151
|
Activation of FXR protects against renal fibrosis via suppressing Smad3 expression. Sci Rep 2016; 6:37234. [PMID: 27853248 PMCID: PMC5112546 DOI: 10.1038/srep37234] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/26/2016] [Indexed: 12/16/2022] Open
Abstract
Renal fibrosis is the common pathway of most chronic kidney disease progression to end-stage renal failure. The nuclear receptor FXR (farnesoid X receptor), a multiple functional transcription factor, plays an important role in protecting against fibrosis. The TGFβ-Smad signaling has a central role in kidney fibrosis. However, it remains unclear whether FXR plays direct anti-fibrotic effect in renal fibrosis via regulating TGFβ-Smad pathway. In this study, we found that the level of FXR was negatively correlated with that of Smad3 and fibronectin (a marker of fibrosis) in human fibrotic kidneys. Activation of FXR suppressed kidney fibrosis and downregulated Smad3 expression, which was markedly attenuated by FXR antagonist. Moreover, the FXR-mediated repression of fibrosis was significantly alleviated by ectopic expression of Smad3. Luciferase reporter assay revealed that FXR activation inhibited the transcriptional activity of Smad3 gene promoter. The in vivo experiments showed that FXR agonist protected against renal fibrosis and downregulated Smad3 expression in UUO mice. These results suggested that FXR may serve as an important negative regulator for manipulating Smad3 expression, and the FXR/Smad3 pathway may be a novel target for the treatment of renal fibrosis.
Collapse
|
152
|
Zhao Q, Yang Y, Wang C, Hou Y, Chen H. ATP5B and ETFB metabolic markers in children with congenital hydronephrosis. Mol Med Rep 2016; 14:5111-5115. [PMID: 27840937 PMCID: PMC5355659 DOI: 10.3892/mmr.2016.5914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/03/2016] [Indexed: 11/06/2022] Open
Abstract
Congenital obstructive nephropathy is the primary cause of chronic renal failure in children. Disorders of mitochondrial energy metabolism may be a primary factor underlying tubular cell apoptosis in hydronephrosis. The β-F1-ATPase (ATP5B) and electron transfer flavoprotein β subunit (ETFB) metabolic markers are involved in mitochondrial energy metabolism in other diseases. The aim of the present study was to evaluate whether ATP5B and ETFB are represented in the hydronephrotic kidney, and whether they are associated with the progression of hydronephrosis. The cohort examined consisted of 20 children with hydronephrosis, graded III and IV using the Society for Fetal Urology grading system, and a control group consisting of 20 patients with nephroblastoma. Reverse transcription-quantitative polymerase chain reaction and immunoblot analyses were used to investigate the differential expression of genes and proteins in the two groups. The gene and protein expression levels of ATP5B and ETFB were upregulated in the hydronephrosis group. Correlation analyses revealed negative correlations between ATP5B, ETFB protein and split renal function (SRF). Receiver-operator curve analysis found a diagnostic profile of the ETFB protein in identifying children with hydronephrosis with abnormal SRF (<45%). These results suggested that increasing levels of ATP5B and ETFB were associated with worsening renal injury. ATP5B and ETFB may be novel markers in hydronephrosis and require further detailed investigation.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yi Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Changlin Wang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ying Hou
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Hui Chen
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
153
|
Fang J, Wang W, Sun S, Wang Y, Li Q, Lu X, Qiu M, Zhang Y. Metabolomics study of renal fibrosis and intervention effects of total aglycone extracts of Scutellaria baicalensis in unilateral ureteral obstruction rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:20-29. [PMID: 27286917 DOI: 10.1016/j.jep.2016.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 04/09/2016] [Accepted: 06/04/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellariae Radix (Scutellaria baicalensis Georgi) is a well-known Traditional Chinese Medicine (TCM) which mainly contains flavonoids. Our previous studies have demonstrated that total aglycone extracts of Scutellaria baicalensis (TAES) can improve kidney disease in rats. AIM OF THE STUDY To investigate the renal fibrosis (RF) pathogenesis and TAES treatment mechanism in unilateral ureteral obstruction (UUO) rats, using a metabolomics approach based on gas chromatography-mass spectrometry (GC/MS). METHODS Rats with RF were divided into 6 groups with rats subjected to sham operation as normal control. The effects of TAES on some RF closely related parameters in UUO rats were investigated. A metabolomics method, based on GC/MS, was developed to monitor metabolic alterations in urine. Multivariate data analysis was utilized to identify biomarkers potentially associated with RF and the anti-RF activity of TAES. Ontology-based enrichment analysis by BiNChE and pathway analysis by MetPA aid in the interpretation of difference metabolites. RESULTS After 10 days of treatment, the parameters of renal function begin returning to normal, and the abnormal high expressions of genes associated with extracellular matrix (ECM) were relived. In the metabolomics study, metabolic perturbations induced by UUO were reversed after treatment and TAES showed a dose-dependent therapy effect on RF, meanwhile, 18 potential biomarkers associated with RF were identified. Enrichment analysis of metabolites shows an over representation of mostly alkane-alpha, omega-diamine and alpha, omega-dicarboxylic acid, and these biomarkers are primarily involved in Glycine, serine and threonine metabolism, Retinol metabolism, Arginine and proline metabolism and Fructose and mannose metabolism. CONCLUSIONS Our findings indicate that TAES have positive effects on UUO-induced RF in rats, meanwhile, metabolomics method coupled with metabolites enrichment analysis is a useful tool for revealing the pathogenesis of diseases and action mechanism of TCM on the whole body.
Collapse
Affiliation(s)
- Junwei Fang
- Center for Traditional Chinese Medicine and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenyu Wang
- MacroStat (China) Clinical Research Co., Ltd, Shanghai 201203, China
| | - Shujun Sun
- Center for Traditional Chinese Medicine and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yang Wang
- Center for Traditional Chinese Medicine and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qianhua Li
- Center for Traditional Chinese Medicine and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiong Lu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yongyu Zhang
- Center for Traditional Chinese Medicine and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
154
|
Chen M, Xia J, Pei G, Zhang Y, Wu S, Qin Y, Deng Y, Guo S, Guo Y, Xu G, Han M. A more accurate method acquirement by a comparison of the prediction equations for estimating glomerular filtration rate in Chinese patients with obstructive nephropathy. BMC Nephrol 2016; 17:150. [PMID: 27756243 PMCID: PMC5070157 DOI: 10.1186/s12882-016-0345-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/05/2016] [Indexed: 02/03/2023] Open
Abstract
Background Researchers have developed several equations to predict glomerular filtration rate (GFR) in patients with chronic kidney diseases (CKD). However, there are scarcely any studies performed to discern the best equation to estimate GFR in patients with pure obstructive nephropathy. In present study, we assessed the suitability of six prediction equations and compared their performance in eGFR evaluation for Chinese patients with obstructive nephropathy. Methods A total of 245 adult patients with obstructive nephropathy were enrolled. We evaluated the performance of the 3 Modification of Diet in Renal Disease equations (MDRD) (the original MDRD7, 7MDRD; the abbreviated MDRD, aMDRD; and re-expressed abbreviated MDRD, re-aMDRD) and 3 Chronic Kidney Disease Epidemiology Collaboration equations (CKD-EPI) (CKD-EPI equation based on creatinine alone, CKD-EPIcr; CKD-EPI equation based on cystatin C alone, CKD-EPIcys; CKD-EPI equation based on combined creatinine-cystatin, CKD-EPIcr-cys). The measured GFR (mGFR) by 99mTc-DTPA renal dynamic imaging method was used as the reference GFR. Results The mean age of the study population was 51.61 ± 14.17 and 131 were male (53.47 %). The mean measured GFR was 66.54 ± 23.99 ml/min/1.73 m2. Overall, the CKD-EPIcr-cys equation gave the best performance with the best correlation (R = 0.72) and agreement (−34.87, 40.83). CKD-EPIcr-cys equation also exhibited the highest accuracy (69.39 %, P < 0.01) and diagnostic efficacy (ROCAUC = 0.874) with the smallest bias (2.98, P < 0.01). In the subgroup of the lowest GFR, CKD-EPIcys equation exhibited the highest accuracy (52.69 %) and the smallest bias (0.27). In the youngest age subgroup, CKD-EPIcys equation had the highest accuracy (71.64 %) and the smallest bias (−1.24). In other subgroups stratified by GFR, age and gender, CKD-EPIcr-cys equation remained the best performance. Conclusion The 3 CKD-EPI equations performed better than the 3 MDRD equations in estimating GFR in Chinese obstructive nephropathy patients; while the CKD-EPI equation based on combined creatinine-cystatin C provided the best estimation of GFR.
Collapse
Affiliation(s)
- Meixue Chen
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Jumei Xia
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Guangchang Pei
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Ying Zhang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Shuting Wu
- Division of nuclear medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yushuang Qin
- Division of nuclear medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanjun Deng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Shuiming Guo
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Yanyan Guo
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Gang Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| | - Min Han
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| |
Collapse
|
155
|
Downregulation of angiotensin type 1 receptor and nuclear factor-κB by sirtuin 1 contributes to renoprotection in unilateral ureteral obstruction. Sci Rep 2016; 6:33705. [PMID: 27659793 PMCID: PMC5034227 DOI: 10.1038/srep33705] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 09/01/2016] [Indexed: 01/05/2023] Open
Abstract
Activation of sirtuin 1 (Sirt1) attenuates unilateral ureteral obstruction (UUO)-induced inflammation and fibrosis, suggesting that Sirt1 may prevent tubulointerstitial fibrosis. In this study, we explored changes in the expression of Sirt1 in the kidneys of UUO-treated rats and evaluated the effects of Sirt1 activation or inhibition on renal pathology and mediators of UUO pathogenesis, especially angiotensin II and nuclear factor (NF)-κB, in rats and rat renal fibroblasts. Sirt1 expression increased in the obstructed kidney but not in the contralateral kidney and was mainly detected in tubulointerstitial cells. Resveratrol, a Sirt1 activator, decreased UUO-induced inflammation and fibrosis, while sirtinol, a Sirt1 inhibitor, enhanced UUO-induced inflammation. UUO increased renal angiotensin type 1 receptor (AT1R), NF-κB, monocyte chemotactic protein 1 (MCP-1), and fibronectin expression. Resveratrol attenuated these UUO-induced changes, whereas sirtinol enhanced them, with the exception of fibronectin. In renal fibroblasts, Sirt1 overexpression reduced AT1R and NF-κB levels, while Sirt1 knockdown had the opposite effects. Sirtinol increased the levels of AT1R, NF-κB, MCP-1, and connective tissue growth factor (CTGF), while resveratrol reduced AT1R levels. Our results suggested that Sirt1 inhibited AT1R and NF-κB expression in renal fibroblasts and that these mechanisms may play roles in alleviating UUO-induced damages.
