151
|
Wang Z, Shen H, Ma N, Li Q, Mao Y, Wang C, Xie L. The Prognostic Value of Androgen Receptor Splice Variant 7 in Castration-Resistant Prostate Cancer Treated With Novel Hormonal Therapy or Chemotherapy: A Systematic Review and Meta-analysis. Front Oncol 2020; 10:572590. [PMID: 33425724 PMCID: PMC7793884 DOI: 10.3389/fonc.2020.572590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose This study aimed to evaluate the prognostic role of AR-V7 in terms of prostate-specific antigen (PSA) response, progression-free survival (PFS), and overall survival (OS) in CRPC patients treated with novel hormonal therapy (NHT) (Abiraterone and Enzalutamide) or taxane-based chemotherapy (Docetaxel and Cabazitaxel). Methods A comprehensive literature search was conducted on PubMed, Embase, and the Web of Science from inception to February 2020. Studies focusing on the prognostic values of AR-V7 in CRPC patients treated with NHT or chemotherapy were included in our meta-analysis. The OS and PFS were analyzed based on Hazard ratios (HRs) and 95% confidence intervals (CIs). Furthermore, Odds ratios (ORs) and 95% CIs were summarized for the AR-V7 conversion after treatment and the PSA response. Results The AR-V7 positive proportion increased significantly after NHT treatment (OR 2.56, 95% CI 1.51–4.32, P<0.001), however, it declined after chemotherapy (OR 0.51, 95% CI 0.28–0.93, P=0.003). AR-V7-positive patients showed a significantly decreased PSA response rate after NHT (OR 0.13, 95% CI 0.09–0.19, P<0.001) but not statistically significant for chemotherapy (OR 0.63, 95% CI 0.40-1.01, P=0.06). Notably, PFS (HR 3.56, 95% CI 2.53–5.01, P<0.001) and OS (HR 4.47, 95% CI 3.03–6.59, P<0.001) were worse in AR-V7-positive ttreated with NHT. Similarly, AR-V7 positivity correlated with poor prognosis after chemotherapy as evidenced by shorter OS (HR 1.98, 95% CI 1.48-2.66, P<0.001) and a significantly shorter PFS (HR 1.35, 95% CI 0.97-1.87, P=0.07). Conclusion NHT treatment increased AR-V7 positive proportion whereas chemotherapy decreased it. Moreover, AR-V7 positivity correlated with lower PSA response, poorer PFS, and OS in CRPC treated with NHT, and shorter OS in patients receiving chemotherapy.
Collapse
Affiliation(s)
- Zhize Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haixiang Shen
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nieying Ma
- Key laboratory of Reproductive Genetic (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qinchen Li
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yeqing Mao
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaojun Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liping Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
152
|
Chou FJ, Lin C, Tian H, Lin W, You B, Lu J, Sahasrabudhe D, Huang CP, Yang V, Yeh S, Niu Y, Chang C. Preclinical studies using cisplatin/carboplatin to restore the Enzalutamide sensitivity via degrading the androgen receptor splicing variant 7 (ARv7) to further suppress Enzalutamide resistant prostate cancer. Cell Death Dis 2020; 11:942. [PMID: 33139720 PMCID: PMC7606511 DOI: 10.1038/s41419-020-02970-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/07/2020] [Accepted: 08/21/2020] [Indexed: 12/21/2022]
Abstract
The FDA-approved anti-androgen Enzalutamide (Enz) has been used successfully as the last line therapy to extend castration-resistant prostate cancer (CRPC) patients’ survival by an extra 4.8 months. However, CRPC patients eventually develop Enz-resistance that may involve the induction of the androgen receptor (AR) splicing variant ARv7. Here we found that Cisplatin (Cis) or Carboplatin, currently used in chemotherapy/radiation therapy to suppress tumor progression, could restore the Enz sensitivity in multiple Enz-resistant (EnzR) CRPC cells via directly degrading/suppressing the ARv7. Combining Cis or Carboplatin with Enz therapy can also delay the development of Enz-resistance in CRPC C4-2 cells. Mechanism dissection found that Cis or Carboplatin might decrease the ARv7 expression via multiple mechanisms including targeting the lncRNA-Malat1/SF2 RNA splicing complex and increasing ARv7 degradation via altering ubiquitination. Preclinical studies using in vivo mouse model with implanted EnzR1-C4-2 cells also demonstrated that Cis plus Enz therapy resulted in better suppression of EnzR CRPC progression than Enz treatment alone. These results not only unveil the previously unrecognized Cis mechanism to degrade ARv7 via targeting the Malat1/SF2 complex and ubiquitination signals, it may also provide a novel and ready therapy to further suppress the EnzR CRPC progression in the near future.
