151
|
Ullrich TC, Blaesse M, Huber R. Crystal structure of ATP sulfurylase from Saccharomyces cerevisiae, a key enzyme in sulfate activation. EMBO J 2001; 20:316-29. [PMID: 11157739 PMCID: PMC133462 DOI: 10.1093/emboj/20.3.316] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
ATP sulfurylases (ATPSs) are ubiquitous enzymes that catalyse the primary step of intracellular sulfate activation: the reaction of inorganic sulfate with ATP to form adenosine-5'-phosphosulfate (APS) and pyrophosphate (PPi). With the crystal structure of ATPS from the yeast Saccharomyces cerevisiae, we have solved the first structure of a member of the ATP sulfurylase family. We have analysed the crystal structure of the native enzyme at 1.95 Angstroms resolution using multiple isomorphous replacement (MIR) and, subsequently, the ternary enzyme product complex with APS and PPi bound to the active site. The enzyme consists of six identical subunits arranged in two stacked rings in a D:3 symmetric assembly. Nucleotide binding causes significant conformational changes, which lead to a rigid body structural displacement of domains III and IV of the ATPS monomer. Despite having similar folds and active site design, examination of the active site of ATPS and comparison with known structures of related nucleotidylyl transferases reveal a novel ATP binding mode that is peculiar to ATP sulfurylases.
Collapse
Affiliation(s)
- T C Ullrich
- Max-Planck-Institut für Biochemie, Abteilung Strukturforschung, Am Klopferspitz 18a, D-82152 Martinsried, Germany.
| | | | | |
Collapse
|
152
|
Sohn H, Kuriyama H. Ultradian metabolic oscillation of Saccharomyces cerevisiae during aerobic continuous culture: hydrogen sulphide, a population synchronizer, is produced by sulphite reductase. Yeast 2001; 18:125-35. [PMID: 11169755 DOI: 10.1002/1097-0061(20010130)18:2<125::aid-yea655>3.0.co;2-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We have reported that the consecutive cyclic production of H(2)S resulted in population synchrony of ultradian metabolic oscillation (Sohn et al., 2000). In order to understand the origin of H(2)S and its nature of periodic production, changes of sulphur compounds concentration and responsible enzymes were investigated. The concentrations of extracellular sulphate, intracellular glutathione and cysteine oscillated during metabolic oscillation but only the oscillation of sulphate concentration was out of phase with H(2)S production. The sulphate concentration in culture directly affected the amplitude and the period of metabolic oscillation: (a) the period of metabolic oscillation shortened from 50 min to 30 min when sulphate concentration in the medium was reduced from 46 mM to 2.5 mM; (b) the metabolic oscillation disappeared under sulphate-depletion conditions and arose again by the addition of sulphate. Pulse injection of sulphite (10 microM) perturbed metabolic oscillation with a burst production of H(2)S, while thiosulphate (up to 500 microM) was without apparent effect. Furthermore, addition of S-adenosyl methionine (100 microM) or azoxybacilin (3 mg/kg) decreased H(2)S production with perturbation of metabolic oscillation. The results presented here suggest that H(2)S, a population synchronizer, is produced by sulphite reductase in the sulphate assimilation pathway, and dynamic regulation of sulphate uptake plays an important role in ultradian metabolic oscillation.
Collapse
Affiliation(s)
- H Sohn
- Biochemical Engineering Laboratory, National Institute of Bioscience and Human Technology, AIST, 1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | |
Collapse
|
153
|
van de Kamp M, Schuurs TA, Vos A, van der Lende TR, Konings WN, Driessen AJ. Sulfur regulation of the sulfate transporter genes sutA and sutB in Penicillium chrysogenum. Appl Environ Microbiol 2000; 66:4536-8. [PMID: 11010912 PMCID: PMC92338 DOI: 10.1128/aem.66.10.4536-4538.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Penicillium chrysogenum uses sulfate as a source of sulfur for the biosynthesis of penicillin. Sulfate uptake and the mRNA levels of the sulfate transporter-encoding sutB and sutA genes are all reduced by high sulfate concentrations and are elevated by sulfate starvation. In a high-penicillin-yielding strain, sutB is effectively transcribed even in the presence of excess sulfate. This deregulation may facilitate the efficient incorporation of sulfur into cysteine and penicillin.
