151
|
Sacoman JL, Hollingsworth RI. Synthesis and evaluation of an N-acetylglucosamine biosynthesis inhibitor. Carbohydr Res 2011; 346:2294-9. [DOI: 10.1016/j.carres.2011.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/28/2011] [Accepted: 07/06/2011] [Indexed: 11/16/2022]
|
152
|
|
153
|
Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004952. [PMID: 21690215 DOI: 10.1101/cshperspect.a004952] [Citation(s) in RCA: 1098] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of ligands. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions. Here, we discuss changing views on the specificity of protein-heparan sulfate binding and the activity of HSPGs as receptors and coreceptors. Although few in number, heparan sulfate proteoglycans have profound effects at the cellular, tissue, and organismal level.
Collapse
Affiliation(s)
- Stephane Sarrazin
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
154
|
Abstract
Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of ligands. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions. Here, we discuss changing views on the specificity of protein-heparan sulfate binding and the activity of HSPGs as receptors and coreceptors. Although few in number, heparan sulfate proteoglycans have profound effects at the cellular, tissue, and organismal level.
Collapse
Affiliation(s)
- Stephane Sarrazin
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
155
|
Wei W, Niñonuevo MR, Sharma A, Danan-Leon LM, Leary JA. A comprehensive compositional analysis of heparin/heparan sulfate-derived disaccharides from human serum. Anal Chem 2011; 83:3703-8. [PMID: 21473642 PMCID: PMC3094484 DOI: 10.1021/ac2001077] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The analysis of heparan sulfate glycosaminoglycans (HSGAGs) variations in human serum at the disaccharide level has a great potential for disease diagnosis and prognosis. However, the lack of available analytical methodology for the compositional analysis of HSGAGs in human serum remains to be addressed to delineate the possible role of HSGAGs on the onset and/or progression of a disease. In this study, we have developed a method for the in-depth compositional analysis of the 12 heparin/HS-derived disaccharides from human serum using a combination of technologies--fractionation, exhaustive digestion, solid phase extraction, and LC-MS/MS. The method exhibits high recovery (72-110%) and good reproducibility (standard deviation of less than 5%) with a low limit of detection and quantification. Errors from the method validation were within 1.1%. Nondetectable non- or low-sulfated disaccharides in human serum were also detected using the optimized protocol. Further applying this method, the comprehensive analysis of HSGAGs compositions in human sera from female donors showed considerable variations in disaccharide patterns and compositions.
Collapse
Affiliation(s)
- Wei Wei
- Department of Chemistry, University of California, Davis, CA 95616
| | - Milady R. Niñonuevo
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Anish Sharma
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | | | - Julie A. Leary
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| |
Collapse
|
156
|
Horlacher T, Noti C, dePaz JL, Bindschädler P, Smith DF, Fukuda MN, Seeberger PH. Characterization of annexin A1 glycan binding reveals binding to highly sulfated glycans with preference for highly sulfated heparan sulfate and heparin. Biochemistry 2011; 50:2650-9. [PMID: 21370880 PMCID: PMC3068229 DOI: 10.1021/bi101121a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Annexin A1 is a multifunctional, calcium-dependent phospholipid binding protein involved in a host of processes including inflammation, regulation of neuroendocrine signaling, apoptosis, and membrane trafficking. Binding of annexin A1 to glycans has been implicated in cell attachment and modulation of annexin A1 function. A detailed characterization of the glycan binding preferences of annexin A1 using carbohydrate microarrays and surface plasmon resonance served as a starting point to understand the role of glycan binding in annexin A1 function. Glycan array analysis identified annexin A1 binding to a series of sulfated oligosaccharides and revealed for the first time that annexin A1 binds to sulfated non-glycosaminoglycan carbohydrates. Using heparin/heparan sulfate microarrays, highly sulfated heparan sulfate/heparin were identified as preferred ligands of annexin A1. Binding of annexin A1 to heparin/heparan sulfate is calcium- but not magnesium-dependent. An in-depth structure-activity relationship of annexin A1-heparan sulfate interactions was established using chemically defined sugars. For the first time, a calcium-dependent heparin binding protein was characterized with such an approach. N-Sulfation and 2-O-sulfation were identified as particularly important for binding.
Collapse
Affiliation(s)
- T. Horlacher
- Max-Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, D-14476 Potsdam, Germany
- Federal Institute of Technology (ETH) Zurich, Wolfgang-Pauli-Str. 10, CH-8093 Zurich, Switzerland
| | - C. Noti
- Federal Institute of Technology (ETH) Zurich, Wolfgang-Pauli-Str. 10, CH-8093 Zurich, Switzerland
| | - J. L. dePaz
- Federal Institute of Technology (ETH) Zurich, Wolfgang-Pauli-Str. 10, CH-8093 Zurich, Switzerland
| | - P. Bindschädler
- Federal Institute of Technology (ETH) Zurich, Wolfgang-Pauli-Str. 10, CH-8093 Zurich, Switzerland
| | - D. F. Smith
- Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - M. N. Fukuda
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - P. H. Seeberger
- Max-Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, D-14476 Potsdam, Germany
- Federal Institute of Technology (ETH) Zurich, Wolfgang-Pauli-Str. 10, CH-8093 Zurich, Switzerland
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
- Freie Universität Berlin, Arnimallee 22, D-14195 Berlin, Germany
| |
Collapse
|
157
|
Karlsson G. Development and Application of Methods for Separation of Carbohydrates by Hydrophilic Interaction Liquid Chromatography. ACTA ACUST UNITED AC 2011. [DOI: 10.1201/b10609-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
158
|
Aulin C, Bergman K, Jensen-Waern M, Hedenqvist P, Hilborn J, Engstrand T. In situ cross-linkable hyaluronan hydrogel enhances chondrogenesis. J Tissue Eng Regen Med 2011; 5:e188-96. [DOI: 10.1002/term.415] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 01/18/2011] [Indexed: 11/06/2022]
|
159
|
He Y, Li J, Chen Y. Catalytic Effects of Different Heparin Analogs on the Hydrolysis of Auramine O. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2011; 22:253-261. [PMID: 20557699 DOI: 10.1163/092050609x12601848092242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Glycosaminoglycans, such as heparin, are a class of biomaterials with a variety of important biological functions. They were found to catalyze the hydrolysis of 4,4'-(imidocarbonyl)-bis(N,N-dimethylaniline) monohydrochloride to 4,4'-bis(dimethy-lamino) benzophenone, but the catalytic mechanism of this interesting reaction is poorly understood, mainly due to the structural complexity of polysaccharides. In order to study such an unusual reaction, a pentasaccharide, fondaparinux, with defined chemical structure was chosen as a probe to investigate the hydrolytic characteristics, along with other heparin analogs. The hydrolytic reaction was catalyzed by fondaparinux, low-molecular-weight heparins, heparin and different desulfated heparins at various rates. The present results demonstrated that the length of polysaccharide chain, the N- or O-sulfo groups are critical to the hydrolysis of 4,4'-(imidocarbonyl)-bis(N,N-dimethy-laniline) monohydrochloride in addition to pH and ionic strength, which provides new insights into the catalytic phenomenon of polysaccharides.
Collapse
Affiliation(s)
- Yunmian He
- a Laboratory of Chemical Biology, China Pharmaceutical University, 24 Tongjia Street, Nanjing, Jiangsu 210009, P. R. China; Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | | | | |
Collapse
|
160
|
Vieira TCRG, Reynaldo DP, Gomes MPB, Almeida MS, Cordeiro Y, Silva JL. Heparin Binding by Murine Recombinant Prion Protein Leads to Transient Aggregation and Formation of RNA-Resistant Species. J Am Chem Soc 2010; 133:334-44. [DOI: 10.1021/ja106725p] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tuane C. R. G. Vieira
- Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro 21491-902
| | - Daniel P. Reynaldo
- Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro 21491-902
| | - Mariana P. B. Gomes
- Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro 21491-902
| | - Marcius S. Almeida
- Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro 21491-902
| | - Yraima Cordeiro
- Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro 21491-902
| | - Jerson L. Silva
- Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro 21491-902
| |
Collapse
|
161
|
Gupta G, Surolia A, Sampathkumar SG. Lectin microarrays for glycomic analysis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:419-36. [PMID: 20726799 DOI: 10.1089/omi.2009.0150] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glycomics is the study of comprehensive structural elucidation and characterization of all glycoforms found in nature and their dynamic spatiotemporal changes that are associated with biological processes. Glycocalyx of mammalian cells actively participate in cell-cell, cell-matrix, and cell-pathogen interactions, which impact embryogenesis, growth and development, homeostasis, infection and immunity, signaling, malignancy, and metabolic disorders. Relative to genomics and proteomics, glycomics is just growing out of infancy with great potential in biomedicine for biomarker discovery, diagnosis, and treatment. However, the immense diversity and complexity of glycan structures and their multiple modes of interactions with proteins pose great challenges for development of analytical tools for delineating structure function relationships and understanding glyco-code. Several tools are being developed for glycan profiling based on chromatography, mass spectrometry, glycan microarrays, and glyco-informatics. Lectins, which have long been used in glyco-immunology, printed on a microarray provide a versatile platform for rapid high throughput analysis of glycoforms of biological samples. Herein, we summarize technological advances in lectin microarrays and critically review their impact on glycomics analysis. Challenges remain in terms of expansion to include nonplant derived lectins, standardization for routine clinical use, development of recombinant lectins, and exploration of plant kingdom for discovery of novel lectins.
