151
|
Ghazanfar H, Javed N, Qasim A, Zacharia GS, Ghazanfar A, Jyala A, Shehi E, Patel H. Metabolic Dysfunction-Associated Steatohepatitis and Progression to Hepatocellular Carcinoma: A Literature Review. Cancers (Basel) 2024; 16:1214. [PMID: 38539547 PMCID: PMC10969013 DOI: 10.3390/cancers16061214] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 11/26/2024] Open
Abstract
The prevalence of metabolic-associated fatty liver disease (MAFLD) is increasing globally due to factors such as urbanization, obesity, poor nutrition, sedentary lifestyles, healthcare accessibility, diagnostic advancements, and genetic influences. Research on MAFLD and HCC risk factors, pathogenesis, and biomarkers has been conducted through a narrative review of relevant studies, with a focus on PubMed and Web of Science databases and exclusion criteria based on article availability and language. Steatosis marks the early stage of MASH advancement, commonly associated with factors of metabolic syndrome such as obesity and type 2 diabetes. Various mechanisms, including heightened lipolysis, hepatic lipogenesis, and consumption of high-calorie diets, contribute to the accumulation of lipids in the liver. Insulin resistance is pivotal in the development of steatosis, as it leads to the release of free fatty acids from adipose tissue. Natural compounds hold promise in regulating lipid metabolism and inflammation to combat these conditions. Liver fibrosis serves as a significant predictor of MASH progression and HCC development, underscoring the need to target fibrosis in treatment approaches. Risk factors for MASH-associated HCC encompass advanced liver fibrosis, older age, male gender, metabolic syndrome, genetic predispositions, and dietary habits, emphasizing the requirement for efficient surveillance and diagnostic measures. Considering these factors, it is important for further studies to determine the biochemical impact of these risk factors in order to establish targeted therapies that can prevent the development of HCC or reduce progression of MASH, indirectly decreasing the risk of HCC.
Collapse
Affiliation(s)
- Haider Ghazanfar
- Division of Gastroenterology, Department of Internal Medicine, BronxCare Health System, Bronx, NY 10457, USA (A.J.); (E.S.)
| | - Nismat Javed
- Department of Internal Medicine, BronxCare Health System, Bronx, NY 10457, USA (G.S.Z.)
| | - Abeer Qasim
- Department of Internal Medicine, BronxCare Health System, Bronx, NY 10457, USA (G.S.Z.)
| | - George Sarin Zacharia
- Department of Internal Medicine, BronxCare Health System, Bronx, NY 10457, USA (G.S.Z.)
| | - Ali Ghazanfar
- Department of Internal Medicine, Fauji Foundation Hospital, Rawalpindi 45000, Pakistan
| | - Abhilasha Jyala
- Division of Gastroenterology, Department of Internal Medicine, BronxCare Health System, Bronx, NY 10457, USA (A.J.); (E.S.)
| | - Elona Shehi
- Division of Gastroenterology, Department of Internal Medicine, BronxCare Health System, Bronx, NY 10457, USA (A.J.); (E.S.)
| | - Harish Patel
- Division of Gastroenterology, Department of Internal Medicine, BronxCare Health System, Bronx, NY 10457, USA (A.J.); (E.S.)
| |
Collapse
|
152
|
Zhang Y, Zhou BG, Zhan JD, Du BB. Association between metabolic dysfunction-associated steatotic liver disease and risk of incident pancreatic cancer: a systematic review and meta-analysis of cohort studies. Front Oncol 2024; 14:1366195. [PMID: 38567158 PMCID: PMC10985331 DOI: 10.3389/fonc.2024.1366195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Background and objectives Since the results of previous observational studies on the relationship between metabolic dysfunction-associated steatotic liver disease (MASLD) and pancreatic cancer were still controversial and inconsistent, we performed a systematic evaluation and meta-analysis of cohort studies to assess any potential association. Methods We conducted a systematic search of PubMed, Embase, and Web of Science databases from the database's inception up to November 30, 2023. For summary purposes, hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated using random-effects models, and subgroup and sensitivity analyses were performed as well. The Egger's test and Begg's test were utilized to detect the publication bias. Results This meta-analysis included nine cohort studies with a total of 10,428,926 participants. The meta-analysis demonstrated an increased risk of pancreatic cancer in those with MASLD (HR = 1.32, 95% CI: 1.10-1.59, P = 0.003) with moderate heterogeneity (I2 = 54%, P = 0.03). Subsequent subgroup analyses revealed that the pooled HRs remained significantly unchanged, irrespective of the study area, nomenclature of fatty liver disease, and sample size. The results of the sensitivity analyses remained unchanged. No evidence of publication bias was found. Conclusion This meta-analysis indicated that MASLD was associated with a higher risk of pancreatic cancer. To further strengthen the association, future prospective cohort studies should take into account different ethnic groups, diagnostic methods of fatty liver, the severity of MASLD, and potential confounding factors, as well as explore the potential mechanisms of pancreatic cancer development in MASLD patients. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42023489137.
Collapse
Affiliation(s)
- Yi Zhang
- Department of General Medicine, The Hospital of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | - Ji-Dong Zhan
- Department of General Medicine, The Hospital of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin-Bin Du
- Department of General Medicine, The Hospital of Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
153
|
Fu Y, Li G, Feng Z, Liu J, Wang X, Wang T, Liu J. Methyl Cinnamate (MC) Alleviates Free Fatty Acids (FFAs) Induced Lipid Accumulation Through the AMPK Pathway in HepG2 Cells. Diabetes Metab Syndr Obes 2024; 17:1183-1197. [PMID: 38469107 PMCID: PMC10926926 DOI: 10.2147/dmso.s449300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
Background AMP-activated protein kinase (AMPK) plays a critical role in energy metabolism. Its activation leads to the phosphorylation of downstream proteins such as acetyl-CoA carboxylase (ACC) and sterol regulatory element-binding protein-1 (SREBP1), subsequently inhibiting de novo fatty acid synthesis, thereby reducing intracellular triglyceride accumulation. MC is a compound found in extracts from Zanthoxylum armatum DC plants. Research has shown that MC can inhibit the differentiation of 3T3-L1 adipocytes through the CAMKK2-AMPK pathway. However, the biological effect of MC in HepG2 cells remains unknown. Methods In this study, we utilized HepG2 cells to establish a model of MAFLD through FFAs stimulation. We investigated the biological effects of MC on HepG2 cells and studied its impact on lipid metabolism. Small interfering RNA was employed to explore the mechanism by which MC activates AMPK. Finally, molecular docking was conducted, establishing a model of the interaction between AMPK and MC. Results We observed that MC can alleviate triglyceride accumulation in HepG2 cells. We observed the elevated p-AMPK/AMPK, P-ACC/ ACC, and elevated CPT1a after treatment of MC in HepG2 cells. The interference of CAMKK2 mRNA did not impact the ability of MC to phosphorylate AMPK. Compound C attenuates the ability of MC to increase p-AMPK. Molecular docking results led us to hypothesize that MC directly interacts with AMPK, resulting in AMPK phosphorylation and improved lipid accumulation in HepG2 cells.
Collapse
Affiliation(s)
- Yingda Fu
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Guangbing Li
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Zichen Feng
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Jun Liu
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Xiaoyu Wang
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Tao Wang
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Jun Liu
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
154
|
Tkach S, Pankiv V, Krushinska Z. Features of type 2 diabetes combined with metabolic dysfunction-associated fatty liver disease under conditions of chronic stress. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (UKRAINE) 2024; 20:18-24. [DOI: 10.22141/2224-0721.20.1.2024.1353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Background. Metabolic-associated fatty liver disease (MAFLD) is the most common chronic liver disease in which the main pathogenic processes originate from metabolic dysfunction. In recent years, MAFLD has acquired the nature of an epidemic, which is closely related to the epidemic of obesity, type diabetes mellitus (T2DM) and a significant increase in the risk of cardiovascular diseases. Along with the known pathogenetic factors outlined in the “multiple parallel hits” hypothesis, in the context of the COVID-19 pandemic and the russian military aggression in Ukraine, an additional powerful pathogenetic factor that can affect the course of many diseases, including MAFLD, is chronic stress. The aim of the study is to identify the clinical and biochemical features of MAFLD against the background of T2DM under the conditions of military stress in Ukraine. Materials and methods. We conducted a comparative study on the features of the course of MAFLD in 64 participants with T2DM: the first group — 44 individuals who were constantly under martial law in Ukraine, and controls — 20 patients who returned to Ukraine after a long (over 12 months) stay abroad. Results. The research shows that patients with MAFLD, who were affected by the negative consequences of military actions, had a statistically significant increase in the level of fasting glucose and markers of insulin resistance, an increase in the activity of liver transaminases and the level of markers of systemic inflammation compared to the pre-war period. The negative impact of wartime stress factors causes diabetic distress and a more severe course of MAFLD, which can subsequently lead to rapid progression of the disease. Most patients of the first group reported significant changes in the psycho-emotional state. The most common were low mood (81.8 %), feeling of anxiety/fear (79.5 %), sleep disturbances (81.8 %), general weakness and quick fatigue (63.3 %), which occurred much more often and were more pronounced than in the control group. Conclusions. During active military operations, epigenetic factors such as changes in the regime and quality of nutrition, psycho-emotional disorders in the form of astheno-neurotic and anxiety-depressive disorders, post-traumatic stress disorders, war-related unemployment and other negative factors become of great importance. Therefore, in these patients, control of optimal levels of glycemia, indicators of liver tests and lipid spectrum, as well as the state of mental health, are very significant.
Collapse
|
155
|
Duran-Bertran J, Rusu EC, Barrientos-Riosalido A, Bertran L, Mahmoudian R, Aguilar C, Riesco D, Martínez S, Ugarte Chicote J, Sabench F, Richart C, Auguet T. Platelet-associated biomarkers in nonalcoholic steatohepatitis: Insights from a female cohort with obesity. Eur J Clin Invest 2024; 54:e14123. [PMID: 37929908 DOI: 10.1111/eci.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND There is a lack of noninvasive diagnostic methods for nonalcoholic steatohepatitis (NASH), the severe condition of metabolic dysfunction-associated steatotic liver disease (MASLD). Platelet activation, evaluated through certain related parameters, is associated with liver disease and inflammation, but previous results are inconclusive. AIM To investigate the potential utility of platelet-related indices as noninvasive diagnostic markers for the detection and prediction of MASLD, focusing on NASH. RESULTS We found that mean platelet volume (MPV), plateletcrit (PCT) and platelet distribution width (PDW) were increased in the severe and morbidly obese (SMO) group compared to the normal weight (NW) group. We found decreased levels of MPV in steatosis and NASH patients. MPV and PCT values were decreased in the presence of mild liver inflammation. Platelet count (PLA) and PCT values were lower in the presence of ballooning. We obtained an area under the ROC curve of 0.84 using MPV and three other variables to predict MASLD. CONCLUSIONS Some platelet-related indices vary depending on liver condition. Here, we reported decreased MPV in MASLD presence. Moreover, we presented for the first time a predictive model using MPV, ALT levels and the presence of diabetes mellitus and metabolic syndrome to predict MASLD in obese women. Also, MPV is closely related to early liver inflammation in NASH, and PLA and PCT are related to hepatic ballooning. These indices could be widely used for the early detection of NASH since they are usually determined in routine laboratory tests.
Collapse
Affiliation(s)
- Joan Duran-Bertran
- Grup de Recerca GEMMAIR (AGAUR) - Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Servei Medicina Interna, Departament de Medicina i Cirurgia, Hospital Universitari de Tarragona Joan XXIII, URV, Tarragona, Spain
| | - Elena Cristina Rusu
- Grup de Recerca GEMMAIR (AGAUR) - Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Andrea Barrientos-Riosalido
- Grup de Recerca GEMMAIR (AGAUR) - Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Laia Bertran
- Grup de Recerca GEMMAIR (AGAUR) - Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Razieh Mahmoudian
- Grup de Recerca GEMMAIR (AGAUR) - Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Carmen Aguilar
- Grup de Recerca GEMMAIR (AGAUR) - Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - David Riesco
- Grup de Recerca GEMMAIR (AGAUR) - Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Servei Medicina Interna, Departament de Medicina i Cirurgia, Hospital Universitari de Tarragona Joan XXIII, URV, Tarragona, Spain
| | - Salomé Martínez
- Grup de Recerca GEMMAIR (AGAUR) - Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Servei Anatomia Patològica, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Javier Ugarte Chicote
- Grup de Recerca GEMMAIR (AGAUR) - Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Servei Anatomia Patològica, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Fàtima Sabench
- Grup de Recerca GEMMAIR (AGAUR) - Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Servei de Cirurgia, Departament de Medicina i Cirurgia, Hospital Sant Joan de Reus, URV, IISPV, Reus, Spain
| | - Cristóbal Richart
- Grup de Recerca GEMMAIR (AGAUR) - Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Teresa Auguet
- Grup de Recerca GEMMAIR (AGAUR) - Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Servei Medicina Interna, Departament de Medicina i Cirurgia, Hospital Universitari de Tarragona Joan XXIII, URV, Tarragona, Spain
| |
Collapse
|
156
|
Fan C, He Y, Yang J, Da M. Association Between Live Microbe Intake and NAFLD: Evidence From NHANES 2003-2018. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:272-278. [PMID: 37930261 DOI: 10.1080/27697061.2023.2270537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE This study aimed to shed light on the potential relationship between live microbe intake and nonalcoholic fatty liver disease (NAFLD). METHOD By using a cross-sectional study design, the researchers were able to investigate the possible causal association between the two variables in a rigorous and systematic manner. RESULTS Our study investigated the correlation between the intake of live microbe-containing foods and NAFLD in a representative sample of adults. The study found that the intake of live microbe-containing foods was associated with lower blood pressure, plasma glucose, NAFLD, body mass index, glycated hemoglobin, alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transpeptidase, and low-density lipoprotein cholesterol, as well as higher high-density lipoprotein cholesterol levels (p < 0.05). In univariate logistic regression, high dietary live microbe intake was associated with lower NAFLD prevalence than low intake (OR = 0.830; 95% CI, 0.759 to 0.908; p < 0.001). After adjusting for multiple variables, the same conclusion was supported (p < 0.05). In subgroup analyses, there was a significant difference in the race and smoking groups, with p for interaction of 0.01 and 0.02, respectively. This study's findings serve to augment the existing body of evidence linking live microbes with favorable health outcomes. CONCLUSIONS Our study revealed a robust correlation between dietary intake of live microbes and the prevalence of NAFLD in a cross-sectional analysis. Our findings offer a novel perspective on NAFLD research, highlighting the potential of targeted modulation of specific bacterial taxa, including the promotion of beneficial bacteria and suppression of harmful ones, as a promising strategy for preventing and treating NAFLD.