Collapse
Affiliation(s)
- Fu-Ju Chou
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - ChangYi Lin
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Hao Tian
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, 14642, USA.,Tianjin Institute of Urology, Tianjin Medical University, Tianjin, 300211, China
| | - WanYing Lin
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Bosen You
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, 14642, USA.,Department of Urology, The 4th Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jieyang Lu
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Deepak Sahasrabudhe
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Chi-Ping Huang
- Sex Hormone Research Center and Department of Urology, China Medical University and Hospital, Taichung, 404, Taiwan
| | - Vanessa Yang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yuanjie Niu
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, 14642, USA.,Tianjin Institute of Urology, Tianjin Medical University, Tianjin, 300211, China
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, 14642, USA. .,Department of Urology, The 4th Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
153
|
Ye M, Tian H, Lin S, Mo J, Li Z, Chen X, Liu J. Resveratrol inhibits proliferation and promotes apoptosis via the androgen receptor splicing variant 7 and PI3K/AKT signaling pathway in LNCaP prostate cancer cells. Oncol Lett 2020; 20:169. [PMID: 32934736 PMCID: PMC7471767 DOI: 10.3892/ol.2020.12032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is a common malignant tumor of the male genitourinary system and its incidence increases with age. Studies have shown that resveratrol (Res) inhibits cancer cell proliferation, migration, invasion and promotes apoptosis. The present study evaluated the effect of Res in two human prostate cancer cell lines (the androgen-dependent LNCaP cell line and the non-androgen-independent LNCaP-B cell line) on proliferation and apoptosis. A proliferation assay was used to demonstrate that Res inhibited proliferation of LNCaP and LNCaP-B cells in the range of 25-100 µM, and the effect was time- and dose-dependent. Using flow cytometry, it was reported that various concentrations of Res induced apoptosis in LNCaP and LNCaP-B cells, and that the apoptotic effect of Res was dose-dependent. A chemiluminescence assay showed that Res inhibited prostate specific antigen levels in LNCaP and LNCaP-B cells. Reverse transcription quantitative-PCR showed that Res inhibited the expression of androgen receptor (AR) in LNCaP and LNCaP-B cells at the mRNA level. Western blot analysis showed that Res suppressed the expression of AR protein as well as protein kinase B (AKT) phosphorylation. To study the effect of Res on the expression of AR splicing variant 7 (ARV7) and the PI3K/AKT signaling pathway in prostate cancer cells, as well as the underlying molecular mechanisms, the recombinant ARV7 expression vector Pcdna3.1-ARV7 was transfected into LNCaP and LNCaP cells and the aforementioned experiments were repeated. It was revealed that Res acted via the ARV7 and the AKT pathways. Taken together, the present results suggested that Res suppresses the proliferation of prostate cancer cells, promotes apoptosis and inhibits the expression of AR mRNA and protein. These effects likely resulted from inhibition of ARV7 and the AKT signaling pathway.
Collapse
Affiliation(s)
- Mushi Ye
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Huanshu Tian
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Shanhong Lin
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Jierong Mo
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Zhuo Li
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Xiaojun Chen
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Jianjun Liu
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| |
Collapse
|
154
|
Jonnalagadda B, Arockiasamy S, Krishnamoorthy S. Cellular growth factors as prospective therapeutic targets for combination therapy in androgen independent prostate cancer (AIPC). Life Sci 2020; 259:118208. [PMID: 32763294 DOI: 10.1016/j.lfs.2020.118208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 12/21/2022]
Abstract
Cancer is the second leading cause of death worldwide, with prostate cancer, the second most commonly diagnosed cancer among men. Prostate cancer develops in the peripheral zone of the prostate gland, and the initial progression largely depends on androgens, the male reproductive hormone that regulates the growth and development of the prostate gland and testis. The currently available treatments for androgen dependent prostate cancer are, however, effective for a limited period, where the patients show disease relapse, and develop androgen-independent prostate cancer (AIPC). Studies have shown various intricate cellular processes such as, deregulation in multiple biochemical and signaling pathways, intra-tumoral androgen synthesis; AR over-expression and mutations and AR activation via alternative growth pathways are involved in progression of AIPC. The currently approved treatment strategies target a single cellular protein or pathway, where the cells slowly develop resistance and adapt to proliferate via other cellular pathways over a period of time. Therefore, an increased research aims to understand the efficacy of combination therapy, which targets multiple interlinked pathways responsible for acquisition of resistance and survival. The combination therapy is also shown to enhance efficacy as well as reduce toxicity of the drugs. Thus, the present review focuses on the signaling pathways involved in the progression of AIPC, comprising a heterogeneous population of cells and the advantages of combination therapy. Several clinical and pre-clinical studies on a variety of combination treatments have shown beneficial outcomes, yet further research is needed to understand the potential of combination therapy and its diverse strategies.
