151
|
Warbeck C, Dowd AJ, Kronlund L, Parmar C, Daun JT, Wytsma-Fisher K, Millet GY, Schick A, Reimer RA, Fung T, Culos-Reed SN. Feasibility and effects on the gut microbiota of a 12-week high-intensity interval training plus lifestyle education intervention on inactive adults with celiac disease. Appl Physiol Nutr Metab 2021; 46:325-336. [DOI: 10.1139/apnm-2020-0459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study assessed the feasibility and benefits of high-intensity interval training (HIIT) plus lifestyle education among inactive adults with celiac disease. Forty-one participants were randomized to receive the intervention (HIIT plus lifestyle education; HIIT+) for 12 weeks or waitlist control (WLC). Testing was completed at baseline, immediately post-intervention, and 3 months post-intervention. Generalized estimating equations were used to assess changes in the outcome variables over time between the groups. Mean percent of age-predicted maximum heart rate was 97.9% and average rating of perceived exertion was 6.33 (out of 10) during HIIT intervals. Following the intervention, the HIIT+ showed enrichment in relative abundance of Parabacteroides and Defluviitaleaceae_UCG_011 while WLC showed enrichment in relative abundance of Roseburia intestinalis, Klebsiella, and Adlercreutzia. A unique set of taxa were differentially abundant between the groups at 3 months post-intervention. HIIT+ participants experienced a reduction in resting heart rate (−6.6 bpm) immediately post-intervention compared with WLC. Further research is needed to establish an optimal HIIT protocol that may improve maximal oxygen uptake and metabolic syndrome biomarkers. Findings from this pilot study provide preliminary evidence that an HIIT intervention is feasible for inactive adults with celiac disease and leads to favourable changes in resting heart rate alongside potentially beneficial shifts in gut microbiota. Trial registration number: ClinicalTrials.gov number NCT03520244. Novelty: HIIT leads to potentially beneficial changes in the gut microbiota of adults with celiac disease. An HIIT exercise intervention is feasible and well tolerated for patients with celiac disease.
Collapse
Affiliation(s)
- Cassandra Warbeck
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - A. Justine Dowd
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Liam Kronlund
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Candice Parmar
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Julia T. Daun
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Guillaume Y. Millet
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, F-42023, Saint-Etienne, France
| | - Alana Schick
- International Microbiome Centre, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Raylene A. Reimer
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB T3B 6A8, Canada
| | - Tak Fung
- Research Computing Services, Information Technologies, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - S. Nicole Culos-Reed
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
152
|
Narasimhan H, Ren CC, Deshpande S, Sylvia KE. Young at Gut-Turning Back the Clock with the Gut Microbiome. Microorganisms 2021; 9:microorganisms9030555. [PMID: 33800340 PMCID: PMC8001982 DOI: 10.3390/microorganisms9030555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Over the past century, we have witnessed an increase in life-expectancy due to public health measures; however, we have also seen an increase in susceptibility to chronic disease and frailty. Microbiome dysfunction may be linked to many of the conditions that increase in prevalence with age, including type 2 diabetes, cardiovascular disease, Alzheimer's disease, and cancer, suggesting the need for further research on these connections. Moreover, because both non-modifiable (e.g., age, sex, genetics) and environmental (e.g., diet, infection) factors can influence the microbiome, there are vast opportunities for the use of interventions related to the microbiome to promote lifespan and healthspan in aging populations. To understand the mechanisms mediating many of the interventions discussed in this review, we also provide an overview of the gut microbiome's relationships with the immune system, aging, and the brain. Importantly, we explore how inflammageing (low-grade chronic inflammation that often develops with age), systemic inflammation, and senescent cells may arise from and relate to the gut microbiome. Furthermore, we explore in detail the complex gut-brain axis and the evidence surrounding how gut dysbiosis may be implicated in several age-associated neurodegenerative diseases. We also examine current research on potential interventions for healthspan and lifespan as they relate to the changes taking place in the microbiome during aging; and we begin to explore how the reduction in senescent cells and senescence-associated secretory phenotype (SASP) interplay with the microbiome during the aging process and highlight avenues for further research in this area.
Collapse
Affiliation(s)
| | - Clarissa C. Ren
- Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | | | - Kristyn E. Sylvia
- The Society for Cardiovascular Angiography and Interventions, Washington, DC 20036, USA
- Correspondence: ; Tel.: +1-774-226-6214
| |
Collapse
|
153
|
Chopra S, Myers Z, Sekhon H, Dufour A. The Nerves to Conduct a Multiple Sclerosis Crime Investigation. Int J Mol Sci 2021; 22:2498. [PMID: 33801441 PMCID: PMC7958632 DOI: 10.3390/ijms22052498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative autoimmune disease characterized by the aberrant infiltration of immune cells into the central nervous system (CNS) and by the loss of myelin. Sclerotic lesions and various inhibitory factors hamper the remyelination processes within the CNS. MS patients typically experience gradual cognitive and physical disabilities as the disease progresses. The etiology of MS is still unclear and emerging evidence suggests that microbiome composition could play a much more significant role in disease pathogenesis than was initially thought. Initially believed to be isolated to the gut microenvironment, we now know that the microbiome plays a much broader role in various tissues and is essential in the development of the immune system. Here, we present some of the unexpected roles that the microbiome plays in MS and discuss approaches for the development of next-generation treatment strategies.
Collapse
Affiliation(s)
- Sameeksha Chopra
- McCaig Institute for Bone and Joint Health, Calgary, AB T2N 4N1, Canada; (S.C.); (Z.M.); (H.S.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Zoë Myers
- McCaig Institute for Bone and Joint Health, Calgary, AB T2N 4N1, Canada; (S.C.); (Z.M.); (H.S.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Henna Sekhon
- McCaig Institute for Bone and Joint Health, Calgary, AB T2N 4N1, Canada; (S.C.); (Z.M.); (H.S.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Antoine Dufour
- McCaig Institute for Bone and Joint Health, Calgary, AB T2N 4N1, Canada; (S.C.); (Z.M.); (H.S.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
154
|
Barton W, Cronin O, Garcia‐Perez I, Whiston R, Holmes E, Woods T, Molloy CB, Molloy MG, Shanahan F, Cotter PD, O’Sullivan O. The effects of sustained fitness improvement on the gut microbiome: A longitudinal, repeated measures case-study approach. TRANSLATIONAL SPORTS MEDICINE 2021; 4:174-192. [PMID: 34355132 PMCID: PMC8317196 DOI: 10.1002/tsm2.215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/23/2020] [Accepted: 11/11/2020] [Indexed: 01/01/2023]
Abstract
The athlete gut microbiome differs from that of non-athletes in its composition and metabolic function. Short-term fitness improvement in sedentary adults does not replicate the microbiome characteristics of athletes. The objective of this study was to investigate whether sustained fitness improvement leads to pronounced alterations in the gut microbiome. This was achieved using a repeated-measures, case-study approach that examined the gut microbiome of two initially unfit volunteers undertaking progressive exercise training over a 6-month period. Samples were collected every two weeks, and microbiome, metabolome, diet, body composition, and cardiorespiratory fitness data were recorded. Training culminated in both participants completing their respective goals (a marathon or Olympic-distance triathlon) with improved body composition and fitness parameters. Increases in gut microbiota α-diversity occurred with sustained training and fluctuations occurred in response to training events (eg, injury, illness, and training peaks). Participants' BMI reduced during the study and was significantly associated with increased urinary measurements of N-methyl nicotinate and hippurate, and decreased phenylacetylglutamine. These results suggest that sustained fitness improvements support alterations to gut microbiota and physiologically-relevant metabolites. This study provides longitudinal analysis of the gut microbiome response to real-world events during progressive fitness training, including intercurrent illness and injury.
Collapse
Affiliation(s)
- Wiley Barton
- APC Microbiome IrelandNational University of IrelandCorkIreland
- Animal and Grassland Research and Innovation Centre, Teagasc, MooreparkFermoyIreland
- Department of Food BiosciencesTeagasc Food Research Centre, MooreparkFermoyIreland
| | - Owen Cronin
- APC Microbiome IrelandNational University of IrelandCorkIreland
- Department of MedicineNational University of IrelandCorkIreland
| | - Isabel Garcia‐Perez
- Division of Integrated Systems Medicine and Digestive DiseasesDepartment of Surgery and CancerFaculty of MedicineImperial College LondonLondonUK
| | - Ronan Whiston
- APC Microbiome IrelandNational University of IrelandCorkIreland
- Department of Food BiosciencesTeagasc Food Research Centre, MooreparkFermoyIreland
| | - Elaine Holmes
- Division of Integrated Systems Medicine and Digestive DiseasesDepartment of Surgery and CancerFaculty of MedicineImperial College LondonLondonUK
| | - Trevor Woods
- Human Performance LaboratoryDepartment of Sport and Physical ActivityNational University of IrelandCorkIreland
| | | | - Michael G. Molloy
- APC Microbiome IrelandNational University of IrelandCorkIreland
- Department of MedicineNational University of IrelandCorkIreland
| | - Fergus Shanahan
- APC Microbiome IrelandNational University of IrelandCorkIreland
- Department of MedicineNational University of IrelandCorkIreland
| | - Paul D. Cotter
- APC Microbiome IrelandNational University of IrelandCorkIreland
- Department of Food BiosciencesTeagasc Food Research Centre, MooreparkFermoyIreland
| | - Orla O’Sullivan
- APC Microbiome IrelandNational University of IrelandCorkIreland
- Department of Food BiosciencesTeagasc Food Research Centre, MooreparkFermoyIreland
| |
Collapse
|
155
|
Griffin SA, Panagodage Perera NK, Murray A, Hartley C, Fawkner SG, P T Kemp S, Stokes KA, Kelly P. The relationships between rugby union, and health and well-being: a scoping review. Br J Sports Med 2021; 55:319-326. [PMID: 33115706 DOI: 10.1136/bjsports-2020-102085] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To scope the relationships between rugby union, and health and well-being. DESIGN Scoping review. DATA SOURCES Published and unpublished reports of any age, identified by searching electronic databases, platforms and reference lists. METHODS A three-step search strategy identified relevant published primary, secondary studies and grey literature, which were screened using a priori inclusion criteria. Data were extracted using a standardised tool, to form (1) a numerical analysis and (2) a thematic summary. RESULTS AND DISCUSSION 6658 records were identified, and 198 studies met the inclusion criteria. All forms of rugby union can provide health-enhancing physical activity (PA). 'Non-contact' and wheelchair rugby in particular provide a wide range of physical and mental health and well-being benefits. The evidence is either mixed or unclear in relation to 'contact' rugby union and its effects on a range of physical health domains. Injury and concussion incidence rates are high for contact rugby union relative to other sports. CONCLUSIONS A wide range of stakeholders as well as existing and potential participants can use this information to make a more informed decision about participating in and promoting rugby union as a health-enhancing activity. Industry and policy-makers can use this review to inform policies and strategies that look to increase participation rates and use rugby union as a vehicle to contribute positively to population health. Further research understanding rugby union's contribution to PA as well as to muscle-strengthening and balance is indicated, as well as research examining more health and well-being outcomes across more diverse cohorts.
Collapse
Affiliation(s)
- Steffan A Griffin
- Centre for Sport and Exercise, The University of Edinburgh, Edinburgh, UK
- Medical Services, Rugby Football Union, London, UK
| | - Nirmala Kanthi Panagodage Perera
- Centre for Sport, Exercise and Osteoarthritis Research Versus Arthritis, Botnar Research Centre, University of Oxford, Oxford, Oxfordshire, UK
- Sports Medicine, Australian Institute of Sport, Bruce, Australian Capital Territory, Australia
| | - Andrew Murray
- Centre for Sport and Exercise, The University of Edinburgh, Edinburgh, UK
- Scottish Rugby Union, Edinburgh, Scotland, UK
| | | | - Samantha G Fawkner
- The Institute for Sport, Physical Education and Health Sciences, The University of Edinburgh, Edinburgh, UK
| | - Simon P T Kemp
- Medical Services, Rugby Football Union, London, UK
- Faculty of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Keith A Stokes
- Medical Services, Rugby Football Union, London, UK
- Department for Health, University of Bath, Bath, Somerset, UK
| | - Paul Kelly
- Physical Activity for Health Research Centre, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
156
|
Aya V, Flórez A, Perez L, Ramírez JD. Association between physical activity and changes in intestinal microbiota composition: A systematic review. PLoS One 2021; 16:e0247039. [PMID: 33630874 PMCID: PMC7906424 DOI: 10.1371/journal.pone.0247039] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/31/2021] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The intestinal microbiota comprises bacteria, fungi, archaea, protists, helminths and viruses that symbiotically inhabit the digestive system. To date, research has provided limited data on the possible association between an active lifestyle and a healthy composition of human microbiota. This review was aimed to summarize the results of human studies comparing the microbiome of healthy individuals with different physical activity amounts. METHODS We searched Medline/Ovid, NIH/PubMed, and Academic Search Complete between August-October 2020. Inclusion criteria comprised: (a) cross-sectional studies focused on comparing gut microbiome among subjects with different physical activity levels; (b) studies describing human gut microbiome responses to any type of exercise stimulus; (c) studies containing healthy adult women and men. We excluded studies containing diet modifications, probiotic or prebiotic consumption, as well as studies focused on diabetes, hypertension, cancer, hormonal dysfunction. Methodological quality and risk of bias for each study were assessed using the Risk Of Bias In Non-randomized Studies-of Interventions tool. The results from cross-sectional and longitudinal studies are shown independently. RESULTS A total of 17 articles were eligible for inclusion: ten cross-sectional and seven longitudinal studies. Main outcomes vary significantly according to physical activity amounts in longitudinal studies. We identified discrete changes in diversity indexes and relative abundance of certain bacteria in active people. CONCLUSION As literature in this field is rapidly growing, it is important that studies incorporate diverse methods to evaluate other aspects related to active lifestyles such as sleep and dietary patterns. Exploration of other groups such as viruses, archaea and parasites may lead to a better understanding of gut microbiota adaptation to physical activity and sports and its potentially beneficial effects on host metabolism and endurance.