Collapse
Affiliation(s)
- Chuanlei Fan
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yang He
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Jian Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Mingxu Da
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
157
|
Bórquez JC, Díaz-Castro F, La Fuente FPD, Espinoza K, Figueroa AM, Martínez-Ruíz I, Hernández V, López-Soldado I, Ventura R, Domingo JC, Bosch M, Fajardo A, Sebastián D, Espinosa A, Pol A, Zorzano A, Cortés V, Hernández-Alvarez MI, Troncoso R. Mitofusin-2 induced by exercise modifies lipid droplet-mitochondria communication, promoting fatty acid oxidation in male mice with NAFLD. Metabolism 2024; 152:155765. [PMID: 38142958 DOI: 10.1016/j.metabol.2023.155765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/09/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND AND AIM The excessive accumulation of lipid droplets (LDs) is a defining characteristic of nonalcoholic fatty liver disease (NAFLD). The interaction between LDs and mitochondria is functionally important for lipid metabolism homeostasis. Exercise improves NAFLD, but it is not known if it has an effect on hepatic LD-mitochondria interactions. Here, we investigated the influence of exercise on LD-mitochondria interactions and its significance in the context of NAFLD. APPROACH AND RESULTS Mice were fed high-fat diet (HFD) or HFD-0.1 % methionine and choline-deficient diet (MCD) to emulate simple hepatic steatosis or non-alcoholic steatohepatitis, respectively. In both models, aerobic exercise decreased the size of LDs bound to mitochondria and the number of LD-mitochondria contacts. Analysis showed that the effects of exercise on HOMA-IR and liver triglyceride levels were independent of changes in body weight, and a positive correlation was observed between the number of LD-mitochondria contacts and NAFLD severity and with the lipid droplet size bound to mitochondria. Cellular fractionation studies revealed that ATP-coupled respiration and fatty acid oxidation (FAO) were greater in hepatic peridroplet mitochondria (PDM) from HFD-fed exercised mice than from equivalent sedentary mice. Finally, exercise increased FAO and mitofusin-2 abundance exclusively in PDM through a mechanism involving the curvature of mitochondrial membranes and the abundance of saturated lipids. Accordingly, hepatic mitofusin-2 ablation prevented exercise-induced FAO in PDM. CONCLUSIONS This study demonstrates that aerobic exercise has beneficial effects in murine NAFLD models by lessening the interactions between hepatic LDs and mitochondria, and by decreasing LD size, correlating with a reduced severity of NAFLD. Additionally, aerobic exercise increases FAO in PDM and this process is reliant on Mfn-2 enrichment, which modifies LD-mitochondria communication.
Collapse
Affiliation(s)
- Juan Carlos Bórquez
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Francisco Díaz-Castro
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Francisco Pino-de La Fuente
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Karla Espinoza
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Ana María Figueroa
- Department of Nutrition, Diabetes and Metabolism, Pontificia Universidad Católica de Chile, Chile
| | - Inma Martínez-Ruíz
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Vanessa Hernández
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona (BIST), Spain
| | - Iliana López-Soldado
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Raúl Ventura
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Joan Carles Domingo
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Marta Bosch
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alba Fajardo
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - David Sebastián
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Alejandra Espinosa
- Escuela de Medicina, Campus San Felipe, Universidad de Valparaíso, Chile; Department of Medical Technology, Faculty of Medicine, University of Chile, Chile
| | - Albert Pol
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Antonio Zorzano
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona (BIST), Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Víctor Cortés
- Department of Nutrition, Diabetes and Metabolism, Pontificia Universidad Católica de Chile, Chile.
| | - María Isabel Hernández-Alvarez
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile; Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Chile; Obesity-induced Accelerated Aging (ObAGE), Universidad de Chile, Chile.
| |
Collapse
|
158
|
Hukerikar N, Hingorani AD, Asselbergs FW, Finan C, Schmidt AF. Prioritising genetic findings for drug target identification and validation. Atherosclerosis 2024; 390:117462. [PMID: 38325120 DOI: 10.1016/j.atherosclerosis.2024.117462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
The decreasing costs of high-throughput genetic sequencing and increasing abundance of sequenced genome data have paved the way for the use of genetic data in identifying and validating potential drug targets. However, the number of identified potential drug targets is often prohibitively large to experimentally evaluate in wet lab experiments, highlighting the need for systematic approaches for target prioritisation. In this review, we discuss principles of genetically guided drug development, specifically addressing loss-of-function analysis, colocalization and Mendelian randomisation (MR), and the contexts in which each may be most suitable. We subsequently present a range of biomedical resources which can be used to annotate and prioritise disease-associated proteins identified by these studies including 1) ontologies to map genes, proteins, and disease, 2) resources for determining the druggability of a potential target, 3) tissue and cell expression of the gene encoding the potential target, and 4) key biological pathways involving the potential target. We illustrate these concepts through a worked example, identifying a prioritised set of plasma proteins associated with non-alcoholic fatty liver disease (NAFLD). We identified five proteins with strong genetic support for involvement with NAFLD: CYB5A, NT5C, NCAN, TGFBI and DAPK2. All of the identified proteins were expressed in both liver and adipose tissues, with TGFBI and DAPK2 being potentially druggable. In conclusion, the current review provides an overview of genetic evidence for drug target identification, and how biomedical databases can be used to provide actionable prioritisation, fully informing downstream experimental validation.
Collapse
Affiliation(s)
- Nikita Hukerikar
- Institute of Health Informatics, Faculty of Population Health Sciences, University College London, London, UK.
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK; The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
| | - Folkert W Asselbergs
- Institute of Health Informatics, Faculty of Population Health Sciences, University College London, London, UK; Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK; Department of Cardiology, Division Heart and Lungs, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical, Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK; The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK; Department of Cardiology, Division Heart and Lungs, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Amand F Schmidt
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK; The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK; Department of Cardiology, Division Heart and Lungs, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical, Centre, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
159
|
Colella F, Ramachandran P. Adipose tissue macrophage dysfunction in human MASLD - Cause or consequence? J Hepatol 2024; 80:390-393. [PMID: 38122832 DOI: 10.1016/j.jhep.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Affiliation(s)
- Fabio Colella
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Prakash Ramachandran
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
160
|
Liu K, Tang S, Liu C, Ma J, Cao X, Yang X, Zhu Y, Chen K, Liu Y, Zhang C, Liu Y. Systemic immune-inflammatory biomarkers (SII, NLR, PLR and LMR) linked to non-alcoholic fatty liver disease risk. Front Immunol 2024; 15:1337241. [PMID: 38481995 PMCID: PMC10933001 DOI: 10.3389/fimmu.2024.1337241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/15/2024] [Indexed: 04/10/2024] Open
Abstract
Background Systemic immune-inflammatory biomarkers including systemic immune inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and lymphocyte-to-monocyte ratio (LMR) have been demonstrated to be associated with the risk and severity of various liver diseases. However, studies on their role and clinical significance in metabolic diseases, especially in nonalcoholic fatty liver disease (NAFLD), are limited and results are inconsistent. Methods 10821 adults aged 20 years or older were enrolled in this cross-sectional study, sourced from six cycles of the National Health and Nutrition Examination Survey (NHANES). Survey-weighted logistic regression was employed to investigate the correlation between systemic immune-inflammatory biomarkers (SII, NLR, PLR, and LMR) and NAFLD risk. Restricted cubic spline regression models and segmented regression models were used to describe nonlinear relationships and threshold effects. Subgroup and sensitivity analyses were also conducted. Results After adjusting for all confounding variables, there was a significant positive association observed between ln-transformed SII (OR= 1.46, 95% CI: 1.27-1.69, P <0.001), NLR (OR= 1.25, 95% CI: 1.05-1.49, P =0.015), LMR (OR= 1.39, 95% CI: 1.14-1.69, P = 0.002) with NAFLD. A nonlinear dose-response relationship with an inverted "U"-shaped threshold of 4.64 was observed between ln(PLR) and NAFLD risk. When ln(PLR) was below 4.64, each unit increase in ln(PLR) was associated with a 0.55-fold increase in the risk of NAFLD (OR= 1.55, 95% CI: 1.05-2.31, P <0.05). Conversely, when ln(PLR) exceeded 4.64, each unit increase in ln(PLR) was associated with a 0.40-fold decrease in the risk of NAFLD (OR= 0.60, 95% CI. 0.44-0.81, P <0.05). Conclusion ln-transformed SII, NLR, and LMR were linearly associated with NAFLD risk. ln(PLR) showed an inverted "U"-shaped nonlinear dose-response relationship with the risk of NAFLD.
Collapse
Affiliation(s)
- Ke Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shiyun Tang
- The National Clinical Trial Center of Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chenhao Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jianli Ma
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiyu Cao
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiuli Yang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi Zhu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ke Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- People's Hospital of Xinjin District, Chengdu, Sichuan, China
| | - Ya Liu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
161
|
Xu X, Zhang C, Tang G, Wang N, Feng Y. Updated Insights into Probiotics and Hepatobiliary Diseases. Biomedicines 2024; 12:515. [PMID: 38540128 PMCID: PMC10968574 DOI: 10.3390/biomedicines12030515] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 05/03/2025] Open
Abstract
Hepatobiliary diseases have a high prevalence worldwide, with a wide range of diseases involved in the liver and biliary system. Modifications in gut microbiota have been proven to have an association with unbalanced intestinal homeostasis and the dysfunction of host metabolism and the immune system, which can be the risk factors for many hepatobiliary diseases, such as nonalcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), nonalcoholic fatty steatohepatitis (NASH), hepatitis, cirrhosis, hepatocellular carcinoma (HCC) and cholestasis, as well as infection due to liver transplantation. Probiotics are commonly used gut microbiota-targeted strategies to treat dysbiosis and intestinal dysfunction, as well as the gut-liver axis, which can enhance the effectiveness of probiotics in the management of liver diseases. Recent studies have explored more potential single or mixed strains of probiotics, and bioinformatics methods can be used to investigate the potential mechanisms of probiotics on liver diseases. In this review, we summarize the preclinical and clinical studies on the role of probiotics in hepatobiliary diseases from 2018 to 2023, revealing the possible mechanism of probiotics in the treatment of hepatobiliary diseases and discussing the limitations of probiotics in treating hepatobiliary diseases. This review provides updated evidence for the development of probiotic products, exploration of new probiotic strains, and support for clinical studies. Further studies should focus on the safety, viability, and stability of probiotics, as well as medication dosage and duration in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (X.X.); (C.Z.); (G.T.); (N.W.)
| |
Collapse
|
162
|
Nairz J, Messner A, Kiechl SJ, Winder B, Hochmayr C, Egger AE, Griesmacher A, Geiger R, Griesmaier E, Pechlaner R, Knoflach M, Kiechl-Kohlendorfer U. Determinants of non-alcoholic fatty liver disease in young people: Maternal, neonatal, and adolescent factors. PLoS One 2024; 19:e0298800. [PMID: 38386674 PMCID: PMC10883560 DOI: 10.1371/journal.pone.0298800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
AIM To assess the impact of maternal, neonatal, and adolescent factors on the development of non-alcoholic fatty liver disease (NAFLD) in a cohort of 14- to 19-year-old adolescents. METHODS This study is part of the Early Vascular Ageing in the YOUth study, a single-center cross-sectional study conducted in western Austria. Maternal and neonatal factors were extracted from the mother-child booklet, adolescent factors were evaluated by a face-to-face interview, physical examination, and fasting blood analyses. Liver fat content was assessed by controlled attenuation parameter (CAP) using signals acquired by FibroScan® (Echosense, Paris, France). The association of maternal, neonatal, and adolescent factors with CAP values was analyzed using linear regression models. RESULTS In total, 595 adolescents (27.2% male) aged 17.0 ± 1.3 years were included. 4.9% (n = 29) showed manifest NAFLD with CAP values above the 90th percentile. Male sex (p < 0.001), adolescent triglyceride levels (p = 0.021), Homeostatic Model Assessment for Insulin Resistance index and BMI z-score (p < 0.001, each) showed a significant association with liver fat content in the multivariable analysis. Maternal pre-pregnancy BMI was associated with CAP values after adjustment for sex, age, and birth weight for gestational age (p < 0.001), but this association was predominantly mediated by adolescent BMI (indirect effect b = 1.18, 95% CI [0.69, 1.77]). CONCLUSION Components of the metabolic syndrome were the most important predictors of adolescent liver fat content. Therefore, prevention of NAFLD should focus on lifestyle modification in childhood and adolescence.
