151
|
Lapinski PE, Oliver JA, Kamen LA, Hughes ED, Saunders TL, King PD. Genetic analysis of SH2D4A, a novel adapter protein related to T cell-specific adapter and adapter protein in lymphocytes of unknown function, reveals a redundant function in T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:2019-27. [PMID: 18641339 PMCID: PMC2613811 DOI: 10.4049/jimmunol.181.3.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell-specific adapter (TSAd) protein and adapter protein in lymphocytes of unknown function (ALX) are two related Src homology 2 (SH2) domain-containing signaling adapter molecules that have both been shown to regulate TCR signal transduction in T cells. TSAd is required for normal TCR-induced synthesis of IL-2 and other cytokines in T cells and acts at least in part by promoting activation of the LCK protein tyrosine kinase at the outset of the TCR signaling cascade. By contrast, ALX functions as a negative-regulator of TCR-induced IL-2 synthesis through as yet undetermined mechanisms. In this study, we report a novel T cell-expressed adapter protein named SH2D4A that contains an SH2 domain that is highly homologous to the TSAd protein and ALX SH2 domains and that shares other structural features with these adapters. To examine the function of SH2D4A in T cells we produced SH2D4A-deficient mice by homologous recombination in embryonic stem cells. T cell development, homeostasis, proliferation, and function were all found to be normal in these mice. Furthermore, knockdown of SH2D4A expression in human T cells did not impact upon their function. We conclude that in contrast to TSAd and ALX proteins, SH2D4A is dispensable for TCR signal transduction in T cells.
Collapse
Affiliation(s)
- Philip E. Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jennifer A. Oliver
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Lynn A. Kamen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Elizabeth D. Hughes
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Thomas L. Saunders
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Internal Medicine, Division of Molecular Medicine and Genetics University of Michigan Medical School, Ann Arbor, MI 48109
| | - Philip D. King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
152
|
Grundner C, Ng HL, Alber T. Mycobacterium tuberculosis protein tyrosine phosphatase PtpB structure reveals a diverged fold and a buried active site. Structure 2008; 13:1625-34. [PMID: 16271885 DOI: 10.1016/j.str.2005.07.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 07/18/2005] [Accepted: 07/23/2005] [Indexed: 01/06/2023]
Abstract
Intracellular pathogenic bacteria manipulate host signal transduction pathways to facilitate infection. Mycobacterium tuberculosis protein tyrosine phosphatases (PTPs) PtpA and PtpB are thought to be secreted into host cells and interfere with unidentified signals. To illuminate the mechanisms of regulation and substrate recognition, we determined the 1.7 A resolution crystal structure of PtpB in complex with the product phosphate. The protein adopts a simplified PTP fold, which combines features of the conventional PTPs and dual-specificity phosphatases. PtpB shows two unusual elaborations--a disordered, acidic loop and a flexible, two-helix lid that covers the active site--that are specific to mycobacterial orthologs. Biochemical studies suggest that substrate mimicry in the lid may protect the phosphatase from oxidative inactivation. The insertion and deletion of large structural elements in PtpB suggest that, outside the active site module, the PTP family is under unusual selective pressure that promotes changes in overall structure.
Collapse
Affiliation(s)
- Christoph Grundner
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | |
Collapse
|
153
|
Sun PD, Boyington JC. Overview of protein folds in the immune system. ACTA ACUST UNITED AC 2008; Appendix 1:Appendix 1N. [PMID: 18432648 DOI: 10.1002/0471142735.ima01ns44] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The rapid advancement of X-ray crystallography and nuclear magnetic resonance techniques in recent years has resulted in the solution of macromolecular structures at an unprecedented rate. This review aims at providing a comprehensive description of structures and folds related to the function of the immune system. Focus is placed on immunologically relevant proteins such as immunoreceptors and major histocompatibility complexes. Information is also provided regarding protein structure data banks.
Collapse
Affiliation(s)
- P D Sun
- National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, USA
| | | |
Collapse
|
154
|
Allen JA, Yadav PN, Roth BL. Insights into the regulation of 5-HT2A serotonin receptors by scaffolding proteins and kinases. Neuropharmacology 2008; 55:961-8. [PMID: 18640136 DOI: 10.1016/j.neuropharm.2008.06.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 06/19/2008] [Accepted: 06/20/2008] [Indexed: 11/29/2022]
Abstract
5-HT(2A) serotonin receptors are essential molecular targets for the actions of LSD-like hallucinogens and atypical antipsychotic drugs. 5-HT(2A) serotonin receptors also mediate a variety of physiological processes in peripheral and central nervous systems including platelet aggregation, smooth muscle contraction, and the modulation of mood and perception. Scaffolding proteins have emerged as important regulators of 5-HT(2A) receptors and our recent studies suggest multiple scaffolds exist for 5-HT(2A) receptors including PSD95, arrestin, and caveolin. In addition, a novel interaction has emerged between p90 ribosomal S6 kinase and 5-HT(2A) receptors which attenuates receptor signaling. This article reviews our recent studies and emphasizes the role of scaffolding proteins and kinases in the regulation of 5-HT(2A) trafficking, targeting and signaling.
Collapse
Affiliation(s)
- John A Allen
- Department of Pharmacology, University of North Carolina, School of Medicine, 8032 Burnett-Womack, CB #7365, Chapel Hill, NC 27599-7365, USA
| | | | | |
Collapse
|
155
|
Kawakami T, Cheng H, Hashiro S, Nomura Y, Tsukiji S, Furuta T, Nagamune T. A Caged Phosphopeptide‐Based Approach for Photochemical Activation of Kinases in Living Cells. Chembiochem 2008; 9:1583-6. [DOI: 10.1002/cbic.200800116] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
156
|
Raberg M, Reinecke F, Reichelt R, Malkus U, König S, Pötter M, Fricke WF, Pohlmann A, Voigt B, Hecker M, Friedrich B, Bowien B, Steinbüchel A. Ralstonia eutropha H16 flagellation changes according to nutrient supply and state of poly(3-hydroxybutyrate) accumulation. Appl Environ Microbiol 2008; 74:4477-90. [PMID: 18502919 PMCID: PMC2493158 DOI: 10.1128/aem.00440-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 05/10/2008] [Indexed: 11/20/2022] Open
Abstract
Two-dimensional polyacrylamide gel electrophoresis (2D PAGE), in combination with matrix-assisted laser desorption ionization-time of flight analysis, and the recently revealed genome sequence of Ralstonia eutropha H16 were employed to detect and identify proteins that are differentially expressed during different phases of poly(3-hydroxybutyric acid) (PHB) metabolism. For this, a modified protein extraction protocol applicable to PHB-harboring cells was developed to enable 2D PAGE-based proteome analysis of such cells. Subsequently, samples from (i) the exponential growth phase, (ii) the stationary growth phase permissive for PHB biosynthesis, and (iii) a phase permissive for PHB mobilization were analyzed. Among several proteins exhibiting quantitative changes during the time course of a cultivation experiment, flagellin, which is the main protein of bacterial flagella, was identified. Initial investigations that report on changes of flagellation for R. eutropha were done, but 2D PAGE and electron microscopic examinations of cells revealed clear evidence that R. eutropha exhibited further significant changes in flagellation depending on the life cycle, nutritional supply, and, in particular, PHB metabolism. The results of our study suggest that R. eutropha is strongly flagellated in the exponential growth phase and loses a certain number of flagella in transition to the stationary phase. In the stationary phase under conditions permissive for PHB biosynthesis, flagellation of cells admittedly stagnated. However, under conditions permissive for intracellular PHB mobilization after a nitrogen source was added to cells that are carbon deprived but with full PHB accumulation, flagella are lost. This might be due to a degradation of flagella; at least, the cells stopped flagellin synthesis while normal degradation continued. In contrast, under nutrient limitation or the loss of phasins, cells retained their flagella.
Collapse
Affiliation(s)
- Matthias Raberg
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Micallef J, Gajadhar A, Wiley J, DeSouza LV, Michael Siu KW, Guha A. Proteomics: present and future implications in neuro-oncology. Neurosurgery 2008; 62:539-55; discussion 539-55. [PMID: 18425004 DOI: 10.1227/01.neu.0000317302.85837.61] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
PROTEOMICS, IN ITS broadest mandate, is the study of proteins and their functions. As the "workhorses" of the genome, proteins govern normal cellular structure and function. Protein function is not just a reflection of its expression level; it is also the cumulative result of many post-transcriptional (splicing) and post-translational events that together determine cellular localization, interactions, and longevity. The composition and variability of the proteome is vastly more complex than the corresponding genome. It is this proteome variation that helps define an organism and the unique characteristics that separate one individual from another. Aberrations in protein function, which alter normal cellular structure and function, are the ultimate basis of disease, including cancer. Therefore, an understanding of protein networks through a systems biology approach of proteomics is necessary to understand normal and abnormal cellular function, with the goal of performing rational therapeutic interventions. In this review, we focus on two emerging proteomic technologies: mass spectrometry and bioluminescence resonance energy transfer. In addition to reviewing the principles and potential utilization of these two techniques, we highlight their application in neuro-oncology research.