Collapse
Affiliation(s)
- Garima Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
162
|
Liu Z, Masuko S, Solakyildirim K, Pu D, Linhardt RJ, Zhang F. Glycosaminoglycans of the porcine central nervous system. Biochemistry 2010; 49:9839-47. [PMID: 20954748 PMCID: PMC2978029 DOI: 10.1021/bi101305b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycosaminoglycans (GAGs) are known to participate in central nervous system processes such as development, cell migration, and neurite outgrowth. In this paper, we report an initial glycomics study of GAGs from the porcine central nervous system. GAGs of the porcine central nervous system, brain and spinal cord were isolated and purified by defatting, proteolysis, anion-exchange chromatography, and methanol precipitation. The isolated GAG content in brain was 5 times higher than in spinal cord (0.35 mg/g of dry sample, compared to 0.07 mg/g of dry sample). In both tissues, chondroitin sulfate (CS) and heparan sulfate (HS) were the major and the minor GAG, respectively. The average molecular masses of CS from brain and spinal cord were 35.5 and 47.1 kDa, respectively, and those for HS from brain and spinal cord were 56.9 and 34 kDa, respectively. The disaccharide analysis showed that the compositions of CS from brain and spinal cords are similar, with uronic acid (1→3) 4-O-sulfo-N-acetylgalactosamine residue corresponding to the major disaccharide unit (CS type A) along with five minor disaccharide units. The major disaccharides of both brain and spinal cord HS were uronic acid (1→4) N-acetylglucosamine and uronic acid (1→4) 6-O-sulfo-N-sulfoglucosamine, but their composition of minor disaccharides differed. Analysis by (1)H and two-dimensional NMR spectroscopy confirmed these disaccharide analyses and provided the glucuronic/iduronic acid ratio. Finally, both purified CS and HS were biotinylated and immobilized on BIAcore SA biochips. Interactions between these GAGs and fibroblast growth factors (FGF1 and FGF2) and sonic hedgehog (Shh) were investigated by surface plasmon resonance.
Collapse
Affiliation(s)
- Zhenling Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
- Departments of Chemistry and Chemical Biology, Biology and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180
| | - Sayaka Masuko
- Departments of Chemistry and Chemical Biology, Biology and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180
| | - Kemal Solakyildirim
- Departments of Chemistry and Chemical Biology, Biology and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180
| | - Dennis Pu
- Departments of Chemistry and Chemical Biology, Biology and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180
| | - Robert J. Linhardt
- Departments of Chemistry and Chemical Biology, Biology and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180
| | - Fuming Zhang
- Departments of Chemistry and Chemical Biology, Biology and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180
| |
Collapse
|
163
|
Coppa GV, Gabrielli O, Buzzega D, Zampini L, Galeazzi T, Maccari F, Bertino E, Volpi N. Composition and structure elucidation of human milk glycosaminoglycans. Glycobiology 2010; 21:295-303. [PMID: 21030540 DOI: 10.1093/glycob/cwq164] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To date, there is no complete structural characterization of human milk glycosaminoglycans (GAGs) available nor do any data exist on their composition in bovine milk. Total GAGs were determined on extracts from human and bovine milk. Samples were subjected to digestion with specific enzymes, treated with nitrous acid, and analyzed by agarose-gel electrophoresis and high-performance liquid chromatography for their structural characterization. Quantitative analyses yielded ∼7 times more GAGs in human milk than in bovine milk. In particular, galactosaminoglycans, chondroitin sulfate (CS) and dermatan sulfate (DS), were found to differ considerably from one type of milk to the other. In fact, hardly any DS was observed in human milk, but a low-sulfated CS having a very low charge density of 0.36 was found. On the contrary, bovine milk galactosaminoglycans were demonstrated to be composed of ∼66% DS and 34% CS for a total charge density of 0.94. Structural analysis performed by heparinases showed a prevalence of fast-moving heparin over heparan sulfate, accounting for ∼30-40% of total GAGs in both milk samples and showing lower sulfation in human (2.03) compared with bovine (2.28). Hyaluronic acid was found in minor amounts. This study offers the first full characterization of the GAGs in human milk, providing useful data to gain a better understanding of their physiological role, as well as of their fundamental contribution to the health of the newborn.
Collapse
Affiliation(s)
- Giovanni V Coppa
- Department of Clinical Sciences, Polytechnic University of Marche, Ospedali Riuniti, Presidio Salesi, Ancona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Przybylski C, Gonnet F, Hersant Y, Bonnaffé D, Lortat-Jacob H, Daniel R. Desorption Electrospray Ionization Mass Spectrometry of Glycosaminoglycans and Their Protein Noncovalent Complex. Anal Chem 2010; 82:9225-33. [DOI: 10.1021/ac1016198] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- C. Przybylski
- CNRS UMR 8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry, France, CNRS UMR 8182, Université d’Orsay, Laboratoire de Chimie Organique Multifonctionnelle, ICMO, 91405 Orsay Cedex, France, and Institut de Biologie Structurale, CNRS, CEA, Université Joseph Fourier, UMR 5075, 38027 Grenoble Cedex, France
| | - F. Gonnet
- CNRS UMR 8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry, France, CNRS UMR 8182, Université d’Orsay, Laboratoire de Chimie Organique Multifonctionnelle, ICMO, 91405 Orsay Cedex, France, and Institut de Biologie Structurale, CNRS, CEA, Université Joseph Fourier, UMR 5075, 38027 Grenoble Cedex, France
| | - Y. Hersant
- CNRS UMR 8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry, France, CNRS UMR 8182, Université d’Orsay, Laboratoire de Chimie Organique Multifonctionnelle, ICMO, 91405 Orsay Cedex, France, and Institut de Biologie Structurale, CNRS, CEA, Université Joseph Fourier, UMR 5075, 38027 Grenoble Cedex, France
| | - D. Bonnaffé
- CNRS UMR 8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry, France, CNRS UMR 8182, Université d’Orsay, Laboratoire de Chimie Organique Multifonctionnelle, ICMO, 91405 Orsay Cedex, France, and Institut de Biologie Structurale, CNRS, CEA, Université Joseph Fourier, UMR 5075, 38027 Grenoble Cedex, France
| | - H. Lortat-Jacob
- CNRS UMR 8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry, France, CNRS UMR 8182, Université d’Orsay, Laboratoire de Chimie Organique Multifonctionnelle, ICMO, 91405 Orsay Cedex, France, and Institut de Biologie Structurale, CNRS, CEA, Université Joseph Fourier, UMR 5075, 38027 Grenoble Cedex, France
| | - R. Daniel
- CNRS UMR 8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry, France, CNRS UMR 8182, Université d’Orsay, Laboratoire de Chimie Organique Multifonctionnelle, ICMO, 91405 Orsay Cedex, France, and Institut de Biologie Structurale, CNRS, CEA, Université Joseph Fourier, UMR 5075, 38027 Grenoble Cedex, France
| |
Collapse
|
165
|
Wiig H, Keskin D, Kalluri R. Interaction between the extracellular matrix and lymphatics: consequences for lymphangiogenesis and lymphatic function. Matrix Biol 2010; 29:645-56. [PMID: 20727409 PMCID: PMC3992865 DOI: 10.1016/j.matbio.2010.08.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 08/03/2010] [Accepted: 08/03/2010] [Indexed: 12/19/2022]
Abstract
The lymphatic system is important for body fluid balance as well as immunological surveillance. Due to the identification of new molecular markers during the last decade, there has been a recent dramatic increase in our knowledge on the molecular mechanisms involved in lymphatic vessel growth (lymphangiogenesis) and lymphatic function. Here we review data showing that although it is often overlooked, the extracellular matrix plays an important role in the generation of new lymphatic vessels as a response to physiological and pathological stimuli. Extracellular matrix-lymphatic interactions as well as biophysical characteristics of the stroma have consequences for tumor formation, growth and metastasis. During the recent years, anti-lymphangiogenesis has emerged as an additional therapeutic modality to the clinically applied anti-angiogenesis strategy. Oppositely, enhancement of lymphangiogenesis in situations of lymph accumulation is seen as a promising strategy to a set of conditions where few therapeutic avenues are available. Knowledge on the interaction between the extracellular matrix and the lymphatics may enhance our understanding of the underlying mechanisms and may ultimately lead to better therapies for conditions where reduced or increased lymphatic function is the therapeutic target.