Collapse
Affiliation(s)
- Johannes Nairz
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Tyrol, Austria
- Department of Pediatrics II, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
- Department of Pediatrics III, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Alex Messner
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Tyrol, Austria
- Department of Pediatrics II, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Sophia J. Kiechl
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Tyrol, Austria
- Department of Neurology, Hochzirl Hospital, Zirl, Tyrol, Austria
| | - Bernhard Winder
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Tyrol, Austria
- Department of Vascular Surgery, Feldkirch Hospital, Feldkirch, Vorarlberg, Austria
| | - Christoph Hochmayr
- Department of Pediatrics II, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Alexander E. Egger
- Central Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL), University Hospital of Innsbruck, Innsbruck, Tyrol, Austria
| | - Andrea Griesmacher
- Central Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL), University Hospital of Innsbruck, Innsbruck, Tyrol, Austria
| | - Ralf Geiger
- Department of Pediatrics III, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Elke Griesmaier
- Department of Pediatrics II, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Raimund Pechlaner
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Michael Knoflach
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Tyrol, Austria
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | | | | |
Collapse
|
163
|
Dallio M, Romeo M, Vaia P, Auletta S, Mammone S, Cipullo M, Sapio L, Ragone A, Niosi M, Naviglio S, Federico A. Red cell distribution width/platelet ratio estimates the 3-year risk of decompensation in Metabolic Dysfunction-Associated Steatotic Liver Disease-induced cirrhosis. World J Gastroenterol 2024; 30:685-704. [PMID: 38515952 PMCID: PMC10950628 DOI: 10.3748/wjg.v30.i7.685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND For compensated advanced chronic liver disease (cACLD) patients, the first decompensation represents a dramatically worsening prognostic event. Based on the first decompensation event (DE), the transition to decompensated advanced chronic liver disease (dACLD) can occur through two modalities referred to as acute decompensation (AD) and non-AD (NAD), respectively. Clinically Significant Portal Hypertension (CSPH) is considered the strongest predictor of decompensation in these patients. However, due to its invasiveness and costs, CSPH is almost never evaluated in clinical practice. Therefore, recognizing non-invasively predicting tools still have more appeal across healthcare systems. The red cell distribution width to platelet ratio (RPR) has been reported to be an indicator of hepatic fibrosis in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). However, its predictive role for the decompensation has never been explored. AIM In this observational study, we investigated the clinical usage of RPR in predicting DEs in MASLD-related cACLD patients. METHODS Fourty controls and 150 MASLD-cACLD patients were consecutively enrolled and followed up (FUP) semiannually for 3 years. At baseline, biochemical, clinical, and Liver Stiffness Measurement (LSM), Child-Pugh (CP), Model for End-Stage Liver Disease (MELD), aspartate aminotransferase/platelet count ratio index (APRI), Fibrosis-4 (FIB-4), Albumin-Bilirubin (ALBI), ALBI-FIB-4, and RPR were collected. During FUP, DEs (timing and modaities) were recorded. CSPH was assessed at the baseline and on DE occurrence according to the available Clinical Practice Guidelines. RESULTS Of 150 MASLD-related cACLD patients, 43 (28.6%) progressed to dACLD at a median time of 28.9 months (29 NAD and 14 AD). Baseline RPR values were significantly higher in cACLD in comparison to controls, as well as MELD, CP, APRI, FIB-4, ALBI, ALBI-FIB-4, and LSM in dACLD-progressing compared to cACLD individuals [all P < 0.0001, except for FIB-4 (P: 0.007) and ALBI (P: 0.011)]. Receiving operator curve analysis revealed RPR > 0.472 and > 0.894 as the best cut-offs in the prediction respectively of 3-year first DE, as well as its superiority compared to the other non-invasive tools examined. RPR (P: 0.02) and the presence of baseline-CSPH (P: 0.04) were significantly and independently associated with the DE. Patients presenting baseline-CSPH and RPR > 0.472 showed higher risk of decompensation (P: 0.0023). CONCLUSION Altogether these findings suggest the RPR as a valid and potentially applicable non-invasive tool in the prediction of timing and modalities of decompensation in MASLD-related cACLD patients.
Collapse
Affiliation(s)
- Marcello Dallio
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Mario Romeo
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Paolo Vaia
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Salvatore Auletta
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Simone Mammone
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Marina Cipullo
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Luigi Sapio
- Department of Precision Medicine, Clinical Biochemistry Division, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Angela Ragone
- Department of Precision Medicine, Clinical Biochemistry Division, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Marco Niosi
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Silvio Naviglio
- Department of Precision Medicine, Clinical Biochemistry Division, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Alessandro Federico
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| |
Collapse
|
164
|
Dou C, Zhu H, Xie X, Huang C, Cao C. Integrated Pharmaco-Bioinformatics Approaches and Experimental Verification To Explore the Effect of Britanin on Nonalcoholic Fatty Liver Disease. ACS OMEGA 2024; 9:8274-8286. [PMID: 38405493 PMCID: PMC10882692 DOI: 10.1021/acsomega.3c08968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent global liver disorder, posing substantial health risks. Britanin, a bioactive sesquiterpene lactone extracted from Inula japonica, has demonstrated antidiabetic, hypolipidemic, and hepatoprotective attributes. Nonetheless, the precise impact of Britanin on NAFLD and the intricate biological mechanisms underpinning this interaction remain unexplored. We integrated computer-aided methods to unearth shared biological targets and signaling pathways associated with both Britanin and NAFLD. A network was constructed by compiling putative targets associated with Britanin and NAFLD, followed by a stringent screening of key targets and mechanisms through protein-protein interaction analysis along with GO and KEGG pathway enrichment analyses. Molecular docking was integrated as an evaluation tool, culminating in the identification of HO-1 as the pivotal therapeutic target, showcasing a satisfactory binding affinity. The primary mechanism was ascribed to biological processes and pathways linked to oxidative stress, as evidenced by the outcomes of enrichment analyses. Of these, the AMPK/SREBP1c pathway assumed centrality in this mechanism. Furthermore, in vivo experiments substantiated that Britanin effectively curtailed NAFLD development by ameliorating liver injury, modulating hyperlipidemia and hepatic lipid accumulation, and alleviating oxidative stress and apoptosis. In summary, this study demonstrates the potential of Britanin as a promising therapeutic drug against NAFLD.
Collapse
Affiliation(s)
- Chengyun Dou
- Department
of Infectious Diseases, the First Affiliated Hospital, Hengyang Medical
School, University of South China, Hengyang, Hunan Province 421001, China
| | - Hongbo Zhu
- Department
of Medical Oncology, the First Affiliated Hospital, Hengyang Medical
School, University of South China, Hengyang, Hunan Province 421001, China
| | - Xia Xie
- Department
of Infectious Diseases, the First Affiliated Hospital, Hengyang Medical
School, University of South China, Hengyang, Hunan Province 421001, China
| | - Cuiqin Huang
- Department
of Pathology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| | - Chuangjie Cao
- Department
of Pathology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| |
Collapse
|
165
|
Yu C, He S, Kuang M, Wang C, Huang X, Sheng G, Zou Y. Association between weight-adjusted waist index and non-alcoholic fatty liver disease: a population-based study. BMC Endocr Disord 2024; 24:22. [PMID: 38369482 PMCID: PMC10874525 DOI: 10.1186/s12902-024-01554-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/08/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Obesity is the most important driver of non-alcoholic fatty liver disease (NAFLD); nevertheless, the relationship of weight-adjusted waist index (WWI), a new obesity index, with NAFLD is unclear. METHODS This retrospective study used data from the NAGALA project from 1994 to 2016. WWI values were calculated using waist circumference (WC) and weight measurements of the participants. Three stepwise adjusted logistic regression models were developed to assess the relationship of WWI with NAFLD in the whole population and in both sexes. Additionally, we also conducted a series of exploratory analysis to test the potential impact of body mass index (BMI), age, smoking status and exercise habits on the association of WWI with NAFLD. Receiver operating characteristic (ROC) curves were used to estimate cut-off points for identifying NAFLD in the entire population and in both sexes. RESULTS The current study included a population of 11,805 individuals who participated in health screenings, including 6,451 men and 5,354 women. After adjusting for all non-collinear variables in the multivariable logistic regression model, we found a significant positive correlation of WWI with NAFLD. For each unit increase in WWI, the risk of NAFLD increased by 72% in the entire population, by 84% in men, and by 63% in women. Furthermore, subgroup analyses revealed no significant discrepancies in the correlation of WWI with NAFLD across individuals with varying ages, exercise habits, and smoking status (all P-interaction > 0.05), except for different BMI groups (P-interaction < 0.05). Specifically, compared to the overweight/obese group, the relationship of WWI with NAFLD was significantly stronger in the non-obese group, especially in non-obese men. Finally, based on the results of ROC analysis, we determined that the WWI cut-off point used to identify NAFLD was 9.7675 in men and 9.9987 in women. CONCLUSIONS This study is the first to establish a positive correlation between WWI and NAFLD. Moreover, assessing the influence of WWI on NAFLD in individuals without obesity may yield more valuable insights compared to those who are overweight or obese.
Collapse
Affiliation(s)
- Changhui Yu
- Jiangxi Medical College, Nanchang University, Jiangxi Provincial People's Hospital, Nanchang, 330006, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
- Jiangxi Provincial Geriatric Hospital, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| | - Shiming He
- Jiangxi Medical College, Nanchang University, Jiangxi Provincial People's Hospital, Nanchang, 330006, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
- Jiangxi Provincial Geriatric Hospital, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| | - Maobin Kuang
- Jiangxi Medical College, Nanchang University, Jiangxi Provincial People's Hospital, Nanchang, 330006, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
- Jiangxi Provincial Geriatric Hospital, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| | - Chao Wang
- Jiangxi Medical College, Nanchang University, Jiangxi Provincial People's Hospital, Nanchang, 330006, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
- Jiangxi Provincial Geriatric Hospital, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| | - Xin Huang
- Jiangxi Medical College, Nanchang University, Jiangxi Provincial People's Hospital, Nanchang, 330006, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
- Jiangxi Provincial Geriatric Hospital, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| | - Guotai Sheng
- Jiangxi Provincial Geriatric Hospital, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China.
| | - Yang Zou
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
166
|
Björnsdottir S, Ulfsdottir H, Gudmundsson EF, Sveinsdottir K, Isberg AP, Dobies B, Akerlie Magnusdottir GE, Gunnarsdottir T, Karlsdottir T, Bjornsdottir G, Sigurdsson S, Oddsson S, Gudnason V. User Engagement, Acceptability, and Clinical Markers in a Digital Health Program for Nonalcoholic Fatty Liver Disease: Prospective, Single-Arm Feasibility Study. JMIR Cardio 2024; 8:e52576. [PMID: 38152892 PMCID: PMC10905363 DOI: 10.2196/52576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in the world. Common comorbidities are central obesity, type 2 diabetes mellitus, dyslipidemia, and metabolic syndrome. Cardiovascular disease is the most common cause of death among people with NAFLD, and lifestyle changes can improve health outcomes. OBJECTIVE This study aims to explore the acceptability of a digital health program in terms of engagement, retention, and user satisfaction in addition to exploring changes in clinical outcomes, such as weight, cardiometabolic risk factors, and health-related quality of life. METHODS We conducted a prospective, open-label, single-arm, 12-week study including 38 individuals with either a BMI >30, metabolic syndrome, or type 2 diabetes mellitus and NAFLD screened by FibroScan. An NAFLD-specific digital health program focused on disease education, lowering carbohydrates in the diet, food logging, increasing activity level, reducing stress, and healthy lifestyle coaching was offered to participants. The coach provided weekly feedback on food logs and other in-app activities and opportunities for participants to ask questions. The coaching was active throughout the 12-week intervention period. The primary outcome was feasibility and acceptability of the 12-week program, assessed through patient engagement, retention, and satisfaction with the program. Secondary outcomes included changes in weight, liver fat, body composition, and other cardiometabolic clinical parameters at baseline and 12 weeks. RESULTS In total, 38 individuals were included in the study (median age 59.5, IQR 46.3-68.8 years; n=23, 61% female). Overall, 34 (89%) participants completed the program and 29 (76%) were active during the 12-week program period. The median satisfaction score was 6.3 (IQR 5.8-6.7) of 7. Mean weight loss was 3.5 (SD 3.7) kg (P<.001) or 3.2% (SD 3.4%), with a 2.2 (SD 2.7) kg reduction in fat mass (P<.001). Relative liver fat reduction was 19.4% (SD 23.9%). Systolic blood pressure was reduced by 6.0 (SD 13.5) mmHg (P=.009). The median reduction was 0.14 (IQR 0-0.47) mmol/L for triglyceride levels (P=.003), 3.2 (IQR 0.0-5.4) µU/ml for serum insulin (s-insulin) levels (P=.003), and 0.5 (IQR -0.7 to 3.8) mmol/mol for hemoglobin A1c (HbA1c) levels (P=.03). Participants who were highly engaged (ie, who used the app at least 5 days per week) had greater weight loss and liver fat reduction. CONCLUSIONS The 12-week-long digital health program was feasible for individuals with NAFLD, receiving high user engagement, retention, and satisfaction. Improved liver-specific and cardiometabolic health was observed, and more engaged participants showed greater improvements. This digital health program could provide a new tool to improve health outcomes in people with NAFLD. TRIAL REGISTRATION Clinicaltrials.gov NCT05426382; https://clinicaltrials.gov/study/NCT05426382.
