151
|
Liu Y, Yu G, Zhang R, Feng L, Zhang J. Early life exposure to low-dose perfluorooctane sulfonate disturbs gut barrier homeostasis and increases the risk of intestinal inflammation in offspring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121708. [PMID: 37100370 DOI: 10.1016/j.envpol.2023.121708] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023]
Abstract
Perfluorooctane sulfonate (PFOS), one of the legacy per- and poly-fluoroalkyl substances (PFAS), is associated with multiple adverse health effects on children. However, much remains to be known about its potential impacts on intestinal immune homeostasis during early life. Our study found that PFOS exposure during pregnancy in rats significantly increased the maternal serum levels of interleukin-6 (IL-6) and zonulin, a gut permeability biomarker, and decreased gene expressions of Tight junction protein 1 (Tjp1) and Claudin-4 (Cldn4), the tight junction proteins, in maternal colons on gestation day 20 (GD20). Being exposed to PFOS during pregnancy and lactation in rats significantly decreased the body weight of pups and increased the offspring's serum levels of IL-6 and tumor necrosis factor-α (TNF-α) on postnatal day 14 (PND14), and induced a disrupted gut tight junction, manifested by decreased expressions of Tjp1 in pup's colons on PND14 and increased pup's serum concentrations of zonulin on PND28. By integrating high-throughput 16S rRNA sequencing and metabolomics, we demonstrated that early-life PFOS exposure altered the diversity and composition of gut microbiota that were correlated with the changed metabolites in serum. The altered blood metabolome was associated with increased proinflammatory cytokines in offspring. These changes and correlations were divergent at each developmental stage, and pathways underlying immune homeostasis imbalance were significantly enriched in the PFOS-exposed gut. Our findings provide new evidence for the developmental toxicity of PFOS and its underlying mechanism and explain in part the epidemiological observation of its immunotoxicity.
Collapse
Affiliation(s)
- Yongjie Liu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai, 200233, PR China
| | - Guoqi Yu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ruiyuan Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Liping Feng
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
152
|
Tian E, Wang F, Zhao L, Sun Y, Yang J. The pathogenic role of intestinal flora metabolites in diabetic nephropathy. Front Physiol 2023; 14:1231621. [PMID: 37469558 PMCID: PMC10352811 DOI: 10.3389/fphys.2023.1231621] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
With the increasing incidence of diabetes, diabetic kidney disease has become a major cause of chronic kidney disease. The role of the gut microbiota in diabetes and its related complications have been extensively investigated; the modulatory effect of the gut microbiota on the host depends on several gut microbial metabolites, particularly short-chain fatty acids, secondary bile acids, and trimethylamine N-oxide. In this review, we focused on the evidence related to the pathogenic role of each of the gut microbial metabolites in diabetic nephropathy. The main novel therapies targeting the gut microbiota include probiotics, dietary prebiotics, synbiotic supplements, and faecal microbiota transplants, although there is no standard treatment principle. Further research is therefore needed to elucidate the link between gut microbes and diabetic nephropathy, and more therapeutic targets should be explored to treat diabetic nephropathy with dysbiosis of the gut microbes.
Collapse
Affiliation(s)
- En Tian
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Wang
- Beibei Traditional Chinese Medicine Hospital, Chongqing, China
| | - Lei Zhao
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Sun
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jurong Yang
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
153
|
Fan Q, Du E, Chen F, Tao W, Zhao N, Huang S, Guo W, Huang J, Wei J. Maternal Magnolol Supplementation during Pregnancy and Lactation Promotes Antioxidant Capacity, Improves Gut Health, and Alters Gut Microbiota and Metabolites of Weanling Piglets. Metabolites 2023; 13:797. [PMID: 37512505 PMCID: PMC10383630 DOI: 10.3390/metabo13070797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Maternal nutrition exerts a profound effect on the postnatal performance of offspring, especially during the weaning period. The multifunctional bioactive component magnolol (MAG) has shown promise as a dietary supplement. This study aimed to explore the effects of maternal MAG supplementation on the antioxidant capacity, gut health, gut microbiome, and metabolome composition of weanling piglets. Fifty pregnant sows were randomly divided into two equally sized groups, the control group and the group supplemented with 100 g/t MAG during the gestation and lactation periods, and 7 days postweaning, the pups were euthanized. The microbiome and metabolome features of weanling piglet colons were compared. Our results revealed that maternal MAG supplementation modified the serum redox status of weanling piglets by decreasing malondialdehyde concentration and increasing superoxide dismutase activity and total antioxidant capacity. Moreover, the decreased indicators of diarrhea were accompanied by improved gut barrier function, in which serum diamine oxidase concentration was decreased, and expressions of zona occludens-1, claudin-1, and intestinal alkaline phosphatase were increased in the colon of weanling piglets from sows supplemented with MAG. Further analysis of the gut microbiota indicated that maternal MAG supplementation significantly increased the relative abundance of beneficial bacteria in the colon of weanling piglets, including Faecalibacterium prausnitzii and Oscillospira. Metabolome analysis identified 540 differential metabolites in the colon of piglets from MAG-fed dams, of which glycerophospholipid classes were highly correlated with progeny gut health and key beneficial bacteria. Our findings indicated that maternal MAG supplementation can improve the oxidative status and gut health of weanling piglets, possibly due to alterations in the gut microbiota and metabolites.
Collapse
Affiliation(s)
- Qiwen Fan
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan 430064, China
| | - Encun Du
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan 430064, China
| | - Fang Chen
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan 430064, China
| | - Wenjing Tao
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan 430064, China
| | - Na Zhao
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan 430064, China
| | - Shaowen Huang
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan 430064, China
| | - Wanzheng Guo
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan 430064, China
| | - Jing Huang
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan 430064, China
| | - Jintao Wei
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan 430064, China
| |
Collapse
|
154
|
Toro-Ascuy D, Cárdenas JP, Zorondo-Rodríguez F, González D, Silva-Moreno E, Puebla C, Nunez-Parra A, Reyes-Cerpa S, Fuenzalida LF. Microbiota Profile of the Nasal Cavity According to Lifestyles in Healthy Adults in Santiago, Chile. Microorganisms 2023; 11:1635. [PMID: 37512807 PMCID: PMC10384449 DOI: 10.3390/microorganisms11071635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The respiratory microbiome is dynamic, varying between anatomical niches, and it is affected by various host and environmental factors, one of which is lifestyle. Few studies have characterized the upper respiratory tract microbiome profile according to lifestyle. We explored the association between lifestyles and microbiota profiles in the upper respiratory tract of healthy adults. METHODS We analyzed nasal samples from 110 healthy adults who were living in Santiago, Chile, using 16S ribosomal RNA gene-sequencing methods. Volunteers completed a structured questionnaire about lifestyle. RESULTS The composition and abundance of taxonomic groups varied across lifestyle attributes. Additionally, multivariate models suggested that alpha diversity varied in the function of physical activity, nutritional status, smoking, and the interaction between nutritional status and smoking, although the significant impact of those variables varied between women and men. Although physical activity and nutritional status were significantly associated with all indexes of alpha diversity among women, the diversity of microbiota among men was associated with smoking and the interaction between nutritional status and smoking. CONCLUSIONS The alpha diversity of nasal microbiota is associated with lifestyle attributes, but these associations depend on sex and nutritional status. Our results suggest that future studies of the airway microbiome may provide a better resolution if data are stratified for differences in sex and nutritional status.
Collapse
Affiliation(s)
- Daniela Toro-Ascuy
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Juan P Cárdenas
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Francisco Zorondo-Rodríguez
- Departamento de Gestión Agraria, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago 8910060, Chile
| | - Damariz González
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Evelyn Silva-Moreno
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Carlos Puebla
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Alexia Nunez-Parra
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Loreto F Fuenzalida
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| |
Collapse
|
155
|
Chen Q, Fan Y, Zhang B, Yan C, Zhang Q, Ke Y, Chen Z, Wang L, Shi H, Hu Y, Huang Q, Su J, Xie C, Zhang X, Zhou L, Ren J, Xu H. Capsulized Fecal Microbiota Transplantation Induces Remission in Patients with Ulcerative Colitis by Gut Microbial Colonization and Metabolite Regulation. Microbiol Spectr 2023; 11:e0415222. [PMID: 37093057 PMCID: PMC10269780 DOI: 10.1128/spectrum.04152-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Fecal microbiota transplantation (FMT) can induce clinical remission in ulcerative colitis (UC) patients. Enemas, nasoduodenal tubes, and colonoscopies are the most common routes for FMT administration. However, there is a lack of definitive evidence regarding the effectiveness of capsulized FMT treatment in UC patients. In this study, we administered capsulized FMT to 22 patients with active UC to assess the efficiency of capsulized FMT and determine the specific bacteria and metabolite factors associated with the response to clinical remission. Our results showed that the use of capsulized FMT was successful in the treatment of UC patients. Capsulized FMT induced clinical remission and clinical response in 57.1% (12 of 21) and 76.2% (16 of 21) of UC patients, respectively. Gut bacterial richness was increased after FMT in patients who achieved remission. Patients in remission after FMT exhibited enrichment of Alistipes sp. and Odoribacter splanchnicus, along with increased levels of indolelactic acid. Patients who did not achieve remission exhibited enrichment of Escherichia coli and Klebsiella and increased levels of biosynthesis of 12,13-DiHOME (12,13-dihydroxy-9Z-octadecenoic acid) and lipopolysaccharides. Furthermore, we identified a relationship between specific bacteria and metabolites and the induction of remission in patients. These findings may provide new insights into FMT in UC treatment and provide reference information about therapeutic microbial manipulation of FMT to enhance its effects. (This study has been registered at ClinicalTrails.gov under registration no. NCT03426683). IMPORTANCE Fecal microbiota transplantation has been successfully used in patients. Recently, capsulized FMT was reported to induce a response in patients with UC. However, limited patients were enrolled in such studies, and the functional factors of capsulized FMT have not been reported in the remission of patients with UC. In this study, we prospectively recruited patients with UC to receive capsulized FMT. First, we found that capsulized FMT could induce clinical remission in 57.1% of patients and clinical response in 76.2% after 12 weeks, which was more acceptable. Second, we found a relationship between the decrease of opportunistic pathogen and lipopolysaccharide synthesis in patients in remission after capsulized FMT. We also identified an association between specific bacteria and metabolites and remission induction in patients after capsulized FMT. These findings put forward a possibility for patients to receive FMT at home and provide reference information about therapeutic microbial manipulation of FMT to enhance its effects.
Collapse
Affiliation(s)
- Qiongyun Chen
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Yanyun Fan
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bangzhou Zhang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Changsheng Yan
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Qiang Zhang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuhao Ke
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhangran Chen
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Wang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Huaxiu Shi
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yiqun Hu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qingwen Huang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jingling Su
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Chenxi Xie
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xu Zhang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lixiang Zhou
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianlin Ren
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Zhongshan Hospital of Xiamen University, Xiamen, China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Hongzhi Xu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Zhongshan Hospital of Xiamen University, Xiamen, China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
156
|
Jia PP, Chandrajith R, Junaid M, Li TY, Li YZ, Wei XY, Liu L, Pei DS. Elucidating environmental factors and their combined effects on CKDu in Sri Lanka using zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121967. [PMID: 37290634 DOI: 10.1016/j.envpol.2023.121967] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Chronic kidney disease with uncertain etiology (CKDu) in Sri Lanka has attracted much attention as a global health issue. However, how environmental factors in local drinking water induce kidney damage in organisms is still elusive. We investigated multiple environmental factors including water hardness and fluoride (HF), heavy metals (HM), microcystin-LR (MC-LR), and their combined exposure (HFMM) to elucidate their toxic effects on CKDu risk in zebrafish. Acute exposure affected renal development and inhibited the fluorescence of Na, K-ATPase alpha1A4:GFP zebrafish kidney. Chronic exposure influenced the body weight of both genders of adult fish and induced kidney damage by histopathological analyses. Furthermore, the exposure significantly disturbed differential expression genes (DEGs), diversity and richness of gut microbiota, and critical metabolites related to renal functions. The transcriptomic analysis revealed that kidney-related DEGs were linked with renal cell carcinoma, proximal tubule bicarbonate reclamation, calcium signaling pathway, and HIF-1 signaling pathway. The significantly disrupted intestinal microbiota was closely related to the environmental factors and H&E score, which demonstrated the mechanisms of kidney risks. Notably, the Spearman correlation analysis indicated that the changed bacteria such as Pseudomonas, Paracoccus, and ZOR0006, etc were significantly connected to the DEGs and metabolites. Therefore, the assessment of multiple environmental factors provided new insights on "bio-markers" as potential therapies of the target signaling pathways, metabolites, and gut bacteria to monitor or protect residents from CKDu.