Collapse
Affiliation(s)
- Helge Wiig
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, United States
| | | | | |
Collapse
|
166
|
Gracher AHP, Cipriani TR, Carbonero ER, Gorin PA, Iacomini M. Antithrombin and heparin cofactor II-mediated inactivation of α-thrombin by a synthetic, sulfated mannogalactan. Thromb Res 2010; 126:e180-7. [DOI: 10.1016/j.thromres.2010.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 04/14/2010] [Accepted: 04/20/2010] [Indexed: 11/26/2022]
|
167
|
|
168
|
Glycans as receptors for influenza pathogenesis. Glycoconj J 2010; 27:561-70. [PMID: 20734133 PMCID: PMC3407351 DOI: 10.1007/s10719-010-9303-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 10/15/2008] [Accepted: 07/18/2010] [Indexed: 11/16/2022]
Abstract
Influenza A viruses, members of the Orthomyxoviridae family, are responsible for annual seasonal influenza epidemics and occasional global pandemics. The binding of viral coat glycoprotein hemagglutinin (HA) to sialylated glycan receptors on host epithelial cells is the critical initial step in the infection and transmission of these viruses. Scientists believe that a switch in the binding specificity of HA from Neu5Acα2-3Gal linked (α2-3) to Neu5Acα2-6Gal linked (α2-6) glycans is essential for the crossover of the viruses from avian to human hosts. However, studies have shown that the classification of glycan binding preference of HA based on sialic acid linkage alone is insufficient to establish a correlation between receptor specificity of HA and the efficient transmission of influenza A viruses. A recent study reported extensive diversity in the structure and composition of α2-6 glycans (which goes beyond the sialic acid linkage) in human upper respiratory epithelia and identified different glycan structural topologies. Biochemical examination of the multivalent HA binding to these diverse sialylated glycan structures also demonstrated that high affinity binding of HA to α2-6 glycans with a characteristic umbrella-like structural topology is critical for efficient human adaptation and human-human transmission of influenza A viruses. This review summarizes studies which suggest a new paradigm for understanding the role of the structure of sialylated glycan receptors in influenza virus pathogenesis.
Collapse
|
169
|
Blaum BS, Deakin JA, Johansson CM, Herbert AP, Barlow PN, Lyon M, Uhrín D. Lysine and arginine side chains in glycosaminoglycan-protein complexes investigated by NMR, cross-linking, and mass spectrometry: a case study of the factor H-heparin interaction. J Am Chem Soc 2010; 132:6374-81. [PMID: 20394361 DOI: 10.1021/ja1000517] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have used the interaction between module 7 of complement factor H (CFH approximately 7) and a fully sulfated heparin tetrasaccharide to exemplify a new approach for studying contributions of basic side chains to the formation of glycosaminoglycan (GAG)-protein complexes. We first employed HISQC and H(2)CN NMR experiments to monitor the side-chain resonances of lysines and arginines in (15)N, (13)C-labeled protein during titrations with a fully sulfated heparin tetrasaccharide under physiological conditions. Under identical conditions and using (15)N-labeled protein, we then cross-linked tetrasaccharide to CFH approximately 7 and confirmed the 1:1 stoichiometry by FT-ICR-MS. We subsequently characterized this covalent protein-GAG conjugate by NMR and further MS techniques. MALDI-TOF MS identified protein fragments obtained via trypsin digestion or chemical fragmentation, yielding information concerning the site of GAG attachment. Combining MS and NMR data allowed us to identify the side chain of K405 as the point of attachment of the cross-linked heparin oligosaccharide to CFH approximately 7. On the basis of the analysis of NMR and MS data of the noncovalent and cross-linked CFH approximately 7-tetrasaccharide complexes, we conclude that the K446 side chain is not essential for binding the tetrasaccharide, despite the large chemical shift perturbations of its backbone amide (15)N and (1)H resonances during titrations. We show that R444 provides the most important charge-charge interaction within a C-terminal heparin-binding subsite of CFH approximately 7 whereas side chains of R404, K405, and K388 are the predominant contributors to an N-terminal binding subsite located in the immediate vicinity of residue 402, which is implicated in age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Bärbel S Blaum
- Edinburgh Biomolecular NMR Unit, School of Chemistry and School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
170
|
Kramer KL. Specific sides to multifaceted glycosaminoglycans are observed in embryonic development. Semin Cell Dev Biol 2010; 21:631-7. [PMID: 20599516 PMCID: PMC2923045 DOI: 10.1016/j.semcdb.2010.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 06/21/2010] [Accepted: 06/24/2010] [Indexed: 11/19/2022]
Abstract
Ubiquitously found in the extracellular matrix and attached to the surface of most cells, glycosaminoglycans (GAGs) mediate many intercellular interactions. Originally described in 1889 as the primary carbohydrate in cartilage and then in 1916 as a coagulation inhibitor from liver, various GAGs have since been identified as key regulators of normal physiology. GAGs are critical mediators of differentiation, migration, tissue morphogenesis, and organogenesis during embryonic development. While GAGs are simple polysaccharide chains, many GAGs acquire a considerable degree of complexity by extensive modifications involving sulfation and epimerization. Embryos that lack specific GAG modifying enzymes have distinct developmental defects, illuminating the importance of GAG complexity. Revealing how these complex molecules specifically function in the embryo has often required additional approaches, the results of which suggest that GAG modifications might instructively mediate embryonic development.
Collapse
Affiliation(s)
- Kenneth L Kramer
- Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1583, USA.
| |
Collapse
|
171
|
Turnbull JE, Sasisekharan R. Glycomics: Technologies Taming a Frontier Omics Field. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:385-7. [DOI: 10.1089/omi.2010.0067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jeremy E. Turnbull
- Johnston Professor of Biochemistry, Centre for Glycobiology, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, England, UK
| | - Ram Sasisekharan
- Edward Hood Taplin Professor of Health Sciences and Technology & Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., E25-519 Cambridge, MA 02139
| |
Collapse
|
172
|
Boddohi S, Kipper MJ. Engineering nanoassemblies of polysaccharides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:2998-3016. [PMID: 20593437 DOI: 10.1002/adma.200903790] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Polysaccharides offer a wealth of biochemical and biomechanical functionality that can be used to develop new biomaterials. In mammalian tissues, polysaccharides often exhibit a hierarchy of structure, which includes assembly at the nanometer length scale. Furthermore, their biochemical function is determined by their nanoscale organization. These biological nanostructures provide the inspiration for developing techniques to tune the assembly of polysaccharides at the nanoscale. These new polysaccharide nanostructures are being used for the stabilization and delivery of drugs, proteins, and genes, the engineering of cells and tissues, and as new platforms on which to study biochemistry. In biological systems polysaccharide nanostructures are assembled via bottom-up processes. Many biologically derived polysaccharides behave as polyelectrolytes, and their polyelectrolyte nature can be used to tune their bottom-up assembly. New techniques designed to tune the structure and composition of polysaccharides at the nanoscale are enabling researchers to study in detail the emergent biological properties that arise from the nanoassembly of these important biological macromolecules.
Collapse
Affiliation(s)
- Soheil Boddohi
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
173
|
Casu B, Naggi A, Torri G. Heparin-derived heparan sulfate mimics to modulate heparan sulfate-protein interaction in inflammation and cancer. Matrix Biol 2010; 29:442-52. [PMID: 20416374 PMCID: PMC3057403 DOI: 10.1016/j.matbio.2010.04.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 12/28/2022]
Abstract
The heparan sulfate (HS) chains of heparan sulfate proteoglycans (HSPG) are "ubiquitous" components of the cell surface and the extracellular matrix (EC) and play important roles in the physiopathology of developmental and homeostatic processes. Most biological properties of HS are mediated by interactions with "heparin-binding proteins" and can be modulated by exogenous heparin species (unmodified heparin, low molecular weight heparins, shorter heparin oligosaccharides and various non-anticoagulant derivatives of different sizes). Heparin species can promote or inhibit HS activities to different extents depending, among other factors, on how closely their structure mimics the biologically active HS sequences. Heparin shares structural similarities with HS, but is richer in "fully sulfated" sequences (S domains) that are usually the strongest binders to heparin/HS-binding proteins. On the other hand, HS is usually richer in less sulfated, N-acetylated sequences (NA domains). Some of the functions of HS chains, such as that of activating proteins by favoring their dimerization, often require short S sequences separated by rather long NA sequences. The biological activities of these species cannot be simulated by heparin, unless this polysaccharide is appropriately chemically/enzymatically modified or biotechnologically engineered. This mini review covers some information and concepts concerning the interactions of HS chains with heparin-binding proteins and some of the approaches for modulating HS interactions relevant to inflammation and cancer. This is approached through a few illustrative examples, including the interaction of HS and heparin-derived species with the chemokine IL-8, the growth factors FGF1 and FGF2, and the modulation of the activity of the enzyme heparanase by these species. Progresses in sequencing HS chains and reproducing them either by chemical synthesis or semi-synthesis, and in the elucidation of the 3D structure of oligosaccharide-protein complexes, are paving the way for rational approaches to the development of HS-inspired drugs in the field of inflammation and cancer, as well in other therapeutic fields.
