151
|
Goel S, Saheb Sharif-Askari F, Saheb Sharif Askari N, Madkhana B, Alwaa AM, Mahboub B, Zakeri AM, Ratemi E, Hamoudi R, Hamid Q, Halwani R. SARS-CoV-2 Switches 'on' MAPK and NFκB Signaling via the Reduction of Nuclear DUSP1 and DUSP5 Expression. Front Pharmacol 2021; 12:631879. [PMID: 33995033 PMCID: PMC8114414 DOI: 10.3389/fphar.2021.631879] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
Mitogen-activated protein kinases (MAPK) and NF-kappaB (NF-κB) pathway regulate many cellular processes and are essential for immune cells function. Their activity is controlled by dual-specificity phosphatases (DUSPs). A comprehensive analysis of publicly available gene expression data sets of human airway epithelial cells (AECs) infected with SARS-CoV-2 identified DUSP1 and DUSP5 among the lowest induced transcripts within these pathways. These proteins are known to downregulate MAPK and NF-κB pathways; and their lower expression was associated with increased activity of MAPK and NF-κB signaling and enhanced expression of proinflammatory cytokines such as TNF-α. Infection with other coronaviruses did not have a similar effect on these genes. Interestingly, treatment with chloroquine and/or non-steroidal anti-inflammatory drugs counteracted the SARS-CoV-2 induced reduction of DUSP1 and DUSP5 genes expression. Therapeutically, impeding this evasion mechanism of SARS-CoV-2 may help control the exaggerated activation of these immune regulatory pathways during a COVID-19 infection.
Collapse
Affiliation(s)
- Swati Goel
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | | | | | - Bushra Madkhana
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmad Munzer Alwaa
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Bassam Mahboub
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - Adel M Zakeri
- Department of Plant Production, Faculty of Agriculture and Food Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Elaref Ratemi
- Jubail- Industrial College, Department of Chemical and Process Engineering Technology, Jubail- Industrial City, Al Jubail, Saudi Arabia
| | - Rifat Hamoudi
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Rabih Halwani
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Prince Abdullah Ben Khaled Celiac Disease Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
152
|
Reichert D, Adolph L, Köhler JP, Buschmann T, Luedde T, Häussinger D, Kordes C. Improved Recovery from Liver Fibrosis by Crenolanib. Cells 2021; 10:804. [PMID: 33916518 PMCID: PMC8067177 DOI: 10.3390/cells10040804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 01/03/2023] Open
Abstract
Chronic liver diseases are associated with excessive deposition of extracellular matrix proteins. This so-called fibrosis can progress to cirrhosis and impair vital functions of the liver. We examined whether the receptor tyrosine kinase (RTK) class III inhibitor Crenolanib affects the behavior of hepatic stellate cells (HSC) involved in fibrogenesis. Rats were treated with thioacetamide (TAA) for 18 weeks to trigger fibrosis. After TAA treatment, the animals received Crenolanib for two weeks, which significantly improved recovery from liver fibrosis. Because Crenolanib predominantly inhibits the RTK platelet-derived growth factor receptor-β, impaired HSC proliferation might be responsible for this beneficial effect. Interestingly, blocking of RTK signaling by Crenolanib not only hindered HSC proliferation but also triggered their specification into hepatic endoderm. Endodermal specification was mediated by p38 mitogen-activated kinase (p38 MAPK) and c-Jun-activated kinase (JNK) signaling; however, this process remained incomplete, and the HSC accumulated lipids. JNK activation was induced by stress response-associated inositol-requiring enzyme-1α (IRE1α) in response to Crenolanib treatment, whereas β-catenin-dependent WNT signaling was able to counteract this process. In conclusion, the Crenolanib-mediated inhibition of RTK impeded HSC proliferation and triggered stress responses, initiating developmental processes in HSC that might have contributed to improved recovery from liver fibrosis in TAA-treated rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claus Kordes
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (D.R.); (L.A.); (J.P.K.); (T.B.); (T.L.); (D.H.)
| |
Collapse
|
153
|
Debuque RJ, Nowoshilow S, Chan KE, Rosenthal NA, Godwin JW. Distinct toll-like receptor signaling in the salamander response to tissue damage. Dev Dyn 2021; 251:988-1003. [PMID: 33797128 DOI: 10.1002/dvdy.340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Efficient wound healing or pathogen clearance both rely on balanced inflammatory responses. Inflammation is essential for effective innate immune-cell recruitment; however, excessive inflammation will result in local tissue destruction, pathogen egress, and ineffective pathogen clearance. Sterile and nonsterile inflammation operate with competing functional priorities but share common receptors and overlapping signal transduction pathways. In regenerative organisms such as the salamander, whole limbs can be replaced after amputation while exposed to a nonsterile environment. In mammals, exposure to sterile-injury Damage Associated Molecular Patterns (DAMPS) alters innate immune-cell responsiveness to secondary Pathogen Associated Molecular Pattern (PAMP) exposure. RESULTS Using new phospho-flow cytometry techniques to measure signaling in individual cell subsets we compared mouse to salamander inflammation. These studies demonstrated evolutionarily conserved responses to PAMP ligands through toll-like receptors (TLRs) but identified key differences in response to DAMP ligands. Co-exposure of macrophages to DAMPs/PAMPs suppressed MAPK signaling in mammals, but not salamanders, which activate sustained MAPK stimulation in the presence of endogenous DAMPS. CONCLUSIONS These results reveal an alternative signal transduction network compatible with regeneration that may ultimately lead to the promotion of enhanced tissue repair in mammals.
Collapse
Affiliation(s)
- Ryan J Debuque
- Australian Regenerative Medicine Institute (ARMI), Monash University, Melbourne, Victoria, Australia
| | - Sergej Nowoshilow
- The Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | | | | | - James W Godwin
- Australian Regenerative Medicine Institute (ARMI), Monash University, Melbourne, Victoria, Australia.,The Jackson Laboratory, Bar Harbour, Maine, USA.,The MDI Biological Laboratory (MDIBL), Salisbury Cove, Maine, USA
| |
Collapse
|
154
|
Anti-inflammatory Effects of Alcohol Are Associated with JNK-STAT3 Downregulation in an In Vitro Inflammation Model in HepG2 Cells. DISEASE MARKERS 2021; 2021:6622701. [PMID: 33791043 PMCID: PMC7997757 DOI: 10.1155/2021/6622701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/18/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022]
Abstract
Background In several preclinical and in vitro models of acute inflammation, alcohol (ethanol, EtOH) has been described as an immunomodulatory agent. Similarly, in different pathologies, clinical observations have confirmed either pro- or anti-inflammatory effects of EtOH. The liver plays an important role in immunity and alcohol metabolism; therefore, we analysed dose- and time-dependent effects of EtOH on the inflammatory response of human liver cells in an in vitro model of acute inflammation. Methods HepG2 cells were stimulated with IL-1β and subsequently exposed to EtOH in a low or high dose (85 mM, LoD or 170 mM, HiD) for 1 h (acute exposure) or 72 h (prolonged exposure). IL-6 and TNF-α release was determined by ELISA. Cell viability, adhesion of isolated neutrophils to HepG2 monolayers, their ICAM-1 expression, and the activation of stress-induced protein kinase/c-Jun N-terminal kinase (SAPK/JNK) or signal transducer and activator of transcription 3 (STAT3) were analysed. Results In this experimental design, EtOH did not markedly change the cell viability. Acute and prolonged exposure to EtOH significantly reduced dose-independent IL-1β-induced IL-6 and TNF-α release, as well as adhesion capacity to pretreated HepG2 cells. Acute exposure to EtOH significantly decreased the percentage of ICAM-1-expressing cells. IL-1β stimulation notably increased the activation of SAPK/JNK. However, low-dose EtOH exposure reduced this activation considerably, in contradiction to high-dose EtOH exposure. Acute exposure to LoD EtOH significantly diminished the IL-1β-induced STAT3 activation, whereas an acute exposure of cells to either HiD EtOH or in a prolonged setting showed no effects on STAT3 activation. Conclusion EtOH exerts anti-inflammatory potential in this in vitro model of hepatic inflammation. These effects are associated with the reduced activation of JNK/STAT3 by EtOH, particularly in the condition of acute exposure to low-dose EtOH.
Collapse
|
155
|
Hong SH, Ku JM, Lim YS, Kim HI, Shin YC, Ko SG. Cervus nippon var. mantchuricus water extract treated with digestive enzymes (CE) modulates M1 macrophage polarization through TLR4/MAPK/NF-κB signaling pathways on murine macrophages. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211000898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to investigate the effects of Cervus nippon var. mantchuricus water extract treated with digestive enzymes (CE) on the promotion of M1 macrophage polarization in murine macrophages. Macrophages polarize either to one phenotype after stimulation with LPS or IFN-γ or to an alternatively activated phenotype that is induced by IL-4 or IL-13. Cell viability of RAW264.7 cells was determined by WST-1 assay. NO production was measured by Griess assay. IL-6, IL-12, TNF-α, and iNOS mRNA levels were measured by RT-PCR. IL-6, IL-12, and IL-10 cytokine levels were determined by ELISA. TLR4/MAPK/NF-κB signaling in RAW264.7 cells was evaluated by western blotting. The level of NF-κB was determined by immunoblotting. CE induced the differentiation of M1 macrophages. CE promoted M1 macrophages to elevate NO production and cytokine levels. CE-stimulated M1 macrophages had enhanced IL-6, IL-12, and TNF-α. CE promoted M1 macrophages to activate TLR4/MAPK/NF-κB phosphorylation. M2 markers were downregulated, while M1 markers were upregulated in murine macrophages by CE. Consequently, CE has immunomodulatory activity and can be used to promote M1 macrophage polarization through the TLR4/MAPK/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Se Hyang Hong
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Jin Mo Ku
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ye Seul Lim
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo In Kim
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Cheol Shin
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
156
|
Agonistic CD40 Antibodies in Cancer Treatment. Cancers (Basel) 2021; 13:cancers13061302. [PMID: 33804039 PMCID: PMC8000216 DOI: 10.3390/cancers13061302] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/16/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary CD40 is a costimulatory molecule that is key for the activation of antigen-presenting cells and other innate immune cells. It plays an important role in anti-tumor immunity, and agonists of CD40 have been shown to eliminate tumors in both pre-clinical and clinical settings, alone and in combination with other treatment modalities. Here we assess the expression of CD40 and associations with other mediators of immunity in a variety of tumor types and review the potential of CD40 agonists for cancer treatment, given the promise of enhancing the interplay between innate and adaptive immunity. Abstract CD40 is expressed on a variety of antigen-presenting cells. Stimulation of CD40 results in inflammation by upregulation of other costimulatory molecules, increased antigen presentation, maturation (licensing) of dendritic cells, and activation of CD8+ T cells. Here we analyzed gene expression data from The Cancer Genome Atlas in melanoma, renal cell carcinoma, and pancreatic adenocarcinoma and found correlations between CD40 and several genes involved in antigen presentation and T cell function, supporting further exploration of CD40 agonists to treat cancer. Agonist CD40 antibodies have induced anti-tumor effects in several tumor models and the effect has been more pronounced when used in combination with other treatments (immune checkpoint inhibition, chemotherapy, and colony-stimulating factor 1 receptor inhibition). The reduction in tumor growth and ability to reprogram the tumor microenvironment in preclinical models lays the foundation for clinical development of agonistic CD40 antibodies (APX005M, ChiLob7/4, ADC-1013, SEA-CD40, selicrelumab, and CDX-1140) that are currently being evaluated in early phase clinical trials. In this article, we focus on CD40 expression and immunity in cancer, agonistic human CD40 antibodies, and their pre-clinical and clinical development. With the broad pro-inflammatory effects of CD40 and its ligand on dendritic cells and macrophages, and downstream B and T cell activation, agonists of this pathway may enhance the anti-tumor activity of other systemic therapies.