Collapse
Affiliation(s)
- Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Rohana Chandrajith
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Department of Geology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Muhammad Junaid
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Tian-Yun Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yong-Zhi Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xing-Yi Wei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Li Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
157
|
Abstract
Peritoneal fibrosis is an important cause of peritoneal dialysis (PD) discontinuation worldwide and is associated with high morbidity and mortality rate. Although the era of metagenomics has provided new insights into the interactions between the gut microbiota and fibrosis in various organs and tissues, its role in peritoneal fibrosis has rarely been discussed. This review provides a scientific rationale and points out the potential role of gut microbiota in peritoneal fibrosis. In addition, the interaction between the gut, circulatory, and peritoneal microbiota is highlighted, with an emphasis on the relationship to PD outcomes. More research is needed to elucidate the mechanisms underlying the role of gut microbiota in peritoneal fibrosis and potentially unveil new target options for the management of PD technique failure.
Collapse
Affiliation(s)
- Natalia Stepanova
- Department of Nephrology and Dialysis, State Institution “Institute of Nephrology of the National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine
| |
Collapse
|
158
|
Zhu N, Duan H, Feng Y, Xu W, Shen J, Wang K, Liu J. Magnesium lithospermate B ameliorates diabetic nephropathy by suppressing the uremic toxin formation mediated by gut microbiota. Eur J Pharmacol 2023:175812. [PMID: 37245856 DOI: 10.1016/j.ejphar.2023.175812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Diabetic nephropathy (DN) is a major cause of renal failure and urgently necessitates new therapeutic strategies. Magnesium lithospermate B (MLB) showed a good protective effect on kidney injure by oral administration, despite its extremely low bioavailability. The current study aimed to investigate its gut microbiota-targeted mechanism to explain the paradoxical properties of pharmacodynamics and pharmacokinetics. Here we show that MLB alleviated DN by recovering the dysfunction of gut microbiota and their associated metabolites in colon content, such as short-chain fatty acids and amino acids. Moreover, MLB significantly decreased uremic toxin levels in plasma, especially the p-cresyl sulfate. We further discovered that MLB could affect the metabolism of p-cresyl sulfate by suppressing the formation of its intestinal precursors, i.e. the microbiota-mediated conversion from 4-hydroxyphenylacetate to p-cresol. In addition, the inhibition effects of MLB were confirmed. MLB and its metabolite danshensu exhibited inhibitory effects on p-cresol formation mediated by three strains belonging to the genus Clostridium, Bifidobacterium, and Fusobacterium, respectively. Meanwhile, MLB decreased the levels of p-cresyl sulfate in plasma and p-cresol in feces caused by rectal administration of tyrosine in mice. To summarize, the results indicated that MLB ameliorated DN through modulating gut microbiota-associated p-cresyl sulfate metabolism. Together, this study provides new insights on the microbiota-targeted mechanism of MLB in intervening DN and a new strategy in lowering plasma uremic toxins by blocking the formation of their precursors in intestine.
Collapse
Affiliation(s)
- Nanlin Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Haonan Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Yingying Feng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Wenwei Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Kai Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China.
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310058, PR China.
| |
Collapse
|
159
|
Liang Y, Xie R, Xiong X, Hu Z, Mao X, Wang X, Zhang J, Sun P, Yue Z, Wang W, Zhang G. Alterations of nasal microbiome in eosinophilic chronic rhinosinusitis. J Allergy Clin Immunol 2023; 151:1286-1295.e2. [PMID: 36736796 DOI: 10.1016/j.jaci.2022.11.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 10/16/2022] [Accepted: 11/04/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Exposure to microbes may be important in the development of chronic rhinosinusitis (CRS). Dysbiosis of the nasal microbiome is considered to be related to CRS with nasal polyps (CRSwNP). The link between the nasal microbiota and eosinophilic CRSwNP (eCRSwNP) has rarely been studied. OBJECTIVE The aim of this study was to rigorously characterize nasal dysbiosis in a cohort of patients with eCRSwNP and compare the nasal microbiomes of these patients with those of healthy controls (HCs). METHODS We performed a cross-sectional study of 34 patients with eCRSwNP, 10 patients without CRSwNP, and 44 HCs by using 16S rRNA gene sequencing. An independent cohort of 14 patients with eCRSwNP, 9 patients without CRSwNP, and 11 HCs was used to validate the results. RESULTS Compared with the nasal microbiome of healthy controls, the nasal microbiome of patients with eCRSwNP was characterized by higher α-diversity (Shannon and Chao1 index) and a distinct composition of microbes. Notably, the distinct differences in microbial composition between patients with eCRSwNP and HCs were significantly correlated with eCRSwNP disease status. Furthermore, in a diagnostic model generated by using these differences, a combination of 15 genera could be used to distinguish patients with eCRSwNP from HCs, with an area under the curve of approximately 0.8 in both the exploration and validation cohorts. CONCLUSION Our study establishes the compositional alterations in the nasal microbiome in eCRSwNP and suggests the potential for using the nasal microbiota as a noninvasive predictive classifier for the diagnosis of eCRSwNP.
Collapse
Affiliation(s)
- Yibo Liang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin, China; Institute of Otolaryngology of Tianjin, Tianjin, China; Key Laboratory of Auditory Speech and Balance Medicine, Tianjin; Key Medical Discipline of Tianjin (Otolaryngology), Tianjin, China; Quality Control Centre of Otolaryngology, Tianjin, China
| | - Runxiang Xie
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Xiong
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin, China; Institute of Otolaryngology of Tianjin, Tianjin, China; Key Laboratory of Auditory Speech and Balance Medicine, Tianjin; Key Medical Discipline of Tianjin (Otolaryngology), Tianjin, China; Quality Control Centre of Otolaryngology, Tianjin, China
| | - Zhanjun Hu
- Department of Pathology, Tianjin First Central Hospital, Tianjin, China
| | - Xiang Mao
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin, China; Institute of Otolaryngology of Tianjin, Tianjin, China; Key Laboratory of Auditory Speech and Balance Medicine, Tianjin; Key Medical Discipline of Tianjin (Otolaryngology), Tianjin, China; Quality Control Centre of Otolaryngology, Tianjin, China
| | - Xiaoyu Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin, China; Institute of Otolaryngology of Tianjin, Tianjin, China; Key Laboratory of Auditory Speech and Balance Medicine, Tianjin; Key Medical Discipline of Tianjin (Otolaryngology), Tianjin, China; Quality Control Centre of Otolaryngology, Tianjin, China
| | - Jinmei Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin, China; Institute of Otolaryngology of Tianjin, Tianjin, China; Key Laboratory of Auditory Speech and Balance Medicine, Tianjin; Key Medical Discipline of Tianjin (Otolaryngology), Tianjin, China; Quality Control Centre of Otolaryngology, Tianjin, China
| | - Peiyong Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin, China; Institute of Otolaryngology of Tianjin, Tianjin, China; Key Laboratory of Auditory Speech and Balance Medicine, Tianjin; Key Medical Discipline of Tianjin (Otolaryngology), Tianjin, China; Quality Control Centre of Otolaryngology, Tianjin, China
| | - Zhenzhong Yue
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin, China; Institute of Otolaryngology of Tianjin, Tianjin, China; Key Laboratory of Auditory Speech and Balance Medicine, Tianjin; Key Medical Discipline of Tianjin (Otolaryngology), Tianjin, China; Quality Control Centre of Otolaryngology, Tianjin, China
| | - Wei Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin, China; Institute of Otolaryngology of Tianjin, Tianjin, China; Key Laboratory of Auditory Speech and Balance Medicine, Tianjin; Key Medical Discipline of Tianjin (Otolaryngology), Tianjin, China; Quality Control Centre of Otolaryngology, Tianjin, China
| | - Guimin Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin, China; Institute of Otolaryngology of Tianjin, Tianjin, China; Key Laboratory of Auditory Speech and Balance Medicine, Tianjin; Key Medical Discipline of Tianjin (Otolaryngology), Tianjin, China; Quality Control Centre of Otolaryngology, Tianjin, China.
| |
Collapse
|
160
|
Feng Y, Zhang M, Liu Y, Yang X, Wei F, Jin X, Liu D, Guo Y, Hu Y. Quantitative microbiome profiling reveals the developmental trajectory of the chicken gut microbiota and its connection to host metabolism. IMETA 2023; 2:e105. [PMID: 38868437 PMCID: PMC10989779 DOI: 10.1002/imt2.105] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 06/14/2024]
Abstract
Revealing the assembly and succession of the chicken gut microbiota is critical for a better understanding of its role in chicken physiology and metabolism. However, few studies have examined dynamic changes of absolute chicken gut microbes using the quantitative microbiome profiling (QMP) method. Here, we revealed the developmental trajectory of the broiler chicken gut bacteriome and mycobiome by combining high-throughput sequencing with a microbial load quantification assay. We showed that chicken gut microbiota abundance and diversity reached a plateau at 7 days posthatch (DPH), forming segment-specific community types after 1 DPH. The bacteriome was more impacted by deterministic processes, and the mycobiome was more affected by stochastic processes. We also observed stage-specific microbes in different gut segments, and three microbial occurrence patterns including "colonization," "disappearance," and "core" were defined. The microbial co-occurrence networks were very different among gut segments, with more positive associations than negative associations. Furthermore, we provided links between the absolute changes in chicken gut microbiota and their serum metabolite variations. Time-course untargeted metabolomics revealed six metabolite clusters with different changing patterns of abundance. The foregut microbiota had more connections with chicken serum metabolites, and the gut microbes were closely related to chicken lipid and amino acid metabolism. The present study provided a full landscape of chicken gut microbiota development in a quantitative manner, and the associations between gut microbes and chicken serum metabolites further highlight the impact of gut microbiota in chicken growth and development.
Collapse
Affiliation(s)
- Yuqing Feng
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Meihong Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Xinyue Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Fuxiao Wei
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
161
|
Abstract
Homeostasis is a prerequisite for health. When homeostasis becomes disrupted, dysfunction occurs. This is especially the case for the gut microbiota, which under normal conditions lives in symbiosis with the host. As there are as many microbial cells in and on our body as human cells, it is unlikely they would not contribute to health or disease. The gut bacterial metabolism generates numerous beneficial metabolites but also uremic toxins and their precursors, which are transported into the circulation. Barrier function in the intestine, the heart, and the kidneys regulates metabolite transport and concentration and plays a role in inter-organ and inter-organism communication via small molecules. This communication is analyzed from the perspective of the remote sensing and signaling theory, which emphasizes the role of a large network of multispecific, oligospecific, and monospecific transporters and enzymes in regulating small-molecule homeostasis. The theory provides a systems biology framework for understanding organ cross talk and microbe-host communication involving metabolites, signaling molecules, nutrients, antioxidants, and uremic toxins. This remote small-molecule communication is critical for maintenance of homeostasis along the gut-heart-kidney axis and for responding to homeostatic perturbations. Chronic kidney disease is characterized by gut dysbiosis and accumulation of toxic metabolites. This slowly impacts the body, affecting the cardiovascular system and contributing to the progression of kidney dysfunction, which in its turn influences the gut microbiota. Preserving gut homeostasis and barrier functions or restoring gut dysbiosis and dysfunction could be a minimally invasive way to improve patient outcomes and quality of life in many diseases, including cardiovascular and kidney disease.
Collapse
Affiliation(s)
- Griet Glorieux
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Gent, Belgium (G.G., R.V., F.V.)
| | - Sanjay K Nigam
- Department of Pediatrics (S.K.N.), University of California San Diego, La Jolla, CA
- Division of Nephrology, Department of Medicine (S.K.N.), University of California San Diego, La Jolla, CA
| | - Raymond Vanholder
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Gent, Belgium (G.G., R.V., F.V.)
| | - Francis Verbeke
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Gent, Belgium (G.G., R.V., F.V.)
| |
Collapse
|
162
|
Randall DW, Kieswich J, Hoyles L, McCafferty K, Curtis M, Yaqoob MM. Gut Dysbiosis in Experimental Kidney Disease: A Meta-Analysis of Rodent Repository Data. J Am Soc Nephrol 2023; 34:533-553. [PMID: 36846952 PMCID: PMC10103368 DOI: 10.1681/asn.0000000000000071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/05/2022] [Indexed: 02/05/2023] Open
Abstract
SIGNIFICANCE STATEMENT Alterations in gut microbiota contribute to the pathophysiology of a diverse range of diseases, leading to suggestions that chronic uremia may cause intestinal dysbiosis that contributes to the pathophysiology of CKD. Various small, single-cohort rodent studies have supported this hypothesis. In this meta-analysis of publicly available repository data from studies of models of kidney disease in rodents, cohort variation far outweighed any effect of experimental kidney disease on the gut microbiota. No reproducible changes in animals with kidney disease were seen across all cohorts, although a few trends observed in most experiments may be attributable to kidney disease. The findings suggest that rodent studies do not provide evidence for the existence of "uremic dysbiosis" and that single-cohort studies are unsuitable for producing generalizable results in microbiome research. BACKGROUND Rodent studies have popularized the notion that uremia may induce pathological changes in the gut microbiota that contribute to kidney disease progression. Although single-cohort rodent studies have yielded insights into host-microbiota relationships in various disease processes, their relevance is limited by cohort and other effects. We previously reported finding metabolomic evidence that batch-to-batch variations in the microbiome of experimental animals are significant confounders in an experimental study. METHODS To attempt to identify common microbial signatures that transcend batch variability and that may be attributed to the effect of kidney disease, we downloaded all data describing the molecular characterization of the gut microbiota in rodents with and without experimental kidney disease from two online repositories comprising 127 rodents across ten experimental cohorts. We reanalyzed these data using the DADA2 and Phyloseq packages in R, a statistical computing and graphics system, and analyzed data both in a combined dataset of all samples and at the level of individual experimental cohorts. RESULTS Cohort effects accounted for 69% of total sample variance ( P <0.001), substantially outweighing the effect of kidney disease (1.9% of variance, P =0.026). We found no universal trends in microbial population dynamics in animals with kidney disease, but observed some differences (increased alpha diversity, a measure of within-sample bacterial diversity; relative decreases in Lachnospiraceae and Lactobacillus ; and increases in some Clostridia and opportunistic taxa) in many cohorts that might represent effects of kidney disease on the gut microbiota . CONCLUSIONS These findings suggest that current evidence that kidney disease causes reproducible patterns of dysbiosis is inadequate. We advocate meta-analysis of repository data as a way of identifying broad themes that transcend experimental variation.