Collapse
Affiliation(s)
- Sigridur Björnsdottir
- Department of Endocrinology, Metabolism and Diabetes, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | - Gudlaug Bjornsdottir
- Icelandic Heart Association, Kopavogur, Iceland
- School of Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Sigurdur Sigurdsson
- Icelandic Heart Association, Kopavogur, Iceland
- School of Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- School of Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
167
|
Denimal D, Ponnaiah M, Jeannin AC, Phan F, Hartemann A, Boussouar S, Charpentier E, Redheuil A, Foufelle F, Bourron O. Non-alcoholic fatty liver disease biomarkers estimate cardiovascular risk based on coronary artery calcium score in type 2 diabetes: a cross-sectional study with two independent cohorts. Cardiovasc Diabetol 2024; 23:69. [PMID: 38351039 PMCID: PMC10865592 DOI: 10.1186/s12933-024-02161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Studies have demonstrated that coronary artery calcification on one hand and non-alcoholic fatty liver disease (NAFLD) on the other hand are strongly associated with cardiovascular events. However, it remains unclear whether NAFLD biomarkers could help estimate cardiovascular risk in individuals with type 2 diabetes (T2D). The primary objective of the present study was to investigate whether the biomarkers of NAFLD included in the FibroMax® panels are associated with the degree of coronary artery calcification in patients with T2D. METHODS A total of 157 and 460 patients with T2D were included from the DIACART and ACCoDiab cohorts, respectively. The coronary artery calcium score (CACS) was measured in both cohorts using computed tomography. FibroMax® panels (i.e., SteatoTest®, FibroTest®, NashTest®, and ActiTest®) were determined from blood samples as scores and stages in the DIACART cohort and as stages in the ACCoDiab cohort. RESULTS CACS significantly increased with the FibroTest® stages in both the DIACART and ACCoDiab cohorts (p-value for trend = 0.0009 and 0.0001, respectively). In DIACART, the FibroTest® score was positively correlated with CACS in univariate analysis (r = 0.293, p = 0.0002) and remained associated with CACS independently of the traditional cardiovascular risk factors included in the SCORE2-Diabetes model [β = 941 ± 425 (estimate ± standard error), p = 0.028]. In the ACCoDiab cohort, the FibroTest® F3-F4 stage was positively correlated with CACS in point-biserial analysis (rpbi = 0.104, p = 0.024) and remained associated with CACS after adjustment for the traditional cardiovascular risk factors included in the SCORE2-Diabetes model (β = 234 ± 97, p = 0.016). Finally, the prediction of CACS was improved by adding FibroTest® to the traditional cardiovascular risk factors included in the SCORE2-Diabetes model (goodness-of-fit of prediction models multiplied by 4.1 and 6.7 in the DIACART and ACCoDiab cohorts, respectively). In contrast, no significant relationship was found between FibroMax® panels other than FibroTest® and CACS in either cohort. CONCLUSIONS FibroTest® is independently and positively associated with the degree of coronary artery calcification in patients with T2D, suggesting that FibroTest® could be a relevant biomarker of coronary calcification and cardiovascular risk. TRIAL REGISTRATION ClinicalTrials.gov identifiers NCT02431234 and NCT03920683.
Collapse
Affiliation(s)
- Damien Denimal
- Center for Translational and Molecular Medicine, INSERM UMR 1231, Dijon, France
- Department of Clinical Biochemistry, Dijon Bourgogne University Hospital, Dijon, France
| | | | - Anne-Caroline Jeannin
- Sorbonne Université, Paris, France
- Department of Diabetology, Assistance Publique‑Hôpitaux de Paris (APHP), Pitié-Salpêtrière Hospital, 47‑83 Boulevard de l'Hôpital, Paris, France
| | - Franck Phan
- Sorbonne Université, Paris, France
- Centre de Recherche des Cordeliers, INSERM UMR_S 1138, Paris, France
- Department of Diabetology, Assistance Publique‑Hôpitaux de Paris (APHP), Pitié-Salpêtrière Hospital, 47‑83 Boulevard de l'Hôpital, Paris, France
| | - Agnès Hartemann
- Centre de Recherche des Cordeliers, INSERM UMR_S 1138, Paris, France
- Department of Diabetology, Assistance Publique‑Hôpitaux de Paris (APHP), Pitié-Salpêtrière Hospital, 47‑83 Boulevard de l'Hôpital, Paris, France
| | - Samia Boussouar
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
- Laboratoire d'Imagerie Biomédicale INSERM_1146, CNRS_7371, Paris, France
- ICT Cardiovascular and Thoracic Imaging Unit, Assistance Publique‑Hôpitaux de Paris (APHP), Pitié Salpêtrière University Hospital, Paris, France
| | - Etienne Charpentier
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
- Laboratoire d'Imagerie Biomédicale INSERM_1146, CNRS_7371, Paris, France
- ICT Cardiovascular and Thoracic Imaging Unit, Assistance Publique‑Hôpitaux de Paris (APHP), Pitié Salpêtrière University Hospital, Paris, France
| | - Alban Redheuil
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
- Laboratoire d'Imagerie Biomédicale INSERM_1146, CNRS_7371, Paris, France
- ICT Cardiovascular and Thoracic Imaging Unit, Assistance Publique‑Hôpitaux de Paris (APHP), Pitié Salpêtrière University Hospital, Paris, France
| | - Fabienne Foufelle
- Centre de Recherche des Cordeliers, INSERM UMR_S 1138, Paris, France
| | - Olivier Bourron
- Sorbonne Université, Paris, France.
- Centre de Recherche des Cordeliers, INSERM UMR_S 1138, Paris, France.
- Department of Diabetology, Assistance Publique‑Hôpitaux de Paris (APHP), Pitié-Salpêtrière Hospital, 47‑83 Boulevard de l'Hôpital, Paris, France.
| |
Collapse
|
168
|
Zhu L, Wang F, Wang H, Zhang J, Xie A, Pei J, Zhou J, Liu H. Liver fat volume fraction measurements based on multi-material decomposition algorithm in patients with nonalcoholic fatty liver disease: the influences of blood vessel, location, and iodine contrast. BMC Med Imaging 2024; 24:37. [PMID: 38326746 PMCID: PMC10848342 DOI: 10.1186/s12880-024-01215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND In recent years, spectral CT-derived liver fat quantification method named multi-material decomposition (MMD) is playing an increasingly important role as an imaging biomarker of hepatic steatosis. However, there are various measurement ways with various results among different researches, and the impact of measurement methods on the research results is unknown. The aim of this study is to evaluate the reproducibility of liver fat volume fraction (FVF) using MMD algorithm in nonalcoholic fatty liver disease (NAFLD) patients when taking blood vessel, location, and iodine contrast into account during measurement. METHODS This retrospective study was approved by the institutional ethics committee, and the requirement for informed consent was waived because of the retrospective nature of the study. 101 patients with NAFLD were enrolled in this study. Participants underwent non-contrast phase (NCP) and two-phase enhanced CT scanning (late arterial phase (LAP) and portal vein phase (PVP)) with spectral mode. Regions of interest (ROIs) were placed at right posterior lobe (RPL), right anterior lobe (RAL) and left lateral lobe (LLL) to obtain FVF values on liver fat images without and with the reference of enhanced CT images. The differences of FVF values measured under different conditions (ROI locations, with/without enhancement reference, NCP and enhanced phases) were compared. Friedman test was used to compare FVF values among three phases for each lobe, while the consistency of FVF values was assessed between each two phases using Bland-Altman analysis. RESULTS Significant difference was found between FVF values obtained without and with the reference of enhanced CT images. There was no significant difference about FVF values obtained from NCP images under the reference of enhanced CT images between any two lobes or among three lobes. The FVF value increased after the contrast injection, and there were significant differences in the FVF values among three scanning phases. Poor consistencies of FVF values between each two phases were found in each lobe by Bland-Altman analysis. CONCLUSION MMD algorithm quantifying hepatic fat was reproducible among different lobes, while was influenced by blood vessel and iodine contrast.
Collapse
Affiliation(s)
- Liuhong Zhu
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Jinhu Road No. 668, Huli District, Xiamen, Fujian, China
- Xiamen Municipal Clinical Research Center for Medical Imaging, Xiamen, Fujian, China
- Xiamen Radiological Control Center, Xiamen, Fujian, China
| | - Funan Wang
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Jinhu Road No. 668, Huli District, Xiamen, Fujian, China
- Xiamen Municipal Clinical Research Center for Medical Imaging, Xiamen, Fujian, China
| | - Heqing Wang
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Jinhu Road No. 668, Huli District, Xiamen, Fujian, China
- Xiamen Municipal Clinical Research Center for Medical Imaging, Xiamen, Fujian, China
| | - Jinhui Zhang
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Jinhu Road No. 668, Huli District, Xiamen, Fujian, China
| | - Anjie Xie
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Jinhu Road No. 668, Huli District, Xiamen, Fujian, China
| | - Jinkui Pei
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Jinhu Road No. 668, Huli District, Xiamen, Fujian, China
| | - Jianjun Zhou
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Jinhu Road No. 668, Huli District, Xiamen, Fujian, China.
- Department of Radiology, Zhongshan Hospital Fudan University, Fenglin Road No.180, Xuhui District, Shanghai, 200032, China.
| | - Hao Liu
- Department of Radiology, Zhongshan Hospital Fudan University, Fenglin Road No.180, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
169
|
Hu Y, Yuan C, Abdulnaimu M, Memetmin J, Jie Z, Tuhuti A, Abudueini H, Guo Y. U-Shaped relationship of insulin-like growth factor I and incidence of nonalcoholic fatty liver in patients with pituitary neuroendocrine tumors: a cohort study. Front Endocrinol (Lausanne) 2024; 15:1290007. [PMID: 38370349 PMCID: PMC10869555 DOI: 10.3389/fendo.2024.1290007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Context Although the role of insulin-like growth factor I (IGF-1) in nonalcoholic fatty liver disease (NAFLD) has garnered attention in recent years, few studies have examined both reduced and elevated levels of IGF-1. Objective The aim of this study was to examine the potential relationship between IGF-1 levels and the risk of new-onset NAFLD in patients with pituitary neuroendocrine tumors (PitNET). Methods We employed multivariable Cox regression models and two-piecewise regression models to assess the association between IGF-1 and new-onset NAFLD. Hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) were calculated to quantify this association. Furthermore, a dose-response correlation between lgIGF-1 and the development of NAFLD was plotted. Additionally, we also performed subgroup analysis and a series sensitivity analysis. Results A total of 3,291 PitNET patients were enrolled in the present study, and the median duration of follow-up was 65 months. Patients with either reduced or elevated levels of IGF-1 at baseline were found to be at a higher risk of NAFLD compared to PitNET patients with normal IGF-1(log-rank test, P < 0.001). In the adjusted Cox regression analysis model (model IV), compared with participants with normal IGF-1, the HRs of those with elevated and reduced IGF-1 were 2.33 (95% CI 1.75, 3.11) and 2.2 (95% CI 1.78, 2.7). Furthermore, in non-adjusted or adjusted models, our study revealed a U-shaped relationship between lgIGF-1 and the risk of NAFLD. Moreover, the results from subgroup and sensitivity analyses were consistent with the main results. Conclusions There was a U-shaped trend between IGF-1 and new-onset NAFLD in patients with PitNET. Further evaluation of our discoveries is warranted.
Collapse
Affiliation(s)
- Yan Hu
- Graduate School, Xinjiang Medical University, Urumqi, China
| | - Chen Yuan
- Department of Endocrinology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, China
| | - Muila Abdulnaimu
- Department of Endocrinology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, China
| | - Jimilanmu Memetmin
- Department of Endocrinology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, China
| | - Zhang Jie
- Department of Endocrinology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, China
| | - Aihemaitijiang Tuhuti
- Department of Endocrinology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, China
| | - Hanikzi Abudueini
- Department of Endocrinology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, China
| | - Yanying Guo
- Department of Endocrinology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, China
| |
Collapse
|
170
|
Boeckmans J, Sandrin L, Knackstedt C, Schattenberg JM. Liver stiffness as a cornerstone in heart disease risk assessment. Liver Int 2024; 44:344-356. [PMID: 38014628 DOI: 10.1111/liv.15801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/05/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) typically presents with hepatic fibrosis in advanced disease, resulting in increased liver stiffness. A subset of patients further develops liver cirrhosis and hepatocellular carcinoma. Cardiovascular disease is a common comorbidity in patients with MASLD and its prevalence is increasing in parallel. Recent evidence suggests that especially liver stiffness, whether or not existing against a background of MASLD, is associated with heart diseases. We conducted a narrative review on the role of liver stiffness in the prediction of highly prevalent heart diseases including heart failure, cardiac arrhythmias (in particular atrial fibrillation), coronary heart disease, and aortic valve sclerosis. Research papers were retrieved from major scientific databases (PubMed, Web of Science) until September 2023 using 'liver stiffness' and 'liver fibrosis' as keywords along with the latter cardiac conditions. Increased liver stiffness, determined by vibration-controlled transient elastography or hepatic fibrosis as predicted by biomarker panels, are associated with a variety of cardiovascular diseases, including heart failure, atrial fibrillation, and coronary heart disease. Elevated liver stiffness in patients with metabolic liver disease should lead to considerations of cardiac workup including N-terminal pro-B-type natriuretic peptide/B-type natriuretic peptide determination, electrocardiography, and coronary computed tomography angiography. In addition, patients with MASLD would benefit from heart disease case-finding strategies in which liver stiffness measurements can play a key role. In conclusion, increased liver stiffness should be a trigger to consider a cardiac workup in metabolically compromised patients.
Collapse
Affiliation(s)
- Joost Boeckmans
- Metabolic Liver Research Center, I. Department of Medicine, University Medical Center Mainz, Mainz, Germany
- In Vitro Liver Disease Modelling Team, Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Christian Knackstedt
- Department of Cardiology, Maastricht University Medical Center+, Maastricht, the Netherlands
- Faculty of Health, Medicine, and Life Sciences, CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands
| | - Jörn M Schattenberg
- Metabolic Liver Research Center, I. Department of Medicine, University Medical Center Mainz, Mainz, Germany
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
171
|
Huang J, Xin Z, Cao Q, He R, Hou T, Ding Y, Lu J, Wang T, Zhao Z, Xu Y, Wang W, Ning G, Xu M, Wang L, Li M, Bi Y. Association between updated cardiovascular health construct and risks of non-alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis 2024; 34:317-325. [PMID: 38000998 DOI: 10.1016/j.numecd.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND AND AIMS The American Heart Association (AHA) updated the construct and algorithm of cardiovascular health (CVH) recently. We aimed to explore the relationship between the new CVH score and the development of non-alcoholic fatty liver disease (NAFLD). METHODS AND RESULTS 3266 adults free of NAFLD identified via ultrasound were recruited in this prospective study. A modified AHA "Life's Essential 8" (mLE8, i.e., physical activity, nicotine exposure, sleep health, body mass index, blood lipids, blood glucose, and blood pressure) were collected to evaluate the CVH score. Then participants were categorized into low, moderate, and high CVH subgroups based on overall mLE8 CVH score. According to modified Life's Simple 7 (mLS7) CVH construct, participants were also subdivided into poor, intermediate, and ideal CVH subgroups. During a median 4.3 years follow-up, 623 incident cases of NAFLD were recorded. Compared to those with high CVH, participants with low CVH (adjusted OR = 2.56, 95% CI 1.55-4.24) and moderate CVH (adjusted OR = 1.83, 95% CI 1.17-2.85) had a significantly increased risk of incident NAFLD. Participants with poor CVH (mLS7) but without low CVH (mLE8) did not show a significant elevated risk of incident NAFLD (P = 0.1053). A significant trend was found between increased changes in mLE8 score and a lower risk of NAFLD occurrence. CONCLUSION Our findings suggested high mLE8 CVH score was associated with a lower risk of NAFLD incidence. The new CVH construct showed a more reasonable classification of CVH status and was more robust in association with NAFLD risks compared with the original one.