Collapse
|
157
|
Batley KC, Sandoval-Castillo J, Kemper CM, Zanardo N, Tomo I, Beheregaray LB, Möller LM. Whole genomes reveal multiple candidate genes and pathways involved in the immune response of dolphins to a highly infectious virus. Mol Ecol 2021; 30:6434-6448. [PMID: 33675577 DOI: 10.1111/mec.15873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 01/02/2023]
Abstract
Wildlife species are challenged by various infectious diseases that act as important demographic drivers of populations and have become a great conservation concern particularly under growing environmental changes. The new era of whole genome sequencing provides new opportunities and avenues to explore the role of genetic variants in the plasticity of immune responses, particularly in non-model systems. Cetacean morbillivirus (CeMV) has emerged as a major viral threat to cetacean populations worldwide, contributing to the death of thousands of individuals of multiple dolphin and whale species. To understand the genomic basis of immune responses to CeMV, we generated and analysed whole genomes of 53 Indo-Pacific bottlenose dolphins (Tursiops aduncus) exposed to Australia's largest known CeMV-related mortality event that killed at least 50 dolphins from three different species. The genomic data set consisted of 10,168,981 SNPs anchored onto 23 chromosome-length scaffolds and 77 short scaffolds. Whole genome analysis indicated that levels of inbreeding in the dolphin population did not influence the outcome of an individual. Allele frequency estimates between survivors and nonsurvivors of the outbreak revealed 15,769 candidate SNPs, of which 689 were annotated to 295 protein coding genes. These included 50 genes with functions related to innate and adaptive immune responses, and cytokine signalling pathways and genes thought to be involved in immune responses to other morbilliviruses. Our study characterised genomic regions and pathways that may contribute to CeMV immune responses in dolphins. This represents a stride towards clarifying the complex interactions of the cetacean immune system and emphasises the value of whole genome data sets in understanding genetic elements that are essential for species conservation, including disease susceptibility and adaptation.
Collapse
Affiliation(s)
- Kimberley C Batley
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Jonathan Sandoval-Castillo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | | | - Nikki Zanardo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Ikuko Tomo
- South Australian Museum, Adelaide, South Australia, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Luciana M Möller
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
158
|
Kumar S, Bhaskar A, Patnaik G, Sharma C, Singh DK, Kaushik SR, Chaturvedi S, Das G, Dwivedi VP. Intranasal immunization with peptide-based immunogenic complex enhances BCG vaccine efficacy in a murine model of tuberculosis. JCI Insight 2021; 6:145228. [PMID: 33444288 PMCID: PMC7934935 DOI: 10.1172/jci.insight.145228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/07/2021] [Indexed: 12/23/2022] Open
Abstract
Prime-boost immunization strategies are required to control the global tuberculosis (TB) pandemic, which claims approximately 3 lives every minute. Here, we have generated an immunogenic complex against Mycobacterium tuberculosis (M.tb), consisting of promiscuous T cell epitopes (M.tb peptides) and TLR ligands assembled in liposomes. Interestingly, this complex (peptide–TLR agonist–liposomes; PTL) induced significant activation of CD4+ T cells and IFN-γ production in the PBMCs derived from PPD+ healthy individuals as compared with PPD– controls. Furthermore, intranasal delivery of PTL significantly reduced the bacterial burden in the infected mice by inducing M.tb-specific polyfunctional (IFN-γ+IL-17+TNF-α+IL-2+) immune responses and long-lasting central memory responses, thereby reducing the risk of TB recurrence in DOTS-treated infected animals. The transcriptome analysis of peptide-stimulated immune cells unveiled the molecular basis of enhanced protection. Furthermore, PTL immunization significantly boosted the Bacillus Calmette-Guerin–primed (BCG-primed) immune responses against TB. The greatly enhanced efficacy of the BCG-PTL vaccine model in controlling pulmonary TB projects PTL as an adjunct vaccine against TB.
Collapse
Affiliation(s)
- Santosh Kumar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ashima Bhaskar
- Signal Transduction Laboratory-1, National Institute of Immunology, New Delhi, India
| | - Gautam Patnaik
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Chetan Sharma
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Dhiraj Kumar Singh
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sandeep Rai Kaushik
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Shivam Chaturvedi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Gobardhan Das
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ved Prakash Dwivedi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
159
|
Pinos D, Andrés-Garrido A, Ferré J, Hernández-Martínez P. Response Mechanisms of Invertebrates to Bacillus thuringiensis and Its Pesticidal Proteins. Microbiol Mol Biol Rev 2021; 85:e00007-20. [PMID: 33504654 PMCID: PMC8549848 DOI: 10.1128/mmbr.00007-20] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Extensive use of chemical insecticides adversely affects both environment and human health. One of the most popular biological pest control alternatives is bioinsecticides based on Bacillus thuringiensis This entomopathogenic bacterium produces different protein types which are toxic to several insect, mite, and nematode species. Currently, insecticidal proteins belonging to the Cry and Vip3 groups are widely used to control insect pests both in formulated sprays and in transgenic crops. However, the benefits of B. thuringiensis-based products are threatened by insect resistance evolution. Numerous studies have highlighted that mutations in genes coding for surrogate receptors are responsible for conferring resistance to B. thuringiensis Nevertheless, other mechanisms may also contribute to the reduction of the effectiveness of B. thuringiensis-based products for managing insect pests and even to the acquisition of resistance. Here, we review the relevant literature reporting how invertebrates (mainly insects and Caenorhabditis elegans) respond to exposure to B. thuringiensis as either whole bacteria, spores, and/or its pesticidal proteins.
Collapse
Affiliation(s)
- Daniel Pinos
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Ascensión Andrés-Garrido
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Juan Ferré
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Patricia Hernández-Martínez
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| |
Collapse
|
160
|
Bora G, Yaba A. The role of mitogen-activated protein kinase signaling pathway in endometriosis. J Obstet Gynaecol Res 2021; 47:1610-1623. [PMID: 33590617 DOI: 10.1111/jog.14710] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/10/2021] [Accepted: 01/29/2021] [Indexed: 12/20/2022]
Abstract
AIM Endometriosis is an estrogen-dependent chronic inflammatory condition which causes pain, infertility, and predisposition for ovarian cancer. Endometriosis generates a unique microenvironment for survivability of endometriotic lesions which includes cell proliferation, differentiation, migration, and apoptosis. For these cellular activities, cascading activations of intracellular kinases are needed. Many kinase signaling pathways, IKKβ/NK-κB pathway, PI3K/AKT/mTOR, and the mitogen-activated protein kinase (MAPK) pathways (ERK1/2, p38, and JNK), are activated in endometriosis. In this review, we focus on the role of MAPK pathways in endometriosis. METHODS To identify the role of MAP Kinase signaling pathway in endometriosis we searched the Pubmed database using the search terms in various combinations "endometriosis," "endometrium," "ovary," "MAPK pathway," "ERK pathway," "p38 pathway," "JNK pathway," "estrogen," and "progesterone." RESULTS According to the current literature, MAPK signaling pathway has various roles in generating microenvironment and survival of endometriosis. Abnormal MAPK activation in migration, implantation, growth, invasion into the pelvic structures, proliferation, and apoptosis leads to the form of endometriosis and to worsen the condition in patients with endometriosis. CONCLUSION To further investigations on the effective and long-term endometriosis treatment, MAPK signaling pathways may be targeted. Molecular mechanism of MAPK signaling pathway in endometriosis should be more deeply understood and clinical trials should be more commonly performed for possible new endometriosis treatments to improve fertility and rescue endometriosis irreversibly.
Collapse
Affiliation(s)
- Gizem Bora
- Department of Histology and Embryology, Yeditepe University School of Medicine, İstanbul, Turkey
| | - Aylin Yaba
- Department of Histology and Embryology, Yeditepe University School of Medicine, İstanbul, Turkey
| |
Collapse
|
161
|
Dennison L, Mohan AA, Yarchoan M. Tumor and Systemic Immunomodulatory Effects of MEK Inhibition. Curr Oncol Rep 2021; 23:23. [PMID: 33547983 PMCID: PMC8028056 DOI: 10.1007/s11912-020-01008-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Mitogen-activated protein kinase (MAPK) kinase (MEK) is an integral component of the RAS signaling pathway, one of the most frequently mutated pathways in cancer biology. MEK inhibitors were initially developed to directly target oncogenic signaling, but are recognized to have pleiotropic effects on both tumor cells and lymphocytes. Here, we review the preclinical and clinical evidence that MEK inhibition is immunomodulatory and discuss the potential rationale for combining MEK inhibitors with systemic immunotherapies. RECENT FINDINGS MEK inhibition may modulate the tumor microenvironment (TME) through direct effects on both tumor cells and immune cells. Despite encouraging evidence that MEK inhibition can reprogram the tumor microenvironment (TME) and augment anti-tumor immunity regardless of KRAS/BRAF status, recent clinical outcome studies combining MEK inhibition with systemic immunotherapy have yielded mixed results. The combination of MEK inhibitors plus systemic immunotherapies has been tolerable, but has thus far failed to demonstrate clear evidence of synergistic clinical activity. These results underscore the need to understand the appropriate therapeutic context for this combination. MEK inhibitors have the potential to inhibit oncogenic signaling and reprogram the tumor immune microenvironment, representing an attractive therapy to combine with systemic immunotherapies. Ongoing preclinical and clinical studies will further clarify the immunomodulatory effects of MEK inhibitors to inform the design of rational therapeutic combinations.
Collapse
Affiliation(s)
- Lauren Dennison
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, 21231, USA
| | - Aditya A Mohan
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, 21231, USA
| | - Mark Yarchoan
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, 21231, USA.
| |
Collapse
|
162
|
Li S, Shao J, Lou G, Wu C, Liu Y, Zheng M. MiR-144-3p-mediated dysregulation of EIF4G2 contributes to the development of hepatocellular carcinoma through the ERK pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:53. [PMID: 33526055 PMCID: PMC7852102 DOI: 10.1186/s13046-021-01853-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common cancers with high incidence and mortality. However, the underlying mechanisms of HCC still remain unclear. Eukaryotic translation initiation factors (eIFs) have a substantial effect on tumor development. In this study, we were aimed to investigate the role of eukaryotic translation initiation factor 4 gamma 2 (EIF4G2) in HCC. Methods Western blot (WB) of 30 paired HCC tissues and tissue microarrays (TMAs) conducted by immunohistochemistry (IHC) in 89 paired HCC samples were performed to assess EIF4G2 expression. Clone formation, real-time cell analysis (RTCA), wound healing and transwell assays were adopted to evaluate the role of EIF4G2 on HCC cell proliferation, migration and invasion abilities. The function of EIF4G2 in HCC tumor growth was assessed in a xenograft nude mouse model in vivo. The regulation of EIF4G2 by miR-144-3p was performed by luciferase reporter assay and WB. Results The EIF4G2 protein was clearly upregulated in HCC tissues, and high EIF4G2 expression was closely related to HCC prognosis. EIF4G2 silencing could inhibit HCC cell growth and metastasis in vitro, and suppress tumorigenesis in vivo by repressing the ERK signaling pathway. The results of luciferase reporter assays, WB and IHC staining verified that EIF4G2 was negatively regulated by miR-144. And re-expression of EIF4G2 could partially reverse the inhibiting effect of miR-144 in HCC. Conclusion In summary, our study revealed the role of EIF4G2 in HCC development via the activation of the ERK pathway. We also found that EIF4G2 could be negatively regulated by the tumor suppressor miR-144. Our investigations indicated that EIF4G2 might be a promising therapeutic target in HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01853-6.
Collapse
Affiliation(s)
- Shuangshuang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, China
| | - Jiajia Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, China
| | - Guohua Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, China
| | - Chao Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, China.
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
163
|
Auclair N, Sané AT, Delvin E, Spahis S, Levy E. Phospholipase D as a Potential Modulator of Metabolic Syndrome: Impact of Functional Foods. Antioxid Redox Signal 2021; 34:252-278. [PMID: 32586106 DOI: 10.1089/ars.2020.8081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: Cardiometabolic disorders (CMD) are composed of a plethora of metabolic dysfunctions such as dyslipidemia, nonalcoholic fatty liver disease, insulin resistance, and hypertension. The development of these disorders is highly linked to inflammation and oxidative stress (OxS), two metabolic states closely related to physiological and pathological conditions. Given the drastically rising CMD prevalence, the discovery of new therapeutic targets/novel nutritional approaches is of utmost importance. Recent Advances: The tremendous progress in methods/technologies and animal modeling has allowed the clarification of phospholipase D (PLD) critical roles in multiple cellular processes, whether directly or indirectly via phosphatidic acid, the lipid product mediating signaling functions. In view of its multiple features and implications in various diseases, PLD has emerged as a drug target. Critical Issues: Although insulin stimulates PLD activity and, in turn, PLD regulates insulin signaling, the impact of the two important PLD isoforms on the metabolic syndrome components remains vague. Therefore, after outlining PLD1/PLD2 characteristics and functions, their role in inflammation, OxS, and CMD has been analyzed and critically reported in the present exhaustive review. The influence of functional foods and nutrients in the regulation of PLD has also been examined. Future Directions: Available evidence supports the implication of PLD in CMD, but only few studies emphasize its mechanisms of action and specific regulation by nutraceutical compounds. Therefore, additional investigations are first needed to clarify the functional role of nutraceutics and, second, to elucidate whether targeting PLDs with food compounds represents an appropriate therapeutic strategy to treat CMD. Antioxid. Redox Signal. 34, 252-278.