Collapse
Affiliation(s)
- David W. Randall
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Julius Kieswich
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Lesley Hoyles
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, United Kingdom
| | - Kieran McCafferty
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Michael Curtis
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Tower Wing, Great Maze Pond, United Kingdom
| | - Muhammed M. Yaqoob
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
163
|
Xiang X, Peng B, Liu K, Wang T, Ding P, Li H, Zhu Y, Ming Y. Association between salivary microbiota and renal function in renal transplant patients during the perioperative period. Front Microbiol 2023; 14:1122101. [PMID: 37065138 PMCID: PMC10090686 DOI: 10.3389/fmicb.2023.1122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
IntroductionRenal transplantation is an effective treatment for the end stage renal disease (ESRD). However, how salivary microbiota changes during perioperative period of renal transplant recipients (RTRs) has not been elucidated.MethodsFive healthy controls and 11 RTRs who had good recovery were enrolled. Saliva samples were collected before surgery and at 1, 3, 7, and 14 days after surgery. 16S rRNA gene sequencing was performed.ResultsThere was no significant difference in the composition of salivary microbiota between ESRD patients and healthy controls. The salivary microbiota of RTRs showed higher operational taxonomic units (OTUs) amount and greater alpha and beta diversity than those of ESRD patients and healthy controls, but gradually stabilized over time. At the phylum level, the relative abundance of Actinobacteria, Tenericutes and Spirochaetes was about ten times different from ESRD patients or healthy controls for RTRs overall in time. The relative abundance of Bacteroidetes, Fusobacteria, Patescibacteria, Leptotrichiaceae and Streptococcaceae was correlated with serum creatinine (Scr) after renal transplantation.DiscussionIn short, salivary microbiota community altered in the perioperative period of renal transplantation and certain species of salivary microbiota had the potential to be a biomarker of postoperative recovery.
Collapse
Affiliation(s)
- Xuyu Xiang
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Bo Peng
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Kai Liu
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Tianyin Wang
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Peng Ding
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Hao Li
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Yi Zhu
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Yingzi Ming
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
- *Correspondence: Yingzi Ming
| |
Collapse
|
164
|
Chadban SJ, Singer J, Coates PT. That sinking gut feeling: is transplant-induced dysbiosis contributing to allograft outcomes? Kidney Int 2023; 103:454-457. [PMID: 36822748 DOI: 10.1016/j.kint.2022.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 02/24/2023]
Affiliation(s)
- Steven J Chadban
- Kidney Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Julian Singer
- Kidney Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - P Toby Coates
- Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, Australia.
| |
Collapse
|
165
|
Voroneanu L, Burlacu A, Brinza C, Covic A, Balan GG, Nistor I, Popa C, Hogas S, Covic A. Gut Microbiota in Chronic Kidney Disease: From Composition to Modulation towards Better Outcomes-A Systematic Review. J Clin Med 2023; 12:jcm12051948. [PMID: 36902734 PMCID: PMC10003930 DOI: 10.3390/jcm12051948] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND A bidirectional kidney-gut axis was described in patients with chronic kidney disease (CKD). On the one hand, gut dysbiosis could promote CKD progression, but on the other hand, studies reported specific gut microbiota alterations linked to CKD. Therefore, we aimed to systematically review the literature on gut microbiota composition in CKD patients, including those with advanced CKD stages and end-stage kidney disease (ESKD), possibilities to shift gut microbiota, and its impact on clinical outcomes. MATERIALS AND METHODS We performed a literature search in MEDLINE, Embase, Scopus, and Cochrane databases to find eligible studies using pre-specified keywords. Additionally, key inclusion and exclusion criteria were pre-defined to guide the eligibility assessment. RESULTS We retrieved 69 eligible studies which met all inclusion criteria and were analyzed in the present systematic review. Microbiota diversity was decreased in CKD patients as compared to healthy individuals. Ruminococcus and Roseburia had good power to discriminate between CKD patients and healthy controls (AUC = 0.771 and AUC = 0.803, respectively). Roseburia abundance was consistently decreased in CKD patients, especially in those with ESKD (p < 0.001). A model based on 25 microbiota dissimilarities had an excellent predictive power for diabetic nephropathy (AUC = 0.972). Several microbiota patterns were observed in deceased ESKD patients as compared to the survivor group (increased Lactobacillus, Yersinia, and decreased Bacteroides and Phascolarctobacterium levels). Additionally, gut dysbiosis was associated with peritonitis and enhanced inflammatory activity. In addition, some studies documented a beneficial effect on gut flora composition attributed to synbiotic and probiotic therapies. Large randomized clinical trials are required to investigate the impact of different microbiota modulation strategies on gut microflora composition and subsequent clinical outcomes. CONCLUSIONS Patients with CKD had an altered gut microbiome profile, even at early disease stages. Different abundance at genera and species levels could be used in clinical models to discriminate between healthy individuals and patients with CKD. ESKD patients with an increased mortality risk could be identified through gut microbiota analysis. Modulation therapy studies are warranted.
Collapse
Affiliation(s)
- Luminita Voroneanu
- Nephrology Department, Dialysis and Renal Transplant Center, “Dr. C.I. Parhon” University Hospital, 700503 Iasi, Romania
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
| | - Alexandru Burlacu
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
- Department of Interventional Cardiology, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, 700503 Iasi, Romania
| | - Crischentian Brinza
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
- Department of Interventional Cardiology, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, 700503 Iasi, Romania
| | - Andreea Covic
- Nephrology Department, Dialysis and Renal Transplant Center, “Dr. C.I. Parhon” University Hospital, 700503 Iasi, Romania
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
- Correspondence:
| | - Gheorghe G. Balan
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, St. 1 Spiridon Emergency County Hospital, 700111 Iasi, Romania
| | - Ionut Nistor
- Nephrology Department, Dialysis and Renal Transplant Center, “Dr. C.I. Parhon” University Hospital, 700503 Iasi, Romania
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
| | - Cristina Popa
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
| | - Simona Hogas
- Nephrology Department, Dialysis and Renal Transplant Center, “Dr. C.I. Parhon” University Hospital, 700503 Iasi, Romania
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
| | - Adrian Covic
- Nephrology Department, Dialysis and Renal Transplant Center, “Dr. C.I. Parhon” University Hospital, 700503 Iasi, Romania
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
| |
Collapse
|
166
|
Wang W, Weng Y, Luo T, Wang Q, Yang G, Jin Y. Antimicrobial and the Resistances in the Environment: Ecological and Health Risks, Influencing Factors, and Mitigation Strategies. TOXICS 2023; 11:185. [PMID: 36851059 PMCID: PMC9965714 DOI: 10.3390/toxics11020185] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobial contamination and antimicrobial resistance have become global environmental and health problems. A large number of antimicrobials are used in medical and animal husbandry, leading to the continuous release of residual antimicrobials into the environment. It not only causes ecological harm, but also promotes the occurrence and spread of antimicrobial resistance. The role of environmental factors in antimicrobial contamination and the spread of antimicrobial resistance is often overlooked. There are a large number of antimicrobial-resistant bacteria and antimicrobial resistance genes in human beings, which increases the likelihood that pathogenic bacteria acquire resistance, and also adds opportunities for human contact with antimicrobial-resistant pathogens. In this paper, we review the fate of antimicrobials and antimicrobial resistance in the environment, including the occurrence, spread, and impact on ecological and human health. More importantly, this review emphasizes a number of environmental factors that can exacerbate antimicrobial contamination and the spread of antimicrobial resistance. In the future, the timely removal of antimicrobials and antimicrobial resistance genes in the environment will be more effective in alleviating antimicrobial contamination and antimicrobial resistance.
Collapse
Affiliation(s)
- Weitao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
167
|
Han B, Zhang X, Wang L, Yuan W. Dysbiosis of Gut Microbiota Contributes to Uremic Cardiomyopathy via Induction of IFNγ-Producing CD4 + T Cells Expansion. Microbiol Spectr 2023; 11:e0310122. [PMID: 36788674 PMCID: PMC9927280 DOI: 10.1128/spectrum.03101-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Uremic cardiomyopathy (UCM) correlates with chronic kidney disease (CKD)-induced morbidity and mortality. Gut microbiota has been involved in the pathogenesis of certain cardiovascular disease, but the role of gut microbiota in the pathogenesis of UCM remains unknown. Here, we performed a case-control study to compare the gut microbiota of patients with CKD and healthy controls by 16S rRNA (rRNA) gene sequencing. To test the causative relationship between gut microbiota and UCM, we performed fecal microbiota transplantation (FMT) in 5/6th nephrectomy model of CKD. We found that opportunistic pathogens, particularly Klebsiella pneumoniae (K. pneumoniae), are markedly enriched in patients with CKD. FMT from CKD patients aggravated diastolic dysfunction in the mouse model. The diastolic dysfunction was associated with microbiome-dependent increases in heart-infiltrating IFNγ+ CD4+ T cells. Monocolonization with K. pneumoniae increased cardiac IFNγ+ CD4+ T cells infiltration and promoted UCM development of the mouse model. A probiotic Bifidobacterium animalis decreased the relative abundance of K. pneumoniae, reduced levels of cardiac IFNγ+ CD4+ T cells and ameliorated the severity of diastolic dysfunction in the mice. Thus, the aberrant gut microbiota in CKD patients, especially K. pneumoniae, contributed to UCM pathogenesis through the induction of heart-infiltrating IFNγ+ CD4+ T cells expansion, proposing that a Gut Microbiota-Gut-Kidney-Heart axis could play a critical role in elucidating the etiology of UCM, and suggesting that modulation of the gut bacteria may serve as a promising target for the amelioration of UCM. IMPORTANCE Uremic cardiomyopathy (UCM) correlates tightly with increased mortality in patients with chronic kidney disease (CKD), yet the pathogenesis of UCM remains incompletely understood, limiting therapeutic approaches. Our study proposed that a Gut Microbiota-Gut-Kidney-Heart axis could play a critical role in understanding etiology of UCM. There is a major need in future clinical trials of patients with CKD to explore if modulation of gut microbiota by fecal microbiota transplantation (FMT), probiotics or antibiotics can alleviate cardiac dysfunction, reduce mortality, and improve life quality.
Collapse
Affiliation(s)
- Bin Han
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoqian Zhang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ling Wang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weijie Yuan
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
168
|
Fructose Stimulated Colonic Arginine and Proline Metabolism Dysbiosis, Altered Microbiota and Aggravated Intestinal Barrier Dysfunction in DSS-Induced Colitis Rats. Nutrients 2023; 15:nu15030782. [PMID: 36771488 PMCID: PMC9921751 DOI: 10.3390/nu15030782] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The dysbiosis of intestinal microbiota and their metabolites is linked to the occurrence and development of metabolic syndrome. Although fructose has been proven to be associated with worsened mucus in the colon, its mechanism remains unclear. In this study, we evaluated the relatively low intake of sucrose and fructose in the experimental colitis of Sprague Dawley rats by investigating the microbiome and metabolome. Results showed that sucrose and fructose significantly reduced body weight, colon length and increased inflammation infiltration in colon. Sucrose and fructose worsen colon functions by inhibiting the expression of tight junction (TJ) protein ZO-1 and increasing the level of lipopolysaccharide neoandrographolide (LPS) in plasma, while fructose was more significant. Furthermore, sucrose and fructose significantly changed the composition of gut microbiota characterized by decreasing Adlercreutzia, Leuconostoc, Lactococcus and Oscillospira and increasing Allobaculum and Holdemania along with reducing histidine, phenylalanine, arginine, glycine, aspartic acid, serine, methionine valine, alanine, lysine, isoleucine, leucine, threonine, tryptophan, tyrosine, proline, citrulline, 4-hydroxyproline and gamma amino butyric acid (GABA). Metabolome results showed that fructose may aggravate experimental colitis symptoms by inducing amino metabolism dysbiosis in the colon. These findings suggested that fructose worsened colitis by manipulating the crosstalk between gut microbiota and their metabolites.
