151
|
Fu Y, Liu S, Zeng S, Shen H. The critical roles of activated stellate cells-mediated paracrine signaling, metabolism and onco-immunology in pancreatic ductal adenocarcinoma. Mol Cancer 2018; 17:62. [PMID: 29458370 PMCID: PMC5817854 DOI: 10.1186/s12943-018-0815-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/12/2018] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignant diseases worldwide. It is refractory to conventional treatments, and consequently has a documented 5-year survival rate as low as 7%. Increasing evidence indicates that activated pancreatic stellate cells (PSCs), one of the stromal components in tumor microenvironment (TME), play a crucial part in the desmoplasia, carcinogenesis, aggressiveness, metastasis associated with PDAC. Despite the current understanding of PSCs as a "partner in crime" to PDAC, detailed regulatory roles of PSCs and related microenvironment remain obscure. In addition to multiple paracrine signaling pathways, recent research has confirmed that PSCs-mediated tumor microenvironment may influence behaviors of PDAC via diverse mechanisms, such as rewiring metabolic networks, suppressing immune responses. These new activities are closely linked with treatment and prognosis of PDAC. In this review, we discuss the recent advances regarding new functions of activated PSCs, including PSCs-cancer cells interaction, mechanisms involved in immunosuppressive regulation, and metabolic reprogramming. It's clear that these updated experimental or clinical studies of PSCs may provide a promising approach for PDAC treatment in the near future.
Collapse
Affiliation(s)
- Yaojie Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shanshan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
152
|
Veenstra VL, Garcia-Garijo A, van Laarhoven HW, Bijlsma MF. Extracellular Influences: Molecular Subclasses and the Microenvironment in Pancreatic Cancer. Cancers (Basel) 2018; 10:cancers10020034. [PMID: 29382042 PMCID: PMC5836066 DOI: 10.3390/cancers10020034] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/21/2017] [Accepted: 01/24/2018] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most prevalent form of pancreatic cancer and carries the worst prognosis of all common cancers. Five-year survival rates have not surpassed 6% for some decades and this lack of improvement in outcome urges a better understanding of the PDAC-specific features which contribute to this poor result. One of the most defining features of PDAC known to contribute to its progression is the abundance of non-tumor cells and material collectively known as the stroma. It is now well recognized that the different non-cancer cell types, signalling molecules, and mechanical properties within a tumor can have both tumor-promoting as well as –inhibitory effects. However, the net effect of this intratumour heterogeneity is not well understood. Heterogeneity in the stromal makeup between patients is even less well established. Such intertumour heterogeneity is likely to be affected by the relative contributions of individual stromal constituents, but how these contributions exactly relate to existing classifications that demarcate intertumour heterogeneity in PDAC is not fully known. In this review, we give an overview of the available evidence by delineating the elements of the PDAC stroma and their contribution to tumour growth. We do so by interpreting the heterogeneity at the gene expression level in PDAC, and how stromal elements contribute to, or interconnect, with this.
Collapse
Affiliation(s)
- Veronique L Veenstra
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center and Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Andrea Garcia-Garijo
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center and Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Hanneke W van Laarhoven
- Department of Medical Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center and Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
153
|
Wallbaum P, Rohde S, Ehlers L, Lange F, Hohn A, Bergner C, Schwarzenböck SM, Krause BJ, Jaster R. Antifibrogenic effects of vitamin D derivatives on mouse pancreatic stellate cells. World J Gastroenterol 2018; 24:170-178. [PMID: 29375203 PMCID: PMC5768936 DOI: 10.3748/wjg.v24.i2.170] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To study the molecular effects of three different D-vitamins, vitamin D2, vitamin D3 and calcipotriol, in pancreatic stellate cells (PSCs).
METHODS Quiescent PSCs were isolated from mouse pancreas and activated in vitro by seeding on plastic surfaces. The cells were exposed to D-vitamins as primary cultures (early-activated PSCs) and upon re-culturing (fully-activated cells). Exhibition of vitamin A-containing lipid droplets was visualized by oil-red staining. Expression of α-smooth muscle actin (α-SMA), a marker of PSC activation, was monitored by immunofluorescence and immunoblot analysis. The rate of DNA synthesis was quantified by 5-bromo-2’-deoxyuridine (BrdU) incorporation assays. Real-time PCR was employed to monitor gene expression, and protein levels of interleukin-6 (IL-6) were measured by ELISA. Uptake of proline was determined using 18F-proline.
RESULTS Sustained culture of originally quiescent PSCs induced cell proliferation, loss of lipid droplets and exhibition of stress fibers, indicating cell activation. When added to PSCs in primary culture, all three D-vitamins diminished expression of α-SMA (to 32%-39% of the level of control cells; P < 0.05) and increased the storage of lipids (scores from 1.97-2.15 on a scale from 0-3; controls: 1.49; P < 0.05). No such effects were observed when Dvitamins were added to fully-activated cells, while incorporation of BrdU remained unaffected under both experimental conditions. Treatment of re-cultured PSCs with Dvitamins was associated with lower expression of IL-6 (-42% to -49%; P < 0.05; also confirmed at the protein level) and increased expression of the vitamin D receptor gene (209%-321% vs controls; P < 0.05). There was no effect of Dvitamins on the expression of transforming growth factor-β1 and collagen type 1 (chain α1). The lowest uptake of proline, a main component of collagen, was observed in calcipotriol-treated PSCs.
CONCLUSION The three D-vitamins inhibit, with similar efficiencies, activation of PSCs in vitro, but cannot reverse the phenotype once the cells are fully activated.
Collapse
Affiliation(s)
- Peter Wallbaum
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
| | - Sarah Rohde
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
| | - Luise Ehlers
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
| | - Falko Lange
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock 18057, Germany
| | - Alexander Hohn
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock 18057, Germany
| | - Carina Bergner
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock 18057, Germany
| | | | - Bernd Joachim Krause
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock 18057, Germany
| | - Robert Jaster
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
| |
Collapse
|
154
|
Ding SM, Lu AL, Zhang W, Zhou L, Xie HY, Zheng SS, Li QY. The role of cancer-associated fibroblast MRC-5 in pancreatic cancer. J Cancer 2018; 9:614-628. [PMID: 29483967 PMCID: PMC5820929 DOI: 10.7150/jca.19614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 11/25/2017] [Indexed: 02/06/2023] Open
Abstract
Background: Our previous study showed that cancer-associated fibroblast MRC-5 promoted hepatocellular carcinoma progression by enhancing migration and invasion capability. However, few studies have explored the role of MRC-5 in pancreatic cancer (PC). In this study, we examined the exact role and associated mechanisms of MRC-5. Methods: The conditioned media for MRC-5 was used to culture PC cell lines SW1990 and PANC-1. Cell proliferation was compared based on colony formation assays of PC cells in normal media and of PC cells cultured with conditioned media of MRC-5. Cell migration and invasion were assayed by transwell chambers. The expression of EMT-related proteins and apoptosis-related proteins was evaluated using Western blot. And confocal microscopy was used to further detect the expression of EMT-related proteins. qRT-PCR was used to confirm the expression changes of related genes at the mRNA level. We also used flow cytometry to examine the cell cycle, apoptotic rate, and expression of CD3, CD4, CD14, CD25, CD45, CD61, CD90, TLR1, and TLR4. Results: MRC-5 repressed the colony formation ability of PC cells and significantly inhibited cell migration and invasion potential. MRC-5 induced S-phase cell cycle arrest but did not augment the apoptotic effects in PC cells. We hypothesized that the weakened malignant biological behavior of PC cells was correlated with MRC-5-induced altered expression of the cancer stem cell marker CD90; the immune-related cell surface molecules CD14, CD25, TLR4, and TLR1; and cell polarity complexes Par, Scribble, and Crumbs. Conclusion: MRC-5 limits the malignant activities of PC cells by suppressing cancer stem cell expansion, remolding epithelial polarity, and blocking the protumoral cascade reaction coupled to TLR4, TLR1, CD14, and CD25.
Collapse
Affiliation(s)
- Song-Ming Ding
- Shulan (Hangzhou) Hospital (Zhejiang University International Hospital), Hangzhou, Zhejiang, P.R. China
| | - Ai-Li Lu
- Division of oncology department, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Wu Zhang
- Shulan (Hangzhou) Hospital (Zhejiang University International Hospital), Hangzhou, Zhejiang, P.R. China
| | - Lin Zhou
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Trans-plantation, Zhejiang Province; Hangzhou, Zhejiang, China
| | - Hai-Yang Xie
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Trans-plantation, Zhejiang Province; Hangzhou, Zhejiang, China
| | - Shu-Sen Zheng
- Shulan (Hangzhou) Hospital (Zhejiang University International Hospital), Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Trans-plantation, Zhejiang Province; Hangzhou, Zhejiang, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Qi-Yong Li
- Shulan (Hangzhou) Hospital (Zhejiang University International Hospital), Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
155
|
Experimental models of pancreatic cancer desmoplasia. J Transl Med 2018; 98:27-40. [PMID: 29155423 DOI: 10.1038/labinvest.2017.127] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 01/18/2023] Open
Abstract
Desmoplasia is a fibro-inflammatory process and a well-established feature of pancreatic cancer. A key contributor to pancreatic cancer desmoplasia is the pancreatic stellate cell. Various in vitro and in vivo methods have emerged for the isolation, characterization, and use of pancreatic stellate cells in models of cancer-associated fibrosis. In addition to cell culture models, genetically engineered animal models have been established that spontaneously develop pancreatic cancer with desmoplasia. These animal models are currently being used for the study of pancreatic cancer pathogenesis and for evaluating therapeutics against pancreatic cancer. Here, we review various in vitro and in vivo models that are being used or have the potential to be used to study desmoplasia in pancreatic cancer.
Collapse
|
156
|
Parente P, Parcesepe P, Covelli C, Olivieri N, Remo A, Pancione M, Latiano TP, Graziano P, Maiello E, Giordano G. Crosstalk between the Tumor Microenvironment and Immune System in Pancreatic Ductal Adenocarcinoma: Potential Targets for New Therapeutic Approaches. Gastroenterol Res Pract 2018; 2018:7530619. [PMID: 30662458 PMCID: PMC6312626 DOI: 10.1155/2018/7530619] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/04/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is a lethal disease for which radical surgery and chemotherapy represent the only curative options for a small proportion of patients. Recently, FOLFIRINOX and nab-paclitaxel plus gemcitabine have improved the survival of metastatic patients but prognosis remains poor. A pancreatic tumor microenvironment is a dynamic milieu of cellular and acellular elements, and it represents one of the major limitations to chemotherapy efficacy. The continued crosstalk between cancer cells and the surrounding microenvironment causes immunosuppression within pancreatic immune infiltrate increasing tumor aggressiveness. Several potential targets have been identified among tumor microenvironment components, and different therapeutic approaches are under investigation. In this article, we provide a qualitative literature review about the crosstalk between the tumor microenvironment components and immune system in pancreatic cancer. Finally, we discuss potential therapeutic strategies targeting the tumor microenvironment and we show the ongoing trials.