Collapse
Affiliation(s)
- Nickolas Auclair
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology & Physiology and Université de Montréal, Montreal, Quebec, Canada
| | - Alain T Sané
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Edgard Delvin
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Schohraya Spahis
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Emile Levy
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology & Physiology and Université de Montréal, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
164
|
Li Y, Wei W, An S, Jiang J, He J, Zhang H, Wang G, Han J, Liang B, Ye L, Liang H. Identification and analysis of lncRNA, microRNA and mRNA expression profiles and construction of ceRNA network in Talaromyces marneffei-infected THP-1 macrophage. PeerJ 2021; 9:e10529. [PMID: 33520437 PMCID: PMC7811284 DOI: 10.7717/peerj.10529] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023] Open
Abstract
Background Competitive endogenous RNA (ceRNA) reveals new mechanisms for interactions between RNAs, which have been considered to play a significant role in pathogen-host innate immune response. However, knowledge of ceRNA regulatory networks in Talaromyces marneffei (TM)-macrophages is still limited. Methods Next-generation sequencing technology (NGS) was used to obtain mRNA, miRNA and lncRNA expression profiles in TM-infected macrophages. The R package DESeq2 was used to identify differentially expressed lncRNA, miRNA and mRNA. The R package GOseq was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and the ceRNA network of lncRNA–miRNA–mRNA interaction was constructed in Cytoscape. Similarly, functional enrichment analysis on mRNA in the ceRNA network. Finally, two mRNAs and four lncRNAs in the ceRNA network were randomly selected to verify the expression using qRT-PCR. Results In total, 119 lncRNAs, 28 miRNAs and 208 mRNAs were identified as differentially expressed RNAs in TM-infected macrophages. The constructed ceRNA network contains 38 lncRNAs, 10 miRNAs and 45 mRNAs. GO and KEGG analysis of mRNA in the ceRNA network indicated that activated pathways in TM-infected macrophages were related to immunity, inflammation and metabolism. The quantitative validation of the expression of four randomly selected differentially expressed lncRNAs, AC006252.1, AC090197.1, IL6R-AS1, LINC02009 and two mRNAs, CSF1, NR4A3 showed that the expression levels were consistent with those in the RNA-sequencing. Conclusions The ceRNA network related to immunity, inflammation and metabolism plays an important role in TM-macrophage interaction. This study may provide effective and novel insights for further understanding the underlying mechanism of TM infection.
Collapse
Affiliation(s)
- Yueqi Li
- Guangxi Collaborative Innovation Center for Biomedicine & Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Wudi Wei
- Guangxi Collaborative Innovation Center for Biomedicine & Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Sanqi An
- Guangxi Collaborative Innovation Center for Biomedicine & Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Junjun Jiang
- Guangxi Collaborative Innovation Center for Biomedicine & Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinhao He
- Guangxi Collaborative Innovation Center for Biomedicine & Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Zhang
- Guangxi Collaborative Innovation Center for Biomedicine & Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Gang Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Han
- Guangxi Collaborative Innovation Center for Biomedicine & Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Bingyu Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Li Ye
- Guangxi Collaborative Innovation Center for Biomedicine & Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Hao Liang
- Guangxi Collaborative Innovation Center for Biomedicine & Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
165
|
Kiuchi M, Onodera A, Kokubo K, Ichikawa T, Morimoto Y, Kawakami E, Takayama N, Eto K, Koseki H, Hirahara K, Nakayama T. The Cxxc1 subunit of the Trithorax complex directs epigenetic licensing of CD4+ T cell differentiation. J Exp Med 2021; 218:211672. [PMID: 33433611 PMCID: PMC7808308 DOI: 10.1084/jem.20201690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Different dynamics of gene expression are observed during cell differentiation. In T cells, genes that are turned on early or turned off and stay off have been thoroughly studied. However, genes that are initially turned off but then turned on again after stimulation has ceased have not been defined; they are obviously important, especially in the context of acute versus chronic inflammation. Using the Th1/Th2 differentiation paradigm, we found that the Cxxc1 subunit of the Trithorax complex directs transcription of genes initially down-regulated by TCR stimulation but up-regulated again in a later phase. The late up-regulation of these genes was impaired either by prolonged TCR stimulation or Cxxc1 deficiency, which led to decreased expression of Trib3 and Klf2 in Th1 and Th2 cells, respectively. Loss of Cxxc1 resulted in enhanced pathogenicity in allergic airway inflammation in vivo. Thus, Cxxc1 plays essential roles in the establishment of a proper CD4+ T cell immune system via epigenetic control of a specific set of genes.
Collapse
Affiliation(s)
- Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan.,Institute for Global Prominent Research, Chiba University, Chuo-ku, Chiba, Japan
| | - Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Tomomi Ichikawa
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Yuki Morimoto
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Eiryo Kawakami
- Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Medical Sciences Innovation Hub Program, RIKEN, Yokohama, Kanagawa, Japan
| | - Naoya Takayama
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koji Eto
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Haruhiko Koseki
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan.,AMED-PRIME, Japan Agency for Medical Research and Development, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Medical Science and Technology (AMED-CREST), Chiba, Japan
| |
Collapse
|
166
|
Pattanaik KP, Ganguli G, Naik SK, Sonawane A. Mycobacterium tuberculosis EsxL induces TNF-α secretion through activation of TLR2 dependent MAPK and NF-κB pathways. Mol Immunol 2021; 130:133-141. [PMID: 33419561 DOI: 10.1016/j.molimm.2020.11.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Mycobacterium tuberculosis (Mtb) employs distinct strategies to circumvent host immune responses during the infection process. Various Mtb cell-wall associated and secretory proteins are known to play a critical role in the orchestration of host innate immune responses through modulation of signaling pathways. Mtb genome encodes for 23 (EsxA-EsxW) proteins belonging to the ESAT-6 like family; however, most of them are functionally unknown. Here, we show that Mtb EsxL induces tumor necrosis factor-alpha (TNF-α) production by activating nuclear translocation of nuclear factor-κB (NF-κB) via interaction with Toll-like Receptor 2 (TLR2). Blocking or silencing of TLR2 abrogated nuclear translocation of NF-kB and TNF-α production. Treatment with recombinant purified EsxL (rEsxL) activated mitogen-activated protein kinase (MAPK) pathway by inducing the phosphorylation of extracellular signal-regulated kinase (ERK) and p38 kinase (p38) pathways. At the same time, inhibition of ERK and p38 down-regulated the expression of TNF-α in rEsxL exposed murine macrophages. Besides TNF-α, EsxL also induced the production of IL-6 proinflammatory cytokine. Taken together, these results suggest that EsxL is able to induce TNF-α secretion via TLR2 through activation of NF-κB and MAPK signaling. This study will help in deducing therapeutic strategies for better control of the disease.
Collapse
Affiliation(s)
| | - Geetanjali Ganguli
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Sumanta Kumar Naik
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Avinash Sonawane
- Discipline of Biosciences and Biomedical Engineering, IIT Indore, Madhya Pradesh, India.
| |
Collapse
|
167
|
Zhang M, Miura T, Suzuki S, Chiyotanda M, Tanaka S, Sugiyama K, Kawashima H, Hirano T. Vitamin K2 Suppresses Proliferation and Inflammatory Cytokine Production in Mitogen-Activated Lymphocytes of Atopic Dermatitis Patients through the Inhibition of Mitogen-Activated Protein Kinases. Biol Pharm Bull 2021; 44:7-17. [PMID: 33390552 DOI: 10.1248/bpb.b20-00079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vitamin K2 is suggested to have a suppressive effect on the peripheral blood mononuclear cells (PBMCs) of pediatric atopic dermatitis patients. We examined the molecular targets of vitamin K2 to suppress proliferation and cytokine production in T-cell mitogen-activated PBMCs of atopic dermatitis patients from the viewpoint of mitogen-activated protein kinase signaling molecules. The study population included 16 pediatric vitamin K2 patients and 21 healthy subjects. The effect of vitamin K2 on concanavalin A-activated PBMC proliferation was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and cell counting assays. T-helper (Th)1/Th2/Th17 cytokine profiles in plasma and PBMC-culture supernatants were analyzed by a cytometric beads array assay. Mitogen-activated protein kinase signaling molecules in concanavalin A-activated PBMCs were examined by enzyme-linked immunosorbent assay (ELISA) assays. At 10-100 µM, vitamin K2 significantly suppressed the proliferation of mitogen-activated PBMCs derived from atopic dermatitis patients and healthy subjects (p < 0.05). The interleukin (IL)-10 concentrations in plasma and the PBMC culture supernatants of atopic dermatitis patients were significantly higher than those of healthy subjects (p < 0.05). The IL-2 concentrations in the culture supernatants of atopic dermatitis PBMCs were significantly lower than those of healthy PBMCs (p < 0.05). Vitamin K2 significantly inhibited the IL-17A, IL-10, and tumor necrosis factor α (TNF-α) production (p < 0.05), and increased the IL-2 production (p < 0.01) in the culture supernatant of atopic dermatitis PBMCs. At 10-100 µM, vitamin K2 markedly decreased the of Mek1, extracellular signal-regulated kinases (ERK)1/2 mitogen-activated protein kinase, and SAPK/c-Jun N-terminal kinase (JNK) expression in atopic dermatitis PBMCs (p < 0.05). Vitamin K2 is suggested to attenuate activated T-cell immunity in atopic dermatitis patients through the inhibition of mitogen-activated protein kinase-Mek1-ERK1/2 and SAPK/JNK signaling pathways.
Collapse
Affiliation(s)
- Meiyu Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences.,Experimental Research Center, China Academy of Chinese Medical Sciences
| | - Taro Miura
- Department of Pediatrics, Tokyo Medical University Hachioji Medical Center
| | - Shunsuke Suzuki
- Department of Pediatrics, Tokyo Medical University Hachioji Medical Center
| | - Masako Chiyotanda
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University
| | - Sachiko Tanaka
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Kentaro Sugiyama
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hisashi Kawashima
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University
| | - Toshihiko Hirano
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
168
|
Anti-Proliferative Effect of Allium senescens L. Extract in Human T-Cell Acute Lymphocytic Leukemia Cells. Molecules 2020; 26:molecules26010035. [PMID: 33374788 PMCID: PMC7795430 DOI: 10.3390/molecules26010035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 11/22/2022] Open
Abstract
Allium species are well known plants distributed throughout the world, and they contain various bioactive components with different biological activities including anti-cancer effects. In this study, we investigated the inhibitory effect of Allium senescens L. (A.S.) extract on cell survival and IL-2-mediated inflammation in human T cell acute lymphocytic leukemia (T-ALL) Jurkat cells. Our results showed that A.S. extract induced caspase-dependent apoptosis of Jurkat cells with no significant cytotoxicity in the normal peripheral blood mononuclear cells. A.S. extract induced ROS generation through the activation of MAPK p38 phosphorylation. It also inhibited IL-2 mRNA expression and NF-κB signaling mediated by phorbol 12-myristate 13-acetate, and phytohemagglutinin. Combined treatment with A.S. extract and axitinib/dovitinib exerted enhanced inhibitory effects on T-ALL cell growth and IL-2 production. These results provide novel information on the potential use of A.S. extract as a therapeutic herbal agent for the treatment and prevention of T-ALL.