Collapse
Affiliation(s)
- Benito Casu
- G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy.
| | | | | |
Collapse
|
174
|
Saxena K, Schieborr U, Anderka O, Duchardt-Ferner E, Elshorst B, Gande SL, Janzon J, Kudlinzki D, Sreeramulu S, Dreyer MK, Wendt KU, Herbert C, Duchaussoy P, Bianciotto M, Driguez PA, Lassalle G, Savi P, Mohammadi M, Bono F, Schwalbe H. Influence of heparin mimetics on assembly of the FGF.FGFR4 signaling complex. J Biol Chem 2010; 285:26628-40. [PMID: 20547770 DOI: 10.1074/jbc.m109.095109] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fibroblast growth factor (FGF) signaling regulates mammalian development and metabolism, and its dysregulation is implicated in many inherited and acquired diseases, including cancer. Heparan sulfate glycosaminoglycans (HSGAGs) are essential for FGF signaling as they promote FGF.FGF receptor (FGFR) binding and dimerization. Using novel organic synthesis protocols to prepare homogeneously sulfated heparin mimetics (HM), including hexasaccharide (HM(6)), octasaccharide (HM(8)), and decasaccharide (HM(10)), we tested the ability of these HM to support FGF1 and FGF2 signaling through FGFR4. Biological assays show that both HM(8) and HM(10) are significantly more potent than HM(6) in promoting FGF2-mediated FGFR4 signaling. In contrast, all three HM have comparable activity in promoting FGF1.FGFR4 signaling. To understand the molecular basis for these differential activities in FGF1/2.FGFR4 signaling, we used NMR spectroscopy, isothermal titration calorimetry, and size-exclusion chromatography to characterize binding interactions of FGF1/2 with the isolated Ig-domain 2 (D2) of FGFR4 in the presence of HM, and binary interactions of FGFs and D2 with HM. Our data confirm the existence of both a secondary FGF1.FGFR4 interaction site and a direct FGFR4.FGFR4 interaction site thus supporting the formation of the symmetric mode of FGF.FGFR dimerization in solution. Moreover, our results show that the observed higher activity of HM(8) relative to HM(6) in stimulating FGF2.FGFR4 signaling correlates with the higher affinity of HM(8) to bind and dimerize FGF2. Notably FGF2.HM(8) exhibits pronounced positive binding cooperativity. Based on our findings we propose a refined symmetric FGF.FGFR dimerization model, which incorporates the differential ability of HM to dimerize FGFs.
Collapse
Affiliation(s)
- Krishna Saxena
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Volpi N, Linhardt RJ. High-performance liquid chromatography-mass spectrometry for mapping and sequencing glycosaminoglycan-derived oligosaccharides. Nat Protoc 2010; 5:993-1004. [PMID: 20448545 PMCID: PMC3359136 DOI: 10.1038/nprot.2010.48] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glycosaminoglycans (GAGs) have proven to be very difficult to analyze and characterize because of their high negative charge density, polydispersity and sequence heterogeneity. As the specificity of the interactions between GAGs and proteins results from the structure of these polysaccharides, an understanding of GAG structure is essential for developing a structure-activity relationship. Electrospray ionization (ESI) mass spectrometry (MS) is particularly promising for the analysis of oligosaccharides chemically or enzymatically generated by GAGs because of its relatively soft ionization capacity. Furthermore, on-line high-performance liquid chromatography (HPLC)-MS greatly enhances the characterization of complex mixtures of GAG-derived oligosaccharides, providing important structural information and affording their disaccharide composition. A detailed protocol for producing oligosaccharides from various GAGs, using controlled, specific enzymatic or chemical depolymerization, is presented, together with their HPLC separation, using volatile reversed-phase ion-pairing reagents and on-line ESI-MS structural identification. This analysis provides an oligosaccharide map together with sequence information from a reading frame beginning at the nonreducing end of the GAG chains. The preparation of oligosaccharides can be carried out in 10 h, with subsequent HPLC analysis in 1-2 h and HPLC-MS analysis taking another 2 h.
Collapse
Affiliation(s)
- Nicola Volpi
- Department of Biology, University of Modena and Reggio Emilia, Modena, Italy.
| | | |
Collapse
|
176
|
Pomin VH, Sharp JS, Li X, Wang L, Prestegard JH. Characterization of glycosaminoglycans by 15N NMR spectroscopy and in vivo isotopic labeling. Anal Chem 2010; 82:4078-88. [PMID: 20423049 PMCID: PMC2884402 DOI: 10.1021/ac1001383] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Characterization of glycosaminoglycans (GAGs), including chondroitin sulfate (CS), dermatan sulfate (DS), and heparan sulfate (HS), is important in developing an understanding of cellular function and in assuring quality of preparations destined for biomedical applications. While use of (1)H and (13)C NMR spectroscopy has become common in characterization of these materials, spectra are complex and difficult to interpret when a more heterogeneous GAG type or a mixture of several types is present. Herein a method based on (1)H-(15)N two-dimensional NMR experiments is described. The (15)N- and (1)H-chemical shifts of amide signals from (15)N-containing acetylgalactosamines in CSs are shown to be quite sensitive to the sites of sulfation (4-, 6-, or 4,6-) and easily distinguishable from those of DS. The amide signals from residual (15)N-containing acetylglucosamines in HS are shown to be diagnostic of the presence of these GAG components as well. Most data were collected at natural abundance of (15)N despite its low percentage. However enrichment of the (15)N-content in GAGs using metabolic incorporation from (15)N-glutamine added to cell culture media is also demonstrated and used to distinguish metabolic states in different cell types.
Collapse
Affiliation(s)
- Vitor H. Pomin
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA, 30602, USA
| | - Joshua S. Sharp
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA, 30602, USA
| | - Xuanyang Li
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA, 30602, USA
| | - Lianchun Wang
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA, 30602, USA
| | - James H. Prestegard
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
177
|
Naimy H, Leymarie N, Zaia J. Screening for anticoagulant heparan sulfate octasaccharides and fine structure characterization using tandem mass spectrometry. Biochemistry 2010; 49:3743-52. [PMID: 20345121 PMCID: PMC3251171 DOI: 10.1021/bi100135d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heparan sulfate (HS) is a sulfated glycosaminoglycan located on the surface and extracellular matrix of mammalian cells. HS is constituted of highly N-sulfated domains (NS domains) interrupted by lower sulfation domains. The arrangement of these domains dictates the function of HS which is mainly involved in binding proteins and regulating their biological activities. Heparin, a heparan sulfate analogue present in mast cells, resembles the NS domains of HS but lacks the alternating high and low sulfation architecture. Because the NS domains that range up to hexadecasaccharide in size are the main protein binders, heparin has been used as a model for HS in protein binding studies. Heparan sulfate, however, is the more physiologically relevant modulator of growth factor-receptor interactions. In this work, liquid chromatography and mass spectrometry (LC-MS) were used to compare the compositions of affinity-purified heparin and HS octasaccharides with anticoagulant activities versus library octasaccharides. The fine structures of the biologically active HS compositions were then compared against those of library octasaccharides using low-energy collision-induced dissociation tandem mass spectrometry. This approach confirmed isomeric enrichment of these compositions and, most importantly, produces ions diagnostic of their biological activity.