Collapse
Affiliation(s)
- Viviana Aya
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Alberto Flórez
- Grupo In-Novum Educatio, Facultad de Educación, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luis Perez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
157
|
McNamara MP, Singleton JM, Cadney MD, Ruegger PM, Borneman J, Garland T. Early-life effects of juvenile Western diet and exercise on adult gut microbiome composition in mice. J Exp Biol 2021; 224:jeb239699. [PMID: 33431595 PMCID: PMC7929929 DOI: 10.1242/jeb.239699] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Abstract
Alterations to the gut microbiome caused by changes in diet, consumption of antibiotics, etc., can affect host function. Moreover, perturbation of the microbiome during critical developmental periods potentially has long-lasting impacts on hosts. Using four selectively bred high runner and four non-selected control lines of mice, we examined the effects of early-life diet and exercise manipulations on the adult microbiome by sequencing the hypervariable internal transcribed spacer region of the bacterial gut community. Mice from high runner lines run ∼3-fold more on wheels than do controls, and have several other phenotypic differences (e.g. higher food consumption and body temperature) that could alter the microbiome, either acutely or in terms of coevolution. Males from generation 76 were given wheels and/or a Western diet from weaning until sexual maturity at 6 weeks of age, then housed individually without wheels on standard diet until 14 weeks of age, when fecal samples were taken. Juvenile Western diet reduced bacterial richness and diversity after the 8-week washout period (equivalent to ∼6 human years). We also found interactive effects of genetic line type, juvenile diet and/or juvenile exercise on microbiome composition and diversity. Microbial community structure clustered significantly in relation to both line type and diet. Western diet also reduced the relative abundance of Muribaculum intestinale These results constitute one of the first reports of juvenile diet having long-lasting effects on the adult microbiome after a substantial washout period. Moreover, we found interactive effects of diet with early-life exercise exposure, and a dependence of these effects on genetic background.
Collapse
Affiliation(s)
- Monica P McNamara
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 91521, USA
| | - Jennifer M Singleton
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 91521, USA
| | - Marcell D Cadney
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 91521, USA
| | - Paul M Ruegger
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 91521, USA
| | - James Borneman
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 91521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 91521, USA
| |
Collapse
|
158
|
The Effect of Kefir Supplementation on Improving Human Endurance Exercise Performance and Antifatigue. Metabolites 2021; 11:metabo11030136. [PMID: 33669119 PMCID: PMC7996501 DOI: 10.3390/metabo11030136] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/21/2021] [Indexed: 02/06/2023] Open
Abstract
Kefir is an acidic, carbonated, and fermented dairy product produced by fermenting milk with kefir grains. The Lactobacillus species constitutes an important part of kefir grains. In a previous animal study, kefir effectively improved exercise performance and had anti-fatigue effects. The purpose of this research was to explore the benefits of applying kefir to improve exercise performance, reduce fatigue, and improve physiological adaptability in humans. The test used a double-blind crossover design and supplementation for 28 days. Sixteen 20–30 year-old subjects were divided into two groups in a balanced order according to each individual’s initial maximal oxygen uptake and were assigned to receive a placebo (equal flavor, equal calories, 20 g/day) or SYNKEFIR™ (20 g/day) every morning. After the intervention, there were 28 days of wash-out, during which time the subjects did not receive further interventions. After supplementation with SYNKEFIR™, the exercise time to exhaustion was significantly greater than that before ingestion (p = 0.0001) and higher than that in the Placebo group by 1.29-fold (p = 0.0004). In addition, compared with the Placebo group, the SYNKEFIR™ administration group had significantly lower lactate levels in the exercise and recovery (p < 0.05). However, no significant difference was observed in the changes in the gut microbiota. Although no significant changes in body composition were found, SYNKEFIR™ did not cause adverse reactions or harm to the participants’ bodies. In summary, 28 days of supplementation with SYNKEFIR™ significantly improved exercise performance, reduced the production of lactic acid after exercise, and accelerated recovery while also not causing any adverse reactions.
Collapse
|
159
|
Caprara G. Mediterranean-Type Dietary Pattern and Physical Activity: The Winning Combination to Counteract the Rising Burden of Non-Communicable Diseases (NCDs). Nutrients 2021; 13:429. [PMID: 33525638 PMCID: PMC7910909 DOI: 10.3390/nu13020429] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Non-communicable diseases (NCDs) (mainly cardiovascular diseases, cancers, chronic respiratory diseases and type 2 diabetes) are the main causes of death worldwide. Their burden is expected to rise in the future, especially in less developed economies and among the poor spread across middle- and high-income countries. Indeed, the treatment and prevention of these pathologies constitute a crucial challenge for public health. The major non-communicable diseases share four modifiable behavioral risk factors: unhealthy diet, physical inactivity, tobacco usage and excess of alcohol consumption. Therefore, the adoption of healthy lifestyles, which include not excessive alcohol intake, no smoking, a healthy diet and regular physical activity, represents a crucial and economical strategy to counteract the global NCDs burden. This review summarizes the latest evidence demonstrating that Mediterranean-type dietary pattern and physical activity are, alone and in combination, key interventions to both prevent and control the rise of NCDs.
Collapse
Affiliation(s)
- Greta Caprara
- Department of Experimental Oncology, IEO, European Institute of Oncology, IRCCS, 20139 Milano, Italy
| |
Collapse
|
160
|
Impact of Different Exercise Modalities on the Human Gut Microbiome. Sports (Basel) 2021; 9:sports9020014. [PMID: 33494210 PMCID: PMC7909775 DOI: 10.3390/sports9020014] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/18/2022] Open
Abstract
In this study we examined changes to the human gut microbiome resulting from an eight-week intervention of either cardiorespiratory exercise (CRE) or resistance training exercise (RTE). Twenty-eight subjects (21 F; aged 18-26) were recruited for our CRE study and 28 subjects (17 F; aged 18-33) were recruited for our RTE study. Fecal samples for gut microbiome profiling were collected twice weekly during the pre-intervention phase (three weeks), intervention phase (eight weeks), and post-intervention phase (three weeks). Pre/post VO2max, three repetition maximum (3RM), and body composition measurements were conducted. Heart rate ranges for CRE were determined by subjects' initial VO2max test. RTE weight ranges were established by subjects' initial 3RM testing for squat, bench press, and bent-over row. Gut microbiota were profiled using 16S rRNA gene sequencing. Microbiome sequence data were analyzed with QIIME 2. CRE resulted in initial changes to the gut microbiome which were not sustained through or after the intervention period, while RTE resulted in no detectable changes to the gut microbiota. For both CRE and RTE, we observe some evidence that the baseline microbiome composition may be predictive of exercise gains. This work suggests that the human gut microbiome can change in response to a new exercise program, but the type of exercise likely impacts whether a change occurs. The changes observed in our CRE intervention resemble a disturbance to the microbiome, where an initial shift is observed followed by a return to the baseline state. More work is needed to understand how sustained changes to the microbiome occur, resulting in differences that have been reported in cross sectional studies of athletes and non-athletes.
Collapse
|
161
|
Erlandson KM, Liu J, Johnson R, Dillon S, Jankowski CM, Kroehl M, Robertson CE, Frank DN, Tuncil Y, Higgins J, Hamaker B, Wilson CC. An exercise intervention alters stool microbiota and metabolites among older, sedentary adults. Ther Adv Infect Dis 2021; 8:20499361211027067. [PMID: 34262758 PMCID: PMC8246564 DOI: 10.1177/20499361211027067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/03/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Physiologic aging has been associated with gut dysbiosis. Although short exercise interventions have been linked to beneficial changes in gut microbiota in younger adults, limited data are available from older populations. We hypothesized that exercise would produce beneficial shifts in microbiota and short-chain fatty acid (SCFA) levels in older persons. METHODS Stool samples were collected before and at completion of a supervised 24-week cardiovascular and resistance exercise intervention among 50-75-year-old participants. SCFA levels were analyzed by gas chromatography and microbiome by 16S rRNA gene sequencing. Negative binomial regression models compared pre- and post-differences using false discovery rates for multiple comparison. RESULTS A total of 22 participants provided pre-intervention samples; 15 provided samples at study completion. At baseline, the majority of participants were men (95%), mean age 58.0 (8.8) years, mean body mass index 27.4 (6.4) kg/m2. After 24 weeks of exercise, at the genus level, exercise was associated with significant increases in Bifidobacterium (and other unidentified genera within Bifidobacteriaceae), Oscillospira, Anaerostipes, and decreased Prevotella and Oribacterium (p < 0.001). Stool butyrate increased with exercise [5.44 (95% confidence interval 1.54, 9.24) mmol/g, p = 0.02], though no significant differences in acetate or propionate (p ⩾ 0.09) were seen. CONCLUSION Our pilot study suggested that an exercise intervention is associated with changes in the microbiome of older adults and a key bacterial metabolite, butyrate. Although some of these changes could potentially reverse age-related dysbiosis, future studies are required to determine the contribution of changes to the microbiome in the beneficial effect of exercise on overall health of older adults. Clinical Trials NCT02404792.
Collapse
Affiliation(s)
- Kristine M. Erlandson
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Mail Stop B168, Aurora, CO 80045, USA
| | - Jay Liu
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rachel Johnson
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Stephanie Dillon
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Miranda Kroehl
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Charles E. Robertson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel N. Frank
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yunus Tuncil
- Food Engineering Department, Ordu University, Ordu, Turkey
| | - Janine Higgins
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bruce Hamaker
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Cara C. Wilson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
162
|
Ning L, Lifang P, Huixin H. Prediction Correction Topic Evolution Research for Metabolic Pathways of the Gut Microbiota. Front Mol Biosci 2020; 7:600720. [PMID: 33425992 PMCID: PMC7793741 DOI: 10.3389/fmolb.2020.600720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/18/2020] [Indexed: 12/23/2022] Open
Abstract
The gut microbiota is composed of a large number of different bacteria, that play a key role in the construction of a metabolic signaling network. Deepening the link between metabolic pathways of the gut microbiota and human health, it seems increasingly essential to evolutionarily define the principal technologies applied in the field and their future trends. We use a topic analysis tool, Latent Dirichlet Allocation, to extract themes as a probabilistic distribution of latent topics from literature dataset. We also use the Prophet neural network prediction tool to predict future trend of this area of study. A total of 1,271 abstracts (from 2006 to 2020) were retrieved from MEDLINE with the query on “gut microbiota” and “metabolic pathway.” Our study found 10 topics covering current research types: dietary health, inflammation and liver cancer, fatty and diabetes, microbiota community, hepatic metabolism, metabolomics-based approach and SFCAs, allergic and immune disorders, gut dysbiosis, obesity, brain reaction, and cardiovascular disease. The analysis indicates that, with the rapid development of gut microbiota research, the metabolomics-based approach and SCFAs (topic 6) and dietary health (topic 1) have more studies being reported in the last 15 years. We also conclude from the data that, three other topics could be heavily focused in the future: metabolomics-based approach and SCFAs (topic 6), obesity (topic 8) and brain reaction and cardiovascular disease (topic 10), to unravel microbial affecting human health.
Collapse
Affiliation(s)
- Li Ning
- Management Science and Engineering Department, Management School, Xiamen University, Xiamen, China
| | - Peng Lifang
- Management Science and Engineering Department, Management School, Xiamen University, Xiamen, China
| | - He Huixin
- Computer Science and Engineering Department, Computer Science and Engineering School, Huaqiao University, Quanzhou, China
| |
Collapse
|
163
|
Yang YR, Kwon KS. Potential Roles of Exercise-Induced Plasma Metabolites Linking Exercise to Health Benefits. Front Physiol 2020; 11:602748. [PMID: 33343398 PMCID: PMC7744613 DOI: 10.3389/fphys.2020.602748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/19/2020] [Indexed: 12/30/2022] Open
Abstract
Regular exercise has a myriad of health benefits. An increase in circulating exercise factors following exercise is a critical physiological response. Numerous studies have shown that exercise factors released from tissues during physical activity may contribute to health benefits via autocrine, paracrine, and endocrine mechanisms. Myokines, classified as proteins secreted from skeletal muscle, are representative exercise factors. The roles of myokines have been demonstrated in a variety of exercise-related functions linked to health benefits. In addition to myokines, metabolites are also exercise factors. Exercise changes the levels of various metabolites via metabolic reactions. Several studies have identified exercise-induced metabolites that positively influence organ functions. Here, we provide an overview of selected metabolites secreted into the circulation upon exercise.