Collapse
Affiliation(s)
- Paola Parente
- 1Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Anatomia Patologica, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Pietro Parcesepe
- 2Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, P.le L.A. Scuro 10, 37134 Verona, Italy
| | - Claudia Covelli
- 1Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Anatomia Patologica, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Nunzio Olivieri
- 3Biology Department, University of Naples Federico II, Via Mezzocannone 8, 80134 Naples, Italy
| | - Andrea Remo
- 4“Mater Salutis” Hospital, ULSS 9, Via C. Gianella 1, 37045 Legnago, Verona, Italy
| | - Massimo Pancione
- 5Department of Sciences and Technologies, University of Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Tiziana Pia Latiano
- 6Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Oncologia Medica, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Paolo Graziano
- 1Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Anatomia Patologica, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Evaristo Maiello
- 6Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Oncologia Medica, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Guido Giordano
- 6Fondazione IRCCS Casa Sollievo della Sofferenza, UO di Oncologia Medica, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| |
Collapse
|
157
|
Wu YS, Looi CY, Subramaniam KS, Masamune A, Chung I. Soluble factors from stellate cells induce pancreatic cancer cell proliferation via Nrf2-activated metabolic reprogramming and ROS detoxification. Oncotarget 2017; 7:36719-36732. [PMID: 27167341 PMCID: PMC5095034 DOI: 10.18632/oncotarget.9165] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 04/22/2016] [Indexed: 12/13/2022] Open
Abstract
Pancreatic stellate cells (PSC), a prominent stromal cell, contribute to the progression of pancreatic ductal adenocarcinoma (PDAC). We aim to investigate the mechanisms by which PSC promote cell proliferation in PDAC cell lines, BxPC-3 and AsPC-1. PSC-conditioned media (PSC-CM) induced proliferation of these cells in a dose- and time-dependent manner. Nrf2 protein was upregulated and subsequently, its transcriptional activity was increased with greater DNA binding activity and transcription of target genes. Downregulation of Nrf2 led to suppression of PSC-CM activity in BxPC-3, but not in AsPC-1 cells. However, overexpression of Nrf2 alone resulted in increased cell proliferation in both cell lines, and treatment with PSC-CM further enhanced this effect. Activation of Nrf2 pathway resulted in upregulation of metabolic genes involved in pentose phosphate pathway, glutaminolysis and glutathione biosynthesis. Downregulation and inhibition of glucose-6-phosphate-dehydrogenase with siRNA and chemical approaches reduced PSC-mediated cell proliferation. Among the cytokines present in PSC-CM, stromal-derived factor-1 alpha (SDF-1α) and interleukin-6 (IL-6) activated Nrf2 pathway to induce cell proliferation in both cells, as shown with neutralization antibodies, recombinant proteins and signaling inhibitors. Taken together, SDF-1α and IL-6 secreted from PSC induced PDAC cell proliferation via Nrf2-activated metabolic reprogramming and ROS detoxification.
Collapse
Affiliation(s)
- Yuan Seng Wu
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603 Malaysia.,University of Malaya Cancer Research Institute, University of Malaya, Kuala Lumpur, 50603 Malaysia
| | - Chung Yeng Looi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603 Malaysia
| | - Kavita S Subramaniam
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603 Malaysia.,University of Malaya Cancer Research Institute, University of Malaya, Kuala Lumpur, 50603 Malaysia
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi Prefecture, 980-5877 Japan
| | - Ivy Chung
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603 Malaysia.,University of Malaya Cancer Research Institute, University of Malaya, Kuala Lumpur, 50603 Malaysia
| |
Collapse
|
158
|
FAK and paxillin, two potential targets in pancreatic cancer. Oncotarget 2017; 7:31586-601. [PMID: 26980710 PMCID: PMC5058780 DOI: 10.18632/oncotarget.8040] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/11/2016] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating cancer in large part due to late diagnosis and a lack of effective screening tests. In spite of recent progress in imaging, surgery and new therapeutic options for pancreatic cancer, the overall five-year survival still remains unacceptably low. Numerous studies have shown that focal adhesion kinase (FAK) is activated in many cancers including PDAC and promotes cancer progression and metastasis. Paxillin, an intracellular adaptor protein that plays a key role in cytoskeletal organization, connects integrins to FAK and plays a key role in assembly and disassembly of focal adhesions. Here, we have reviewed evidence in support of FAK as a potential therapeutic target and summarized related combinatorial therapies.
Collapse
|
159
|
Saison-Ridinger M, DelGiorno KE, Zhang T, Kraus A, French R, Jaquish D, Tsui C, Erikson G, Spike BT, Shokhirev MN, Liddle C, Yu RT, Downes M, Evans RM, Saghatelian A, Lowy AM, Wahl GM. Reprogramming pancreatic stellate cells via p53 activation: A putative target for pancreatic cancer therapy. PLoS One 2017; 12:e0189051. [PMID: 29211796 PMCID: PMC5718507 DOI: 10.1371/journal.pone.0189051] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/19/2017] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an extremely dense fibrotic stroma, which contributes to tumor growth, metastasis, and drug resistance. During tumorigenesis, quiescent pancreatic stellate cells (PSCs) are activated and become major contributors to fibrosis, by increasing growth factor signaling and extracellular matrix deposition. The p53 tumor suppressor is known to restrict tumor initiation and progression through cell autonomous mechanisms including apoptosis, cell cycle arrest, and senescence. There is growing evidence that stromal p53 also exerts anti-tumor activity by paracrine mechanisms, though a role for stromal p53 in PDAC has not yet been described. Here, we demonstrate that activation of stromal p53 exerts anti-tumor effects in PDAC. We show that primary cancer-associated PSCs (caPSCs) isolated from human PDAC express wild-type p53, which can be activated by the Mdm2 antagonist Nutlin-3a. Our work reveals that p53 acts as a major regulator of PSC activation and as a modulator of PDAC fibrosis. In vitro, p53 activation by Nutlin-3a induces profound transcriptional changes, which reprogram activated PSCs to quiescence. Using immunofluorescence and lipidomics, we have also found that p53 activation induces lipid droplet accumulation in both normal and tumor-associated fibroblasts, revealing a previously undescribed role for p53 in lipid storage. In vivo, treatment of tumor-bearing mice with the clinical form of Nutlin-3a induces stromal p53 activation, reverses caPSCs activation, and decreases fibrosis. All together our work uncovers new functions for stromal p53 in PDAC.
Collapse
Affiliation(s)
- Maya Saison-Ridinger
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Kathleen E. DelGiorno
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Tejia Zhang
- Clayton Foundation Peptide Biology Lab, Helmsley Center for Genomic Medicine, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Annabelle Kraus
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Randall French
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, California, United States of America
| | - Dawn Jaquish
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, California, United States of America
| | - Crystal Tsui
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Galina Erikson
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Benjamin T. Spike
- Huntsman Cancer Institute, Department of Oncologic Sciences, University of Utah, Salt Lake City Utah, United States of America
| | - Maxim N. Shokhirev
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Ruth T. Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Alan Saghatelian
- Clayton Foundation Peptide Biology Lab, Helmsley Center for Genomic Medicine, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Andrew M. Lowy
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, California, United States of America
| | - Geoffrey M. Wahl
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
160
|
Liang C, Shi S, Meng Q, Liang D, Ji S, Zhang B, Qin Y, Xu J, Ni Q, Yu X. Complex roles of the stroma in the intrinsic resistance to gemcitabine in pancreatic cancer: where we are and where we are going. Exp Mol Med 2017; 49:e406. [PMID: 29611542 PMCID: PMC5750480 DOI: 10.1038/emm.2017.255] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/23/2017] [Accepted: 08/07/2017] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most devastating human malignancies. The poor clinical outcome in PDAC is partly attributed to a growth-permissive tumor microenvironment. In the PDAC microenvironment, the stroma is characterized by the development of extensive fibrosis, with stromal components outnumbering pancreatic cancer cells. Each of the components within the stroma has a distinct role in conferring chemoresistance to PDAC, and intrinsic chemoresistance has further worsened this pessimistic prognosis. The nucleoside analog gemcitabine (GEM) is usually the recommended first-line chemotherapeutic agent for PDAC patients and is given alone or in combination with other agents. The mechanisms of intrinsic resistance to GEM are an active area of ongoing research. This review highlights the important role the complex structure of stroma in PDAC plays in the intrinsic resistance to GEM and discusses whether antistroma therapy improves the efficacy of GEM. The addition of antistroma therapy combined with GEM is expected to be a novel therapeutic strategy with significant survival benefits for PDAC patients.
Collapse
Affiliation(s)
- Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Dingkong Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
161
|
Kuninty PR, Bojmar L, Tjomsland V, Larsson M, Storm G, Östman A, Sandström P, Prakash J. MicroRNA-199a and -214 as potential therapeutic targets in pancreatic stellate cells in pancreatic tumor. Oncotarget 2017; 7:16396-408. [PMID: 26918939 PMCID: PMC4941323 DOI: 10.18632/oncotarget.7651] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
Pancreatic stellate cells (PSCs) are the key precursor cells for cancer-associated fibroblasts (CAFs) in pancreatic tumor stroma. In this study, we explored miRNA as therapeutic targets in tumor stroma and found miR-199a-3p and miR-214-3p induced in patient-derived pancreatic CAFs and TGF-β-activated human PSCs (hPSCs). Inhibition of miR-199a/-214 using hairpin inhibitors significantly inhibited TGFβ-induced differentiation markers (e.g. α-SMA, collagen, PDGFβR), migration and proliferation. Furthermore, heterospheroids of Panc-1 and hPSCs attained smaller size with hPSCs transfected with anti-miR-199a/-214 compared to control anti-miR. The conditioned medium obtained from TGFβ-activated hPSCs induced tumor cell growth and endothelial cell tube formation. Interestingly, these inductions were abrogated in hPSCs transfected with anti-miR-199a or miR-214. Moreover, IPA analyses revealed signaling pathways related to miR-199a (TP53, mTOR, Smad1) and miR-214 (PTEN, Bax, ING4). Taken together, this study reveals miR-199a-3p and miR-214-3p as major regulators of PSC activation and PSC-induced pro-tumoral effects, representing them as key therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Praneeth R Kuninty
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Twente, Netherlands
| | - Linda Bojmar
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Pediatric Hematology/Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Vegard Tjomsland
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Hepato-pancreato-biliary Surgery, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marie Larsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Gert Storm
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Twente, Netherlands.,Department of Pharmaceutics, Utrecht University, Utrecht, Netherlands
| | - Arne Östman
- Department of Oncology-Pathology, Cancer Centre Karolinska, Karolinska Institutet, Karolinska, Sweden
| | - Per Sandström
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jai Prakash
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Twente, Netherlands.,Department of Oncology-Pathology, Cancer Centre Karolinska, Karolinska Institutet, Karolinska, Sweden
| |
Collapse
|
162
|
Fan H, Li H, Liu G, Cong W, Zhao H, Cao W, Zheng J. Doxorubicin combined with low intensity ultrasound suppresses the growth of oral squamous cell carcinoma in culture and in xenografts. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:163. [PMID: 29157266 PMCID: PMC5696881 DOI: 10.1186/s13046-017-0633-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/13/2017] [Indexed: 11/16/2022]
Abstract
Background Oral squamous cell carcinoma (OSCC) invades surrounding tissues by upregulating matrix metalloproteinases (MMPs) -2 and −9, which causes over-expression of the Hedgehog signaling proteins Shh and Gli-1 and degradation of the extracellular matrix, thereby creating a “highway” for tumor invasion. We explored the potential of low intensity ultrasound (LIUS) and doxorubicin (DOX) to inhibit the formation of this “highway”. Methods MTT assays were used to examine OSCC cell viability after exposure to LIUS and DOX. The cell morphological changes and ultrastructure were detected by scanning electron microscopy and transmission electron microscopy. Endogenous autophagy-associated proteins were analyzed by immunofluorescent staining and western blotting. Cell migration and invasion abilities were evaluated by Transwell assays. Collagen fiber changes were evaluated by Masson’s trichrome staining. Invasion-associated proteins were analyzed by immunohistochemistry and western blotting. Results LIUS of 1 W/cm2 increased the in vitro DOX uptake into OSCC by nearly 3-fold in three different cell lines and induced transient autophagic vacuoles on the cell surface. The combination of LIUS and 0.2 μg/ml DOX inhibited tumor cell viability and invasion, promoted tumor stromal collagen deposition, and prolonged the survival of mice. This combination also down-regulated MMP-2, MMP-9, Shh and Gli-1 in tumor xenografts. Collagen fiber expression was negatively correlated with the expression of these proteins in human OSCC samples. Conclusions Our findings suggest that effective low dosages of DOX in combination with LIUS can inhibit cell proliferation, migration and invasion, which might be through MMP-2/9 production mediated by the Hedgehog signaling pathway. Electronic supplementary material The online version of this article (10.1186/s13046-017-0633-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haixia Fan