Collapse
Affiliation(s)
- M van de Kamp
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9750 AA Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
154
|
Sohn HY, Murray DB, Kuriyama H. Ultradian oscillation of Saccharomyces cerevisiae during aerobic continuous culture: hydrogen sulphide mediates population synchrony. Yeast 2000; 16:1185-90. [PMID: 10992282 DOI: 10.1002/1097-0061(20000930)16:13<1185::aid-yea619>3.0.co;2-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Saccharomyces cerevisiae showed an ultradian respiratory oscillation during aerobic continuous culture. Analysis of the off-gas revealed that hydrogen sulphide production also oscillated. Production was first detected at the onset of low respiration and reached a maximum (1.5 microM) prior to minimum respiratory activity. Then H(2)S concentration fell rapidly to below 0.2 microM before the onset of high respiration. Injection of respiratory oscillation perturbation agents, such as glutathione (50 microM), NaNO(2) (50 microM) or acetaldehyde (4.5 mM),() transiently increased H(2)S production above 6 microM. The synchronization properties of H(2)S were analysed to reveal that changes of oscillation period and amplitude were dependent on H(2)S concentration in culture. It is concluded that H(2)S produced during oscillation produces population synchrony by respiratory chain inhibition.
Collapse
Affiliation(s)
- H Y Sohn
- Biochemical Engineering Laboratory, National Institute of Bioscience and Human Technology, 1-1, Higashi. Tsukuba, Ibaraki 305-8566, Japan
| | | | | |
Collapse
|
155
|
Solomon PS, Nielsen PS, Clark AJ, Oliver RP. Methionine synthase, a gene required for methionine synthesis, is expressed in planta by Cladosporium fulvum. MOLECULAR PLANT PATHOLOGY 2000; 1:315-323. [PMID: 20572978 DOI: 10.1046/j.1364-3703.2000.00035.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Abstract The nutritional requirements of phytopathogenic fungi growing in planta has to date been largely ignored. We have begun to address this problem by investigating the methionine requirement for the biotrophic pathogen of tomato Cladosporium fulvum during infection. The Met6 gene from Cladosporium fulvum encoding a cobalamin-independent 5-methyltetrahydropteroyltriglutamate-homocysteinemethyltransferase, was cloned by functional yeast complementation. The open reading frame was found to be 2304 bp, containing no introns and encoding a protein of 87 kDa. In vitro Northern analysis demonstrated high levels of Met6 expression in the absence of externally supplied methionine. However in the presence of methionine or in the absence of carbon, expression of Met6 decreased significantly. Analysis of Met6 expression in planta revealed a strong increase during infection suggesting the requirement for methionine synthesis in planta by Cladosporium fulvum. This study demonstrates that Cladosporium fulvum is starving for methionine during infection and thus implies the essentiality of primary biosynthetic pathways to the infecting fungus.
Collapse
Affiliation(s)
- P S Solomon
- Department of Physiology, Carlsberg Laboratory, Gamle Carlsbergvej 10, DK-2500 Valby, Denmark
| | | | | | | |
Collapse
|
156
|
Miyamoto R, Sugiura R, Kamitani S, Yada T, Lu Y, Sio SO, Asakura M, Matsuhisa A, Shuntoh H, Kuno T. Tol1, a fission yeast phosphomonoesterase, is an in vivo target of lithium, and its deletion leads to sulfite auxotrophy. J Bacteriol 2000; 182:3619-25. [PMID: 10850973 PMCID: PMC94529 DOI: 10.1128/jb.182.13.3619-3625.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lithium is the drug of choice for the treatment of bipolar affective disorder. The identification of an in vivo target of lithium in fission yeast as a model organism may help in the understanding of lithium therapy. For this purpose, we have isolated genes whose overexpression improved cell growth under high LiCl concentrations. Overexpression of tol1(+), one of the isolated genes, increased the tolerance of wild-type yeast cells for LiCl but not for NaCl. tol1(+) encodes a member of the lithium-sensitive phosphomonoesterase protein family, and it exerts dual enzymatic activities, 3'(2'),5'-bisphosphate nucleotidase and inositol polyphosphate 1-phosphatase. tol1(+) gene-disrupted cells required high concentrations of sulfite in the medium for growth. Consistently, sulfite repressed the sulfate assimilation pathway in fission yeast. However, tol1(+) gene-disrupted cells could not fully recover from their growth defect and abnormal morphology even when the medium was supplemented with sulfite, suggesting the possible implication of inositol polyphosphate 1-phosphatase activity for cell growth and morphology. Given the remarkable functional conservation of the lithium-sensitive dual-specificity phosphomonoesterase between fission yeast and higher-eukaryotic cells during evolution, it may represent a likely in vivo target of lithium action across many species.