Collapse
Affiliation(s)
- Yong Ryoul Yang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|
164
|
Penney N, Barton W, Posma JM, Darzi A, Frost G, Cotter PD, Holmes E, Shanahan F, O'Sullivan O, Garcia-Perez I. Investigating the Role of Diet and Exercise in Gut Microbe-Host Cometabolism. mSystems 2020; 5:e00677-20. [PMID: 33262239 PMCID: PMC7716389 DOI: 10.1128/msystems.00677-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022] Open
Abstract
We investigated the individual and combined effects of diet and physical exercise on metabolism and the gut microbiome to establish how these lifestyle factors influence host-microbiome cometabolism. Urinary and fecal samples were collected from athletes and less active controls. Individuals were further classified according to an objective dietary assessment score of adherence to healthy dietary habits according to WHO guidelines, calculated from their proton nuclear magnetic resonance (1H-NMR) urinary profiles. Subsequent models were generated comparing extremes of dietary habits, exercise, and the combined effect of both. Differences in metabolic phenotypes and gut microbiome profiles between the two groups were assessed. Each of the models pertaining to diet healthiness, physical exercise, or a combination of both displayed a metabolic and functional microbial signature, with a significant proportion of the metabolites identified as discriminating between the various pairwise comparisons resulting from gut microbe-host cometabolism. Microbial diversity was associated with a combination of high adherence to healthy dietary habits and exercise and was correlated with a distinct array of microbially derived metabolites, including markers of proteolytic activity. Improved control of dietary confounders, through the use of an objective dietary assessment score, has uncovered further insights into the complex, multifactorial relationship between diet, exercise, the gut microbiome, and metabolism. Furthermore, the observation of higher proteolytic activity associated with higher microbial diversity indicates that increased microbial diversity may confer deleterious as well as beneficial effects on the host.IMPORTANCE Improved control of dietary confounders, through the use of an objective dietary assessment score, has uncovered further insights into the complex, multifactorial relationship between diet, exercise, the gut microbiome, and metabolism. Each of the models pertaining to diet healthiness, physical exercise, or a combination of both, displayed a distinct metabolic and functional microbial signature. A significant proportion of the metabolites identified as discriminating between the various pairwise comparisons result from gut microbe-host cometabolism, and the identified interactions have expanded current knowledge in this area. Furthermore, although increased microbial diversity has previously been linked with health, our observation of higher microbial diversity being associated with increased proteolytic activity indicates that it may confer deleterious as well as beneficial effects on the host.
Collapse
Affiliation(s)
- N Penney
- Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - W Barton
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Co. Cork, Ireland
- Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - J M Posma
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
- Health Data Research UK, London, United Kingdom
| | - A Darzi
- Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - G Frost
- Section for Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - P D Cotter
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Co. Cork, Ireland
| | - E Holmes
- Section for Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - F Shanahan
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - O O'Sullivan
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Co. Cork, Ireland
| | - I Garcia-Perez
- Section for Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
165
|
Swann JR, Rajilic-Stojanovic M, Salonen A, Sakwinska O, Gill C, Meynier A, Fança-Berthon P, Schelkle B, Segata N, Shortt C, Tuohy K, Hasselwander O. Considerations for the design and conduct of human gut microbiota intervention studies relating to foods. Eur J Nutr 2020; 59:3347-3368. [PMID: 32246263 PMCID: PMC7669793 DOI: 10.1007/s00394-020-02232-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
With the growing appreciation for the influence of the intestinal microbiota on human health, there is increasing motivation to design and refine interventions to promote favorable shifts in the microbiota and their interactions with the host. Technological advances have improved our understanding and ability to measure this indigenous population and the impact of such interventions. However, the rapid growth and evolution of the field, as well as the diversity of methods used, parameters measured and populations studied, make it difficult to interpret the significance of the findings and translate their outcomes to the wider population. This can prevent comparisons across studies and hinder the drawing of appropriate conclusions. This review outlines considerations to facilitate the design, implementation and interpretation of human gut microbiota intervention studies relating to foods based upon our current understanding of the intestinal microbiota, its functionality and interactions with the human host. This includes parameters associated with study design, eligibility criteria, statistical considerations, characterization of products and the measurement of compliance. Methodologies and markers to assess compositional and functional changes in the microbiota, following interventions are discussed in addition to approaches to assess changes in microbiota-host interactions and host responses. Last, EU legislative aspects in relation to foods and health claims are presented. While it is appreciated that the field of gastrointestinal microbiology is rapidly evolving, such guidance will assist in the design and interpretation of human gut microbiota interventional studies relating to foods.
Collapse
Affiliation(s)
- J. R. Swann
- Division of Integrative Systems Medicine and Digestive Diseases, Imperial College London, London, UK
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - M. Rajilic-Stojanovic
- Department for Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - A. Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - O. Sakwinska
- Société Des Produits Nestlé S.A, Nestlé Research, Lausanne, Switzerland
| | - C. Gill
- Nutrition Innovation Centre for Food and Health, Centre for Molecular Biosciences, Ulster University, Londonderry, Northern Ireland, UK
| | | | | | | | - N. Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - C. Shortt
- Johnson & Johnson Consumer Services EAME Ltd., Foundation Park, Maidenhead, UK
| | - K. Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - O. Hasselwander
- DuPont Nutrition and Biosciences, c/o Danisco (UK) Limited, Reigate, UK
| |
Collapse
|
166
|
González-Soltero R, Bailén M, de Lucas B, Ramírez-Goercke MI, Pareja-Galeano H, Larrosa M. Role of Oral and Gut Microbiota in Dietary Nitrate Metabolism and Its Impact on Sports Performance. Nutrients 2020; 12:E3611. [PMID: 33255362 PMCID: PMC7760746 DOI: 10.3390/nu12123611] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/30/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022] Open
Abstract
Nitrate supplementation is an effective, evidence-based dietary strategy for enhancing sports performance. The effects of dietary nitrate seem to be mediated by the ability of oral bacteria to reduce nitrate to nitrite, thus increasing the levels of nitrite in circulation that may be further reduced to nitric oxide in the body. The gut microbiota has been recently implicated in sports performance by improving muscle function through the supply of certain metabolites. In this line, skeletal muscle can also serve as a reservoir of nitrate. Here we review the bacteria of the oral cavity involved in the reduction of nitrate to nitrite and the possible changes induced by nitrite and their effect on gastrointestinal balance and gut microbiota homeostasis. The potential role of gut bacteria in the reduction of nitrate to nitrite and as a supplier of the signaling molecule nitric oxide to the blood circulation and muscles has not been explored in any great detail.
Collapse
Affiliation(s)
- Rocío González-Soltero
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (M.B.); (M.I.R.-G.)
| | - María Bailén
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (M.B.); (M.I.R.-G.)
| | - Beatriz de Lucas
- Faculty of Sports Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (B.d.L.); (H.P.-G.); (M.L.)
| | - Maria Isabel Ramírez-Goercke
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (M.B.); (M.I.R.-G.)
| | - Helios Pareja-Galeano
- Faculty of Sports Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (B.d.L.); (H.P.-G.); (M.L.)
| | - Mar Larrosa
- Faculty of Sports Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (B.d.L.); (H.P.-G.); (M.L.)
| |
Collapse
|
167
|
Effects of Dietary Protein Levels on Bamei Pig Intestinal Colony Compositional Traits. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2610431. [PMID: 33294435 PMCID: PMC7714570 DOI: 10.1155/2020/2610431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 01/19/2023]
Abstract
Diets containing different crude protein levels (16%, 14%, and 12%) were created to feed Bamei pigs in order to study the effect of these compositions on intestinal colonies. Therefore, 27 healthy Bamei pigs of similar weight (20.99 kg ± 0.16 kg) were selected and randomly divided into three groups for microbial diversity analysis. The results of this study show that microbial diversities and abundances in Bamei pig jejunum and caecum samples after feeding with different dietary protein levels were significantly different. Dietary crude protein level exerted no significant effect on the Shannon index for cecum microbes in these pigs, while Simpson, ACE, and Chao1 indices for group I were all significantly higher than those of either the control group or group II (P < 0.05). Indeed, data show that microbial diversities and abundances in the 14% protein level group were higher than those in either the 16% or 12% groups. Dominant bacteria present in jejunum and cecum samples given low-protein diets were members of the phyla Firmicutes and Bacteroidetes. Data show that as dietary crude protein level decreases, representatives of the microbial flora genus Lactobacillus in jejunum and cecum samples gradually increases. Values for the KEGG functional prediction of microbial flora at different dietary protein levels also show that genes of jejunum and cecum microorganisms were mainly enriched in the “metabolism” pathway and indicate that low protein diets increase intestinal metabolic activity. Therefore, we recommend that Bamei pig dietary protein levels are reduced 2% from their existing level of 16% crude protein. We also suggest that essential synthetic amino acids (AA) are added to optimize this ideal protein model as this will increase intestinal flora diversity in these pigs and enhance health. These changes will have a positive effect in promoting the healthy growth of Bamei pigs.
Collapse
|
168
|
Han M, Yang K, Yang P, Zhong C, Chen C, Wang S, Lu Q, Ning K. Stratification of athletes' gut microbiota: the multifaceted hubs associated with dietary factors, physical characteristics and performance. Gut Microbes 2020; 12:1-18. [PMID: 33289609 PMCID: PMC7734118 DOI: 10.1080/19490976.2020.1842991] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gut microbial communities of athletes differ from that of sedentary persons in both diversity and the presence of certain taxa. However, it is unclear to what degree elite athletes and non-elite athletes harbor different gut microbial community patterns and if we can effectively monitor the potential of athletes based on microbiota. A team of professional female rowing athletes in China was recruited and 306 fecal samples were collected from 19 individuals, which were separated into three cohorts: adult elite athlete's (AE), youth elite athlete's (YE), and youth non-elite athlete's (YN). The differences in gut microbiome among different cohorts were compared, and their associations with dietary factors, physical characteristics, and athletic performance were investigated. The microbial diversities of elite athletes were higher than those of youth non-elite athletes. The taxonomical, functional, and phenotypic compositions of AE, YE and YN were significantly different. Additionally, three enterotypes with clear separation were identified in athlete's fecal samples, with majority of elite athletes stratified into enterotype 3. And this enterotype-dependent gut microbiome is strongly associated with athlete performances. These differences in athlete gut microbiota lead to establishment of a random forest classifier based on taxonomical and functional biomarkers, capable of differentiating elite athletes and non-elite athletes with high accuracy. Finally, these versatilities of athlete microbial communities of athletes were found to be associated with dietary factors and physical characteristics, which can in concert explain 41% of the variability in gut microbiome.
Collapse
Affiliation(s)
- Maozhen Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China,School of Life Sciences, Anhui Medical University, Hefei, Anhui, China,CONTACT Kang Ning
| | - Kun Yang
- Exercise Immunology Center, Wuhan Sports University, Wuhan, Hubei, China
| | - Pengshuo Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chaofang Zhong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chaoyun Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Song Wang
- Exercise Immunology Center, Wuhan Sports University, Wuhan, Hubei, China,Song Wang Exercise Immunology Center, Wuhan Sports University, Wuhan, Hubei430079, China
| | - Qunwei Lu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China,Qunwei Lu Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei430074, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China,CONTACT Kang Ning
| |
Collapse
|
169
|
Biomimetic Gut Model Systems for Development of Targeted Microbial Solutions for Enhancing Warfighter Health and Performance. mSystems 2020; 5:5/5/e00487-20. [PMID: 33109750 PMCID: PMC7593588 DOI: 10.1128/msystems.00487-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human gut microbiome plays a vital role in both health and disease states and as a mediator of cognitive and physical performance. Despite major advances in our understanding of the role of gut microbes in host physiology, mechanisms underlying human-microbiome dynamics have yet to be fully elucidated. The human gut microbiome plays a vital role in both health and disease states and as a mediator of cognitive and physical performance. Despite major advances in our understanding of the role of gut microbes in host physiology, mechanisms underlying human-microbiome dynamics have yet to be fully elucidated. This knowledge gap represents a major hurdle to the development of targeted gut microbiome solutions influencing human health and performance outcomes. The microbiome as it relates to warfighter health and performance is of interest to the Department of Defense (DoD) with the development of interventions impacting gut microbiome resiliency among its top research priorities. While technological advancements are enabling the development of experimental model systems that facilitate mechanistic insights underpinning human health, disease, and performance, translatability to human outcomes is still questionable. This review discusses some of the drivers influencing the DoD’s interest in the warfighter gut microbiome and describes current in vitro gut model systems supporting direct microbial-host interactions.
