singapore
- Toxalim Research Center in Food Toxicology (UMR 1331), French National Research Institute for Agriculture, Food, and the Environment (INRAE), F-31300 Toulouse, France
- Center for Integrative Genomics, University of Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
- Correspondence: (A.d.S.); (W.W.)
| |
Collapse
|
199
|
Zhang Z, Li M, Cui B, Chen X. Antibiotic Disruption of the Gut Microbiota Enhances the Murine Hepatic Dysfunction Associated With a High-Salt Diet. Front Pharmacol 2022; 13:829686. [PMID: 35222044 PMCID: PMC8881101 DOI: 10.3389/fphar.2022.829686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Epidemiological and experimental evidence indicates that antibiotic exposure is related to metabolic malfunctions, such as obesity and non-alcoholic fatty liver disease (NAFLD). Liver impairment and hypertrophy of adipose cells are related to high salt consumption. This research aims to investigated the physiological mechanism of a high salt diet (HSD) enhanced antibiotic-induced hepatic injury and mitochondrial abnormalities in mice. The mice were fed a HSD with or without penicillin G (PEN) for 8 weeks and the gut metabolome, untargeted faecal metabolomics, and intestinal function were evaluated. The results revealed that HSD, PEN and their combination (HSPEN) significantly changed the gut microbial community. HSPEN mice exhibited more opportunistic pathogens (such as Klebsiella and Morganella) and reduced probiotic species (including Bifidobacterium and Lactobacillus). The main variations in the faecal metabolites of the HSPEN group were identified, including those connected with entero-hepatic circulation (including bile acids), tryptophan metabolism (i.e., indole derivatives) and lipid metabolism (e.g., erucic acid). Furthermore, increased intestinal permeability and immunologic response caused greater hepatic damage in the HSPEN group compared to the other groups. These findings may have important implications for public health.
Collapse
Affiliation(s)
- Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- *Correspondence: Zheng Zhang, ; Bo Cui, ; Xiao Chen,
| | - Mengjie Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- *Correspondence: Zheng Zhang, ; Bo Cui, ; Xiao Chen,
| | - Xiao Chen
- College of Health Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Zheng Zhang, ; Bo Cui, ; Xiao Chen,
| |
Collapse
|
200
|
Mo S, Ru H, Huang M, Cheng L, Mo X, Yan L. Oral-Intestinal Microbiota in Colorectal Cancer: Inflammation and Immunosuppression. J Inflamm Res 2022; 15:747-759. [PMID: 35153499 PMCID: PMC8824753 DOI: 10.2147/jir.s344321] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/07/2022] [Indexed: 12/11/2022] Open
Abstract
It is widely recognized that microbial disorders are involved in the pathogenesis of many malignant tumors. The oral and intestinal tract are two of the overriding microbial habitats in the human body. Although they are anatomically and physiologically continuous, belonging to the openings at both ends of the digestive tract, the oral and intestinal microbiome do not cross talk with each other due to a variety of reasons, including intestinal microbial colonization resistance and chemical barriers in the upper digestive tract. However, this balance can be upset in certain circumstances, such as disruption of colonization resistance of gut microbes, intestinal inflammation, and disruption of the digestive tract chemical barrier. Evidence is now accruing to suggest that the oral microbiome can colonize the gut, leading to dysregulation of the gut microbes. Furthermore, the oral-gut microbes create an intestinal inflammatory and immunosuppressive microenvironment conducive to tumorigenesis and progression of colorectal cancer (CRC). Here, we review the oral to intestinal microbial transmission and the inflammatory and immunosuppressive microenvironment, induced by oral-gut axis microbes in the gut. A superior comprehension of the contribution of the oral-intestinal microbes to CRC provides new insights into the prevention and treatment of CRC in the future.
Collapse
Affiliation(s)
- Sisi Mo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Guangxi Key Laboratory of Colorectal Cancer Prevention and Treatment, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Haiming Ru
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Guangxi Key Laboratory of Colorectal Cancer Prevention and Treatment, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Maosen Huang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Guangxi Key Laboratory of Colorectal Cancer Prevention and Treatment, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Linyao Cheng
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Guangxi Key Laboratory of Colorectal Cancer Prevention and Treatment, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xianwei Mo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Guangxi Key Laboratory of Colorectal Cancer Prevention and Treatment, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Linhai Yan
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Guangxi Key Laboratory of Colorectal Cancer Prevention and Treatment, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| |
Collapse
|