Collapse
Affiliation(s)
- Hicham Naimy
- Department of Biochemistry, Boston University School of Medicine, 670 Albany St, Boston, Massachusetts 02118
| | - Nancy Leymarie
- Department of Biochemistry, Boston University School of Medicine, 670 Albany St, Boston, Massachusetts 02118
| | - Joseph Zaia
- Department of Biochemistry, Boston University School of Medicine, 670 Albany St, Boston, Massachusetts 02118
| |
Collapse
|
178
|
Butterfield KC, Caplan M, Panitch A. Identification and sequence composition characterization of chondroitin sulfate-binding peptides through peptide array screening. Biochemistry 2010; 49:1549-55. [PMID: 20095636 DOI: 10.1021/bi9021044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chondroitin sulfate (CS) is an important glycosaminoglycan that has been implicated in several disease processes, such as cancer and spinal cord injury. However, few studies have characterized CS-binding protein and peptide sequences for diagnostic and therapeutic use. In this study, peptide array screening, affinity capillary electrophoresis, and statistical analysis were used to both identify and characterize C6S-binding peptides for sequence composition. The compositional characterization results showed that Phe, Arg, and Tyr all had a significantly high rate of occurrence in the "high binding" affinity peptides, while tryptophan and lysine were significantly underrepresented in this population. Peptides modified with alanine point mutations for Phe, Arg, and Tyr all had lower C6S-binding affinities than the original peptides, demonstrating that these amino acids are all important for C6S binding. Several peptides were designed that substituted Arg for Lys and Phe or Tyr for Trp to create peptides with higher binding affinity. The peptides with the Arg substitution all had improved binding affinities while the Phe/Tyr substitution decreased C6S-binding affinity. Further analysis showed that the increased occurrence of Phe and Tyr in the "high affinity" peptides was dependent upon their positions both within the peptide sequence and in relation to other critical amino acids. Finally, a motif (ABBAA) was suggested for C6S-binding peptides where A represents any aromatic amino acid and B any basic amino acid. The results demonstrate that the methodology developed in this study for sequence composition analysis is an effective technique for the characterization of the interaction between peptides and CS.
Collapse
Affiliation(s)
- Karen Chao Butterfield
- Harrington Department of Bioengineering, Arizona State University, Tempe, Arizona 85287-9709, USA
| | | | | |
Collapse
|
179
|
Ijiri S, Todoroki K, Yoshida H, Yoshitake T, Nohta H, Yamaguchi M. Sensitive determination of rhodamine 110-labeled monosaccharides in glycoprotein by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr A 2010; 1217:3161-6. [DOI: 10.1016/j.chroma.2010.02.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 01/07/2010] [Accepted: 02/26/2010] [Indexed: 11/27/2022]
|
180
|
Martelly I, Singabraya D, Vandebrouck A, Papy-Garcia D, Cognard C, Raymond G, Guillet-Deniau I, Courty J, Constantin B. Glycosaminoglycan mimetics trigger IP3-dependent intracellular calcium release in myoblasts. Matrix Biol 2010; 29:317-29. [PMID: 20193761 DOI: 10.1016/j.matbio.2010.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 02/05/2010] [Accepted: 02/05/2010] [Indexed: 11/18/2022]
Abstract
Glycosaminoglycans (GAG) are sulfated polysaccharides that play an important role in regulating cell functions. GAG mimetics called RGTAs (for ReGeneraTing Agents) have been shown to stimulate tissue repair. In particular they accelerate myogenesis, in part via their heparin-mimetic property towards growth factors. RGTAs also increase activity of calcium-dependent intracellular protease suggesting an effect on calcium cellular homeostasis. This effect was presently investigated on myoblasts in vitro using one member of the RGTA family molecule named OTR4120. We have shown that OTR4120 or heparin induced transient increases of intracellular calcium concentration ([Ca(2+)]i) in pre-fusing myoblasts from both mouse SolD7 cell line and rat skeletal muscle satellite cells grown in primary culture by mobilising sarcoplasmic reticulum store. This [Ca(2+)]i was not mediated by ryanodine receptors but instead resulted from stimulation of the Inositol-3 phosphate-phospholipase C activation pathway. OTR4120-induced calcium transient was not mediated through an ATP, nor a tyrosine kinase, nor an acetylcholine receptor but principally through serotonin 5-HT2A receptor. This original finding shows that the GAG mimetic can induce calcium signal through serotonin receptors and the IP3 pathway may be relevant to its ability to favour myoblast differentiation. It supports a novel and unexpected function of GAGs in the regulation of calcium homeostasis.
Collapse
Affiliation(s)
- Isabelle Martelly
- Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), UMR 7149-CNRS, Université Paris-Est Créteil, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Spencer JL, Bernanke JA, Buczek-Thomas JA, Nugent MA. A computational approach for deciphering the organization of glycosaminoglycans. PLoS One 2010; 5:e9389. [PMID: 20186334 PMCID: PMC2826411 DOI: 10.1371/journal.pone.0009389] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 02/01/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Increasing evidence has revealed important roles for complex glycans as mediators of normal and pathological processes. Glycosaminoglycans are a class of glycans that bind and regulate the function of a wide array of proteins at the cell-extracellular matrix interface. The specific sequence and chemical organization of these polymers likely define function; however, identification of the structure-function relationships of glycosaminoglycans has been met with challenges associated with the unique level of complexity and the nontemplate-driven biosynthesis of these biopolymers. METHODOLOGY/PRINCIPAL FINDINGS To address these challenges, we have devised a computational approach to predict fine structure and patterns of domain organization of the specific glycosaminoglycan, heparan sulfate (HS). Using chemical composition data obtained after complete and partial digestion of mixtures of HS chains with specific degradative enzymes, the computational analysis produces populations of theoretical HS chains with structures that meet both biosynthesis and enzyme degradation rules. The model performs these operations through a modular format consisting of input/output sections and three routines called chainmaker, chainbreaker, and chainsorter. We applied this methodology to analyze HS preparations isolated from pulmonary fibroblasts and epithelial cells. Significant differences in the general organization of these two HS preparations were observed, with HS from epithelial cells having a greater frequency of highly sulfated domains. Epithelial HS also showed a higher density of specific HS domains that have been associated with inhibition of neutrophil elastase. Experimental analysis of elastase inhibition was consistent with the model predictions and demonstrated that HS from epithelial cells had greater inhibitory activity than HS from fibroblasts. CONCLUSIONS/SIGNIFICANCE This model establishes the conceptual framework for a new class of computational tools to use to assess patterns of domain organization within glycosaminoglycans. These tools will provide a means to consider high-level chain organization in deciphering the structure-function relationships of polysaccharides in biology.
Collapse
Affiliation(s)
- Jean L Spencer
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America.
| | | | | | | |
Collapse
|
182
|
Weiser P, Qian Y, Pan J, Zhou X, Lu H, Studelska DR, Shih FF, Zhang L. Activated contact system and abnormal glycosaminoglycans in lupus and other auto- and non-autoimmune diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:443-72. [PMID: 20807656 DOI: 10.1016/s1877-1173(10)93019-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Systemic lupus erythematosus (SLE), heparin-induced thrombocytopenia (HIT), rheumatoid arthritis (RA) are marked by the presence of autoantibodies against negatively changed DNA, phospholipids, heparin, and chondroitin sulfate, respectively. Heparin/protein complexes induce contact system activation in HIT patient plasmas. The activated contact system generates thrombin. Thrombin is responsible for thrombosis, a common cause of death and disabilities for both HIT and SLE. In this chapter, we analyze plasma contact system proteins, thrombin- and kallikrein-like activities, glucosamine and galactosamine content from SLE-, RA-, osteoarthritis (OA)-, and psoriasis (Ps)-patient plasmas in addition to pooled 30+ healthy patient plasmas. We found that all SLE patient plasmas exhibited abnormal contact systems marked by the absence of high molecular weight kininogen, the presence of processed C1 inhibitor (C1inh), the display of abnormal thrombin- and kallikrein-like activities, and increased levels of plasma glucosamine and galactosamine. Different patterns of contact system activation distinguish SLE, RA, and Ps whereas no contact system activation is observed in normal and OA patient plasmas. The presence of paradoxical "lupus anticoagulants" in certain thrombosis-prone SLE patient plasmas, marked by delayed clotting in clinical plasma test, was explained by the consumption of contact system proteins, especially high molecular weight kininogen. Finally, we discovered that mouse and human SLE autoantibodies bind to cell surface GAGs with structural selectivity. In conclusion, markers of abnormal contact system activation represent potential new targets for autoimmune disease diagnosis, prevention, and treatment. These markers might also be useful in monitoring SLE activity/severity and in pinpointing patients with SLE-associated arthritis and psoriasis.
Collapse
Affiliation(s)
- Peter Weiser
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Abstract
More than half of all human proteins are glycosylated. Glycosylation defines the adhesive properties of glycoconjugates and it is largely through glycan-protein interactions that cell-cell and cell-pathogen contacts occur. Not surprisingly, considering the central role they play in molecular encounters, glycoprotein and carbohydrate-based drugs and therapeutics represent a greater than $20 billion market. Glycomics, the study of glycan expression in biological systems, relies on effective analytical techniques for correlation of glycan structure with function. This overview summarizes techniques developed historically for glycan characterization as well as recent trends. Derivatization methods key to both traditional and modern approaches for glycoanalysis are described. Monosaccharide compositional analysis is fundamental to any effort to understand glycan structure-function relationships. Chromatographic and electrophoretic separations are key parts of any glycoanalytical workflow. Mass spectrometry and nuclear magnetic resonance are complementary instrumental techniques for glycan analysis. Finally, microarrays are emerging as powerful new tools for dynamic analysis of glycan expression.