- Departmentof Anatomy, Basic Medical Science College, Harbin Medical University, 194 Xuefu Road, Nangang District, Harbin, 150081, China.,Department of Oral Medicine, Jining Medical College, Shandong, 272067, China
| | - Haixia Li
- Department of Forensic Medicine, Basic Medical Science College, Harbin Medical University, Harbin, 150081, China
| | - Guanyao Liu
- Department of Oral Pathology, Stomatological Hospital, Harbin Medical University, Harbin, 150001, China
| | - Wei Cong
- Departmentof Anatomy, Basic Medical Science College, Harbin Medical University, 194 Xuefu Road, Nangang District, Harbin, 150081, China
| | - Hong Zhao
- Departmentof Anatomy, Basic Medical Science College, Harbin Medical University, 194 Xuefu Road, Nangang District, Harbin, 150081, China
| | - Wenwu Cao
- Condensed Matter Science and Technology Institute, and Department of Physics, Harbin Institute of Technology, Harbin, 150080, China.,Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Jinhua Zheng
- Departmentof Anatomy, Basic Medical Science College, Harbin Medical University, 194 Xuefu Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
163
|
Xue R, Yang J, Wu J, Meng Q, Hao J. Coenzyme Q10 inhibits the activation of pancreatic stellate cells through PI3K/AKT/mTOR signaling pathway. Oncotarget 2017; 8:92300-92311. [PMID: 29190916 PMCID: PMC5696182 DOI: 10.18632/oncotarget.21247] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/07/2017] [Indexed: 12/14/2022] Open
Abstract
AIM Pancreatic stellate cells (PSCs) have a vital role in pancreatic fibrosis accompanied by pancreatic ductal adenocarcinoma (PDAC) and chronic pancreatitis (CP). Any agents which can affect the activation of PSCs could become potential candidates for treatment strategies in PDAC and CP. Our aim was to explore the effect of Coenzyme Q10 (CoQ10) in the process of PSCs activation. METHODS Isolated PSCs from C57BL/6 mice were treated with various dosages of CoQ10 (1, 10, and 100μM) and different time (24h, 48h, and 72 h). Effect of CoQ10 on autophagy, apoptosis, senescence and oxidative stress, as well as the activation of PSCs were analyzed by immunocytofluorescent staining, quantitative real time RT-PCR, western blotting, SA-β-galactosidase staining, malondialdehyde and reactive oxygen species (ROS) assay. RESULTS Expression of α-smooth muscle actin, LC3II, Beclin1, Cleaved caspases-3 and Bax levels were significantly reduced in CoQ10 treatment groups. Meanwhile, compared with the control group, significant differences for the expression of desmin, P62, Bcl-2, p-PI3K, p-AKT and p-mTOR levels in CoQ10 treatment groups were found. Moreover, CoQ10 affected the secretion of extracellular matrix components for PSCs. Few SA-β-gal positive cells were found in CoQ10 treated groups. A significant decrease in ROS positive cells and malondialdehyde levels were observed after 72 h exposure to CoQ10. CONCLUSIONS Our finding suggests that CoQ10 inhibits the activation of PSCs by suppressing autophagy through activating the PI3K/AKT/mTOR signaling pathway. CoQ10 may act as a therapeutic agent in PSC-relating pathologies and/or anti-fibrotic approaches.
Collapse
Affiliation(s)
- Ran Xue
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jing Yang
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| | - Jing Wu
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| | - Qinghua Meng
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
164
|
Fatty Acid-Mediated Stromal Reprogramming of Pancreatic Stellate Cells Induces Inflammation and Fibrosis That Fuels Pancreatic Cancer. Pancreas 2017; 46:1259-1266. [PMID: 28991878 DOI: 10.1097/mpa.0000000000000943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Pancreatic ductal adenocarcinoma is one of the deadliest diseases worldwide. Fatty acids (FAs) have properties that affect both cancer cells and tumor environment. We assessed the effects of FAs on malignant characteristics in a pancreatic cancer and pancreatic stellate cell (PSC) coculture model. This study aimed to clarify the FA signature of PSC-derived inflammation and fibrosis in vitro and in a clinicopathological analysis. METHODS The in vitro model involved coculture of the human pancreatic cancer cell lines PANC-1 and MIA PaCa-2 with human PSCs. Clinical histological samples were analyzed to characterize the surgical margins of samples from patients who received distal pancreatectomies. RESULTS The pancreatic cancer cells took up lipids from the culture media. Saturated and unsaturated FAs were required to induce inflammatory responses in human PSCs, and the cocultures showed fibrotic changes. Clinical samples from pancreatic ductal adenocarcinoma patients had more fatty and fibrotic changes in the normal tissue in the surgical margins than samples from noncancer patients. CONCLUSIONS Inflammation and fibrosis levels were increased in pancreatic cancer specimens, supporting the in vitro observations and suggesting that PSCs contribute to pancreatic carcinogenesis. Pancreatic stellate cells thus represent a potential therapeutic target for suppressing stromal changes in pancreatic cancer.
Collapse
|
165
|
Abstract
Cancer is a leading cause of mortality and morbidity worldwide. Around 90% of deaths are caused by metastasis and just 10% by primary tumor. The advancement of treatment approaches is not at the same rhythm of the disease; making cancer a focal target of biomedical research. To enhance the understanding and prompts the therapeutic delivery; concepts of tissue engineering are applied in the development of in vitro models that can bridge between 2D cell culture and animal models, mimicking tissue microenvironment. Tumor spheroid represents highly suitable 3D organoid-like framework elucidating the intra and inter cellular signaling of cancer, like that formed in physiological niche. However, spheroids are of limited value in studying critical biological phenomenon such as tumor-stroma interactions involving extra cellular matrix or immune system. Therefore, a compelling need of tailoring spheroid technologies with physiologically relevant biomaterials or in silico models, is ever emerging. The diagnostic and prognostic role of spheroids rearrangements within biomaterials or microfluidic channel is indicative of patient management; particularly for the decision of targeted therapy. Fragmented information on available in vitro spheroid models and lack of critical analysis on transformation aspects of these strategies; pushes the urge to comprehensively overview the recent technological advancements (e.g. bioprinting, micro-fluidic technologies or use of biomaterials to attain the third dimension) in the shed of translationable cancer research. In present article, relationships between current models and their possible exploitation in clinical success is explored with the highlight of existing challenges in defining therapeutic targets and screening of drug efficacy.
Collapse
|
166
|
Ng CF, Frieboes HB. Model of vascular desmoplastic multispecies tumor growth. J Theor Biol 2017; 430:245-282. [PMID: 28529153 PMCID: PMC5614902 DOI: 10.1016/j.jtbi.2017.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 03/07/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022]
Abstract
We present a three-dimensional nonlinear tumor growth model composed of heterogeneous cell types in a multicomponent-multispecies system, including viable, dead, healthy host, and extra-cellular matrix (ECM) tissue species. The model includes the capability for abnormal ECM dynamics noted in tumor development, as exemplified by pancreatic ductal adenocarcinoma, including dense desmoplasia typically characterized by a significant increase of interstitial connective tissue. An elastic energy is implemented to provide elasticity to the connective tissue. Cancer-associated fibroblasts (myofibroblasts) are modeled as key contributors to this ECM remodeling. The tumor growth is driven by growth factors released by these stromal cells as well as by oxygen and glucose provided by blood vasculature which along with lymphatics are stimulated to proliferate in and around the tumor based on pro-angiogenic factors released by hypoxic tissue regions. Cellular metabolic processes are simulated, including respiration and glycolysis with lactate fermentation. The bicarbonate buffering system is included for cellular pH regulation. This model system may be of use to simulate the complex interactions between tumor and stromal cells as well as the associated ECM and vascular remodeling that typically characterize malignant cancers notorious for poor therapeutic response.
Collapse
Affiliation(s)
- Chin F Ng
- Department of Bioengineering, University of Louisville, Lutz Hall 419, KY 40208, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Lutz Hall 419, KY 40208, USA; James Graham Brown Cancer Center, University of Louisville, KY, USA.
| |
Collapse
|
167
|
Drifka CR, Loeffler AG, Esquibel CR, Weber SM, Eliceiri KW, Kao WJ. Human pancreatic stellate cells modulate 3D collagen alignment to promote the migration of pancreatic ductal adenocarcinoma cells. Biomed Microdevices 2017; 18:105. [PMID: 27819128 DOI: 10.1007/s10544-016-0128-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the ability for cancer cells to aggressively infiltrate and navigate through a dense stroma during the metastatic process. Key features of the PDAC stroma include an abundant population of activated pancreatic stellate cells (PSCs) and highly aligned collagen fibers; however, important questions remain regarding how collagen becomes aligned and what the biological manifestations are. To better understand how PSCs, aligned collagen, and PDAC cells might cooperate during the transition to invasion, we utilized a microchannel-based in vitro tumor model and advanced imaging technologies to recreate and examine in vivo-like heterotypic interactions. We found that PSCs participate in a collaborative process with cancer cells by orchestrating the alignment of collagen fibers that, in turn, are permissive to enhanced cell migration. Additionally, direct contact between PSCs, collagen, and PDAC cells is critical to invasion and co-migration of both cell types. This suggests PSCs may accompany and assist in navigating PDAC cells through the stromal terrain. Together, our data provides a new role for PSCs in stimulating the metastatic process and underscores the importance of collagen alignment in cancer progression.
Collapse
Affiliation(s)
- Cole R Drifka
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA.,Laboratory for Optical and Computational Instrumentation (LOCI), University of Wisconsin, Madison, WI, USA.,Morgridge Institute for Research, Madison, WI, USA
| | - Agnes G Loeffler
- Department of Surgical Pathology, University of Wisconsin, Madison, WI, USA.,University of Wisconsin Comprehensive Carbone Cancer Center, Madison, WI, USA
| | - Corinne R Esquibel
- Laboratory for Optical and Computational Instrumentation (LOCI), University of Wisconsin, Madison, WI, USA
| | - Sharon M Weber
- University of Wisconsin Comprehensive Carbone Cancer Center, Madison, WI, USA.,Department of Surgery, University of Wisconsin, Madison, WI, USA
| | - Kevin W Eliceiri
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA.,Laboratory for Optical and Computational Instrumentation (LOCI), University of Wisconsin, Madison, WI, USA.,Morgridge Institute for Research, Madison, WI, USA.,University of Wisconsin Comprehensive Carbone Cancer Center, Madison, WI, USA
| | - W John Kao
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA. .,University of Wisconsin Comprehensive Carbone Cancer Center, Madison, WI, USA. .,Department of Surgery, University of Wisconsin, Madison, WI, USA. .,Faculties of Medicine and Engineering, University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong.
| |
Collapse
|
168
|
Targeting the HGF/c-MET pathway: stromal remodelling in pancreatic cancer. Oncotarget 2017; 8:76722-76739. [PMID: 29100344 PMCID: PMC5652738 DOI: 10.18632/oncotarget.20822] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/23/2017] [Indexed: 12/22/2022] Open
Abstract
Stromal-tumor interactions in pancreatic cancer (PC) impact on treatment outcomes. Pancreatic stellate cells (PSCs) produce the collagenous stroma of PC and interact with cancer cells to facilitate disease progression. A candidate growth factor pathway that may mediate this interaction is the hepatocyte growth factor (HGF)/c-MET pathway. HGF is produced by PSCs and its receptor c-MET is expressed on pancreatic cancer cells. We studied the effects on PC progression of inhibiting the HGF/c-MET pathway in the presence and absence of a representative chemotherapeutic agent, gemcitabine. Using an orthotopic model of PC we have shown that “triple therapy” (inhibition of both HGF and c-MET combined with gemcitabine) resulted in the greatest reduction in tumor volume compared to each of the treatments alone or in dual combinations. Importantly, metastasis was virtually eliminated in mice receiving triple therapy. Our in vivo findings were supported by in vitro studies showing that the increase in cancer cell proliferation and migration in response to PSC secretions was significantly inhibited by the triple regimen. Our studies suggest that a combined approach, that targets tumor cells by chemotherapy while inhibiting specific pathways that mediate stromal-tumor interactions, may represent a novel therapeutic strategy to improve outcomes in PC.