Collapse
|
156
|
An HJ, Kim JY, Kim WH, Han SM, Park KK. The Protective Effect of Melittin on Renal Fibrosis in an Animal Model of Unilateral Ureteral Obstruction. Molecules 2016; 21:1137. [PMID: 27618890 PMCID: PMC6274242 DOI: 10.3390/molecules21091137] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 01/06/2023] Open
Abstract
Renal fibrosis is the principal pathological process underlying the progression of chronic kidney disease that leads to end-stage renal disease. Melittin is a major component of bee venom, and it has anti-bacterial, anti-viral, and anti-inflammatory properties in various cell types. Thus, this study examined the therapeutic effects of melittin on the progression of renal fibrosis using the unilateral ureteral obstruction (UUO) model. In addition, the effects of melittin on inflammation and fibrosis in renal fibroblast cells were explored using transforming growth factor-β1 (TGF-β1). Histological observation revealed that UUO induced a considerable increase in the number of infiltrated inflammatory cells. However, melittin treatment markedly reduced these reactions compared with untreated UUO mice. The expression levels of inflammatory cytokines and pro-fibrotic genes were significantly reduced in melittin-treated mice compared with UUO mice. Melittin also effectively inhibited fibrosis-related gene expression in renal fibroblasts NRK-49F cells. These findings suggest that melittin attenuates renal fibrosis and reduces inflammatory responses by the suppression of multiple growth factor-mediated pro-fibrotic genes. In conclusion, melittin may be a useful therapeutic agent for the prevention of fibrosis that characterizes the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Hyun-Jin An
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Korea.
| | - Jung-Yeon Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Korea.
| | - Woon-Hae Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Korea.
| | - Sang-Mi Han
- Deparment of Agricultural Biology, National Academy of Agricultural Science, RDA, 300, Nongsaengmyeong-ro, Wansan-gu, Jeonju 54875, Korea.
| | - Kwan-Kyu Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Korea.
| |
Collapse
|
157
|
Silva RC, Terra FF, Guise YF, Prado MAM, Prado VF, Hiyane MI, Costa Malheiros DMA, Prado CM, Camara NOS, Braga TT. Reduced expression of VAChT increases renal fibrosis. ACTA ACUST UNITED AC 2016; 23:229-36. [PMID: 27524473 DOI: 10.1016/j.pathophys.2016.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 07/21/2016] [Accepted: 07/27/2016] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) is associated with several other long-lasting conditions such as diabetes and cardiovascular diseases and it is a significant contributor to mortality worldwide. Obstructive kidney disease is one of the leading causes of CKD in children and may result from a wide variety of pathologic processes. Recent studies have shown that α7 nicotinic acetylcholine receptor (α7 nAChR) activation in the cholinergic anti-inflammatory pathway reduces production of inflammatory mediators and consequently prevents tissue injury and death. Here, we examined the role of endogenous release of acetylcholine on the development of fibrosis in renal tissue using a model of unilateral ureter obstruction (UUO)-induced CKD, in which obstruction promotes inflammation-mediated kidney damages. To interfere with acetylcholine secretion, we used mice in which the vesicular acetylcholine transporter is genetically reduced (VAChT KD(hom) mice). We observed a higher renal damage in VAChT mutant mice when compared to wild type controls, exemplified by higher proteinuria and increased amount of type 1 collagen in the kidney tissue, indicating accentuated fibrogenesis. These results were accompanied by enhanced localized kidney inflammation, with increased TH1/TH17 profile response. Administration of PNU-282987, a selective agonist of α7 nAChR, significantly attenuated kidney injury after UUO in VAChT KD(hom) mice, indicating that the lack of acetylcholine release decrease the action of the cholinergic anti-inflammatory pathway, promoting an up-regulation of pro-inflammatory and pro-fibrotic pathways. These results suggest that physiological activation of the cholinergic anti-inflammatory pathway regulates inflammatory responses in the kidney suggesting a new therapeutic approach for kidney disease.
Collapse
Affiliation(s)
- Reinaldo Correia Silva
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo, Brazil
| | - Fernanda Fernandes Terra
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo, Brazil
| | - Yuri Felipe Guise
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo, Brazil
| | - Marco Antônio Máximo Prado
- Robarts Research Institute, Department of Anatomy & Cell Biology and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Vânia Ferreira Prado
- Robarts Research Institute, Department of Anatomy & Cell Biology and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Meire Ioshie Hiyane
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo, Brazil
| | | | - Carla Maximo Prado
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Niels Olsen Saraiva Camara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo, Brazil; Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo (UNIFESP), São Paulo, Brazil; Renal Pathophysiology Laboratory (LIM16), Faculty of Medicine, University of São Paulo, Brazil
| | - Tarcio Teodoro Braga
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo, Brazil.
| |
Collapse
|
158
|
Qin T, Yin S, Yang J, Zhang Q, Liu Y, Huang F, Cao W. Sinomenine attenuates renal fibrosis through Nrf2-mediated inhibition of oxidative stress and TGFβ signaling. Toxicol Appl Pharmacol 2016; 304:1-8. [PMID: 27211841 DOI: 10.1016/j.taap.2016.05.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/05/2016] [Accepted: 05/16/2016] [Indexed: 02/06/2023]
Abstract
Renal fibrosis is the common feature of chronic kidney disease and mainly mediated by TGFβ-associated pro-fibrogenic signaling, which causes excessive extracellular matrix accumulation and successive loss of kidney functions. Sinomenine (SIN), an alkaloid derived from medicinal herb extensively used in treatment of rheumatoid arthritis and various inflammatory disorders, displays renal protective properties in experimental animals; however its pharmacological potency against renal fibrosis is not explored. In this study we report that SIN possesses strong anti-renal fibrosis functions in kidney cell and in mouse fibrotic kidney. SIN beneficially modulated the pro-fibrogenic protein expression in TGFβ-treated kidney cells and attenuated the renal fibrotic pathogenesis incurred by unilateral ureteral obstruction (UUO), which correlated with its activation of Nrf2 signaling - the key defender against oxidative stress with anti-fibrotic potentials. Further investigation on its regulation of Nrf2 downstream events revealed that SIN significantly balanced oxidative stress via improving the expression and activity of anti-oxidant and detoxifying enzymes, and interrupted the pro-fibrogenic signaling of TGFβ/Smad and Wnt/β-catenin. Even more impressively SIN achieved its anti-fibrotic activities in an Nrf2-dependent manner, suggesting that SIN regulation of Nrf2-associated anti-fibrotic activities constitutes a critical component of SIN's renoprotective functions. Collectively our studies have demonstrated a novel anti-fibrotic property of SIN and its upstream events and provided a molecular basis for SIN's potential applications in treatment of renal fibrosis-associated kidney disorders.
Collapse
Affiliation(s)
- Tian Qin
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Shasha Yin
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093, China
| | - Jun Yang
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093, China
| | - Qin Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093, China
| | - Yangyang Liu
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093, China
| | - Fengjie Huang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Wangsen Cao
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093, China.
| |
Collapse
|
159
|
Identification of key metabolic changes in renal interstitial fibrosis rats using metabonomics and pharmacology. Sci Rep 2016; 6:27194. [PMID: 27256510 PMCID: PMC4891668 DOI: 10.1038/srep27194] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/16/2016] [Indexed: 01/17/2023] Open
Abstract
Renal fibrosis is one of the important pathways involved in end-stage renal failure. Investigating the metabolic changes in the progression of disease may enhance the understanding of its pathogenesis and therapeutic information. In this study, (1)H-nuclear magnetic resonance (NMR)-based metabonomics was firstly used to screen the metabolic changes in urine and kidney tissues of renal interstitial fibrotic rats induced by unilateral ureteral obstruction (UUO), at 7, 14, 21, and 28 days after operation, respectively. The results revealed that reduced levels of bioenergy synthesis and branched chain amino acids (BCAAs), as well as elevated levels of indoxyl sulfate (IS) are involved in metabolic alterations of renal fibrosis rats. Next, by pharmacological treatment we found that reduction of IS levels could prevent the renal fibrotic symptoms. Therefore, we suggested that urinary IS may be used as a potential biomarker for the diagnosis of renal fibrosis, and a therapeutic target for drugs. Novel attempt combining metabonomics and pharmacology was established that have ability to provide more systematic diagnostic and therapeutic information of diseases.
Collapse
|
160
|
Honma S, Nakamura K, Shinohara M, Mitazaki S, Abe S, Yoshida M. Effect of amlodipine on mouse renal interstitial fibrosis. Eur J Pharmacol 2016; 780:136-41. [DOI: 10.1016/j.ejphar.2016.03.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/02/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
|
161
|
Cheng X, Zheng X, Song Y, Qu L, Tang J, Meng L, Wang Y. Apocynin attenuates renal fibrosis via inhibition of NOXs-ROS-ERK-myofibroblast accumulation in UUO rats. Free Radic Res 2016; 50:840-52. [DOI: 10.1080/10715762.2016.1181757] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
162
|
Kim TW, Kim YJ, Seo CS, Kim HT, Park SR, Lee MY, Jung JY. Elsholtzia ciliata (Thunb.) Hylander attenuates renal inflammation and interstitial fibrosis via regulation of TGF-ß and Smad3 expression on unilateral ureteral obstruction rat model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:331-9. [PMID: 27002403 DOI: 10.1016/j.phymed.2016.01.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 12/18/2015] [Accepted: 01/13/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND Renal interstitial fibrosis is characterized by excessive accumulation of extracellular matrix, which leads to end-stage renal failure. PURPOSE The aim of this study was to explore the effect of Elsholtzia ciliata (Thunb.) Hylander ethanol extract (ECE) on renal interstitial fibrosis induced by unilateral ureteral obstruction (UUO). STUDY DESIGN After quantitative analysis of ECE using the high performance liquid chromatography-photodiode array (HPLC-PDA) method, an in vitro study was performed to assess the anti-inflammatory and anti-fibrotic effects of ECE, using lipopolysaccharide (LPS) and transforming growth factor-ß (TGF-ß), respectively. METHODS For in vivo study, all male Sprague Dawley (SD) rats (n=10/group), except for those in the control group, underwent UUO. The rats were orally treated with water (control), captopril (positive control, 200 mg/kg), and ECE (300 and 500 mg/kg) for 14 days. RESULTS In ECE, luteolin and rosmarinic acid were relatively abundant among the other flavonoids and phenolic acids. ECE treatment ameliorated LPS-induced overexpression of nuclear factor-κB, tumor necrosis factor (TNF-α), and interleukin-6 and improved oxidative stress in RAW 264.7 cells. Furthermore, ECE treatment suppressed TGF-ß-induced α-smooth muscle actin and matrix metalloproteinase 9 expression in human renal mesangial cells. In the UUO model, 14 consecutive days of ECE treatment improved UUO-induced renal damage and attenuated histopathological alterations and interstitial fibrosis. Moreover, the renal expression of TNF-α, TGF-ß, and Smad 3 were inhibited by ECE treatment. CONCLUSION Taken together, the effects of ECE may be mediated by blocking the activation of TGF-ß and inflammatory cytokines, leading subsequently to degradation of the ECM accumulation pathway. Based on these findings, ECE might serve as an improved treatment strategy for renal fibrotic disease.
Collapse
Affiliation(s)
- Tae-Won Kim
- College of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Young-Jung Kim
- College of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Chang-Seob Seo
- Basic Herbal Medicine Research Group, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Hyun-Tae Kim
- College of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Se-Ra Park
- College of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Mee-Young Lee
- Herbal Medicine Formulation Research Group, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Ju-Young Jung
- College of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, 305-764, Republic of Korea.
| |
Collapse
|
163
|
Chen KH, Hsu HH, Yang HY, Tian YC, Ko YC, Yang CW, Hung CC. Inhibition of spleen tyrosine kinase (syk) suppresses renal fibrosis through anti-inflammatory effects and down regulation of the MAPK-p38 pathway. Int J Biochem Cell Biol 2016; 74:135-44. [PMID: 26948651 DOI: 10.1016/j.biocel.2016.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/19/2016] [Accepted: 03/01/2016] [Indexed: 12/29/2022]
Abstract
Renal fibrosis results from an excessive accumulation of extracellular matrix that occurs in most types of chronic kidney disease. Among the many fibrogenic factors that regulate renal fibrotic processes, transforming growth factor-β1 (TGF-β1) and inflammation after injury play critical roles. Spleen tyrosine kinase (Syk) is important for signaling processes implicated in autoimmune, inflammatory, and allergic diseases. We examined the effects of Syk inhibition on renal fibrosis in vivo and on TGF-β1-induced renal fibroblast activation in vitro. A unilateral ureteral obstruction (UUO) model was induced in male B6 mice. Mice with UUO were administered a Syk inhibitor or saline intraperitoneally 1 day before UUO surgery and daily thereafter. Both kidneys were harvested 7 days after surgery for further analysis. For the in vitro experiments, NRK-49F rat fibroblasts were pre-incubated with a Syk inhibitor before TGF-β1 stimulation. The inhibitory effects of Syk inhibition on signaling pathways down-stream of TGF-β1 were analyzed. In the UUO mouse model, administration of a Syk inhibitor attenuated extracellular matrix protein deposition and expression of α-smooth muscle actin, type I collagen, and fibronectin in a dose-dependent manner. In addition, macrophage infiltration in UUO kidney was reduced by Syk inhibition. Pre-incubation of NRK-49F cells with a Syk inhibitor suppressed TGF-β1-induced myofibroblast activation. Furthermore, inhibitory effects of Syk inhibition on TGF-β1-mediated myofibroblast activation were associated with down-regulation of MAPK-p38. These results suggest that Syk inhibition reduces tubulointerstitial fibrosis in UUO mice and inhibits TGF-β1-induced kidney myofibroblast activation. Syk inhibition could have therapeutic potential for the treatment of renal tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Kuan-Hsing Chen
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Hsiang-Hao Hsu
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Huang-Yu Yang
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Ya-Chung Tian
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Yi-Ching Ko
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Chih-Wei Yang
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Cheng-Chieh Hung
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
164
|
Alpha8 Integrin (Itga8) Signalling Attenuates Chronic Renal Interstitial Fibrosis by Reducing Fibroblast Activation, Not by Interfering with Regulation of Cell Turnover. PLoS One 2016; 11:e0150471. [PMID: 26938996 PMCID: PMC4777439 DOI: 10.1371/journal.pone.0150471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 02/14/2016] [Indexed: 11/29/2022] Open
Abstract
The α8 integrin (Itga8) chain contributes to the regulation of cell proliferation and apoptosis in renal glomerular cells. In unilateral ureteral obstruction Itga8 is de novo expressed in the tubulointerstitium and a deficiency of Itga8 results in more severe renal fibrosis after unilateral ureteral obstruction. We hypothesized that the increased tubulointerstitial damage after unilateral ureteral obstruction observed in mice deficient for Itga8 is associated with altered tubulointerstitial cell turnover and apoptotic mechanisms resulting from the lack of Itga8 in cells of the tubulointerstitium. Induction of unilateral ureteral obstruction was achieved by ligation of the right ureter in mice lacking Itga8. Unilateral ureteral obstruction increased proliferation and apoptosis rates of tubuloepithelial and interstitial cells, however, no differences were observed in the tubulointerstitium of mice lacking Itga8 and wild type controls regarding fibroblast or proliferating cell numbers as well as markers of endoplasmic reticulum stress and apoptosis after unilateral ureteral obstruction. In contrast, unilateral ureteral obstruction in mice lacking Itga8 led to more pronounced tubulointerstitial cell activation i.e. to the appearance of more phospho-SMAD2/3-positive cells and more α-smooth muscle actin-positive cells in the tubulointerstitium. Furthermore, a more severe macrophage and T-cell infiltration was observed in these animals compared to controls. Thus, Itga8 seems to attenuate tubulointerstitial fibrosis in unilateral ureteral obstruction not via regulation of cell turnover, but via regulation of TGF-β signalling, fibroblast activation and/or immune cell infiltration.