Collapse
|
169
|
Toraih EA, Sedhom JA, Dokunmu TM, Hussein MH, Ruiz EML, Muthusamy K, Zerfaoui M, Kandil E. Hidden in plain sight: The effects of BCG vaccination in the COVID-19 pandemic. J Med Virol 2020; 93:1950-1966. [PMID: 33289122 PMCID: PMC7753709 DOI: 10.1002/jmv.26707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022]
Abstract
To investigate the relationship between Bacille Calmette‐Guérin (BCG) vaccination and SARS‐CoV‐2 by a bioinformatics approach, two datasets for the SARS‐CoV‐2 infection group and BCG‐vaccinated group were downloaded. Differentially Expressed Genes were identified. Gene ontology and pathways were functionally enriched, and networking was constructed in NetworkAnalyst. Lastly, the correlation between post‐BCG vaccination and COVID‐19 transcriptome signatures was established. A total of 161 DEGs (113 upregulated DEGs and 48 downregulated genes) were identified in the SARS‐CoV‐2 group. In the pathway enrichment analysis, a cross‐reference of upregulated Kyoto Encyclopedia of Genes and Genomes pathways in SARS‐CoV‐2 with downregulated counterparts in the BCG‐vaccinated group, resulted in the intersection of 45 common pathways, accounting for 86.5% of SARS‐CoV‐2 upregulated pathways. Of these intersecting pathways, a vast majority were immune and inflammatory pathways with top significance in interleukin‐17, tumor necrosis factor, NOD‐like receptors, and nuclear factor‐κB signaling pathways. Given the inverse relationship of the specific differentially expressed gene pathways highlighted in our results, the BCG‐vaccine may play a protective role against COVID‐19 by mounting a nonspecific immunological response and further investigation of this relationship is warranted.
Collapse
Affiliation(s)
- Eman A Toraih
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Genetics Unit, Department of Histology and Cell Biology, Suez Canal University, Ismailia, Egypt
| | - Jessica A Sedhom
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Titilope M Dokunmu
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA.,College of Science and Technology, Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Mohammad H Hussein
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Emmanuelle M L Ruiz
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | | - Mourad Zerfaoui
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Emad Kandil
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
170
|
Zhang M, Yin X, Li M, Wang R, Qian Y, Hong M. Effect of nitrite exposure on haematological status, oxidative stress, immune response and apoptosis in yellow catfish (Pelteobagrus fulvidraco). Comp Biochem Physiol C Toxicol Pharmacol 2020; 238:108867. [PMID: 32791252 DOI: 10.1016/j.cbpc.2020.108867] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 11/20/2022]
Abstract
Nitrite can cause fishes poisoning. This study evaluated the effects of nitrite exposure on haematological status, ion concentration, antioxidant enzyme activity, immune response, cytokine release and apoptosis in yellow catfish. In this study, yellow catfish were exposed to three levels of nitrite (0, 3.00 and 30.00 mg L-1) for 96 h. The results showed that nitrite poisoning could lead to blood deterioration (red blood cell and hemoglobin reduced; white blood cell and methemoglobin elevated), ion imbalance (Na+ and Cl- declined; K+ elevated), oxidative stress (total antioxidant capacity, superoxide dismutase, catalase and glutathione peroxidase activities declined; malondialdehyde accumulation), immunosuppression (lysozyme activity, 50% hemolytic complement, immunoglobulin M, respiratory burst and phagocytic index declined) and cytokines release (TNF, IL 1 and IL 8 elevated). In addition, nitrite poisoning could induce up-regulation of antioxidant enzymes (Cu/Zn-SOD, Mn-SOD, CAT and GPx), cytokines (TNF, IL 1 and IL 8) and apoptosis (P53, Bax, Cytochrome c, Caspase 3, Caspase 9, ERK and JNK) genes transcription. This study suggesting that the nitrite exposure triggers blood deterioration, disrupts the ionic homeostasis, induces oxidative stress, immunosuppression, inflammation and apoptosis in yellow catfish.
Collapse
Affiliation(s)
- Muzi Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xiaolong Yin
- Zhoushan Fisheries Research Institute of Zhejiang Province, Zhoushan 316000, China
| | - Ming Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yunxia Qian
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
171
|
Polewko-Klim A, Lesiński W, Golińska AK, Mnich K, Siwek M, Rudnicki WR. Sensitivity analysis based on the random forest machine learning algorithm identifies candidate genes for regulation of innate and adaptive immune response of chicken. Poult Sci 2020; 99:6341-6354. [PMID: 33248550 PMCID: PMC7704721 DOI: 10.1016/j.psj.2020.08.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 07/14/2020] [Accepted: 08/11/2020] [Indexed: 11/25/2022] Open
Abstract
Two categories of immune responses—innate and adaptive immunity—have both polygenic backgrounds and a significant environmental component. The goal of the reported study was to define candidate genes and mutations for the immune traits of interest in chickens using machine learning–based sensitivity analysis for single-nucleotide polymorphisms (SNPs) located in candidate genes defined in quantitative trait loci regions. Here the adaptive immunity is represented by the specific antibody response toward keyhole limpet hemocyanin (KLH), whereas the innate immunity was represented by natural antibodies toward lipopolysaccharide (LPS) and lipoteichoic acid (LTA). The analysis consisted of 3 basic steps: an identification of candidate SNPs via feature selection, an optimisation of the feature set using recursive feature elimination, and finally a gene-level sensitivity analysis for final selection of models. The predictive model based on 5 genes (MAPK8IP3 CRLF3, UNC13D, ILR9, and PRCKB) explains 14.9% of variance for KLH adaptive response. The models obtained for LTA and LPS use more genes and have lower predictive power, explaining respectively 7.8 and 4.5% of total variance. In comparison, the linear models built on genes identified by a standard statistical analysis explain 1.5, 0.5, and 0.3% of variance for KLH, LTA, and LPS response, respectively. The present study shows that machine learning methods applied to systems with a complex interaction network can discover phenotype-genotype associations with much higher sensitivity than traditional statistical models. It adds contribution to evidence suggesting a role of MAPK8IP3 in the adaptive immune response. It also indicates that CRLF3 is involved in this process as well. Both findings need additional verification.
Collapse
Affiliation(s)
- Aneta Polewko-Klim
- Institute of Computer Science, University of Bialystok, Białystok, Poland.
| | - Wojciech Lesiński
- Institute of Computer Science, University of Bialystok, Białystok, Poland
| | | | - Krzysztof Mnich
- Computational Centre, University of Bialystok, Białystok, Poland
| | - Maria Siwek
- Animal Biotechnology and Genetics Department, University of Technology and Life Sciences, Bydgoszcz, Poland
| | - Witold R Rudnicki
- Institute of Computer Science, University of Bialystok, Białystok, Poland; Computational Centre, University of Bialystok, Białystok, Poland; Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
| |
Collapse
|
172
|
Jiang L, Liu B, Qi Y, Zhu L, Cui X, Liu Z. Antagonistic effects of activin A and TNF-α on the activation of L929 fibroblast cells via Smad3-independent signaling. Sci Rep 2020; 10:20623. [PMID: 33244088 PMCID: PMC7693280 DOI: 10.1038/s41598-020-77783-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Fibroblasts play an important role in inflammation and tissue fibrosis. Both activin A and TNF-α can activate immune cells, however, the roles and relationship of them in activating fibroblasts in inflammation remain unclear. Here, this study revealed that TNF-α promoted the release of NO and IL-6 by L929 fibroblast cells, but co-treatment with activin A attenuated these effects. In contrast, activin A induced cell migration and increased the production of tissue fibrosis-related TGF-β1 and fibronectin, while TNF-α inhibited these function changes of L929 cells induced by activin A. Moreover, this study revealed that activin A and TNF-α regulated the activities of L929 cells via ERK1/2/MAPK pathway, rather than Smad3-dependent signaling pathway. Taken together, these data indicate that activin A and TNF-α exert mutually antagonistic effects on regulating fibroblasts activities, and the balance between their action may determine the process and outcome of fibroblasts-mediated inflammation.
Collapse
Affiliation(s)
- Lingling Jiang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China.,Department of General Dentistry, School and Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Boyang Liu
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, China.,Department of Scientific Research, Jilin Jianzhu University, Changchun, 130118, Jilin, China
| | - Yan Qi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China
| | - Linru Zhu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China
| | - Xueling Cui
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, China
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
173
|
Bulut O, Kilic G, Domínguez-Andrés J, Netea MG. Overcoming immune dysfunction in the elderly: trained immunity as a novel approach. Int Immunol 2020; 32:741-753. [PMID: 32766848 PMCID: PMC7680842 DOI: 10.1093/intimm/dxaa052] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
People with advanced age have a higher susceptibility to infections and exhibit increased mortality and morbidity as the ability of the immune system to combat infections decreases with age. While innate immune cells display functional defects such as decreased phagocytosis, chemotaxis and cytokine production, adaptive immune cells exhibit reduced receptor diversity, defective antibody production and a sharp decline in naive cell populations. Successful responses to vaccination in the elderly are critical to prevent common infections such as influenza and pneumonia, but vaccine efficacy decreases in older individuals compared with young adults. Trained immunity is a newly emerging concept that showed that innate immune cells possess non-specific immunological memory established through epigenetic and metabolic reprogramming upon encountering certain pathogenic stimuli. Clinical studies suggest that trained immunity can be utilized to enhance immune responses against infections and improve the efficiency of vaccinations in adults; however, how trained immunity responses are shaped with advanced age is still an open question. In this review, we provide an overview of the age-related changes in the immune system with a focus on innate immunity, discuss current vaccination strategies for the elderly, present the concept of trained immunity and propose it as a novel approach to enhance responses against infections and vaccinations in the elderly population.
Collapse
Affiliation(s)
- Ozlem Bulut
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, GA Nijmegen, The Netherlands
| | - Gizem Kilic
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, GA Nijmegen, The Netherlands
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, GA Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
174
|
Tawarayama H, Suzuki N, Inoue-Yanagimachi M, Himori N, Tsuda S, Sato K, Ida T, Akaike T, Kunikata H, Nakazawa T. Glutathione Trisulfide Prevents Lipopolysaccharide-induced Inflammatory Gene Expression in Retinal Pigment Epithelial Cells. Ocul Immunol Inflamm 2020; 30:789-800. [PMID: 33215957 DOI: 10.1080/09273948.2020.1833224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We investigated the effects of glutathione trisulfide (GSSSG) on lipopolysaccharide (LPS)-induced inflammatory gene expression in immortalized ARPE-19, and primary human and mouse retinal pigment epithelial (RPE) cells. Sulfane sulfur molecules were significantly increased in GSSSG-treated ARPE-19 cells. GSSSG prevented the LPS-induced upregulation of interleukin (IL)-1β, IL-6, and C-C motif chemokine ligand 2 (CCL2) in ARPE-19/primary RPE cells. Moreover, GSSSG prevented the activation of the nuclear factor-kappa B p65 subunit, and promoted the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) in LPS-treated ARPE-19 cells. ERK1/2 inhibition prevented the GSSSG-mediated inhibition of LPS-induced IL-6 and CCL2 upregulation. Additionally, ERK1/2 activation prevented the upregulation of these genes in the absence of GSSSG. Knockdown of HMOX1 or NRF2, known as anti-oxidative genes, did not affect the activity of GSSSG in the context of LPS stimulation. These findings suggest that GSSSG attenuates LPS-induced inflammatory gene expression via ERK signaling hyperactivation, independently of the NRF2/HMOX1 pathway.
Collapse
Affiliation(s)
- Hiroshi Tawarayama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriyuki Suzuki
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Maki Inoue-Yanagimachi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoru Tsuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Kunikata
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan.,Collaborative Program of Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
175
|
Vind AC, Genzor AV, Bekker-Jensen S. Ribosomal stress-surveillance: three pathways is a magic number. Nucleic Acids Res 2020; 48:10648-10661. [PMID: 32941609 PMCID: PMC7641731 DOI: 10.1093/nar/gkaa757] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022] Open
Abstract
Cells rely on stress response pathways to uphold cellular homeostasis and limit the negative effects of harmful environmental stimuli. The stress- and mitogen-activated protein (MAP) kinases, p38 and JNK, are at the nexus of numerous stress responses, among these the ribotoxic stress response (RSR). Ribosomal impairment is detrimental to cell function as it disrupts protein synthesis, increase inflammatory signaling and, if unresolved, lead to cell death. In this review, we offer a general overview of the three main translation surveillance pathways; the RSR, Ribosome-associated Quality Control (RQC) and the Integrated Stress Response (ISR). We highlight recent advances made in defining activation mechanisms for these pathways and discuss their commonalities and differences. Finally, we reflect on the physiological role of the RSR and consider the therapeutic potential of targeting the sensing kinase ZAKα for treatment of ribotoxin exposure.