Collapse
|
170
|
Manor O, Dai CL, Kornilov SA, Smith B, Price ND, Lovejoy JC, Gibbons SM, Magis AT. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat Commun 2020; 11:5206. [PMID: 33060586 PMCID: PMC7562722 DOI: 10.1038/s41467-020-18871-1] [Citation(s) in RCA: 478] [Impact Index Per Article: 95.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Variation in the human gut microbiome can reflect host lifestyle and behaviors and influence disease biomarker levels in the blood. Understanding the relationships between gut microbes and host phenotypes are critical for understanding wellness and disease. Here, we examine associations between the gut microbiota and ~150 host phenotypic features across ~3,400 individuals. We identify major axes of taxonomic variance in the gut and a putative diversity maximum along the Firmicutes-to-Bacteroidetes axis. Our analyses reveal both known and unknown associations between microbiome composition and host clinical markers and lifestyle factors, including host-microbe associations that are composition-specific. These results suggest potential opportunities for targeted interventions that alter the composition of the microbiome to improve host health. By uncovering the interrelationships between host diet and lifestyle factors, clinical blood markers, and the human gut microbiome at the population-scale, our results serve as a roadmap for future studies on host-microbe interactions and interventions.
Collapse
Affiliation(s)
- Ohad Manor
- Century Therapeutics, Seattle, WA, 98102, USA.
| | | | | | - Brett Smith
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Nathan D Price
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98105, USA
| | | | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98105, USA
| | | |
Collapse
|
171
|
Physical Activity Shapes the Intestinal Microbiome and Immunity of Healthy Mice but Has No Protective Effects against Colitis in MUC2 -/- Mice. mSystems 2020; 5:5/5/e00515-20. [PMID: 33024049 PMCID: PMC7542559 DOI: 10.1128/msystems.00515-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Perturbation in the gut microbial ecosystem has been associated with various diseases, including inflammatory bowel disease. Habitual physical activity, through its ability to modulate the gut microbiome, has recently been shown to prophylactically protect against chemically induced models of murine colitis. Here, we (i) confirm previous reports that physical activity has limited but significant effects on the gut microbiome of mice and (ii) show that such changes are associated with anti-inflammatory states in the gut, such as increased production of beneficial short-chain fatty acids and lower levels of proinflammatory immune markers implicated in human colitis; however, we also show that (iii) these physical activity-derived benefits are completely lost in the absence of a healthy intestinal mucus layer, a hallmark phenotype of human colitis. The interactions among humans, their environment, and the trillions of microbes residing within the human intestinal tract form a tripartite relationship that is fundamental to the overall health of the host. Disruptions in the delicate balance between the intestinal microbiota and host immunity are implicated in various chronic diseases, including inflammatory bowel disease (IBD). There is no known cure for IBD; therefore, novel therapeutics targeting prevention and symptom management are of great interest. Recently, physical activity in healthy mice was shown to be protective against chemically induced colitis; however, the benefits of physical activity during or following disease onset are not known. In this study, we examine whether voluntary wheel running is protective against primary disease symptoms in a mucin 2-deficient (Muc2−/−) lifelong model of murine colitis. We show that 6 weeks of wheel running in healthy C57BL/6 mice leads to distinct changes in fecal bacteriome, increased butyrate production, and modulation in colonic gene expression of various cytokines, suggesting an overall primed anti-inflammatory state. However, these physical activity-derived benefits are not present in Muc2−/− mice harboring a dysfunctional mucosal layer from birth, ultimately showing no improvements in clinical signs. We extrapolate from our findings that while physical activity in healthy individuals may be an important preventative measure against IBD, for those with a compromised intestinal mucosa, a commonality in IBD patients, these benefits are lost. IMPORTANCE Perturbation in the gut microbial ecosystem has been associated with various diseases, including inflammatory bowel disease. Habitual physical activity, through its ability to modulate the gut microbiome, has recently been shown to prophylactically protect against chemically induced models of murine colitis. Here, we (i) confirm previous reports that physical activity has limited but significant effects on the gut microbiome of mice and (ii) show that such changes are associated with anti-inflammatory states in the gut, such as increased production of beneficial short-chain fatty acids and lower levels of proinflammatory immune markers implicated in human colitis; however, we also show that (iii) these physical activity-derived benefits are completely lost in the absence of a healthy intestinal mucus layer, a hallmark phenotype of human colitis.
Collapse
|
172
|
Marttinen M, Ala-Jaakkola R, Laitila A, Lehtinen MJ. Gut Microbiota, Probiotics and Physical Performance in Athletes and Physically Active Individuals. Nutrients 2020; 12:nu12102936. [PMID: 32992765 PMCID: PMC7599951 DOI: 10.3390/nu12102936] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Among athletes, nutrition plays a key role, supporting training, performance, and post-exercise recovery. Research has primarily focused on the effects of diet in support of an athletic physique; however, the role played by intestinal microbiota has been much neglected. Emerging evidence has shown an association between the intestinal microbiota composition and physical activity, suggesting that modifications in the gut microbiota composition may contribute to physical performance of the host. Probiotics represent a potential means for beneficially influencing the gut microbiota composition/function but can also impact the overall health of the host. In this review, we provide an overview of the existing studies that have examined the reciprocal interactions between physical activity and gut microbiota. We further evaluate the clinical evidence that supports the effects of probiotics on physical performance, post-exercise recovery, and cognitive outcomes among athletes. In addition, we discuss the mechanisms of action through which probiotics affect exercise outcomes. In summary, beneficial microbes, including probiotics, may promote health in athletes and enhance physical performance and exercise capacity. Furthermore, high-quality clinical studies, with adequate power, remain necessary to uncover the roles that are played by gut microbiota populations and probiotics in physical performance and the modes of action behind their potential benefits.
Collapse
|
173
|
The Effect of Athletes' Probiotic Intake May Depend on Protein and Dietary Fiber Intake. Nutrients 2020; 12:nu12102947. [PMID: 32992898 PMCID: PMC7650591 DOI: 10.3390/nu12102947] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
Studies investigating exercise-induced gut microbiota have reported that people who exercise regularly have a healthy gut microbial environment compared with sedentary individuals. In contrast, recent studies have shown that high protein intake without dietary fiber not only offsets the positive effect of exercise on gut microbiota but also significantly lowers the relative abundance of beneficial bacteria. In this study, to resolve this conundrum and find the root cause, we decided to narrow down subjects according to diet. Almost all of the studies had subjects on an ad libitum diet, however, we wanted subjects on a simplified diet. Bodybuilders who consumed an extremely high-protein/low-carbohydrate diet were randomly assigned to a probiotics intake group (n = 8) and a placebo group (n = 7) to find the intervention effect. Probiotics, comprising Lactobacillus acidophilus, L. casei, L. helveticus, and Bifidobacterium bifidum, were consumed for 60 days. As a result, supplement intake did not lead to a positive effect on the gut microbial environment or concentration of short-chain fatty acids (SCFAs). It has been shown that probiotic intake is not as effective as ergogenic aids for athletes such as bodybuilders with extreme dietary regimens, especially protein and dietary fiber. To clarify the influence of nutrition-related factors that affect the gut microbial environment, we divided the bodybuilders (n = 28) into groups according to their protein and dietary fiber intake and compared their gut microbial environment with that of sedentary male subjects (n = 15). Based on sedentary Korean recommended dietary allowance (KRDA), the bodybuilders′ intake of protein and dietary fiber was categorized into low, proper, and excessive groups, as follows: high-protein/restricted dietary fiber (n = 12), high-protein/adequate dietary fiber (n = 10), or adequate protein/restricted dietary fiber (n = 6). We found no significant differences in gut microbial diversity or beneficial bacteria between the high-protein/restricted dietary fiber and the healthy sedentary groups. However, when either protein or dietary fiber intake met the KRDA, gut microbial diversity and the relative abundance of beneficial bacteria showed significant differences to those of healthy sedentary subjects. These results suggest that the positive effect of exercise on gut microbiota is dependent on protein and dietary fiber intake. The results also suggest that the question of adequate nutrition should be addressed before supplementation with probiotics to derive complete benefits from the intervention.
Collapse
|
174
|
Yim HCH, El-Omar EM. Risk of physical activity and hepatobiliary diseases: east meets west. Br J Sports Med 2020; 55:1003-1004. [PMID: 32928742 DOI: 10.1136/bjsports-2020-103348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 11/03/2022]
Affiliation(s)
- Howard Chi Ho Yim
- Microbiome Research Centre, St George and Sutherland Clinical School, Faculty of Medicine, UNSW, Sydney, New South Wales, Australia
| | - Emad M El-Omar
- Microbiome Research Centre, St George and Sutherland Clinical School, Faculty of Medicine, UNSW, Sydney, New South Wales, Australia
| |
Collapse
|
175
|
Dogra SK, Doré J, Damak S. Gut Microbiota Resilience: Definition, Link to Health and Strategies for Intervention. Front Microbiol 2020; 11:572921. [PMID: 33042082 PMCID: PMC7522446 DOI: 10.3389/fmicb.2020.572921] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
The gut microbiota is a new frontier in health and disease. Not only many diseases are associated with perturbed microbiota, but an increasing number of studies point to a cause-effect relationship. Defining a healthy microbiota is not possible at the current state of our knowledge mostly because of high interindividual variability. A resilient microbiota could be used as surrogate for healthy microbiota. In addition, the gut microbiota is an “organ” with frontline exposure to environmental changes and insults. During the lifetime of an individual, it is exposed to challenges such as unhealthy diet, medications and infections. Impaired ability to bounce back to the pre-challenge baseline may lead to dysbiosis. It is therefore legitimate to postulate that maintaining a resilient microbiota may be important for health. Here we review the concept of resilience, what is known about the characteristics of a resilient microbiota, and how to assess microbiota resilience experimentally using a model of high fat diet challenge in humans. Interventions to maintain microbiota resilience can be guided by the knowledge of what microbial species or functions are perturbed by challenges, and designed to replace diminished species with probiotics, when available, or boost them with prebiotics. Fibers with multiple structures and composition can also be used to increase microbiota diversity, a characteristic of the microbiota that may be associated with resilience. We finally discuss some open questions and knowledge gaps.
Collapse
Affiliation(s)
| | - Joel Doré
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, MetaGenoPolis, AgroParisTech, Microbiologie de l'Alimentation au Service de la Santé, Jouy-en-Josas, France
| | - Sami Damak
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| |
Collapse
|
176
|
Ostojic SM. Exercise-Driven Increase in Gut Microbial Hydrogen Production as a Possible Factor of Metabolic Health. Front Physiol 2020; 11:1065. [PMID: 32982793 PMCID: PMC7492653 DOI: 10.3389/fphys.2020.01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 11/24/2022] Open
|
177
|
Frampton J, Murphy KG, Frost G, Chambers ES. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat Metab 2020; 2:840-848. [PMID: 32694821 DOI: 10.1038/s42255-020-0188-7] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/25/2020] [Indexed: 12/25/2022]
Abstract
A key metabolic activity of the gut microbiota is the fermentation of non-digestible carbohydrate, which generates short-chain fatty acids (SCFAs) as the principal end products. SCFAs are absorbed from the gut lumen and modulate host metabolic responses at different organ sites. Evidence suggests that these organ sites include skeletal muscle, the largest organ in humans, which plays a pivotal role in whole-body energy metabolism. In this Review, we evaluate the evidence indicating that SCFAs mediate metabolic cross-talk between the gut microbiota and skeletal muscle. We discuss the effects of three primary SCFAs (acetate, propionate and butyrate) on lipid, carbohydrate and protein metabolism in skeletal muscle, and we consider the potential mechanisms involved. Furthermore, we highlight the emerging roles of these gut-derived metabolites in skeletal muscle function and exercise capacity, present limitations in current knowledge and provide suggestions for future work.