Collapse
|
169
|
Terminating the criminal collaboration in pancreatic cancer: Nanoparticle-based synergistic therapy for overcoming fibroblast-induced drug resistance. Biomaterials 2017; 144:105-118. [PMID: 28837958 DOI: 10.1016/j.biomaterials.2017.08.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/26/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer with a dismal overall prognosis mainly unchanged over the past decades. PDAC is generally refractory to conventional treatments, and thus novel therapies are urgently needed. Recently, accumulating evidence has indicated that human pancreatic stellate cells (PSCs) facilitate PDAC development and drug resistance through paracrine activation of hedgehog pathway. Here, we report that smart SN38 (active metabolite of irinotecan) polymeric prodrug-based nanoparticles effectively encapsulate the commercial hedgehog pathway inhibitor GDC-0449 for co-delivery. More intriguingly, we obtained size-tunable nanoparticles with increased GDC-0449 loading efficiency by simply extending the chain length of the hydrophobic SN38 block. To better evaluate the efficacy and investigate the synergistic mechanisms, we immortalized human PSCs and established fibroblast-containing models in vitro and in vivo. In PSCs, BxPC-3 cells and MIA PaCa-2 cells, GDC-0449 suppressed the co-culture induced up-regulations of the two drug resistance contributors: sonic hedgehog transcription factor glioma-associated protein1 (GLI-1) and UGT1A glucuronosyltransferase. Importantly, the nanoparticle-mediated co-delivery system exhibited potent antitumor efficacy with enhanced apoptosis and reduced collagen, α-SMA and GLI-1 expression in tumor tissues. These findings reveal a potential strategy to utilize nanoparticle-mediated drug co-delivery platform as an effective combination therapy for fibroblast-enriched PDAC.
Collapse
|
170
|
Hirayama K, Kono H, Nakata Y, Akazawa Y, Wakana H, Fukushima H, Fujii H. Expression of podoplanin in stromal fibroblasts plays a pivotal role in the prognosis of patients with pancreatic cancer. Surg Today 2017; 48:110-118. [PMID: 28702871 PMCID: PMC5711987 DOI: 10.1007/s00595-017-1559-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/14/2017] [Indexed: 01/05/2023]
Abstract
Purpose To investigate the role of podoplanin (PDPN) expression in invasive ductal carcinoma of the pancreas (IDCP) in humans. Methods Tumor samples were obtained from 95 patients with IDCP. Immunohistochemical staining was done to evaluate the expression of PDPN in cancer tissues. Results PDPN was detected predominantly in stromal fibroblasts, stained with α-smooth muscle actin. The cutoff value of PDPN-positive areas was calculated according to a histogram. There was no significant difference in clinicopathologic factors between patients with high vs. those with low PDPN expression. The high PDPN group showed significantly poorer disease-free and disease-specific survival rates than the low PDPN group. Among patients from the high PDPN group, those with lymph node metastases and those with a tumor larger than 20 cm in diameter had significantly poorer prognoses than similar patients from the low PDPN group. Multivariate Cox proportional hazards analysis indicated that a high expression of PDPN was an independent risk factor for disease-specific survival. Conclusions PDPN expression in cancer-related fibrotic tissues is associated with a poor prognosis, especially in patients with large tumors or lymph node metastases.
Collapse
Affiliation(s)
- Kazuyoshi Hirayama
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Hiroshi Kono
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| | - Yuuki Nakata
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Yoshihiro Akazawa
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Hiroyuki Wakana
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Hisataka Fukushima
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Hideki Fujii
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| |
Collapse
|
171
|
Melstrom LG, Salazar MD, Diamond DJ. The pancreatic cancer microenvironment: A true double agent. J Surg Oncol 2017; 116:7-15. [PMID: 28605029 DOI: 10.1002/jso.24643] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 12/18/2022]
Abstract
The tumor microenvironment in pancreatic cancer is a complex balance of pro- and anti-tumor components. The dense desmoplasia consists of immune cells, extracellular matrix, growth factors, cytokines, and cancer associated fibroblasts (CAF) or pancreatic stellate cells (PSC). There are a multitude of targets including hyaluronan, angiogenesis, focal adhesion kinase (FAK), connective tissue growth factor (CTGF), CD40, chemokine (C-X-C motif) receptor 4 (CXCR-4), immunotherapy, and Vitamin D. The developing clinical therapeutics will be reviewed.
Collapse
Affiliation(s)
- Laleh G Melstrom
- Department of Surgery and Experimental Therapeutics, City of Hope National Medical Center, Duarte, California
| | - Marcela D Salazar
- Department of Experimental Therapeutics, City of Hope National Medical Center, Duarte, California
| | - Don J Diamond
- Department of Experimental Therapeutics, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
172
|
Pang TCY, Xu Z, Pothula S, Becker T, Goldstein D, Pirola RC, Wilson JS, Apte MV. Circulating pancreatic stellate (stromal) cells in pancreatic cancer—a fertile area for novel research. Carcinogenesis 2017; 38:588-591. [PMID: 28379317 DOI: 10.1093/carcin/bgx030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
|
173
|
Nieskoski MD, Marra K, Gunn JR, Kanick SC, Doyley MM, Hasan T, Pereira SP, Stuart Trembly B, Pogue BW. Separation of Solid Stress From Interstitial Fluid Pressure in Pancreas Cancer Correlates With Collagen Area Fraction. J Biomech Eng 2017; 139:2618331. [PMID: 28388715 PMCID: PMC6993781 DOI: 10.1115/1.4036392] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/03/2017] [Indexed: 12/12/2022]
Abstract
Elevated total tissue pressure (TTP) in pancreatic adenocarcinoma is often associated with stress applied by cellular proliferation and hydrated hyaluronic acid osmotic swelling; however, the causal roles of collagen in total tissue pressure have yet to be clearly measured. This study illustrates one direct correlation between total tissue pressure and increased deposition of collagen within the tissue matrix. This observation comes from a new modification to a conventional piezoelectric pressure catheter, used to independently separate and quantify total tissue pressure, solid stress (SS), and interstitial fluid pressure (IFP) within the same tumor location, thereby clarifying the relationship between these parameters. Additionally, total tissue pressure shows a direct correlation with verteporfin uptake, demonstrating the impediment of systemically delivered molecules with increased tissue hypertension.
Collapse
Affiliation(s)
| | - Kayla Marra
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | - Jason R Gunn
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | - Stephen C Kanick
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | - Marvin M Doyley
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755;Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Stephen P Pereira
- Institute for Liver and Digestive Health, University College London, London NW3 2QG, UK
| | - B Stuart Trembly
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 e-mail:
| |
Collapse
|
174
|
Lachowski D, Cortes E, Pink D, Chronopoulos A, Karim SA, P Morton J, Del Río Hernández AE. Substrate Rigidity Controls Activation and Durotaxis in Pancreatic Stellate Cells. Sci Rep 2017; 7:2506. [PMID: 28566691 PMCID: PMC5451433 DOI: 10.1038/s41598-017-02689-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/18/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is an aggressive malignancy characterised by the presence of extensive desmoplasia, thought to be responsible for the poor response of patients to systemic therapies. Pancreatic stellate cells (PSCs) are key mediators in the production of this fibrotic stroma, upon activation transitioning to a myofibroblast-like, high matrix secreting phenotype. Given their importance in disease progression, characterisation of PSC activation has been extensive, however one aspect that has been overlooked is the mechano-sensing properties of the cell. Here, through the use of a physiomimetic system that recapitulates the mechanical microenvironment found within healthy and fibrotic pancreas, we demonstrate that matrix stiffness regulates activation and mechanotaxis in PSCs. We show the ability of PSCs to undergo phenotypic transition solely as a result of changes in extracellular matrix stiffness, whilst observing the ability of PSCs to durotactically respond to stiffness variations within their local environment. Our findings implicate the mechanical microenvironment as a potent contributor to PDAC progression and survival via induction of PSC activation and fibrosis, suggesting that direct mechanical reprogramming of PSCs may be a viable alternative in the treatment of this lethal disease.
Collapse
Affiliation(s)
- Dariusz Lachowski
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Ernesto Cortes
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Daniel Pink
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Antonios Chronopoulos
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Saadia A Karim
- Pancreatic Cancer Research Team, CRUK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Jennifer P Morton
- Pancreatic Cancer Research Team, CRUK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Armando E Del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
175
|
Allam A, Thomsen AR, Gothwal M, Saha D, Maurer J, Brunner TB. Pancreatic stellate cells in pancreatic cancer: In focus. Pancreatology 2017; 17:514-522. [PMID: 28601475 DOI: 10.1016/j.pan.2017.05.390] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022]
Abstract
Pancreatic stellate cells are stromal cells that have multiple physiological functions such as the production of extracellular matrix, stimulation of amylase secretion, phagocytosis and immunity. In pancreatic cancer, stellate cells exhibit a different myofibroblastic-like morphology with the expression of alpha-smooth muscle actin, the activated form is engaged in several mechanisms that support tumorigenesis and cancer invasion and progression. In contrast to the aforementioned observations, eliminating the stromal cells that are positive for alpha-smooth muscle actin resulted in immune-evasion of the cancer cells and resulted in worse prognosis in animal models. Understanding the cancer-stromal signaling in pancreatic adenocarcinoma will provide novel strategies for therapy. Here we provide an updated review of studies that handle the topic "pancreatic stellate cells in cancer" and recent experimental approaches that can be the base for future directions in therapy.
Collapse
Affiliation(s)
- A Allam
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; Clinical Oncology and Nuclear Medicine Department, Assiut University Hospitals, Egypt
| | - A R Thomsen
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Gothwal
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - D Saha
- Department of Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - J Maurer
- Department of Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - T B Brunner
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
176
|
Yang XP, Liu SL, Xu JF, Cao SG, Li Y, Zhou YB. Pancreatic stellate cells increase pancreatic cancer cells invasion through the hepatocyte growth factor /c-Met/survivin regulated by P53/P21. Exp Cell Res 2017; 357:79-87. [PMID: 28461158 DOI: 10.1016/j.yexcr.2017.04.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 02/07/2023]
Abstract
Pancreatic stellate cells (PSCs) are a key cellular component of the pancreatic tumor microenvironment and are considered to contribute to tumor invasion and metastasis. Multiple cytokines and growth factors derived from PSCs are involved in malignant cancer progression, including hepatocyte growth factor (HGF). However, the molecular mechanisms by which HGF regulates cancer invasion and metastasis have not been completely elucidated. Here, we report that two pancreatic cancer (PC) cell lines, Panc-1 and SW1990, displayed different invasive and migratory abilities after treatment with HGF secreted by PSCs. We found that HGF enhanced the invasive and migratory capacity of Panc-1 cells because of P53 deficiency, leading to overexpression of c-Met, which was regulated through P21. Additionally, our data showed that HGF/c-Met-mediated invasion and migration required the upregulation of survivin expression. In conclusion, PSCs promote PC cells invasion and migration via the HGF/c-Met/survivin pathway, which is negatively regulated by P53/P21.