Collapse
Affiliation(s)
- Johann Micallef
- Arthur and Sonia Labatt Brain Tumour Center, Hospital for Sick Children's Research Institute, University of Toronto, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
158
|
Abstract
This overview provides an illustrated, comprehensive survey of some commonly observed protein‐fold families and structural motifs, chosen for their functional significance. It opens with descriptions and definitions of the various elements of protein structure and associated terminology. Following is an introduction into web‐based structural bioinformatics that includes surveys of interactive web servers for protein fold or domain annotation, protein‐structure databases, protein‐structure‐classification databases, structural alignments of proteins, and molecular graphics programs available for personal computers. The rest of the overview describes selected families of protein folds in terms of their secondary, tertiary, and quaternary structural arrangements, including ribbon‐diagram examples, tables of representative structures with references, and brief explanations pointing out their respective biological and functional significance.
Collapse
Affiliation(s)
- Peter D Sun
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | | | | |
Collapse
|
159
|
Marcelino AMC, Gierasch LM. Roles of beta-turns in protein folding: from peptide models to protein engineering. Biopolymers 2008; 89:380-91. [PMID: 18275088 PMCID: PMC2904567 DOI: 10.1002/bip.20960] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Reverse turns are a major class of protein secondary structure; they represent sites of chain reversal and thus sites where the globular character of a protein is created. It has been speculated for many years that turns may nucleate the formation of structure in protein folding, as their propensity to occur will favor the approximation of their flanking regions and their general tendency to be hydrophilic will favor their disposition at the solvent-accessible surface. Reverse turns are local features, and it is therefore not surprising that their structural properties have been extensively studied using peptide models. In this article, we review research on peptide models of turns to test the hypothesis that the propensities of turns to form in short peptides will relate to the roles of corresponding sequences in protein folding. Turns with significant stability as isolated entities should actively promote the folding of a protein, and by contrast, turn sequences that merely allow the chain to adopt conformations required for chain reversal are predicted to be passive in the folding mechanism. We discuss results of protein engineering studies of the roles of turn residues in folding mechanisms. Factors that correlate with the importance of turns in folding indeed include their intrinsic stability, as well as their topological context and their participation in hydrophobic networks within the protein's structure.
Collapse
|
160
|
McMurray JS. Structural basis for the binding of high affinity phosphopeptides to Stat3. Biopolymers 2008; 90:69-79. [PMID: 18058821 DOI: 10.1002/bip.20901] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Signal transducer and activator of transcription 3 (Stat3) is constitutively active in a number of cancers where it participates in aberrant transcription of prosurvival, cell cycling, and angiogenesis genes. Since Stat3 initiates its signaling activity through binding of its SH2 domain to phosphotyrosine residues on cell surface receptors, inhibitors targeting this region of the protein are potential chemotherapeutic agents. To date, no NMR or X-ray crystallographic structures of high-affinity phosphopeptides complexed with the Stat3 SH2 domain are available to aid in the development of peptidomimetic antagonists. Examination of the crystal structures of several STAT proteins and the complex of Stat1 with Ac-pTyr-Asp-Lys-Pro-His-NH(2) led to a hypothesis that the specificity determinant for Stat3, glutamine at position pY+3 in pTyr-Xxx-Xxx-Gln sequences, resides in a unique pocket on the protein surface at the juncture of the third strand of the central beta-sheet and a unique, STAT specific alpha-helix. Docking of Ac-pTyr-Leu-Pro-Gln-NHBn to the SH2 domain of Stat3 using molecular modeling showed that the Gln binds tightly in this pocket and participates in a network of hydrogen bonds. Novel interactions between the peptide main chain and the protein were also discovered. Phosphopeptide structure-affinity studies using unnatural amino acids and glutamine derivatives provide evidence for the peptide-protein interactions revealed by the model and lend support to the binding hypothesis.
Collapse
Affiliation(s)
- John S McMurray
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
161
|
Li W, Young SL, King N, Miller WT. Signaling properties of a non-metazoan Src kinase and the evolutionary history of Src negative regulation. J Biol Chem 2008; 283:15491-501. [PMID: 18390552 DOI: 10.1074/jbc.m800002200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Choanoflagellates, unicellular organisms that are closely related to metazoans, possess cell adhesion and signaling proteins previously thought to be unique to animals, suggesting that these components may have played roles in the evolution of metazoan multicellularity. We have cloned, expressed, and purified the nonreceptor tyrosine kinase MbSrc1 from the choanoflagellate Monosiga brevicollis. The kinase has the same domain arrangement as mammalian Src kinases, and we find that the individual Src homology 3 (SH3), SH2, and catalytic domains have similar functions to their mammalian counterparts. In contrast to mammalian c-Src, the SH2 and catalytic domains of MbSrc1 do not appear to be functionally coupled. We cloned and expressed the M. brevicollis homolog of c-Src C-terminal kinase (MbCsk) and showed that it phosphorylates the C terminus of MbSrc1, yet this phosphorylation does not inhibit MbSrc to the same degree seen in the mammalian Src/Csk pair. Thus, Src autoinhibition likely evolved more recently within the metazoan lineage, and it may have played a role in the establishment of intercellular signaling in metazoans.
Collapse
Affiliation(s)
- Wanqing Li
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
162
|
Fabritiis GD, Geroult S, Coveney PV, Waksman G. Insights from the energetics of water binding at the domain-ligand interface of the Src SH2 domain. Proteins 2008; 72:1290-7. [DOI: 10.1002/prot.22027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
163
|
Müller J, Schust J, Berg T. A high-throughput assay for signal transducer and activator of transcription 5b based on fluorescence polarization. Anal Biochem 2008; 375:249-54. [DOI: 10.1016/j.ab.2008.01.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 01/09/2008] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
|
164
|
Parmeggiani F, Pellarin R, Larsen AP, Varadamsetty G, Stumpp MT, Zerbe O, Caflisch A, Plückthun A. Designed Armadillo Repeat Proteins as General Peptide-Binding Scaffolds: Consensus Design and Computational Optimization of the Hydrophobic Core. J Mol Biol 2008; 376:1282-304. [DOI: 10.1016/j.jmb.2007.12.014] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 11/13/2007] [Accepted: 12/05/2007] [Indexed: 12/29/2022]
|
165
|
Chung JY, Lu M, Yin Q, Wu H. Structural revelations of TRAF2 function in TNF receptor signaling pathway. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 597:93-113. [PMID: 17633020 DOI: 10.1007/978-0-387-70630-6_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tumor necrosis factor (TNF) receptor (TNFR) superfamily consists of over 20 type-I transmembrane proteins with conserved N-terminal cysteine-rich domains (CRDs) in the extracellular ligand binding region, which are specifically activated by the corresponding superfamily of TNF-like ligands. Members of this receptor superfamily have wide tissue distribution and play important roles in biological processes such as lymphoid and neuronal development, innate and adaptive immune response, and cellular homeostasis. A remarkable feature of the TNFR superfamily is the ability of these receptors to induce effects either for cell survival or apoptotic cell death. The downstream intracellular mediators of cell survival signal are a group of proteins known as TNFR associated factors (TRAFs). There are currently six canonical mammalian TRAFs. This review will focus on the unique structural features of TRAF2 protein and its role in cell survival signaling.
Collapse
Affiliation(s)
- Jee Y Chung
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
166
|
VanDemark AP, Kasten MM, Ferris E, Heroux A, Hill CP, Cairns BR. Autoregulation of the rsc4 tandem bromodomain by gcn5 acetylation. Mol Cell 2007; 27:817-28. [PMID: 17803945 PMCID: PMC2788556 DOI: 10.1016/j.molcel.2007.08.018] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2007] [Revised: 07/26/2007] [Accepted: 08/22/2007] [Indexed: 01/31/2023]
Abstract
An important issue for chromatin remodeling complexes is how their bromodomains recognize particular acetylated lysine residues in histones. The Rsc4 subunit of the yeast remodeler RSC contains an essential tandem bromodomain (TBD) that binds acetylated K14 of histone H3 (H3K14ac). We report a series of crystal structures that reveal a compact TBD that binds H3K14ac in the second bromodomain and, remarkably, binds acetylated K25 of Rsc4 itself in the first bromodomain. Endogenous Rsc4 is acetylated only at K25, and Gcn5 is identified as necessary and sufficient for Rsc4 K25 acetylation in vivo and in vitro. Rsc4 K25 acetylation inhibits binding to H3K14ac, and mutation of Rsc4 K25 results in altered growth rates. These data suggest an autoregulatory mechanism in which Gcn5 performs both the activating (H3K14ac) and inhibitory (Rsc4 K25ac) modifications, perhaps to provide temporal regulation. Additional regulatory mechanisms are indicated as H3S10 phosphorylation inhibits Rsc4 binding to H3K14ac peptides.