Collapse
|
165
|
Qin T, Du R, Huang F, Yin S, Yang J, Qin S, Cao W. Sinomenine activation of Nrf2 signaling prevents hyperactive inflammation and kidney injury in a mouse model of obstructive nephropathy. Free Radic Biol Med 2016; 92:90-99. [PMID: 26795599 DOI: 10.1016/j.freeradbiomed.2016.01.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 01/09/2023]
Abstract
Sinomenine is originally derived from medicinal herb and used preferentially in treatment of rheumatoid diseases in Far East regions. SIN has strong anti-inflammatory and immune-regulatory properties, acting mainly through inhibiting NF-kB signaling. Although the upstream target through which SIN affects NF-kB activity is unknown, evidence suggests that SIN might regulate inflammation through Nrf2 signaling. In this study we explored the role of Nrf2 in mediating SIN's anti-inflammation and kidney protection in a mouse model of obstructive nephropathy. We found that SIN is an activator of Nrf2 signaling. It markedly increased Nrf2 protein level, Nrf2 nuclear translocation, Nef2 transcription capacity, and the downstream protein expression. We further demonstrated that SIN activation of Nrf2 is likely due to its repression of the Nrf2 inhibitor Keap1 since it drastically reduced Keap1 protein through the PKC-sensitive ubiquitination-proteasomal degradation. SIN treatment of nephropathy mice effectively reduced the kidney damage and inflammatory responses, balanced renal oxidative stress, and improved the pathological protein expression in an Nrf2 dependent manner. In addition, SIN also Nrf2-dependently modulated macrophage M1/M2 polarization and inhibited the IkBα phosphorylation and NF-kB nuclear translocation, hence revealing an important upstream event that contributed to its anti-inflammation and tissue protection. Taken together our study has identified a novel pathway through which SIN exerts its anti-inflammation and renal protective functions, and provided a molecular basis for SIN potential applications in the treatment of kidney and other inflammatory disorders.
Collapse
Affiliation(s)
- Tian Qin
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093, China; School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Ronghui Du
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093, China.
| | - Fengjie Huang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Shasha Yin
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093, China.
| | - Jun Yang
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093, China.
| | - Siyuan Qin
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093, China.
| | - Wangsen Cao
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093, China.
| |
Collapse
|
166
|
Choi HI, Ma SK, Bae EH, Lee J, Kim SW. Peroxiredoxin 5 Protects TGF-β Induced Fibrosis by Inhibiting Stat3 Activation in Rat Kidney Interstitial Fibroblast Cells. PLoS One 2016; 11:e0149266. [PMID: 26872211 PMCID: PMC4752225 DOI: 10.1371/journal.pone.0149266] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/30/2016] [Indexed: 02/07/2023] Open
Abstract
Renal fibrosis is a common final pathway of end-stage kidney disease which is induced by aberrant accumulation of myofibroblasts. This process is triggered by reactive oxygen species (ROS) and proinflammatory cytokines generated by various source of injured kidney cells. Peroxiredoxin 5 (Prdx5) is a thiol-dependent peroxidase that reduces oxidative stress by catalyzing intramolecular disulfide bonds. Along with its antioxidant effects, expression level of Prdx5 also was involved in inflammatory regulation by immune stimuli. However, the physiological effects and the underlying mechanisms of Prdx5 in renal fibrosis have not been fully characterized. Sprague-Dawley rats were subjected to unilateral ureteral obstruction (UUO) for 1 or 7 days. For the in vitro model, NRK49F cells, a rat kidney interstitial fibroblast cell lines, were treated with transforming growth factor β (TGF-β) for 0, 1, 3, or 5 days. To access the involvement of its peroxidase activity in TGF-β induced renal fibrosis, wild type Prdx5 (WT) and double mutant Prdx5 (DM), converted two active site cysteines at Cys 48 and Cys 152 residue to serine, were transiently expressed in NRK49F cells. The protein expression of Prdx5 was reduced in UUO kidneys. Upregulation of fibrotic markers, such as fibronectin and alpha-smooth muscle actin (α-SMA), declined at 5 days in time point of higher Prdx5 expression in TGF-β treated NRK49F cells. The overexpression of wild type Prdx5 by transient transfection in NRK49F cells attenuated the TGF-β induced upregulation of fibronectin and α-SMA. On the other hand, the transient transfection of double mutant Prdx5 did not prevent the activation of fibrotic markers. Overexpression of Prdx5 also suppressed the TGF-β induced upregulation of Stat3 phosphorylation, while phosphorylation of Smad 2/3 was unchanged. In conclusion, Prdx5 protects TGF-β induced fibrosis in NRK49F cells by modulating Stat3 activation in a peroxidase activity dependent manner.
Collapse
Affiliation(s)
- Hoon-In Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - JongUn Lee
- Department of Physiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
167
|
Gregorini M, Corradetti V, Rocca C, Pattonieri EF, Valsania T, Milanesi S, Serpieri N, Bedino G, Esposito P, Libetta C, Avanzini MA, Mantelli M, Ingo D, Peressini S, Albertini R, Dal Canton A, Rampino T. Mesenchymal Stromal Cells Prevent Renal Fibrosis in a Rat Model of Unilateral Ureteral Obstruction by Suppressing the Renin-Angiotensin System via HuR. PLoS One 2016; 11:e0148542. [PMID: 26866372 PMCID: PMC4750962 DOI: 10.1371/journal.pone.0148542] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
We studied Mesenchymal Stromal Cells (MSC) effects in experimental Unilateral Ureteral Obstruction (UUO), a fibrogenic renal disease. Rats were divided in 5 groups: sham, UUO, MSC treated-UUO, ACEi treated-UUO, MSC+ACEi treated- UUO. Data were collected at 1, 7, 21 days. UUO induced monocyte renal infiltration, tubular cell apoptosis, tubular atrophy, interstitial fibrosis and overexpression of TGFβ, Renin mRNA (RENmRNA), increase of Renin, Angiotensin II (AII) and aldosterone serum levels. Both lisinopril (ACEi) and MSC treatment prevented monocyte infiltration, reduced tubular cell apoptosis, renal fibrosis and TGFβ expression. Combined therapy provided a further suppression of monocyte infiltration and tubular injury. Lisinopril alone caused a rebound activation of Renin-Angiotensin System (RAS), while MSC suppressed RENmRNA and Renin synthesis and induced a decrease of AII and aldosterone serum levels. Furthermore, in in-vitro and in-vivo experiments, MSC inhibit Human antigen R (HuR) trascription, an enhancer of RENmRNA stability by IL10 release. In conclusion, we demonstrate that in UUO MSC prevent fibrosis, by decreasing HuR-dependent RENmRNA stability. Our findings give a clue to understand the molecular mechanism through which MSC may prevent fibrosis in a wide and heterogeneous number of diseases that share RAS activation as common upstream pathogenic mechanism.
Collapse
Affiliation(s)
- Marilena Gregorini
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Valeria Corradetti
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Chiara Rocca
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Eleonora Francesca Pattonieri
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Teresa Valsania
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Samantha Milanesi
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Nicoletta Serpieri
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Giulia Bedino
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Pasquale Esposito
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Carmelo Libetta
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Maria Antonietta Avanzini
- Laboratory of Transplant Immunology/Cell Factory Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Melissa Mantelli
- Laboratory of Transplant Immunology/Cell Factory Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Daniela Ingo
- Laboratory of Transplant Immunology/Cell Factory Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Sabrina Peressini
- Clinical Chemistry Laboratory Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Riccardo Albertini
- Clinical Chemistry Laboratory Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonio Dal Canton
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Teresa Rampino
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| |
Collapse
|
168
|
Xu D, Wang H, Zhang Q, You G. Nedd4-2 but not Nedd4-1 is critical for protein kinase C-regulated ubiquitination, expression, and transport activity of human organic anion transporter 1. Am J Physiol Renal Physiol 2016; 310:F821-31. [PMID: 26823285 DOI: 10.1152/ajprenal.00522.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/20/2016] [Indexed: 11/22/2022] Open
Abstract
Human organic anion transporter 1 (hOAT1) expressed at the membrane of the kidney proximal tubule cells mediates the body disposition of a diverse array of clinically important drugs, including anti-HIV therapeutics, antitumor drugs, antibiotics, antihypertensives, and antiinflammatories. Therefore, understanding the regulation of hOAT1 will provide significant insights into kidney function and dysfunction. We previously established that hOAT1 transport activity is inhibited by activation of protein kinase C (PKC) through accelerating hOAT1 internalization from cell surface into intracellular endosomes and subsequent degradation. We further established that PKC-induced hOAT1 ubiquitination is an important step preceding hOAT1 internalization. In the current study, we identified two closely related E3 ubiquitin ligases, neural precursor cell expressed, developmentally downregulated 4-1 and 4-2 (Nedd4-1 and Nedd4-2), as important regulators for hOAT1: overexpression of Nedd4-1 or Nedd4-2 enhanced hOAT1 ubiquitination, reduced the hOAT1 amount at the cell surface, and suppressed hOAT1 transport activity. In further exploring the relationship among PKC, Nedd4-1, and Nedd4-2, we discovered that PKC-dependent changes in hOAT1 ubiquitination, expression, and transport activity were significantly blocked in cells transfected with the ligase-dead mutant of Nedd4-2 (Nedd4-2/C821A) or with Nedd4-2-specific siRNA to knockdown endogenous Nedd4-2 but not in cells transfected with the ligase-dead mutant of Nedd4-1 (Nedd4-1/C867S) or with Nedd4-1-specific siRNA to knockdown endogenous Nedd4-1. In conclusion, this is the first demonstration that both Nedd4-1 and Nedd4-2 are important regulators for hOAT1 ubiquitination, expression, and function. Yet they play distinct roles, as Nedd4-2 but not Nedd4-1 is a critical mediator for PKC-regulated hOAT1 ubiquitination, expression, and transport activity.
Collapse
Affiliation(s)
- Da Xu
- Department of Pharmaceutics, Rutgers University, Piscataway, New Jersey
| | - Haoxun Wang
- Department of Pharmaceutics, Rutgers University, Piscataway, New Jersey
| | - Qiang Zhang
- Department of Pharmaceutics, Rutgers University, Piscataway, New Jersey
| | - Guofeng You
- Department of Pharmaceutics, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
169
|
Qin J, Mei WJ, Xie YY, Huang L, Yuan QJ, Hu GY, Tao LJ, Peng ZZ. Fluorofenidone attenuates oxidative stress and renal fibrosis in obstructive nephropathy via blocking NOX2 (gp91phox) expression and inhibiting ERK/MAPK signaling pathway. Kidney Blood Press Res 2016; 40:89-99. [PMID: 26029782 DOI: 10.1159/000368485] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS We evaluated the therapeutic effects of fluorofenidone (AKF-PD), a novel pyridone agent, targeting oxidative stress and fibrosis in obstructive nephropathy. METHODS AKF-PD was used to treat renal interstitial fibrosis in unilateral ureteral obstruction (UUO) obstructive nephropathy in rats. The expression of NOX2 (gp91phox), fibronectin and extracellular signal regulated kinase (ERK) were detected by western blot. A level of Malondialdehyde (MDA), an oxidative stress marker, was measured by ELISA. In addition, ROS and the expressions of NOX2, collagen I (a1), fibronectin and p-ERK were measured in angiotensin (Ang) II-stimulated rat proximal tubular epithelial cells (NRK-52E) in culture. RESULTS In NRK-52E cells, AKF-PD reduced AngII induced expressions of ROS, NOX2, fibronectin, collagen I (a1) and p-ERK. In UUO kidney cortex, AKF-PD attenuated the degree of renal interstitial fibrosis, which was associated with reduced the expressions of collagen I (a1) and fibronectin. Furthermore, AKF-PD downregulated the expressions of NOX2, MDA and p-ERK. CONCLUSION AKF-PD treatment inhibits the progression of renal interstitial fibrosis by suppressing oxidative stress and ERK/MAPK signaling pathway.