Collapse
Affiliation(s)
- Jiaojiao Huang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuojun Xin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuyu Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruixin He
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianzhichao Hou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Ding
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Long Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
172
|
Zhao X, Kong X, Cui Z, Zhang Z, Wang M, Liu G, Gao H, Zhang J, Qin W. Communication between nonalcoholic fatty liver disease and atherosclerosis: Focusing on exosomes. Eur J Pharm Sci 2024; 193:106690. [PMID: 38181871 DOI: 10.1016/j.ejps.2024.106690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic hepatic disorder on a global scale. Atherosclerosis (AS), a leading cause of cardiovascular diseases, stands as the primary contributor to mortality among patients diagnosed with NAFLD. However, the precise etiology by which NAFLD causes AS remains unclear. Exosomes are nanoscale extracellular vesicles secreted by cells, and are considered to participate in complex biological processes by promoting cell-to-cell and organ-to-organ communications. As vesicles containing protein, mRNA, non-coding RNA and other bioactive molecules, exosomes can participate in the development of NAFLD and AS respectively. Recently, studies have shown that NAFLD can also promote the development of AS via secreting exosomes. Herein, we summarized the recent advantages of exosomes in the pathogenesis of NAFLD and AS, and highlighted the role of exosomes in mediating the information exchange between NAFLD and AS. Further, we discussed how exosomes play a prominent role in enabling information exchange among diverse organs, delving into a novel avenue for investigating the link between diseases and their associated complications. The future directions and emerging challenges are also listed regarding the exosome-based therapeutic strategies for AS under NAFLD conditions.
Collapse
Affiliation(s)
- Xiaona Zhao
- School of Pharmacy, Weifang Medical University, Weifang, China; School of Pharmacy, Jining Medical University, Rizhao, China
| | - Xinxin Kong
- School of Pharmacy, Weifang Medical University, Weifang, China; School of Pharmacy, Jining Medical University, Rizhao, China
| | - Zhoujun Cui
- Department of General Surgery, People's Hospital of Rizhao, Rizhao, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao, China; School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Minghui Wang
- School of Pharmacy, Jining Medical University, Rizhao, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoqing Liu
- School of Pharmacy, Jining Medical University, Rizhao, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, China.
| |
Collapse
|
173
|
Fan Y, Xia M, Yan H, Li X, Chang X. Efficacy of beinaglutide in the treatment of hepatic steatosis in type 2 diabetes patients with nonalcoholic fatty liver disease: A randomized, open-label, controlled trial. Diabetes Obes Metab 2024; 26:772-776. [PMID: 37975640 DOI: 10.1111/dom.15359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Yujuan Fan
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism, Minhang Hospital, Fudan University, Shanghai, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongmei Yan
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoying Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinxia Chang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
174
|
Huang HK, Li YM, Xu CF. Pre-MASLD: Should it be defined separately? Hepatobiliary Pancreat Dis Int 2024; 23:1-3. [PMID: 37838529 DOI: 10.1016/j.hbpd.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/25/2023] [Indexed: 10/16/2023]
Affiliation(s)
- Hang-Kai Huang
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - You-Ming Li
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Cheng-Fu Xu
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
175
|
Mirrazavi ZS, Behrouz V. Various types of fasting diet and possible benefits in nonalcoholic fatty liver: Mechanism of actions and literature update. Clin Nutr 2024; 43:519-533. [PMID: 38219703 DOI: 10.1016/j.clnu.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the major causes of chronic liver injury, affecting around one-fourth of the general population across the world. Several important pathophysiological mechanisms underlying NAFLD include oxidative stress, inflammation, liver fibrosis, and apoptosis. Currently, therapeutic approaches are not ideal for managing NAFLD, thus new approaches and treatments are still needed. Over the last two decades, various fasting protocols have been explored to reduce body weight and improve metabolic disorders. In this review, we provide updated literature that supports fasting regimens for subjects with NAFLD and describes underlying mechanisms of action. We suggest that fasting regimens may modulate NAFLD via several mechanisms, including changes in gut microbiota, hepatic arginase, hepatic autophagy, inflammatory responses, liver functional enzymes and hepatic steatosis, fibroblast growth factors signaling, white adipose tissue browning, adipokines, circadian rhythms, lipid profiles, and body composition.
Collapse
Affiliation(s)
| | - Vahideh Behrouz
- Department of Nutrition, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
176
|
Yang Z, Xiong Z, Wang Q, Zhou N. A bibliometric analysis of macrophages associated with non-alcoholic fatty liver disease research from 2005 to 2023. Heliyon 2024; 10:e24187. [PMID: 38293366 PMCID: PMC10827458 DOI: 10.1016/j.heliyon.2024.e24187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver condition associated with the risk of progressing to decompensated cirrhosis and hepatocellular carcinoma. While macrophages play a crucial role in the development of NAFLD, their heterogeneity and plasticity allow them to undertake diverse roles in immune response, tissue repair, and maintaining tissue homeostasis. Thus, the exact involvement of macrophages in the onset and progression of NAFLD remains to be further explored. This study aims to employ bibliometric analysis to elucidate the role of macrophages in the pathogenesis of NAFLD, analyze research focal points in this domain, and speculate on future research trends. The literature search, conducted using the Web of Science Core Collection, encompassed articles and reviews related to macrophages and NAFLD published between 2005 and 2023. A bibliometric analysis of 1264 extracted publications was performed using VOSviewer 1.6.17 and Citespace 6.1. R2, evaluating parameters such as spatial and temporal distribution, authors, thematic categories, topic distribution, references, and keywords. The findings revealed a steady global increase in publications in this field, with the United States contributing the most followed by China. The University of California System produced the highest volume of publications, while the Journal of Hepatology had the highest impact factors among the top 10 publishing journals. Tacke Frank emerged as both the most prolific author and the most cited. Co-occurrence and burst analysis of keywords and references highlighted the hotspots in this research area, emphasizing the mechanisms of NAFLD pathogenesis, metabolic regulation, immune modulation, and oxidative stress. Maintaining hepatic homeostasis by liver macrophages and macrophage polarization were identified as trending research directions in this field. Based on the bibliometric analysis, continued attention toward NAFLD therapeutic research involving hepatic macrophages is anticipated. As the mechanisms underlying NAFLD pathogenesis are further elucidated, the development of more treatment approaches related to macrophage immunology and metabolic regulation may expand therapeutic options. This study offers valuable insights into the current state and future trends in the field, providing beneficial guidance to researchers aiming to make significant contributions.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zhiwei Xiong
- Department of Liver Transplantation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiuguo Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ning Zhou
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
177
|
Liao YL, Zhu GY, Chang C. Non-alcoholic fatty liver disease increases the risk of cardiovascular disease in young adults and children: a systematic review and meta-analysis of cohort studies. Front Cardiovasc Med 2024; 10:1291438. [PMID: 38268853 PMCID: PMC10806083 DOI: 10.3389/fcvm.2023.1291438] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/28/2023] [Indexed: 01/26/2024] Open
Abstract
Background and aims It is uncertain if there is a link between non-alcoholic fatty liver disease (NAFLD) and cardiovascular diseases (CVD) in young adults and children. To evaluate the potential link between these two conditions, we conducted a systematic review and meta-analysis of cohort studies. Methods A comprehensive search was conducted in PubMed, Web of Science and Embase in order to locate all relevant cohort studies published until August 2023. Random effects meta-analyses were conducted using the generic inverse variance method, with additional subgroup and sensitivity analyses. The Newcastle-Ottawa Scale was employed to evaluate the methodological quality. Results Four cohort studies (eleven datasets) involving 10,668,189 participants were included in this meta-analysis. This meta-analysis demonstrated that NAFLD increases the risk of CVD in young adults and children (HR = 1.63, 95% CI: 1.46-1.82, P < 0.00001). Further subgroup analyses showed that individuals with NAFLD were at a heightened risk of coronary heart disease (CHD) (HR = 3.10, 95% CI: 2.01-4.77, P < 0.00001), myocardial infarction (MI) (HR = 1.69, 95% CI: 1.61-1.78, P < 0.00001), atrial fibrillation (AF) (HR = 2.00, 95% CI: 1.12-3.57, P = 0.02), congestive heart failure (CHF) (HR = 3.89, 95% CI: 1.20-12.61, P = 0.02), and stroke (HR = 1.47, 95% CI: 1.39-1.55, P < 0.00001). The results of subgroup analyses based on the study location, NAFLD definition, and follow-up time also showed consistency with the overall results. Sensitivity analyses showed that our results were robust. All of the included studies were judged to be of medium to high quality. Conclusion Current evidence reveals that NAFLD is linked to an increased risk of major CVD (including CHD, MI, AF, CHF and stroke) in young adults and children. Further research is needed to strengthen this association and provide stronger evidence for primary prevention of CVD in young adults and children with NAFLD. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, PROSPERO registration number: CRD42023457817.
Collapse
Affiliation(s)
- Yan-Lin Liao
- Department of Cardiovascular Medicine, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Gen-Yuan Zhu
- Department of Cardiovascular Medicine, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Cheng Chang
- Department of Gastroenterology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
178
|
Phoolchund AGS, Khakoo SI. MASLD and the Development of HCC: Pathogenesis and Therapeutic Challenges. Cancers (Basel) 2024; 16:259. [PMID: 38254750 PMCID: PMC10814413 DOI: 10.3390/cancers16020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD, previously known as non-alcoholic fatty liver disease (NAFLD)) represents a rapidly increasing cause of chronic liver disease and hepatocellular carcinoma (HCC), mirroring increasing rates of obesity and metabolic syndrome in the Western world. MASLD-HCC can develop at an earlier stage of fibrosis compared to other causes of chronic liver disease, presenting challenges in how to risk-stratify patients to set up effective screening programmes. Therapeutic decision making for MASLD-HCC is also complicated by medical comorbidities and disease presentation at a later stage. The response to treatment, particularly immune checkpoint inhibitors, may vary by the aetiology of the disease, and, in the future, patient stratification will be key to optimizing the therapeutic pathways.
Collapse
Affiliation(s)
- Anju G. S. Phoolchund
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - Salim I. Khakoo
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| |
Collapse
|
179
|
Lin X, Wang S, Huang J. The effects of time-restricted eating for patients with nonalcoholic fatty liver disease: a systematic review. Front Nutr 2024; 10:1307736. [PMID: 38239843 PMCID: PMC10794638 DOI: 10.3389/fnut.2023.1307736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a significant global health concern. Numerous investigations have explored the implications of time-restricted eating (TRE) in the management of NAFLD. Therefore, the objective of our study was to conduct a systematic review to summarize and analyze all randomized controlled trials (RCTs) of TRE for patients with NAFLD. A thorough literature search was executed across Embase, Cochrane Library, and PubMed databases, covering all records from their inception until 1 September 2023. All clinical studies of TRE for NAFLD were summarized and analyzed. Our systematic review included four RCTs, encompassing a total of 443 NAFLD patients. These studies varied in sample size from 32 to 271 participants. The TRE intervention was consistently applied in an 8-h window, over durations ranging from 4 weeks to 12 months. The findings suggest that TRE could offer several health benefits for NAFLD patients, such as improved liver health indicators like liver stiffness and intrahepatic triglyceride (IHTG) levels. Consequently, TRE appears to be a promising dietary intervention for NAFLD patients. However, it is premature to recommend TRE for patients with NAFLD. The existing body of research on the effects of TRE in NAFLD contexts is limited, underscoring the need for further high-quality studies to expand our understanding of TRE's benefits in treating NAFLD. Ongoing clinical trials may provide more insights into the effects of TRE in NAFLD.
Collapse
Affiliation(s)
| | - Shuai Wang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinyu Huang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
180
|
Nie T, Wang X, Li A, Shan A, Ma J. The promotion of fatty acid β-oxidation by hesperidin via activating SIRT1/PGC1α to improve NAFLD induced by a high-fat diet. Food Funct 2024; 15:372-386. [PMID: 38099440 DOI: 10.1039/d3fo04348g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Reducing fat deposits in hepatocytes is a direct treatment for nonalcoholic fatty liver disease (NAFLD) and the fatty acid metabolic processes mediated by fatty acid β-oxidation are important for the prevention of NAFLD. In this study, we established high-fat-diet models in vitro and in vivo to investigate the mechanism by which hesperidin (HDN) prevents NAFLD by modulating fatty acid β oxidation. Based on LC-MS screening of differential metabolites, many metabolites involved in phospholipid and lipid metabolism were found to be significantly altered and closely associated with fatty acid β-oxidation. The results from COIP experiments indicated that HDN increased the deacetylation of PGC1α by SIRT1. In addition, the results of CETSA and molecular docking experiments suggest that HDN targeting of SIRT1 plays an important role in their stable binding. Meanwhile, it was found that HDN reduced fatty acid uptake and synthesis and promoted the expression of SIRT1/PGC1α and fatty acid β-oxidation, and the latter process was inhibited after transfection to knockdown SIRT1. The results suggest that HDN improves NAFLD by promoting fatty acid β-oxidation through activating SIRT1/PGC1α. Thus, the findings indicate that HDN may be a potential drug for the treatment of NAFLD.