Collapse
Affiliation(s)
- James Frampton
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Kevin G Murphy
- Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Gary Frost
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Edward S Chambers
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
178
|
Leigh SJ, Kaakoush NO, Escorihuela RM, Westbrook RF, Morris MJ. Treadmill exercise has minimal impact on obesogenic diet-related gut microbiome changes but alters adipose and hypothalamic gene expression in rats. Nutr Metab (Lond) 2020; 17:71. [PMID: 32831895 PMCID: PMC7437044 DOI: 10.1186/s12986-020-00492-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/10/2020] [Indexed: 01/17/2023] Open
Abstract
Background Exercise has been extensively utilised as an effective therapy for overweight- and obesity-associated changes that are linked to health complications. Several preclinical rodent studies have shown that treadmill exercise alongside an unhealthy diet improves metabolic health and microbiome composition. Furthermore, chronic exercise has been shown to alter hypothalamic and adipose tissue gene expression in diet-induced obesity. However, limited work has investigated whether treadmill exercise commenced following exposure to an obesogenic diet is sufficient to alter microbiome composition and metabolic health. Methods To address this gap in the literature, we fed rats a high-fat/high-sugar western-style cafeteria diet and assessed the effects of 4 weeks of treadmill exercise on adiposity, diet-induced gut dysbiosis, as well as hypothalamic and retroperitoneal white adipose tissue gene expression. Forty-eight male Sprague-Dawley rats were allocated to either regular chow or cafeteria diet and after 3 weeks half the rats on each diet were exposed to moderate treadmill exercise for 4 weeks while the remainder were exposed to a stationary treadmill. Results Microbial species diversity was uniquely reduced in exercising chow-fed rats, while microbiome composition was only changed by cafeteria diet. Despite limited effects of exercise on overall microbiome composition, exercise increased inferred microbial functions involved in metabolism, reduced fat mass, and altered adipose and hypothalamic gene expression. After controlling for diet and exercise, adipose Il6 expression and liver triglyceride concentrations were significantly associated with global microbiome composition. Conclusions Moderate treadmill exercise induced subtle microbiome composition changes in chow-fed rats but did not overcome the microbiome changes induced by prolonged exposure to cafeteria diet. Predicted metabolic function of the gut microbiome was increased by exercise. The effects of exercise on the microbiome may be modulated by obesity severity. Future work should investigate whether exercise in combination with microbiome-modifying interventions can synergistically reduce diet- and obesity-associated comorbidities.
Collapse
Affiliation(s)
- Sarah-Jane Leigh
- Department of Pharmacology, School of Medical Sciences, UNSW, Sydney, NSW 2052 Australia
| | - Nadeem O Kaakoush
- Department of Pharmacology, School of Medical Sciences, UNSW, Sydney, NSW 2052 Australia
| | - Rosa M Escorihuela
- Departament de Psiquiatria i Medicina Legal, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Margaret J Morris
- Department of Pharmacology, School of Medical Sciences, UNSW, Sydney, NSW 2052 Australia
| |
Collapse
|
179
|
Nishikawa H, Enomoto H, Nishiguchi S, Iijima H. Liver Cirrhosis and Sarcopenia from the Viewpoint of Dysbiosis. Int J Mol Sci 2020; 21:5254. [PMID: 32722100 PMCID: PMC7432211 DOI: 10.3390/ijms21155254] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Sarcopenia in patients with liver cirrhosis (LC) has been attracting much attention these days because of the close linkage to adverse outcomes. LC can be related to secondary sarcopenia due to protein metabolic disorders and energy metabolic disorders. LC is associated with profound alterations in gut microbiota and injuries at the different levels of defensive mechanisms of the intestinal barrier. Dysbiosis refers to a state in which the diversity of gut microbiota is decreased by decreasing the bacterial species and the number of bacteria that compose the gut microbiota. The severe disturbance of intestinal barrier in LC can result in dysbiosis, several bacterial infections, LC-related complications, and sarcopenia. Here in this review, we will summarize the current knowledge of the relationship between sarcopenia and dysbiosis in patients with LC.
Collapse
Affiliation(s)
- Hiroki Nishikawa
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya 6638136, Japan; (H.E.); (H.I.)
- Center for Clinical Research and Education, Hyogo College of Medicine, Nishinomiya 6638136, Japan
| | - Hirayuki Enomoto
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya 6638136, Japan; (H.E.); (H.I.)
| | | | - Hiroko Iijima
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya 6638136, Japan; (H.E.); (H.I.)
| |
Collapse
|
180
|
Microbiome and health implications for ethnic minorities after enforced lifestyle changes. Nat Med 2020; 26:1089-1095. [PMID: 32632193 DOI: 10.1038/s41591-020-0963-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/01/2020] [Indexed: 11/09/2022]
Abstract
Modern lifestyles increase the risk of chronic diseases, in part by modifying the microbiome, but the health effects of lifestyles enforced on ethnic minorities are understudied1-3. Lifestyle affects the microbiome early in life, when the microbiome is assembled and the immune system is undergoing maturation4-6. Moreover, the influence of lifestyle has been separated from genetic and geographic factors by studies of genetically similar populations and ethnically distinct groups living in the same geographic location7-11. The lifestyle of Irish Travellers, an ethnically distinct subpopulation, changed with legislation in 2002 that effectively ended nomadism and altered their living conditions. Comparative metagenomics of gut microbiomes shows that Irish Travellers retain a microbiota similar to that of non-industrialized societies. Their microbiota is associated with non-dietary factors and is proportionately linked with risk of microbiome-related metabolic disease. Our findings suggest there are microbiome-related public health implications when ethnic minorities are pressured to change lifestyles.
Collapse
|
181
|
Lin CL, Hsu YJ, Ho HH, Chang YC, Kuo YW, Yeh YT, Tsai SY, Chen CW, Chen JF, Huang CC, Lee MC. Bifidobacterium longum subsp. longum OLP-01 Supplementation during Endurance Running Training Improves Exercise Performance in Middle- and Long-Distance Runners: A Double-Blind Controlled Trial. Nutrients 2020; 12:nu12071972. [PMID: 32630786 PMCID: PMC7400043 DOI: 10.3390/nu12071972] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
Bifidobacterium longum subsp. longum Olympic No. 1 (OLP-01) has been shown in previous animal experiments to improve exercise endurance performance, but this effect has not been confirmed in humans, or more particularly, in athletes. Toward this end, the current study combined OLP-01 supplementation with regular exercise training in well-trained middle- and long-distance runners at the National Taiwan Sport University. The study was designed as a double-blind placebo-controlled experiment. Twenty-one subjects (14 males and seven females aged 20–30 years) were evenly distributed according to total distance (meters) traveled in 12 min to one of the following two groups: a placebo group (seven males and three females) and an OLP-01 (1.5 × 1010 colony forming units (CFU)/day) group (seven males and four females). All the participants received placebo or OLP-01 supplements for five consecutive weeks consisting of three weeks of regular training and two weeks of de-training. Before and after the experiment, the participants were tested for 12-min running/walking distance, and body composition, blood/serum, and fecal samples were analyzed. The results showed that OLP-01 significantly increased the change in the 12-min Cooper’s test running distance and the abundance of gut microbiota. Although no significant change in body composition was found, OLP-01 caused no adverse reactions or harm to the participants’ bodies. In summary, OLP-01 can be used as a sports nutrition supplement, especially for athletes, to improve exercise performance.
Collapse
Affiliation(s)
- Che-Li Lin
- Department of Orthopedic Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 33301, Taiwan;
| | - Hsieh-Hsun Ho
- Glac Biotech Co., Ltd., Tainan City 74442, Taiwan; (H.-H.H.); (Y.-W.K.); (S.-Y.T.); (C.-W.C.); (J.-F.C.)
| | - Yung-Cheng Chang
- Department of Sports Training Science-Athletics, National Taiwan Sport University, Taoyuan City 33301, Taiwan;
| | - Yi-Wei Kuo
- Glac Biotech Co., Ltd., Tainan City 74442, Taiwan; (H.-H.H.); (Y.-W.K.); (S.-Y.T.); (C.-W.C.); (J.-F.C.)
| | - Yao-Tsung Yeh
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung City 83102, Taiwan;
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung City 83102, Taiwan
| | - Shin-Yu Tsai
- Glac Biotech Co., Ltd., Tainan City 74442, Taiwan; (H.-H.H.); (Y.-W.K.); (S.-Y.T.); (C.-W.C.); (J.-F.C.)
| | - Ching-Wei Chen
- Glac Biotech Co., Ltd., Tainan City 74442, Taiwan; (H.-H.H.); (Y.-W.K.); (S.-Y.T.); (C.-W.C.); (J.-F.C.)
| | - Jui-Fen Chen
- Glac Biotech Co., Ltd., Tainan City 74442, Taiwan; (H.-H.H.); (Y.-W.K.); (S.-Y.T.); (C.-W.C.); (J.-F.C.)
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 33301, Taiwan;
- Correspondence: (C.-C.H.); (M.-C.L.); Tel.: +886-3-328-3201 (ext. 2409) (C.-C.H.); +886-3-328-3201 (ext. 2604) (M.-C.L.)
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 33301, Taiwan;
- Correspondence: (C.-C.H.); (M.-C.L.); Tel.: +886-3-328-3201 (ext. 2409) (C.-C.H.); +886-3-328-3201 (ext. 2604) (M.-C.L.)
| |
Collapse
|
182
|
Przewłócka K, Folwarski M, Kaźmierczak-Siedlecka K, Skonieczna-Żydecka K, Kaczor JJ. Gut-Muscle AxisExists and May Affect Skeletal Muscle Adaptation to Training. Nutrients 2020; 12:nu12051451. [PMID: 32443396 PMCID: PMC7285193 DOI: 10.3390/nu12051451] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Excessive training may limit physiological muscle adaptation through chronic oxidative stress and inflammation. Improper diet and overtraining may also disrupt intestinal homeostasis and in consequence enhance inflammation. Altogether, these factors may lead to an imbalance in the gut ecosystem, causing dysregulation of the immune system. Therefore, it seems to be important to optimize the intestinal microbiota composition, which is able to modulate the immune system and reduce oxidative stress. Moreover, the optimal intestinal microbiota composition may have an impact on muscle protein synthesis and mitochondrial biogenesis and function, as well as muscle glycogen storage. Aproperly balanced microbiome may also reduce inflammatory markers and reactive oxygen species production, which may further attenuate macromolecules damage. Consequently, supplementation with probiotics may have some beneficial effect on aerobic and anaerobic performance. The phenomenon of gut-muscle axis should be continuously explored to function maintenance, not only in athletes.
Collapse
Affiliation(s)
- Katarzyna Przewłócka
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Marcin Folwarski
- Departmentof Clinical Nutrition and Dietetics, Medical University of Gdansk, 80-210 Gdańsk, Poland;
| | | | | | - Jan Jacek Kaczor
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
- Correspondence: ; Tel.: +48-516-191-109
| |
Collapse
|
183
|
Mohr AE, Jäger R, Carpenter KC, Kerksick CM, Purpura M, Townsend JR, West NP, Black K, Gleeson M, Pyne DB, Wells SD, Arent SM, Kreider RB, Campbell BI, Bannock L, Scheiman J, Wissent CJ, Pane M, Kalman DS, Pugh JN, Ortega-Santos CP, Ter Haar JA, Arciero PJ, Antonio J. The athletic gut microbiota. J Int Soc Sports Nutr 2020; 17:24. [PMID: 32398103 PMCID: PMC7218537 DOI: 10.1186/s12970-020-00353-w] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
The microorganisms in the gastrointestinal tract play a significant role in nutrient uptake, vitamin synthesis, energy harvest, inflammatory modulation, and host immune response, collectively contributing to human health. Important factors such as age, birth method, antibiotic use, and diet have been established as formative factors that shape the gut microbiota. Yet, less described is the role that exercise plays, particularly how associated factors and stressors, such as sport/exercise-specific diet, environment, and their interactions, may influence the gut microbiota. In particular, high-level athletes offer remarkable physiology and metabolism (including muscular strength/power, aerobic capacity, energy expenditure, and heat production) compared to sedentary individuals, and provide unique insight in gut microbiota research. In addition, the gut microbiota with its ability to harvest energy, modulate the immune system, and influence gastrointestinal health, likely plays an important role in athlete health, wellbeing, and sports performance. Therefore, understanding the mechanisms in which the gut microbiota could play in the role of influencing athletic performance is of considerable interest to athletes who work to improve their results in competition as well as reduce recovery time during training. Ultimately this research is expected to extend beyond athletics as understanding optimal fitness has applications for overall health and wellness in larger communities. Therefore, the purpose of this narrative review is to summarize current knowledge of the athletic gut microbiota and the factors that shape it. Exercise, associated dietary factors, and the athletic classification promote a more “health-associated” gut microbiota. Such features include a higher abundance of health-promoting bacterial species, increased microbial diversity, functional metabolic capacity, and microbial-associated metabolites, stimulation of bacterial abundance that can modulate mucosal immunity, and improved gastrointestinal barrier function.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA.
| | - Ralf Jäger
- Increnovo LLC, Milwaukee, WI, 53202, USA
| | | | - Chad M Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA
| | | | - Jeremy R Townsend
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN, 37204, USA
| | - Nicholas P West
- School of Medical Research and Menzies Health Institute of QLD, Griffith Health, Griffith University, Southport, Australia
| | - Katherine Black
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Michael Gleeson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - David B Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2617, Australia
| | | | - Shawn M Arent
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4253, USA
| | - Bill I Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL, USA
| | | | | | - Craig J Wissent
- Jamieson Wellness Inc., 4025 Rhodes Drive, Windsor, Ontario, N8W 5B5, Canada
| | - Marco Pane
- Bioloab Research, Via E. Mattei 3, 28100, Novara, Italy
| | - Douglas S Kalman
- Scientific Affairs, Nutrasource Diagnostics, Inc. Guelph, Guelph, Ontario, Canada
| | - Jamie N Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom St Campus, Liverpool, L3 3AF, UK
| | | | | | - Paul J Arciero
- Health and Human Physiological Sciences Department, Skidmore College, Saratoga Springs, NY, USA
| | - Jose Antonio
- Exercise and Sport Science, Nova Southeastern University, Davie, FL, USA
| |
Collapse
|
184
|
Meng Y, Chen L, Lin W, Wang H, Xu G, Weng X. Exercise Reverses the Alterations in Gut Microbiota Upon Cold Exposure and Promotes Cold-Induced Weight Loss. Front Physiol 2020; 11:311. [PMID: 32431620 PMCID: PMC7212826 DOI: 10.3389/fphys.2020.00311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota has been reported to contribute to reduced diet-induced obesity upon cold exposure. Furthermore, gut microbiome fermentation determines the efficacy of exercise for diabetes prevention and enhances exercise performance. However, there have been no systematic examinations of changes in gut microbiome composition in relation to exercise performed under low-temperature conditions. In this study, we investigated the effects of exercise performed under different conditions (room temperature, acute cold, intermittent cold, and sustained cold) in obese rats maintained on a high-fat diet at four time points during experimental trials (days 0, 1, 3, and 35), including observations on white fat browning, weight loss, cardiovascular effects, and changes in gut microbiota among treatment groups. We found that exercise under sustained cold conditions produced a remarkable shift in microbiota composition. Unexpectedly, exercise was found to reverse the alterations in gut microbiota alpha-diversity and the abundance of certain bacterial phyla observed in response to cold exposure (e.g., Proteobacteria decreased upon cold exposure but increased in response to exercise under cold conditions). Moreover, exercise under cold conditions (hereafter referred to “cold exercise”) promoted a considerably higher level of white fat browning and greater weight loss and protected against the negative cardiovascular effects of cold exposure. Correlation analysis revealed that cold exercise-related changes in gut microbial communities were significantly correlated with white fat browning and cardiovascular phenotypes. These results could reveal novel mechanisms whereby additional health benefits attributable to both cold and exercise are mediated via altered gut microbes differently compared with either of them alone.