Collapse
Affiliation(s)
- Andrew P. VanDemark
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Margaret M. Kasten
- Howard Hughes Medical Institute, Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Elliott Ferris
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Annie Heroux
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Christopher P. Hill
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Correspondence: (B.R.C.), (C.P.H.)
| | - Bradley R. Cairns
- Howard Hughes Medical Institute, Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Correspondence: (B.R.C.), (C.P.H.)
| |
Collapse
|
167
|
Kurakin A, Swistowski A, Wu SC, Bredesen DE. The PDZ domain as a complex adaptive system. PLoS One 2007; 2:e953. [PMID: 17895993 PMCID: PMC1978516 DOI: 10.1371/journal.pone.0000953] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 08/30/2007] [Indexed: 11/19/2022] Open
Abstract
Specific protein associations define the wiring of protein interaction networks and thus control the organization and functioning of the cell as a whole. Peptide recognition by PDZ and other protein interaction domains represents one of the best-studied classes of specific protein associations. However, a mechanistic understanding of the relationship between selectivity and promiscuity commonly observed in the interactions mediated by peptide recognition modules as well as its functional meaning remain elusive. To address these questions in a comprehensive manner, two large populations of artificial and natural peptide ligands of six archetypal PDZ domains from the synaptic proteins PSD95 and SAP97 were generated by target-assisted iterative screening (TAIS) of combinatorial peptide libraries and by synthesis of proteomic fragments, correspondingly. A comparative statistical analysis of affinity-ranked artificial and natural ligands yielded a comprehensive picture of known and novel PDZ ligand specificity determinants, revealing a hitherto unappreciated combination of specificity and adaptive plasticity inherent to PDZ domain recognition. We propose a reconceptualization of the PDZ domain in terms of a complex adaptive system representing a flexible compromise between the rigid order of exquisite specificity and the chaos of unselective promiscuity, which has evolved to mediate two mutually contradictory properties required of such higher order sub-cellular organizations as synapses, cell junctions, and others – organizational structure and organizational plasticity/adaptability. The generalization of this reconceptualization in regard to other protein interaction modules and specific protein associations is consistent with the image of the cell as a complex adaptive macromolecular system as opposed to clockwork.
Collapse
Affiliation(s)
- Alexei Kurakin
- The Buck Institute for Age Research, Novato, California, USA.
| | | | | | | |
Collapse
|
168
|
Machida K, Thompson CM, Dierck K, Jablonowski K, Kärkkäinen S, Liu B, Zhang H, Nash PD, Newman DK, Nollau P, Pawson T, Renkema GH, Saksela K, Schiller MR, Shin DG, Mayer BJ. High-throughput phosphotyrosine profiling using SH2 domains. Mol Cell 2007; 26:899-915. [PMID: 17588523 DOI: 10.1016/j.molcel.2007.05.031] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 04/16/2007] [Accepted: 05/17/2007] [Indexed: 10/23/2022]
Abstract
Protein tyrosine phosphorylation controls many aspects of signaling in multicellular organisms. One of the major consequences of tyrosine phosphorylation is the creation of binding sites for proteins containing Src homology 2 (SH2) domains. To profile the global tyrosine phosphorylation state of the cell, we have developed proteomic binding assays encompassing nearly the full complement of human SH2 domains. Here we provide a global view of SH2 domain binding to cellular proteins based on large-scale far-western analyses. We also use reverse-phase protein arrays to generate comprehensive, quantitative SH2 binding profiles for phosphopeptides, recombinant proteins, and entire proteomes. As an example, we profiled the adhesion-dependent SH2 binding interactions in fibroblasts and identified specific focal adhesion complex proteins whose tyrosine phosphorylation and binding to SH2 domains are modulated by adhesion. These results demonstrate that high-throughput comprehensive SH2 profiling provides valuable mechanistic insights into tyrosine kinase signaling pathways.
Collapse
Affiliation(s)
- Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Geroult S, Hooda M, Virdee S, Waksman G. Prediction of Solvation Sites at the Interface of Src SH2 Domain Complexes Using Molecular Dynamics Simulations. Chem Biol Drug Des 2007; 70:87-99. [PMID: 17683370 DOI: 10.1111/j.1747-0285.2007.00545.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Src Homology 2 (SH2) domains are approximately 100 amino acid domains that mediate recognition of tyrosine-phosphorylated sites by signalling proteins. Structures of SH2 domains with bound ligands indicate a potentially important role of water in influencing the binding thermodynamics. In this study, we used molecular dynamics (MD) simulation methods to evaluate solvation sites at the binding interface of the Src SH2 domain. We designed a software, WaRP (Water Residency Potential), to compute the positions of hydration sites from coordinates data of MD simulations and studied the impact of the computed positions on the prediction of the thermodynamics of Src SH2 domain binding to phosphorylated peptides using a method based on accessible surface area buried upon association. Two dually phosphorylated ligands and one monophosphorylated ligand were studied. We showed that the software predicted between 70% and 85% of the crystallographic water molecules depending on complexes. Comparison of the predicted water structures of both the bound and unbound binding partners led to a thorough evaluation of water behaviour during the binding reaction. We also showed that the predicted water structures of all ligand-SH2 domain structures investigated may be used to derive the entropy change provided that the heat capacity change is known. This study is the first to examine the dynamics of the water structure around the SH2 domain binding interface and contributes to our understanding of binding thermodynamics in SH2 domains.
Collapse
Affiliation(s)
- Sebastien Geroult
- Institute of Structural Molecular Biology, UCL and Birkbeck, Malet Street, WC1E 7HX London, United Kingdom
| | | | | | | |
Collapse
|
170
|
Shen K. Analyzing protein tyrosine phosphatases by phosphotyrosine analog integration. Methods 2007; 42:234-42. [PMID: 17532510 DOI: 10.1016/j.ymeth.2007.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 03/04/2007] [Accepted: 03/09/2007] [Indexed: 11/22/2022] Open
Abstract
Reversible protein phosphorylation plays a central role in cellular signal transduction and is a focus of biomedical studies. However, it is a challenging task to study the effects of protein phosphorylation in the presence of protein phosphatase activities, especially for protein tyrosine phosphatases SHP1, SHP2 and LMW-PTP, which are themselves regulated by protein tyrosine phosphorylation. Expressed protein ligation, by combining chemical peptide synthesis with recombinant protein expression, allows for site-specific unnatural modifications of semisynthetic proteins. In this review, we describe how semisynthetic proteins were prepared to incorporate nonhydrolyzable phosphotyrosine analogs, and utilized in combination with site-directed mutagenesis and other means to elucidate regulatory mechanisms of protein tyrosine phosphatases.
Collapse
Affiliation(s)
- Kui Shen
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| |
Collapse
|
171
|
Yin JK, Liang YM, He XL, Lu JG, Zhang L, Bao GQ, Ma QJ. Fusion protein containing SH3 domain of c-Abl induces hepatocarcinoma cells to apoptosis. Hepatol Res 2007; 37:454-63. [PMID: 17539817 DOI: 10.1111/j.1872-034x.2007.00068.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM Through a preliminary test on a novel protein containing an HIV1-TAT domain and a SH3 domain of oncoprotein P210(BCR-ABL) (we named it after PTD-BCR/ABL SH3), we found that this protein shows inhibition activity of hepatocarcinoma cell HepG-2. The purpose of the present study is to explore the biological behavior of PTD-BCR/ABL SH3 fusion protein in hepatocarcinoma cells in vitro and in vivo. METHODS HepG-2 cells were cocultured with the fusion protein for the indicated time and studied in vitro by immunocytochemistry staining to demonstrate the localization of the protein, light and electron microscope observation in morphology research, MTT assay to draw a growth curve and to analyze inhibition ratio, DNA ladder and TUNEL staining to study apoptosis. Nude mice bearing HepG-2 tumors were used to test the antitumor activity of the fusion protein. RESULTS PTD-BCR/ABL SH3 fusion protein successfully entered into HepG-2 cells and localized in the nucleus. The protein had shown high cytotoxity through inducing HepG-2 cells to apoptosis, and in vivo. The growth speed of tumors in the treatment group was distinctly slower than those in the control group, and the survival time of mice in the treatment group was longer than those in the control group. The growth of the tumors had been inhibited in the treatment group, while other tissues, such as heart, liver, lung and kidney displayed normal morphology. CONCLUSION PTD-BCR/ABL SH3 fusion protein displays significant inhibitory activity of inducing hepatocarcinoma HepG-2 cells to apoptosis in vitro. It also showed therapeutic effects in vivo.
Collapse
Affiliation(s)
- Ji Kai Yin
- Department of General Surgery, Tangdu Hospital of Fourth Miliatry Medical University, Xi'an City, China
| | | | | | | | | | | | | |
Collapse
|
172
|
Georges E. The P-Glycoprotein (ABCB1) Linker Domain Encodes High-Affinity Binding Sequences to α- and β-Tubulins. Biochemistry 2007; 46:7337-42. [PMID: 17530867 DOI: 10.1021/bi7006228] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
P-Glycoprotein (or ABCB1) has been shown to cause multidrug resistance in tumor cell lines selected with lipophilic anticancer drugs. ABCB1 encodes a duplicated molecule with two hydrophobic and hydrophilic domains linked by a highly charged region of approximately 90 amino acids, the "linker domain" with as yet unknown function(s). In this report, we demonstrate a role for this domain in binding to other cellular proteins. Using overlapping hexapeptides that encode the entire amino acid sequence of the linker domain of human ABCB1, we show a direct and specific binding between sequences in the linker domain and several intracellular proteins. Three different polypeptide sequences [617EKGIYFKLVTM627 (LDS617-627), 657SRSSLIRKRSTRRSVRGSQA676 (LDS657-676), and 693PVSFWRIMKLNLT705 (LDS693-705)] in the linker domain interacted tightly with several proteins with apparent molecular masses of approximately 80, 57, and 30 kDa. Interestingly, only the 57 kDa protein (or P57) interacted with all three different sequences of the linker domain. Purification and partial N-terminal amino acid sequencing of P57 showed that it encodes the N-terminal amino acids of alpha- and beta-tubulins. The identity of the P57 interacting protein as tubulins was further confirmed by Western blotting using monoclonal antibodies to alpha- and beta-tubulin. Taken together, the results of this study provide the first evidence for ABCB1 protein interaction mediated by sequences in the linker domain. These findings are likely to provide further insight into the functions of ABCB1 in normal and drug resistant tumor cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Amino Acid Sequence
- Binding Sites
- Cell Extracts/chemistry
- Cell Line, Tumor
- Cyclin-Dependent Kinase Inhibitor p57/chemistry
- Humans
- Methionine/metabolism
- Molecular Sequence Data
- Molecular Weight
- Oligopeptides/chemical synthesis
- Oligopeptides/chemistry
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Sequence Analysis, Protein
- Sulfur Radioisotopes/metabolism
- Tubulin/chemistry
- Tubulin/metabolism
Collapse
Affiliation(s)
- Elias Georges
- Institute of Parasitology, McGill University, Quebec H9X 1C0, Canada.