Collapse
Affiliation(s)
- Alicia M Bielik
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
184
|
Przybylski C, Gonnet F, Bonnaffé D, Hersant Y, Lortat-Jacob H, Daniel R. HABA-based ionic liquid matrices for UV-MALDI-MS analysis of heparin and heparan sulfate oligosaccharides. Glycobiology 2009; 20:224-34. [DOI: 10.1093/glycob/cwp169] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
185
|
Laremore TN, Zhang F, Dordick JS, Liu J, Linhardt RJ. Recent progress and applications in glycosaminoglycan and heparin research. Curr Opin Chem Biol 2009; 13:633-40. [PMID: 19781979 DOI: 10.1016/j.cbpa.2009.08.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 08/11/2009] [Accepted: 08/21/2009] [Indexed: 01/25/2023]
Abstract
Heparin, the focus of this review, is a crucially important anticoagulant drug produced from animal sources, which was contaminated last year leading to a number of adverse side effects, some resulting in death. Heparin is a highly acidic polysaccharide and a member of a family of biopolymers called glycosaminoglycans. The structure and activities of heparin are detailed along with recent advances in heparin structural analysis and biological evaluation. Current state-of-the-art chemical and chemoenzymatic synthesis of heparin and new approaches for its metabolic engineering are described. New technologies, including microarrays and digital microfluidics, are proposed for high-throughput synthesis and screening of heparin and for the fabrication of an artificial Golgi.
Collapse
Affiliation(s)
- Tatiana N Laremore
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | |
Collapse
|
186
|
High-performance liquid chromatography and on-line mass spectrometry detection for the analysis of chondroitin sulfates/hyaluronan disaccharides derivatized with 2-aminoacridone. Anal Biochem 2009; 397:12-23. [PMID: 19769935 DOI: 10.1016/j.ab.2009.09.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/11/2009] [Accepted: 09/16/2009] [Indexed: 11/23/2022]
Abstract
In this study, we developed an on-line reverse-phase high-performance liquid chromatography-electrospray ionization-mass spectrometry (RP-HPLC-ESI-MS) separation and structural characterization of hyaluronan (HA)/chondroitin sulfate (CS)/dermatan sulfate (DS) disaccharides released by enzymatic treatment and derivatized with 2-aminoacridone (AMAC), providing a high-resolution system also applicable by using a further fluorimetric detector (Fp) before ESI-MS spectral acquisition. Isomeric nonsulfated HA and CS/DS disaccharides, isomeric monosulfated and isomeric disulfated CS/DS disaccharides, and the trisulfated species were distinctly separated and unambiguously identified by their retention times and mass spectra in negative ionization mode. In general, no multiply charged ions were detected even for highly charged disaccharides, but the presence of desulfonated products for highly sulfated species due to the relative instability of sulfo groups was observed. RP-HPLC-ESI-MS of each AMAC disaccharide was found to be linear from 3 to 500 ng with very high coefficient of correlation values due to the high efficiency of separation and the sharp outline of the peaks. Various CS/DS samples were characterized for disaccharide composition, and minor oligomer species identified as GalNAcSO(4) at the nonreducing end of chains was observed as a common component of these macromolecules. Furthermore, purified endogenous normal human plasma CS disaccharides were also evaluated by means of RP-HPLC-(Fp)-ESI-MS.
Collapse
|
187
|
Guimond SE, Puvirajesinghe TM, Skidmore MA, Kalus I, Dierks T, Yates EA, Turnbull JE. Rapid purification and high sensitivity analysis of heparan sulfate from cells and tissues: toward glycomics profiling. J Biol Chem 2009; 284:25714-22. [PMID: 19596853 PMCID: PMC2757973 DOI: 10.1074/jbc.m109.032755] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 07/06/2009] [Indexed: 11/24/2022] Open
Abstract
Studies on glycosaminoglycans and proteoglycans (PGs) have been hampered by difficulties in isolation and analysis by traditional methods that are laborious and lack sensitivity and throughput. Here we demonstrate a simple method for rapid isolation of proteoglycans (RIP) employing phenol/guanidine/chloroform reagent to purify heparan sulfate (HS) PGs quantitatively from various tissues and cells. We further show that this generic purification methodology, when applied in concert with a BODIPY fluorescent label, permits structural analyses on RIP-purified HS at approximately 1,000-fold higher sensitivity than standard UV detection methods and approximately 10-100-fold higher sensitivity than previous fluorescence detection methods. The utility of RIP-BODIPY methodology was demonstrated by rapid profiling of HS structural composition from small tissue samples, multiple mouse organs, and as little as a few thousand cultured cells. It was also used to generate novel insights into in vivo structural changes in HS from Sulf1 knock-out mice for the first time that differed significantly from previous observations limited to tissue culture experiments. RIP was also applied to purify HS for bioassay testing, exemplified by cell assays of fibroblast growth factor signaling activation; this generated data from 2-O-sulfotransferase knock-out mice and revealed an unexpected deficiency in fibroblast growth factor activation by HS from heterozygous mice. These data demonstrate that RIP will underpin emerging efforts to develop glycomics profiling strategies for HS and other glycosaminoglycans to explore their structure-function relationships in complex biological systems.
Collapse
Affiliation(s)
- Scott E. Guimond
- From the Centre for Glycobiology, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom and
| | - Tania M. Puvirajesinghe
- From the Centre for Glycobiology, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom and
| | - Mark A. Skidmore
- From the Centre for Glycobiology, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom and
| | - Ina Kalus
- the Department of Chemistry, Biochemistry I, Bielefeld University, 33615 Bielefeld, Germany
| | - Thomas Dierks
- the Department of Chemistry, Biochemistry I, Bielefeld University, 33615 Bielefeld, Germany
| | - Edwin A. Yates
- From the Centre for Glycobiology, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom and
| | - Jeremy E. Turnbull
- From the Centre for Glycobiology, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom and
| |
Collapse
|
188
|
Myette JR, Soundararajan V, Behr J, Shriver Z, Raman R, Sasisekharan R. Heparin/heparan sulfate N-sulfamidase from Flavobacterium heparinum: structural and biochemical investigation of catalytic nitrogen-sulfur bond cleavage. J Biol Chem 2009; 284:35189-200. [PMID: 19726673 DOI: 10.1074/jbc.m109.053835] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sulfated polysaccharides such as heparin and heparan sulfate glycosaminoglycans (HSGAGs) are chemically and structurally heterogeneous biopolymers that that function as key regulators of numerous biological functions. The elucidation of HSGAG fine structure is fundamental to understanding their functional diversity, and this is facilitated by the use of select degrading enzymes of defined substrate specificity. Our previous studies have reported the cloning, characterization, recombinant expression, and structure-function analysis in Escherichia coli of the Flavobacterium heparinum 2-O-sulfatase and 6-O-sulfatase enzymes that cleave O-sulfate groups from specific locations of the HSGAG polymer. Building on these preceding studies, we report here the molecular cloning and recombinant expression in Escherichia coli of an N-sulfamidase, specific for HSGAGs. In addition, we examine the basic enzymology of this enzyme through molecular modeling studies and structure-function analysis of substrate specificity and basic biochemistry. We use the results from these studies to propose a novel mechanism for nitrogen-sulfur bond cleavage by the N-sulfamidase. Taken together, our structural and biochemical studies indicate that N-sulfamidase is a predominantly exolytic enzyme that specifically acts on N-sulfated and 6-O-desulfated glucosamines present as monosaccharides or at the nonreducing end of odd-numbered oligosaccharide substrates. In conjunction with the previously reported specificities for the F. heparinum 2-O-sulfatase, 6-O-sulfatase, and unsaturated glucuronyl hydrolase, we are able to now reconstruct in vitro the defined exolytic sequence for the heparin and heparan sulfate degradation pathway of F. heparinum and apply these enzymes in tandem toward the exo-sequencing of heparin-derived oligosaccharides.