Collapse
|
170
|
Effect of Huai Qi Huang on Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells through miR-200a. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:8612190. [PMID: 26884796 PMCID: PMC4738749 DOI: 10.1155/2016/8612190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/02/2015] [Accepted: 12/17/2015] [Indexed: 11/17/2022]
Abstract
Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells is a vital mechanism of renal fibrosis. Mounting evidence suggests that miR-200a expression decreases in tubular epithelial cells in unilateral ureteral obstruction (UUO) rats. Moreover, it has been demonstrated that Huai Qi Huang (HQH) can ameliorate tubulointerstitial damage in adriamycin nephrosis and delay kidney dysfunction in primary glomerular disease. However, the effect of HQH on EMT of tubular epithelial cells in UUO rats and its molecular mechanism is unclear. In order to explore the effect of HQH on EMT and its molecular mechanism in renal fibrosis, in vitro and in vivo experiments were performed in our study. Our results showed that HQH increased miR-200a expression in UUO rats and in TGF-β1 stimulated NRK-52E cells. Meanwhile, HQH decreased ZEB1 and ZEB2 (the transcriptional repressors of E-cadherin), α-SMA expression in renal tubular epithelial cells in vitro and in vivo. Furthermore, we found that HQH protected kidney from fibrosis in UUO rats. The results demonstrated that HQH regulated miR-200a/ZEBs pathway and inhibited EMT process, which may be a mechanism of protecting effect on tubular cells in renal fibrosis.
Collapse
|
171
|
Ding WY, Ai J, Wang XL, Qiu FG, Lv Q, Fang P, Hou FF, Yan YM, Cheng YX. Isolation of lingzhifuran A and lingzhilactones D–F from Ganoderma lucidum as specific Smad3 phosphorylation inhibitors and total synthesis of lingzhifuran A. RSC Adv 2016. [DOI: 10.1039/c6ra17900b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lingzhifuran A (1) and lingzhilactones D–F (2–4), four new phenolic meroterpenoids were isolated from the fruiting bodies of Ganoderma lucidum. Total synthesis and biological evaluation of lingzhifuran A were carried out herein.
Collapse
Affiliation(s)
- Wei-Yi Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
- People's Republic of China
| | - Jun Ai
- State Key Laboratory of Organ Failure Research
- National Clinical Research Center for Kidney Disease
- Division of Nephrology
- Nanfang Hospital
- Southern Medical University
| | - Xin-Long Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
- People's Republic of China
| | - Fayang G. Qiu
- Laboratory of Molecular Engineering and Laboratory of Natural Product Synthesis
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Guangzhou
- People's Republic of China
| | - Qing Lv
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
- People's Republic of China
| | - Ping Fang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
- People's Republic of China
| | - Fan-Fan Hou
- State Key Laboratory of Organ Failure Research
- National Clinical Research Center for Kidney Disease
- Division of Nephrology
- Nanfang Hospital
- Southern Medical University
| | - Yong-Ming Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
- People's Republic of China
| | - Yong-Xian Cheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
- People's Republic of China
| |
Collapse
|
172
|
Xu D, Wang H, You G. An Essential Role of Nedd4-2 in the Ubiquitination, Expression, and Function of Organic Anion Transporter-3. Mol Pharm 2015; 13:621-30. [PMID: 26651153 DOI: 10.1021/acs.molpharmaceut.5b00839] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Organic anion transporter-3 (OAT3) is a member of the organic anion transporter family that mediates the body disposition of a diverse array of clinically important drugs. We previously demonstrated that activation of protein kinase C (PKC) inhibits OAT3 transport activity by accelerating OAT3 internalization from cell surface into intracellular compartments. In the current study, we established that PKC-induced inhibition of OAT3 transport activity occurred through an enhanced OAT3 ubiquitination, a process catalyzed by an E3 ubiquitin-protein ligase Nedd4-2 (neural precursor cell expressed, developmentally downregulated 4-2). Overexpression of Nedd4-2 enhanced OAT3 ubiquitination, decreased OAT3 expression at the cell surface, and inhibited OAT3 transport activity. In contrast, overexpression of the ubiquitin ligase-dead mutant Nedd4-2/C821A or siRNA knockdown of endogenous Nedd4-2 had opposite effects on OAT3. Furthermore, immunoprecipitation experiments conducted both in culture cells and with rat kidney slices showed that there was a physical interaction between OAT3 and Nedd4-2. In conclusion, our results provided the first evidence that Nedd4-2 is an important regulator for OAT3 ubiquitination, expression, and transport activity.
Collapse
Affiliation(s)
- Da Xu
- Department of Pharmaceutics, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Haoxun Wang
- Department of Pharmaceutics, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Guofeng You
- Department of Pharmaceutics, Rutgers University , Piscataway, New Jersey 08854, United States
| |
Collapse
|
173
|
Aamann MD, Nørregaard R, Kristensen MLV, Stevnsner T, Frøkiær J. Unilateral ureteral obstruction induces DNA repair by APE1. Am J Physiol Renal Physiol 2015; 310:F763-F776. [PMID: 26608791 DOI: 10.1152/ajprenal.00613.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/23/2015] [Indexed: 02/05/2023] Open
Abstract
Ureteral obstruction is associated with oxidative stress and the development of fibrosis of the kidney parenchyma. Apurinic/apyrimidinic endonuclease (APE1) is an essential DNA repair enzyme for repair of oxidative DNA lesions and regulates several transcription factors. The aim of the present study was to investigate whether APE1 is regulated by acute (24 h) and chronic (7 days) unilateral ureteral obstruction (UUO). APE1 was expressed in essentially all kidney cells with the strongest expression in proximal tubuli. After 24 h of UUO, APE1 mRNA was induced in the cortex, inner stripe of the outer medulla (ISOM), and inner medulla (IM). In contrast, the APE1 protein level was not regulated in the IM and ISOM and only slightly increased in the cortex. APE1 DNA repair activity was not significantly changed. A different pattern of regulation was observed after 7 days of UUO, with an increase of the APE1 mRNA level in the cortex but not in the ISOM and IM. The APE1 protein level in the cortex, ISOM, and IM increased significantly. Importantly, we observed a significant increase in APE1 DNA repair activity in the cortex and IM. To confirm our model, we investigated heme oxygenase-1, collagen type I, fibronectin I, and α-smooth muscle actin levels. In vitro, we found the transcriptional regulatory activity of APE1 to be involved in the upregulation of the profibrotic factor connective tissue growth factor. In summary, APE1 is regulated at different levels after acute and chronic UUO. Thus, our results suggest that DNA repair activity is regulated in response to progressive (7 days) obstruction and that APE1 potentially could play a role in the development of fibrosis in kidney disease.
Collapse
Affiliation(s)
- Maria D Aamann
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; and
| | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark; .,Department of Clinical Physiology and Molecular Imaging, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
174
|
The protective effect of green tea catechins on ketamine-induced cystitis in a rat model. UROLOGICAL SCIENCE 2015. [DOI: 10.1016/j.urols.2015.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
175
|
Saliba Y, Karam R, Smayra V, Aftimos G, Abramowitz J, Birnbaumer L, Farès N. Evidence of a Role for Fibroblast Transient Receptor Potential Canonical 3 Ca2+ Channel in Renal Fibrosis. J Am Soc Nephrol 2015; 26:1855-76. [PMID: 25479966 PMCID: PMC4520158 DOI: 10.1681/asn.2014010065] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 09/23/2014] [Indexed: 01/04/2023] Open
Abstract
Transient receptor potential canonical (TRPC) Ca(2+)-permeant channels, especially TRPC3, are increasingly implicated in cardiorenal diseases. We studied the possible role of fibroblast TRPC3 in the development of renal fibrosis. In vitro, a macromolecular complex formed by TRPC1/TRPC3/TRPC6 existed in isolated cultured rat renal fibroblasts. However, specific blockade of TRPC3 with the pharmacologic inhibitor pyr3 was sufficient to inhibit both angiotensin II- and 1-oleoyl-2-acetyl-sn-glycerol-induced Ca(2+) entry in these cells, which was detected by fura-2 Ca(2+) imaging. TRPC3 blockade or Ca(2+) removal inhibited fibroblast proliferation and myofibroblast differentiation by suppressing the phosphorylation of extracellular signal-regulated kinase (ERK1/2). In addition, pyr3 inhibited fibrosis and inflammation-associated markers in a noncytotoxic manner. Furthermore, TRPC3 knockdown by siRNA confirmed these pharmacologic findings. In adult male Wistar rats or wild-type mice subjected to unilateral ureteral obstruction, TRPC3 expression increased in the fibroblasts of obstructed kidneys and was associated with increased Ca(2+) entry, ERK1/2 phosphorylation, and fibroblast proliferation. Both TRPC3 blockade in rats and TRPC3 knockout in mice inhibited ERK1/2 phosphorylation and fibroblast activation as well as myofibroblast differentiation and extracellular matrix remodeling in obstructed kidneys, thus ameliorating tubulointerstitial damage and renal fibrosis. In conclusion, TRPC3 channels are present in renal fibroblasts and control fibroblast proliferation, differentiation, and activation through Ca(2+)-mediated ERK signaling. TRPC3 channels might constitute important therapeutic targets for improving renal remodeling in kidney disease.
Collapse
Affiliation(s)
- Youakim Saliba
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine and
| | - Ralph Karam
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine and
| | - Viviane Smayra
- Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Georges Aftimos
- Department of Anatomopathology, National Institute of Pathology, Baabda, Lebanon; and
| | - Joel Abramowitz
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Lutz Birnbaumer
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Nassim Farès
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine and
| |
Collapse
|
176
|
Ai J, Nie J, He J, Guo Q, Li M, Lei Y, Liu Y, Zhou Z, Zhu F, Liang M, Cheng Y, Hou FF. GQ5 Hinders Renal Fibrosis in Obstructive Nephropathy by Selectively Inhibiting TGF-β-Induced Smad3 Phosphorylation. J Am Soc Nephrol 2015; 26:1827-1838. [PMID: 25392233 PMCID: PMC4520163 DOI: 10.1681/asn.2014040363] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 09/29/2014] [Indexed: 11/03/2022] Open
Abstract
TGF-β1, via Smad-dependent or Smad-independent signaling, has a central role in the pathogenesis of renal fibrosis. This pathway has been recognized as a potential target for antifibrotic therapy. Here, we identified GQ5, a small molecular phenolic compound isolated from the dried resin of Toxicodendron vernicifluum, as a potent and selective inhibitor of TGF-β1-induced Smad3 phosphorylation. In TGF-β1-stimulated renal tubular epithelial cells and interstitial fibroblast cells, GQ5 inhibited the interaction of Smad3 with TGF-β type I receptor (TβRI) by blocking binding of Smad3 to SARA, suppressed subsequent phosphorylation of Smad3, reduced nuclear translocation of Smad2, Smad3, and Smad4, and downregulated the transcription of major fibrotic genes such as α-smooth muscle actin (α-SMA), collagen I, and fibronectin. Notably, intraperitoneal administration of GQ5 in rats immediately after unilateral ureteral obstruction (UUO) selectively inhibited Smad3 phosphorylation in UUO kidneys, suppressed renal expression of α-SMA, collagen I, and fibronectin, and resulted in impressive renal protection after obstructive injury. Late administration of GQ5 also effectively attenuated fibrotic lesions in obstructive nephropathy. In conclusion, our results suggest that GQ5 hinders renal fibrosis in rats by selective inhibition of TGF-β1-induced Smad3 phosphorylation.