| |
Collapse
|
173
|
Porter CJ, Wilce JA. NMR analysis of G7-18NATE, a nonphosphorylated cyclic peptide inhibitor of the Grb7 adapter protein. Biopolymers 2007; 88:174-81. [PMID: 17206629 DOI: 10.1002/bip.20667] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
G7-18NATE is a nonphosphorylated, cyclic peptide that specifically inhibits the Grb7 adapter protein implicated in several pathways critical to cell proliferation and migration. It has been shown that G7-18NATE is able to compete with natural ligands for the Grb7 SH2 phosphotyrosine binding site, and to attenuate cell migration in a pancreatic cancer cell line. It is thus an important lead in the development of a selective inhibitor of Grb7 and potential novel anticancer therapeutics. The current study reports the solution properties of G7- 18NATE determined using NMR spectroscopy, in both water (pH 2-3) and phosphate buffer (pH 6.0), with 100 mM NaCl. The spectra reveal that G7-18NATE exists in two distinguishable conformational states on the NMR timescale, most likely due to cis-trans proline isomerization. In addition, the chemical shift data are consistent with a tendency of G7-18NATE to form a turn about the YDN motif, known to be important for binding, and suggest that this turn is stabilized in low salt and low pH conditions. Low NH temperature coefficients of Tyr-5 and Asn-7 amide protons may reflect their involvement in the formation of hydrogen bonds that stabilize such a turn. Overall, however, the peptide does not form a rigid structure, but exists in a highly flexible state in solution. Averaged 3JNH-H coupling constants and a lack of interresidue NOEs are characteristic of such peptide solution behavior. This suggests that there is scope for increasing the rigidity of the peptide that may enhance its binding affinity and specificity for Grb7.
Collapse
Affiliation(s)
- C J Porter
- School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Perth, WA, Australia
| | | |
Collapse
|
174
|
Siddiquee K, Zhang S, Guida WC, Blaskovich MA, Greedy B, Lawrence HR, Yip MLR, Jove R, McLaughlin MM, Lawrence NJ, Sebti SM, Turkson J. Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci U S A 2007; 104:7391-6. [PMID: 17463090 PMCID: PMC1863497 DOI: 10.1073/pnas.0609757104] [Citation(s) in RCA: 611] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
S3I-201 (NSC 74859) is a chemical probe inhibitor of Stat3 activity, which was identified from the National Cancer Institute chemical libraries by using structure-based virtual screening with a computer model of the Stat3 SH2 domain bound to its Stat3 phosphotyrosine peptide derived from the x-ray crystal structure of the Stat3beta homodimer. S3I-201 inhibits Stat3.Stat3 complex formation and Stat3 DNA-binding and transcriptional activities. Furthermore, S3I-201 inhibits growth and induces apoptosis preferentially in tumor cells that contain persistently activated Stat3. Constitutively dimerized and active Stat3C and Stat3 SH2 domain rescue tumor cells from S3I-201-induced apoptosis. Finally, S3I-201 inhibits the expression of the Stat3-regulated genes encoding cyclin D1, Bcl-xL, and survivin and inhibits the growth of human breast tumors in vivo. These findings strongly suggest that the antitumor activity of S3I-201 is mediated in part through inhibition of aberrant Stat3 activation and provide the proof-of-concept for the potential clinical use of Stat3 inhibitors such as S3I-201 in tumors harboring aberrant Stat3.
Collapse
Affiliation(s)
- Khandaker Siddiquee
- BioMolecular Science Center and
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, FL 32826
| | | | - Wayne C. Guida
- Drug Discovery Program, and
- High-Throughput Screening and Chemistry Core Facility, H. Lee Moffitt Cancer Center and Research Institute, and
- Departments of Interdisciplinary Oncology
| | | | | | - Harshani R. Lawrence
- High-Throughput Screening and Chemistry Core Facility, H. Lee Moffitt Cancer Center and Research Institute, and
| | - M. L. Richard Yip
- High-Throughput Screening and Chemistry Core Facility, H. Lee Moffitt Cancer Center and Research Institute, and
| | - Richard Jove
- Division of Molecular Medicine, Beckman Research Institute and
- Experimental Therapeutics Program, City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010
| | - Mark M. McLaughlin
- Drug Discovery Program, and
- Departments of Interdisciplinary Oncology
- Chemistry, and
| | | | - Said M. Sebti
- Drug Discovery Program, and
- Departments of Interdisciplinary Oncology
- Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33612; and
| | - James Turkson
- BioMolecular Science Center and
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, FL 32826
- To whom correspondence should be addressed at:
Biomolecular Science Center, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826. E-mail:
| |
Collapse
|
175
|
Casares S, López-Mayorga O, Vega MC, Cámara-Artigas A, Conejero-Lara F. Cooperative propagation of local stability changes from low-stability and high-stability regions in a SH3 domain. Proteins 2007; 67:531-47. [PMID: 17330285 DOI: 10.1002/prot.21284] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Site-directed mutagenesis has been used to produce local stability changes at two regions of the binding site surface of the alpha-spectrin SH3 domain (Spc-SH3) differing in their intrinsic stability. Mutations were made at residue 56, located at the solvent-exposed side of the short 3(10) helix, and at residue 21 in the tip of the flexible RT-loop. NMR chemical-shift analysis and X-ray crystallography indicated negligible changes produced by the mutations in the native structure limited to subtle rearrangements near the mutated residue and at flexible loops. Additionally, mutations do not alter importantly the SH3 binding site structure, although produce significant changes in its affinity for a proline-rich decapeptide. The changes in global stability measured by differential scanning calorimetry are consistent the local energy changes predicted by theoretical models, with the most significant effects observed for the Ala-Gly mutations. Propagation of the local stability changes throughout the domain structure has been studied at a per-residue level of resolution by NMR-detected amide hydrogen-deuterium exchange (HX). Stability propagation is remarkably efficient in this small domain, apparently due to its intrinsically low stability. Nevertheless, the HX-core of the domain is not fully cooperative, indicating the existence of co-operative subunits within the core, which is markedly polarized. An equilibrium phi-analysis of the changes in the apparent Gibbs energies of HX per residue produced by the mutations has allowed us to characterize structurally the conformational states leading to HX. Some of these states resemble notably the folding transition state of the Spc-SH3 domain, suggesting a great potential of this approach to explore the folding energy landscape of proteins. An energy perturbation propagates more effectively from a flexible region to the core than in the opposite direction, because the former affects a broader region of the energy landscape than the latter. This might be of importance in understanding the special thermodynamic signature of the SH3-peptide interaction and the relevance of the dual character of SH3 binding sites.
Collapse
Affiliation(s)
- Salvador Casares
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada 18071, Granada, Spain
| | | | | | | | | |
Collapse
|
176
|
Tosello-Trampont AC, Kinchen JM, Brugnera E, Haney LB, Hengartner MO, Ravichandran KS. Identification of two signaling submodules within the CrkII/ELMO/Dock180 pathway regulating engulfment of apoptotic cells. Cell Death Differ 2007; 14:963-72. [PMID: 17304244 DOI: 10.1038/sj.cdd.4402094] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Removal of apoptotic cells is a dynamic process coordinated by ligands on apoptotic cells, and receptors and other signaling proteins on the phagocyte. One of the fundamental challenges is to understand how different phagocyte proteins form specific and functional complexes to orchestrate the recognition/removal of apoptotic cells. One evolutionarily conserved pathway involves the proteins cell death abnormal (CED)-2/chicken tumor virus no. 10 (CT10) regulator of kinase (Crk)II, CED-5/180 kDa protein downstream of chicken tumor virus no. 10 (Crk) (Dock180), CED-12/engulfment and migration (ELMO) and MIG-2/RhoG, leading to activation of the small GTPase CED-10/Rac and cytoskeletal remodeling to promote corpse uptake. Although the role of ELMO : Dock180 in regulating Rac activation has been well defined, the function of CED-2/CrkII in this complex is less well understood. Here, using functional studies in cell lines, we observe that a direct interaction between CrkII and Dock180 is not required for efficient removal of apoptotic cells. Similarly, mutants of CED-5 lacking the CED-2 interaction motifs could rescue engulfment and migration defects in CED-5 deficient worms. Mutants of CrkII and Dock180 that could not biochemically interact could colocalize in membrane ruffles. Finally, we identify MIG-2/RhoG (which functions upstream of Dock180 : ELMO) as a possible point of crosstalk between these two signaling modules. Taken together, these data suggest that Dock180/ELMO and CrkII act as two evolutionarily conserved signaling submodules that coordinately regulate engulfment.