Collapse
Affiliation(s)
- Tong Nie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Aqun Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, 150030, P.R. China
| |
Collapse
|
181
|
Butt AS, Devi J. Polycystic ovary syndrome and nonalcoholic fatty liver disease. POLYCYSTIC OVARY SYNDROME 2024:92-99. [DOI: 10.1016/b978-0-323-87932-3.00021-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
182
|
Di Bartolomeo A, George J. Future directions for fatty liver disease. METABOLIC STEATOTIC LIVER DISEASE 2024:297-317. [DOI: 10.1016/b978-0-323-99649-5.00016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
183
|
Arafa A, Kashima R, Matsumoto C, Kokubo Y. Fatty Liver Index as a proxy for non-alcoholic fatty liver disease and the risk of stroke and coronary heart disease: The Suita Study. J Stroke Cerebrovasc Dis 2024; 33:107495. [PMID: 38000108 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in developed countries, but its role in predicting cardiovascular disease (CVD) needs further investigation. Herein, we studied the association between NAFLD and the risk of CVD, stroke, and coronary heart disease (CHD) among Japanese people. METHODS This prospective cohort study analyzed data from 2,517 men and 3,958 women, aged 30-84 years, who were registered in the Suita Study. NAFLD was defined as Fatty Liver Index (FLI) ≥ 60. Cox proportional hazard models were applied to calculate the hazard ratios (HRs) and 95% confidence intervals (95% CIs) of incident CVD, stroke, and CHD events by baseline FLI. The results were adjusted for age, smoking, alcohol consumption, hypertension, diabetes, lipid profile, chronic kidney disease, and cardiac murmur or valvular diseases. RESULTS Within 16.6 years of median follow-up, 590 participants developed CVD (346 stroke events and 244 CHD events). Women with NAFLD (FLI ≥ 60) showed a higher risk of CVD and stroke: HRs (95% CIs) = 1.69 (1.16, 2.46) and 2.06 (1.31, 3.24), respectively. Besides, women in the fourth and fifth (highest) FLI quintiles showed a higher risk of CVD and stroke than those in the third (middle) quintile: HRs (95% CIs) = 1.60 (1.08, 2.36) and 1.67 (1.13, 2.45) for CVD and 1.73 (1.07, 2.79) and 1.90 (1.18, 3.05) for stroke, respectively. No corresponding associations were detected in men. NAFLD was not associated with CHD risk in either sex. CONCLUSIONS NAFLD, diagnosed by FLI, was associated with a higher risk of CVD and stroke in Japanese women. From a preventive perspective, women with NAFLD should be targeted for CVD screenings and interventions.
Collapse
Affiliation(s)
- Ahmed Arafa
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Public Health, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | - Rena Kashima
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Cardiovascular Pathophysiology and Therapeutics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Chisa Matsumoto
- Department of Cardiology, Center for Health Surveillance and Preventive Medicine, Tokyo Medical University Hospital, Shinjuku, Japan
| | - Yoshihiro Kokubo
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
184
|
Durak H, Çetin M, Emlek N, Ergül E, Özyıldız AG, Öztürk M, Duman H, Yılmaz AS, Şatıroğlu Ö. FIB-4 liver fibrosis index correlates with aortic valve sclerosis in non-alcoholic population. Echocardiography 2024; 41:e15732. [PMID: 38284663 DOI: 10.1111/echo.15732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024] Open
Abstract
AIM Hepatic fibrosis, a progressive scarring of liver tissue, is commonly caused by non-alcoholic fatty liver disease (NAFLD), which increases the risk of cardiovascular disease. The Fibrosis-4 (FIB-4) index is a non-invasive tool used to assess liver fibrosis in patients with NAFLD. Aortic valve sclerosis (AVS), a degenerative disorder characterized by thickening and calcification of valve leaflets, is prevalent in the elderly and associated with increased cardiovascular morbidity and mortality. Recent studies have suggested that AVS may also be linked to other systemic diseases such as liver fibrosis. This study aimed to investigate the relationship between the FIB-4 index and AVS in a non-alcoholic population, with the hypothesis that the FIB-4 index could serve as a potential marker for AVS. METHOD A total of 92 patients were included in this study. AVS was detected using transthoracic echocardiography, and patients were divided into groups according to the presence of AVS. The FIB-4 index was calculated for all patients and compared between the groups. RESULTS A total of 17 (18.4%) patients were diagnosed AVS. Patients with AVS had higher rates of diabetes mellitus, older age, hypertension, angiotensin-converting enzyme inhibitor use, higher systolic blood pressure (BP) and diastolic BP in the office, coronary artery disease prevalence, left atrial volume index (LAVI), left ventricular mass index (LVMI), and late diastolic peak flow velocity (A) compared to those without AVS. Moreover, AVS patients had significantly higher creatinine levels and lower estimated glomerular filtration rate. Remarkably, the FIB-4 index was significantly higher in patients with AVS. In univariate and multivariate analyses, higher systolic BP in the office (OR, 1.044; 95% CI 1.002-1.080, p = .024) and higher FIB-4 index (1.46 ± .6 vs. .91 ± .46, p < .001) were independently associated with AVS. CONCLUSION Our findings suggest that the FIB-4 index is associated with AVS in non-alcoholic individuals. Our results highlight the potential utility of the FIB-4 index as a non-invasive tool for identifying individuals at an increased risk of developing AVS.
Collapse
Affiliation(s)
- Hüseyin Durak
- Department of Cardiology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Mustafa Çetin
- Department of Cardiology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Nadir Emlek
- Department of Cardiology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Elif Ergül
- Department of Cardiology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Ali Gökhan Özyıldız
- Department of Cardiology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Muhammet Öztürk
- Department of Cardiology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Hakan Duman
- Department of Cardiology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Ahmet Seyda Yılmaz
- Department of Cardiology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Ömer Şatıroğlu
- Department of Cardiology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| |
Collapse
|
185
|
Liu L, Lin J, Liu L, Gao J, Xu G, Yin M, Liu X, Wu A, Zhu J. Automated machine learning models for nonalcoholic fatty liver disease assessed by controlled attenuation parameter from the NHANES 2017-2020. Digit Health 2024; 10:20552076241272535. [PMID: 39119551 PMCID: PMC11307367 DOI: 10.1177/20552076241272535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is recognized as one of the most common chronic liver diseases worldwide. This study aims to assess the efficacy of automated machine learning (AutoML) in the identification of NAFLD using a population-based cross-sectional database. Methods All data, including laboratory examinations, anthropometric measurements, and demographic variables, were obtained from the National Health and Nutrition Examination Survey (NHANES). NAFLD was defined by controlled attenuation parameter (CAP) in liver transient ultrasound elastography. The least absolute shrinkage and selection operator (LASSO) regression analysis was employed for feature selection. Six algorithms were utilized on the H2O-automated machine learning platform: Gradient Boosting Machine (GBM), Distributed Random Forest (DRF), Extremely Randomized Trees (XRT), Generalized Linear Model (GLM), eXtreme Gradient Boosting (XGBoost), and Deep Learning (DL). These algorithms were selected for their diverse strengths, including their ability to handle complex, non-linear relationships, provide high predictive accuracy, and ensure interpretability. The models were evaluated by area under receiver operating characteristic curves (AUC) and interpreted by the calibration curve, the decision curve analysis, variable importance plot, SHapley Additive exPlanation plot, partial dependence plots, and local interpretable model agnostic explanation plot. Results A total of 4177 participants (non-NAFLD 3167 vs NAFLD 1010) were included to develop and validate the AutoML models. The model developed by XGBoost performed better than other models in AutoML, achieving an AUC of 0.859, an accuracy of 0.795, a sensitivity of 0.773, and a specificity of 0.802 on the validation set. Conclusions We developed an XGBoost model to better evaluate the presence of NAFLD. Based on the XGBoost model, we created an R Shiny web-based application named Shiny NAFLD (http://39.101.122.171:3838/App2/). This application demonstrates the potential of AutoML in clinical research and practice, offering a promising tool for the real-world identification of NAFLD.
Collapse
Affiliation(s)
- Lihe Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiaxi Lin
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lu Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingwen Gao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guoting Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Minyue Yin
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaolin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Airong Wu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinzhou Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
186
|
Koutoukidis DA, Yen S, Gomez Castro P, Misheva M, Jebb SA, Aveyard P, Tomlinson JW, Mozes FE, Cobbold JF, Johnson JS, Marchesi JR. Changes in intestinal permeability and gut microbiota following diet-induced weight loss in patients with metabolic dysfunction-associated steatohepatitis and liver fibrosis. Gut Microbes 2024; 16:2392864. [PMID: 39340210 PMCID: PMC11444513 DOI: 10.1080/19490976.2024.2392864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 09/30/2024] Open
Abstract
Weight loss improves metabolic dysfunction-associated steatohepatitis (MASH). We investigated whether there were associated changes in intestinal permeability, short-chain fatty acids (SCFAs), and gut microbiota, which are implicated in the pathophysiology of MASH. Sixteen adults with MASH, moderate fibrosis, and obesity received a low-energy total diet replacement program for 12 weeks and stepped food re-introduction over the following 12 weeks (ISRCTN12900952). Intestinal permeability, fecal SCFAs, and fecal microbiota were assessed at 0, 12, and 24 weeks. Data were analyzed using mixed-effects linear regression and sparse partial least-squares regression. Fourteen participants completed the trial, lost 15% (95% CI: 11.2-18.6%) of their weight, and 93% had clinically relevant reductions in liver disease severity markers. Serum zonulin concentrations were reduced at both 12 and 24 weeks (152.0 ng/ml, 95% CI: 88.0-217.4, p < 0.001). Each percentage point of weight loss was associated with a 13.2 ng/mL (95% CI: 3.8-22.5, p < 0.001) reduction in zonulin. For every 10 ng/mL reduction in zonulin, there was a 6.8% (95% CI: 3.5%-10.2, p < 0.001) reduction in liver fat. There were reductions in SCFA and alpha diversity evenness as well as increases in beta diversity of the gut microbiota at 12 weeks, but the changes did not persist at 24 weeks. In conclusion, substantial dietary energy restriction is associated with significant improvement in MASH markers alongside reduction in intestinal permeability. Changes in gut microbiota and SCFA were not maintained with sustained reductions in weight and liver fat, suggesting that microbiome modulation may not explain the relationship between weight loss and improvements in MASH.
Collapse
Affiliation(s)
- Dimitrios A Koutoukidis
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Sandi Yen
- Oxford Centre for Microbiome Studies, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Paula Gomez Castro
- Oxford Centre for Microbiome Studies, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Mariya Misheva
- Oxford Centre for Microbiome Studies, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Susan A Jebb
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- NIHR Oxford Health Biomedical Research Centre, Warneford Hospital, Oxford, UK
| | - Paul Aveyard
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- NIHR Oxford Health Biomedical Research Centre, Warneford Hospital, Oxford, UK
- Oxford and Thames Valley Applied Research Collaboration, University of Oxford, Oxford, UK
| | - Jeremy W Tomlinson
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ferenc E Mozes
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jeremy F Cobbold
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Department of Gastroenterology and Hepatology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jethro S Johnson
- Oxford Centre for Microbiome Studies, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, St Mary's Hospital, Imperial College London, London, UK
| |
Collapse
|
187
|
Effenberger M, Grander C, Grabherr F, Tilg H. Nonalcoholic Fatty Liver Disease and the Intestinal Microbiome: An Inseparable Link. J Clin Transl Hepatol 2023; 11:1498-1507. [PMID: 38161503 PMCID: PMC10752805 DOI: 10.14218/jcth.2023.00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 01/03/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) particularly affects patients with type 2 diabetes and obesity. The incidence of NAFLD has increased significantly over the last decades and is now pandemically across the globe. It is a complex systemic disease comprising hepatic lipid accumulation, inflammation, lipotoxicity, gut dysbiosis, and insulin resistance as main features and with the potential to progress to cirrhosis and hepatocellular carcinoma (HCC). In numerous animal and human studies the gut microbiota plays a key role in the pathogenesis of NAFLD, NAFLD-cirrhosis and NAFLD-associated HCC. Lipotoxicity is the driver of inflammation, insulin resistance, and liver injury. Likewise, western diet, obesity, and metabolic disorders may alter the gut microbiota, which activates innate and adaptive immune responses and fuels hereby hepatic and systemic inflammation. Indigestible carbohydrates are fermented by the gut microbiota to produce important metabolites, such as short-chain fatty acids and succinate. Numerous animal and human studies suggested a pivotal role of these metabolites in the progression of NAFLD and its comorbidities. Though, modification of the gut microbiota and/or the metabolites could even be beneficial in patients with NAFLD, NAFLD-cirrhosis, and NAFLD-associated HCC. In this review we collect the evidence that exogenous and endogenous hits drive liver injury in NAFLD and propel liver fibrosis and the progressing to advanced disease stages. NAFLD can be seen as the product of a complex interplay between gut microbiota, the immune response and metabolism. Thus, the challenge will be to understand its pathogenesis and to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
188
|
Suwała S, Białczyk A, Koperska K, Rajewska A, Krintus M, Junik R. Prevalence and Crucial Parameters in Diabesity-Related Liver Fibrosis: A Preliminary Study. J Clin Med 2023; 12:7760. [PMID: 38137829 PMCID: PMC10744287 DOI: 10.3390/jcm12247760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
Diabetes and obesity have been recognized as confirmed risk factors for the occurrence of liver fibrosis. Despite the long-standing acknowledgment of "diabesity", the simultaneous existence of diabetes and obesity, scholarly literature has shown limited attention to this topic. The aim of this pilot study was to assess the prevalence of liver fibrosis among individuals with diabetes (specifically those who are obese) in order to identify the key factors associated with hepatofibrosis and determine the most important associations and differences between patients with and without liver fibrosis. The research included a total of 164 participants (48.17% had comorbid obesity). Liver elastography (Fibroscan) was performed on these individuals in addition to laboratory tests. Liver fibrosis was found in 34.76% of type 2 diabetes patients; male gender almost doubled the risk of hepatofibrosis (RR 1.81) and diabesity nearly tripled this risk (RR 2.81; however, in degree III of obesity, the risk was elevated to 3.65 times higher). Anisocytosis, thrombocytopenia, or elevated liver enzymes raised the incidence of liver fibrosis by 1.78 to 2.47 times. In these individuals, liver stiffness was negatively correlated with MCV, platelet count, and albumin concentration; GGTP activity and HbA1c percentage were positively correlated. The regression analysis results suggest that the concentration of albumin and the activity of GGTP are likely to have a substantial influence on the future management of liver fibrosis in patients with diabesity. The findings of this study can serve as the basis for subsequent investigations and actions focused on identifying potential therapeutic and diagnostic avenues.