Collapse
|
169
|
Silva LAP, Campagnolo S, Fernandes SR, Marques SS, Barreiros L, Sampaio-Maia B, Segundo MA. Rapid and sustainable HPLC method for the determination of uremic toxins in human plasma samples. Anal Bioanal Chem 2023; 415:683-694. [PMID: 36464734 DOI: 10.1007/s00216-022-04458-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 12/11/2022]
Abstract
Protein-bound uremic toxins, mainly indoxyl sulfate (3-INDS), p-cresol sulfate (pCS), and indole-3-acetic acid (3-IAA) but also phenol (Pol) and p-cresol (pC), are progressively accumulated during chronic kidney disease (CKD). Their accurate measurement in biomatrices is demanded for timely diagnosis and adoption of appropriate therapeutic measures. Multianalyte methods allowing the establishment of a uremic metabolite profile are still missing. Hence, the aim of this work was to develop a rapid and sensitive method based on high-performance liquid chromatography with fluorescence detection for the simultaneous quantification of Pol, 3-IAA, pC, 3-INDS, and pCS in human plasma. Separation was attained in 12 min, using a monolithic C18 column and isocratic elution with acetonitrile and phosphate buffer containing an ion-pairing reagent, at a flow rate of 2 mL min-1. Standards were prepared in plasma and quantification was performed using the background subtraction approach. LOQ values were ≤ 0.2 µg mL-1 for all analytes except for pCS (LOQ of 2 µg mL-1). The method proved to be accurate (93.5-112%) and precise (CV ≤ 14.3%). The multianalyte application of the method, associated to a reduced sample volume (50 µL), a less toxic internal standard (eugenol) in comparison to the previously applied 2,6-dimethylphenol and 4-ethylphenol, and a green extraction solvent (ethanol), resulted in the AGREE score of 0.62 which is in line with the recent trend of green and sustainable analytical chemistry. The validated method was successfully applied to the analysis of plasma samples from control subjects exhibiting normal levels of uremic toxins and CKD patients presenting significantly higher levels of 3-IAA, pC, 3-INDS, and pCS that can be further investigated as biomarkers of disease progression.
Collapse
Affiliation(s)
- Luís A P Silva
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Stefano Campagnolo
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Sara R Fernandes
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.,Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal
| | - Sara S Marques
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Luisa Barreiros
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal. .,Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal.
| | - Benedita Sampaio-Maia
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393, Porto, Portugal
| | - Marcela A Segundo
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| |
Collapse
|
170
|
Gut microbiome studies in CKD: opportunities, pitfalls and therapeutic potential. Nat Rev Nephrol 2023; 19:87-101. [PMID: 36357577 DOI: 10.1038/s41581-022-00647-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/12/2022]
Abstract
Interest in gut microbiome dysbiosis and its potential association with the development and progression of chronic kidney disease (CKD) has increased substantially in the past 6 years. In parallel, the microbiome field has matured considerably as the importance of host-related and environmental factors is increasingly recognized. Past research output in the context of CKD insufficiently considered the myriad confounding factors that are characteristic of the disease. Gut microbiota-derived metabolites remain an interesting therapeutic target to decrease uraemic (cardio)toxicity. However, future studies on the effect of dietary and biotic interventions will require harmonization of relevant readouts to enable an in-depth understanding of the underlying beneficial mechanisms. High-quality standards throughout the entire microbiome analysis workflow are also of utmost importance to obtain reliable and reproducible results. Importantly, investigating the relative composition and abundance of gut bacteria, and their potential association with plasma uraemic toxins levels is not sufficient. As in other fields, the time has come to move towards in-depth quantitative and functional exploration of the patient's gut microbiome by relying on confounder-controlled quantitative microbial profiling, shotgun metagenomics and in vitro simulations of microorganism-microorganism and host-microorganism interactions. This step is crucial to enable the rational selection and monitoring of dietary and biotic intervention strategies that can be deployed as a personalized intervention in CKD.
Collapse
|
171
|
Caggiano G, Stasi A, Franzin R, Fiorentino M, Cimmarusti MT, Deleonardis A, Palieri R, Pontrelli P, Gesualdo L. Fecal Microbiota Transplantation in Reducing Uremic Toxins Accumulation in Kidney Disease: Current Understanding and Future Perspectives. Toxins (Basel) 2023; 15:toxins15020115. [PMID: 36828429 PMCID: PMC9965504 DOI: 10.3390/toxins15020115] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
During the past decades, the gut microbiome emerged as a key player in kidney disease. Dysbiosis-related uremic toxins together with pro-inflammatory mediators are the main factors in a deteriorating kidney function. The toxicity of uremic compounds has been well-documented in a plethora of pathophysiological mechanisms in kidney disease, such as cardiovascular injury (CVI), metabolic dysfunction, and inflammation. Accumulating data on the detrimental effect of uremic solutes in kidney disease supported the development of many strategies to restore eubiosis. Fecal microbiota transplantation (FMT) spread as an encouraging treatment for different dysbiosis-associated disorders. In this scenario, flourishing studies indicate that fecal transplantation could represent a novel treatment to reduce the uremic toxins accumulation. Here, we present the state-of-the-art concerning the application of FMT on kidney disease to restore eubiosis and reverse the retention of uremic toxins.
Collapse
|
172
|
García-Martínez Y, Borriello M, Capolongo G, Ingrosso D, Perna AF. The Gut Microbiota in Kidney Transplantation: A Target for Personalized Therapy? BIOLOGY 2023; 12:biology12020163. [PMID: 36829442 PMCID: PMC9952448 DOI: 10.3390/biology12020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Kidney transplantation improves quality of life, morbidity, and mortality of patients with kidney failure. However, integrated immunosuppressive therapy required to preserve graft function is associated with the development of post-transplant complications, including infections, altered immunosuppressive metabolism, gastrointestinal toxicity, and diarrhea. The gut microbiota has emerged as a potential therapeutic target for personalizing immunosuppressive therapy and managing post-transplant complications. This review reports current evidence on gut microbial dysbiosis in kidney transplant recipients, alterations in their gut microbiota associated with kidney transplantation outcomes, and the application of gut microbiota intervention therapies in treating post-transplant complications.
Collapse
Affiliation(s)
- Yuselys García-Martínez
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, Via Pansini, Bldg 17, 80131 Naples, Italy
- Correspondence:
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Giovanna Capolongo
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, Via Pansini, Bldg 17, 80131 Naples, Italy
| | - Diego Ingrosso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Alessandra F. Perna
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, Via Pansini, Bldg 17, 80131 Naples, Italy
| |
Collapse
|
173
|
Zheng L, Luo M, Zhou H, Chen J. Natural products from plants and microorganisms: Novel therapeutics for chronic kidney disease via gut microbiota regulation. Front Pharmacol 2023; 13:1068613. [PMID: 36733377 PMCID: PMC9887141 DOI: 10.3389/fphar.2022.1068613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Dysbiosis of gut microbiota plays a fundamental role in the pathogenesis and development of chronic kidney disease (CKD) and its complications. Natural products from plants and microorganisms can achieve recognizable improvement in renal function and serve as an alternative treatment for chronic kidney disease patients with a long history, yet less is known on its beneficial effects on kidney injury by targeting the intestinal microbiota. In this review, we summarize studies on the effects of natural products from plants and microorganisms, including herbal medicines and their bioactive extracts, polysaccharides from plants and microorganisms, and phytochemicals, on the prevention and treatment of chronic kidney disease through targeting gut microflora. We describe the strategies of these anti-CKD effects in animal experiments including remodulation of gut microbiota structure, reduction of uremic toxins, enhancement of short-chain fatty acid (SCFA) production, regulation of intestinal inflammatory signaling, and improvement in intestinal integrity. Meanwhile, the clinical trials of different natural products in chronic kidney disease clinical practice were also analyzed and discussed. These provide information to enable a better understanding of the renoprotective effects of these effective natural products from plants and microorganisms in the treatment of chronic kidney disease. Finally, we propose the steps to prove the causal role of the intestinal microflora in the treatment of chronic kidney disease by natural products from plants and microorganisms. We also assess the future perspective that natural active products from plants and microorganisms can beneficially delay the onset and progression of kidney disease by targeting the gut flora and highlight the remaining challenges in this area. With the continuous deepening of studies in recent years, it has been proved that gut microbiota is a potential target of natural active products derived from plants and microorganisms for chronic kidney disease treatment. Fully understanding the functions and mechanisms of gut microbiota in these natural active products from plants and microorganisms is conducive to their application as an alternative therapeutic in the treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Lin Zheng
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Mingjing Luo
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Haokui Zhou
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
174
|
Chen C, Yan Q, Yao X, Li S, Lv Q, Wang G, Zhong Q, Tang F, Liu Z, Huang Y, An Y, Zhou J, Zhang Q, Zhang A, Ullah H, Zhang Y, Liu C, Zhu D, Li H, Sun W, Ma W. Alterations of the gut virome in patients with systemic lupus erythematosus. Front Immunol 2023; 13:1050895. [PMID: 36713446 PMCID: PMC9874095 DOI: 10.3389/fimmu.2022.1050895] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Background Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that has been linked to the dysbiosis of the gut microbiome and virome. However, the potential characterization of the gut virome in SLE patients needs to be explored more extensively. Methods Herein, we analyzed the gut viral community of 16 SLE patients and 31 healthy controls using both bulk and virus-like particle (VLP)-based metagenomic sequencing of their fecal samples. A total of 15,999 non-redundant viral operational taxonomic units (vOTUs) were identified from the metagenomic assembled contigs and used for gut virome profiling. Results SLE patients exhibited a significant decrease in gut viral diversity in the bulk metagenome dataset, but this change was not significant in the VLP metagenome dataset. Also, considerable alterations of the overall gut virome composition and remarkable changes in the viral family compositions were observed in SLE patients compared with healthy controls, as observed in both two technologies. We identified 408 vOTUs (177 SLE-enriched and 231 control-enriched) with significantly different relative abundances between patients and controls in the bulk virome, and 18 vOTUs (17 SLE-enriched in 1 control-enriched) in the VLP virome. The SLE-enriched vOTUs included numerous Siphoviridae, Microviridae, and crAss-like viruses and were frequently predicted to infect Bacteroides, Parabacteroides, and Ruminococcus_E, while the control-enriched contained numerous members of Siphoviridae and Myoviridae and were predicted to infect Prevotella and Lachnospirales_CAG-274. We explored the correlations between gut viruses and bacteria and found that some Lachnospirales_CAG-274 and Hungatella_A phages may play key roles in the virus-bacterium network. Furthermore, we explored the gut viral signatures for disease discrimination and achieved an area under the receiver operator characteristic curve (AUC) of above 0.95, suggesting the potential of the gut virome in the prediction of SLE. Conclusion Our findings demonstrated the alterations in viral diversity and taxonomic composition of the gut virome of SLE patients. Further research into the etiology of SLE and the gut viral community will open up new avenues for treating and preventing SLE and other autoimmune diseases.
Collapse
Affiliation(s)
- Changming Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xueming Yao
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | | | - Qingbo Lv
- Puensum Genetech Institute, Wuhan, China,College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Guangyang Wang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qin Zhong
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Fang Tang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhengqi Liu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ying Huang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yang An
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jing Zhou
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiongyu Zhang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | | | - Hayan Ullah
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, China
| | - Can Liu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dan Zhu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hufan Li
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wen Sun
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Wen Sun, ; Wukai Ma,
| | - Wukai Ma
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China,*Correspondence: Wen Sun, ; Wukai Ma,
| |
Collapse
|
175
|
Li N, Wang Y, Wei P, Min Y, Yu M, Zhou G, Yuan G, Sun J, Dai H, Zhou E, He W, Sheng M, Gao K, Zheng M, Sun W, Zhou D, Zhang L. Causal Effects of Specific Gut Microbiota on Chronic Kidney Diseases and Renal Function-A Two-Sample Mendelian Randomization Study. Nutrients 2023; 15:nu15020360. [PMID: 36678231 PMCID: PMC9863044 DOI: 10.3390/nu15020360] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Targeting the gut microbiota may become a new therapeutic to prevent and delay the progression of chronic kidney disease (CKD). Nonetheless, the causal relationship between specific intestinal flora and CKD is still unclear. MATERIALS AND METHOD To identify genetically predicted microbiota, we used summary data from genome-wide association studies on gut microbiota in 18340 participants from 24 cohorts. Furthermore, we genetically predicted the causal relationship between 211 gut microbiotas and six phenotypes (outcomes) (CKD, estimated glomerular filtration rate (eGFR), urine albumin to creatinine ratio (UACR), dialysis, rapid progress to CKD, and rapid decline of eGFR). Four Mendelian randomization (MR) methods, including inverse variance weighted (IVW), MR-Egger, weighted median, and weighted mode were used to investigate the casual relationship between gut microbiotas and various outcomes. The result of IVW was deemed as the primary result. Then, Cochrane's Q test, MR-Egger, and MR-PRESSO Global test were used to detect heterogeneity and pleiotropy. The leave-one method was used for testing the stability of MR results and Bonferroni-corrected was used to test the strength of the causal relationship between exposure and outcome. RESULTS Through the MR analysis of 211 microbiotas and six clinical phenotypes, a total of 36 intestinal microflora were found to be associated with various outcomes. Among them, Class Bacteroidia (=-0.005, 95% CI: -0.001 to -0.008, p = 0.002) has a strong causality with lower eGFR after the Bonferroni-corrected test, whereas phylum Actinobacteria (OR = 1.0009, 95%CI: 1.0003-1.0015, p = 0.0024) has a strong causal relationship with dialysis. The Cochrane's Q test reveals that there is no significant heterogeneity between various single nucleotide polymorphisms. In addition, no significant level of pleiotropy was found according to MR-Egger and MR-PRESSO Global tests. CONCLUSIONS Through the two-sample MR analysis, we identified the specific intestinal flora that has a causal relationship with the incidence and progression of CKD at the level of gene prediction, which may provide helpful biomarkers for early disease diagnosis and potential therapeutic targets for CKD.