Collapse
Affiliation(s)
- James R Myette
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Koch Institute for Integrative Cancer Research, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
189
|
Hashiguchi T, Mizumoto S, Yamada S, Sugahara K. Analysis of the structure and neuritogenic activity of chondroitin sulfate/dermatan sulfate hybrid chains from porcine fetal membranes. Glycoconj J 2009; 27:49-60. [PMID: 19806451 DOI: 10.1007/s10719-009-9253-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 08/06/2009] [Accepted: 08/07/2009] [Indexed: 02/04/2023]
Abstract
The amniotic membrane (AM) is the innermost layer of fetal membranes and possesses various biological activities. Although the mechanism underlying these biological activities remains unclear, unique components seem to be involved. AM contains various extracellular matrix components such as type I collagen, laminin, fibronectin, hyaluronan, and proteoglycans bearing chondroitin sulfate/dermatan sulfate (CS/DS) glycosaminoglycan side chains. Since CS/DS have been implicated in various biological processes, we hypothesized that CS/DS in AM may play a major role in the biological activities of AM. Therefore, the structure and bioactivity of the CS/DS chains from porcine fetal membranes (FM-CS/DS) were investigated. A compositional analysis using various chondroitinases revealed that the characteristic DS domain comprised of iduronic acid-containing disaccharide units is embedded in FM-CS/DS, along with predominant disaccharide units, GlcA-GalNAc, GlcA-GalNAc(4-O-sulfate), and GlcA-GalNAc(6-O-sulfate), where GlcA and GalNAc represent D-glucuronic acid and N-acetyl-D-galactosamine, respectively. The average molecular mass of FM-CS/DS chains was unusually large and estimated to be 250 - 300 kDa. The FM-CS/DS chains showed neurite outgrowth-promoting activity, which was eliminated by digestion with chondroitinase ABC of the CS/DS chains. This activity was suppressed by antibodies against growth factors including pleiotrophin, midkine, and fibroblast growth factor-2, suggesting the involvement of these growth factors in the neurite outgrowth-promoting activity. The binding of these growth factors to FM-CS/DS was also demonstrated by surface plasmon resonance spectroscopy.
Collapse
Affiliation(s)
- Taishi Hashiguchi
- Laboratory of Proteoglycan Signaling and Therapeutics, Graduate School of Life Science, Hokkaido University, Frontier Research Center for Post-Genomic Science and Technology, Nishi 11-choume, Kita 21-jo, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | | | | | | |
Collapse
|
190
|
Gargiulo V, Lanzetta R, Parrilli M, De Castro C. Structural analysis of chondroitin sulfate from Scyliorhinus canicula: a useful source of this polysaccharide. Glycobiology 2009; 19:1485-91. [PMID: 19696233 DOI: 10.1093/glycob/cwp123] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chondroitin sulfate (CS), a constituent of proteoglycans, is a key component of the connective tissues and it is widely used as a precautionary drug for joint diseases; for this reason, the increased demand of this polysaccharide has posed the problem to identify new and secure sources of this product. In this context, CS from the cartilage of the lesser spotted dogfish (Scyliorhinus canicula, a cartilaginous fish) was isolated and investigated through chemical and spectroscopical techniques. The structural elucidation was performed on the entire polysaccharide and confirmed analyzing the products obtained via ABC lyase treatment. As a result, its compositional analysis disclosed the occurrence of CS-A, CS-C, CS-D, and CS-0S motifs in the ratio of 41, 32, 19.8, and 8.2%, respectively. Additionally, two different glycopeptides were isolated and characterized via NMR, providing information on the linkage oligosaccharide region joining the glycosaminoglycan chain to the core protein. Therefore, chondroitin sulfate from Scyliorhinus canicula appears very similar to that isolated from shark, a cartilaginous and taxonomically related fish, with the main difference residing in the major percentage of the CS-A motif. In the light of the results obtained, Scyliorhinus canicula chondroitin sulfate possesses a chemical structure compatible for the formulation of commercial and pharmaceutical products.
Collapse
Affiliation(s)
- Valentina Gargiulo
- Department of Organic Chemistry and Biochemistry, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, 80126 Napoli, Italy
| | | | | | | |
Collapse
|
191
|
Frese MA, Milz F, Dick M, Lamanna WC, Dierks T. Characterization of the human sulfatase Sulf1 and its high affinity heparin/heparan sulfate interaction domain. J Biol Chem 2009; 284:28033-28044. [PMID: 19666466 DOI: 10.1074/jbc.m109.035808] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The extracellular sulfatases Sulf1 and Sulf2 remodel the 6O-sulfation state of heparan sulfate proteoglycans on the cell surface, thereby modulating growth factor signaling. Different from all other sulfatases, the Sulfs contain a unique, positively charged hydrophilic domain (HD) of about 320 amino acid residues. Using various HD deletion mutants and glutathione S-transferase (GST)-HD fusion proteins, this study demonstrates that the HD is required for enzymatic activity and acts as a high affinity heparin/heparan sulfate interaction domain. Association of the HD with the cell surface is sensitive to heparinase treatment, underlining specificity toward heparan sulfate chains. Correspondingly, isolated GST-HD binds strongly to both heparin and heparan sulfate in vitro and also to living cells. Surface plasmon resonance studies indicate nanomolar affinity of GST-HD toward immobilized heparin. The comparison of different mutants reveals that especially the outer regions of the HD mediate heparan sulfate binding, probably involving "tandem" interactions. Interestingly, binding to heparan sulfate depends on the presence of 6O-sulfate substrate groups, suggesting that substrate turnover facilitates release of the enzyme from its substrate. Deletion of the inner, less conserved region of the HD drastically increases Sulf1 secretion without affecting enzymatic activity or substrate specificity, thus providing a tool for the in vitro modulation of HS-dependent signaling as demonstrated here for the signal transduction of fibroblast growth factor 2. Taken together, the present study shows that specific regions of the HD influence different aspects of HS binding, cellular localization, and enzyme function.
Collapse
Affiliation(s)
- Marc-André Frese
- Fakultät für Chemie, Biochemie I, Universität Bielefeld, 33615 Bielefeld, Germany
| | - Fabian Milz
- Fakultät für Chemie, Biochemie I, Universität Bielefeld, 33615 Bielefeld, Germany
| | - Marina Dick
- Fakultät für Chemie, Biochemie I, Universität Bielefeld, 33615 Bielefeld, Germany
| | - William C Lamanna
- Fakultät für Chemie, Biochemie I, Universität Bielefeld, 33615 Bielefeld, Germany
| | - Thomas Dierks
- Fakultät für Chemie, Biochemie I, Universität Bielefeld, 33615 Bielefeld, Germany.
| |
Collapse
|
192
|
Cummings RD. The repertoire of glycan determinants in the human glycome. MOLECULAR BIOSYSTEMS 2009; 5:1087-104. [PMID: 19756298 DOI: 10.1039/b907931a] [Citation(s) in RCA: 385] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The number of glycan determinants that comprise the human glycome is not known. This uncertainty arises from limited knowledge of the total number of distinct glycans and glycan structures in the human glycome, as well as limited information about the glycan determinants recognized by glycan-binding proteins (GBPs), which include lectins, receptors, toxins, microbial adhesins, antibodies, and enzymes. Available evidence indicates that GBP binding sites may accommodate glycan determinants made up of 2 to 6 linear monosaccharides, together with their potential side chains containing other sugars and modifications, such as sulfation, phosphorylation, and acetylation. Glycosaminoglycans, including heparin and heparan sulfate, comprise repeating disaccharide motifs, where a linear sequence of 5 to 6 monosaccharides may be required for recognition. Based on our current knowledge of the composition of the glycome and the size of GBP binding sites, glycoproteins and glycolipids may contain approximately 3000 glycan determinants with an additional approximately 4000 theoretical pentasaccharide sequences in glycosaminoglycans. These numbers provide an achievable target for new chemical and/or enzymatic syntheses, and raise new challenges for defining the total glycome and the determinants recognized by GBPs.
Collapse
Affiliation(s)
- Richard D Cummings
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Rd. #4001, Atlanta, GA 30322, USA.
| |
Collapse
|
193
|
Arnberg N. Adenovirus receptors: implications for tropism, treatment and targeting. Rev Med Virol 2009; 19:165-78. [PMID: 19367611 DOI: 10.1002/rmv.612] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adenoviruses (Ads) are the most frequently used viral vectors in gene therapy and cancer therapy. Obstacles to successful clinical application include accumulation of vector and transduction in liver cells, coupled with poor transduction of target cells and tissues such as tumours. Many host molecules, including coagulation factor X, have been identified and suggested to serve as mediators of Ad liver tropism. This review summarises current knowledge concerning these molecules and the mechanisms used by Ads to bind to target cells, and considers the prospects of designing vectors that have been detargeted from the liver and retargeted to cells and tissues of interest in the context of gene therapy and cancer therapy.