Collapse
Affiliation(s)
- Jun Ai
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Jing Nie
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Jiangbo He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Qin Guo
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Mei Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Ying Lei
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Zhanmei Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Fengxin Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Min Liang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Yongxian Cheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| |
Collapse
|
177
|
Ren Y, Du C, Yan L, Wei J, Wu H, Shi Y, Duan H. CTGF siRNA ameliorates tubular cell apoptosis and tubulointerstitial fibrosis in obstructed mouse kidneys in a Sirt1-independent manner. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4155-71. [PMID: 26257513 PMCID: PMC4527372 DOI: 10.2147/dddt.s86748] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) plays an important role in the pathogenesis and progression of chronic kidney disease. Connective tissue growth factor (CTGF) is a critical fibrogenic mediator of TGF-β1. Mammalian sirtuin 1 (Sirt1) is reported to attenuate renal fibrosis by inhibiting the TGF-β1 pathway. This study was designed to detect whether the delivery of CTGF siRNA in vivo directly ameliorates renal fibrosis. Furthermore, the relationship with Sirt1 underlying the protective effect of CTGF siRNA on interstitial fibrosis and apoptosis was explored. Here, we report that the expressions of CTGF and TGF-β1 were increased while Sirt1 expression and activity were both dramatically decreased in mouse kidneys with unilateral ureteral obstruction. Recombinant human TGF-β1 treatment in HK-2 cells increased CTGF levels and remarkably decreased Sirt1 levels and was accompanied by apoptosis and release of fibrosis-related factors. Recombinant human CTGF stimulation also directly induced apoptosis and fibrosis. The CTGF siRNA plasmid ameliorated tubular cell apoptosis and tubulointerstitial fibrosis, but did not affect Sirt1 expression and activity both in vivo and in vitro. Furthermore, overexpression of Sirt1 abolished TGF-β1-induced cell apoptosis and fibrosis, while Sirt1 overexpression suppressed CTGF expression via stimulation by TGF-β1. This study provides evidence that treatment strategies involving the delivery of siRNA targeting potentially therapeutic transgenes may be efficacious. Our results suggest that the decrease in Sirt1 is associated with the upregulated expression of CTGF in renal fibrosis, and may aid in the design of new therapies for the prevention of renal fibrosis.
Collapse
Affiliation(s)
- Yunzhuo Ren
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Chunyang Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Li Yan
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Jingying Wei
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Haijiang Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| |
Collapse
|
178
|
Vafapour M, Nematbakhsh M, Monajemi R, Mazaheri S, Talebi A, Talebi N, Shirdavani S. Effect of Γ-aminobutyric acid on kidney injury induced by renal ischemia-reperfusion in male and female rats: Gender-related difference. Adv Biomed Res 2015; 4:158. [PMID: 26380243 PMCID: PMC4550949 DOI: 10.4103/2277-9175.161585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/17/2015] [Indexed: 11/25/2022] Open
Abstract
Background: The most important cause of kidney injury is renal ischemia/reperfusion injury (IRI), which is gender-related. This study was designed to investigate the protective role of Γ-aminobutyric acid (GABA (against IRI in male and female rats. Materials and Methods: Thirty-six female and male wistar rats were assigned to six experimental groups. The IRI was induced by clamping renal vessels for 45 min then was performed reperfusion for 24 h. The group sex posed to IRI were pretreated with GABA and were compared with the control groups. Results: Serum levels of creatinine and blood urea nitrogen, kidney weight, and kidney tissue damage score increased in the IRI alone groups, (P < 0.05), while GABA decreased these parameters in female significantly (P < 0.05), but not in male rats. Uterus weight decreased significantly in female rats treated with GABA. Testis weight did not alter in male rats. Serum level of nitrite and kidney level of malondialdehyde (MDA) had no significant change in both female and male rats. Kidney level of nitrite increased significantly in female rats experienced IRI and serum level of MDA increased significantly in males that were exposed to IRI (P < 0.05). Conclusion: GABA could ameliorate kidney injury induced by renal IRI in a gender dependent manner.
Collapse
Affiliation(s)
- Marzieh Vafapour
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran ; Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Mehdi Nematbakhsh
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran ; Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran ; Isfahan-MN Institute of Basic and Applied Sciences Research, Isfahan, Iran
| | - Ramesh Monajemi
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Safoora Mazaheri
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ardeshir Talebi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran ; Department of Clinical Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Talebi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran ; Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Soheyla Shirdavani
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
179
|
Thelen S, Abouhamed M, Ciarimboli G, Edemir B, Bähler M. Rho GAP myosin IXa is a regulator of kidney tubule function. Am J Physiol Renal Physiol 2015; 309:F501-13. [PMID: 26136556 DOI: 10.1152/ajprenal.00220.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/29/2015] [Indexed: 11/22/2022] Open
Abstract
Mammalian class IX myosin Myo9a is a single-headed, actin-dependent motor protein with Rho GTPase-activating protein activity that negatively regulates Rho GTPase signaling. Myo9a is abundantly expressed in ciliated epithelial cells of several organs. In mice, genetic deletion of Myo9a leads to the formation of hydrocephalus. Whether Myo9a also has essential functions in the epithelia of other organs of the body has not been explored. In the present study, we report that Myo9a-deficient mice develop bilateral renal disease, characterized by dilation of proximal tubules, calyceal dilation, and thinning of the parenchyma and fibrosis. These structural changes are accompanied by polyuria (with normal vasopressin levels) and low-molecular-weight proteinuria. Immunohistochemistry revealed that Myo9a is localized to the circumferential F-actin belt of proximal tubule cells. In kidneys lacking Myo9a, the multiligand binding receptor megalin and its ligand albumin accumulated at the luminal surface of Myo9a-deficient proximal tubular cells, suggesting that endocytosis is dysregulated. In addition, we found, surprisingly, that levels of murine diaphanous-related formin-1, a Rho effector, were decreased in Myo9a-deficient kidneys as well as in Myo9a knockdown LLC-PK1 cells. In summary, deletion of the Rho GTPase-activating protein Myo9a in mice causes proximal tubular dilation and fibrosis, and we speculate that downregulation of murine diaphanous-related formin-1 and impaired protein reabsorption contribute to the pathophysiology.
Collapse
Affiliation(s)
- Sabine Thelen
- Institute of Molecular Cell Biology, Westfalian Wilhelms University, Münster, Germany; and
| | - Marouan Abouhamed
- Institute of Molecular Cell Biology, Westfalian Wilhelms University, Münster, Germany; and
| | - Giuliano Ciarimboli
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Bayram Edemir
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Martin Bähler
- Institute of Molecular Cell Biology, Westfalian Wilhelms University, Münster, Germany; and
| |
Collapse
|
180
|
Liu C, Mei W, Tang J, Yuan Q, Huang L, Lu M, Wu L, Peng Z, Meng J, Yang H, Shen H, Lv B, Hu G, Tao L. Mefunidone attenuates tubulointerstitial fibrosis in a rat model of unilateral ureteral obstruction. PLoS One 2015; 10:e0129283. [PMID: 26042668 PMCID: PMC4456380 DOI: 10.1371/journal.pone.0129283] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/06/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Inflammation has a crucial role in renal interstitial fibrosis, which is the common pathway of chronic kidney diseases. Mefunidone (MFD) is a new compound which could effectively inhibit the proliferation of renal fibroblasts in vitro. However, the overall effect of Mefunidone in renal fibrosis remains unknown. METHODS Sprague-Dawley rats were randomly divided intro 6 groups: sham operation, unilateral ureteral obstruction (UUO), UUO/Mefunidone (25, 50, 100mg/kg/day) and UUO/PFD (500mg/kg/day). The rats were sacrificed respectively on days 3, 7, and 14 after the operation. Tubulointerstitial injury index, interstitial collagen deposition, expression of fibronectin (FN), α-smooth muscle actin (α-SMA), type I and III collagen and the number of CD3+ and CD68+ cells were determined. The expressions of proinflammatory cytokines, p-ERK, p-IκB, and p-STAT3 were measured in human renal proximal tubular epithelial cells of HK-2 or macrophages. RESULTS Mefunidone treatment significantly attenuated tubulointerstitial injury, interstitial collagen deposition, expression of FN, α-SMA, type I and III collagen in the obstructive kidneys, which correlated with significantly reduced the number of T cells and macrophages in the obstructive kidneys. Mechanistically, Mefunidone significantly inhibited tumor necrosis factor-α (TNF-α-) or lipopolysaccharide (LPS)-induced production of proinflammatory cytokines. This effect is possibly due to the inhibition of phosphorylation of ERK, IκB, and STAT3. CONCLUSION Mefunidone treatment attenuated tubulointerstitial fibrosis in a rat model of UUO, at least in part, through inhibition of inflammation.
Collapse
Affiliation(s)
- Chunyan Liu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wenjuan Mei
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiongjing Yuan
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miaomiao Lu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Wu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Meng
- Department of Respiration, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huixiang Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Shen
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ben Lv
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gaoyun Hu
- Department of Medical Chemistry, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
181
|
Lavoz C, Alique M, Rodrigues-Diez R, Pato J, Keri G, Mezzano S, Egido J, Ruiz-Ortega M. Gremlin regulates renal inflammation via the vascular endothelial growth factor receptor 2 pathway. J Pathol 2015; 236:407-20. [PMID: 25810250 DOI: 10.1002/path.4537] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 01/03/2023]
Abstract
Inflammation is a main feature of progressive kidney disease. Gremlin binds to bone morphogenetic proteins (BMPs), acting as an antagonist and regulating nephrogenesis and fibrosis among other processes. Gremlin also binds to vascular endothelial growth factor receptor-2 (VEGFR2) in endothelial cells to induce angiogenesis. In renal cells, gremlin regulates proliferation and fibrosis, but there are no data about inflammatory-related events. We have investigated the direct effects of gremlin in the kidney, evaluating whether VEGFR2 is a functional gremlin receptor. Administration of recombinant gremlin to murine kidneys induced rapid and sustained activation of VEGFR2 signalling, located in proximal tubular epithelial cells. Gremlin bound to VEGFR2 in these cells in vitro, activating this signalling pathway independently of its action as an antagonist of BMPs. In vivo, gremlin caused early renal damage, characterized by activation of the nuclear factor (NF)-κB pathway linked to up-regulation of pro-inflammatory factors and infiltration of immune inflammatory cells. VEGFR2 blockade diminished gremlin-induced renal inflammatory responses. The link between gremlin/VEGFR2 and NF-κB/inflammation was confirmed in vitro. Gremlin overexpression was associated with VEGFR2 activation in human renal disease and in the unilateral ureteral obstruction experimental model, where VEGFR2 kinase inhibition diminished renal inflammation. Our data show that a gremlin/VEGFR2 axis participates in renal inflammation and could be a novel target for kidney disease.
Collapse
Affiliation(s)
- Carolina Lavoz
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, REDINREN, Spain
| | - Matilde Alique
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, REDINREN, Spain
| | - Raquel Rodrigues-Diez
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, REDINREN, Spain
| | | | - Gyorgy Keri
- VichemChemie Ltd, Budapest, Hungary.,MTA-SE Pathobiochemistry Research Group, Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Jesús Egido
- Division of Nephrology and Hypertension. IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, CIBERDEM, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, REDINREN, Spain
| |
Collapse
|
182
|
Baicalein attenuates renal fibrosis by inhibiting inflammation via down-regulating NF-κB and MAPK signal pathways. J Mol Histol 2015; 46:283-90. [DOI: 10.1007/s10735-015-9621-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/11/2015] [Indexed: 11/27/2022]
|
183
|
Moon SK, Kim SY, Cho JY, Kim SH. Quantification of kidney fibrosis using ultrasonic shear wave elastography: experimental study with a rabbit model. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2015; 34:869-77. [PMID: 25911705 DOI: 10.7863/ultra.34.5.869] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
OBJECTIVES The purpose of this study was to evaluate the feasibility of ultrasonic shear wave elastography for quantification of renal fibrosis in an experimental rabbit model. METHODS Thirty-eight kidneys of 19 rabbits were studied and categorized into 3 groups: group I, ureter obstruction (n = 9); group II, renal vein occlusion (n = 10); and group III, normal control (n = 19). Before surgery, we measured stiffness at the renal cortex using shear wave elastography and evaluated the sonographic findings, including size, echogenicity, and resistive index. We repeated the same sonographic examinations weekly until the fourth week. The degree of histologically quantified fibrosis and the measured stiffness values were statistically compared. RESULTS There was no significant difference in the mean stiffness values for the renal cortex in the 3 groups before surgery (8.95 kPa in group I, 9.06 kPa in group II, and 9.74 kPa in group III; P > .05). However, the mean stiffness in each group on the last sonographic examination was significantly different (10.91 kPa in group I, 13.92 kPa in group II, and 9.77 kPa in group III; P = .003). Pathologically, the degree of fibrosis was also significantly different (3.62% in group I, 11.70% in group II, and 0.70% in group III; P< .001). The fibrosis degree and stiffness were positively correlated (ρ = 0.568; P = 0.01). CONCLUSIONS Tissue stiffness measured by ultrasonic shear wave elastography was positively correlated with histopathologic renal fibrosis. Ultrasonic shear wave elastography may be used as a noninvasive tool for predicting renal fibrosis.