Collapse
Affiliation(s)
- A-C Tosello-Trampont
- Beirne Carter Center for Immunology Research and the Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
177
|
Stamenova SD, French ME, He Y, Francis SA, Kramer ZB, Hicke L. Ubiquitin binds to and regulates a subset of SH3 domains. Mol Cell 2007; 25:273-84. [PMID: 17244534 PMCID: PMC2713028 DOI: 10.1016/j.molcel.2006.12.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 10/19/2006] [Accepted: 12/21/2006] [Indexed: 01/28/2023]
Abstract
SH3 domains are modules of 50-70 amino acids that promote interactions among proteins, often participating in the assembly of large dynamic complexes. These domains bind to peptide ligands, which usually contain a core Pro-X-X-Pro (PXXP) sequence. Here we identify a class of SH3 domains that bind to ubiquitin. The yeast endocytic protein Sla1, as well as the mammalian proteins CIN85 and amphiphysin, carry ubiquitin-binding SH3 domains. Ubiquitin and peptide ligands bind to the same hydrophobic groove on the SH3 domain surface, and ubiquitin and a PXXP-containing protein fragment compete for binding to SH3 domains. We conclude that a subset of SH3 domains constitutes a distinct type of ubiquitin-binding domain and that ubiquitin binding can negatively regulate interaction of SH3 domains with canonical proline-rich ligands.
Collapse
Affiliation(s)
- Svetoslava D Stamenova
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | | | |
Collapse
|
178
|
Lapinski PE, MacGregor JN, Marti F, King PD. The T cell-specific adapter protein functions as a regulator of peripheral but not central immunological tolerance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 584:73-87. [PMID: 16802600 DOI: 10.1007/0-387-34132-3_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Philip E Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, USA
| | | | | | | |
Collapse
|
179
|
Reese ML, Dakoji S, Bredt DS, Dötsch V. The guanylate kinase domain of the MAGUK PSD-95 binds dynamically to a conserved motif in MAP1a. Nat Struct Mol Biol 2007; 14:155-63. [PMID: 17220895 DOI: 10.1038/nsmb1195] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 12/27/2006] [Indexed: 11/08/2022]
Abstract
The postsynaptic density protein PSD-95 and related membrane-associated guanylate kinases are scaffolding proteins, whose modular interaction motifs organize protein complexes at cell junctions. The signature guanylate kinase domain (GK) contains elements of the protein's GMP-binding site but does not bind nucleotide. Instead, the GK domain has evolved from an enzyme to a protein-protein interaction motif. Here, we show that this canonical GMP-binding region interacts with microtubule-associated protein-1a (MAP1a) and we present a structural model. We determine the consensus GK-binding sequence in MAP1a and demonstrate that PSD-95 can use a similar interaction mode to bind diverse protein partners. Furthermore, we show that PSD-95 GK has adopted the conformational flexibility of the ancestral enzyme to bind its varied ligands, which suggests a mechanism of regulation.
Collapse
Affiliation(s)
- Michael L Reese
- Graduate Group in Biophysics, University of California, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
180
|
Yao B, Zhang J, Dai H, Sun J, Jiao Y, Tang Y, Wu J, Shi Y. Solution structure of the second SH3 domain of human CMS and a newly identified binding site at the C-terminus of c-Cbl. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:35-43. [PMID: 17188587 DOI: 10.1016/j.bbapap.2006.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Revised: 09/12/2006] [Accepted: 09/12/2006] [Indexed: 10/24/2022]
Abstract
CMS, cas ligand with multiple Src homology 3 (SH3) domains, belongs to a family of ubiquitously expressed adaptor proteins. Among the CMS binding proteins, c-Cbl has been mostly extensively studied. It was reported that the motif PKPFPR (residues 824-829) of c-Cbl can bind to the N-terminus SH3 domains of CMS. Here we report the solution structure of the second SH3 domain of CMS (CMS_SH3_B), furthermore, we have identified that a peptide from residues 701 to 714 of c-Cbl (Cbl-p), i.e. MTPSSRPLRPLDTS, can specially bind to CMS_SH3_B using NMR chemical shift perturbation, suggesting that the peptide is a new potential CMS binding site. Among the peptide, TPSSRPLR is the core binding motif and Arg709 plays a key role in the interaction. Cbl-p binding interface on CMS_SH3_B along a hydrophobic channel is composed of RT loop, n-Src loop and beta4 strand and divided into three pockets. This work indicates the solution structure of CMS_SH3_B bears the canonical beta-beta-beta-beta-alpha-beta fold and a new binding site in c-Cbl involved in its interaction with CMS, which probably contributes to the clustering of CMS. All the information provided here should be beneficial for the future functional study of CMS.
Collapse
Affiliation(s)
- Bo Yao
- School of Life Science, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230027, Peoples Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Kurakin A. Self-organization versus Watchmaker: ambiguity of molecular recognition and design charts of cellular circuitry. J Mol Recognit 2007; 20:205-14. [PMID: 17847050 DOI: 10.1002/jmr.839] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A large body of experimental evidence indicates that the specific molecular interactions and/or chemical conversions depicted as links in the conventional diagrams of cellular signal transduction and metabolic pathways are inherently probabilistic, ambiguous and context-dependent. Being the inevitable consequence of the dynamic nature of protein structure in solution, the ambiguity of protein-mediated interactions and conversions challenges the conceptual adequacy and practical usefulness of the mechanistic assumptions and inferences embodied in the design charts of cellular circuitry. It is argued that the reconceptualization of molecular recognition and cellular organization within the emerging interpretational framework of self-organization, which is expanded here to include such concepts as bounded stochasticity, evolutionary memory, and adaptive plasticity offers a significantly more adequate representation of experimental reality than conventional mechanistic conceptions do. Importantly, the expanded framework of self-organization appears to be universal and scale-invariant, providing conceptual continuity across multiple scales of biological organization, from molecules to societies. This new conceptualization of biological phenomena suggests that such attributes of intelligence as adaptive plasticity, decision-making, and memory are enforced by evolution at different scales of biological organization and may represent inherent properties of living matter.
Collapse
Affiliation(s)
- Alexei Kurakin
- Buck Institute for Age Research, 8001 Redwood Blvd., Novato, CA 94945, USA.
| |
Collapse
|
182
|
Verkhivker GM. Computational proteomics of biomolecular interactions in the sequence and structure space of the tyrosine kinome: Deciphering the molecular basis of the kinase inhibitors selectivity. Proteins 2006; 66:912-29. [PMID: 17173284 DOI: 10.1002/prot.21287] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Understanding and predicting the molecular basis of protein kinases specificity against existing therapeutic agents remains highly challenging and deciphering this complexity presents an important problem in discovery and development of effective cancer drugs. We explore a recently introduced computational approach for in silico profiling of the tyrosine kinases binding specificity with a class of the pyrido-[2,3-d]pyrimidine kinase inhibitors. Computational proteomics analysis of the ligand-protein interactions using parallel simulated tempering with an ensemble of the tyrosine kinases crystal structures reveals an important molecular determinant of the kinase specificity. The pyrido-[2,3-d]pyrimidine inhibitors are capable of dynamically interacting with both active and inactive forms of the tyrosine kinases, accommodating structurally different kinase conformations with a similar binding affinity. Conformational tolerance of the protein tyrosine kinases binding with the pyrido[2,3-d]pyrimidine inhibitors provides the molecular basis for the broad spectrum of potent activities and agrees with the experimental inhibition profiles. The analysis of the pyrido[2,3-d]pyrimidine sensitivities against a number of clinically relevant ABL kinase mutants suggests an important role of conformational adaptability of multitargeted kinase inhibitors in developing drug resistance mechanisms. The presented computational approach may be useful in complementing proteomics technologies to characterize activity signatures of small molecules against a large number of potential kinase targets.
Collapse
Affiliation(s)
- Gennady M Verkhivker
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0392, USA.
| |
Collapse
|
183
|
Ladbury JE. Measurement of the formation of complexes in tyrosine kinase-mediated signal transduction. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2006; 63:26-31. [PMID: 17164523 PMCID: PMC2483503 DOI: 10.1107/s0907444906046373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 11/03/2006] [Indexed: 11/30/2022]
Abstract
The use of isothermal titration calorimetry (ITC) provides a full thermodynamic characterization of an interaction in one experiment. The determination of the affinity is an important value; however, the additional layer of information provided by the change in enthalpy and entropy can help in understanding the biology. This is demonstrated with respect to tyrosine kinase-mediated signal transduction. Isothermal titration calorimetry (ITC) provides highly complementary data to high-resolution structural detail. An overview of the methodology of the technique is provided. Ultimately, the correlation of the thermodynamic parameters determined by ITC with structural perturbation observed on going from the free to the bound state should be possible at an atomic level. Currently, thermodynamic data provide some insight as to potential changes occurring on complex formation. Here, this is demonstrated in the context of in vitro quantification of intracellular tyrosine kinase-mediated signal transduction and the issue of specificity of the important interactions. The apparent lack of specificity in the interactions of domains of proteins involved in early signalling from membrane-bound receptors is demonstrated using data from ITC.