Collapse
Affiliation(s)
- R Miyamoto
- Department of Pharmacology, Kobe University School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Hatzfeld Y, Lee S, Lee M, Leustek T, Saito K. Functional characterization of a gene encoding a fourth ATP sulfurylase isoform from Arabidopsis thaliana. Gene 2000; 248:51-8. [PMID: 10806350 DOI: 10.1016/s0378-1119(00)00132-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ATP sulfurylase (ATP: sulfate adenylyl transferase, EC 2.7.7.4), the first enzyme of the sulfate assimilation pathway, is present in the chloroplast and cytosol of plants. In Arabidopsis thaliana cDNA cloning revealed the existence of three ATP sulfurylase isoforms (APS1, -2, and -3) all of which appear to be localized in plastids. In the present study the cytosolic isoform was sought by searching the expressed sequence tag (EST) database and by screening A. thaliana genomic libraries. A fourth isoform, APS4, was identified, but it also encodes a plastid-localized isoform. The APS genes all contain four introns. The introns are located at identical positions within the coding sequence of each of the APS genes. A putative TATA box was identified in the promoter of the APS3 and APS4 genes, but no regions of sequence similarity were found among the other promoters. Combined analysis of an APS4 cDNA and genomic clone revealed that the deduced protein is 469 amino acids and is most homologous to the A. thaliana APS1 subclass. The APS4 cDNA was able to functionally complement a yeast ATP sulfurylase (met3) mutant and the recombinant enzyme displayed ATP sulfurylase activity. The APS4 protein exhibits a plastid targeting peptide at its amino terminus that, when fused to green fluorescent protein, was able to target the reporter to chloroplasts. APS4 mRNA was detected at a similar steady-state level in roots and leaves, and its expression was not induced by sulfur starvation or by O-acetylserine treatment. Having identified a fourth plastid-localized ATP sulfurylase, the origin of cytosolic isoform in A. thaliana remains unclear. Based on sequence analysis, it is hypothesized that APS2 may encode the cytosolic ATP sulfurylase.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Base Sequence
- Chromosome Mapping
- Cytosol/enzymology
- DNA, Complementary/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genes, Plant/genetics
- Genetic Complementation Test
- Green Fluorescent Proteins
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Molecular Sequence Data
- Mutation
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sulfate Adenylyltransferase/genetics
Collapse
Affiliation(s)
- Y Hatzfeld
- Chiba University, Faculty of Pharmaceutical Sciences, Laboratory of Molecular Biology and Biotechnology, Yayoi-cho 1-33, Inage-ku, Japan
| | | | | | | | | |
Collapse
|
158
|
|
159
|
Kertesz MA. Riding the sulfur cycle â metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol Rev 2000. [DOI: 10.1111/j.1574-6976.2000.tb00537.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
160
|
Kertesz MA. Riding the sulfur cycle--metabolism of sulfonates and sulfate esters in gram-negative bacteria. FEMS Microbiol Rev 2000; 24:135-75. [PMID: 10717312 DOI: 10.1016/s0168-6445(99)00033-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sulfonates and sulfate esters are widespread in nature, and make up over 95% of the sulfur content of most aerobic soils. Many microorganisms can use sulfonates and sulfate esters as a source of sulfur for growth, even when they are unable to metabolize the carbon skeleton of the compounds. In these organisms, expression of sulfatases and sulfonatases is repressed in the presence of sulfate, in a process mediated by the LysR-type regulator protein CysB, and the corresponding genes therefore constitute an extension of the cys regulon. Additional regulator proteins required for sulfonate desulfonation have been identified in Escherichia coli (the Cbl protein) and Pseudomonas putida (the AsfR protein). Desulfonation of aromatic and aliphatic sulfonates as sulfur sources by aerobic bacteria is oxygen-dependent, carried out by the alpha-ketoglutarate-dependent taurine dioxygenase, or by one of several FMNH(2)-dependent monooxygenases. Desulfurization of condensed thiophenes is also FMNH(2)-dependent, both in the rhodococci and in two Gram-negative species. Bacterial utilization of aromatic sulfate esters is catalyzed by arylsulfatases, most of which are related to human lysosomal sulfatases and contain an active-site formylglycine group that is generated post-translationally. Sulfate-regulated alkylsulfatases, by contrast, are less well characterized. Our increasing knowledge of the sulfur-regulated metabolism of organosulfur compounds suggests applications in practical fields such as biodesulfurization, bioremediation, and optimization of crop sulfur nutrition.