Collapse
Affiliation(s)
- Ning Li
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Yi Wang
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Ping Wei
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Yu Min
- Department of Biotherapy and National Clinical Research Center, Sichuan University, Chengdu 610041, China
| | - Manshu Yu
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Guowei Zhou
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Gui Yuan
- Division of Nephrology, Department of Medicine, University of Connecticut, School of Medicine, Farmington, CT 06030, USA
| | - Jinyi Sun
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Huibo Dai
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Enchao Zhou
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Weiming He
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Meixiao Sheng
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Kun Gao
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Min Zheng
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Wei Sun
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut, School of Medicine, Farmington, CT 06030, USA
- Correspondence: (D.Z.); (L.Z.)
| | - Lu Zhang
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Correspondence: (D.Z.); (L.Z.)
| |
Collapse
|
176
|
Wang H, Ainiwaer A, Song Y, Qin L, Peng A, Bao H, Qin H. Perturbed gut microbiome and fecal and serum metabolomes are associated with chronic kidney disease severity. MICROBIOME 2023; 11:3. [PMID: 36624472 PMCID: PMC9827681 DOI: 10.1186/s40168-022-01443-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a severe public health problem associated with a disordered gut microbiome. However, the functional alterations of microbiota and their cross talk with metabolism pathways based on disease severity remain unclear. RESULTS We performed metagenomics and untargeted metabolomics in a cohort of 68 patients with CKD of differing severities and 20 healthy controls to characterize the complex interplay between the gut microbiome and fecal and serum metabolites during CKD progression. We identified 26 microbial species that significantly changed in patients with CKD; 18 species changed as the disease progressed, and eight species changed only in a specific CKD group. These distinct changes in gut microbiota were accompanied by functional alterations in arginine and proline, arachidonic acid, and glutathione metabolism and ubiquinone and other terpenoid-quinone biosynthesis pathways during CKD progression. Further metabolomic analyses revealed that the distributions of toxic and pro-oxidant metabolites from these four essential metabolic pathways varied in the feces and serum as CKD progressed. Furthermore, we observed a complex co-occurrence between CKD severity-related bacteria and the characterized metabolites from the four essential metabolic pathways. Notably, Ruminococcus bromii, fecal hydroquinone, and serum creatinine were identified as the main contributors to the integrated network, indicating their key roles in CKD progression. Moreover, a noninvasive model including R. bromii and fecal hydroquinone, L-cystine, and 12-keto-tetrahydro-LTB4 levels classified the CKD severity (area under the curve [AUC]: > 0.9) and had better performance than the serum creatinine level for mild CKD (AUC: 0.972 vs. 0.896). CONCLUSIONS Perturbed CKD severity-related gut microbiota may contribute to unbalanced toxic and pro-oxidant metabolism in the gut and host, accelerating CKD progression, which may be an early diagnostic and therapeutic target for CKD. Video Abstract.
Collapse
Affiliation(s)
- Haichao Wang
- Department of Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Aisima Ainiwaer
- Department of Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Yaxiang Song
- Department of Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Ling Qin
- Department of Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Ai Peng
- Department of Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Hui Bao
- Department of Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| |
Collapse
|
177
|
Peters BA, Qi Q, Usyk M, Daviglus ML, Cai J, Franceschini N, Lash JP, Gellman MD, Yu B, Boerwinkle E, Knight R, Burk RD, Kaplan RC. Association of the gut microbiome with kidney function and damage in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Gut Microbes 2023; 15:2186685. [PMID: 36882941 PMCID: PMC10012940 DOI: 10.1080/19490976.2023.2186685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND The gut microbiome is altered in chronic kidney disease (CKD), potentially contributing to CKD progression and co-morbidities, but population-based studies of the gut microbiome across a wide range of kidney function and damage are lacking. METHODS In the Hispanic Community Health Study/Study of Latinos, gut microbiome was assessed by shotgun sequencing of stool (n = 2,438; 292 with suspected CKD). We examined cross-sectional associations of estimated glomerular filtration rate (eGFR), urinary albumin:creatinine (UAC) ratio, and CKD with gut microbiome features. Kidney trait-related microbiome features were interrogated for correlation with serum metabolites (n = 700), and associations of microbiome-related serum metabolites with kidney trait progression were examined in a prospective analysis (n = 3,635). RESULTS Higher eGFR was associated with overall gut microbiome composition, greater abundance of species from Prevotella, Faecalibacterium, Roseburia, and Eubacterium, and microbial functions related to synthesis of long-chain fatty acids and carbamoyl-phosphate. Higher UAC ratio and CKD were related to lower gut microbiome diversity and altered overall microbiome composition only in participants without diabetes. Microbiome features related to better kidney health were associated with many serum metabolites (e.g., higher indolepropionate, beta-cryptoxanthin; lower imidazole propionate, deoxycholic acids, p-cresol glucuronide). Imidazole propionate, deoxycholic acid metabolites, and p-cresol glucuronide were associated with prospective reductions in eGFR and/or increases in UAC ratio over ~6 y. CONCLUSIONS Kidney function is a significant correlate of the gut microbiome, while the relationship of kidney damage with the gut microbiome depends on diabetes status. Gut microbiome metabolites may contribute to CKD progression.
Collapse
Affiliation(s)
- Brandilyn A. Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mykhaylo Usyk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Martha L. Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Jianwen Cai
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - James P. Lash
- Department of Medicine, University of Illinois, Chicago, IL, USA
| | - Marc D. Gellman
- Department of Psychology, University of Miami, Miami, FL, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rob Knight
- Departments of Pediatrics, Computer Science and Engineering, Bioengineering, and Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Robert D. Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
178
|
Banjong D, Pongking T, Tran NTD, Pinlaor S, Dangtakot R, Intuyod K, Anutrakulchai S, Cha’on U, Pinlaor P. Slight Changes in the Gut Microbiome in Early-stage Chronic Kidney Disease of Unknown Etiology. Microbes Environ 2023; 38:ME22097. [PMID: 37635077 PMCID: PMC10522841 DOI: 10.1264/jsme2.me22097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/23/2023] [Indexed: 08/29/2023] Open
Abstract
Gut dysbiosis and changes in short-chain fatty acids (SCFAs) occur in end-stage chronic kidney disease (CKD); however, the degree of these changes in the gut microbiome and serum SCFA profiles in the early stages of CKD, particularly in CKD of unknown etiology (CKDu), is unclear. We herein investigated the gut microbiome and SCFA profiles of early-stage CKD patients (CKD stages 1-3) in a community in Khon Kaen Province, Thailand. Seventy-two parasite-free participants were distributed among a healthy control group (HC, n=18) and three patient groups (an underlying disease group [UD, n=18], early-stage CKD with underlying disease [CKD-UD, n=18], and early-stage CKD of unknown etiology, [CKDu, n=18]). Fecal DNA was individually extracted and pooled for groups of six individuals (three pools in each group) to examine the composition of the gut microbiome using next-generation sequencing. A SCFA ana-lysis was performed on serum samples from each individual using gas chromatography-mass spectrometry. The results revealed that microbial abundance differed between the healthy group and all patient groups (UD, CKD-UD, and CKDu). [Eubacterium]_coprostanoligenes_group was more abundant in the CKDu group than in the HC and CKD-UD groups. Furthermore, serum concentrations of acetate, a major SCFA component, were significantly lower in all patient groups than in the HC group. The present results indicate that minor changes in the gut microbiome and a significant decrease in serum acetate concentrations occur in early-stage CKDu, which may be important for the development of prevention strategies for CKD patients.
Collapse
Affiliation(s)
- Ditsayathan Banjong
- Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen, Thailand
| | - Thatsanapong Pongking
- Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen, Thailand
| | - Na T. D. Tran
- Faculty of Medical Laboratory Science, Danang University of Medical Technology and Pharmacy, Danang, Vietnam
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen, Thailand
| | - Rungtiwa Dangtakot
- Faculty of Medical Technology, Nakhonratchasima College, Nakhon Ratchasima, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen, Thailand
| | - Kitti Intuyod
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen, Thailand
| | - Sirirat Anutrakulchai
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen, Thailand
| | - Ubon Cha’on
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen, Thailand
| | - Porntip Pinlaor
- Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen, Thailand
| |
Collapse
|
179
|
Chen H, Wang J, Ouyang Q, Peng X, Yu Z, Wang J, Huang J. Alterations of gut microbes and their correlation with clinical features in middle and end-stages chronic kidney disease. Front Cell Infect Microbiol 2023; 13:1105366. [PMID: 37033494 PMCID: PMC10079997 DOI: 10.3389/fcimb.2023.1105366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Gut microecosystem has been shown to play an important role in human health. In recent years, the concept of the gut-kidney axis has been proposed to explain the potential association between gut microbiota and chronic kidney disease (CKD). Here, a cohort of fecal samples collected from patients with CKD (n = 13) were involved. The composition of gut microbial communities and clinical features in CKD and end-stage renal disease (ESRD) were characterized. Our study focused on the changes in gut microbiome and the correlation with clinical features in patients with CKD and ESRD by analyzing high-throughput sequencing results of collected feces. We elucidated the alterations of gut microbiota in CKD patients at different stages of disease and initially identified the gut microbiota associated with CKD progression. We also combined correlation analysis to identify clinical features closely related to the gut microbiome. Our results offered the possibility of using non-invasive gut microbiome in the early diagnosis of course from CKD to ESRD and provide new insights into the association between clinical features and gut microbiota in CKD.
Collapse
Affiliation(s)
- Hao Chen
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jingyan Wang
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Qin Ouyang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xinyue Peng
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jianwen Wang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jing Huang, ; Jianwen Wang,
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- *Correspondence: Jing Huang, ; Jianwen Wang,
| |
Collapse
|
180
|
Zhou XJ, Zhong XH, Duan LX. Integration of artificial intelligence and multi-omics in kidney diseases. FUNDAMENTAL RESEARCH 2023; 3:126-148. [PMID: 38933564 PMCID: PMC11197676 DOI: 10.1016/j.fmre.2022.01.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 10/18/2022] Open
Abstract
Kidney disease is a leading cause of death worldwide. Currently, the diagnosis of kidney diseases and the grading of their severity are mainly based on clinical features, which do not reveal the underlying molecular pathways. More recent surge of ∼omics studies has greatly catalyzed disease research. The advent of artificial intelligence (AI) has opened the avenue for the efficient integration and interpretation of big datasets for discovering clinically actionable knowledge. This review discusses how AI and multi-omics can be applied and integrated, to offer opportunities to develop novel diagnostic and therapeutic means in kidney diseases. The combination of new technology and novel analysis pipelines can lead to breakthroughs in expanding our understanding of disease pathogenesis, shedding new light on biomarkers and disease classification, as well as providing possibilities of precise treatment.
Collapse
Affiliation(s)
- Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Beijing 100034, China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing 100034, China
| | - Xu-Hui Zhong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Li-Xin Duan
- The Big Data Research Center, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, China
| |
Collapse
|
181
|
Chi M, Jiang T, He X, Peng H, Li Y, Zhang J, Wang L, Nian Q, Ma K, Liu C. Role of Gut Microbiota and Oxidative Stress in the Progression of Transplant-Related Complications following Hematopoietic Stem Cell Transplantation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3532756. [PMID: 37113743 PMCID: PMC10129428 DOI: 10.1155/2023/3532756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/12/2022] [Accepted: 11/24/2022] [Indexed: 04/29/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT), also known as bone marrow transplantation, has curative potential for various hematologic malignancies but is associated with risks such as graft-versus-host disease (GvHD), severe bloodstream infection, viral pneumonia, idiopathic pneumonia syndrome (IPS), lung fibrosis, and sinusoidal obstruction syndrome (SOS), which severely deteriorate clinical outcomes and limit the wide application of HSCT. Recent research has provided important insights into the effects of gut microbiota and oxidative stress (OS) on HSCT complications. Therefore, based on recent studies, we describe intestinal dysbiosis and OS in patients with HSCT and review recent molecular findings underlying the causal relationships of gut microbiota, OS, and transplant-related complications, focusing particularly on the involvement of gut microbiota-mediated OS in postengraftment complications. Also, we discuss the use of antioxidative and anti-inflammatory probiotics to manipulate gut microbiota and OS, which have been associated with promising effects in improving HSCT outcomes.