Collapse
Affiliation(s)
- Yan Meng
- College of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | | | - Wentao Lin
- College of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Hongjuan Wang
- Shenzhen Health Time Gene Technology Co., Ltd., Shenzhen, China
| | - Guoqin Xu
- College of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Xiquan Weng
- College of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| |
Collapse
|
185
|
Zhu Q, Jiang S, Du G. Effects of exercise frequency on the gut microbiota in elderly individuals. Microbiologyopen 2020; 9:e1053. [PMID: 32356611 PMCID: PMC7424259 DOI: 10.1002/mbo3.1053] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
Growing evidence has shown that exercise can affect the gut microbiota. The effects of exercise frequency on the gut microbiota in elderly individuals are still largely unknown. In the present study, samples from 897 elderly and 1,589 adult individuals (18–60 years old) from the American Gut Project were screened. Microbial diversity and composition were analyzed by QIIME2, and microbial function was predicted by PICRUSt2. The outcomes were further analyzed by STAMP. The analysis showed that the α‐diversity of gut microbiota increased with increasing age, and regular exercise reshaped the alterations in microbial composition and function induced by aging. Moreover, the α‐diversity of gut microbiota was higher in overweight elderly individuals than in normoweight elderly individuals, and regular exercise significantly affected the microbial composition and function in overweight elderly individuals. In conclusion, we revealed that regular exercise benefits elderly individuals, especially overweight elderly individuals, by modulating the gut microbiota.
Collapse
Affiliation(s)
- Qiwei Zhu
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Shangfei Jiang
- Human Anatomy Laboratory, Hainan Medical University, Haikou, China
| | - Guankui Du
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| |
Collapse
|
186
|
Peterson VL, Richards JB, Meyer PJ, Cabrera-Rubio R, Tripi JA, King CP, Polesskaya O, Baud A, Chitre AS, Bastiaanssen TFS, Woods LS, Crispie F, Dinan TG, Cotter PD, Palmer AA, Cryan JF. Sex-dependent associations between addiction-related behaviors and the microbiome in outbred rats. EBioMedicine 2020; 55:102769. [PMID: 32403084 PMCID: PMC7218262 DOI: 10.1016/j.ebiom.2020.102769] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Multiple factors contribute to the etiology of addiction, including genetics, sex, and a number of addiction-related behavioral traits. One behavioral trait where individuals assign incentive salience to food stimuli ("sign-trackers", ST) are more impulsive compared to those that do not ("goal-trackers", GT), as well as more sensitive to drugs and drug stimuli. Furthermore, this GT/ST phenotype predicts differences in other behavioral measures. Recent studies have implicated the gut microbiota as a key regulator of brain and behavior, and have shown that many microbiota-associated changes occur in a sex-dependent manner. However, few studies have examined how the microbiome might influence addiction-related behaviors. To this end, we sought to determine if gut microbiome composition was correlated with addiction-related behaviors determined by the GT/ST phenotype. METHODS Outbred male (N=101) and female (N=101) heterogeneous stock rats underwent a series of behavioral tests measuring impulsivity, attention, reward-learning, incentive salience, and locomotor response. Cecal microbiome composition was estimated using 16S rRNA gene amplicon sequencing. Behavior and microbiome were characterized and correlated with behavioral phenotypes. Robust sex differences were observed in both behavior and microbiome; further analyses were conducted within sex using the pre-established goal/sign-tracking (GT/ST) phenotype and partial least squares differential analysis (PLS-DA) clustered behavioral phenotype. RESULTS Overall microbiome composition was not associated to the GT/ST phenotype. However, microbial alpha diversity was significantly decreased in female STs. On the other hand, a measure of impulsivity had many significant correlations to microbiome in both males and females. Several measures of impulsivity were correlated with the genus Barnesiella in females. Female STs had notable correlations between microbiome and attentional deficient. In both males and females, many measures were correlated with the bacterial families Ruminocococcaceae and Lachnospiraceae. CONCLUSIONS These data demonstrate correlations between several addiction-related behaviors and the microbiome specific to sex.
Collapse
Affiliation(s)
- Veronica L Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Room 2.33, 2nd Floor, Western Gateway Building, Cork, Ireland
| | - Jerry B Richards
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Paul J Meyer
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Raul Cabrera-Rubio
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Jordan A Tripi
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | | | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, CA, USA
| | - Amelie Baud
- Department of Psychiatry, University of California San Diego, CA, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, CA, USA
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Room 2.33, 2nd Floor, Western Gateway Building, Cork, Ireland
| | | | - Fiona Crispie
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, CA, USA; Institute for Genomic Medicine, University of California San Diego, CA, USA; Center for Microbiome Innovation, University of California San Diego, CA, USA
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Room 2.33, 2nd Floor, Western Gateway Building, Cork, Ireland.
| |
Collapse
|
187
|
Lee MC, Hsu YJ, Ho HH, Hsieh SH, Kuo YW, Sung HC, Huang CC. Lactobacillus salivarius Subspecies salicinius SA-03 is a New Probiotic Capable of Enhancing Exercise Performance and Decreasing Fatigue. Microorganisms 2020; 8:microorganisms8040545. [PMID: 32283729 PMCID: PMC7232535 DOI: 10.3390/microorganisms8040545] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Probiotics are increasingly being used as a nutritional supplement by athletes to improve exercise performance and reduce post-exercise fatigue. Lactobacillus salivarius is a natural flora in the gastrointestinal tract of humans and animals. Lactobacillus salivarius subspecies salicinius (SA-03) is an isolate from the 2008 Olympic women’s 48 kg weightlifting gold medalist’s gut microbiota. In this study, we investigated its beneficial effects on physical fitness. Male ICR mice were divided into four groups (n = 10 per group) and orally administered with SA-03 for 4 weeks at 0, 2.05 × 109, 4.10 × 109, or 1.03 × 1010 CFU/kg/day. Results showed that 4 weeks of SA-03 supplementation significantly improved muscle strength and endurance performance, increased hepatic and muscular glycogen storage, and decreased lactate, blood urea nitrogen (BUN), ammonia, and creatine kinase (CK) levels after exercise. These observations suggest that SA-03 could be used as a nutritional supplement to enhance exercise performance and reduce.
Collapse
Affiliation(s)
- Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, No. 250, Wenhua 1st Rd., Guishan District, Taoyuan City 33301, Taiwan; (M.-C.L.); (Y.-J.H.)
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, No. 250, Wenhua 1st Rd., Guishan District, Taoyuan City 33301, Taiwan; (M.-C.L.); (Y.-J.H.)
| | - Hsieh-Hsun Ho
- Glac Biotech Co. Ltd., Tainan City 74442, Taiwan; (H.-H.H.); (S.-H.H.); (Y.-W.K.)
| | - Shih-Hung Hsieh
- Glac Biotech Co. Ltd., Tainan City 74442, Taiwan; (H.-H.H.); (S.-H.H.); (Y.-W.K.)
| | - Yi-Wei Kuo
- Glac Biotech Co. Ltd., Tainan City 74442, Taiwan; (H.-H.H.); (S.-H.H.); (Y.-W.K.)
| | - Hsin-Ching Sung
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan 33301, Taiwan
- Department of Anatomy, College of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Township, Taoyuan City, Taoyuan 33301, Taiwan
- Correspondence: (H.-C.S.); (C.-C.H.); Tel.: +886-3-211-8800 (ext. 5977) (H.-C.S.); +886-3-328-3201 (ext. 2409) (C.-C.H.)
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, No. 250, Wenhua 1st Rd., Guishan District, Taoyuan City 33301, Taiwan; (M.-C.L.); (Y.-J.H.)
- Correspondence: (H.-C.S.); (C.-C.H.); Tel.: +886-3-211-8800 (ext. 5977) (H.-C.S.); +886-3-328-3201 (ext. 2409) (C.-C.H.)
| |
Collapse
|
188
|
Dovrolis N, Kolios G, Spyrou GM, Maroulakou I. Computational profiling of the gut-brain axis: microflora dysbiosis insights to neurological disorders. Brief Bioinform 2020; 20:825-841. [PMID: 29186317 DOI: 10.1093/bib/bbx154] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/17/2017] [Indexed: 12/14/2022] Open
Abstract
Almost 2500 years after Hippocrates' observations on health and its direct association to the gastrointestinal tract, a paradigm shift has recently occurred, making the gut and its symbionts (bacteria, fungi, archaea and viruses) a point of convergence for studies. It is nowadays well established that the gut microflora's compositional diversity regulates via its genes (the microbiome) the host's health and provides preliminary insights into disease progression and regulation. The microbiome's involvement is evident in immunological and physiological studies that link changes in its biodiversity to its contributions to the host's phenotype but also in neurological investigations, substantiating the aptly named gut-brain axis. The definitive mechanisms of this last bidirectional interaction will be our main focus because it presents researchers with a new conundrum. In this review, we prospect current literature for computational analysis methodologies that accommodate the need for better understanding of the microbiome-gut-brain interactions and neurological disorder onset and progression, through cross-disciplinary systems biology applications. We will present bioinformatics tools used in exploring these synergies that help build and interpret microbial 16S ribosomal RNA data sets, produced by shotgun and high-throughput sequencing of healthy and neurological disorder samples stored in biological databases. These approaches provide alternative means for researchers to form hypotheses to their inquests faster, cheaper and swith precision. The goal of these studies relies on the integration of combined metagenomics and metabolomics assessments. An accurate characterization of the microbiome and its functionality can support new diagnostic, prognostic and therapeutic strategies for neurological disorders, customized for each individual host.
Collapse
|
189
|
Flux MC, Lowry CA. Finding intestinal fortitude: Integrating the microbiome into a holistic view of depression mechanisms, treatment, and resilience. Neurobiol Dis 2020; 135:104578. [PMID: 31454550 PMCID: PMC6995775 DOI: 10.1016/j.nbd.2019.104578] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/27/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
Depression affects at least 322 million people globally, or approximately 4.4% of the world's population. While the earnestness of researchers and clinicians to understand and treat depression is not waning, the number of individuals suffering from depression continues to increase over and above the rate of global population growth. There is a sincere need for a paradigm shift. Research in the past decade is beginning to take a more holistic approach to understanding depression etiology and treatment, integrating multiple body systems into whole-body conceptualizations of this mental health affliction. Evidence supports the hypothesis that the gut microbiome, or the collective trillions of microbes inhabiting the gastrointestinal tract, is an important factor determining both the risk of development of depression and persistence of depressive symptoms. This review discusses recent advances in both rodent and human research that explore bidirectional communication between the gut microbiome and the immune, endocrine, and central nervous systems implicated in the etiology and pathophysiology of depression. Through interactions with circulating inflammatory markers and hormones, afferent and efferent neural systems, and other, more niche, pathways, the gut microbiome can affect behavior to facilitate the development of depression, exacerbate current symptoms, or contribute to treatment and resilience. While the challenge of depression may be the direst mental health crisis of our age, new discoveries in the gut microbiome, when integrated into a holistic perspective, hold great promise for the future of positive mental health.