Collapse
Affiliation(s)
- Xiao-Peng Yang
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, Shandong, China
| | - Shang-Long Liu
- Department of General Surgery, Affiliated Hospital of Qingdao University, 16 Jiang-Su Street, Qingdao, Shandong, China
| | - Jian-Fei Xu
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, Shandong, China
| | - Shou-Gen Cao
- Department of General Surgery, Affiliated Hospital of Qingdao University, 16 Jiang-Su Street, Qingdao, Shandong, China
| | - Yu Li
- Department of General Surgery, Affiliated Hospital of Qingdao University, 16 Jiang-Su Street, Qingdao, Shandong, China
| | - Yan-Bing Zhou
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, Shandong, China; Department of General Surgery, Affiliated Hospital of Qingdao University, 16 Jiang-Su Street, Qingdao, Shandong, China.
| |
Collapse
|
177
|
Kurahara H, Bohl C, Natsugoe S, Nishizono Y, Harihar S, Sharma R, Iwakuma T, Welch DR. Suppression of pancreatic cancer growth and metastasis by HMP19 identified through genome-wide shRNA screen. Int J Cancer 2017; 139:628-38. [PMID: 27012470 PMCID: PMC4867126 DOI: 10.1002/ijc.30110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 01/05/2023]
Abstract
Therapeutic effectiveness against metastatic or even locally advanced pancreatic ductal adenocarcinoma (PDAC) is dismal, with 5‐year survival less than 5%. Even in patients who undergo potentially curative resection, most patients' tumors recur in the liver. Improving therapies targeting or preventing liver metastases is crucial for improving prognosis. To identify genes suppressing metastasis, a genome‐wide shRNA screen was done using the human non‐metastatic PDAC cell line, S2‐028. After identification of candidates, functional validation was done using intrasplenic and orthotopic injections in athymic mice. HMP19 strongly inhibited metastasis but also partially attenuated tumor growth in the pancreas. Knockdown of HMP19 increased localization of activated ERK1/2 in the nucleus, corresponding to facilitated cell proliferation, decreased p27Kip1 and increased cyclin E1. Over‐expression of HMP19 exerted the opposite effects. Using a tissue microarray of 84 human PDAC, patients with low expression of HMP19 showed significantly higher incidence of liver metastasis (p = 0.0175) and worse prognosis (p = 0.018) after surgery. HMP19, a new metastasis/tumor suppressor in PDAC, appears to alter signaling that leads to cell proliferation and appears to offer prognostic value in human PDAC. What's new? Pancreatic cancer is a frequently intractable disease, due in part to its late diagnosis and propensity to metastasize. Indeed, potentially curative resection fails in more than half of patients with pancreatic ductal adenocarcinoma (PDAC), owing to recurrence in the pancreas as well as to metastasis, particularly to the liver. Prognosis may be improved, however, by leveraging the inhibitory strength of novel metastasis suppressors. A promising candidate is HMP19, described in this study. In xenograft models, HMP19 overexpression significantly suppressed PDAC tumor growth and spread. Its elevated expression in clinical samples was associated with reduced liver metastasis and improved patient survival.
Collapse
Affiliation(s)
- Hiroshi Kurahara
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS.,Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University, Kagoshima, Japan
| | - Christopher Bohl
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University, Kagoshima, Japan
| | - Yuka Nishizono
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University, Kagoshima, Japan
| | - Sitaram Harihar
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| | - Rahul Sharma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS.,University of Kansas Cancer Center, Kansas City, KS
| | - Danny R Welch
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS.,University of Kansas Cancer Center, Kansas City, KS
| |
Collapse
|
178
|
Wang L, Wu H, Wang L, Zhang H, Lu J, Liang Z, Liu T. Asporin promotes pancreatic cancer cell invasion and migration by regulating the epithelial-to-mesenchymal transition (EMT) through both autocrine and paracrine mechanisms. Cancer Lett 2017; 398:24-36. [PMID: 28400334 DOI: 10.1016/j.canlet.2017.04.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/13/2017] [Accepted: 04/01/2017] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer is histopathologically characterized by excessive desmoplasia induced by pancreatic stellate cells (PSCs). Asporin, an extracellular matrix (ECM) protein, is highly expressed in cancer-associated fibroblasts (CAFs). Asporin expression in PSCs and its roles in PSC-pancreatic cancer cell (PCC) interaction remain unclear. The present study firstly showed that Asporin is highly expressed in activated PSCs and is involved in PSC-mediated invasion and migration of PCCs. Exogenous Asporin interacted with the transmembrane receptor CD44 on PCCs to activate NF-κB/p65 and promoted the epithelial-mesenchymal transition (EMT) in PCCs. Furthermore, AKT and ERK pathways participated in Asporin/CD44-induced NF-κB/p65 activation in pancreatic cancer. Asporin had similar effects on PCCs via an autocrine mechanism. Consistent with our in vitro experiments, we showed that Asporin in peritumoral stroma of pancreatic cancer tissues was associated with poor clinical outcome. In conclusion, this is the first study to show that Asporin promotes EMT, invasion, and migration of PCCs by activating CD44-AKT/ERK-NF-κB pathway in paracrine and autocrine manners. Moreover, our results indicate that Asporin may be a prognostic marker and suggest that targeting the tumor microenvironment represents a promising therapeutic strategy in pancreatic cancer.
Collapse
Affiliation(s)
- Lili Wang
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huanwen Wu
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Li Wang
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hui Zhang
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Junliang Lu
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhiyong Liang
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Tonghua Liu
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
179
|
Ferdek PE, Jakubowska MA. Biology of pancreatic stellate cells-more than just pancreatic cancer. Pflugers Arch 2017; 469:1039-1050. [PMID: 28382480 PMCID: PMC5554282 DOI: 10.1007/s00424-017-1968-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 01/18/2023]
Abstract
Pancreatic stellate cells, normally quiescent, are capable of remarkable transition into their activated myofibroblast-like phenotype. It is now commonly accepted that these cells play a pivotal role in the desmoplastic reaction present in severe pancreatic disorders. In recent years, enormous scientific effort has been devoted to understanding their roles in pancreatic cancer, which continues to remain one of the most deadly diseases. Therefore, it is not surprising that considerably less attention has been given to studying physiological functions of pancreatic stellate cells. Here, we review recent advances not only in the field of pancreatic stellate cell pathophysiology but also emphasise their roles in physiological processes.
Collapse
Affiliation(s)
- Pawel E Ferdek
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, CF10 3AX, UK.
| | - Monika A Jakubowska
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, CF10 3AX, UK
| |
Collapse
|
180
|
MK2461, a Multitargeted Kinase Inhibitor, Suppresses the Progression of Pancreatic Cancer by Disrupting the Interaction Between Pancreatic Cancer Cells and Stellate Cells. Pancreas 2017; 46:557-566. [PMID: 28196027 DOI: 10.1097/mpa.0000000000000778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Platelet-derived growth factor receptor beta (PDGFRβ) and hepatocyte growth factor receptor (MET) expressed on pancreatic stellate cells (PSCs) are suggested as important components modulating the interactions between pancreatic cancer cells (PCCs) and PSCs. The objective of this study is to clarify the effect of MK2461, a multikinase inhibitor targeting MET and PDGFRβ, on the interaction between PCCs and PSCs. METHODS In this study, we profiled the expression of receptor tyrosine kinases (including PDGFRβ and MET) in pancreatic cancer with quantitative targeted absolute proteomics using liquid chromatography tandem mass spectrometry. In addition, the effect of MK2461 on PCC-PSC interaction was investigated using PSCs prepared from pancreatic cancer tissues. RESULTS In PSCs, PDGFRβ and MET were upregulated compared with other receptor tyrosine kinases. Conditioned medium from PSCs promoted the proliferation of PCCs, and vice versa. Moreover, MK2461 suppressed the effects of conditioned medium on PCCs and PSCs. Finally, MK2461 significantly inhibited tumor growth in mice coinjected with PCCs and PSCs. CONCLUSIONS The PDGFRβ and MET may play a critical role in the interaction between PCCs and PSCs, which was modulated by MK2461. Therefore, MK2461 may have therapeutic potential in the treatment of pancreatic cancer.
Collapse
|
181
|
Preoperative Plasma Fibrinogen is Associated with Lymph Node Metastasis and Predicts Prognosis in Resectable Esophageal Cancer. World J Surg 2017; 41:2068-2077. [DOI: 10.1007/s00268-017-3991-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
182
|
Genome-wide in vivo RNAi screen identifies ITIH5 as a metastasis suppressor in pancreatic cancer. Clin Exp Metastasis 2017; 34:229-239. [PMID: 28289921 DOI: 10.1007/s10585-017-9840-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 02/13/2017] [Indexed: 12/18/2022]
Abstract
The overwhelming majority of pancreatic ductal adenocarcinoma (PDAC) is not diagnosed until the cancer has metastasized, leading to an abysmal average life expectancy (3-6 months post-diagnosis). Earlier detection and more effective treatments have been hampered by inadequate understanding of the underlying molecular mechanisms controlling metastasis. We hypothesized that metastasis suppressors are involved in controlling metastasis in pancreatic cancer. Using an unbiased genome-wide shRNA screen, an shRNA library was transduced into the non-metastatic PDAC line S2-028 followed by intrasplenic injection. Resulting liver metastases were individually isolated from these mice. One liver metastatic nodule contained shRNA for ITIH5 (Inter-alpha-trypsin inhibitor heavy chain 5), suggesting that ITIH5 may act as a metastasis suppressor. Consistent with this notion, metastatic PDAC cell lines had significantly lower protein expression of ITIH5 compared to immortalized pancreatic ductal epithelial cells and non-/poorly-metastatic PDAC cell lines. By manipulating expression of ITIH5 in different PDAC cell lines (over-expression in metastatic, knockdown in non-metastatic) functional and selective regulation of metastasis was observed for ITIH5. Orthotopic tumor growth of PDAC cells was not blocked following orthotopic injection. In vitro ITIH5 over-expression inhibited motility and invasion. Immunohistochemical analysis of a human PDAC tissue microarray revealed that ITIH5 expression inversely correlated with both survival and invasion/metastasis. ITIH5 is, therefore, functionally validated as a PDAC metastasis suppressor and shows promise as a prognostic biomarker.