Collapse
Affiliation(s)
- Mingxuan Chi
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Tao Jiang
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Department of Hematology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province 610072, China
| | - Xing He
- School of Clinical Medicine, Chengdu Medical College, China
| | - Haoyu Peng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunlong Li
- Department of Urology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Li Wang
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Qing Nian
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Department of Blood Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chi Liu
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| |
Collapse
|
182
|
Wang J, Zhang X, Li M, Li R, Zhao M. Shifts in Intestinal Metabolic Profile Among Kidney Transplantation Recipients with Antibody-Mediated Rejection. Ther Clin Risk Manag 2023; 19:207-217. [PMID: 36896026 PMCID: PMC9990454 DOI: 10.2147/tcrm.s401414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Background Antibody-mediated rejection (AMR) is emerging as the main cause of graft loss after kidney transplantation. Our previous study revealed the gut microbiota alternation associated with AMR in kidney transplant recipients, which was predicted to affect the metabolism-related pathways. Methods To further investigate the shifts in intestinal metabolic profile among kidney transplantation recipients with AMR, fecal samples from kidney transplant recipients and patients with end-stage renal disease (ESRD) were subjected to untargeted LC-MS-based metabolomics. Results A total of 86 individuals were enrolled in this study, including 30 kidney transplantation recipients with AMR, 35 kidney transplant recipients with stable renal function (KT-SRF), and 21 participants with ESRD. Fecal metabolome in patients with ESRD and kidney transplantation recipients with KT-SRF were parallelly detected as controls. Our results demonstrated that intestinal metabolic profile of patients with AMR differed significantly from those with ESRD. A total of 172 and 25 differential metabolites were identified in the KT-AMR group, when compared with the ESRD group and the KT-SRF group, respectively, and 14 were common to the pairwise comparisons, some of which had good discriminative ability for AMR. KEGG pathway enrichment analysis demonstrated that the different metabolites between the KT-AMR and ESRD groups or between KT-AMR and KT-SRF groups were significantly enriched in 33 or 36 signaling pathways, respectively. Conclusion From the metabolic point of view, our findings may provide key clues for developing effective diagnostic biomarkers and therapeutic targets for AMR after kidney transplantation.
Collapse
Affiliation(s)
- Junpeng Wang
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China.,Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, People's Republic of China
| | - Xiaofan Zhang
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Mengjun Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ruoying Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ming Zhao
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
183
|
Gut Microbiome and Serum Metabolome Profiles of Capsaicin with Cognitive Benefits in APP/PS1 Mice. Nutrients 2022; 15:nu15010118. [PMID: 36615777 PMCID: PMC9823564 DOI: 10.3390/nu15010118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Capsaicin, a natural bioactive component, has been reported to improve cognition and ameliorate the pathology of Alzheimer's disease (AD). Studies have linked AD to alterations in gut microbiota composition and serum metabolites. In the present study, we examined the alterations in serum metabolome and gut microbiome in APPswe/PS1dE9 (APP/PS1) mice treated with capsaicin. Capsaicin treatments resulted in a significant increase in the abundance of Akkermansia, Faecalibaculum, Unclassified_f_Atopobiaceae, and Gordonibacter and a significant decrease in the abundance of Adlercreutzia, Peptococcaceae, Alistipes, Oscillibacter and Erysipelatoclostridium. Furthermore, the species Akkermansia muciniphila (A. muciniphila) was significantly enriched in capsaicin-treated APP/PS1 mice (p = 0.0002). Serum metabolomic analysis showed that capsaicin-treated APP/PS1 mice had a significant higher level of tryptophan (Trp) metabolism and a significantly lower level of lipid metabolism compared with vehicle-treated mice. Capsaicin altered serum metabolites, including Kynurenine (Kyn), 5-Hydroxy-L-tryptophan (5-HIT), 5-Hydroxyindoleacetic acid (5-HIAA), indoxylsulfuric acid, lysophosphatidyl cholines (LysoPCs), and lysophosphatidyl ethanolamine (LysoPE). Significant correlations were observed between the gut bacteria and serum metabolite. With regard to the increased abundance of A. muciniphila and the ensuing rise in tryptophan metabolites, our data show that capsaicin alters both the gut microbiota and blood metabolites. By altering the gut microbiome and serum metabolome, a diet high in capsaicin may reduce the incidence and development of AD.
Collapse
|
184
|
Chen Z, Wang Z, Li D, Zhu B, Xia Y, Wang G, Ai L, Zhang C, Wang C. The gut microbiota as a target to improve health conditions in a confined environment. Front Microbiol 2022; 13:1067756. [PMID: 36601399 PMCID: PMC9806127 DOI: 10.3389/fmicb.2022.1067756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Confined environments increase psychological stress and lead to health problems such as abnormal mood and rhythm disruption. However, the mechanism by which confined environments impact health has remained unclear. Significant correlations have been reported between psychological stress and changes in gut microbiota. Therefore, we investigated the effect of a confined environment on the composition of the gut microbiota by 16s rDNA high-throughput sequencing, and analyzed the correlation between gut microbiota and health indicators such as uric acid (UA), sleep, and mood. We found that the gut microbiota of the subjects clustered into two enterotypes (Bi and Bla), and that the groups differed significantly. There were notable differences in the abundances of genera such as Bifidobacterium, Dorea, Ruminococcus_torques_group, Ruminococcus_gnavus_group, Klebsiella, and UCG-002 (p < 0.05). A confined environment significantly impacted the subjects' health indicators. We also observed differences in how the subjects of the two enterotypes adapted to the confined environment. The Bi group showed no significant differences in health indicators before and after confinement; however, the Bla group experienced several health problems after confinement, such as increased UA, anxiety, and constipation, and lack of sleep. Redundancy analysis (RDA) showed that UA, RBC, mood, and other health problems were significantly correlated with the structure of the gut microbiota. We concluded that genera such as UCG-002, Ruminococcus, CAG352, and Ruminococcus_torques_group increased vulnerability to confined environments, resulting in abnormal health conditions. We found that the differences in the adaptability of individuals to confined environments were closely related to the composition of their gut microbiota.
Collapse
Affiliation(s)
- Zheng Chen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - ZiYing Wang
- Navy Special Medical Center, Naval Medical University, Shanghai, China
| | - Dan Li
- Navy Special Medical Center, Naval Medical University, Shanghai, China
| | - Beiwei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yongjun Xia
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Chunhong Zhang
- Navy Special Medical Center, Naval Medical University, Shanghai, China,*Correspondence: Chunhong Zhang,
| | - Chuan Wang
- Navy Special Medical Center, Naval Medical University, Shanghai, China,Chuan Wang,
| |
Collapse
|
185
|
Traditional Chinese Medicine: An Exogenous Regulator of Crosstalk between the Gut Microbial Ecosystem and CKD. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7940684. [DOI: 10.1155/2022/7940684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022]
Abstract
Chronic kidney disease (CKD) is often accompanied by an imbalance in the gut microbial ecosystem. Notably, the imbalanced gut microbiota and impaired intestinal barrier are the keys to the crosstalk between the gut microbial ecosystem and CKD, which was the central point of previous studies. Traditional Chinese medicine (TCM) has shown considerable efficacy in the treatment of CKD. However, the therapeutic mechanisms have not been fully elucidated. In this review, we explored therapeutic mechanisms by which TCM improved CKD via the gut microbial ecosystem. In particular, we focused on the restored gut microbiota (i.e., short-chain fatty acid- and uremic toxin-producing bacteria), improved gut-derived metabolites (i.e., short-chain fatty acid, indoxyl sulfate, p-Cresyl sulfate, and trimethylamine-N-oxide), and intestinal barrier (i.e., permeability and microbial translocation) as therapeutic mechanisms. The results found that the metabolic pattern of gut microbiota and the intestinal barrier were improved through TCM treatment. Moreover, the microbiota-transfer study confirmed that part of the protective effect of TCM was dependent on gut microbiota, especially SCFA-producing bacteria. In conclusion, TCM may be an important exogenous regulator of crosstalk between the gut microbial ecosystem and CKD, which was partly attributable to the mediation of microbiota-targeted intervention.
Collapse
|
186
|
Dong X, Guthrie BGH, Alexander M, Noecker C, Ramirez L, Glasser NR, Turnbaugh PJ, Balskus EP. Genetic manipulation of the human gut bacterium Eggerthella lenta reveals a widespread family of transcriptional regulators. Nat Commun 2022; 13:7624. [PMID: 36494336 PMCID: PMC9734109 DOI: 10.1038/s41467-022-33576-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/21/2022] [Indexed: 12/13/2022] Open
Abstract
Eggerthella lenta is a prevalent human gut Actinobacterium implicated in drug, dietary phytochemical, and bile acid metabolism and associated with multiple human diseases. No genetic tools are currently available for the direct manipulation of E. lenta. Here, we construct shuttle vectors and develop methods to transform E. lenta and other Coriobacteriia. With these tools, we characterize endogenous E. lenta constitutive and inducible promoters using a reporter system and construct inducible expression systems, enabling tunable gene regulation. We also achieve genome editing by harnessing an endogenous type I-C CRISPR-Cas system. Using these tools to perform genetic knockout and complementation, we dissect the functions of regulatory proteins and enzymes involved in catechol metabolism, revealing a previously unappreciated family of membrane-spanning LuxR-type transcriptional regulators. Finally, we employ our genetic toolbox to study the effects of E. lenta genes on mammalian host biology. By greatly expanding our ability to study and engineer gut Coriobacteriia, these tools will reveal mechanistic details of host-microbe interactions and provide a roadmap for genetic manipulation of other understudied human gut bacteria.
Collapse
Affiliation(s)
- Xueyang Dong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Ben G H Guthrie
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Margaret Alexander
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Cecilia Noecker
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Lorenzo Ramirez
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Nathaniel R Glasser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
187
|
Holle J, Bartolomaeus H, Löber U, Behrens F, Bartolomaeus TU, Anandakumar H, Wimmer MI, Vu DL, Kuhring M, Brüning U, Maifeld A, Geisberger S, Kempa S, Schumacher F, Kleuser B, Bufler P, Querfeld U, Kitschke S, Engler D, Kuhrt LD, Drechsel O, Eckardt KU, Forslund SK, Thürmer A, McParland V, Kirwan JA, Wilck N, Müller D. Inflammation in Children with CKD Linked to Gut Dysbiosis and Metabolite Imbalance. J Am Soc Nephrol 2022; 33:2259-2275. [PMID: 35985814 PMCID: PMC9731629 DOI: 10.1681/asn.2022030378] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/29/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND CKD is characterized by a sustained proinflammatory response of the immune system, promoting hypertension and cardiovascular disease. The underlying mechanisms are incompletely understood but may be linked to gut dysbiosis. Dysbiosis has been described in adults with CKD; however, comorbidities limit CKD-specific conclusions. METHODS We analyzed the fecal microbiome, metabolites, and immune phenotypes in 48 children (with normal kidney function, CKD stage G3-G4, G5 treated by hemodialysis [HD], or kidney transplantation) with a mean±SD age of 10.6±3.8 years. RESULTS Serum TNF-α and sCD14 were stage-dependently elevated, indicating inflammation, gut barrier dysfunction, and endotoxemia. We observed compositional and functional alterations of the microbiome, including diminished production of short-chain fatty acids. Plasma metabolite analysis revealed a stage-dependent increase of tryptophan metabolites of bacterial origin. Serum from patients on HD activated the aryl hydrocarbon receptor and stimulated TNF-α production in monocytes, corresponding to a proinflammatory shift from classic to nonclassic and intermediate monocytes. Unsupervised analysis of T cells revealed a loss of mucosa-associated invariant T (MAIT) cells and regulatory T cell subtypes in patients on HD. CONCLUSIONS Gut barrier dysfunction and microbial metabolite imbalance apparently mediate the proinflammatory immune phenotype, thereby driving the susceptibility to cardiovascular disease. The data highlight the importance of the microbiota-immune axis in CKD, irrespective of confounding comorbidities.