Collapse
Affiliation(s)
- Anna Constance Vind
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Aitana Victoria Genzor
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| |
Collapse
|
176
|
Casagrande FB, Ferreira SDS, de Sousa ESA, Guimarães JPT, Romera LMD, Tessaro FHG, de Almeida SR, Rodrigues SFDP, Martins JO. Insulin Modulates Inflammatory Cytokine Release in Acute Stages and Augments Expression of Adhesion Molecules and Leukocytes in Lungs on Chronic Stages of Paracoccidioidomycosis. Front Immunol 2020; 11:583385. [PMID: 33312173 PMCID: PMC7708333 DOI: 10.3389/fimmu.2020.583385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023] Open
Abstract
Type 1 diabetesmellitus (T1D) is caused by partial destruction of the insulin-producing beta cells in the pancreas and is a major issue for public health care worldwide. Reduced or impaired immunological responses, which render patients more susceptible to infections, have been observed in T1D, and this dysfunction is often related to a lack of insulin in the blood. Paracoccidioidomycosis is an important systemic mycosis endemic in Latin America. To evaluate the effects of T1D on this fungal infection and the modulatory effects of insulin, we induced diabetes in C57Bl/6 male mice (alloxan, 60 mg/kg), infected the mice (Pb18, 1 x 106 cells), and treated the mice with neutral protamine Hagedorn (NPH) insulin (2 IU/600 mg/dL blood glucose). Twenty-four hours after infection, infected diabetic mice showed reduced secretion of interferon (IFN)-γ and interleukine (IL)-12 p70 compared to infected nondiabetic controls. On the 45th day of infection, infected diabetic mice presented higher IFN-γ levels, a higher tumor necrosis factor (TNF)-α:IL-10 ratio, and lower adhesion molecule expression levels than nondiabetic mice. In the in vitro experiments, alveolar macrophages from diabetic animals showed reduced phagocytic activity compared to those from control animals at 4, 12, and 24 h. In infected diabetic mice, treatment with insulin restored IL-12 p70 levels at 24 h of infection, reduced IFN-γ levels and the TNF-α:IL-10 ratio at 45 days, and restored vascular cell adhesion molecule (VCAM)-1 expression in pulmonary blood vessels, and this treatment reduced the diminished phosphorylation of extracellular signal-regulated kinases (ERK) and increased nuclear factor-kappa-B(iκb)-α and jun amino-terminal kinases (JNK) p46 levels in infected nondiabetic mice. In addition, insulin promoted increased phagocytic activity in the alveolar macrophages of diabetic mice. These data suggest that T1D mice are more susceptible to Pb18 infection and that insulin modulates this inflammation in diabetic mice by augmenting the expression of adhesion molecules and leukocytes in the lungs and by reducing chronic inflammation.
Collapse
Affiliation(s)
- Felipe Beccaria Casagrande
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University of São Paulo (FCF/USP), São Paulo, Brazil
| | - Sabrina de Souza Ferreira
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University of São Paulo (FCF/USP), São Paulo, Brazil
| | - Emanuella Sarmento Alho de Sousa
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University of São Paulo (FCF/USP), São Paulo, Brazil
| | - João Pedro Tôrres Guimarães
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University of São Paulo (FCF/USP), São Paulo, Brazil
| | - Lavínia Maria Dal’Mas Romera
- Laboratory of Mycology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University of São Paulo (FCF/USP), São Paulo, Brazil
| | - Fernando Henrique Galvão Tessaro
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University of São Paulo (FCF/USP), São Paulo, Brazil
| | - Sandro Rogério de Almeida
- Laboratory of Mycology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University of São Paulo (FCF/USP), São Paulo, Brazil
| | - Stephen Fernandes de Paula Rodrigues
- Laboratory of Vascular Nanopharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo, Brazil
| | - Joilson O. Martins
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University of São Paulo (FCF/USP), São Paulo, Brazil
| |
Collapse
|
177
|
Jung HJ, Park SH, Cho KM, Jung KI, Cho D, Kim TS. Threonyl-tRNA Synthetase Promotes T Helper Type 1 Cell Responses by Inducing Dendritic Cell Maturation and IL-12 Production via an NF-κB Pathway. Front Immunol 2020; 11:571959. [PMID: 33178197 PMCID: PMC7592646 DOI: 10.3389/fimmu.2020.571959] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Threonyl-tRNA synthetase (TRS) is an aminoacyl-tRNA synthetase that catalyzes the aminoacylation of tRNA by transferring threonine. In addition to an essential role in translation, TRS was extracellularly detected in autoimmune diseases and also exhibited pro-angiogenetic activity. TRS is reported to be secreted into the extracellular space when vascular endothelial cells encounter tumor necrosis factor-α. As T helper (Th) type 1 response and IFN-γ levels are associated with autoimmunity and angiogenesis, in this study, we investigated the effects of TRS on dendritic cell (DC) activation and CD4 T cell polarization. TRS-treated DCs exhibited up-regulated expression of activation-related cell-surface molecules, including CD40, CD80, CD86, and MHC class II. Treatment of DCs with TRS resulted in a significant increase of IL-12 production. TRS triggered nuclear translocation of the NF-κB p65 subunit along with the degradation of IκB proteins and the phosphorylation of MAPKs in DCs. Additionally, MAPK inhibitors markedly recovered the degradation of IκB proteins and the increased IL-12 production in TRS-treated DCs, suggesting the involvement of MAPKs as the upstream regulators of NF-κB in TRS-induced DC maturation and activation. Importantly, TRS-stimulated DCs significantly increased the populations of IFN-γ+CD4 T cells, and the levels of IFN-γ when co-cultured with CD4+ T cells. The addition of a neutralizing anti-IL-12 mAb to the cell cultures of TRS-treated DCs and CD4+ T cells resulted in decreased IFN-γ production, indicating that TRS-stimulated DCs may enhance the Th1 response through DC-derived IL-12. Injection of OT-II mice with OVA-pulsed, TRS-treated DCs also enhanced Ag-specific Th1 responses in vivo. Importantly, injection with TRS-treated DC exhibited increased populations of IFN-γ+-CD4+ and -CD8+ T cells as well as secretion level of IFN-γ, resulting in viral clearance and increased survival periods in mice infected with influenza A virus (IAV), as the Th1 response is associated with the enhanced cellular immunity, including anti-viral activity. Taken together, these results indicate that TRS promotes the maturation and activation of DCs, DC-mediated Th1 responses, and anti-viral effect on IAV infection.
Collapse
Affiliation(s)
- Hak-Jun Jung
- Department of Life Science, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | - Su-Ho Park
- Department of Life Science, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | - Kyung-Min Cho
- Department of Life Science, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | - Kwang Il Jung
- Department of Life Science, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | - Daeho Cho
- Institute of Convergence Science, Korea University, Seoul, South Korea
| | - Tae Sung Kim
- Department of Life Science, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
178
|
Pan J, Jiang Z, Wu D, Yang C, Wang Z, Huang J. Huaier Extractum Promotes Dendritic Cells Maturation and Favors them to Induce Th1 Immune Response: One of the Mechanisms Underlying Its Anti-Tumor Activity. Integr Cancer Ther 2020; 19:1534735420946830. [PMID: 33054422 PMCID: PMC7570295 DOI: 10.1177/1534735420946830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Huaier, a sandy beige mushroom with anti-tumor effects, has been applied into Traditional Chinese Medicine for more than 1600 years. Previous studies showed that Huaier exerted its anti-tumor effects not only by direct action on tumor cells, but also indirectly by modulation of immune function. In the present study, we found that Huaier treatment significantly repressed tumor growth in mice with 4T1 breast cancer and resulted in significant accumulation of CD4+ T cells and mature dendritic cells (DCs) in the tumor microenvironment. In vitro experiments demonstrated that Huaier treatment promoted both DC2.4 and bone marrow derived DCs (BMDCs) to express costimulatory molecules, enhance production of IL-1β and IL-12p70, while it inhibited their phagocytic activities, suggesting that Huaier treatment promotes maturation of DCs. Furthermore, we found Huaier-treated DCs profoundly stimulated proliferation of alloreactive CD4+ T cells and drove them to differentiate into Th1 subset. Expression of PI3K, Akt, p-Akt, JNK, and p-JNK was up-regulated, while p-p38 MAPK was down-regulated in Huaier-treated BMDCs, suggesting that Huaier promotes maturation of DCs with potent ability to activate Th1 immune response via modulation of MAPK and PI3K/Akt signaling pathways. Our findings provide further evidence for the mechanisms underlying the anti-tumor activity of Huaier.
Collapse
Affiliation(s)
- Jun Pan
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.,Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Zhou Jiang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.,Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Dang Wu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.,Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Chenghui Yang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.,Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Zhen Wang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.,Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.,Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| |
Collapse
|
179
|
Montero L, Cervantes-Torres J, Sciutto E, Fragoso G. Helminth-derived peptide GK-1 induces Myd88-dependent pro-inflammatory signaling events in bone marrow-derived antigen-presenting cells. Mol Immunol 2020; 128:22-32. [PMID: 33049560 DOI: 10.1016/j.molimm.2020.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022]
Abstract
GK-1 is an immunomodulatory, 18-aa-long peptide that has been proved to promote the activation of mouse peritoneal macrophages and LPS-pulsed mouse bone marrow-derived dendritic cells (BM-DCs). This study is aimed to explore the mechanisms underlying the activation of these antigen-presenting cells (APCs) by GK-1. In our study, GK-1 up-regulated in vitro the expression of CD86 and CD40, and it increased the secretion of NO in bone marrow-derived macrophages (BMDMs). In BM-DCs, GK-1 upregulated the expression of MHC class II and CD86. Additionally, GK-1 was found to be involved in the phosphorylation of MAPK p38, JNK and ERK 1/2 and in Myd88-dependent activation of NF-κB in both antigen-presenting cell types. In vivo, GK-1 increased the secretion of IL-15, CCL2, and IL-6 through a Myd88-dependent mechanism. This study demonstrated that GK-1 promotes the activation and effector activity of APCs through a mechanism dependent on Myd88, probably involving a Toll-like receptor as a target.
Collapse
Affiliation(s)
- Laura Montero
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, 04510, Mexico.
| | | | - Edda Sciutto
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, 04510, Mexico.
| | - Gladis Fragoso
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, 04510, Mexico.
| |
Collapse
|
180
|
Cong H, Zhang M, Chang H, Du L, Zhang X, Yin L. Icariin ameliorates the progression of experimental autoimmune encephalomyelitis by down-regulating the major inflammatory signal pathways in a mouse relapse-remission model of multiple sclerosis. Eur J Pharmacol 2020; 885:173523. [DOI: 10.1016/j.ejphar.2020.173523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022]
|
181
|
Yang X, Amgad M, Cooper LAD, Du Y, Fu H, Ivanov AA. High expression of MKK3 is associated with worse clinical outcomes in African American breast cancer patients. J Transl Med 2020; 18:334. [PMID: 32873298 PMCID: PMC7465409 DOI: 10.1186/s12967-020-02502-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND African American women experience a twofold higher incidence of triple-negative breast cancer (TNBC) and are 40% more likely to die from breast cancer than women of other ethnicities. However, the molecular bases for the survival disparity in breast cancer remain unclear, and no race-specific therapeutic targets have been proposed. To address this knowledge gap, we performed a systematic analysis of the relationship between gene mRNA expression and clinical outcomes determined for The Cancer Genome Atlas (TCGA) breast cancer patient cohort. METHODS The systematic differential analysis of mRNA expression integrated with the analysis of clinical outcomes was performed for 1055 samples from the breast invasive carcinoma TCGA PanCancer cohorts. A deep learning fully-convolutional model was used to determine the association between gene expression and tumor features based on breast cancer patient histopathological images. RESULTS We found that more than 30% of all protein-coding genes are differentially expressed in White and African American breast cancer patients. We have determined a set of 32 genes whose overexpression in African American patients strongly correlates with decreased survival of African American but not White breast cancer patients. Among those genes, the overexpression of mitogen-activated protein kinase kinase 3 (MKK3) has one of the most dramatic and race-specific negative impacts on the survival of African American patients, specifically with triple-negative breast cancer. We found that MKK3 can promote the TNBC tumorigenesis in African American patients in part by activating of the epithelial-to-mesenchymal transition induced by master regulator MYC. CONCLUSIONS The poor clinical outcomes in African American women with breast cancer can be associated with the abnormal elevation of individual gene expression. Such genes, including those identified and prioritized in this study, could represent new targets for therapeutic intervention. A strong correlation between MKK3 overexpression, activation of its binding partner and major oncogene MYC, and worsened clinical outcomes suggests the MKK3-MYC protein-protein interaction as a new promising target to reduce racial disparity in breast cancer survival.