Collapse
|
183
|
Yeo D, Phillips P, Baldwin GS, He H, Nikfarjam M. Inhibition of group 1 p21-activated kinases suppresses pancreatic stellate cell activation and increases survival of mice with pancreatic cancer. Int J Cancer 2017; 140:2101-2111. [PMID: 28109008 DOI: 10.1002/ijc.30615] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 12/20/2016] [Accepted: 01/12/2017] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer remains one of the most lethal of all solid tumors. Pancreatic stellate cells (PSCs) are primarily responsible for the fibrosis that constitutes the stroma and p21-activated kinase 1 (PAK1) may have a role in signalling pathways involving PSCs. This study aimed to examine the role of PAK1 in PSCs and in the interaction of PSCs with pancreatic cancer cells. Human PSCs were isolated using the modified outgrowth method. The effect of inhibiting PAK1 with group 1 PAK inhibitor, FRAX597, on cell proliferation and apoptosis in vitro was measured by thymidine incorporation and annexin V assays, respectively. The effect of depleting host PAK1 on the survival of mice with pancreatic Pan02 cell tumors was evaluated using PAK1 knockout (KO) mice. PAK1 was expressed in isolated PSCs. FRAX597 reduced the activation of PSCs, inhibited PSC proliferation, and increased PSC apoptosis at least in partial by inhibiting PAK1 activity. The decreased expression and activity of PAK1 in PAK1 KO mice tumors was associated with an increased mouse survival. These results implicate PAK1 as a regulator of PSC activation, proliferation and apoptosis. Targeting stromal PAK1 could increase therapeutic response and survival of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Dannel Yeo
- Department of Surgery, University of Melbourne. Austin Health, Melbourne, VIC, Australia
| | - Phoebe Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Graham S Baldwin
- Department of Surgery, University of Melbourne. Austin Health, Melbourne, VIC, Australia
| | - Hong He
- Department of Surgery, University of Melbourne. Austin Health, Melbourne, VIC, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, University of Melbourne. Austin Health, Melbourne, VIC, Australia
| |
Collapse
|
184
|
Bynigeri RR, Jakkampudi A, Jangala R, Subramanyam C, Sasikala M, Rao GV, Reddy DN, Talukdar R. Pancreatic stellate cell: Pandora's box for pancreatic disease biology. World J Gastroenterol 2017; 23:382-405. [PMID: 28210075 PMCID: PMC5291844 DOI: 10.3748/wjg.v23.i3.382] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/09/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic stellate cells (PSCs) were identified in the early 1980s, but received much attention after 1998 when the methods to isolate and culture them from murine and human sources were developed. PSCs contribute to a small proportion of all pancreatic cells under physiological condition, but are essential for maintaining the normal pancreatic architecture. Quiescent PSCs are characterized by the presence of vitamin A laden lipid droplets. Upon PSC activation, these perinuclear lipid droplets disappear from the cytosol, attain a myofibroblast like phenotype and expresses the activation marker, alpha smooth muscle actin. PSCs maintain their activated phenotype via an autocrine loop involving different cytokines and contribute to progressive fibrosis in chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC). Several pathways (e.g., JAK-STAT, Smad, Wnt signaling, Hedgehog etc.), transcription factors and miRNAs have been implicated in the inflammatory and profibrogenic function of PSCs. The role of PSCs goes much beyond fibrosis/desmoplasia in PDAC. It is now shown that PSCs are involved in significant crosstalk between the pancreatic cancer cells and the cancer stroma. These interactions result in tumour progression, metastasis, tumour hypoxia, immune evasion and drug resistance. This is the rationale for therapeutic preclinical and clinical trials that have targeted PSCs and the cancer stroma.
Collapse
|
185
|
Falls T, Roy DG, Bell JC, Bourgeois-Daigneault MC. Murine Tumor Models for Oncolytic Rhabdo-Virotherapy. ILAR J 2017; 57:73-85. [PMID: 27034397 DOI: 10.1093/ilar/ilv048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The preclinical optimization and validation of novel treatments for cancer therapy requires the use of laboratory animals. Although in vitro experiments using tumor cell lines and ex vivo treatment of patient tumor samples provide a remarkable first-line tool for the initial study of tumoricidal potential, tumor-bearing animals remain the primary option to study delivery, efficacy, and safety of therapies in the context of a complete tumor microenvironment and functional immune system. In this review, we will describe the use of murine tumor models for oncolytic virotherapy using vesicular stomatitis virus. We will discuss studies using immunocompetent and immunodeficient models with respect to toxicity and therapeutic treatments, as well as the various techniques and tools available to study cancer therapy with Rhabdoviruses.
Collapse
Affiliation(s)
- Theresa Falls
- Theresa Falls is a research technician at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada. Dominic Guy Roy is a Ph.D candidate at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a Ph.D candidate in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. John Cameron Bell is a senior researcher at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and professor in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. Marie-Claude Bourgeois-Daigneault is a postdoctoral fellow at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a postdoctoral fellow in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada
| | - Dominic Guy Roy
- Theresa Falls is a research technician at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada. Dominic Guy Roy is a Ph.D candidate at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a Ph.D candidate in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. John Cameron Bell is a senior researcher at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and professor in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. Marie-Claude Bourgeois-Daigneault is a postdoctoral fellow at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a postdoctoral fellow in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada
| | - John Cameron Bell
- Theresa Falls is a research technician at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada. Dominic Guy Roy is a Ph.D candidate at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a Ph.D candidate in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. John Cameron Bell is a senior researcher at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and professor in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. Marie-Claude Bourgeois-Daigneault is a postdoctoral fellow at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a postdoctoral fellow in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada
| | - Marie-Claude Bourgeois-Daigneault
- Theresa Falls is a research technician at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada. Dominic Guy Roy is a Ph.D candidate at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a Ph.D candidate in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. John Cameron Bell is a senior researcher at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and professor in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. Marie-Claude Bourgeois-Daigneault is a postdoctoral fellow at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a postdoctoral fellow in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada
| |
Collapse
|
186
|
Kota J, Hancock J, Kwon J, Korc M. Pancreatic cancer: Stroma and its current and emerging targeted therapies. Cancer Lett 2017; 391:38-49. [PMID: 28093284 DOI: 10.1016/j.canlet.2016.12.035] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human malignancies with a 5-year survival rate of 8%. Dense, fibrotic stroma associated with pancreatic tumors is a major obstacle for drug delivery to the tumor bed and plays a crucial role in pancreatic cancer progression. Targeting stroma is considered as a potential therapeutic strategy to improve anti-cancer drug efficacy and patient survival. Although numerous stromal depletion therapies have reached the clinic, they add little to overall survival and are often associated with toxicity. Furthermore, increasing evidence suggests the anti-tumor properties of stroma. Its complete ablation enhanced tumor progression and reduced survival. Consequently, efforts are now focused on developing stromal-targeted therapies that normalize the reactive stroma and avoid the extremes: stromal abundance vs. complete depletion. In this review, we summarized the state of current and emerging anti-stromal targeted therapies, with major emphasis on the role of miRNAs in PDAC stroma and their potential use as novel therapeutic agents to modulate PDAC tumor-stromal interactions.
Collapse
Affiliation(s)
- Janaiah Kota
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA; The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, IN, USA; Center for Pancreatic Cancer Research, Indiana University and Purdue University-Indianapolis (IUPUI), Indianapolis, IN, USA.
| | - Julie Hancock
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
| | - Jason Kwon
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
| | - Murray Korc
- The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, IN, USA; Center for Pancreatic Cancer Research, Indiana University and Purdue University-Indianapolis (IUPUI), Indianapolis, IN, USA; Department of Biochemistry and Molecular Biology, IUSM, Indianapolis, IN, USA; Department of Medicine, IUSM, Indianapolis, IN, USA
| |
Collapse
|
187
|
Shen S, Liu M, Li T, Lin S, Mo R. Recent progress in nanomedicine-based combination cancer therapy using a site-specific co-delivery strategy. Biomater Sci 2017; 5:1367-1381. [DOI: 10.1039/c7bm00297a] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article highlights the recent progresses in nanomedicine-based combination cancer therapy via site-specific co-delivery strategies.
Collapse
Affiliation(s)
- Shiyang Shen
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Meng Liu
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Teng Li
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Shiqi Lin
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Ran Mo
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| |
Collapse
|
188
|
Saha S, Xiong X, Chakraborty PK, Shameer K, Arvizo RR, Kudgus RA, Dwivedi SKD, Hossen MN, Gillies EM, Robertson JD, Dudley JT, Urrutia RA, Postier RG, Bhattacharya R, Mukherjee P. Gold Nanoparticle Reprograms Pancreatic Tumor Microenvironment and Inhibits Tumor Growth. ACS NANO 2016; 10:10636-10651. [PMID: 27758098 PMCID: PMC6939886 DOI: 10.1021/acsnano.6b02231] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Altered tumor microenvironment (TME) arising from a bidirectional crosstalk between the pancreatic cancer cells (PCCs) and the pancreatic stellate cells (PSCs) is implicated in the dismal prognosis in pancreatic ductal adenocarcinoma (PDAC), yet effective strategies to disrupt the crosstalk is lacking. Here, we demonstrate that gold nanoparticles (AuNPs) inhibit proliferation and migration of both PCCs and PSCs by disrupting the bidirectional communication via alteration of the cell secretome. Analyzing the key proteins identified from a functional network of AuNP-altered secretome in PCCs and PSCs, we demonstrate that AuNPs impair secretions of major hub node proteins in both cell types and transform activated PSCs toward a lipid-rich quiescent phenotype. By reducing activation of PSCs, AuNPs inhibit matrix deposition, enhance angiogenesis, and inhibit tumor growth in an orthotopic co-implantation model in vivo. Auto- and heteroregulations of secretory growth factors/cytokines are disrupted by AuNPs resulting in reprogramming of the TME. By utilizing a kinase dead mutant of IRE1-α, we demonstrate that AuNPs alter the cellular secretome through the ER-stress-regulated IRE1-dependent decay pathway (RIDD) and identify endostatin and matrix metalloproteinase 9 as putative RIDD targets. Thus, AuNPs could potentially be utilized as a tool to effectively interrogate bidirectional communications in the tumor microenvironment, reprogram it, and inhibit tumor growth by its therapeutic function.
Collapse
Affiliation(s)
- Sounik Saha
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - Xunhao Xiong
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - Prabir K. Chakraborty
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - Khader Shameer
- Institute of Next Generation Healthcare, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York 10029, United States
| | - Rochelle R. Arvizo
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Rachel A. Kudgus
- Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Shailendra Kumar Dhar Dwivedi
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - Md. Nazir Hossen
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - Elizabeth M. Gillies
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - J. David Robertson
- Department of Chemistry and University of Missouri Research Reactor, University of Missouri, Columbia, Missouri 65211, United States
| | - Joel T. Dudley
- Institute of Next Generation Healthcare, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York 10029, United States
| | - Raul A. Urrutia
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Russell G. Postier
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
189
|
Erkan M, Kurtoglu M, Kleeff J. The role of hypoxia in pancreatic cancer: a potential therapeutic target? Expert Rev Gastroenterol Hepatol 2016; 10:301-16. [PMID: 26560854 DOI: 10.1586/17474124.2016.1117386] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
One of the key factors that correlates with poor survival of patients with pancreatic cancer is the extent of hypoxic areas within the tumor tissue. The adaptation of pancreatic cancer cells to limited oxygen delivery promotes the induction of an invasive and treatment-resistant phenotype, triggering metastases at an early stage of tumor development, which resist in most cases adjuvant therapies following tumor resection. In this article, the authors summarize the evidence demonstrating the significance of hypoxia in pancreatic cancer pathogenesis and discuss the possible hypoxia-induced mechanisms underlying its aggressive nature. We then conclude with promising strategies that target hypoxia-adapted pancreatic cancer cells.