Collapse
Affiliation(s)
- Niklas Arnberg
- Division of Virology, Department of Clinical Microbiology, Umeå University, Umeå, SE-901 85, Sweden.
| |
Collapse
|
194
|
Barone R, Sturiale L, Garozzo D. Mass spectrometry in the characterization of human genetic N-glycosylation defects. MASS SPECTROMETRY REVIEWS 2009; 28:517-542. [PMID: 18844296 DOI: 10.1002/mas.20201] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Human genetic diseases that affect N-glycosylation result from the defective synthesis of the N-linked sugar moiety (glycan) of glycoproteins. The role of glycans for proper protein folding and biological functions is illustrated in the variety and severity of clinical manifestations shared by congenital disorders of glycosylation (CDG). This family of inherited metabolic disorders includes defects in the assembly of the oligosaccharide precursor that lead to an under-occupancy of N-glycosylation sites (CDG-I), and defects of glycan remodeling (CDG-II). Mass spectrometry constitutes a key tool for characterization of CDG-I defects by mass resolution of native protein glycoforms that differ for glycosylation-site occupancy. Glycan MS analyses in CDG-II is mandatory to detect whenever possible a repertoire of structures to pinpoint candidate enzymes and genes responsible for the abnormal N-glycan synthesis. In this manuscript, we review the MS applications in the area of CDG and related disorders with a special emphasis on those techniques that have been already applied or might become functional for diagnosis, characterization, and treatment monitoring in some specific conditions.
Collapse
Affiliation(s)
- Rita Barone
- Institute of Chemistry and Technology of Polymers, CNR, Catania, Italy
| | | | | |
Collapse
|
195
|
Kumarasuriyar A, Lee I, Nurcombe V, Cool SM. De-sulfation of MG-63 cell glycosaminoglycans delays in vitro osteogenesis, up-regulates cholesterol synthesis and disrupts cell cycle and the actin cytoskeleton. J Cell Physiol 2009; 219:572-83. [PMID: 19142873 DOI: 10.1002/jcp.21700] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycosaminoglycan (GAG) sugars are largely responsible for the bioactivity of the proteoglycan proteins they decorate, and are particularly important for mediating the processes of cell attachment and growth factor signaling. Here, we show that chlorate-induced de-sulfation of GAGs expressed by MG-63 osteosarcoma cells results in delayed cell proliferation when the cells are exposed to chlorate for short or medium periods, but a disrupted mineralization without altered cell proliferation in response to long-term chlorate exposure. Analysis of GAG-binding growth factor activity indicated that chlorate disrupted BMP2/noggin signaling, but not FGF2 activity. Microarray analyses, which were confirmed by subsequent cell-based assays, indicated that chlorate predominantly disrupted the cell cycle and actin cytoskeleton and upregulated cholesterol synthesis, without affecting cell migration or attachment. Furthermore, we observed that disruption of the functions of the proteoglycan syndecan-4 replicated phenotypes induced by chlorate, implicating a primary role for this proteoglycan in providing bioactivity for these cells. J. Cell. Physiol. 219: 572-583, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
|
196
|
Prabhakar V, Capila I, Soundararajan V, Raman R, Sasisekharan R. Recombinant expression, purification, and biochemical characterization of chondroitinase ABC II from Proteus vulgaris. J Biol Chem 2009; 284:974-82. [PMID: 18849565 PMCID: PMC2613618 DOI: 10.1074/jbc.m806630200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 09/29/2008] [Indexed: 11/06/2022] Open
Abstract
Chondroitin lyases (or chondroitinases) are a family of enzymes that depolymerize chondroitin sulfate (CS) and dermatan sulfate (DS) galactosaminoglycans, which have gained prominence as important players in central nervous system biology. Two distinct chondroitinase ABC enzymes, cABCI and cABCII, were identified in Proteus vulgaris. Recently, cABCI was cloned, recombinantly expressed, and extensively characterized structurally and biochemically. This study focuses on recombinant expression, purification, biochemical characterization, and understanding the structure-function relationship of cABCII. The biochemical parameters for optimal activity and kinetic parameters associated with processing of various CS and DS substrates were determined. The profile of products formed by action of cABCII on different substrates was compared with product profile of cABCI. A homology-based structural model of cABCII and its complexes with CS oligosaccharides was constructed. This structural model provided molecular insights into the experimentally observed differences in the product profile of cABCII as compared with that of cABCI. The critical active site residues involved in the catalytic activity of cABCII identified based on the structural model were validated using site-directed mutagenesis and kinetic characterization of the mutants. The development of such a contaminant-free cABCII enzyme provides additional tools to decode the biologically important structure-function relationship of CS and DS galactosaminoglycans and offers novel therapeutic strategies for recovery after central nervous system injury.
Collapse
Affiliation(s)
- Vikas Prabhakar
- Department of Biological Engineering, Harvard-MIT Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
197
|
Abstract
There is accumulating evidence of the importance of linear polysaccharides in modulating biological phenomena in both the normal and the diseased states. This layer of regulation results from interactions between polysaccharides and other biomolecules, such as proteins, at the cell-extracellular matrix interface. The specific sequence of chemical modifications within the polymer backbone imparts a potential for interaction with other molecular species, and thus there exists important information within the various sulfation, acetylation, and epimerization states of such complex carbohydrates. A variety of factors have made the deciphering of this chemical code elusive. To this end, this report describes several techniques to elucidate the structural information inherent in glycosaminoglycan species. First, the use of depolymerizing enzymes that cleave polysaccharides at specific sites is described. Then, capillary electrophoretic (CE) techniques are employed to characterize the disaccharide species present in an enzymatically-cleaved polysaccharide sample. Mass spectrometry (MS) procedures can further be used to establish the length of an oligosaccharide chain and the presence of specific functional groups.
Collapse
Affiliation(s)
- Vikas Prabhakar
- Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
198
|
Guglieri S, Hricovíni M, Raman R, Polito L, Torri G, Casu B, Sasisekharan R, Guerrini M. Minimum FGF2 Binding Structural Requirements of Heparin and Heparan Sulfate Oligosaccharides As Determined by NMR Spectroscopy. Biochemistry 2008; 47:13862-9. [DOI: 10.1021/bi801007p] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sara Guglieri
- G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia, Department of Biological Engineering, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Department of Organic and Industrial Chemistry, University of Milan, Milan, Italy
| | - Miloš Hricovíni
- G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia, Department of Biological Engineering, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Department of Organic and Industrial Chemistry, University of Milan, Milan, Italy
| | - Rahul Raman
- G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia, Department of Biological Engineering, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Department of Organic and Industrial Chemistry, University of Milan, Milan, Italy
| | - Laura Polito
- G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia, Department of Biological Engineering, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Department of Organic and Industrial Chemistry, University of Milan, Milan, Italy
| | - Giangiacomo Torri
- G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia, Department of Biological Engineering, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Department of Organic and Industrial Chemistry, University of Milan, Milan, Italy
| | - Benito Casu
- G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia, Department of Biological Engineering, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Department of Organic and Industrial Chemistry, University of Milan, Milan, Italy
| | - Ram Sasisekharan
- G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia, Department of Biological Engineering, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Department of Organic and Industrial Chemistry, University of Milan, Milan, Italy
| | - Marco Guerrini
- G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia, Department of Biological Engineering, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Department of Organic and Industrial Chemistry, University of Milan, Milan, Italy
| |
Collapse
|
199
|
Gandhi NS, Mancera RL. The Structure of Glycosaminoglycans and their Interactions with Proteins. Chem Biol Drug Des 2008; 72:455-82. [DOI: 10.1111/j.1747-0285.2008.00741.x] [Citation(s) in RCA: 755] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
200
|
Ermonval M, Petit D, Le Duc A, Kellermann O, Gallet PF. Glycosylation-related genes are variably expressed depending on the differentiation state of a bioaminergic neuronal cell line: implication for the cellular prion protein. Glycoconj J 2008; 26:477-93. [PMID: 18937066 DOI: 10.1007/s10719-008-9198-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/17/2008] [Accepted: 10/01/2008] [Indexed: 12/26/2022]
Abstract
A striking feature of the cellular prion protein (PrP(C)) is the heterogeneity of its glycoforms, whose contribution to PrP(C) function has yet to be defined. Using the 1C11 neuronal bioaminergic differentiation model and a glycomics approach, we show here a correlation between differential PrP(C) N-glycosylations in 1C11(5-HT) serotonergic and 1C11(NE) noradrenergic cells compared to their 1C11 precursor cells and a variation of the glycogenome expression status in these cells. In particular, expression of genes involved in N-glycan synthesis or in the modeling of chondroitin and heparan sulfate proteoglycans appeared to be modulated. Our results highlight that, the expression of glycosylation-related genes is regulated during bioaminergic neuronal differentiation, consistent with a participation of glycoconjugates in neuronal development and plasticity. A neuronal regulation of glycosylation processes may have direct implications on some neurospecific functions of PrP(C) and may participate in specific brain targeting of prion strains.
Collapse
Affiliation(s)
- Myriam Ermonval
- Différenciation Cellulaire et Prions, Département de Biologie Cellulaire et Infections, Institut Pasteur, 75015, Paris, France.
| | | | | | | | | |
Collapse
|