Collapse
Affiliation(s)
- John E Ladbury
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, England.
| |
Collapse
|
184
|
Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, Tantos A, Szabo B, Tompa P, Chen J, Uversky VN, Obradovic Z, Dunker AK. DisProt: the Database of Disordered Proteins. Nucleic Acids Res 2006; 35:D786-93. [PMID: 17145717 PMCID: PMC1751543 DOI: 10.1093/nar/gkl893] [Citation(s) in RCA: 638] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Database of Protein Disorder (DisProt) links structure and function information for intrinsically disordered proteins (IDPs). Intrinsically disordered proteins do not form a fixed three-dimensional structure under physiological conditions, either in their entireties or in segments or regions. We define IDP as a protein that contains at least one experimentally determined disordered region. Although lacking fixed structure, IDPs and regions carry out important biological functions, being typically involved in regulation, signaling and control. Such functions can involve high-specificity low-affinity interactions, the multiple binding of one protein to many partners and the multiple binding of many proteins to one partner. These three features are all enabled and enhanced by protein intrinsic disorder. One of the major hindrances in the study of IDPs has been the lack of organized information. DisProt was developed to enable IDP research by collecting and organizing knowledge regarding the experimental characterization and the functional associations of IDPs. In addition to being a unique source of biological information, DisProt opens doors for a plethora of bioinformatics studies. DisProt is openly available at .
Collapse
Affiliation(s)
- Megan Sickmeier
- Department of Biochemistry and Molecular Biology, Center for Computational Biology and Bioinformatics, Indiana University School of MedicineIndianapolis, IN 46202, USA
| | - Justin A. Hamilton
- Department of Biochemistry and Molecular Biology, Center for Computational Biology and Bioinformatics, Indiana University School of MedicineIndianapolis, IN 46202, USA
| | - Tanguy LeGall
- Department of Biochemistry and Molecular Biology, Center for Computational Biology and Bioinformatics, Indiana University School of MedicineIndianapolis, IN 46202, USA
| | - Vladimir Vacic
- Computer Science and Engineering, University of California RiversideRiverside, CA 92521, USA
| | - Marc S. Cortese
- Department of Biochemistry and Molecular Biology, Center for Computational Biology and Bioinformatics, Indiana University School of MedicineIndianapolis, IN 46202, USA
| | - Agnes Tantos
- Institute of Enzymology, Biological Research CenterHungarian Academy of Sciences, Budapest, Hungary
| | - Beata Szabo
- Institute of Enzymology, Biological Research CenterHungarian Academy of Sciences, Budapest, Hungary
| | - Peter Tompa
- Institute of Enzymology, Biological Research CenterHungarian Academy of Sciences, Budapest, Hungary
| | - Jake Chen
- School of Informatics, Indiana UniversityIndianapolis, IN 46202, USA
| | - Vladimir N. Uversky
- Department of Biochemistry and Molecular Biology, Center for Computational Biology and Bioinformatics, Indiana University School of MedicineIndianapolis, IN 46202, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences142292 Pushchino, Moscow Region, Russia
| | - Zoran Obradovic
- Center for Information Science and Technology, Temple UniversityPhiladelphia, PA 19122, USA
| | - A. Keith Dunker
- Department of Biochemistry and Molecular Biology, Center for Computational Biology and Bioinformatics, Indiana University School of MedicineIndianapolis, IN 46202, USA
- School of Informatics, Indiana UniversityIndianapolis, IN 46202, USA
- To whom correspondence should be addressed. Tel: +1 317 278 9650; Fax: +1 317 278 9217;
| |
Collapse
|
185
|
Yogosawa S, Kawasaki M, Wakatsuki S, Kominami E, Shiba Y, Nakayama K, Kohsaka S, Akazawa C. Monoubiquitylation of GGA3 by hVPS18 regulates its ubiquitin-binding ability. Biochem Biophys Res Commun 2006; 350:82-90. [PMID: 16996030 DOI: 10.1016/j.bbrc.2006.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 09/01/2006] [Indexed: 12/13/2022]
Abstract
GGAs (Golgi-localizing, gamma-adaptin ear domain homology, ADP-ribosylation factor (ARF)-binding proteins), constitute a family of monomeric adaptor proteins and are associated with protein trafficking from the trans-Golgi network to endosomes. Here, we show that GGA3 is monoubiquitylated by a RING-H2 type-ubiquitin ligase hVPS18 (human homologue of vacuolar protein sorting 18). By in vitro ubiquitylation assays, we have identified lysine 258 in the GAT domain as a major ubiquitylation site that resides adjacent to the ubiquitin-binding site. The ubiquitylation is abolished by a mutation in either the GAT domain or ubiquitin that disrupts the GAT-ubiquitin interaction, indicating that the ubiquitin binding is a prerequisite for the ubiquitylation. Furthermore, the GAT domain ubiquitylated by hVPS18 no longer binds to ubiquitin, indicating that ubiquitylation negatively regulates the ubiquitin-binding ability of the GAT domain. These results suggest that the ubiquitin binding and ubiquitylation of GGA3-GAT domain are mutually inseparable through a ubiquitin ligase activity of hVPS18.
Collapse
Affiliation(s)
- Satomi Yogosawa
- Department of Neurochemistry, National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Seet BT, Dikic I, Zhou MM, Pawson T. Reading protein modifications with interaction domains. Nat Rev Mol Cell Biol 2006; 7:473-83. [PMID: 16829979 DOI: 10.1038/nrm1960] [Citation(s) in RCA: 511] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Proteins are controlled by a vast and dynamic array of post-translational modifications, many of which create binding sites for specific protein-interaction domains. We propose that these domains, working together, read the state of the proteome and therefore couple post-translational modifications to cellular organization. We also identify common strategies through which modification-dependent interactions synergize to regulate cell behaviour.
Collapse
Affiliation(s)
- Bruce T Seet
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | | | | | | |
Collapse
|
187
|
Liu BA, Jablonowski K, Raina M, Arcé M, Pawson T, Nash PD. The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol Cell 2006; 22:851-868. [PMID: 16793553 DOI: 10.1016/j.molcel.2006.06.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 05/19/2006] [Accepted: 06/02/2006] [Indexed: 01/07/2023]
Abstract
SH2 domains are interaction modules uniquely dedicated to the recognition of phosphotyrosine sites and are embedded in proteins that couple protein-tyrosine kinases to intracellular signaling pathways. Here, we report a comprehensive bioinformatics, structural, and functional view of the human and mouse complement of SH2 domain proteins. This information delimits the set of SH2-containing effectors available for PTK signaling and will facilitate the systems-level analysis of pTyr-dependent protein-protein interactions and PTK-mediated signal transduction. The domain-based architecture of SH2-containing proteins is of more general relevance for understanding the large family of protein interaction domains and the modular organization of the majority of human proteins.
Collapse
Affiliation(s)
- Bernard A Liu
- Ben May Institute for Cancer Research and the Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637
| | - Karl Jablonowski
- Ben May Institute for Cancer Research and the Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637
| | - Monica Raina
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada
| | - Michael Arcé
- Ben May Institute for Cancer Research and the Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637
| | - Tony Pawson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada.
| | - Piers D Nash
- Ben May Institute for Cancer Research and the Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637.
| |
Collapse
|
188
|
Bousquet C, Guillermet-Guibert J, Saint-Laurent N, Archer-Lahlou E, Lopez F, Fanjul M, Ferrand A, Fourmy D, Pichereaux C, Monsarrat B, Pradayrol L, Estève JP, Susini C. Direct binding of p85 to sst2 somatostatin receptor reveals a novel mechanism for inhibiting PI3K pathway. EMBO J 2006; 25:3943-54. [PMID: 16917505 PMCID: PMC1560358 DOI: 10.1038/sj.emboj.7601279] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 07/21/2006] [Indexed: 12/16/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K) regulates many cellular functions including growth and survival, and its excessive activation is a hallmark of cancer. Somatostatin, acting through its G protein-coupled receptor (GPCR) sst2, has potent proapoptotic and anti-invasive activities on normal and cancer cells. Here, we report a novel mechanism for inhibiting PI3K activity. Somatostatin, acting through sst2, inhibits PI3K activity by disrupting a pre-existing complex comprising the sst2 receptor and the p85 PI3K regulatory subunit. Surface plasmon resonance and molecular modeling identified the phosphorylated-Y71 residue of a p85-binding pYXXM motif in the first sst2 intracellular loop, and p85 COOH-terminal SH2 as direct interacting domains. Somatostatin-mediated dissociation of this complex as well as p85 tyrosine dephosphorylation correlates with sst2 tyrosine dephosphorylation on the Y71 residue. Mutating sst2-Y71 disabled sst2 to interact with p85 and somatostatin to inhibit PI3K, consequently abrogating sst2's ability to suppress cell survival and tumor growth. These results provide the first demonstration of a physical interaction between a GPCR and p85, revealing a novel mechanism for negative regulation by ligand-activated GPCR of PI3K-dependent survival pathways, which may be an important molecular target for antineoplastic therapy.