Collapse
Affiliation(s)
- M A Kertesz
- Institute of Microbiology, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092, Zürich, Switzerland.
| |
Collapse
|
161
|
Brüser T, Selmer T, Dahl C. "ADP sulfurylase" from Thiobacillus denitrificans is an adenylylsulfate:phosphate adenylyltransferase and belongs to a new family of nucleotidyltransferases. J Biol Chem 2000; 275:1691-8. [PMID: 10636864 DOI: 10.1074/jbc.275.3.1691] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During AMP-dependent sulfite oxidation by some sulfur bacteria, the liberation of sulfate from adenosine-5'-phosphosulfate (APS) is catalyzed by APS:phosphate adenylyltransferase (APAT). Here we report the first biochemical and genetic characterization of APAT. We isolated this enzyme from the chemolithoautotroph Thiobacillus denitrificans and cloned the corresponding gene. The enzyme is homodimeric with 41,387-Da subunits and exhibits a specific activity of 2100 micromol min(-1) mg(-1). The K(m) values are K(m(APS)) = 300 microM and K(m(P(i))) = 12 mM. Catalysis occurs by a ping-pong mechanism with a covalently bound AMP as reaction intermediate. The arsenolysis of APS, but not of ADP, CDP, GDP, UDP, or IDP, is also catalyzed, indicating a specific and unidirectional function. The former enzyme name ADP-sulfurylase implies that the reverse reaction is catalyzed; therefore, this name should not be used any longer. Histidine modification of APAT results in complete inactivation that can be suppressed by substrate addition. APAT is highly similar to galactose-1-phosphate uridylyltransferase and also related to Ap(4)A phosphorylase. Active site residues of galactose-1-phosphate uridylyltransferase are conserved in APAT and Ap(4)A phosphorylase, suggesting a histidine as the nucleotide-binding residue in all three enzymes, which together form a new family of nucleotidyltransferases.
Collapse
Affiliation(s)
- T Brüser
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, D-53115 Bonn, Germany
| | | | | |
Collapse
|
162
|
Abstract
Cysteine is the major source of fixed sulfur for the synthesis of sulfur-containing compounds in organisms of the Bacteria and Eucarya domains. Though pathways for cysteine biosynthesis have been established for both of these domains, it is unknown how the Archaea fix sulfur or synthesize cysteine. None of the four archaeal genomes sequenced to date contain open reading frames with identities to either O-acetyl-L-serine sulfhydrylase (OASS) or homocysteine synthase, the only sulfur-fixing enzymes known in nature. We report the purification and characterization of OASS from acetate-grown Methanosarcina thermophila, a moderately thermophilic methanoarchaeon. The purified OASS contained pyridoxal 5'-phosphate and catalyzed the formation of L-cysteine and acetate from O-acetyl-L-serine and sulfide. The N-terminal amino acid sequence has high sequence similarity with other known OASS enzymes from the Eucarya and Bacteria domains. The purified OASS had a specific activity of 129 micromol of cysteine/min/mg, with a K(m) of 500 +/- 80 microM for sulfide, and exhibited positive cooperativity and substrate inhibition with O-acetyl-L-serine. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single band at 36 kDa, and native gel filtration chromatography indicated a molecular mass of 93 kDa, suggesting that the purified OASS is either a homodimer or a homotrimer. The optimum temperature for activity was between 40 and 60 degrees C, consistent with the optimum growth temperature for M. thermophila. The results of this study provide the first evidence for a sulfur-fixing enzyme in the Archaea domain. The results also provide the first biochemical evidence for an enzyme with the potential for involvement in cysteine biosynthesis in the Archaea.