Collapse
Affiliation(s)
- Xuan Yang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Mohamed Amgad
- Department of Biomedical Informatics, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Lee A D Cooper
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA.
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
- Department of Hematology & Medical Oncology, Emory University, Atlanta, GA, USA.
| | - Andrey A Ivanov
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA.
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
182
|
Mahmudpour M, Roozbeh J, Keshavarz M, Farrokhi S, Nabipour I. COVID-19 cytokine storm: The anger of inflammation. Cytokine 2020; 133:155151. [PMID: 32544563 PMCID: PMC7260598 DOI: 10.1016/j.cyto.2020.155151] [Citation(s) in RCA: 320] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
Patients with COVID-19 who require ICU admission might have the cytokine storm. It is a state of out-of-control release of a variety of inflammatory cytokines. The molecular mechanism of the cytokine storm has not been explored extensively yet. The attachment of SARS-CoV-2 spike glycoprotein with angiotensin-converting enzyme 2 (ACE2), as its cellular receptor, triggers complex molecular events that leads to hyperinflammation. Four molecular axes that may be involved in SARS-CoV-2 driven inflammatory cytokine overproduction are addressed in this work. The virus-mediated down-regulation of ACE2 causes a burst of inflammatory cytokine release through dysregulation of the renin-angiotensin-aldosterone system (ACE/angiotensin II/AT1R axis), attenuation of Mas receptor (ACE2/MasR axis), increased activation of [des-Arg9]-bradykinin (ACE2/bradykinin B1R/DABK axis), and activation of the complement system including C5a and C5b-9 components. The molecular clarification of these axes will elucidate an array of therapeutic strategies to confront the cytokine storm in order to prevent and treat COVID-19 associated acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Mehdi Mahmudpour
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Shokrollah Farrokhi
- Department of Immunology and Allergy, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Future Studies Group, The Academy of Medical Sciences of the I.R., Iran.
| |
Collapse
|
183
|
Yang S, Tang Q, Chen L, Chang J, Jiang T, Zhao J, Wang M, Chen PR. Cationic Lipid-based Intracellular Delivery of Bacterial Effectors for Rewiring Malignant Cell Signaling. Angew Chem Int Ed Engl 2020; 59:18087-18094. [PMID: 32671943 DOI: 10.1002/anie.202009572] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Indexed: 12/12/2022]
Abstract
The abundance of bacterial effectors have inspired us to explore their potential in rewiring malignant cell signaling. Their incapability for entering cells, however, hinders such application. Herein we developed a cationic lipid-based high throughput library screening platform for effective intracellular delivery of bacterial effectors. As the misregulated MAPK signaling is a hallmark of many types of cancer, we turned to the Shigella effector OspF which irreversibly inactivates ERK, the terminal component of MAPK cascade. We created a function-based screening assay to obtain AMPA-O16B lipid nanoparticles for effective OspF intracellular delivery, which inhibited the malignant MAPK signaling and tumor growth in vitro and in vivo. Furthermore, the optimized lipid nanoparticle formulation can deliver OspF to modulate the immunosuppressive responses in macrophages. Our work is a general strategy to explore the therapeutic potentials of naturally evolved bacterial effectors.
Collapse
Affiliation(s)
- Shaojun Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qiao Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
| | - Long Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jin Chang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
| | - Tian Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
| | - Jingyi Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Peng R Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
184
|
Yang S, Tang Q, Chen L, Chang J, Jiang T, Zhao J, Wang M, Chen PR. Cationic Lipid‐based Intracellular Delivery of Bacterial Effectors for Rewiring Malignant Cell Signaling. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shaojun Yang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Qiao Tang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing 100190 China
| | - Long Chen
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jin Chang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing 100190 China
| | - Tian Jiang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing 100190 China
| | - Jingyi Zhao
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing 100190 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Peng R. Chen
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Peking University Beijing 100871 China
| |
Collapse
|
185
|
Immune-Enhancing Effects of Red Platycodon grandiflorus Root Extract via p38 MAPK-Mediated NF-κB Activation. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10165457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Platycodongrandiflorus (PG) root extract has been widely used as an oriental herbal medicine. Red PG root extract (RPGE), which is made by steaming and drying PG several times, contains more saponin than raw (white) PG. Although RPGE has been known to have anti-inflammatory activity, the effects of RPGE on the immune-enhancing response remain unclear. In this study, we aimed to investigate the immune-enhancing effects of RPGE and its mechanism in macrophage cells and splenocytes. Our results revealed that cell proliferation of both macrophages and splenocytes correlate positively with the concentration of RPGE. Moreover, RPGE treatment increased the phagocytic activity of macrophage cells, as well as nitric oxide and cytokines production. Furthermore, RPGE induced phosphorylation of the p38 mitogen-activated protein kinase, which contributed to nuclear factor-kappa B activation. Thus, our findings suggest that RPGE may be a potential functional food for improving immune function.
Collapse
|
186
|
Liu Y, Zhu J, Guo X, Huang T, Han J, Gao J, Xu D, Han W. How oncogenic mutations activate human MAP kinase 1 (MEK1): a molecular dynamics simulation study. J Biomol Struct Dyn 2020; 38:3942-3958. [PMID: 31658877 PMCID: PMC8177546 DOI: 10.1080/07391102.2019.1686065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/19/2019] [Accepted: 09/10/2019] [Indexed: 01/03/2023]
Abstract
Approximately 30% of all types of human cancers possess a constitutively activated the mitogen-activated protein kinase (MAPK) signaling pathway while MAP kinase 1 (MEK1) is a critical component of this pathway. It has been reported mutations could improve the activity of MEK1 to result in cell proliferation and transformation, which is a known oncogenic event in various cancer types. In this study, eight molecular dynamics simulations, molecular mechanics Poisson-Boltzmann surface area (MM-PBSA), combined with protein structure network were performed to explore the mechanism that mutations activate MEK1. Protein structure networks and hydrogen bonds analysis demonstrated that active mutations broke the interaction between activation segments (residues 216-222) and C-helix (residues 105-121) in MEK1, leading to it transform inactive form to active form. Moreover, hydrogen bond analysis and MM-PBSA calculation indicated that activating mutations decrease the binding affinity between MEK1 and inhibitor to reduce the inhibitory effect of inhibitors. In addition, some active mutations cause structural changes in the Pro-rich loop (residues 261-268) of MEK1. These changes may stabilize the interaction between the MEK1 mutants and the ligands by increasing the number of exposed hydrophobic residues in the active site of MEK1. Our results may provide useful theoretical evidences for the mechanism underlying the role of human MEK1 in human cancers.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ye Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Jingxuan Zhu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Xiaoqing Guo
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Tianci Huang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Jiarui Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Jianjiong Gao
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dong Xu
- Department of Electric Engineering and Computer Science, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| |
Collapse
|
187
|
Song Q, Xie X, Hu Z, Xue J, Zhang S, Xie X. (Z)-7,4'-dimethoxy-6-hydroxy-aurone-4-O- β-glucopyranoside attenuates lipoteichoic acid-induced damage in rat cardiomyoblast cells. J Int Med Res 2020; 48:300060519889716. [PMID: 32865061 PMCID: PMC7469747 DOI: 10.1177/0300060519889716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/30/2019] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Excessive inflammatory responses in the endocardium are related to progression of infectious endocarditis. This study aimed to investigate whether (Z)-7,4'-dimethoxy-6-hydroxy-aurone-4-O-β-glucopyranoside (DHAG), a compound isolated from the endophytic fungus Penicillium citrinum of Bruguiera gymnorrhiza, could attenuate cell damage caused by lipoteichoic acid (LTA) in embryonic rat heart cells (H9c2). METHODS LTA-induced cell damage occurred in H9c2 cells and the protective effects of DHAG at different concentrations (1-10 µM) were assessed. Indicators of oxidative stress and inflammatory responses in H9c2 cells were measured. RESULTS DHAG (1-10 µM) significantly attenuated LTA-induced damage in H9c2 cells, as evidenced by increased cell viability and mitochondrial membrane potential, decreased cytochrome c release and DNA fragmentation, inhibition of caspase-3 and -9 activity, and altered expression of apoptosis-related proteins. DHAG also decreased oxidative stress by increasing protein expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Furthermore, DHAG inhibited inflammatory responses by decreasing protein expression of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs). CONCLUSION DHAG exerted protective effects against LTA-induced cell damage, at least partially by decreasing oxidative stress and inhibiting inflammatory responses. Our results provide a scientific rational for developing DHAG as a therapy against infectious endocarditis.
Collapse
Affiliation(s)
- Qiang Song
- Department of Structural Heart Disease, the First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, China
| | - Xuegang Xie
- Department of Structural Heart Disease, the First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, China
| | - Zhi Hu
- Department of Structural Heart Disease, the First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, China
| | - Jianying Xue
- Department of Structural Heart Disease, the First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, China
| | - Songlin Zhang
- Department of Structural Heart Disease, the First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, China
| | - Xinming Xie
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
188
|
LRCH1 deficiency enhances LAT signalosome formation and CD8 + T cell responses against tumors and pathogens. Proc Natl Acad Sci U S A 2020; 117:19388-19398. [PMID: 32727906 DOI: 10.1073/pnas.2000970117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
CD8+ T cells play pivotal roles in eradicating pathogens and tumor cells. T cell receptor (TCR) signaling is vital for the optimal activation of CD8+ T cells. Upon TCR engagement, the transmembrane adapter protein LAT (linker for activation of T cells) recruits other key signaling molecules and forms the "LAT signalosome" for downstream signal transduction. However, little is known about which functional partners could restrain the formation of the LAT signalosome and inhibit CD8+ cytotoxic T lymphocyte (CTL)-mediated cytotoxicity. Here we have demonstrated that LRCH1 (leucine-rich repeats and calponin homology domain containing 1) directly binds LAT, reduces LAT phosphorylation and interaction with GRB2, and also promotes the endocytosis of LAT. Lrch1 -/- mice display better protection against influenza virus and Listeria infection, with enhanced CD8+ T cell proliferation and cytotoxicity. Adoptive transfer of Lrch1 -/- CD8+ CTLs leads to increased B16-MO5 tumor clearance in vivo. Furthermore, knockout of LRCH1 in human chimeric antigen receptor (CAR) T cells that recognize the liver tumor-associated antigen glypican-3 could improve CAR T cell migration and proliferation in vitro. These findings suggest LRCH1 as a potential translational target to improve T cell immunotherapy against infection and tumors.
Collapse
|
189
|
Kottom TJ, Nandakumar V, Hebrink DM, Carmona EM, Limper AH. A critical role for CARD9 in pneumocystis pneumonia host defence. Cell Microbiol 2020; 22:e13235. [PMID: 32548948 DOI: 10.1111/cmi.13235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/15/2020] [Accepted: 06/09/2020] [Indexed: 12/19/2022]
Abstract
Caspase recruitment domains-containing protein 9 (CARD9) is an adaptor molecule critical for key signalling pathways initiated through C-type lectin receptors (CLRs). Previous studies demonstrated that Pneumocystis organisms are recognised through a variety of CLRs. However, the role of the downstream CARD9 adaptor signalling protein in host defence against Pneumocystis infection remains to be elucidated. Herein, we analysed the role of CARD9 in host defence against Pneumocystis both in CD4-depleted CARD9-/- and immunocompetent hosts. Card9 gene-disrupted (CARD9-/- ) mice were more susceptible to Pneumocystis, as evidenced by reduced fungal clearance in infected lungs compared to wild-type (WT) infected mice. Our data suggests that this defect was due to impaired proinflammatory responses. Furthermore, CARD9-/- macrophages were severely compromised in their ability to differentiate and express M1 and M2 macrophage polarisation markers, to enhanced mRNA expression for Dectin-1 and Mincle, and most importantly, to kill Pneumocystis in vitro. Remarkably, compared to WT mice, and despite markedly increased organism burdens, CARD9-/- animals did not exhibit worsened survival during pneumocystis pneumonia (PCP), perhaps related to decreased lung injury due to altered influx of inflammatory cells and decreased levels of proinflammatory cytokines in response to the organism. Finally, although innate phase cytokines were impaired in the CARD9-/- animals during PCP, T-helper cell cytokines were normal in immunocompetent CARD9-/- animals infected with Pneumocystis. Taken together, our data demonstrate that CARD9 has a critical function in innate immune responses against Pneumocystis.