Collapse
Affiliation(s)
- Bhavana Jonnalagadda
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sumathy Arockiasamy
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
| | - Sriram Krishnamoorthy
- Department of Urology, Sri Ramachandra Medical Centre, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
155
|
The Androgen Receptor in Prostate Cancer: Effect of Structure, Ligands and Spliced Variants on Therapy. Biomedicines 2020; 8:biomedicines8100422. [PMID: 33076388 PMCID: PMC7602609 DOI: 10.3390/biomedicines8100422] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
The androgen receptor (AR) plays a predominant role in prostate cancer (PCa) pathology. It consists of an N-terminal domain (NTD), a DNA-binding domain (DBD), a hinge region (HR), and a ligand-binding domain (LBD) that binds androgens, including testosterone (T) and dihydrotestosterone (DHT). Ligand binding at the LBD promotes AR dimerization and translocation to the nucleus where the DBD binds target DNA. In PCa, AR signaling is perturbed by excessive androgen synthesis, AR amplification, mutation, or the formation of AR alternatively spliced variants (AR-V) that lack the LBD. Current therapies for advanced PCa include androgen synthesis inhibitors that suppress T and/or DHT synthesis, and AR inhibitors that prevent ligand binding at the LBD. However, AR mutations and AR-Vs render LBD-specific therapeutics ineffective. The DBD and NTD are novel targets for inhibition as both perform necessary roles in AR transcriptional activity and are less susceptible to AR alternative splicing compared to the LBD. DBD and NTD inhibition can potentially extend patient survival, improve quality of life, and overcome predominant mechanisms of resistance to current therapies. This review discusses various small molecule and other inhibitors developed against the DBD and NTD—and the current state of the available compounds in clinical development.
Collapse
|
156
|
Role of androgen receptor splice variant-7 (AR-V7) in prostate cancer resistance to 2nd-generation androgen receptor signaling inhibitors. Oncogene 2020; 39:6935-6949. [PMID: 32989253 PMCID: PMC7655549 DOI: 10.1038/s41388-020-01479-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/19/2020] [Accepted: 09/15/2020] [Indexed: 01/24/2023]
Abstract
The role of truncated androgen receptor splice variant-7 (AR-V7) in prostate cancer biology is an unresolved question. Is it simply a marker of resistance to 2nd generation androgen receptor signaling inhibitors (ARSi) like Abiraterone Acetate (Abi) and Enzalutamide (Enza) or a functional driver of lethal resistance via its ligand-independent transcriptional activity? To resolve this question, the correlation between resistance to ARSi and genetic chances and expression of full length AR (AR-FL) vs. AR-V7 were evaluated in a series of independent patient-derived xenografts (PDXs). While all PDXs lack PTEN expression, there is no consistent requirement for mutation in TP53, RB1, BRCA2, PIK3CA, or MSH2, or expression of SOX2 or ERG and ARSi-resistance. Elevated expression of AR-FL alone is sufficient for Abi- but not Enza-resistance, even if AR-FL is gain-of-function (GOF) mutated. Enza-resistance is consistently correlated with enhanced AR-V7 expression. In vitro and in vivo growth responses of Abi-/Enza-resistant LNCaP-95 cells in which CRISPR-Cas9 was used to knockout AR-FL or AR-V7 alone or in combination were evaluated. Combining these growth responses with RNAseq analysis demonstrates that both AR-FL and AR-V7 dependent transcriptional complementation are needed for Abi/Enza resistance.