Collapse
Affiliation(s)
- Sung Kyoung Moon
- Department of Radiology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul, Korea (S.K.M.); and Department of Radiology, Seoul National University Hospital, Seoul, Korea (S.Y.K., J.Y.C., S.H.K.)
| | - Sang Yoon Kim
- Department of Radiology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul, Korea (S.K.M.); and Department of Radiology, Seoul National University Hospital, Seoul, Korea (S.Y.K., J.Y.C., S.H.K.)
| | - Jeong Yeon Cho
- Department of Radiology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul, Korea (S.K.M.); and Department of Radiology, Seoul National University Hospital, Seoul, Korea (S.Y.K., J.Y.C., S.H.K.)
| | - Seung Hyup Kim
- Department of Radiology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul, Korea (S.K.M.); and Department of Radiology, Seoul National University Hospital, Seoul, Korea (S.Y.K., J.Y.C., S.H.K.)
| |
Collapse
|
184
|
1,25-Dihydroxyvitamin D₃ Promotes High Glucose-Induced M1 Macrophage Switching to M2 via the VDR-PPARγ Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2015; 2015:157834. [PMID: 25961000 PMCID: PMC4417570 DOI: 10.1155/2015/157834] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 12/17/2022]
Abstract
Macrophages, especially their activation state, are closely related to the progression of diabetic nephropathy. Classically activated macrophages (M1) are proinflammatory effectors, while alternatively activated macrophages (M2) exhibit anti-inflammatory properties. 1,25-Dihydroxyvitamin D3 has renoprotective roles that extend beyond the regulation of mineral metabolism, and PPARγ, a nuclear receptor, is essential for macrophage polarization. The present study investigates the effect of 1,25-dihydroxyvitamin D3 on macrophage activation state and its underlying mechanism in RAW264.7 cells. We find that, under high glucose conditions, RAW264.7 macrophages tend to switch to the M1 phenotype, expressing higher iNOS and proinflammatory cytokines, including TNFα and IL-12. While 1,25-dihydroxyvitamin D3 significantly inhibited M1 activation, it enhanced M2 macrophage activation; namely, it upregulated the expression of MR, Arg-1, and the anti-inflammatory cytokine IL-10 but downregulated the M1 markers. However, the above effects of 1,25-dihydroxyvitamin D3 were abolished when the expression of VDR and PPARγ was inhibited by VDR siRNA and a PPARγ antagonist. In addition, PPARγ was also decreased upon treatment with VDR siRNA. The above results demonstrate that active vitamin D promoted M1 phenotype switching to M2 via the VDR-PPARγ pathway.
Collapse
|
185
|
Cai XR, Zhou QC, Yu J, Feng YZ, Xian ZH, Yang WC, Mo XK. Assessment of renal function in patients with unilateral ureteral obstruction using whole-organ perfusion imaging with 320-detector row computed tomography. PLoS One 2015; 10:e0122454. [PMID: 25874690 PMCID: PMC4398441 DOI: 10.1371/journal.pone.0122454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 02/11/2015] [Indexed: 12/02/2022] Open
Abstract
Background Obstructed nephropathy is a common complication of several disease processes. Accurate evaluation of the functional status of the obstructed kidney is important to achieve a good outcome. The purpose of this study was to investigate renal cortical and medullary perfusion changes associated with unilateral ureteral obstruction (UUO) using whole-organ perfusion imaging with 320-detector row computed tomography (CT). Methodology/Principle Findings Sixty-four patients with UUO underwent whole-organ CT perfusion imaging. Patients were divided into 3 groups, mild, moderate, and severe, based on hydronephrosis severity. Twenty sex- and age-matched patients without renal disease, who referred to abdominal CT, were chosen as control subjects. Mean cortical and medullary perfusion parameters of obstructed and contralateral kidneys were compared, and mean perfusion ratios between obstructed and contralateral kidneys were calculated and compared. Mean cortical or medullary blood flow (BF) and blood volume (BV) of the obstructed kidneys in the moderate UUO and BF, BV, and clearance (CL) in the severe UUO were significantly lower than those of the contralateral kidneys (p < 0.05). The mean cortical or medullary BF of the obstructed kidney in the moderate UUO, and BF, BV, and CL in the severe UUO were significantly lower than those of the kidneys in control subjects (p < 0.05). Mean cortical or medullary BF of the non-obstructed kidneys in the severe UUO were statistically greater than that of normal kidneys in control subjects (p < 0.05). An inverse correlation was observed between cortical and medullary perfusion ratios and grades of hydronephosis (p < 0.01). Conclusions/Significance Perfusion measurements of the whole kidney can be obtained with 320-detector row CT, and estimated perfusion ratios have potential for quantitatively evaluating UUO renal injury grades.
Collapse
Affiliation(s)
- Xiang-Ran Cai
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, P.R.China
- * E-mail:
| | - Qing-Chun Zhou
- Department of Urology, Nanhua Affiliated Hospital, Nanhua University, Hengyang, Hunan, P.R.China
| | - Juan Yu
- Department of Radiology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, P.R.China
| | - You-Zhen Feng
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, P.R.China
| | - Zhao-Hui Xian
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, P.R.China
| | - Wen-Cai Yang
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, P.R.China
| | - Xu-Kai Mo
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, P.R.China
| |
Collapse
|
186
|
Lee SY, Kim SI, Choi ME. Therapeutic targets for treating fibrotic kidney diseases. Transl Res 2015; 165:512-30. [PMID: 25176603 PMCID: PMC4326607 DOI: 10.1016/j.trsl.2014.07.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 12/11/2022]
Abstract
Renal fibrosis is the hallmark of virtually all progressive kidney diseases and strongly correlates with the deterioration of kidney function. The renin-angiotensin-aldosterone system blockade is central to the current treatment of patients with chronic kidney disease (CKD) for the renoprotective effects aimed to prevent or slow progression to end-stage renal disease (ESRD). However, the incidence of CKD is still increasing, and there is a critical need for new therapeutics. Here, we review novel strategies targeting various components implicated in the fibrogenic pathway to inhibit or retard the loss of kidney function. We focus, in particular, on antifibrotic approaches that target transforming growth factor (TGF)-β1, a key mediator of kidney fibrosis, and exciting new data on the role of autophagy. Bone morphogenetic protein (BMP)-7 and connective tissue growth factor (CTGF) are highlighted as modulators of profibrotic TGF-β activity. BMP-7 has a protective role against TGF-β1 in kidney fibrosis, whereas CTGF enhances TGF-β-mediated fibrosis. We also discuss recent advances in the development of additional strategies for antifibrotic therapy. These include strategies targeting chemokine pathways via CC chemokine receptors 1 and 2 to modulate the inflammatory response, inhibition of phosphodiesterase to restore nitric oxide-cyclic 3',5'-guanosine monophosphate function, inhibition of nicotinamide adenine dinucleotide phosphate oxidase 1 and 4 to suppress reactive oxygen species production, and inhibition of endothelin 1 or tumor necrosis factor α to ameliorate progressive renal fibrosis. Furthermore, a brief overview of some of the biomarkers of kidney fibrosis is currently being explored that may improve the ability to monitor antifibrotic therapies. It is hoped that evidence based on the preclinical and clinical data discussed in this review leads to novel antifibrotic therapies effective in patients with CKD to prevent or delay progression to ESRD.
Collapse
Affiliation(s)
- So-Young Lee
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Department of Internal Medicine, Bundang CHA Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Sung I Kim
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Mary E Choi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY.
| |
Collapse
|
187
|
Wang Y, Liu N, Bian X, Sun G, Du F, Wang B, Su X, Li D. Epigallocatechin-3-gallate reduces tubular cell apoptosis in mice with ureteral obstruction. J Surg Res 2015; 197:145-54. [PMID: 25913488 DOI: 10.1016/j.jss.2015.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/04/2015] [Accepted: 03/13/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Tubular cell apoptosis plays a crucial role in different kinds of renal diseases. Epigallocatechin-3-gallate (EGCG), a polyphenol extracted from green tea, has been shown to inhibit renal fibrosis in unilateral ureteral obstruction (UUO) mice, but its role in preventing tubular cell apoptosis and the underlying signaling mechanisms still remains unclear. MATERIALS AND METHODS Mice subjected to UUO were intraperitoneally administered EGCG (5 mg/kg) for 14 d. Normal rat kidney proximal tubular epithelial cell line NRK-52E was induced by transforming growth factor β1 (TGF-β1). Periodic acid-schiff and Masson's trichrome staining was used for histologic study. TUNEL, Hoechst staining, and flow cytometry analysis were used to measure the apoptotic status of tubular cells. Western blotting was used to determine the expression of apoptotic-associated proteins and mitogen-activated protein kinase pathway proteins. RESULTS EGCG significantly attenuated tubular injury and renal tubulointerstitial fibrosis in the obstructed kidneys of UUO mice. In addition, EGCG prevented UUO and TGF-β1-induced tubular apoptosis in a dose-dependent manner. In parallel, protein expression of B-clell lymphoma-2 (Bcl-2) was upregulated and protein expressions of Bcl-2 accosiated X protein (Bax), cleaved caspase 3, and cleaved poly ADP-ribose polymerase (PARP) were downregulated by EGCG. Furthermore, UUO and TGF-β1-stimulated phosphorylation of mitogen-activated protein kinase was inhibited by EGCG. CONCLUSIONS EGCG effectively reduces tubular cell apoptosis induced by UUO and may have potential as a clinical treatment in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Yanqiu Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Na Liu
- Department of Nephrology, Ordos Central Hospital, Ordos, Inner Mongolia, People's Republic of China
| | - Xiaohui Bian
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Guangping Sun
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Feng Du
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Bowen Wang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xuesong Su
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Detian Li
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
188
|
Urinary candidate biomarker discovery in a rat unilateral ureteral obstruction model. Sci Rep 2015; 5:9314. [PMID: 25791774 PMCID: PMC4366765 DOI: 10.1038/srep09314] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/26/2015] [Indexed: 12/12/2022] Open
Abstract
Urine has the potential to become a better source of biomarkers. Urinary proteins are affected by many factors; therefore, differentiating between the variables associated with any particular pathophysiological condition in clinical samples is challenging. To circumvent these problems, simpler systems, such as animal models, should be used to establish a direct relationship between disease progression and urine changes. In this study, a unilateral ureteral obstruction (UUO) model was used to observe tubular injury and the eventual development of renal fibrosis, as well as to identify differential urinary proteins in this process. Urine samples were collected from the residuary ureter linked to the kidney at 1 and 3 weeks after UUO. Five hundred proteins were identified and quantified by LC-MS/MS, out of which 7 and 19 significantly changed in the UUO 1- and 3-week groups, respectively, compared with the sham-operation group. Validation by western blot showed increased levels of Alpha-actinin-1 and Moesin in the UUO 1-week group, indicating that they may serve as candidate biomarkers of renal tubular injury, and significantly increased levels of Vimentin, Annexin A1 and Clusterin in the UUO 3-week group, indicating that they may serve as candidate biomarkers of interstitial fibrosis.
Collapse
|
189
|
Wang Y, Wang B, Du F, Su X, Sun G, Zhou G, Bian X, Liu N. Epigallocatechin-3-Gallate Attenuates Oxidative Stress and Inflammation in Obstructive Nephropathy via NF-κB and Nrf2/HO-1 Signalling Pathway Regulation. Basic Clin Pharmacol Toxicol 2015; 117:164-72. [PMID: 25625183 DOI: 10.1111/bcpt.12383] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/09/2015] [Indexed: 01/22/2023]
Abstract
Oxidative stress and inflammation contribute importantly to the pathogenesis of chronic kidney disease (CKD). Epigallocatechin-3-gallate (EGCG), which is the most abundant and most active catechin polyphenol extracted from green tea, has been proved to have many bioactivities. In this study, the renoprotective effect of EGCG was evaluated in a widely used kidney disease model, the unilateral ureteral obstruction (UUO) mice model. After 14 days of EGCG administration, mean arterial blood pressure, body-weight and obstructed kidney weight were measured. Levels of blood urea nitrogen (BUN) and creatinine (CR) and activities of glutamic-pyruvic transaminase (GPT) and lactate dehydrogenase (LDH) in serum were estimated as indicators of renal function. Periodic acid-Schiff (PAS) staining was performed to observe the pathological changes of the obstructed kidney. Antioxidant enzymes and pro-inflammatory cytokine production were estimated to reflect the oxidative stress and inflammatory state in the obstructed kidney. Finally, the main proteins in the NF-κB and Nrf2 signalling pathway and DNA binding activity of NF-κB and Nrf2 were measured to investigate the effect of EGCG on these two pathways. The results demonstrated that EGCG could restore UUO-induced kidney weight loss and renal dysfunction. In addition, UUO-induced oxidative stress and inflammatory responses in the obstructed kidney were also prevented by EGCG. Furthermore, EGCG could induce both NF-κB and Nrf2 nuclear translocation in the UUO kidney and promote heme oxygenase-1 (HO-1) production. These results indicated that the renoprotective effect of EGCG might be through its NF-κB and Nrf2 signalling pathway regulations.