Collapse
Affiliation(s)
- Szymon Suwała
- Department of Endocrinology and Diabetology, Nicolaus Copernicus University, Collegium Medicum, 9 Sklodowskiej-Curie Street, 85-094 Bydgoszcz, Poland;
| | - Aleksandra Białczyk
- Evidence-Based Medicine Students Scientific Club of Department of Endocrinology and Diabetology, Nicolaus Copernicus University, Collegium Medicum, 9 Sklodowskiej-Curie Street, 85-094 Bydgoszcz, Poland; (A.B.); (K.K.); (A.R.)
| | - Kinga Koperska
- Evidence-Based Medicine Students Scientific Club of Department of Endocrinology and Diabetology, Nicolaus Copernicus University, Collegium Medicum, 9 Sklodowskiej-Curie Street, 85-094 Bydgoszcz, Poland; (A.B.); (K.K.); (A.R.)
| | - Alicja Rajewska
- Evidence-Based Medicine Students Scientific Club of Department of Endocrinology and Diabetology, Nicolaus Copernicus University, Collegium Medicum, 9 Sklodowskiej-Curie Street, 85-094 Bydgoszcz, Poland; (A.B.); (K.K.); (A.R.)
| | - Magdalena Krintus
- Department of Laboratory Medicine, Nicolaus Copernicus University, Collegium Medicum, 9 Sklodowskiej-Curie Street, 85-094 Bydgoszcz, Poland;
| | - Roman Junik
- Department of Endocrinology and Diabetology, Nicolaus Copernicus University, Collegium Medicum, 9 Sklodowskiej-Curie Street, 85-094 Bydgoszcz, Poland;
| |
Collapse
|
189
|
Zhou Y, Ni Y, Wang Z, Prud'homme GJ, Wang Q. Causal effects of non-alcoholic fatty liver disease on osteoporosis: a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1283739. [PMID: 38149094 PMCID: PMC10749958 DOI: 10.3389/fendo.2023.1283739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023] Open
Abstract
Background Osteoporosis (OP) is a systemic skeletal disease characterized by compromised bone strength leading to an increased risk of fracture. There is an ongoing debate on whether non-alcoholic fatty liver disease (NAFLD) is an active contributor or an innocent bystander in the pathogenesis of OP. The aim of this study was to assess the causal association between NAFLD and OP. Methods We performed two-sample Mendelian randomization (MR) analyses to investigate the causal association between genetically predicted NAFLD [i.e., imaging-based liver fat content (LFC), chronically elevated serum alanine aminotransferase (cALT) and biopsy-confirmed NAFLD] and risk of OP. The inverse variant weighted method was performed as main analysis to obtain the causal estimates. Results Imaging-based LFC and biopsy-confirmed NAFLD demonstrated a suggestive causal association with OP ([odds ratio (OR): 1.003, 95% CI: 1.001-1.004, P < 0.001; OR: 1.001, 95% CI: 1.000-1.002, P = 0.031]). The association between cALT and OP showed a similar direction, but was not statistically significant (OR: 1.001, 95% CI: 1.000-1.002, P = 0.079). Repeated analyses after exclusion of genes associated with confounding factors showed consistent results. Sensitivity analysis indicated low heterogeneity, high reliability and low pleiotropy of the causal estimates. Conclusion The two-sample MR analyses suggest a causal association between genetically predicted NAFLD and OP.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Yunzhi Ni
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Zhihong Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Gerald J Prud'homme
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| |
Collapse
|
190
|
Stähli P, Becchetti C, Korta Martiartu N, Berzigotti A, Frenz M, Jaeger M. First-in-human diagnostic study of hepatic steatosis with computed ultrasound tomography in echo mode. COMMUNICATIONS MEDICINE 2023; 3:176. [PMID: 38071269 PMCID: PMC10710459 DOI: 10.1038/s43856-023-00409-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/20/2023] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease is rapidly emerging as the leading global cause of chronic liver disease. Efficient disease management requires low-cost, non-invasive techniques for diagnosing hepatic steatosis accurately. Here, we propose quantifying liver speed of sound (SoS) with computed ultrasound tomography in echo mode (CUTE), a recently developed ultrasound imaging modality adapted to clinical pulse-echo systems. CUTE reconstructs the spatial distribution of SoS by measuring local echo phase shifts when probing tissue at varying steering angles in transmission and reception. METHODS In this first-in-human phase II diagnostic study, we evaluated the liver of 22 healthy volunteers and 22 steatotic patients. We used conventional B-mode ultrasound images and controlled attenuation parameter (CAP) to diagnose the presence (CAP≥ 280 dB/m) or absence (CAP < 248 dB/m) of steatosis in the liver. A fully integrated convex-probe CUTE implementation was developed on the ultrasound system to estimate liver SoS. We investigated its diagnostic value via the receiver operating characteristic (ROC) analysis and correlation to CAP measurements. RESULTS We show that liver CUTE-SoS estimates correlate strongly (r = -0.84, p = 8.27 × 10-13) with CAP values and have 90.9% (95% confidence interval: 84-100%) sensitivity and 95.5% (81-100%) specificity for differentiating between normal and steatotic livers (area under the ROC curve: 0.93-1.0). CONCLUSIONS Our results demonstrate that liver CUTE-SoS is a promising quantitative biomarker for diagnosing liver steatosis. This is a necessary first step towards establishing CUTE as a new quantitative add-on to diagnostic ultrasound that can potentially be as versatile as conventional ultrasound imaging.
Collapse
Affiliation(s)
- Patrick Stähli
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Chiara Becchetti
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Annalisa Berzigotti
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Martin Frenz
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Michael Jaeger
- Institute of Applied Physics, University of Bern, Bern, Switzerland.
| |
Collapse
|
191
|
Li W, Sheridan D, McPherson S, Alazawi W. National study of NAFLD management identifies variation in delivery of care in the UK between 2019 to 2022. JHEP Rep 2023; 5:100897. [PMID: 38023607 PMCID: PMC10654022 DOI: 10.1016/j.jhepr.2023.100897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) is associated with liver and cardiovascular morbidity and mortality. Recently published NAFLD Quality Standards include 11 key performance indicators (KPIs) of good clinical care. This national study, endorsed by British Association for the Study of the Liver (BASL) and British Society of Gastroenterology (BSG), aimed to benchmark NAFLD care in UK hospitals against these KPIs. METHODS This study included all new patients with NAFLD reviewed in the outpatient clinic in the months of March 2019 and March 2022. Participating UK hospitals self-registered for the study through BASL/BSG. KPI outcomes were compared using Fisher's exact or Chi-square tests. RESULTS Data from 776 patients with NAFLD attending 34 hospitals (England [25], Scotland [four], Wales [three], Northern Ireland [two]) were collected. A total of 85.3% of hospitals reported established local liver disease assessment pathways, yet only 27.9% of patients with suspected NAFLD had non-invasive fibrosis assessment documented at the point of referral to secondary care. In secondary care, 79.1% of patients had fibrosis assessment. Assessment of cardiometabolic risk factors including obesity, type 2 diabetes, hypertension, and smoking were conducted in 73.2%, 33.0%, 19.3%, and 54.9% of all patients, respectively. There was limited documentation of diet (35.7%) and exercise advice (55.1%). Excluding those on statins, only 9.1% of patients with NAFLD at increased cardiovascular risk (T2DM and/or QRISK-3 >10%) had documented discussion of statin treatment. Significant KPI improvements from 2019 to 2022 were evident in use of non-invasive fibrosis assessment before secondary care referral, statin recommendations, and diet and exercise recommendations. CONCLUSIONS This national study identified substantial variation in NAFLD management in the UK with clear areas for improvement, particularly fibrosis risk assessment before secondary care referral and management of associated cardiometabolic risk factors. IMPACT AND IMPLICATIONS This study identified significant variation in the management of NAFLD in the UK. Only 27.9% of patients with suspected NAFLD had non-invasive fibrosis assessment performed to identify those at greater risk of advanced liver disease before specialist referral. Greater emphasis is needed on the management of associated cardiometabolic risk factors in individuals with NAFLD. Hospitals with multidisciplinary NAFLD service provision had higher rates of fibrosis evaluation and assessment and management of cardiometabolic risk than hospitals without multidisciplinary services. Further work is needed to align guideline recommendations and real-world practice in NAFLD care.
Collapse
Affiliation(s)
- Wenhao Li
- Barts Liver Centre, Blizard Institute, Queen Mary University of London, London, UK
| | - David Sheridan
- South West Liver Unit, University Hospitals Plymouth NHS Trust, Plymouth, UK
- Hepatology Research Group, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Stuart McPherson
- Liver Unit, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle University, Newcastle upon Tyne, UK
- the Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - William Alazawi
- Barts Liver Centre, Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
192
|
Møller S, Wiese S, Barløse M, Hove JD. How non-alcoholic fatty liver disease and cirrhosis affect the heart. Hepatol Int 2023; 17:1333-1349. [PMID: 37770804 DOI: 10.1007/s12072-023-10590-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023]
Abstract
Liver diseases affect the heart and the vascular system. Cardiovascular complications appear to be a leading cause of death in patients with non-alcoholic fatty liver disease (NAFLD) and cirrhosis. The predominant histological changes in the liver range from steatosis to fibrosis to cirrhosis, which can each affect the cardiovascular system differently. Patients with cirrhotic cardiomyopathy (CCM) and NAFLD are at increased risk of impaired systolic and diastolic dysfunction and for suffering major cardiovascular events. However, the pathophysiological mechanisms behind these risks differ depending on the nature of the liver disease. Accurate assessment of symptoms by contemporary diagnostic modalities is essential for identifying patients at risk, for evaluating candidates for treatment, and prior to any invasive procedures. This review explores current perspectives within this field.
Collapse
Affiliation(s)
- Søren Møller
- Department Clinical Physiology and Nuclear Medicine 260, Center for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, Copenhagen University Hospital, Kettegaards alle 30, 2650, Hvidovre, Denmark.
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Signe Wiese
- Gastro Unit, Medical Division, Hvidovre Hospital, Hvidovre, Denmark
| | - Mads Barløse
- Department Clinical Physiology and Nuclear Medicine 260, Center for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, Copenhagen University Hospital, Kettegaards alle 30, 2650, Hvidovre, Denmark
| | - Jens D Hove
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Hvidovre Hospital, Hvidovre, Denmark
| |
Collapse
|
193
|
Kim JH, Lee G, Hwang J, Kim J, Kwon J, Song Y. Performance of Cardiovascular Risk Prediction Models in Korean Patients With New-Onset Rheumatoid Arthritis: National Cohort Study. J Am Heart Assoc 2023; 12:e030604. [PMID: 37982210 PMCID: PMC10727304 DOI: 10.1161/jaha.123.030604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/19/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND This study aimed to compare the performance of established cardiovascular risk algorithms in Korean patients with new-onset rheumatoid arthritis. METHODS AND RESULTS This retrospective cohort study identified patients newly diagnosed with rheumatoid arthritis without a history of cardiovascular diseases between 2013 and 2019 using the National Health Insurance Service database. The cohort was followed up until 2020 for the development of the first major adverse cardiovascular event. General cardiovascular risk prediction algorithms, such as the systematic coronary risk evaluation model, the Korean risk prediction model for atherosclerotic cardiovascular diseases, the American College of Cardiology/American Heart Association pooled equations, and the Framingham Risk Score, were used. The discrimination and calibration of cardiovascular risk prediction models were evaluated. Hazard ratios were estimated using Cox proportional hazards regression. A total of 611 patients among 24 889 patients experienced a major adverse cardiovascular event during follow-up. The median 10-year atherosclerotic cardiovascular diseases risk score was significantly higher in patients with major adverse cardiovascular events than those without. The C-statistics of risk algorithms ranged between 0.72 and 0.74. Compared with the low-risk group, the actual risk of developing major adverse cardiovascular events increased significantly in the intermediate- and high-risk groups for all algorithms. However, the risk predictions calculated from all algorithms overestimated the observed cardiovascular risk in the middle to high deciles, and only the systematic coronary risk evaluation algorithm showed comparable observed and predicted event rates in the low-intermediate deciles with the highest sensitivity. CONCLUSIONS The systematic coronary risk evaluation model algorithm and the general risk prediction models discriminated patients with rheumatoid arthritis appropriately. However, overestimation should be considered when applying the cardiovascular risk prediction model in Korean patients.