Collapse
Affiliation(s)
- M C Flux
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Christopher A Lowry
- Department of Integrative Physiology, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine & Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA; Senior Fellow, VIVO Planetary Health, Worldwide Universities Network (WUN), West New York, NJ 07093, USA.
| |
Collapse
|
190
|
Hughes RL. A Review of the Role of the Gut Microbiome in Personalized Sports Nutrition. Front Nutr 2020; 6:191. [PMID: 31998739 PMCID: PMC6966970 DOI: 10.3389/fnut.2019.00191] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome is a key factor in determining inter-individual variability in response to diet. Thus, far, research in this area has focused on metabolic health outcomes such as obesity and type 2 diabetes. However, understanding the role of the gut microbiome in determining response to diet may also lead to improved personalization of sports nutrition for athletic performance. The gut microbiome has been shown to modify the effect of both diet and exercise, making it relevant to the athlete's pursuit of optimal performance. This area of research can benefit from recent developments in the general field of personalized nutrition and has the potential to expand our knowledge of the nexus between the gut microbiome, lifestyle, and individual physiology.
Collapse
Affiliation(s)
- Riley L. Hughes
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
191
|
Liang R, Zhang S, Peng X, Yang W, Xu Y, Wu P, Chen J, Cai Y, Zhou J. Characteristics of the gut microbiota in professional martial arts athletes: A comparison between different competition levels. PLoS One 2019; 14:e0226240. [PMID: 31881037 PMCID: PMC6934331 DOI: 10.1371/journal.pone.0226240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 11/23/2019] [Indexed: 12/27/2022] Open
Abstract
Recent evidence suggests that athletes have microbial features distinct from those of sedentary individuals. However, the characteristics of the gut microbiota in athletes competing at different levels have not been assessed. The aim of this study was to investigate whether the gut microbiome is significantly different between higher-level and lower-level athletes. Faecal microbiota communities were analysed with hypervariable tag sequencing of the V3–V4 region of the 16S rRNA gene among 28 professional martial arts athletes, including 12 higher-level and 16 lower-level athletes. The gut microbial richness and diversity (the Shannon diversity index (p = 0.019) and Simpson diversity index (p = 0.001)) were significantly higher in the higher-level athletes than in the lower-level athletes. Moreover, the genera Parabacteroides, Phascolarctobacterium, Oscillibacter and Bilophila were enriched in the higher-level athletes, whereas Megasphaera was abundant in the lower-level athletes. Interestingly, the abundance of the genus Parabacteroides was positively correlated with the amount of time participants exercised during an average week. Further analysis of the functional prediction revealed that histidine metabolism and carbohydrate metabolism pathways were markedly over-represented in the gut microbiota of the higher-level athletes. Collectively, this study provides the first insight into the gut microbiota characteristics of professional martial arts athletes. The higher-level athletes had increased diversity and higher metabolic capacity of the gut microbiome for it may positively influence athletic performance.
Collapse
Affiliation(s)
- Ru Liang
- Institute of Management, Beijing Sport University, Beijing, China
| | - Shu Zhang
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xiangji Peng
- Institute of Martial Arts and Traditional Ethnic Sports, Beijing Sport University, Beijing, China
| | - Wanna Yang
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, Beijing, China
| | - Yanwei Xu
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Ping Wu
- Realbio Genomics Institute, Shanghai, China
| | - Junhui Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Yongjiang Cai
- Health Management Center, Peking University Shenzhen Hospital, Shenzhen, China
- * E-mail: (ZJ); (CY)
| | - Jiyuan Zhou
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- * E-mail: (ZJ); (CY)
| |
Collapse
|
192
|
Jäger R, Mohr AE, Carpenter KC, Kerksick CM, Purpura M, Moussa A, Townsend JR, Lamprecht M, West NP, Black K, Gleeson M, Pyne DB, Wells SD, Arent SM, Smith-Ryan AE, Kreider RB, Campbell BI, Bannock L, Scheiman J, Wissent CJ, Pane M, Kalman DS, Pugh JN, ter Haar JA, Antonio J. International Society of Sports Nutrition Position Stand: Probiotics. J Int Soc Sports Nutr 2019; 16:62. [PMID: 31864419 PMCID: PMC6925426 DOI: 10.1186/s12970-019-0329-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of probiotic supplementation to optimize the health, performance, and recovery of athletes. Based on the current available literature, the conclusions of the ISSN are as follows: 1)Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host (FAO/WHO).2)Probiotic administration has been linked to a multitude of health benefits, with gut and immune health being the most researched applications.3)Despite the existence of shared, core mechanisms for probiotic function, health benefits of probiotics are strain- and dose-dependent.4)Athletes have varying gut microbiota compositions that appear to reflect the activity level of the host in comparison to sedentary people, with the differences linked primarily to the volume of exercise and amount of protein consumption. Whether differences in gut microbiota composition affect probiotic efficacy is unknown.5)The main function of the gut is to digest food and absorb nutrients. In athletic populations, certain probiotics strains can increase absorption of key nutrients such as amino acids from protein, and affect the pharmacology and physiological properties of multiple food components.6)Immune depression in athletes worsens with excessive training load, psychological stress, disturbed sleep, and environmental extremes, all of which can contribute to an increased risk of respiratory tract infections. In certain situations, including exposure to crowds, foreign travel and poor hygiene at home, and training or competition venues, athletes' exposure to pathogens may be elevated leading to increased rates of infections. Approximately 70% of the immune system is located in the gut and probiotic supplementation has been shown to promote a healthy immune response. In an athletic population, specific probiotic strains can reduce the number of episodes, severity and duration of upper respiratory tract infections.7)Intense, prolonged exercise, especially in the heat, has been shown to increase gut permeability which potentially can result in systemic toxemia. Specific probiotic strains can improve the integrity of the gut-barrier function in athletes.8)Administration of selected anti-inflammatory probiotic strains have been linked to improved recovery from muscle-damaging exercise.9)The minimal effective dose and method of administration (potency per serving, single vs. split dose, delivery form) of a specific probiotic strain depends on validation studies for this particular strain. Products that contain probiotics must include the genus, species, and strain of each live microorganism on its label as well as the total estimated quantity of each probiotic strain at the end of the product's shelf life, as measured by colony forming units (CFU) or live cells.10)Preclinical and early human research has shown potential probiotic benefits relevant to an athletic population that include improved body composition and lean body mass, normalizing age-related declines in testosterone levels, reductions in cortisol levels indicating improved responses to a physical or mental stressor, reduction of exercise-induced lactate, and increased neurotransmitter synthesis, cognition and mood. However, these potential benefits require validation in more rigorous human studies and in an athletic population.
Collapse
Affiliation(s)
| | - Alex E. Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ USA
| | | | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO USA
| | | | - Adel Moussa
- University of Münster, Department of Physics Education, Münster, Germany
| | - Jeremy R. Townsend
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN USA
| | - Manfred Lamprecht
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Nicholas P. West
- School of Medical Science and Menzies Health Institute of QLD, Griffith Health, Griffith University, Southport, Australia
| | - Katherine Black
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Michael Gleeson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - David B. Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2617 Australia
| | | | - Shawn M. Arent
- UofSC Sport Science Lab, Department of Exercise Science, University of South Carolina, Columbia, SC USA
| | - Abbie E. Smith-Ryan
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX USA
| | - Bill I. Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL USA
| | | | | | | | | | - Douglas S. Kalman
- Scientific Affairs. Nutrasource Diagnostics, Inc. Guelph, Guelph, Ontario Canada
| | - Jamie N. Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom St Campus, Liverpool, UK
| | | | - Jose Antonio
- Exercise and Sport Science, Nova Southeastern University, Davie, FL USA
| |
Collapse
|
193
|
Donati Zeppa S, Agostini D, Gervasi M, Annibalini G, Amatori S, Ferrini F, Sisti D, Piccoli G, Barbieri E, Sestili P, Stocchi V. Mutual Interactions among Exercise, Sport Supplements and Microbiota. Nutrients 2019; 12:nu12010017. [PMID: 31861755 PMCID: PMC7019274 DOI: 10.3390/nu12010017] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022] Open
Abstract
The adult gut microbiota contains trillions of microorganisms of thousands of different species. Only one third of gut microbiota are common to most people; the rest are specific and contribute to enhancing genetic variation. Gut microorganisms significantly affect host nutrition, metabolic function, immune system, and redox levels, and may be modulated by several environmental conditions, including physical activity and exercise. Microbiota also act like an endocrine organ and is sensitive to the homeostatic and physiological changes associated with training; in turn, exercise has been demonstrated to increase microbiota diversity, consequently improving the metabolic profile and immunological responses. On the other side, adaptation to exercise might be influenced by the individual gut microbiota that regulates the energetic balance and participates to the control of inflammatory, redox, and hydration status. Intense endurance exercise causes physiological and biochemical demands, and requires adequate measures to counteract oxidative stress, intestinal permeability, electrolyte imbalance, glycogen depletion, frequent upper respiratory tract infections, systemic inflammation and immune responses. Microbiota could be an important tool to improve overall general health, performance, and energy availability while controlling inflammation and redox levels in endurance athletes. The relationship among gut microbiota, general health, training adaptation and performance, along with a focus on sport supplements which are known to exert some influence on the microbiota, will be discussed.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Correspondence: (D.A.); (S.D.Z.); Tel.: +39-0722-303-423 (D.A.); +39-0722-303-422 (S.D.Z.); Fax: +39-0722-303-401 (D.A. & S.D.Z.)
| | - Deborah Agostini
- Correspondence: (D.A.); (S.D.Z.); Tel.: +39-0722-303-423 (D.A.); +39-0722-303-422 (S.D.Z.); Fax: +39-0722-303-401 (D.A. & S.D.Z.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Sohail MU, Elrayess MA, Al Thani AA, Al-Asmakh M, Yassine HM. Profiling the Oral Microbiome and Plasma Biochemistry of Obese Hyperglycemic Subjects in Qatar. Microorganisms 2019; 7:microorganisms7120645. [PMID: 31816998 PMCID: PMC6955820 DOI: 10.3390/microorganisms7120645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/19/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
The present study is designed to compare demographic characteristics, plasma biochemistry, and the oral microbiome in obese (N = 37) and lean control (N = 36) subjects enrolled at Qatar Biobank, Qatar. Plasma hormones, enzymes, and lipid profiles were analyzed at Hamad Medical Cooperation Diagnostic Laboratory. Saliva microbiome characterization was carried out by 16S rRNA amplicon sequencing using Illumina MiSeq platform. Obese subjects had higher testosterone and sex hormone-binding globulin (SHBG) concentrations compared to the control group. A negative association between BMI and testosterone (p < 0.001, r = −0.64) and SHBG (p < 0.001, r = −0.34) was observed. Irrespective of the study groups, the oral microbiome was predominantly occupied by Streptococcus, Prevotella, and Veillonella species. A generalized linear model revealed that the Firmicutes/Bacteroidetes ratio (2.25 ± 1.83 vs. 1.76 ± 0.58; corrected p-value = 0.04) was higher, and phylum Fusobacteria concentration (4.5 ± 3.0 vs. 6.2 ± 4.3; corrected p-value = 0.05) was low in the obese group compared with the control group. However, no differences in microbiome diversity were observed between the two groups as evaluated by alpha (Kruskal–Wallis p ≥ 0.78) and beta (PERMANOVA p = 0.37) diversity indexes. Certain bacterial phyla (Acidobacteria, Bacteroidetes, Fusobacteria, Proteobacteria, Spirochaetes, and Firmicutes/Bacteroidetes) were positively associated (p = 0.05, r ≤ +0.5) with estradiol, fast food consumption, creatinine, breastfed during infancy, triglycerides, and thyroid-stimulating hormone concentrations. In conclusion, no differences in oral microbiome diversity were observed between the studied groups. However, the Firmicutes/Bacteroidetes ratio, a recognized obesogenic microbiome trait, was higher in the obese subjects. Further studies are warranted to confirm these findings in a larger cohort.
Collapse
Affiliation(s)
- Muhammad U. Sohail
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (M.A.E.); (A.A.A.T.); (M.A.-A.)
- Correspondence: (M.U.S.); (H.M.Y.)
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (M.A.E.); (A.A.A.T.); (M.A.-A.)
| | - Asma A. Al Thani
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (M.A.E.); (A.A.A.T.); (M.A.-A.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Maha Al-Asmakh
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (M.A.E.); (A.A.A.T.); (M.A.-A.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Hadi M. Yassine
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (M.A.E.); (A.A.A.T.); (M.A.-A.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
- Correspondence: (M.U.S.); (H.M.Y.)
| |
Collapse
|
195
|
Abstract
The human microbiome has been identified as having a key role in health and numerous diseases. Trillions of microbial cells and viral particles comprise the microbiome, each representing modifiable working elements of an intricate bioactive ecosystem. The significance of the human microbiome as it relates to human biology has progressed through culture-dependent (for example, media-based methods) and, more recently, molecular (for example, genetic sequencing and metabolomic analysis) techniques. The latter have become increasingly popular and evolved from being used for taxonomic identification of microbiota to elucidation of functional capacity (sequencing) and metabolic activity (metabolomics). This review summarises key elements of the human microbiome and its metabolic capabilities within the context of health and disease.