Collapse
Affiliation(s)
- Yanqiu Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bowen Wang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Feng Du
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuesong Su
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guangping Sun
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guangyu Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaohui Bian
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Na Liu
- Department of Nephrology, Ordos Central Hospital, Ordos, Inner Mongolia, China
| |
Collapse
|
190
|
Okabe M, Miyazaki Y, Niimura F, Pastan I, Nishiyama A, Yokoo T, Ichikawa I, Matsusaka T. Unilateral ureteral obstruction attenuates intrarenal angiotensin II generation induced by podocyte injury. Am J Physiol Renal Physiol 2015; 308:F932-7. [PMID: 25673808 DOI: 10.1152/ajprenal.00444.2014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 02/06/2015] [Indexed: 01/13/2023] Open
Abstract
The renal tissue renin-angiotensin system is activated in chronic kidney diseases. We previously demonstrated that intrarenal ANG II is synthesized primarily from liver-derived angiotensinogen filtered through the glomerulus and that podocyte injury increases the passage of angiotensinogen into the tubular lumen and generation of ANG II. In the present study, we tested the effect of cessation of glomerular filtration by ureteral obstruction on renal ANG II generation in kidneys with podocyte injury under two experimental conditions. Ureteral obstruction is known to activate the renin-angiotensin system in nonproteinuric kidneys. Transgenic mice expressing hCD25 in podocyte (NEP25) were injected with 1.25 or 10 ng/g body wt of LMB2, a hCD25-targeted immunotoxin, subjected to unilateral ureteral ligation on the following day, and euthanized 7 and 4 days later, respectively. In both experiments, compared with the kidney in untreated wild-type mice, renal angiotensinogen protein, as assessed by immunostaining and Western blot analysis, was increased in the contralateral unobstructed kidney. However, it was markedly decreased in the obstructed kidney. Whereas intrarenal ANG II content was increased in the contralateral kidney compared with the untreated kidney (248 ± 83 vs. 106 ± 21 and 298 ± 185 vs. 64.8 ± 20 fmol/g kidney, respectively), this increase was suppressed in the obstructed kidney (161 ± 75 and 113 ± 34 fmol/g kidney, respectively), a pattern opposite to what we expected in obstructed kidneys without podocyte injury. Thus, our study indicates that the major source of increased renal ANG II in podocyte injury is filtered angiotensinogen.
Collapse
Affiliation(s)
- Masahiro Okabe
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan; Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Yoichi Miyazaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Fumio Niimura
- Department of Pediatrics, Tokai University School of Medicine, Kanagawa, Japan; and
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University School of Medicine, Kagawa, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Iekuni Ichikawa
- Tokai University School of Medicine, Kanagawa, Japan; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Taiji Matsusaka
- Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan; Institute of Medical Science,
| |
Collapse
|
191
|
Zhang J, Wong MG, Wong M, Gross S, Chen J, Pollock C, Saad S. A cationic-independent mannose 6-phosphate receptor inhibitor (PXS64) ameliorates kidney fibrosis by inhibiting activation of transforming growth factor-β1. PLoS One 2015; 10:e0116888. [PMID: 25658916 PMCID: PMC4319899 DOI: 10.1371/journal.pone.0116888] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/16/2014] [Indexed: 12/11/2022] Open
Abstract
The activity of transforming growth factor-β1 (TGF-β1) is regulated by its conversion from the latent to the active form. We have previously shown that the conversion is at least in part mediated by the cationic-independent mannose 6-phosphate receptor (CI-M6PR), as the CI-M6PR inhibitor, PXS-25 has anti-fibrotic properties in human kidney tubular (HK-2) cells under high glucose conditions. However, its clinical use is limited by low bioavailability. Our aim was to determine the effects of PXS64, a pro-drug of PXS25, in in vitro and in vivo models of renal fibrosis. HK-2 cells were exposed to latent TGFβ1+/- PXS64 for 48 hours. The mRNA and protein levels of pro-fibrotic and pro-inflammatory markers were determined. A 7 day unilateral ureteric obstruction (UUO) model was used and the following experimental groups were studied: (i) Sham operated, (ii) UUO, (iii) UUO + telmisartan (iv) UUO + PSX64. HK-2 cells exposed to PXS64 reduced TGFβ mediated effects on collagen IV, fibronectin, macrophage chemotactic protein-1 (MCP-1) and phospho-smad2 protein expression, consistent with inhibition of the conversion of latent to active TGF-β1. PXS 64 treated UUO mice had a lower tubulointerstitial fibrosis index, collagen IV and fibronectin protein and mRNA expression when compared to untreated UUO mice. In addition, these animals had lower MCP-1 mRNA expression, reduced inflammarory cell infiltrate, as indicated by fewer CD45, F4/80 positive cells, and reduced phospho-Smad2 protein expression when compared to untreated UUO animals. Our data demonstrates that PSX64 is an effective anti-fibrotic agent by inhibiting the activation of latent TGF-β1.
Collapse
Affiliation(s)
- Jie Zhang
- Kolling Institute of Medical Research, Sydney, Australia
| | - Muh Geot Wong
- Kolling Institute of Medical Research, Sydney, Australia
| | - May Wong
- Kolling Institute of Medical Research, Sydney, Australia
| | - Simon Gross
- Kolling Institute of Medical Research, Sydney, Australia
| | - Jason Chen
- Royal North Shore Hospital, St. Leonards, Australia
| | - Carol Pollock
- Kolling Institute of Medical Research, Sydney, Australia
| | - Sonia Saad
- Kolling Institute of Medical Research, Sydney, Australia
- * E-mail:
| |
Collapse
|
192
|
Kamata M, Hosono K, Fujita T, Kamata K, Majima M. Role of cyclooxygenase-2 in the development of interstitial fibrosis in kidneys following unilateral ureteral obstruction in mice. Biomed Pharmacother 2015; 70:174-80. [PMID: 25776498 DOI: 10.1016/j.biopha.2015.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 01/04/2015] [Indexed: 12/23/2022] Open
Abstract
Unilateral ureteral obstruction (UUO) induced tubulointerstitial fibrosis in kidneys mimics the pathogenesis of chronic kidney diseases and is considered a suitable model for studying the mechanisms leading to fibrosis. To study the role of cyclooxygenase-2 (COX-2) in kidney fibrosis, we investigated whether a selective COX-2 inhibitor, celecoxib, affected renal interstitial fibrosis during UUO in mice. To induce UUO, the left proximal ureter was ligated in male C57BL/6 mice. The mice were fed a diet with or without celecoxib from the day of UUO induction. Following UUO, the renal pelvis was observed to be dilated and the kidney cortex was significantly thinner than that of sham-operated mice. Immunofluorescent staining of type I, III, and IV collagen in UUO kidneys revealed that interstitial collagen deposition was significantly increased in the celecoxib-treated group. Expression of type I, III, and IV collagen in UUO kidneys was also significantly higher in the celecoxib-treated group than in the vehicle-treated group. In the celecoxib-treated group, mRNA levels of TGF-β/FGF-2 were also significantly higher than those in the vehicle-treated group. The present study demonstrates that COX-2 plays a protective role against fibrosis in UUO kidneys and suggests that supplementation of COX-2 products, such as PG analogues, will be a good option for preventing interstitial fibrosis.
Collapse
Affiliation(s)
- Mariko Kamata
- Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan; Nephrology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan; Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Kanako Hosono
- Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Tomoe Fujita
- Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan; Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Kouju Kamata
- Nephrology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Masataka Majima
- Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan; Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan.
| |
Collapse
|
193
|
Mast cells in renal inflammation and fibrosis: Lessons learnt from animal studies. Mol Immunol 2015; 63:86-93. [DOI: 10.1016/j.molimm.2014.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 12/25/2022]
|
194
|
Ozbek E, Adas G, Otunctemur A, Duruksu G, Koc B, Polat EC, Kemik Sarvan A, Okcu A, Kamali G, Subasi C, Karaoz E. Role of Mesenchymal Stem Cells Transfected With Vascular Endothelial Growth Factor in Maintaining Renal Structure and Function in Rats with Unilateral Ureteral Obstruction. EXP CLIN TRANSPLANT 2014; 13:262-72. [PMID: 25542189 DOI: 10.6002/ect.2014.0080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Mesenchymal stem cells hold promise for renal disease treatment. Vascular endothelial growth factor may heal tubule-interstitial fibrosis in unilateral ureteral obstruction by inhibiting epithelial-mesenchymal transition. We investigated the protective effect of vascular endothelial growth factor in transfected mesenchymal stem cells in unilateral ureteral obstruction-induced renal injury in rats. MATERIALS AND METHODS Male Wistar Albino rats (32 rats; weight, 250-300 g) were divided into 4 equal groups: group 1, control; group 2, unilateral ureteral obstruction; group 3, unilateral ureteral obstruction and mesenchymal stem cells; and group 4, unilateral ureteral obstruction and vascular endothelial growth factor-transfected mesenchymal stem cells. Vascular endothelial growth factor-transfected mesenchymal stem cells were administered intravenously before onset of unilateral ureteral obstruction. On day 14, the rats were killed and kidneys were retrieved. Tubular necrosis, mononuclear cell infiltration, and interstitial fibrosis were evaluated in paraffin blocks. We evaluated green fluorescent protein-positive and vascular endothelial growth factor-positive cells; anti-inflammatory (Prostaglandin E2 receptor) and interleukin 1 receptor antagonist), proinflammatory/anti-inflammatory (interleukin 6), and proinflammatory (MPO) cytokine expression levels; and levels of nitric oxide; transforming growth factor β1, E-cadherin, and hydroxyproline. RESULTS Green fluorescent protein-positive cells were negative in the renal parenchyma in groups 1 and 2 and positive in groups 3 and 4. Vascular endothelial growth factor levels were significantly higher in group 4. Transforming growth factor β1, nitric oxide, and E-cadherin levels were significantly higher in the unilateral ureteral obstruction than control group; however, in the study groups, these values were not significantly different from the unilateral ureteral obstruction group. In stem cell-transplanted tissue samples, EP3, interleukin 1 receptor antagonist, and interleukin 6 levels were elevated, but MPO expression levels were low. Although there were significant differences for tubular necrosis and fibrosis in group 2, there were significant reductions in tubular injury and fibrosis in groups 3 and 4. CONCLUSIONS Systemic stem cells transplanted into the kidney protected against unilateral ureteral obstruction-induced renal epithelial-mesenchymal transition and renal fibrosis.
Collapse
Affiliation(s)
- Emin Ozbek
- From the Okmeydani Training and Research Hospital, Department of Urology, Istanbul, Turkey
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Role of the prostaglandin E2/E-prostanoid 2 receptor signalling pathway in TGFβ-induced mice mesangial cell damage. Biosci Rep 2014; 34:e00159. [PMID: 25327961 PMCID: PMC4266927 DOI: 10.1042/bsr20140130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The prostaglandin E2 receptor, EP2 (E-prostanoid 2), plays an important role in mice glomerular MCs (mesangial cells) damage induced by TGFβ1 (transforming growth factor-β1); however, the molecular mechanisms for this remain unknown. The present study examined the role of the EP2 signalling pathway in TGFβ1-induced MCs proliferation, ECM (extracellular matrix) accumulation and expression of PGES (prostaglandin E2 synthase). We generated primary mice MCs. Results showed MCs proliferation promoted by TGFβ1 were increased; however, the production of cAMP and PGE2 (prostaglandin E2) was decreased. EP2 deficiency in these MCs augmented FN (fibronectin), Col I (collagen type I), COX2 (cyclooxygenase-2), mPGES-1 (membrane-associated prostaglandin E1), CTGF (connective tissue growth factor) and CyclinD1 expression stimulated by TGFβ1. Silencing of EP2 also strengthened TGFβ1-induced p38MAPK (mitogen-activated protein kinase), ERK1/2 (extracellular-signal-regulated kinase 1/2) and CREB1 (cAMP responsive element-binding protein 1) phosphorylation. In contrast, Adenovirus-mediated EP2 overexpression reversed the effects of EP2-siRNA (small interfering RNA). Collectively, the investigation indicates that EP2 may block p38MAPK, ERK1/2 and CREB1 phosphorylation via activation of cAMP production and stimulation of PGE2 through EP2 receptors which prevent TGFβ1-induced MCs damage. Our findings also suggest that pharmacological targeting of EP2 receptors may provide new inroads to antagonize the damage induced by TGFβ1.