Collapse
Affiliation(s)
- B Borup
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
163
|
Schwerdtfeger C, Linden H. Localization and light-dependent phosphorylation of white collar 1 and 2, the two central components of blue light signaling in Neurospora crassa. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:414-22. [PMID: 10632711 DOI: 10.1046/j.1432-1327.2000.01016.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Neurospora crassa only two white collar (wc) mutants, wc-1 and wc-2, have been described that seem to be insensitive to light. The pleiotropic phenotypes of these mutants suggest that they represent two central components of blue light signal transduction. The WC proteins have several characteristics of transcription factors consistent with an involvement in transcriptional control of light-regulated genes. Here, we present a biochemical analysis of WC1 and WC2 polypeptides in N. crassa. Using specific antisera against WC1 and WC2, respectively, the subcellular localization of the WC polypeptides was investigated. The WC1 protein was localized exclusively in the nucleus, whereas WC2 was detected in both the nuclear and cytoplasmic fractions. The nuclear localization of WC1 and WC2 was shown to be independent of light and dimerization between the two proteins. In addition, WC1 and WC2 are phosphorylated in response to light. The phosphorylation of WC1 and WC2 was dependent on functional WC1 and WC2 proteins, respectively, which clearly indicated a correlation between the light-dependent phosphorylation and the function of WC1 and WC2 in blue light signaling. However, the light-specific phosphorylation of the WC proteins revealed different kinetics. The phosphorylation of WC1 was transient whereas the WC2 phosphorylation was shown to be stable under constant light conditions. The analysis of the light-dependent phosphorylation of WC1 and WC2 in wc-2 and wc-1 mutants revealed an epistatic relationship for WC1 and WC2 with WC2 acting downstream of WC1 in the signal transduction pathway of blue light.
Collapse
Affiliation(s)
- C Schwerdtfeger
- Lehrstuhl für Physiologie und Biochemie er Pflanzen, Universität Konstanz, Germany
| | | |
Collapse
|
164
|
Quadroni M, James P, Dainese-Hatt P, Kertesz MA. Proteome mapping, mass spectrometric sequencing and reverse transcription-PCR for characterization of the sulfate starvation-induced response in Pseudomonas aeruginosa PAO1. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:986-96. [PMID: 10583393 DOI: 10.1046/j.1432-1327.1999.00941.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A set of proteins induced in Pseudomonas aeruginosa PAO1 during growth in the absence of sulfate was characterized by differential two-dimensional electrophoresis and MS. Thirteen proteins were found to be induced de novo or upregulated in P. aeruginosa grown in a succinate/salts medium with sodium cyclohexylsulfamate as the sole sulfur source. Protein spots excised from the two-dimensional gels were analysed by N-terminal Edman sequencing and MS sequencing (MS/MS) of internal protein fragments. The coding sequences for 11 of these proteins were unambiguously identified in the P. aeruginosa genome sequence. Expression of these genes was investigated by reverse transcription-PCR, which confirmed that repression in the presence of sulfate was acting at a transcriptional level. Three classes of sulfur-regulated proteins were found. The first class (five proteins) were high-affinity periplasmic solute-binding proteins with apparent specificity for sulfate and sulfonates. A second class included enzymes involved in sulfonate and sulfate ester metabolism (three proteins). The remaining three proteins appeared to be part of a more general stress response, and included two antioxidant proteins and a putative lipoprotein. This study demonstrates the power of the proteomics approach for direct correlation of the responses of an organism to an environmental stimulus with the genetic structures responsible for that response, and the application of reverse transcription-PCR significantly increases the conclusions that can be drawn from the proteomic study.
Collapse
Affiliation(s)
- M Quadroni
- Protein Chemistry Laboratory, Swiss Federal Institue of Technology, Zurich, Switzerland
| | | | | | | |
Collapse
|
165
|
van de Kamp M, Pizzinini E, Vos A, van der Lende TR, Schuurs TA, Newbert RW, Turner G, Konings WN, Driessen AJ. Sulfate transport in Penicillium chrysogenum: cloning and characterization of the sutA and sutB genes. J Bacteriol 1999; 181:7228-34. [PMID: 10572125 PMCID: PMC103684 DOI: 10.1128/jb.181.23.7228-7234.1999] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In industrial fermentations, Penicillium chrysogenum uses sulfate as the source of sulfur for the biosynthesis of penicillin. By a PCR-based approach, two genes, sutA and sutB, whose encoded products belong to the SulP superfamily of sulfate permeases were isolated. Transformation of a sulfate uptake-negative sB3 mutant of Aspergillus nidulans with the sutB gene completely restored sulfate uptake activity. The sutA gene did not complement the A. nidulans sB3 mutation, even when expressed under control of the sutB promoter. Expression of both sutA and sutB in P. chrysogenum is induced by growth under sulfur starvation conditions. However, sutA is expressed to a much lower level than is sutB. Disruption of sutB resulted in a loss of sulfate uptake ability. Overall, the results show that SutB is the major sulfate permease involved in sulfate uptake by P. chrysogenum.