Collapse
Affiliation(s)
- Wiley Barton
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61C996, Ireland.,APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, T12YT20, Ireland.,VistaMilk SFI Research Centre, Teagasc, Moorepark, Fermoy, Cork, P61C996, Ireland
| | - Orla O'Sullivan
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61C996, Ireland.,APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, T12YT20, Ireland.,VistaMilk SFI Research Centre, Teagasc, Moorepark, Fermoy, Cork, P61C996, Ireland
| | - Paul D Cotter
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61C996, Ireland.,APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, T12YT20, Ireland.,VistaMilk SFI Research Centre, Teagasc, Moorepark, Fermoy, Cork, P61C996, Ireland
| |
Collapse
|
196
|
Huang WC, Lee MC, Lee CC, Ng KS, Hsu YJ, Tsai TY, Young SL, Lin JS, Huang CC. Effect of Lactobacillus plantarum TWK10 on Exercise Physiological Adaptation, Performance, and Body Composition in Healthy Humans. Nutrients 2019; 11:nu11112836. [PMID: 31752370 PMCID: PMC6893516 DOI: 10.3390/nu11112836] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022] Open
Abstract
Probiotics have been rapidly developed for health promotion, but clinical validation of the effects on exercise physiology has been limited. In a previous study, Lactobacillus plantarum TWK10 (TWK10), isolated from Taiwanese pickled cabbage as a probiotic, was demonstrated to improve exercise performance in an animal model. Thus, in the current study, we attempted to further validate the physiological function and benefits through clinical trials for the purpose of translational research. The study was designed as a double-blind placebo-controlled experiment. A total of 54 healthy participants (27 men and 27 women) aged 20–30 years without professional athletic training were enrolled and randomly allocated to the placebo, low (3 × 1010 colony forming units (CFU)), and high dose (9 × 1010 CFU) TWK10 administration groups (n = 18 per group, with equal sexes). The functional and physiological assessments were conducted by exhaustive treadmill exercise measurements (85% VO2max), and related biochemical indices were measured before and after six weeks of administration. Fatigue-associated indices, including lactic acid, blood ammonia, blood glucose, and creatinine kinase, were continuously monitored during 30 min of exercise and a 90 min rest period using fixed intensity exercise challenges (60% VO2max) to understand the physiological adaptation. The systemic inflammation and body compositions were also acquired and analyzed during the experimental process. The results showed that TWK10 significantly elevated the exercise performance in a dose-dependent manner and improved the fatigue-associated features correlated with better physiological adaptation. The change in body composition shifted in the healthy direction for TWK10 administration groups, especially for the high TWK10 dose group, which showed that body fat significantly decreased and muscle mass significantly increased. Taken together, our results suggest that TWK10 has the potential to be an ergogenic aid to improve aerobic endurance performance via physiological adaptation effects.
Collapse
Affiliation(s)
- Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan;
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan; (M.-C.L.); (Y.-J.H.)
| | - Chia-Chia Lee
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan; (C.-C.L.); (K.-S.N.); (S.-L.Y.)
| | - Ker-Sin Ng
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan; (C.-C.L.); (K.-S.N.); (S.-L.Y.)
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan; (M.-C.L.); (Y.-J.H.)
| | - Tsung-Yu Tsai
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - San-Land Young
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan; (C.-C.L.); (K.-S.N.); (S.-L.Y.)
| | - Jin-Seng Lin
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 82151, Taiwan; (C.-C.L.); (K.-S.N.); (S.-L.Y.)
- Correspondence: (J.-S.L.); (C.-C.H.); Tel.: +886-7-6955680 (J.-S.L.); +886-3-3283201 (ext. 2409) (C.-C.H.)
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan; (M.-C.L.); (Y.-J.H.)
- Correspondence: (J.-S.L.); (C.-C.H.); Tel.: +886-7-6955680 (J.-S.L.); +886-3-3283201 (ext. 2409) (C.-C.H.)
| |
Collapse
|
197
|
Chen D, Xiao C, Jin H, Yang B, Niu J, Yan S, Sun Y, Zhou Y, Wang X. Exposure to atmospheric pollutants is associated with alterations of gut microbiota in spontaneously hypertensive rats. Exp Ther Med 2019; 18:3484-3492. [PMID: 31602224 PMCID: PMC6777218 DOI: 10.3892/etm.2019.7934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
Atmospheric particulate matter with a diameter <2.5 µm (PM2.5) and pollution are worldwide environmental problems and may have negative effects on cardiovascular disease through the lung and gut. The dynamics of intestinal microflora in response to particulate pollutants is unclear. The present study investigated changes in the gut microbiota related to pollutant exposure using spontaneously hypertensive rats (SHR). DNA was extracted from fecal samples. Amplicon Generation and the quality control of PCR products were performed. PCR products was sequenced on an Illumina HiSeq 2500 platform. Data analysis included: operational taxonomic unit (OTU) clustering and species annotation, alpha diversity, beta diversity, principal coordinates analysis (PCoA), and the use of PICRUSt bioinformatics software. The microbial diversity of the SHR rats was inversely associated with exposure to pollutants. In terms of relative abundance, 24 bacterial genera and 2 genera in particular (Actinobacillus and Fusobacterium) significantly declined, and one genus (Treponema) increased. Moreover, pollutant exposure was associated with the accumulation of genes from the gut microbiota that are implicated in cardiovascular diseases. From the long-term exposure experiment, rats appeared to respond to pollutant injury. In conclusion, these results suggest that the effects of atmospheric pollutants on organisms are not limited to the respiratory tract, but also include the gastrointestinal tract. Pollutants are likely to influence the intestinal microbiota and promote the progression of cardiovascular disease.
Collapse
Affiliation(s)
- Dongmei Chen
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chunling Xiao
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Huanrong Jin
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Biao Yang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiayu Niu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Siyuan Yan
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ye Sun
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuan Zhou
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiangming Wang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
198
|
Shin HE, Kwak SE, Lee JH, Zhang D, Bae JH, Song W. Exercise, the Gut Microbiome, and Frailty. Ann Geriatr Med Res 2019; 23:105-114. [PMID: 32743298 PMCID: PMC7370771 DOI: 10.4235/agmr.19.0014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/13/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022] Open
Abstract
The gut microbiome is deeply associated with both skeletal muscle and brain function. In particular, gut microbiome dysbiosis may accelerate age-related diseases by affecting these systems. Although there is increasing evidence of the correlations between the gut microbiome and skeletal muscle and brain, it remains unclear whether changes in the gut microbiome due to exercise training can lead to healthy aging. This review covers the current status of gut microbiome-related research and future directions related to aging (e.g., physical frailty and cognitive dysfunction) as well as the effect of exercise training on both. We reviewed relevant literature including original articles and reviews identified from searches of the PubMed, Google Scholar, SCOPUS, EBSCOHost, ScienceDirect, Cochrane Library, and EMBASE databases using the following terms: 'gut microbiome', 'exercise', 'physical frailty', and 'cognitive dysfunction'. We identified a strong positive correlation between cognitive dysfunction or physical frailty and the gut microbiome. Furthermore, exercise had a significant effect on the composition of the gut microbiome. These results suggest that exercise training can prevent physical frailty or cognitive dysfunction by altering the gut microbiome. However, the exact mechanism by which these effects occur is not yet clear. Further studies are needed to determine whether exercise training can prevent age-related diseases by balancing the gut microbiome.
Collapse
Affiliation(s)
- Hyung Eun Shin
- Health and Exercise Science Laboratory, Seoul National University, Seoul, Korea
| | - Seong Eun Kwak
- Health and Exercise Science Laboratory, Seoul National University, Seoul, Korea
| | - Ji-Hyun Lee
- Health and Exercise Science Laboratory, Seoul National University, Seoul, Korea
| | - Didi Zhang
- Health and Exercise Science Laboratory, Seoul National University, Seoul, Korea
| | - Jun Hyun Bae
- Health and Exercise Science Laboratory, Seoul National University, Seoul, Korea
| | - Wook Song
- Health and Exercise Science Laboratory, Seoul National University, Seoul, Korea.,Institute of Sport Science, Seoul National University, Seoul, Korea.,Institue on Aging, Seoul National University, Seoul, Korea
| |
Collapse
|
199
|
Wosinska L, Cotter PD, O'Sullivan O, Guinane C. The Potential Impact of Probiotics on the Gut Microbiome of Athletes. Nutrients 2019; 11:E2270. [PMID: 31546638 PMCID: PMC6835687 DOI: 10.3390/nu11102270] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/05/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022] Open
Abstract
There is accumulating evidence that physical fitness influences the gut microbiome and as a result, promotes health. Indeed, exercise-induced alterations in the gut microbiome can influence health parameters crucial to athletic performance, specifically, immune function, lower susceptibility to infection, inflammatory response and tissue repair. Consequently, maintenance of a healthy gut microbiome is essential for an athlete's health, training and performance. This review explores the effect of exercise on the microbiome while also investigating the effect of probiotics on various potential consequences associated with over-training in athletes, as well as their associated health benefits.
Collapse
Affiliation(s)
- Laura Wosinska
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland.
- APC Microbiome Ireland, T12 YT20 Cork, Ireland.
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland.
- APC Microbiome Ireland, T12 YT20 Cork, Ireland.
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland.
- APC Microbiome Ireland, T12 YT20 Cork, Ireland.
| | - Caitriona Guinane
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland.
| |
Collapse
|
200
|
Villéger R, Lopès A, Carrier G, Veziant J, Billard E, Barnich N, Gagnière J, Vazeille E, Bonnet M. Intestinal Microbiota: A Novel Target to Improve Anti-Tumor Treatment? Int J Mol Sci 2019; 20:4584. [PMID: 31533218 PMCID: PMC6770123 DOI: 10.3390/ijms20184584] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022] Open
Abstract
Recently, preclinical and clinical studies targeting several types of cancer strongly supported the key role of the gut microbiota in the modulation of host response to anti-tumoral therapies such as chemotherapy, immunotherapy, radiotherapy and even surgery. Intestinal microbiome has been shown to participate in the resistance to a wide range of anticancer treatments by direct interaction with the treatment or by indirectly stimulating host response through immunomodulation. Interestingly, these effects were described on colorectal cancer but also in other types of malignancies. In addition to their role in therapy efficacy, gut microbiota could also impact side effects induced by anticancer treatments. In the first part of this review, we summarized the role of the gut microbiome on the efficacy and side effects of various anticancer treatments and underlying mechanisms. In the second part, we described the new microbiota-targeting strategies, such as probiotics and prebiotics, antibiotics, fecal microbiota transplantation and physical activity, which could be effective adjuvant therapies developed in order to improve anticancer therapeutic efficiency.
Collapse
Affiliation(s)
- Romain Villéger
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH) UMR 1071 Inserm/Université Clermont Auvergne, USC-INRA 2018, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
| | - Amélie Lopès
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH) UMR 1071 Inserm/Université Clermont Auvergne, USC-INRA 2018, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
- Biologics Research, Sanofi R&D, 94400 Vitry-Sur-Seine, France.
| | - Guillaume Carrier
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH) UMR 1071 Inserm/Université Clermont Auvergne, USC-INRA 2018, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
- Surgical Oncology Department, Institut du Cancer de Montpellier (ICM), Univ Montpellier, 34298 Montpellier, France.
| | - Julie Veziant
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH) UMR 1071 Inserm/Université Clermont Auvergne, USC-INRA 2018, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
- Service de Chirurgie Digestive, CHU Clermont-Ferrand, Inserm, Université Clermont Auvergne, 63003 Clermont-Ferrand, France.
- 3iHP, CHU Clermont-Ferrand, Inserm, Université Clermont Auvergne, 63003 Clermont-Ferrand, France.
| | - Elisabeth Billard
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH) UMR 1071 Inserm/Université Clermont Auvergne, USC-INRA 2018, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
| | - Nicolas Barnich
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH) UMR 1071 Inserm/Université Clermont Auvergne, USC-INRA 2018, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
| | - Johan Gagnière
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH) UMR 1071 Inserm/Université Clermont Auvergne, USC-INRA 2018, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
- Service de Chirurgie Digestive, CHU Clermont-Ferrand, Inserm, Université Clermont Auvergne, 63003 Clermont-Ferrand, France.
- 3iHP, CHU Clermont-Ferrand, Inserm, Université Clermont Auvergne, 63003 Clermont-Ferrand, France.
| | - Emilie Vazeille
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH) UMR 1071 Inserm/Université Clermont Auvergne, USC-INRA 2018, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
- 3iHP, CHU Clermont-Ferrand, Inserm, Université Clermont Auvergne, 63003 Clermont-Ferrand, France.
- Service d'Hépato-gastro-entérologie, CHU Clermont-Ferrand, Inserm, Université Clermont Auvergne, 63003 Clermont-Ferrand, France.
| | - Mathilde Bonnet
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH) UMR 1071 Inserm/Université Clermont Auvergne, USC-INRA 2018, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
| |
Collapse
|