Collapse
Affiliation(s)
- Jae Hyun Kim
- School of Pharmacy and Institute of New Drug DevelopmentJeonbuk National UniversityJeonjuRepublic of Korea
| | - Gaeun Lee
- Department of StatisticsDaegu UniversityGyeongbukRepublic of Korea
| | - Jinseub Hwang
- Department of StatisticsDaegu UniversityGyeongbukRepublic of Korea
| | - Ji‐Won Kim
- Division of Rheumatology, Department of Internal MedicineDaegu Catholic University School of MedicineDaeguRepublic of Korea
| | - Jin‐Won Kwon
- BK21 FOUR Community‐Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical SciencesKyungpook National UniversityDaeguRepublic of Korea
| | - Yun‐Kyoung Song
- College of PharmacyDaegu Catholic UniversityGyeongbukRepublic of Korea
| |
Collapse
|
194
|
Jouenne A, Hamici K, Varlet I, Sourdon J, Daudé P, Lan C, Kober F, Landrier JF, Bernard M, Desrois M. Relationship of cardiac remodeling and perfusion alteration with hepatic lipid metabolism in a prediabetic high fat high sucrose diet female rat model. Biochem Biophys Res Commun 2023; 682:207-215. [PMID: 37826944 DOI: 10.1016/j.bbrc.2023.09.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND AND AIMS Cardiovascular disease (CVD) is known to be linked with metabolic associated fatty liver disease and type 2 diabetes, but few studies assessed this relationship in prediabetes, especially among women, who are at greater risk of CVD. We aimed to evaluate cardiac alterations and its relationship with hepatic lipid metabolism in prediabetic female rats submitted to high-fat-high-sucrose diet (HFS). METHODS AND RESULTS Wistar female rats were divided into 2 groups fed for 5 months with standard or HFS diet. We analyzed cardiac morphology, function, perfusion and fibrosis by Magnetic Resonance Imaging. Hepatic lipid contents along with inflammation and lipid metabolism gene expression were assessed. Five months of HFS diet induced glucose intolerance (p < 0.05), cardiac remodeling characterized by increased left-ventricular volume, wall thickness and mass (p < 0.05). No significant differences were found in left-ventricular ejection fraction and cardiac fibrosis but increased myocardial perfusion (p < 0.01) and reduced cardiac index (p < 0.05) were shown. HFS diet induced hepatic lipid accumulation with increased total lipid mass (p < 0.001) and triglyceride contents (p < 0.05), but also increased mitochondrial (CPT1a, MCAD; (p < 0.001; p < 0.05) and peroxisomal (ACO, LCAD; (p < 0.05; p < 0.001) β-oxidation gene expression. Myocardial wall thickness and perfusion were correlated with hepatic β-oxidation genes expression. Furthermore, myocardial perfusion was also correlated with hepatic lipid content and glucose intolerance. CONCLUSION This study brings new insights on the relationship between cardiac sub-clinical alterations and hepatic metabolism in female prediabetic rats. Further studies are warranted to explore its involvement in the higher CVD risk observed among prediabetic women.
Collapse
Affiliation(s)
- A Jouenne
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.
| | - K Hamici
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.
| | - I Varlet
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.
| | - J Sourdon
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.
| | - P Daudé
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.
| | - C Lan
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.
| | - F Kober
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.
| | - J F Landrier
- Aix-Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.
| | - M Bernard
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.
| | - M Desrois
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.
| |
Collapse
|
195
|
Motta BM, Masarone M, Torre P, Persico M. From Non-Alcoholic Steatohepatitis (NASH) to Hepatocellular Carcinoma (HCC): Epidemiology, Incidence, Predictions, Risk Factors, and Prevention. Cancers (Basel) 2023; 15:5458. [PMID: 38001718 PMCID: PMC10670704 DOI: 10.3390/cancers15225458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects up to a quarter of the adult population in many developed and developing countries. This spectrum of liver disease ranges from simple steatosis to non-alcoholic steatohepatitis (NASH) and cirrhosis. The incidence of NASH is projected to increase by up to 56% over the next 10 years. There is growing epidemiological evidence that NAFLD has become the fastest-growing cause of hepatocellular carcinoma (HCC) in industrialized countries. The annual incidence of HCC varies between patients with NASH cirrhosis and patients with noncirrhotic NAFLD. In this review, NAFLD/NASH-associated HCC will be described, including its epidemiology, risk factors promoting hepatocarcinogenesis, and management of HCC in patients with obesity and associated metabolic comorbidities, including preventive strategies and therapeutic approaches to address this growing problem.
Collapse
Affiliation(s)
| | | | | | - Marcello Persico
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (B.M.M.); (M.M.); (P.T.)
| |
Collapse
|
196
|
Ding Z, Song H, Wang F. Role of lipins in cardiovascular diseases. Lipids Health Dis 2023; 22:196. [PMID: 37964368 PMCID: PMC10644651 DOI: 10.1186/s12944-023-01961-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023] Open
Abstract
Lipin family members in mammals include lipins 1, 2, and 3. Lipin family proteins play a crucial role in lipid metabolism due to their bifunctionality as both transcriptional coregulators and phosphatidate phosphatase (PAP) enzymes. In this review, we discuss the structural features, expression patterns, and pathophysiologic functions of lipins, emphasizing their direct as well as indirect roles in cardiovascular diseases (CVDs). Elucidating the regulation of lipins facilitates a deeper understanding of the roles of lipins in the processes underlying CVDs. The activity of lipins is modulated at various levels, e.g., in the form of the transcription of genes, post-translational modifications, and subcellular protein localization. Because lipin characteristics are undergoing progressive clarification, further research is necessitated to then actuate the investigation of lipins as viable therapeutic targets in CVDs.
Collapse
Affiliation(s)
- Zerui Ding
- The Endocrinology Department of the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Hongyu Song
- The Endocrinology Department of the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Fang Wang
- The Endocrinology Department of the Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
197
|
Tan SH, Zhou XL. Early-stage non-alcoholic fatty liver disease in relation to atherosclerosis and inflammation. Clinics (Sao Paulo) 2023; 78:100301. [PMID: 37952443 PMCID: PMC10681951 DOI: 10.1016/j.clinsp.2023.100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND AND AIMS Non-alcoholic fatty liver disease (NAFLD) is a multisystem disease closely linked to cardiovascular disease (CVD). This study aims to investigate the connection between early-stage NAFLD and atherosclerosis, as well as the correlation between liver fibrosis and coronary heart disease while exploring underlying inflammatory mechanisms. METHODS In this retrospective study, the authors analyzed data from 607 patients who underwent both coronary computed tomography angiography (CCTA) and abdominal ultrasonography (US). Logistic regression was utilized to examine the association between NAFLD and atherosclerosis, while mediation analysis was conducted to explore whether inflammatory markers mediate the link between liver fibrosis and coronary artery disease. RESULTS Among the 607 patients included, 237 (39.0 %) were diagnosed with NAFLD through ultrasonography. After adjusting for traditional cardiovascular risk factors, ALT, and AST, NAFLD demonstrated a significant correlation with carotid intimal thickening (1.58, 95 % CI 1.04‒2.40; p = 0.034) and non-calcified plaque (1.56, 95 % CI 1.03‒2.37; p = 0.038). Additionally, fibrosis predictive markers, including FIB-4 > 1.3 (1.06, 95 % CI 2.30‒5.00; p = 0.035) and APRI (6.26, 95 % CI 1.03‒37.05; p = 0.046), independently correlated with coronary heart disease after adjusting for cardiovascular risk factors. Conversely, among systemic inflammatory markers, only the neutrophil-to-lymphocyte ratio (NLR) and systemic inflammatory response index (SIRI) are independently associated with coronary heart disease. ROC curve analysis indicated that combining predictive fibrosis markers or inflammatory markers with traditional cardiovascular risk factors enhanced the predictive accuracy for coronary heart disease. Mediation analysis revealed that NLR fully mediated the effect of liver fibrosis on coronary heart disease. CONCLUSION NAFLD is associated with carotid intimal thickening and non-calcified plaque, suggesting an increased cardiovascular risk. Furthermore, liver fibrosis independently increases the risk of coronary heart disease in the early-stage NAFLD population, and inflammation may play a fully mediating role in the effect of liver fibrosis on coronary heart disease. Early intervention is crucial for NAFLD patients to mitigate future major adverse cardiovascular events.
Collapse
Affiliation(s)
- Si-Hua Tan
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, China.
| | - Xiao-Li Zhou
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, China.
| |
Collapse
|
198
|
Lampignano L, Tatoli R, Donghia R, Bortone I, Castellana F, Zupo R, Lozupone M, Panza F, Conte C, Sardone R. Nutritional patterns as machine learning predictors of liver health in a population of elderly subjects. Nutr Metab Cardiovasc Dis 2023; 33:2233-2241. [PMID: 37541928 DOI: 10.1016/j.numecd.2023.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Accepted: 07/07/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND AND AIMS Non-alcoholic hepatic steatosis affects 25% of adults worldwide and its prevalence increases with age. There is currently no definitive treatment for NAFLD but international guidelines recommend a lifestyle-based approach, including a healthy diet. The aim of this study was to investigate the interactions between eating habits and the risk of steatosis and/or hepatic fibrosis, using a machine learning approach, in a non-institutionalized elderly population. METHODS AND RESULTS We recruited 1929 subjects, mean age 74 years, from the population-based Salus in Apulia Study. Dietary habits and the risk of steatosis and hepatic fibrosis were evaluated with a validated food frequency questionnaire, the Fatty Liver Index (FLI) and the FIB-4 score, respectively. Two dietary patterns associated with the risk of steatosis and hepatic fibrosis have been identified. They are both similar to a "western" diet, defined by a greater consumption of refined foods, with a rich content of sugars and saturated fats, and alcoholic and non-alcoholic calorie drinks. CONCLUSION This study further supports the concept of diet as a factor that significantly influences the development of the most widespread liver diseases. However, longitudinal studies are needed to better understand the causal effect of the consumption of particular foods on fat accumulation in the liver.
Collapse
Affiliation(s)
| | - Rossella Tatoli
- National Institute of Gastroenterology IRCCS "Saverio de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Rossella Donghia
- National Institute of Gastroenterology IRCCS "Saverio de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Ilaria Bortone
- Department of Translational Biomedicine and Neuroscience "DiBraiN", University of Bari Aldo Moro, Bari, Italy
| | | | - Roberta Zupo
- Department of Interdisciplinary Medicine, University "Aldo Moro", Bari, Italy
| | - Madia Lozupone
- Department of Translational Biomedicine and Neuroscience "DiBraiN", University of Bari Aldo Moro, Bari, Italy
| | - Francesco Panza
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Rodolfo Sardone
- Unit of Statistics and Epidemiology, Local Health Authority of Taranto, Taranto, Italy
| |
Collapse
|
199
|
Pourteymour S, Drevon CA, Dalen KT, Norheim FA. Mechanisms Behind NAFLD: a System Genetics Perspective. Curr Atheroscler Rep 2023; 25:869-878. [PMID: 37812367 DOI: 10.1007/s11883-023-01158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE OF REVIEW To summarize the key factors contributing to the onset and progress of nonalcoholic fatty liver disease (NAFLD) and put them in a system genetics context. We particularly focus on how genetic regulation of hepatic lipids contributes to NAFLD. RECENT FINDINGS NAFLD is characterized by excessive accumulation of fat in the liver. This can progress to steatohepatitis (inflammation and hepatocyte injury) and eventually, cirrhosis. The severity of NAFLD is determined by a combination of factors including obesity, insulin resistance, and lipotoxic lipids, along with genetic susceptibility. Numerous studies have been conducted on large human cohorts and mouse panels, to identify key determinants in the genome, transcriptome, proteome, lipidome, microbiome and different environmental conditions contributing to NAFLD. We review common factors contributing to NAFLD and put them in a systems genetics context. In particular, we describe how genetic regulation of liver lipids contributes to NAFLD. The combination of an unhealthy lifestyle and genetic predisposition increases the likelihood of accumulating lipotoxic specie lipids that may be one of the driving forces behind developing severe forms of NAFLD.
Collapse
Affiliation(s)
- Shirin Pourteymour
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, PO Box 1046, 0317, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, PO Box 1046, 0317, Oslo, Norway
- Vitas Ltd. Oslo Science Park, Oslo, Norway
| | - Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, PO Box 1046, 0317, Oslo, Norway
| | - Frode A Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, PO Box 1046, 0317, Oslo, Norway.
| |
Collapse
|
200
|
Singuru G, Pulipaka S, Shaikh A, Balaji Andugulapati S, Thennati R, Kotamraju S. Therapeutic efficacy of mitochondria-targeted esculetin in the improvement of NAFLD-NASH via modulating AMPK-SIRT1 axis. Int Immunopharmacol 2023; 124:111070. [PMID: 37862737 DOI: 10.1016/j.intimp.2023.111070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
Mitochondrial dysfunction due to deregulated production of mitochondria-derived ROS is implicated in the development and progression of non-alcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH). Recently, we synthesized a novel mitochondria-targeted esculetin (Mito-Esc) and investigated its dose-response therapeutic efficacy in mitigating high-fat diet (HFD)-induced NAFLD and NASH in Apoe-/- mice. Mito-Esc administration, compared to simvastatin and pioglitazone, dose-dependently caused a significant reduction in body weight, improved lipid profile, glucose homeostasis, and pro-inflammatory cytokines level. Mito-Esc administration reduced adipose tissue hypertrophy and lipid accumulation presumably by regulating the levels of CD36, PPAR-γ, EBP-α, and their target genes. Mechanistically, Mito-Esc-induced activation of the AMPK1α-SIRT1 axis inhibited pre-adipocyte differentiation. Conversely, Mito-Esc failed to regulate pre-adipocyte differentiation under AMPK/SIRT1 depleted conditions. In parallel, Mito-Esc administration ameliorated HFD-induced steatosis, fibrosis of the liver, and NAFLD-associated atheromatous plaque formation in the aorta. Importantly, Mito-Esc administration inhibited HFD-induced infiltration of macrophages, a marker of steatohepatitis, in the adipose and liver tissues. The results of the in vitro studies showed that Mito-Esc treatment significantly inhibits TGF-β-induced hepatic stellate cell differentiation as well as the fibrotic markers. Consistent with the above observations, Mito-Esc treatment by activating the AMPK-SIRT1 pathway markedly reversed palmitate-induced mitochondrial superoxide production, depolarization of mitochondrial membrane potential, and lipid accumulation in HepG2 cells. Together, the therapeutic efficacy of Mito-Esc in the mitigation of HFD-induced lipotoxicity, and the associated NASH is in part, mediated by potentiating the AMPK-SIRT1 axis.
Collapse
Affiliation(s)
- Gajalakshmi Singuru
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Sriravali Pulipaka
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Altab Shaikh
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India; Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Rajamannar Thennati
- High Impact Innovations-Sustainable Health Solutions (HISHS), Sun Pharmaceutical Industries Ltd., Vadodara 390012, India
| | - Srigiridhar Kotamraju
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India.
| |
Collapse
|