Collapse
Affiliation(s)
- Johannes Holle
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation of Charité–Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center, a cooperation of Charité–Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Löber
- Experimental and Clinical Research Center, a cooperation of Charité–Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Behrens
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité–Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
- Institute of Physiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Theda U.P. Bartolomaeus
- Experimental and Clinical Research Center, a cooperation of Charité–Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Harithaa Anandakumar
- Experimental and Clinical Research Center, a cooperation of Charité–Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz I. Wimmer
- Experimental and Clinical Research Center, a cooperation of Charité–Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany
| | - Dai Long Vu
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Core Unit Metabolomics, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Mathias Kuhring
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
- Core Unit Bioinformatics, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Brüning
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Core Unit Metabolomics, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Andras Maifeld
- Experimental and Clinical Research Center, a cooperation of Charité–Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Sabrina Geisberger
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- The Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Stefan Kempa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- The Berlin Institute for Medical Systems Biology, Berlin, Germany
| | | | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Philip Bufler
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Querfeld
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Stefanie Kitschke
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Denise Engler
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Leonard D. Kuhrt
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Sofia K. Forslund
- Experimental and Clinical Research Center, a cooperation of Charité–Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Andrea Thürmer
- MF2 Genome Sequencing, Robert Koch Institute, Berlin, Germany
| | - Victoria McParland
- Experimental and Clinical Research Center, a cooperation of Charité–Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jennifer A. Kirwan
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Core Unit Metabolomics, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Nicola Wilck
- Experimental and Clinical Research Center, a cooperation of Charité–Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Dominik Müller
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité–Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
188
|
Liu X, Zhang M, Wang X, Liu P, Wang L, Li Y, Wang X, Ren F. Fecal microbiota transplantation restores normal fecal composition and delays malignant development of mild chronic kidney disease in rats. Front Microbiol 2022; 13:1037257. [PMID: 36532422 PMCID: PMC9748282 DOI: 10.3389/fmicb.2022.1037257] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/15/2022] [Indexed: 09/29/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with gut microbiome dysbiosis, but the role of intestinal flora in CKD treatment remains to be elucidated. Fecal microbiota transplantation (FMT) can be utilized to re-establish healthy gut microbiota for a variety of diseases, which offers new insight for treating CKD. First, 5/6 nephrectomy rats (Donor CKD) and sham rats (Donor Sham) were used as donors for FMT, and fecal metagenome were analyzed to explore potential therapeutic targets. Then, to assess the effect of FMT on CKD, sterilized 1/2 nephrectomy rats were transplanted with fecal microbiota from Donor sham (CKD/Sham) or Donor CKD (CKD/CKD) rats, and 1/2 nephrectomy rats without FMT (CKD) or no nephrectomy (Sham) were used as model control or normal control. Results showed that Bacteroides uniformis and Anaerotruncus sp. 1XD22-93 were enriched in Donor CKD, while Lactobacillus johnsonii and Lactobacillus intestinalis were reduced. In addition, the increased abundance of microbial functions included tryptophan metabolism and lysine degradation contributing to the accumulation of protein-bound uremic toxins (PBUTs) in Donor CKD. Genome analysis indicated that FMT successfully differentiated groups of gut microbes and altered specific gut microbiota after 1 week of treatment, with Bacteroides uniformis and Anaerotruncus sp. 1XD22-93 increasing in CKD/CKD group as well as Lactobacillus johnsonii and Lactobacillus intestinalis being improved in CKD/Sham group. In comparison to CKD group, substantial PBUT buildup and renal damage were observed in CKD/CKD. Interestingly, compared to CKD or CKD/CKD group, tryptophan metabolism and lysine degradation were efficiently suppressed in CKD/Sham group, while lysine biosynthesis was promoted. Therefore, FMT considerably reduced PBUTs accumulation. After FMT, PBUTs and renal function in CKD/Sham rats remained the same as in Sham group throughout the experimental period. In summary, FMT could delay the malignant development of CKD by modifying microbial amino acid metabolism through altering the microenvironment of intestinal flora, thereby providing a novel potential approach for treating CKD.
Collapse
Affiliation(s)
- Xiaoxue Liu
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ming Zhang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Xifan Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ping Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Longjiao Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Xiaoyu Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Food Laboratory of Zhongyuan, Luohe, Henan, China
| |
Collapse
|
189
|
Benech N, Koppe L. Is there a place for faecal microbiota transplantation in chronic kidney disease? Nephrol Dial Transplant 2022; 37:2303-2306. [PMID: 36155806 DOI: 10.1093/ndt/gfac277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 12/31/2022] Open
Affiliation(s)
- Nicolas Benech
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France.,Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France.,French Group of Fecal Transplantation
| | - Laetitia Koppe
- Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France.,Université Lyon, CarMeN Laboratory, INSA-Lyon, INSERM U1060, INRA, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
190
|
Zhu J, Wang T, Lin Y, Xiong M, Chen J, Jian C, Zhang J, Xie H, Zeng F, Huang Q, Su J, Zhao Y, Li S, Zeng F. The change of plasma metabolic profile and gut microbiome dysbiosis in patients with rheumatoid arthritis. Front Microbiol 2022; 13:931431. [PMID: 36329847 PMCID: PMC9623673 DOI: 10.3389/fmicb.2022.931431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/19/2022] [Indexed: 11/14/2022] Open
Abstract
Objective Rheumatoid arthritis (RA) is a chronic inflammatory joint disease, which is associated with progressive disability, systemic complications, and early death. But its etiology and pathogenesis are not fully understood. We aimed to investigate the alterations in plasma metabolite profiles, gut bacteria, and fungi and their role of them in the pathogenesis of RA. Methods Metabolomics profiling of plasma from 363 participants including RA (n = 244), systemic lupus erythematosus (SLE, n = 50), and healthy control (HC, n = 69) were performed using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry. The differentially expressed metabolites were selected among groups and used to explore important metabolic pathways. Gut microbial diversity analysis was performed by 16S rRNA sequencing and ITS sequencing (RA = 195, HC = 269), and the specific microbial floras were identified afterward. The diagnosis models were established based on significant differential metabolites and microbial floras, respectively. Results There were 63 differential metabolites discovered between RA and HC groups, mainly significantly enriched in the arginine and proline metabolism, glycine, serine, and threonine metabolism, and glycerophospholipid metabolism between RA and HC groups. The core differential metabolites included L-arginine, creatine, D-proline, ornithine, choline, betaine, L-threonine, LysoPC (18:0), phosphorylcholine, and glycerophosphocholine. The L-arginine and phosphorylcholine were increased in the RA group. The AUC of the predictive model was 0.992, based on the combination of the 10 differential metabolites. Compared with the SLE group, 23 metabolites increased and 61 metabolites decreased in the RA group. However, no significant metabolic pathways were enriched between RA and SLE groups. On the genus level, a total of 117 differential bacteria genera and 531 differential fungal genera were identified between RA and HC groups. The results indicated that three bacteria genera (Eubacterium_hallii_group, Escherichia-Shigella, Streptococcus) and two fungal genera (Candida and Debaryomyces) significantly increased in RA patients. The AUC was 0.80 based on a combination of six differential bacterial genera and the AUC was 0.812 based on a combination of seven differential fungal genera. Functional predictive analysis displayed that differential bacterial and differential fungus both were associated with KEGG pathways involving superpathway of L-serine and glycine biosynthesis I, arginine, ornithine, and proline interconversion. Conclusion The plasma metabolism profile and gut microbe profile changed markedly in RA. The glycine, serine, and threonine metabolism and arginine and proline metabolism played an important role in RA.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingting Wang
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Yifei Lin
- Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Minghao Xiong
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | | | - Congcong Jian
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Zhang
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Huanhuan Xie
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Fanwei Zeng
- Sichuan Province Orthopaedic Hospital, Chengdu, China
| | - Qian Huang
- Dazhou Vocational and Technical College, Dazhou, China
| | - Jiang Su
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Clinical Institute of Inflammation and Immunology, Sichuan University, Chengdu, China
- *Correspondence: Yi Zhao,
| | - Shilin Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
- Shilin Li,
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
- Fanxin Zeng,
| |
Collapse
|
191
|
Pan X, Zhou Z, Liu B, Wu Z. A novel therapeutic concern: Antibiotic resistance genes in common chronic diseases. Front Microbiol 2022; 13:1037389. [PMID: 36386682 PMCID: PMC9648192 DOI: 10.3389/fmicb.2022.1037389] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/26/2022] [Indexed: 04/24/2025] Open
Abstract
Infections caused by multidrug-resistant bacteria carrying antibiotic resistance genes pose a severe threat to global public health and human health. In clinical practice, it has been found that human gut microbiota act as a "reservoir" of antibiotic resistance genes (ARGs) since gut microbiota contain a wide variety of ARGs, and that the structure of the gut microbiome is influenced by the profile of the drug resistance genes present. In addition, ARGs can spread within and between species of the gut microbiome in multiple ways. To better understand gut microbiota ARGs and their effects on patients with chronic diseases, this article reviews the generation of ARGs, common vectors that transmit ARGs, the characteristics of gut microbiota ARGs in common chronic diseases, their impact on prognosis, the current state of treatment for ARGs, and what should be addressed in future research.
Collapse
Affiliation(s)
| | | | | | - Zhongwen Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
192
|
Muller E, Algavi YM, Borenstein E. The gut microbiome-metabolome dataset collection: a curated resource for integrative meta-analysis. NPJ Biofilms Microbiomes 2022; 8:79. [PMID: 36243731 PMCID: PMC9569371 DOI: 10.1038/s41522-022-00345-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/04/2022] [Indexed: 12/03/2022] Open
Abstract
Integrative analysis of microbiome and metabolome data obtained from human fecal samples is a promising avenue for better understanding the interplay between bacteria and metabolites in the human gut, in both health and disease. However, acquiring, processing, and unifying such datasets from multiple sources is a daunting and challenging task. Here we present a publicly available, simple-to-use, curated dataset collection of paired fecal microbiome-metabolome data from multiple cohorts. This data resource allows researchers to easily obtain multiple fully processed and integrated microbiome-metabolome datasets, facilitating the discovery of universal microbe-metabolite links, benchmark various microbiome-metabolome integration tools, and compare newly identified microbe-metabolite findings to other published datasets.
Collapse
Affiliation(s)
- Efrat Muller
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Yadid M Algavi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elhanan Borenstein
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
193
|
Martín Giménez VM, Rukavina Mikusic NL, Lee HJ, García Menéndez S, Choi MR, Manucha W. Physiopathological mechanisms involved in the development of hypertension associated with gut dysbiosis and the effect of nutritional/pharmacological interventions. Biochem Pharmacol 2022; 204:115213. [PMID: 35985404 DOI: 10.1016/j.bcp.2022.115213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
The gut microbiota dysbiosis represents a triggering factor for cardiovascular diseases, including hypertension. In addition to the harmful impact caused by hypertension on different target organs, gut dysbiosis is capable of causing direct damage to critical organs such as the brain, heart, blood vessels, and kidneys. In this sense, it should be noted that pharmacological and nutritional interventions may influence gut microbiota composition, either inducing or preventing the development of hypertension. Some of the most important nutritional interventions at this level are represented by pro-, pre-, post- and/or syn-biotics, as well as polysaccharides, polyunsaturated fatty acids ω-3, polyphenols and fiber contained in different foods. Meanwhile, certain natural and synthetic active pharmaceutical ingredients, including antibiotics, antihypertensive and immunosuppressive drugs, vegetable extracts and vitamins, may also have a key role in the modulation of both gut microbiota and cardiovascular health. Additionally, gut microbiota may influence drugs and food-derived bioactive compounds metabolism, positively or negatively affecting their biological behavior facing established hypertension. The understanding of the complex interactions between gut microbiome and drug/food response results of great importance to developing improved pharmacological therapies for hypertension prevention and treatment. The purpose of this review is to critically outline the most relevant and recent findings on cardiovascular, renal and brain physiopathological mechanisms involved in the development of hypertension associated with changes in gut microbiota, besides the nutritional and pharmacological interventions potentially valuable for the prevention and treatment of this prevalent pathology. Finally, harmful food/drug interventions on gut microbiota are also described.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, Sede San Juan, Argentina
| | - Natalia Lucía Rukavina Mikusic
- Universidad de Buenos Aires. CONICET. Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina; Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Cátedra de Anatomía e Histología, Buenos Aires, Argentina
| | - Hyun Jin Lee
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Cátedra de Anatomía e Histología, Buenos Aires, Argentina
| | - Sebastián García Menéndez
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina
| | - Marcelo Roberto Choi
- Universidad de Buenos Aires. CONICET. Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina; Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Cátedra de Anatomía e Histología, Buenos Aires, Argentina
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina.
| |
Collapse
|
194
|
Multi-omics analyses of serum metabolome, gut microbiome and brain function reveal dysregulated microbiota-gut-brain axis in bipolar depression. Mol Psychiatry 2022; 27:4123-4135. [PMID: 35444255 DOI: 10.1038/s41380-022-01569-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
The intricate processes of microbiota-gut-brain communication in modulating human cognition and emotion, especially in the context of mood disorders, have remained elusive. Here we performed faecal metagenomic, serum metabolomics and neuroimaging studies on a cohort of 109 unmedicated patients with depressed bipolar disorder (BD) patients and 40 healthy controls (HCs) to characterise the microbial-gut-brain axis in BD. Across over 12,000 measured metabolic features, we observed a large discrepancy (73.54%) in the serum metabolome between BD patients and HCs, spotting differentially abundant microbial-derived neuroactive metabolites including multiple B-vitamins, kynurenic acid, gamma-aminobutyric acid and short-chain fatty acids. These metabolites could be linked to the abundance of gut microbiota presented with corresponding biosynthetic potentials, including Akkermansia muciniphila, Citrobacter spp. (Citrobacter freundii and Citrobacter werkmanii), Phascolarctobacterium spp., Yersinia spp. (Yersinia frederiksenii and Yersinia aleksiciae), Enterobacter spp. (Enterobacter cloacae and Enterobacter kobei) and Flavobacterium spp. Based on functional neuroimaging, BD-related neuroactive microbes and metabolites were discovered as potential markers associated with BD-typical features of functional connectivity of brain networks, hinting at aberrant cognitive function, emotion regulation, and interoception. Our study combines gut microbiota and neuroactive metabolites with brain functional connectivity, thereby revealing potential signalling pathways from the microbiota to the gut and the brain, which may have a role in the pathophysiology of BD.