Collapse
|
196
|
Xue W, Xie Y, Wang Q, Xu W, Mou S, Ni Z. Diagnostic performance of urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin for acute kidney injury in an obstructive nephropathy patient. Nephrology (Carlton) 2014; 19:186-94. [PMID: 24165570 DOI: 10.1111/nep.12173] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2013] [Indexed: 01/09/2023]
Abstract
AIM We investigated the diagnostic performance of urinary kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) for acute kidney injury (AKI) in 90 obstructive nephropathy patients. METHODS Urine samples were obtained preoperatively and 4, 8, 12, 24, 48 and 72 h postoperatively, and urinary KIM-1 and NGAL contents were measured by enzyme linked immunosorbent assay and corrected against urine creatinine content. The receiver operating characteristic (ROC) curves were used to determine the area under the curve (AUCs) of urinary KIM-1 and NGAL for AKI. RESULTS The baseline urinary KIM-1 contents were higher in AKI patients than non-AKI patients (P < 0.01). Urinary NGAL contents were also higher in AKI patients than non-AKI patients (P < 0.001). The area under the curve (AUC) of urinary KIM-1 was 0.900 (P = 0.004) and at a cutoff of 338.26 pg/mg Cr, the sensitivity was 90% and the specificity was 75%. The AUC of urinary NGAL was 0.900 (P = 0.004) and at a cutoff of 261.76 ng/mg Cr, the sensitivity was 90% and the specificity was 87.5%. The combined AUC of urinary KIM-1 and NGAL was 0.938 (P = 0.002) with a sensitivity of 90% and a specificity of 100%. Cox regression analysis revealed that urinary KIM-1content 72 h after operation correlated with the prognosis of AKI patients (P = 0.009). When kidney viability was stratified by urinary KIM-1 content 72 h postoperatively, Kaplan-Meier analysis showed that patients with a urinary content of KIM-1 < 138.20 pg/mg had a higher kidney viability rate than those with a urinary content of KIM-1 > 138.20 pg/mg. CONCLUSION Urinary KIM-1 and NGAL had a good accuracy for detecting AKI. KIM-1 72 h postoperatively can predict the renal outcome of obstructive nephropathy.
Collapse
Affiliation(s)
- Wei Xue
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
197
|
Analysis of a urinary biomarker panel for obstructive nephropathy and clinical outcomes. PLoS One 2014; 9:e112865. [PMID: 25402279 PMCID: PMC4234476 DOI: 10.1371/journal.pone.0112865] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 10/19/2014] [Indexed: 12/21/2022] Open
Abstract
Objectives To follow up renal function changes in patients with obstructive nephropathy and to evaluate the predictive value of biomarker panel in renal prognosis. Methods A total of 108 patients with obstructive nephropathy were enrolled in the study; 90 patients completed the follow-up. At multiple time points before and after obstruction resolution, urinary samples were prospectively collected in patients with obstructive nephropathy; the levels of urinary kidney injury molecule-1 (uKIM-1), liver-type fatty acid-binding protein (uL-FABP), and neutrophil gelatinase associated lipocalin (uNGAL) were determined by enzyme-linked immunosorbent assay (ELISA). After 1 year of follow-up, the predictive values of biomarker panel for determining the prognosis of obstructive nephropathy were evaluated. Results uKIM-1 (r = 0.823), uL-FABP (r = 0.670), and uNGAL (r = 0.720) levels were positively correlated with the serum creatinine level (all P<0.01). The levels of uKIM-1, uL-FABP, and uNGAL were higher in the renal function deterioration group than in the renal function stable group. Cox regression analysis revealed that the 72-h postoperative uKIM-1 level and the preoperative and 72-h postoperative uL-FABP levels were all risk factors for renal function deterioration (all P<0.01). The area under the curve of Receiver Operating Characteristic(ROC-AUCs) of 72-h postoperative uKIM-1, preoperative uL-FABP, and 72-h postoperative uL-FABP were 0.786, 0.911, and 0.875, respectively. When the combined preoperative uKIM-1, uL-FABP, and uNGAL levels or combined 72-h postoperative uKIM-1, uL-FABP, and uNGAL levels were considered, the accuracy of prediction for renal prognosis was markedly increased, with an ROC-AUC of 0.967 or 0.964, respectively. Kaplan-Meier survival curve analysis demonstrated that a 72-h postoperative uKIM-1>96.69 pg/mg creatinine (Cr), a preoperative uL-FABP>154.62 ng/mg Cr, and a 72-h postoperative uL-FABP>99.86 ng/mg Cr were all positively correlated with poor prognosis (all P<0.01). Conclusion Biomarker panel may be used as a marker for early screening of patients with obstructive nephropathy and for determining poor prognosis.
Collapse
|
198
|
Xu W, Shao X, Tian L, Gu L, Zhang M, Wang Q, Wu B, Wang L, Yao J, Xu X, Mou S, Ni Z. Astragaloside IV ameliorates renal fibrosis via the inhibition of mitogen-activated protein kinases and antiapoptosis in vivo and in vitro. J Pharmacol Exp Ther 2014; 350:552-62. [PMID: 24951279 DOI: 10.1124/jpet.114.214205] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Apoptosis of renal tubular cells plays a crucial role in renal fibrosis. Astragaloside IV (AS-IV), a compound extracted from Radix Astragali, has been shown to inhibit renal tubular cell apoptosis induced by high glucose, but its role in preventing chronic renal fibrosis as well as the underlying molecular mechanisms involved still remain obscure. In this study, human kidney tubular epithelial cells induced by transforming growth factor-β1 (TGF-β1) were used to investigate the protective role of AS-IV in antifibrosis. As an in vivo model, mice subjected to unilateral ureteral obstruction (UUO) were administered AS-IV (20 mg/kg) by intraperitoneal injection for 7 days. AS-IV significantly alleviated renal mass loss and reduced the expression of α-smooth muscle actin, fibronectin, and collagen IV both in vitro and in vivo, suggesting that this compound functions in the inhibition of renal tubulointerstitial fibrosis. Furthermore, transferase-mediated dUTP nick-end labeling assay results both in vivo and in vitro showed that AS-IV significantly attenuated both UUO and TGF-β1-induced cell apoptosis and prevented renal tubular epithelial cell injury in a dose-dependent manner. Western blotting results also revealed that the antiapoptotic effect of AS-IV was reflected in the inhibition of caspase-3 activation, which might be mediated primarily by the downregulation of mitogen-activated protein kinase effectors phospho-p38 and phospho-c-Jun N-terminal kinase. These data infer that AS-IV effectively attenuates the progression of renal fibrosis after UUO injury and may have a promising clinical role as a potential antifibrosis treatment in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Weijia Xu
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease (W.X., X.S., L.T., L.G., M.Z., Q.W., B.W., L.W., S.M., Z.N.), Animal Centre (J.Y.), and Department of Biochemical Laboratory (X.X.), Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinghua Shao
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease (W.X., X.S., L.T., L.G., M.Z., Q.W., B.W., L.W., S.M., Z.N.), Animal Centre (J.Y.), and Department of Biochemical Laboratory (X.X.), Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Tian
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease (W.X., X.S., L.T., L.G., M.Z., Q.W., B.W., L.W., S.M., Z.N.), Animal Centre (J.Y.), and Department of Biochemical Laboratory (X.X.), Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Leyi Gu
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease (W.X., X.S., L.T., L.G., M.Z., Q.W., B.W., L.W., S.M., Z.N.), Animal Centre (J.Y.), and Department of Biochemical Laboratory (X.X.), Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Minfang Zhang
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease (W.X., X.S., L.T., L.G., M.Z., Q.W., B.W., L.W., S.M., Z.N.), Animal Centre (J.Y.), and Department of Biochemical Laboratory (X.X.), Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Wang
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease (W.X., X.S., L.T., L.G., M.Z., Q.W., B.W., L.W., S.M., Z.N.), Animal Centre (J.Y.), and Department of Biochemical Laboratory (X.X.), Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bei Wu
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease (W.X., X.S., L.T., L.G., M.Z., Q.W., B.W., L.W., S.M., Z.N.), Animal Centre (J.Y.), and Department of Biochemical Laboratory (X.X.), Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Wang
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease (W.X., X.S., L.T., L.G., M.Z., Q.W., B.W., L.W., S.M., Z.N.), Animal Centre (J.Y.), and Department of Biochemical Laboratory (X.X.), Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jufang Yao
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease (W.X., X.S., L.T., L.G., M.Z., Q.W., B.W., L.W., S.M., Z.N.), Animal Centre (J.Y.), and Department of Biochemical Laboratory (X.X.), Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Xu
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease (W.X., X.S., L.T., L.G., M.Z., Q.W., B.W., L.W., S.M., Z.N.), Animal Centre (J.Y.), and Department of Biochemical Laboratory (X.X.), Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Mou
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease (W.X., X.S., L.T., L.G., M.Z., Q.W., B.W., L.W., S.M., Z.N.), Animal Centre (J.Y.), and Department of Biochemical Laboratory (X.X.), Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaohui Ni
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease (W.X., X.S., L.T., L.G., M.Z., Q.W., B.W., L.W., S.M., Z.N.), Animal Centre (J.Y.), and Department of Biochemical Laboratory (X.X.), Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
199
|
Lan A, Zhang J, Xiao Z, Peng X, Qi Y, Du J. Akt2 is involved in loss of epithelial cells and renal fibrosis following unilateral ureteral obstruction. PLoS One 2014; 9:e105451. [PMID: 25148525 PMCID: PMC4141797 DOI: 10.1371/journal.pone.0105451] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/22/2014] [Indexed: 11/21/2022] Open
Abstract
Obstructive nephropathy is an aggressive form of chronic kidney disease (CKD), which is characterized by an epithelial-to-mesenchymal transition (EMT) and interstitial fibrosis. However, the molecular mechanisms of EMT and fibrosis are complex and not fully understood. In this study, we investigated the contribution of Akt2 to experimental renal EMT and fibrosis using the well-established model of unilateral ureteral obstruction (UUO). We found that Akt2 and phosphor (p)-Akt protein levels were increased in the obstructed kidneys. UUO induced activation of transforming growth factor-β1 (TGF-β1) signaling. Importantly, knockout of Akt2 suppressed UUO-induced EMT, kidney fibrosis, increased GSK3β activity, and decreased expression of Snail and β-catenin. Inhibition of GSK3β with LiCl (the inhibitor of GSK3β) increased the expression of Snail and β-catenin in cultured kidney epithelial cells. Our findings suggest that Akt2 partially contributes to interstitial fibrosis following UUO and that inhibition of this signaling pathway may provide a novel approach of prevent progression of renal fibrosis.
Collapse
Affiliation(s)
- Aiping Lan
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Jing Zhang
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Zhicheng Xiao
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Xiaogang Peng
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Yongfen Qi
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Jie Du
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- * E-mail:
| |
Collapse
|
200
|
Role of microRNA-29b in the ochratoxin A-induced enhanced collagen formation in human kidney cells. Toxicology 2014; 324:116-22. [PMID: 25091173 DOI: 10.1016/j.tox.2014.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/16/2014] [Accepted: 07/31/2014] [Indexed: 11/23/2022]
Abstract
Ochratoxin A (OTA) is an ubiquitous mycotoxin suspected to cause fibrotic kidney diseases. The involvement of mircoRNAs in these processes is unknown. Here, we investigated the role of the anti-fibrotic miR-29b in OTA-induced alterations of cellular collagen homeostasis. OTA exposure of human embryonic kidney cells (HEK293) cells led to an increase of collagen I, III and IV protein amounts without changes in collagen mRNA expression levels, indicating post-transcriptionally mediated mechanisms potentially involving microRNAs and 3'UTRs of collagen mRNAs. This was confirmed by enhanced luciferase activity of a collagen1A1-3'UTR reporter plasmid after OTA exposure. OTA also enhanced the luciferase activity of a reporter plasmid containing the seed region of miR-29b showing that OTA diminishes miR-29b action. Additionally, OTA induced an altered intracellular distribution of miR-29b leading to decreased cytoplasmic abundance of miR-29b. Abundantly added miR-29b (miR-29b clamp) completely prevented OTA-induced collagen formation. In summary, we show that OTA has the potential to initiate or support the development of fibrotic kidney diseases by involving post-transcriptional regulation mechanisms comprising miR-29b. OTA reduces the impact of miR-29b and thus enhances collagen protein expression. These findings allow a new perspective on how the exposure to nanomolar OTA concentrations can lead to fibrotic tissue alterations.
Collapse
|