Collapse
Affiliation(s)
- Corinne Bousquet
- INSERM U531, Institut Louis Bugnard, CHU Rangueil, Toulouse cedex 4, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Bergamin E, Wu J, Hubbard SR. Structural Basis for Phosphotyrosine Recognition by Suppressor of Cytokine Signaling-3. Structure 2006; 14:1285-92. [PMID: 16905102 DOI: 10.1016/j.str.2006.06.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 06/12/2006] [Accepted: 06/16/2006] [Indexed: 10/24/2022]
Abstract
Suppressor of cytokine signaling (SOCS) proteins are indispensable negative regulators of cytokine-stimulated Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathways. SOCS proteins (SOCS1-7 and CIS) consist of a variable N-terminal region, a central Src homology-2 (SH2) domain, and a C-terminal SOCS box. The N-terminal region in SOCS1 and SOCS3 includes the so-called kinase inhibitory region that has been shown to inhibit the catalytic activity of JAK2. Here, we present a crystal structure at 2.0 A resolution of the N-terminally extended SH2 domain of SOCS3 in complex with its phosphopeptide target on the cytokine receptor gp130. The structure reveals that major insertions in the EF and BG loops of the SOCS3 SH2 domain are responsible for binding to gp130 with high affinity and specificity. In addition, the structure provides insights into the possible mechanisms by which SOCS3 and SOCS1 inhibit JAK2 kinase activity.
Collapse
Affiliation(s)
- Elisa Bergamin
- Structural Biology Program, Skirball Institute of Biomolecular Medicine and Department of Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
190
|
Watanabe Y, Tsuboi H, Koyama M, Kubo M, Del Carpio CA, Broclawik E, Ichiishi E, Kohno M, Miyamoto A. Molecular dynamics study on the ligand recognition by tandem SH3 domains of p47phox, regulating NADPH oxidase activity. Comput Biol Chem 2006; 30:303-12. [PMID: 16798095 DOI: 10.1016/j.compbiolchem.2006.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 04/10/2006] [Accepted: 04/24/2006] [Indexed: 11/26/2022]
Abstract
The phagocyte NADPH oxidase complex plays a crucial role in host defense against microbial infection through the production of superoxides. Chronic granulomatous disease (CGD) is an inherited immune deficiency caused by the absence of certain components of the NADPH oxidase. Key to the activation of the NADPH oxidase is the cytoplasmic subunit p47phox, which includes the tandem SH3 domains (N-SH3 and C-SH3). In active phagocytes, p47phox forms a stable complex with the cytoplasmic region of membrane subunit p22phox that forms a left-handed polyproline type-II (PPII) helix conformation. In this report, we have analyzed the conformational changes of p47phox-p22phox complexes of wild-type and three mutants, which have been detected in CGD patients, using molecular dynamics simulations. We have found that in the wild-type, two basal planes of PPII prism in cytoplasmic region of p22phox interacted with N-SH3 and C-SH3. In contrast, in the modeled mutants, the residue at the ape of PPII helix, which interacts simultaneously with both of the tandem SH3 domains in the wild-type, moved toward C-SH3. Furthermore, interaction energies of the cytoplasmic region of p22phox with C-SH3 tend to decrease in these mutants. All these findings led us to conclude that interactions between N-SH3 of p47phox and PPII helix, which is formed by cytoplasmic region of p22phox, may play a significant role in the activation of the NADPH oxidase.
Collapse
Affiliation(s)
- Yoko Watanabe
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-11-1302 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Geroult S, Virdee S, Waksman G. The role of water in computational and experimental derivation of binding thermodynamics in SH2 domains. Chem Biol Drug Des 2006; 67:38-45. [PMID: 16492147 DOI: 10.1111/j.1747-0285.2005.00315.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have studied the role of bound interface water molecules on the prediction of the thermodynamics of SH2 domain binding to tyrosyl phosphopeptides using a method based on accessible surface area buried upon association. We studied three phosphopeptide ligands, which have been shown by Lubman and Waksman (J Mol Biol;328:655, 2003) and Davidson et al. (JACS;124:205, 2002) to have similar binding free energies but very different thermodynamic signatures. The thermodynamic model is semiempirical and applies to the crystal structure of the SH2 domain-bound forms. We explored all possible combinations of bound interfacial waters. We show that the model does not predict the binding thermodynamics of either ligand. However, we identified the empirical formula describing the heat capacity change as the source of the problem. Indeed, systematic exploration of heat capacity change values between 0 and -300 cal/mol deg results in a sharp distribution of the number of ligand/SH2/water-subset structures that provide binding thermodynamics similar to experimental values. The heat capacity change values at which the distributions peak are different for each peptide. This prompted us to experimentally determine the heat capacity change for each of the peptides and we found them to coincide with the values of the peaks. The implications of such findings are discussed.
Collapse
Affiliation(s)
- Sebastien Geroult
- Institute of Structural Molecular Biology at UCL and Birkbek, Malet Street, London WC1 7HX, UK
| | | | | |
Collapse
|
192
|
Hu J, Hubbard SR. Structural basis for phosphotyrosine recognition by the Src homology-2 domains of the adapter proteins SH2-B and APS. J Mol Biol 2006; 361:69-79. [PMID: 16824542 DOI: 10.1016/j.jmb.2006.05.070] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 05/30/2006] [Accepted: 05/31/2006] [Indexed: 11/25/2022]
Abstract
SH2-B, APS, and Lnk constitute a family of adapter proteins that modulate signaling by protein tyrosine kinases. These adapters contain an N-terminal dimerization region, a pleckstrin homology domain, and a C-terminal Src homology-2 (SH2) domain. SH2-B is recruited via its SH2 domain to various protein tyrosine kinases, including Janus kinase-2 (Jak2) and the insulin receptor. Here, we present the crystal structure at 2.35 A resolution of the SH2 domain of SH2-B in complex with a phosphopeptide representing the SH2-B recruitment site in Jak2 (pTyr813). The structure reveals a canonical SH2 domain-phosphopeptide binding mode, but with specific recognition of a glutamate at the +1 position relative to phosphotyrosine, in addition to recognition of a hydrophobic residue at the +3 position. Biochemical studies of SH2-B and APS demonstrate that, although the SH2 domains of these two adapter proteins share 79% sequence identity, the SH2-B SH2 domain binds preferentially to Jak2, whereas the APS SH2 domain has higher affinity for the insulin receptor. This differential specificity is attributable to the difference in the oligomeric states of the two SH2 domains: monomeric for SH2-B and dimeric for APS.
Collapse
Affiliation(s)
- Junjie Hu
- Structural Biology Program, Skirball Institute of Biomolecular Medicine, and Department of Pharmacology, New York University School of Medicine, NY 10016, USA.
| | | |
Collapse
|
193
|
Liu H, Nakazawa T, Tezuka T, Yamamoto T. Physical and functional interaction of Fyn tyrosine kinase with a brain-enriched Rho GTPase-activating protein TCGAP. J Biol Chem 2006; 281:23611-9. [PMID: 16777849 DOI: 10.1074/jbc.m511205200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fyn, a member of the Src family of tyrosine kinases, is implicated in both brain development and adult brain function. In the present study, we identified a Rho GTPase-activating protein (GAP), TCGAP (Tc10/Cdc42 GTPase-activating protein), as a novel Fyn substrate. TCGAP interacted with Fyn and was phosphorylated by Fyn, with Tyr-406 in the GAP domain as a major Fyn-mediated phosphorylation site. Fyn suppressed the GAP activity of wild-type TCGAP but not the Y406F mutant of TCGAP in a phosphorylation-dependent manner, suggesting that Fyn-mediated Tyr-406 phosphorylation negatively regulated the TCGAP activity. In situ hybridization analyses showed that TCGAP mRNA was expressed prominently in both immature and adult mouse brain, with high levels in cortex, corpus striatum, hippocampus, and olfactory bulb. Overexpression of wild-type TCGAP in PC12 cells suppressed nerve growth factor-induced neurite outgrowth, whereas a GAP-defective mutant of TCGAP enhanced the neurite outgrowth. Nerve growth factor enhanced tyrosine phosphorylation of TCGAP through activation of Src family kinases. These results suggest that TCGAP is involved in Fyn-mediated regulation of axon and dendrite outgrowth.
Collapse
Affiliation(s)
- Hui Liu
- Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
194
|
Wildes D, Anderson LM, Sabogal A, Marqusee S. Native state energetics of the Src SH2 domain: evidence for a partially structured state in the denatured ensemble. Protein Sci 2006; 15:1769-79. [PMID: 16751610 PMCID: PMC2242571 DOI: 10.1110/ps.062136006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We have defined the free-energy profile of the Src SH2 domain using a variety of biophysical techniques. Equilibrium and kinetic experiments monitored by tryptophan fluorescence show that Src SH2 is quite stable and folds rapidly by a two-state mechanism, without populating any intermediates. Native state hydrogen-deuterium exchange confirms this two-state behavior; we detect no cooperative partially unfolded forms in equilibrium with the native conformation under any conditions. Interestingly, the apparent stability of the protein from hydrogen exchange is 2 kcal/mol greater than the stability determined by both equilibrium and kinetic studies followed by fluorescence. Native-state proteolysis demonstrates that this "super protection" does not result from a deviation from the linear extrapolation model used to fit the fluorescence data. Instead, it likely arises from a notable compaction in the unfolded state under native conditions, resulting in an ensemble of conformations with substantial solvent exposure of side chains and flexible regions sensitive to proteolysis, but backbone amides that exchange with solvent approximately 30-fold slower than would be expected for a random coil. The apparently simple behavior of Src SH2 in traditional unfolding studies masks the significant complexity present in the denatured-state ensemble.