Collapse
Affiliation(s)
- Mert Erkan
- a Department of Surgery , Koç University School of Medicine , Istanbul , Turkey
| | - Metin Kurtoglu
- b Department of Oncology , Koç University School of Medicine , Istanbul , Turkey
| | - Jorg Kleeff
- c Department of Surgery , The Royal Liverpool and Broadgreen University Hospitals , Liverpool , UK.,d Department of General-, Visceral- and Pediatric Surgery , University Hospital Düsseldorf, Heinrich Heine University Düsseldorf , Düsseldorf , Germany
| |
Collapse
|
190
|
Schimmack S, Kneller S, Dadabaeva N, Bergmann F, Taylor A, Hackert T, Werner J, Strobel O. Epithelial to Stromal Re-Distribution of Primary Cilia during Pancreatic Carcinogenesis. PLoS One 2016; 11:e0164231. [PMID: 27783689 PMCID: PMC5081192 DOI: 10.1371/journal.pone.0164231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/21/2016] [Indexed: 12/30/2022] Open
Abstract
Background The Hedgehog (HH) pathway is a mediator in pancreatic ductal adenocarcinoma (PDAC). Surprisingly, previous studies suggested that primary cilia (PC), the essential organelles for HH signal transduction, were lost in PDAC. The aim of this study was to determine the presence of PC in human normal pancreas, chronic pancreatitis, and during carcinogenesis to PDAC with focus on both epithelia and stroma. Methods PC were analyzed in paraffin sections from normal pancreas, chronic pancreatitis, intraductal papillary-mucinous neoplasia, and PDAC, as well as in primary human pancreatic stellate cells (PSC) and pancreatic cancer cell lines by double immunofluorescence staining for acetylated α-tubuline and γ-tubuline. Co-staining for the HH receptors PTCH1, PTCH2 and SMO was also performed. Results PC are gradually lost during pancreatic carcinogenesis in the epithelium: the fraction of cells with PC gradually and significantly decreased from 32% in ducts of normal pancreas, to 21% in ducts of chronic pancreatitis, to 18% in PanIN1a, 6% in PanIN2, 3% in PanIN3 and to 1.2% in invasive PDAC. However, this loss of PC in the neoplastic epithelium is accompanied by a gain of PC in the surrounding stroma. The fraction of stromal cells with PC significantly increased from 13% around normal ducts to about 30% around PanIN and PDAC. HH-receptors were detected in tumor stroma but not in epithelial cells. PC are also present in PSC and pancreatic cancer cell lines. Conclusion PC are not lost during pancreatic carcinogenesis but re-distributed from the epithelium to the stroma. This redistribution may explain the re-direction of HH signaling towards the stroma during pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Simon Schimmack
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Sarah Kneller
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Nigora Dadabaeva
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Frank Bergmann
- Institute of Pathology Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Andrew Taylor
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Jens Werner
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
- University Hospital of General, Visceral, Transplantation, Vascular and Thoracic Surgery of Munich, Campus Großhadern, Marchioninistraße 15, 81377 Munich, Germany
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
- * E-mail:
| |
Collapse
|
191
|
Desmoplasia suppression by metformin-mediated AMPK activation inhibits pancreatic cancer progression. Cancer Lett 2016; 385:225-233. [PMID: 27773749 DOI: 10.1016/j.canlet.2016.10.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/01/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022]
Abstract
Emerging evidence suggests that metformin, an activator of AMP-activated protein kinase (AMPK), may be useful in preventing and treating pancreatic ductal adenocarcinoma (PDAC). However, whether metformin has an effect on the stromal reaction of PDAC remains unknown. In this study, we first evaluated the expression of AMPK and phosphorylated-AMPK (P-AMPK) in normal and PDAC tissues, our data indicate that reduced P-AMPK expression is a frequent event in PDAC and correlated with poor prognosis and the dense stromal reaction. We then determined the efficacy of metformin on PDAC growth in vitro and in vivo. We reveal that metformin reduces the production of fibrogenic cytokines from pancreatic cancer cells (PCs) and inhibits paracrine-mediated pancreatic stellate cells (PSCs) activation under PCsPSCs co-culture conditions. By using a xenograft PDAC mouse model, we show that metformin intervention prevents tumor growth and enhances the antitumor effect of gemcitabine via suppression of desmoplastic reaction. Taken together, these results suggest that induction of AMPK activation by metformin represents a novel therapeutic approach for treating advanced PDAC through reducing the desmoplastic reaction in PDAC.
Collapse
|
192
|
Wu YS, Chung I, Wong WF, Masamune A, Sim MS, Looi CY. Paracrine IL-6 signaling mediates the effects of pancreatic stellate cells on epithelial-mesenchymal transition via Stat3/Nrf2 pathway in pancreatic cancer cells. Biochim Biophys Acta Gen Subj 2016; 1861:296-306. [PMID: 27750041 DOI: 10.1016/j.bbagen.2016.10.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/11/2016] [Accepted: 10/11/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND We previously showed that pancreatic stellate cells (PSC) secreted interleukin (IL)-6 and promoted pancreatic ductal adenocarcinoma (PDAC) cell proliferation via nuclear factor erythroid 2 (Nrf2)-mediated metabolic reprogramming. Epithelial-mesenchymal transition (EMT) is a key process for the metastatic cascade. To study the mechanism of PDAC progression to metastasis, we investigated the role of PSC-secreted IL-6 in activating EMT and the involvement of Nrf2 in this process. METHODS Gene expression of IL-6 and IL-6Rα in PSC and PDAC cells was measured with qRT-PCR. The role of PSC-secreted IL-6, JAK/Stat3 signaling, and Nrf2 mediation on EMT-related genes expression was also examined with qRT-PCR. EMT phenotypes were assessed with morphological change, wound healing, migration, and invasion. RESULTS PSC expressed higher mRNA levels of IL-6 but lower IL-6Rα compared to PDAC cells. Neutralizing IL-6 in PSC secretion reduced mesenchymal-like morphology, migration and invasion capacity, and mesenchymal-like gene expression of N-cadherin, vimentin, fibronectin, collagen I, Sip1, Snail, Slug, and Twist2. Inhibition of JAK/Stat3 signaling induced by IL-6 repressed EMT and Nrf2 gene expression. Induction of Nrf2 activity by tert-butylhydroquinone (tBHQ) increased both EMT phenotypes and gene expression (N-cadherin, fibronectin, Twist2, Snail, and Slug) repressed by IL-6 neutralizing antibody. Simultaneous inhibition of Nrf2 expression with siRNA and Stat3 signaling further repressed EMT gene expression, indicating that Stat3/Nrf2 pathway mediates EMT induced by IL-6. CONCLUSIONS IL-6 from PSC promotes EMT in PDAC cells via Stat3/Nrf2 pathway. GENERAL SIGNIFICANCE Targeting Stat3/Nrf2 pathway activated by PSC-secreted IL-6 may provide a novel therapeutic option to improve the prognosis of PDAC.
Collapse
Affiliation(s)
- Yuan Seng Wu
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; University of Malaya Cancer Research Institute, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Ivy Chung
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; University of Malaya Cancer Research Institute, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University of Graduate School of Medicine, Sendai, Miyagi Prefecture 980-8574, Japan
| | - Maw Shin Sim
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chung Yeng Looi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
193
|
Periostin promotes the chemotherapy resistance to gemcitabine in pancreatic cancer. Tumour Biol 2016; 37:15283-15291. [PMID: 27696296 DOI: 10.1007/s13277-016-5321-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/05/2016] [Indexed: 01/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) ranks fourth among cancer-related deaths. The nucleoside analog gemcitabine has been the cornerstone of adjuvant chemotherapy in PDAC for decades. However, gemcitabine resistance develops within weeks of chemotherapy initiation, which might be intrinsic to cancer cells and influenced by tumor microenvironment. Recently, pancreatic stellate cells (PSCs) have greatly increased our attention on tumor microenvironment-mediated drug resistance. Periostin is exclusively overexpressed in PSCs and the stroma of PDAC creating a tumor-supportive microenvironment in the pancreas. However, whether periostin contributed to chemoresistance in PDAC remains unknown. Therefore, we focused on the role of periostin in PDAC by observing the effects of silencing this gene on gemcitabine resistance in vitro and in vivo aiming to explore the possible molecular mechanism. In this study, the pancreatic cancer cell (PCC) proliferation and apoptosis were assayed to investigate the sensitivity to gemcitabine after silencing periostin. We provide the evidence that periostin not only drives the carcinogenic process itself but also significantly associated with gemcitabine-induced apoptosis. These findings collectively indicated that periostin increases the chemoresistance to gemcitabine. Thus, targeting periostin might offer a new opportunity to overcome the gemcitabine resistance of PDAC.
Collapse
|
194
|
Fels B, Nielsen N, Schwab A. Role of TRPC1 channels in pressure-mediated activation of murine pancreatic stellate cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:657-670. [PMID: 27670661 DOI: 10.1007/s00249-016-1176-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022]
Abstract
The tumor environment contributes importantly to tumor cell behavior and cancer progression. Aside from biochemical constituents, physical factors of the environment also influence the tumor. Growing evidence suggests that mechanics [e.g., tumor (stroma) elasticity, tissue pressure] are critical players of cancer progression. Underlying mechanobiological mechanisms involve among others the regulation of focal adhesion molecules, cytoskeletal modifications, and mechanosensitive (MS) ion channels of cancer- and tumor-associated cells. After reviewing the current concepts of cancer mechanobiology, we will focus on the canonical transient receptor potential 1 (TRPC1) channel and its role in mechano-signaling in tumor-associated pancreatic stellate cells (PSCs). PSCs are key players of pancreatic fibrosis, especially in cases of pancreatic ductal adenocarcinoma (PDAC). PDAC is characterized by the formation of a dense fibrotic stroma (desmoplasia), primarily formed by activated PSCs. Desmoplasia contributes to high pancreatic tissue pressure, which in turn activates PSCs, thereby perpetuating matrix deposition. Here, we investigated the role of the putatively mechanosensitive TRPC1 channels in murine PSCs exposed to elevated ambient pressure. Pressurization leads to inhibition of mRNA expression of MS ion channels. Migration of PSCs representing a readout of their activation is enhanced in pressurized PSCs. Knockout of TRPC1 leads to an attenuated phenotype. While TRPC1-mediated calcium influx is increased in wild-type PSCs after pressure incubation, loss of TRPC1 abolishes this effect. Our findings provide mechanistic insight how pressure, an important factor of the PDAC environment, contributes to PSC activation. TRPC1-mediated activation could be a potential target to disrupt the positive feedback of PSC activation and PDAC progression.
Collapse
Affiliation(s)
- Benedikt Fels
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Munster, Germany
| | - Nikolaj Nielsen
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Munster, Germany. .,Novo Nordisk A/S, Smørmosevej 10-12, 2880, Bagsværd, Denmark.
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Munster, Germany
| |
Collapse
|
195
|
Yoshida M, Miyasaka Y, Ohuchida K, Okumura T, Zheng B, Torata N, Fujita H, Nabae T, Manabe T, Shimamoto M, Ohtsuka T, Mizumoto K, Nakamura M. Calpain inhibitor calpeptin suppresses pancreatic cancer by disrupting cancer-stromal interactions in a mouse xenograft model. Cancer Sci 2016; 107:1443-1452. [PMID: 27487486 PMCID: PMC5084662 DOI: 10.1111/cas.13024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/29/2022] Open
Abstract
Desmoplasia contributes to the aggressive behavior of pancreatic cancer. However, recent clinical trials testing several antifibrotic agents on pancreatic cancer have not shown clear efficacy. Therefore, further investigation of desmoplasia‐targeting antifibrotic agents by another mechanism is needed. Calpeptin, an inhibitor of calpains, suppressed fibroblast function and inhibited fibrosis. In this study, we investigated the anticancer effects of calpeptin on pancreatic cancer. We investigated whether calpeptin inhibited tumor progression using a mouse xenograft model. We used quantitative RT‐PCR to evaluate the expression of calpain‐1 and calpain‐2 mRNA in pancreatic cancer cells (PCCs) and pancreatic stellate cells (PSCs). We also undertook functional assays, including proliferation, migration, and invasion, to evaluate the inhibitory effects of calpeptin on PCCs and PSCs. Quantitative RT‐PCR indicated that PCCs and PSCs expressed calpain‐2 mRNA. Calpeptin reduced tumor volume (P = 0.0473) and tumor weight (P = 0.0471) and inhibited the tumor desmoplastic reaction (P < 0.001) in xenograft tumors in nude mice. Calpeptin also inhibited the biologic functions of PCCs and PSCs including proliferation (P = 0.017), migration (P = 0.027), and invasion (P = 0.035) in vitro. Furthermore, calpeptin reduced the migration of PCCs and PSCs by disrupting the cancer–stromal interaction (P = 0.0002). Our findings indicate that calpeptin is a promising antitumor agent for pancreatic cancer, due not only to its suppressive effect on PCCs and PSCs but also its disruption of the cancer–stromal interaction.