Collapse
Affiliation(s)
- M van de Kamp
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Care RS, Trevethick J, Binley KM, Sudbery PE. The MET3 promoter: a new tool for Candida albicans molecular genetics. Mol Microbiol 1999; 34:792-8. [PMID: 10564518 DOI: 10.1046/j.1365-2958.1999.01641.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A central technique used to investigate the role of a Candida albicans gene is to study the phenotype of a cell in which both copies of the gene have been deleted. To date, such investigations can only be undertaken if the gene is not essential. We describe the use of the Candida albicans MET3 promoter to express conditionally an essential gene, so that the consequences of depletion of the gene product may be investigated. The effects of environmental conditions on its expression were investigated, using GFP as a reporter gene. The promoter showed an approximately 85-fold range of expression, according to the presence or absence of either methionine or cysteine in concentrations in excess of 1 mM. In the presence of either amino acid, expression was reduced to levels that were close to background. We used URA3 as a model to demonstrate that the MET3 promoter could control the expression of an essential gene, provided that a mixture of both methionine and cysteine was used to repress the promoter. We describe an expression vector that may be used to express any gene under the control of the MET3 promoter and a vector that may be used to disrupt a gene and simultaneously place an intact copy under the control of the MET3 promoter. During the course of these experiments, we discovered that directed integration into the RP10 locus gives a high frequency of transformation, providing a means to solve a long-standing problem in this field.
Collapse
Affiliation(s)
- R S Care
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | | | | |
Collapse
|
167
|
Abstract
Cysteine and methionine biosynthesis was studied in Pseudomonas putida S-313 and Pseudomonas aeruginosa PAO1. Both these organisms used direct sulfhydrylation of O-succinylhomoserine for the synthesis of methionine but also contained substantial levels of O-acetylserine sulfhydrylase (cysteine synthase) activity. The enzymes of the transsulfuration pathway (cystathionine gamma-synthase and cystathionine beta-lyase) were expressed at low levels in both pseudomonads but were strongly upregulated during growth with cysteine as the sole sulfur source. In P. aeruginosa, the reverse transsulfuration pathway between homocysteine and cysteine, with cystathionine as the intermediate, allows P. aeruginosa to grow rapidly with methionine as the sole sulfur source. P. putida S-313 also grew well with methionine as the sulfur source, but no cystathionine gamma-lyase, the key enzyme of the reverse transsulfuration pathway, was found in this species. In the absence of the reverse transsulfuration pathway, P. putida desulfurized methionine by the conversion of methionine to methanethiol, catalyzed by methionine gamma-lyase, which was upregulated under these conditions. A transposon mutant of P. putida that was defective in the alkanesulfonatase locus (ssuD) was unable to grow with either methanesulfonate or methionine as the sulfur source. We therefore propose that in P. putida methionine is converted to methanethiol and then oxidized to methanesulfonate. The sulfonate is then desulfonated by alkanesulfonatase to release sulfite for reassimilation into cysteine.
Collapse
Affiliation(s)
- P Vermeij
- Institute of Microbiology, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092 Zürich, Switzerland
| | | |
Collapse
|
168
|
Abstract
Penicillin production by Penicillium chrysogenum is not only commercially important but arguably the most intensively investigated secondary-metabolic pathway in fungi. Isolation of the structural genes encoding the three main penicillin-biosynthetic enzymes has stimulated the use of molecular approaches to optimize yield and permitted genetic analysis of current production strains, which are themselves the products of 50 years of strain and process improvement. Parallel studies on the penicillin-producing genetic model organism Aspergillus nidulans are now addressing questions about the genetic regulation of primary and secondary metabolism, the compartmentalization of biosynthesis and the excretion of the end products.
Collapse
Affiliation(s)
- M A Peñalva
- Centro de Investigaciones Biológicas del CSIC, Madrid, Spain.
| | | | | |
Collapse
|