Collapse
Affiliation(s)
- David Wildes
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3206, USA
| | | | | | | |
Collapse
|
195
|
Kundu S, Sorensen DC, Phillips GN. Automatic domain decomposition of proteins by a Gaussian Network Model. Proteins 2006; 57:725-33. [PMID: 15478120 DOI: 10.1002/prot.20268] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Proteins are often comprised of domains of apparently independent folding units. These domains can be defined in various ways, but one useful definition divides the protein into substructures that seem to move more or less independently. The same methods that allow fairly accurate calculation of motion can be used to help classify these substructures. We show how the Gaussian Network Model (GNM), commonly used for determining motion, can also be adapted to automatically classify domains in proteins. Parallels between this physical network model and graph theory implementation are apparent. The method is applied to a nonredundant set of 55 proteins, and the results are compared to the visual assignments by crystallographers. Apart from decomposing proteins into structural domains, the algorithm can generally be applied to any large macromolecular system to decompose it into motionally decoupled sub-systems.
Collapse
Affiliation(s)
- Sibsankar Kundu
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
196
|
Abstract
The posttranslational modification of histone proteins via methylation has important functions in gene activation, transcriptional silencing, establishment of chromatin states, and likely many aspects of DNA metabolism. The identification of numerous effector protein domains with the capability of binding methylated histones has significantly advanced our understanding of how such histone modifications may exert their biological effects. Here, we summarize aspects of the generation of arginine and lysine methylation marks on core histones, the characterization of the protein modules that interact with them, and how histone methylation cross-talks with other modifications.
Collapse
Affiliation(s)
- Michael S Torok
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
197
|
McLaughlin WA, Hou T, Wang W. Prediction of Binding Sites of Peptide Recognition Domains: An Application on Grb2 and SAP SH2 Domains. J Mol Biol 2006; 357:1322-34. [PMID: 16476443 DOI: 10.1016/j.jmb.2006.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 11/29/2005] [Accepted: 01/05/2006] [Indexed: 11/21/2022]
Abstract
Determination of the binding motif and identification of interaction partners of the modular domains such as SH2 domains can enhance our understanding of the regulatory mechanism of protein-protein interactions. We propose here a new computational method to achieve this goal by integrating the orthogonal information obtained from binding free energy estimation and peptide sequence analysis. We performed a proof-of-concept study on the SH2 domains of SAP and Grb2 proteins. The method involves the following steps: (1) estimating the binding free energy of a set of randomly selected peptides along with a sample of known binders; (2) clustering all these peptides using sequence and energy characteristics; (3) extracting a sequence motif, which is represented by a hidden Markov model (HMM), from the cluster of peptides containing the sample of known binders; and (4) scanning the human proteome to identify binding sites of the domain. The binding motifs of the SAP and Grb2 SH2 domains derived by the method agree well with those determined through experimental studies. Using the derived binding motifs, we have predicted new possible interaction partners for the Grb2 and SAP SH2 domains as well as possible interaction sites for interaction partners already known. We also suggested novel roles for the proteins by reviewing their top interaction candidates.
Collapse
Affiliation(s)
- William A McLaughlin
- Department of Chemistry and Biochemistry, Center for Theoretical Biological Physics, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0359, USA
| | | | | |
Collapse
|
198
|
Wales TE, Engen JR. Partial unfolding of diverse SH3 domains on a wide timescale. J Mol Biol 2006; 357:1592-604. [PMID: 16487539 DOI: 10.1016/j.jmb.2006.01.075] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 01/13/2006] [Accepted: 01/19/2006] [Indexed: 11/28/2022]
Abstract
SH3 domains are small, modular domains that are found in many proteins, especially signal transduction proteins such as tyrosine kinases. While much is known about the sequences and tertiary structures of SH3 domains, far less is known about their solution dynamics. A slow, partial unfolding event that occurs under physiological conditions was previously identified in the Hck SH3 domain using hydrogen exchange (HX) mass spectrometry (MS). To determine if this unfolding was unique to Hck SH3, HX MS was used to analyze 11 other SH3 domains: seven SH3 domains from Src-family kinases and five SH3 domains from various proteins. A wide variety of unfolding rates were found, with unfolding half-lives ranging from 1s to 1h. The Lyn and alpha-spectrin SH3 domains exhibited slow, partial unfolding in beta strands D and E and part of the RT-loop. Hck SH3 also underwent partial unfolding in the same region, implying that a unique feature in this area of the domains is responsible for the partial unfolding. Partial unfolding was, however, not a function of sequence conservation. Although the Fyn and Yes SH3 domains are very similar to Hck SH3 in sequence, they exhibited no evidence of partial unfolding. Overall, the results suggest that while the tertiary structure of SH3 domains is highly conserved, the dynamics of SH3 domains are variable.
Collapse
Affiliation(s)
- Thomas E Wales
- Department of Chemistry, University of New Mexico, Albuquerque, NM 87131, USA
| | | |
Collapse
|
199
|
Hou T, Chen K, McLaughlin WA, Lu B, Wang W. Computational analysis and prediction of the binding motif and protein interacting partners of the Abl SH3 domain. PLoS Comput Biol 2006; 2:e1. [PMID: 16446784 PMCID: PMC1356089 DOI: 10.1371/journal.pcbi.0020001] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Accepted: 12/05/2005] [Indexed: 11/18/2022] Open
Abstract
Protein-protein interactions, particularly weak and transient ones, are often mediated by peptide recognition domains, such as Src Homology 2 and 3 (SH2 and SH3) domains, which bind to specific sequence and structural motifs. It is important but challenging to determine the binding specificity of these domains accurately and to predict their physiological interacting partners. In this study, the interactions between 35 peptide ligands (15 binders and 20 non-binders) and the Abl SH3 domain were analyzed using molecular dynamics simulation and the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. The calculated binding free energies correlated well with the rank order of the binding peptides and clearly distinguished binders from non-binders. Free energy component analysis revealed that the van der Waals interactions dictate the binding strength of peptides, whereas the binding specificity is determined by the electrostatic interaction and the polar contribution of desolvation. The binding motif of the Abl SH3 domain was then determined by a virtual mutagenesis method, which mutates the residue at each position of the template peptide relative to all other 19 amino acids and calculates the binding free energy difference between the template and the mutated peptides using the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. A single position mutation free energy profile was thus established and used as a scoring matrix to search peptides recognized by the Abl SH3 domain in the human genome. Our approach successfully picked ten out of 13 experimentally determined binding partners of the Abl SH3 domain among the top 600 candidates from the 218,540 decapeptides with the PXXP motif in the SWISS-PROT database. We expect that this physical-principle based method can be applied to other protein domains as well. One of the central questions of molecular biology is to understand how signals are transduced in the cell. Intracellular signal transduction is mainly achieved through cascades of protein-protein interactions, which are often mediated by peptide-binding modular domains, such as Src Homology 2 and 3 (SH2 and SH3). Each family of these domains binds to peptides with specific sequence and structural characteristics. To reconstruct the protein-protein interaction networks mediated by modular domains, one must identify the peptide motifs recognized by these domains and understand the mechanism of binding specificity. These questions are challenging because the domain-peptide interactions are usually weak and transient. Here, the authors took a physical-principles approach to address these difficult questions for the SH3 domain of human protein Abl, which binds to peptides containing the PXXP motif (where P is proline and X is any amino acid). They generated a position-specific scoring matrix to represent the binding motif of the Abl SH3 domain. Analysis on the binding free energy components suggested insights into how the binding specificity is achieved. Most known protein interacting partners of the Abl SH3 domain were correctly identified using the position-specific scoring matrix, and other potential interacting partners were also suggested.
Collapse
Affiliation(s)
- Tingjun Hou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
| | - Ken Chen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
| | - William A McLaughlin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
| | - Benzhuo Lu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
200
|
Depetris RS, Hu J, Gimpelevich I, Holt LJ, Daly RJ, Hubbard SR. Structural basis for inhibition of the insulin receptor by the adaptor protein Grb14. Mol Cell 2006; 20:325-33. [PMID: 16246733 PMCID: PMC4526137 DOI: 10.1016/j.molcel.2005.09.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 08/25/2005] [Accepted: 09/02/2005] [Indexed: 11/20/2022]
Abstract
Grb14, a member of the Grb7 adaptor protein family, possesses a pleckstrin homology (PH) domain, a C-terminal Src homology-2 (SH2) domain, and an intervening stretch of approximately 45 residues known as the BPS region, which is unique to this adaptor family. Previous studies have demonstrated that Grb14 is a tissue-specific negative regulator of insulin receptor signaling and that inhibition is mediated by the BPS region. We have determined the crystal structure of the Grb14 BPS region in complex with the tyrosine kinase domain of the insulin receptor. The structure reveals that the N-terminal portion of the BPS region binds as a pseudosubstrate inhibitor in the substrate peptide binding groove of the kinase. Together with the crystal structure of the SH2 domain, we present a model for the interaction of Grb14 with the insulin receptor, which indicates how Grb14 functions as a selective protein inhibitor of insulin signaling.
Collapse
Affiliation(s)
- Rafael S. Depetris
- Structural Biology Program, Skirball Institute of Biomolecular Medicine and Department of Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Junjie Hu
- Structural Biology Program, Skirball Institute of Biomolecular Medicine and Department of Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Ilana Gimpelevich
- Structural Biology Program, Skirball Institute of Biomolecular Medicine and Department of Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Lowenna J. Holt
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Roger J. Daly
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Stevan R. Hubbard
- Structural Biology Program, Skirball Institute of Biomolecular Medicine and Department of Pharmacology, New York University School of Medicine, New York, New York 10016
- Correspondence:
| |
Collapse
|