Collapse
Affiliation(s)
- Masaki Yoshida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Miyasaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan. .,Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Takashi Okumura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Biao Zheng
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Torata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hayato Fujita
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshinaga Nabae
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuya Manabe
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Takao Ohtsuka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
196
|
Chronopoulos A, Robinson B, Sarper M, Cortes E, Auernheimer V, Lachowski D, Attwood S, García R, Ghassemi S, Fabry B, Del Río Hernández A. ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion. Nat Commun 2016; 7:12630. [PMID: 27600527 PMCID: PMC5023948 DOI: 10.1038/ncomms12630] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 07/18/2016] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a dismal survival rate. Persistent activation of pancreatic stellate cells (PSCs) can perturb the biomechanical homoeostasis of the tumour microenvironment to favour cancer cell invasion. Here we report that ATRA, an active metabolite of vitamin A, restores mechanical quiescence in PSCs via a mechanism involving a retinoic acid receptor beta (RAR-β)-dependent downregulation of actomyosin (MLC-2) contractility. We show that ATRA reduces the ability of PSCs to generate high traction forces and adapt to extracellular mechanical cues (mechanosensing), as well as suppresses force-mediated extracellular matrix remodelling to inhibit local cancer cell invasion in 3D organotypic models. Our findings implicate a RAR-β/MLC-2 pathway in peritumoural stromal remodelling and mechanosensory-driven activation of PSCs, and further suggest that mechanical reprogramming of PSCs with retinoic acid derivatives might be a viable alternative to stromal ablation strategies for the treatment of PDAC. Persistent activation of pancreatic stellate cells (PSCs) can perturb the biomechanical homeostasis of the tumour microenvironment. Here the authors show that all-trans retinoic acid reduces retinoic acid receptor beta dependent-actomyosin contractility and restores mechanical quiescence in PSCs.
Collapse
Affiliation(s)
- Antonios Chronopoulos
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Benjamin Robinson
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Muge Sarper
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Ernesto Cortes
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Vera Auernheimer
- Department of Physics, Biophysics Group, University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Dariusz Lachowski
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Simon Attwood
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Rebeca García
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Saba Ghassemi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Ben Fabry
- Department of Physics, Biophysics Group, University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Armando Del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
197
|
Giannuzzo A, Saccomano M, Napp J, Ellegaard M, Alves F, Novak I. Targeting of the P2X7 receptor in pancreatic cancer and stellate cells. Int J Cancer 2016; 139:2540-52. [PMID: 27513892 PMCID: PMC5095874 DOI: 10.1002/ijc.30380] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/05/2016] [Accepted: 08/01/2016] [Indexed: 12/18/2022]
Abstract
The ATP‐gated receptor P2X7 (P2X7R) is involved in regulation of cell survival and has been of interest in cancer field. Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer and new markers and therapeutic targets are needed. PDAC is characterized by a complex tumour microenvironment, which includes cancer and pancreatic stellate cells (PSCs), and potentially high nucleotide/side turnover. Our aim was to determine P2X7R expression and function in human pancreatic cancer cells in vitro as well as to perform in vivo efficacy study applying P2X7R inhibitor in an orthotopic xenograft mouse model of PDAC. In the in vitro studies we show that human PDAC cells with luciferase gene (PancTu‐1 Luc cells) express high levels of P2X7R protein. Allosteric P2X7R antagonist AZ10606120 inhibited cell proliferation in basal conditions, indicating that P2X7R was tonically active. Extracellular ATP and BzATP, to which the P2X7R is more sensitive, further affected cell survival and confirmed complex functionality of P2X7R. PancTu‐1 Luc migration and invasion was reduced by AZ10606120, and it was stimulated by PSCs, but not by PSCs from P2X7‐/‐ animals. PancTu‐1 Luc cells were orthotopically transplanted into nude mice and tumour growth was followed noninvasively by bioluminescence imaging. AZ10606120‐treated mice showed reduced bioluminescence compared to saline‐treated mice. Immunohistochemical analysis confirmed P2X7R expression in cancer and PSC cells, and in metaplastic/neoplastic acinar and duct structures. PSCs number/activity and collagen deposition was reduced in AZ10606120‐treated tumours. What's new? Pancreatic ductal adenocarcinoma (PDAC) is one the most difficult types of cancer to detect and treat, challenges that could be overcome through the discovery and development of novel markers and therapeutic strategies. Here, the P2X7 receptor, which regulates cell survival, is shown to also support cell proliferation, migration and invasion in human P2X7R‐expressing PDAC cells. Treatment of orthotopic PDAC tumor‐bearing mice with the P2X7R‐specific inhibitor, AZ10606120, resulted in decreased tumor bioluminescence and reductions in pancreatic stellate cells and collagen deposition. Targeting of P2X7R warrants further investigation as a promising therapeutic approach in pancreatic cancer.
Collapse
Affiliation(s)
- Andrea Giannuzzo
- Section for Cell Biology and Physiology, August Krogh Building, Department of Biology, University of Copenhagen, Denmark
| | - Mara Saccomano
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine, Hermann-Rein-Straße 3, Göttingen, D-37075, Germany
| | - Joanna Napp
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine, Hermann-Rein-Straße 3, Göttingen, D-37075, Germany.,Department of Haematology and Medical Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, D-37075, Germany.,Department of Diagnostic and Interventional Radiology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, D-37075, Germany
| | - Maria Ellegaard
- Departments of Clinical Biochemistry and Endocrinology, Rigshospitalet, Research Center for Ageing and Osteoporosis, Glostrup, Denmark
| | - Frauke Alves
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine, Hermann-Rein-Straße 3, Göttingen, D-37075, Germany.,Department of Haematology and Medical Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, D-37075, Germany.,Department of Diagnostic and Interventional Radiology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, D-37075, Germany
| | - Ivana Novak
- Section for Cell Biology and Physiology, August Krogh Building, Department of Biology, University of Copenhagen, Denmark.
| |
Collapse
|
198
|
|
199
|
Liu Y, Li F, Gao F, Xing L, Qin P, Liang X, Zhang J, Qiao X, Lin L, Zhao Q, Du L. Role of microenvironmental periostin in pancreatic cancer progression. Oncotarget 2016; 8:89552-89565. [PMID: 29163770 PMCID: PMC5685691 DOI: 10.18632/oncotarget.11533] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/09/2016] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a prominent desmoplastic reaction. Pancreatic stellate cells (PSCs) are the principal effector cells responsible for stroma production. Aberrant up-regulation of periostin expression has been reported in activated PSCs. In this study, we investigated the role of periostin and the mechanisms underlying its aberrant upregulation in PDAC. We used lentiviral shRNA and human recombinant periostin protein to down and up regulate periostin expression in vitro. Specific oncogenic signaling pathways such as EGFR-Akt and EGFR-Erk-c-Myc were assessed in vitro and in vivo. Tissue microarray immunohistochemical assays including 80 pancreatic cancer tissues and paired normal tissues were used to understand the function relationship between periostin expression and PDAC pathologic stage and overall survival. We found that periostin was strongly expressed in PSCs and the stroma of PDAC tumors. We also observed a significant decrease in proliferation, metastasis, and clonality of pancreatic cancer cells when co-cultured with supernatant of periostin shRNA-transfected PSCs. Specifically, the biological behavior of periostin correlated with EGFR-Akt and EGER-Erk-c-Myc signaling pathways. Moreover, increased periostin expression significantly associated with advanced disease stage and decreased survival rate in PDAC patients. Together, our findings provide novel insights into the role of microenvironmental periostin in pancreatic cancer progression, and periostin may serve as a prognostic biomarker for PDAC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Fan Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Feng Gao
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Lingxi Xing
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Peng Qin
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xingxin Liang
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Jiajie Zhang
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Xiaohui Qiao
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Lizhou Lin
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Qian Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis and National Ministry of Education, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Lianfang Du
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| |
Collapse
|
200
|
Teo J, McCarroll JA, Boyer C, Youkhana J, Sagnella SM, Duong HTT, Liu J, Sharbeen G, Goldstein D, Davis TP, Kavallaris M, Phillips PA. A Rationally Optimized Nanoparticle System for the Delivery of RNA Interference Therapeutics into Pancreatic Tumors in Vivo. Biomacromolecules 2016; 17:2337-51. [DOI: 10.1021/acs.biomac.6b00185] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Joann Teo
- Tumour
Biology and Targeting Program, Children’s Cancer Institute,
Lowy Cancer Research Centre, UNSW Australia, Sydney, New South Wales 2052, Australia
- Australian
Centre for NanoMedicine, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Joshua A. McCarroll
- Tumour
Biology and Targeting Program, Children’s Cancer Institute,
Lowy Cancer Research Centre, UNSW Australia, Sydney, New South Wales 2052, Australia
- Australian
Centre for NanoMedicine, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- Australian
Centre for NanoMedicine, UNSW Australia, Sydney, New South Wales 2052, Australia
- Centre
for Advanced Macromolecular Design, School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Janet Youkhana
- Pancreatic
Cancer Translational Research Group, Lowy Cancer Research Centre,
Prince of Wales Clinical School, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Sharon M. Sagnella
- Tumour
Biology and Targeting Program, Children’s Cancer Institute,
Lowy Cancer Research Centre, UNSW Australia, Sydney, New South Wales 2052, Australia
- Australian
Centre for NanoMedicine, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Hien T. T. Duong
- Australian
Centre for NanoMedicine, UNSW Australia, Sydney, New South Wales 2052, Australia
- Centre
for Advanced Macromolecular Design, School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Jie Liu
- Pancreatic
Cancer Translational Research Group, Lowy Cancer Research Centre,
Prince of Wales Clinical School, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - George Sharbeen
- Pancreatic
Cancer Translational Research Group, Lowy Cancer Research Centre,
Prince of Wales Clinical School, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - David Goldstein
- Pancreatic
Cancer Translational Research Group, Lowy Cancer Research Centre,
Prince of Wales Clinical School, UNSW Australia, Sydney, New South Wales 2052, Australia
- Prince
of Wales Hospital, Prince of Wales Clinical School, Sydney, New South Wales 2052, Australia
| | - Thomas P. Davis
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, Victoria 3800, Australia
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Maria Kavallaris
- Tumour
Biology and Targeting Program, Children’s Cancer Institute,
Lowy Cancer Research Centre, UNSW Australia, Sydney, New South Wales 2052, Australia
- Australian
Centre for NanoMedicine, UNSW Australia, Sydney, New South Wales 2052, Australia
- ARC Centre
of Excellence in Convergent Bio-Nano Science and Technology UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Phoebe A. Phillips
- Australian
Centre for NanoMedicine, UNSW Australia, Sydney, New South Wales 2052, Australia
- Pancreatic
Cancer Translational Research Group, Lowy Cancer Research Centre,
Prince of Wales Clinical School, UNSW Australia, Sydney, New South Wales 2052, Australia
| |
Collapse
|