Collapse
Affiliation(s)
- Theodore J Kottom
- Department of Pulmonary and Critical Care Medicine, Division of Thoracic Diseases Research, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Vijayalakshmi Nandakumar
- Department of Pulmonary and Critical Care Medicine, Division of Thoracic Diseases Research, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Deanne M Hebrink
- Department of Pulmonary and Critical Care Medicine, Division of Thoracic Diseases Research, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Eva M Carmona
- Department of Pulmonary and Critical Care Medicine, Division of Thoracic Diseases Research, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Andrew H Limper
- Department of Pulmonary and Critical Care Medicine, Division of Thoracic Diseases Research, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
190
|
Zhou YX, Gong XH, Zhang H, Peng C. A review on the pharmacokinetics of paeoniflorin and its anti-inflammatory and immunomodulatory effects. Biomed Pharmacother 2020; 130:110505. [PMID: 32682112 DOI: 10.1016/j.biopha.2020.110505] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
Increasing pharmacological evidence supports that paeoniflorin, a water-soluble monoterpene glycoside isolated from Paeonia lactiflora Pall. (Shaoyao in Chinese), has a wide range of medicinal properties including anti-inflammatory, antioxidant, antithrombotic, anticonvulsive, analgesic, cardioprotective, neuroprotective, hepatoprotective, antidepressant-like, antitumoral, and immune-regulatory activities; as well as enhancing cognition and attenuating learning impairment. In addition to pharmacodynamic studies, information on pharmacokinetics is also significant for the further development and utilization of paeoniflorin. The present review focuses on the absorption, distribution, metabolism, and excretion of paeoniflorin, especially main pharmacological activities of paeoniflorin on inflammation and immune function. According to the findings obtained both in vitro and in vivo, a broad application prospect has been opened for paeoniflorin. However, further studies are needed to clarity the direct molecular mechanisms and key targets underlying the beneficial effects of paeoniflorin on inflammation and immunity.
Collapse
Affiliation(s)
- Yan-Xi Zhou
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Library, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiao-Hong Gong
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hong Zhang
- Institute of Interdisciplinary Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
191
|
Wu SY, Pan BS, Tsai SF, Chiang YT, Huang BM, Mo FE, Kuo YM. BDNF reverses aging-related microglial activation. J Neuroinflammation 2020; 17:210. [PMID: 32664974 PMCID: PMC7362451 DOI: 10.1186/s12974-020-01887-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/05/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Excessive microglial activation is implicated in the pathogenesis of various age-related neurodegenerative diseases. In addition to neurons, brain-derived neurotrophic factor (BDNF) and its receptor TrkB are also expressed in microglia. However, the direct effect of BDNF on age-related microglial activation has rarely been investigated. METHODS We began to address this question by examining the effect of age on microglial activation and the BDNF-TrkB pathway in mice. By using pharmacological and genetic approaches, the roles of BDNF and downstream signaling pathways in microglial activation and related neurotoxicity were examined in microglial cell line and primary microglial cells. RESULTS We showed that microglial activation was evident in the brains of aged mice. The levels of BDNF and TrkB in microglia decreased with age and negatively correlated with their activation statuses in mice during aging. Interestingly, aging-related microglial activation could be reversed by chronic, subcutaneous perfusion of BDNF. Peripheral lipopolysaccharide (LPS) injection-induced microglial activation could be reduced by local supplement of BDNF, while shTrkB induced local microglial activation in naïve mice. In cultured microglial cell line and primary microglial cells, BDNF inhibited LPS-induced microglial activation, including morphological changes, activations of p38, JNK, and NF-кB, and productions of proinflammatory cytokines. These effects were blocked by shTrkB. BDNF induced activations of ErK and CREB which then competed with LPS-induced activation of NF-кB for binding to a common coactivator, CREB-binding protein. CONCLUSIONS Decreasing BDNF-TrkB signaling during aging favors microglial activation, while upregulation BDNF signaling inhibits microglial activation via the TrkB-Erk-CREB pathway.
Collapse
Affiliation(s)
- Shih-Ying Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bo-Syong Pan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Feng Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ting Chiang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 Ta Hsueh Road, 70101, Tainan, Taiwan
| | - Bu-Miin Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 Ta Hsueh Road, 70101, Tainan, Taiwan
| | - Fan-E Mo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 Ta Hsueh Road, 70101, Tainan, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 Ta Hsueh Road, 70101, Tainan, Taiwan.
| |
Collapse
|
192
|
Zhu JJ, Stenfeldt C, Bishop EA, Canter JA, Eschbaumer M, Rodriguez LL, Arzt J. Mechanisms of Maintenance of Foot-and-Mouth Disease Virus Persistence Inferred From Genes Differentially Expressed in Nasopharyngeal Epithelia of Virus Carriers and Non-carriers. Front Vet Sci 2020; 7:340. [PMID: 32637426 PMCID: PMC7318773 DOI: 10.3389/fvets.2020.00340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) causes persistent infection of nasopharyngeal epithelial cells in ~50% of infected ruminants. The mechanisms involved are not clear. This study provides a continued investigation of differentially expressed genes (DEG) identified in a previously published transcriptomic study analyzing micro-dissected epithelial samples from FMDV carriers and non-carriers. Pathway analysis of DEG indicated that immune cell trafficking, cell death and hematological system could be affected by the differential gene expression. Further examination of the DEG identified five downregulated (chemerin, CCL23, CXCL15, CXCL16, and CXCL17) and one upregulated (CCL2) chemokines in carriers compared to non-carriers. The differential expression could reduce the recruitment of neutrophils, antigen-experienced T cells and dendritic cells and increase the migration of macrophages and NK cells to the epithelia in carriers, which was supported by DEG expressed in these immune cells. Downregulated chemokine expression could be mainly due to the inhibition of canonical NFκB signaling based on DEG in the signaling pathways and transcription factor binding sites predicted from the proximal promoters. Additionally, upregulated CD69, IL33, and NID1 and downregulated CASP3, IL17RA, NCR3LG1, TP53BP1, TRAF3, and TRAF6 in carriers could inhibit the Th17 response, NK cell cytotoxicity and apoptosis. Based on our findings, we hypothesize that (1) under-expression of chemokines that recruit neutrophils, antigen-experienced T cells and dendritic cells, (2) blocking NK cell binding to target cells and (3) suppression of apoptosis induced by death receptor signaling, viral RNA, and cell-mediated cytotoxicity in the epithelia compromised virus clearance and allowed FMDV to persist. These hypothesized mechanisms provide novel information for further investigation of persistent FMDV infection.
Collapse
Affiliation(s)
- James J Zhu
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States
| | - Carolina Stenfeldt
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States.,Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Elizabeth A Bishop
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States
| | - Jessica A Canter
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States.,Plum Island Animal Disease Center, Oak Ridge Institute for Science and Education (ORISE), Orient, NY, United States
| | - Michael Eschbaumer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Luis L Rodriguez
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States
| | - Jonathan Arzt
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States
| |
Collapse
|
193
|
Yang X, Xia P, Zhang Y, Lian S, Li H, Zhu G, Wang P. Photothermal Nano-antibiotic for Effective Treatment of Multidrug-Resistant Bacterial Infection. ACS APPLIED BIO MATERIALS 2020; 3:5395-5406. [DOI: 10.1021/acsabm.0c00702] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xueqin Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Pengpeng Xia
- Institute of comparative medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ya Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Siqi Lian
- Institute of comparative medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Haofei Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Guoqiang Zhu
- Institute of comparative medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Pengfei Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
194
|
Duncan SA, Sahu R, Dixit S, Singh SR, Dennis VA. Suppressors of Cytokine Signaling (SOCS)1 and SOCS3 Proteins Are Mediators of Interleukin-10 Modulation of Inflammatory Responses Induced by Chlamydia muridarum and Its Major Outer Membrane Protein (MOMP) in Mouse J774 Macrophages. Mediators Inflamm 2020; 2020:7461742. [PMID: 32684836 PMCID: PMC7333066 DOI: 10.1155/2020/7461742] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/10/2020] [Indexed: 12/26/2022] Open
Abstract
The immunopathology of chlamydial diseases is exacerbated by a broad-spectrum of inflammatory mediators, which we reported are inhibited by IL-10 in macrophages. However, the chlamydial protein moiety that induces the inflammatory mediators and the mechanisms by which IL-10 inhibits them are unknown. We hypothesized that Chlamydia major outer membrane protein (MOMP) mediates its disease pathogenesis, and the suppressor of cytokine signaling (SOCS)1 and SOCS3 proteins are mediators of the IL-10 inhibitory actions. Our hypothesis was tested by exposing mouse J774 macrophages to chlamydial stimulants (live Chlamydia muridarum and MOMP) with and without IL-10. MOMP significantly induced several inflammatory mediators (IL-6, IL-12p40, CCL5, CXCL10), which were dose-dependently inhibited by IL-10. Chlamydial stimulants induced the mRNA gene transcripts and protein expression of SOCS1 and SOCS3, with more SOCS3 expression. Notably, IL-10 reciprocally regulated their expression by reducing SOCS1 and increasing SOCS3. Specific inhibitions of MAPK pathways revealed that p38, JNK, and MEK1/2 are required for inducing inflammatory mediators as well as SOCS1 and SOCS3. Chlamydial stimulants triggered an M1 pro-inflammatory phenotype evidently by an enhanced nos2 (M1 marker) expression, which was skewed by IL-10 towards a more M2 anti-inflammatory phenotype by the increased expression of mrc1 and arg1 (M2 markers) and the reduced SOCS1/SOCS3 ratios. Neutralization of endogenously produced IL-10 augmented the secretion of inflammatory mediators, reduced SOCS3 expression, and skewed the chlamydial M1 to an M2 phenotype. Inhibition of proteasome degradation increased TNF but decreased IL-10, CCL5, and CXCL10 secretion by suppressing SOCS1 and SOCS3 expressions and dysregulating their STAT1 and STAT3 transcription factors. Our data show that SOCS1 and SOCS3 are regulators of IL-10 inhibitory actions, and underscore SOCS proteins as therapeutic targets for IL-10 control of inflammation for Chlamydia and other bacterial inflammatory diseases.
Collapse
Affiliation(s)
- Skyla A. Duncan
- Center for NanoBiotechnology Research (CNBR), Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA
| | - Rajnish Sahu
- Center for NanoBiotechnology Research (CNBR), Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA
| | - Saurabh Dixit
- Center for NanoBiotechnology Research (CNBR), Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA
| | - Shree R. Singh
- Center for NanoBiotechnology Research (CNBR), Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA
| | - Vida A. Dennis
- Center for NanoBiotechnology Research (CNBR), Department of Biological Sciences, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA
| |
Collapse
|
195
|
Geraniol-mediated osteoarthritis improvement by down-regulating PI3K/Akt/NF-κB and MAPK signals: In vivo and in vitro studies. Int Immunopharmacol 2020; 86:106713. [PMID: 32590318 DOI: 10.1016/j.intimp.2020.106713] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/25/2020] [Accepted: 06/14/2020] [Indexed: 11/23/2022]
Abstract
Osteoarthritis (OA) is a degenerative disease that has received increasing attention among the elderly. Its clinical manifestation is primarily long-term joint pain. Evidence for the pharmacological effects of geraniol in various diseases is accumulating. However, whether geraniol has a therapeutic effect against OA remains to be determined. In this study, we discussed the anti-inflammatory effects of geraniol in IL-1β-induced chondrocytes and the anti-cartilage degradation effects in a mouse model of destabilization of the medial meniscus (DMM). In cell experiments, we found that the treatment of geraniol inhibited the expression of IL-1β-induced PGE2, NO, COX-2, iNOS, TNF-α and IL-6 by western blot, qRT-PCR and immunofluorescence staining. Besides, geraniol inhibited the expression of MMP-9 and ADAMTS-5, and reversed the degradation of aggrecan and type II collagen. Mechanistically, we revealed that geraniol suppressed IL-1β-stimulated PI3K/Akt/NF-κB and MAPK activation. Importantly, we have found in animal experiments that oral treatment of geraniol was beneficial in protecting articular cartilage from degradation. Overall, these data indicated that geraniol may have the potential to be developed as an effective treatment for OA.