Collapse
|
195
|
Liu J, Qi M, Qiu C, Wang F, Xie S, Zhao J, Wu J, Song X. Integrative analysis of the mouse fecal microbiome and metabolome reveal dynamic phenotypes in the development of colorectal cancer. Front Microbiol 2022; 13:1021325. [PMID: 36246263 PMCID: PMC9554438 DOI: 10.3389/fmicb.2022.1021325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
The gut microbiome and its interaction with host have been implicated as the causes and regulators of colorectal cancer (CRC) pathogenesis. However, few studies comprehensively investigate the compositions of gut bacteria and their interactions with host at the early inflammatory and cancerous stages of CRC. In this study, mouse fecal samples collected at inflammation and CRC were subjected to microbiome and metabolome analyses. The datasets were analyzed individually and integratedly using various bioinformatics approaches. Great variations in gut microbiota abundance and composition were observed in inflammation and CRC. The abundances of Bacteroides, S24-7_group_unidifineted, and Allobaculum were significantly changed in inflammation and CRC. The abundances of Bacteroides and Allobaculum were significantly different between inflammation and CRC. Furthermore, strong excluding and appealing microbial interactions were found in the gut microbiota. CRC and inflammation presented specific fecal metabolome profiling. Fecal metabolomic analysis led to the identification and quantification of 1,138 metabolites with 32 metabolites significantly changed in CRC and inflammation. 1,17-Heptadecanediol and 24,25,26,27-Tetranor-23-oxo-hydroxyvitamin D3 were potential biomarkers for CRC. 3α,7β,12α-Trihydroxy-6-oxo-5α-cholan-24-oic Acid and NNAL-N-glucuronide were potential biomarkers for inflammation. The significantly changed bacterial species and metabolites contribute to inflammation and CRC diagnosis. Integrated microbiome and metabolomic analysis correlated microbes with host metabolites, and the variated microbe-metabolite association in inflammation and CRC suggest that microbes facilitate tumorigenesis of CRC through interfering host metabolism.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China
| | - Mingyang Qi
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Chengchao Qiu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Feng Wang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China
| | - Shaofei Xie
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China
| | - Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- *Correspondence: Jian Zhao,
| | - Jing Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- Jing Wu,
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Xiaofeng Song,
| |
Collapse
|
196
|
Dekkers KF, Sayols-Baixeras S, Baldanzi G, Nowak C, Hammar U, Nguyen D, Varotsis G, Brunkwall L, Nielsen N, Eklund AC, Bak Holm J, Nielsen HB, Ottosson F, Lin YT, Ahmad S, Lind L, Sundström J, Engström G, Smith JG, Ärnlöv J, Orho-Melander M, Fall T. An online atlas of human plasma metabolite signatures of gut microbiome composition. Nat Commun 2022; 13:5370. [PMID: 36151114 PMCID: PMC9508139 DOI: 10.1038/s41467-022-33050-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
Human gut microbiota produce a variety of molecules, some of which enter the bloodstream and impact health. Conversely, dietary or pharmacological compounds may affect the microbiota before entering the circulation. Characterization of these interactions is an important step towards understanding the effects of the gut microbiota on health. In this cross-sectional study, we used deep metagenomic sequencing and ultra-high-performance liquid chromatography linked to mass spectrometry for a detailed characterization of the gut microbiota and plasma metabolome, respectively, of 8583 participants invited at age 50 to 64 from the population-based Swedish CArdioPulmonary bioImage Study. Here, we find that the gut microbiota explain up to 58% of the variance of individual plasma metabolites and we present 997 associations between alpha diversity and plasma metabolites and 546,819 associations between specific gut metagenomic species and plasma metabolites in an online atlas (https://gutsyatlas.serve.scilifelab.se/). We exemplify the potential of this resource by presenting novel associations between dietary factors and oral medication with the gut microbiome, and microbial species strongly associated with the uremic toxin p-cresol sulfate. This resource can be used as the basis for targeted studies of perturbation of specific metabolites and for identification of candidate plasma biomarkers of gut microbiota composition. Here, Dekkers et al. characterize associations of 1528 gut metagenomic species with the plasma metabolome in 8583 participants of the SCAPIS Study, and find that gut microbiota explain up to 58% of the variance of individual plasma metabolites.
Collapse
Affiliation(s)
- Koen F Dekkers
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sergi Sayols-Baixeras
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,CIBER Cardiovascular diseases (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Gabriel Baldanzi
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Christoph Nowak
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Science and Society, Karolinska Institute, Huddinge, Sweden
| | - Ulf Hammar
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Diem Nguyen
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Georgios Varotsis
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | - Filip Ottosson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Yi-Ting Lin
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Shafqat Ahmad
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Johan Sundström
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, Sweden.,The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Gunnar Engström
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - J Gustav Smith
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and the Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden.,Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund University, Lund, Sweden
| | - Johan Ärnlöv
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Science and Society, Karolinska Institute, Huddinge, Sweden.,School of Health and Social Studies, Dalarna University, Falun, Sweden
| | | | - Tove Fall
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
197
|
Tan J, Zhou H, Deng J, Sun J, Zhou X, Tang Y, Qin W. Effectiveness of Microecological Preparations for Improving Renal Function and Metabolic Profiles in Patients With Chronic Kidney Disease. Front Nutr 2022; 9:850014. [PMID: 36172526 PMCID: PMC9510395 DOI: 10.3389/fnut.2022.850014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
Background Determining whether microecological preparations, including probiotics, prebiotics, and synbiotics, are beneficial for patients with chronic kidney disease (CKD) has been debated. Moreover, determining which preparation has the best effect remains unclear. In this study, we performed a network meta-analysis of randomized clinical trials (RCTs) to address these questions. Methods MEDLINE, EMBASE, PubMed, Web of Science, and the Cochrane Central Register of Controlled Trials were searched. Eligible RCTs with patients with CKD who received intervention measures involving probiotics, prebiotics, and/or synbiotics were included. The outcome indicators included changes in renal function, lipid profiles, inflammatory factors, and oxidative stress factors. Results Twenty-eight RCTs with 1,373 patients were ultimately included. Probiotics showed greater effect in lowering serum creatinine [mean difference (MD) -0.21, 95% confidence interval (CI) -0.34, -0.09] and triglycerides (MD -9.98, 95% CI -19.47, -0.49) than the placebo, with the largest surface area under the cumulative ranking curve, while prebiotics and synbiotics showed no advantages. Probiotics were also able to reduce malondialdehyde (MDA) (MD -0.54, 95% CI -0.96, -0.13) and increase glutathione (MD 72.86, 95% CI 25.44, 120.29). Prebiotics showed greater efficacy in decreasing high-sensitivity C-reactive protein (MD -2.06, 95% CI -3.79, -0.32) and tumor necrosis factor-α (MD -2.65, 95% CI -3.91, -1.39). Synbiotics showed a partially synergistic function in reducing MDA (MD -0.66, 95% CI -1.23, -0.09) and high-sensitivity C-reactive protein (MD -2.01, 95% CI -3.87, -0.16) and increasing total antioxidant capacity (MD 145.20, 95% CI 9.32, 281.08). Conclusion The results indicated that microbial supplements improved renal function and lipid profiles and favorably affected measures of oxidative stress and inflammation in patients with CKD. After thorough consideration, probiotics provide the most comprehensive and beneficial effects for patients with CKD and might be used as the best choice for microecological preparations. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022295497, PROSPERO 2022, identifier: CRD42022295497.
Collapse
Affiliation(s)
- Jiaxing Tan
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Huan Zhou
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiaxin Deng
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiantong Sun
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xiaoyuan Zhou
- West China School of Public Health, West China Forth Hospital of Sichuan University, Chengdu, China
| | - Yi Tang
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Wei Qin
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
198
|
Oral Absorbent AST-120 Is Associated with Compositional and Functional Adaptations of Gut Microbiota and Modification of Serum Short and Medium-Chain Fatty Acids in Advanced CKD Patients. Biomedicines 2022; 10:biomedicines10092234. [PMID: 36140334 PMCID: PMC9496242 DOI: 10.3390/biomedicines10092234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/18/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Animal studies have demonstrated that an oral absorbent AST-120 modulates gut environment. However, this phenomenon remains unclear in humans. This study aimed to assess the effects of AST-120 on the gut microbiota, related functional capability and metabolomic profiling in advanced chronic kidney diseases (CKD) patients. Methods: Eight advanced CKD patients with AST-120 (CKD+AST), 24 CKD patients (CKD), and 24 non-CKD controls were enrolled. We analyzed 16S rRNA pyrosequencing of feces and serum metabolomics profiling. Results: The CKD+AST group exhibited dispersed microbial community structure (β-diversity, p < 0.001) compared to other groups. The relative abundances of at least 16 genera were significantly different amongst the three groups. Increases of fatty acids-producing bacteria (Clostridium_sensu_stricto_1, Ruminococcus_2, Eubacterium_nodatum and Phascolarctobacterium) associated with elevated serum acetic acid and octanoic acid levels were found in CKD+AST group. Analysis of microbial gene function indicated that pathway modules relevant to metabolisms of lipids, amino acids and carbohydrates were differentially enriched between CKD+AST and CKD groups. Specifically, enrichments of gene markers of the biosynthesis of fatty acids were noted in the CKD+AST group. Conclusion: Advanced CKD patients exhibited significant gut dysbiosis. AST-120 can partially restore the gut microbiota and intervenes in a possible signature of short- and medium-chain fatty acids metabolism.
Collapse
|
199
|
Kim H, Nam BY, Park J, Song S, Kim WK, Lee K, Nam TW, Park JT, Yoo TH, Kang SW, Ko G, Han SH. Lactobacillus acidophilus KBL409 reduces kidney fibrosis via immune modulatory effects in mice with chronic kidney disease. Mol Nutr Food Res 2022; 66:e2101105. [PMID: 36059191 DOI: 10.1002/mnfr.202101105] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 08/10/2022] [Indexed: 11/10/2022]
Abstract
SCOPE Intestinal dysbiosis has been reported to play an important role in the pathogenesis of various diseases, including chronic kidney disease (CKD). Here, we aimed to evaluate whether probiotic supplements can have protective effects against kidney injury in an animal model of CKD. METHODS AND RESULTS An animal model of CKD was established by feeding C57BL/6 mice a diet containing 0.2% adenine. These model mice were administered Lactobacillus acidophilus KBL409 daily for 4 weeks. Features of adenine-induce CKD (Ade-CKD) mice, such as prominent kidney fibrosis and higher levels of serum creatinine and albuminuria were improved by administration of KBL409. Ade-CKD mice also exhibited a disrupted intestinal barrier and elevated levels of TNF-α, IL-6, and 8-hydroxy-2'-deoxyguanosine. These changes were attenuated by KBL409. Administration of KBL409 significantly reduced macrophage infiltration and promoted a switch to the M2 macrophage phenotype and increasing regulatory T cells. Notably, the NLRP3 inflammasome pathway was activated in the kidneys of Ade-CKD and decreased by KBL409. In primary kidney tubular epithelial cells treated with p-cresyl sulfate, short-chain fatty acids significantly increased M2 macrophage polarization factors and decreased profibrotic markers. CONCLUSIONS These results demonstrate that supplementation with the probiotic KBL409 has beneficial immunomodulating effects and protects against kidney injury. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hyoungnae Kim
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea.,Graduate School, Yonsei University College of Medicine, Seoul, Korea
| | - Bo Young Nam
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Jimin Park
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | | | - Woon-Ki Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | | | | | - Jung Tak Park
- Yonsei University, Institute of Kidney Disease Research, College of Medicine, Department of Internal Medicine, Seoul, Korea
| | - Tae-Hyun Yoo
- Yonsei University, Institute of Kidney Disease Research, College of Medicine, Department of Internal Medicine, Seoul, Korea
| | - Shin-Wook Kang
- Yonsei University, Institute of Kidney Disease Research, College of Medicine, Department of Internal Medicine, Seoul, Korea
| | - GwangPyo Ko
- KoBiolabs, Inc., Seoul, Korea.,Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Seung Hyeok Han
- Yonsei University, Institute of Kidney Disease Research, College of Medicine, Department of Internal Medicine, Seoul, Korea
| |
Collapse
|
200
|
Microbial Tryptophan Metabolism Tunes Host Immunity, Metabolism, and Extraintestinal Disorders. Metabolites 2022; 12:metabo12090834. [PMID: 36144238 PMCID: PMC9505266 DOI: 10.3390/metabo12090834] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
The trillions of commensal microorganisms comprising the gut microbiota have received growing attention owing to their impact on host physiology. Recent advances in our understandings of the host–microbiota crosstalk support a pivotal role of microbiota-derived metabolites in various physiological processes, as they serve as messengers in the complex dialogue between commensals and host immune and endocrine cells. In this review, we highlight the importance of tryptophan-derived metabolites in host physiology, and summarize the recent findings on the role of tryptophan catabolites in preserving intestinal homeostasis and fine-tuning immune and metabolic responses. Furthermore, we discuss the latest evidence on the effects of microbial tryptophan catabolites, describe their mechanisms of action, and discuss how perturbations of microbial tryptophan metabolism may affect the course of intestinal and extraintestinal disorders, including inflammatory bowel diseases, metabolic disorders, chronic kidney diseases, and cardiovascular diseases.
Collapse
|