Collapse
|
196
|
Lee JA, Kim HR, Son HJ, Shin N, Han SH, Cheong CS, Kim DJ, Hwang O. A novel pyrazolo [3,4-d] pyrimidine, KKC080106, activates the Nrf2 pathway and protects nigral dopaminergic neurons. Exp Neurol 2020; 332:113387. [PMID: 32580013 DOI: 10.1016/j.expneurol.2020.113387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/20/2020] [Accepted: 06/18/2020] [Indexed: 11/26/2022]
Abstract
The transcription factor nuclear factor-erythroid 2-related factor-2 (Nrf2) is known to induce neuroprotective and anti-inflammatory effects and is considered to be an excellent molecular target for drugs related to neurodegenerative disease therapy. Nrf2 activators previously tested in clinical trials were electrophilic, causing adverse effects due to non-selective and covalent modification of cellular thiols. In order to circumvent this issue, we constructed and screened a chemical library consisting of 241 pyrazolo [3,4-d] pyrimidine derivatives and discovered a novel, non-electrophilic compound: 1-benzyl-6-(methylthio)-N-(1-phenylethyl)-1H-pyrazolo[3,4-d]pyrimidine-4-amine (KKC080106). KKC080106 was able to activate Nrf2 signaling as it increases the cellular levels of Nrf2, binds to the Nrf2 inhibitor protein Keap1, and causes the accumulation of nuclear Nrf2. We also observed an increase in the expression levels of Nrf2-dependent genes for antioxidative/neuroprotective enzymes in dopaminergic neuronal cells. In addition, in lipopolysaccharide-activated microglia, KKC080106 suppressed the generation of the proinflammatory markers, such as IL-1β, TNF-α, cyclooxygenase-2, inducible nitric oxide synthase, and nitric oxide, and inhibited the phosphorylation of kinases known to be involved in inflammatory signaling, such as IκB kinase, p38, JNK, and ERK. As a drug, KKC080106 exhibited excellent stability against plasma enzymes and a good safety profile, evidenced by no mortality after the administration of 2000 mg/kg body weight, and minimal inhibition of the hERG channel activity. Pharmacokinetic analysis revealed that KKC080106 has good bioavailability and enters the brain after oral and intravenous administration, in both rats and mice. In MPTP-treated mice that received KKC080106 orally, the compound blocked microglial activation, protected the nigral dopaminergic neurons from degeneration, and prevented development of the dopamine deficiency-related motor deficits. These results suggest that KKC080106 has therapeutic potential for neurodegenerative disorders such as Parkinson's disease.
Collapse
Affiliation(s)
- Ji Ae Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hye Ri Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyo Jin Son
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Nari Shin
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Se Hee Han
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Chan Seong Cheong
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Dong Jin Kim
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea.
| | - Onyou Hwang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
197
|
Son ES, Park JW, Kim SH, Park HR, Han W, Kwon OC, Nam JY, Jeong SH, Lee CS. Anti‑inflammatory activity of 3,5,6,7,3',4'‑hexamethoxyflavone via repression of the NF‑κB and MAPK signaling pathways in LPS‑stimulated RAW264.7 cells. Mol Med Rep 2020; 22:1985-1993. [PMID: 32705181 PMCID: PMC7411374 DOI: 10.3892/mmr.2020.11252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 05/27/2020] [Indexed: 12/27/2022] Open
Abstract
Citrus peel has been used as a Traditional medicine in Asia to treat coughs, asthma and bronchial disorders. Therefore, the anti-inflammatory effects of 3,5,6,7,3′,4′-hexamethoxyflavone (quercetogetin, QUE) isolated from Citrus unshiu peel were investigated in lipopolysaccharide (LPS)-induced RAW 264.7 macrophage cells. The results showed that QUE repressed the production of prostaglandin E2 and nitric oxide by suppressing LPS-induced expression of cyclooxygenase-2 and inducible nitric oxide synthase. It also suppressed the production of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α cytokines, and decreased the nuclear translocation of NF-κB by interrupting the phosphorylation of NF-κB inhibitor α in macrophage cells. Based on the finding that QUE inhibited the phosphorylation of ERK protein expression in LPS-induced RAW264.7 cells, it was confirmed that inhibition of inflammatory responses by QUE was mediated via the ERK pathway. Therefore, this study suggests that QUE has strong anti-inflammatory effects, making it a promising compound for use as a therapeutic agent in treating inflammatory lung diseases, such as emphysema.
Collapse
Affiliation(s)
- Eun Suk Son
- Department of Biomedical Chemistry, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Jeong-Woong Park
- Department of Allergy, Pulmonary and Critical Care Medicine, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
| | - Se-Hee Kim
- Gachon Medical Research Institute, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
| | - Hye Ran Park
- Company Affiliated Research Institute, Seongnam, Gyeonggi 13511, Republic of Korea
| | - Woorijarang Han
- Department of Biomedical Chemistry, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - O Chul Kwon
- Department of Biomedical Chemistry, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Jae Young Nam
- Department of Biomedical Chemistry, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Sung Hwan Jeong
- Department of Allergy, Pulmonary and Critical Care Medicine, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
| | - Chang Soo Lee
- Department of Biomedical Chemistry, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| |
Collapse
|
198
|
Anti-Inflammatory and Protein Tyrosine Phosphatase 1B Inhibitory Metabolites from the Antarctic Marine-Derived Fungal Strain Penicillium glabrum SF-7123. Mar Drugs 2020; 18:md18050247. [PMID: 32397523 PMCID: PMC7281349 DOI: 10.3390/md18050247] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
A chemical investigation of the marine-derived fungal strain Penicillium glabrum (SF-7123) revealed a new citromycetin (polyketide) derivative (1) and four known secondary fungal metabolites, i.e, neuchromenin (2), asterric acid (3), myxotrichin C (4), and deoxyfunicone (5). The structures of these metabolites were identified primarily by extensive analysis of their spectroscopic data, including NMR and MS data. Results from the initial screening of anti-inflammatory effects showed that 2, 4, and 5 possessed inhibitory activity against the excessive production of nitric oxide (NO) in lipopolysaccharide (LPS)-stimulated BV2 microglial cells, with IC50 values of 2.7 µM, 28.1 µM, and 10.6 µM, respectively. Compounds 2, 4, and 5 also inhibited the excessive production of NO, with IC50 values of 4.7 µM, 41.5 µM, and 40.1 µM, respectively, in LPS-stimulated RAW264.7 macrophage cells. In addition, these compounds inhibited LPS-induced overproduction of prostaglandin E2 in both cellular models. Further investigation of the most active compound (2) revealed that these anti-inflammatory effects were associated with a suppressive effect on the over-expression of inducible nitric oxide synthase and cyclooxygenase-2. Finally, we showed that the anti-inflammatory effects of compound 2 were mediated via the downregulation of inflammation-related pathways such as those dependent on nuclear factor kappa B and p38 mitogen-activated protein kinase in LPS-stimulated BV2 and RAW264.7 cells. In the evaluation of the inhibitory effects of the isolated compounds on protein tyrosine phosphate 1B (PTP1B) activity, compound 4 was identified as a noncompetitive inhibitor of PTP1B, with an IC50 value of 19.2 µM, and compound 5 was shown to inhibit the activity of PTP1B, with an IC50 value of 24.3 µM, by binding to the active site of the enzyme. Taken together, this study demonstrates the potential value of marine-derived fungal isolates as a bioresource for bioactive compounds.
Collapse
|
199
|
Arooj M, Ali I, Kang HK, Hyun JW, Koh YS. Inhibitory effect of particulate matter on toll-like receptor 9 stimulated dendritic cells by downregulating mitogen-activated protein kinase and NF-κB pathway. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:341-350. [PMID: 32340567 DOI: 10.1080/15287394.2020.1756018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ambient particulate matter (PM) is associated with adverse health consequences. However, the influence of PM on the innate immune system is poorly understood. The aim of the present study was to examine the effect of diesel particulate matter 2.5 μm (PM2.5, SRM1650b) on dendritic cells. PM2.5 significantly reduced cytokine levels of interleukin (IL)-12 p40, IL-6 and TNF-α levels in CpG-DNA (TLR9 ligand)-stimulated dendritic cells. To determine the mechanisms underlying this observed inhibition induced by PM2.5, western blot analysis was conducted. PM2.5 was found to downregulate ERK1/2, JNK1/2, p38 MAPKs, and NF-κB pathways. PM2.5 exposure decreased TLR9-dependent NF-κB and activator protein (AP-1) reporter luciferase activities. Our findings demonstrate that PM2.5 reduced the production of cytokines which may be associated with inhibition of MAPK and NF-κB signaling pathway. Further, data suggest the immunosuppressive effect of PM2.5 on the innate immune cells may lead to serious damage to the host immune system.
Collapse
Affiliation(s)
- Madeeha Arooj
- School of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University , Jeju, Korea
| | - Irshad Ali
- School of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University , Jeju, Korea
| | - Hee Kyoung Kang
- School of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University , Jeju, Korea
| | - Jin Won Hyun
- School of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University , Jeju, Korea
| | - Young-Sang Koh
- School of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University , Jeju, Korea
| |
Collapse
|
200
|
Lee SB, Park YH, Chungu K, Woo SJ, Han ST, Choi HJ, Rengaraj D, Han JY. Targeted Knockout of MDA5 and TLR3 in the DF-1 Chicken Fibroblast Cell Line Impairs Innate Immune Response Against RNA Ligands. Front Immunol 2020; 11:678. [PMID: 32425931 PMCID: PMC7204606 DOI: 10.3389/fimmu.2020.00678] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/26/2020] [Indexed: 01/29/2023] Open
Abstract
The innate immune system, which senses invading pathogens, plays a critical role as the first line of host defense. After recognition of foreign RNA ligands (e.g., RNA viruses), host cells generate an innate immune or antiviral response via the interferon-mediated signaling pathway. Retinoic acid-inducible gene I (RIG-1) acts as a major sensor that recognizes a broad range of RNA ligands in mammals; however, chickens lack a RIG-1 homolog, meaning that RNA ligands should be recognized by other cellular sensors such as melanoma differentiation-associated protein 5 (MDA5) and toll-like receptors (TLRs). However, it is unclear which of these cellular sensors compensates for the loss of RIG-1 to act as the major sensor for RNA ligands. Here, we show that chicken MDA5 (cMDA5), rather than chicken TLRs (cTLRs), plays a pivotal role in the recognition of RNA ligands, including poly I:C and influenza virus. First, we used a knockdown approach to show that both cMDA5 and cTLR3 play roles in inducing interferon-mediated innate immune responses against RNA ligands in chicken DF-1 cells. Furthermore, targeted knockout of cMDA5 or cTLR3 in chicken DF-1 cells revealed that loss of cMDA5 impaired the innate immune responses against RNA ligands; however, the responses against RNA ligands were retained after loss of cTLR3. In addition, double knockout of cMDA5 and cTLR3 in chicken DF-1 cells abolished the innate immune responses against RNA ligands, suggesting that cMDA5 is the major sensor whereas cTLR3 is a secondary sensor. Taken together, these findings provide an understanding of the functional role of cMDA5 in the recognition of RNA ligands in chicken DF-1 cells and may facilitate the development of an innate immune-deficient cell line or chicken model.
Collapse
Affiliation(s)
- Su Bin Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Young Hyun Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kelly Chungu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seung Je Woo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Soo Taek Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hee Jung Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Deivendran Rengaraj
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|