Collapse
|
157
|
Liu B, Sun Y, Tang M, Liang C, Huang CP, Niu Y, Wang Z, Chang C. The miR-361-3p increases enzalutamide (Enz) sensitivity via targeting the ARv7 and MKNK2 to better suppress the Enz-resistant prostate cancer. Cell Death Dis 2020; 11:807. [PMID: 32978369 PMCID: PMC7519644 DOI: 10.1038/s41419-020-02932-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
The androgen receptor splicing variant 7 (ARv7) that lacks the ligand-binding domain is increasingly considered as a key player leading to enzalutamide (Enz) resistance in patients with prostate cancer (PCa). However, the detailed mechanisms of how ARv7 expression is regulated and whether it also needs other factors to induce maximal Enz resistance remain unclear. Here, we identified a microRNA, miR-361-3p, whose expression is lower in patients with recurrent PCa, could function via binding to the 3'UTR of ARv7, but not the wild type of AR, to suppress its expression to increase the Enz sensitivity. Importantly, we found that miR-361-3p could also bind to the 3'UTR of MAP kinase-interacting serine/threonine kinase 2 (MKNK2) to suppress its expression to further increase the Enz sensitivity. In turn, the increased Enz can then function via a feedback mechanism through altering the HIF-2α/VEGFA signaling to suppress the expression of miR-361-3p under hypoxia conditions. Preclinical studies using an in vivo mouse model with orthotopically xenografted CWR22Rv1 cells demonstrated that combining the Enz with the small molecule miR-361-3p would result in better suppression of the Enz-resistant PCa tumor progression. Together, these preclinical studies demonstrate that miR-361-3p can function via suppressing the expression of ARv7 and MKNK2 to maximally increase the Enz sensitivity, and targeting these newly identified Enz/miR-361-3p/ARv7 and/or Enz/miR-361-3p/MKNK2 signals with small molecules may help in the development of novel therapies to better suppress the CRPC in patients that already have developed the Enz resistance.
Collapse
Affiliation(s)
- Bianjiang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Min Tang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chi-Ping Huang
- Sex Hormone Research Center and Department of Urology, China Medical University/Hospital, Taichung, Taiwan
| | - Yuanjie Niu
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Sex Hormone Research Center and Department of Urology, China Medical University/Hospital, Taichung, Taiwan.
| |
Collapse
|
158
|
Chen Y, Lan T. Molecular Origin, Expression Regulation, and Biological Function of Androgen Receptor Splicing Variant 7 in Prostate Cancer. Urol Int 2020; 105:337-353. [PMID: 32957106 DOI: 10.1159/000510124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022]
Abstract
The problem of resistance to therapy in prostate cancer (PCa) is multifaceted. Key determinants of drug resistance include tumor burden and growth kinetics, tumor heterogeneity, physical barriers, immune system and microenvironment, undruggable cancer drivers, and consequences of therapeutic pressures. With regard to the fundamental importance of the androgen receptor (AR) in all stages of PCa from tumorigenesis to progression, AR is postulated to have a continued critical role in castration-resistant prostate cancer (CRPC). Suppression of AR signaling mediated by the full-length AR (AR-FL) is the therapeutic goal of all AR-directed therapies. However, AR-targeting agents ultimately lead to AR aberrations that promote PCa progression and drug resistance. Among these AR aberrations, androgen receptor variant 7 (AR-V7) is gaining attention as a potential predictive marker for as well as one of the resistance mechanisms to the most current anti-AR therapies in CRPC. Meanwhile, development of next-generation drugs that directly or indirectly target AR-V7 signaling is urgently needed. In the present review of the current literature, we have summarized the origin, alternative splicing, expression induction, protein conformation, interaction with coregulators, relationship with AR-FL, transcriptional activity, and biological function of AR-V7 in PCa development and therapeutic resistance. We hope this review will help further understand the molecular origin, expression regulation, and role of AR-V7 in the progression of PCa and provide insight into the design of novel selective inhibitors of AR-V7 in PCa treatment.
Collapse
Affiliation(s)
- Ye Chen
- Department of Surgery and Anesthesiology, Joint Logistic Support 940 Hospital of CPLA, Lanzhou, China
| | - Tian Lan
- Department of Urology, Joint Logistic Support 940 Hospital of CPLA, Lanzhou, China,
| |
Collapse
|
159
|
Verma S, Prajapati KS, Kushwaha PP, Shuaib M, Kumar Singh A, Kumar S, Gupta S. Resistance to second generation antiandrogens in prostate cancer: pathways and mechanisms. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:742-761. [PMID: 35582225 PMCID: PMC8992566 DOI: 10.20517/cdr.2020.45] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 02/05/2023]
Abstract
Androgen deprivation therapy targeting the androgens/androgen receptor (AR) signaling continues to be the mainstay treatment of advanced-stage prostate cancer. The use of second-generation antiandrogens, such as abiraterone acetate and enzalutamide, has improved the survival of prostate cancer patients; however, a majority of these patients progress to castration-resistant prostate cancer (CRPC). The mechanisms of resistance to antiandrogen treatments are complex, including specific mutations, alternative splicing, and amplification of oncogenic proteins resulting in dysregulation of various signaling pathways. In this review, we focus on the major mechanisms of acquired resistance to second generation antiandrogens, including AR-dependent and AR-independent resistance mechanisms as well as other resistance mechanisms leading to CRPC emergence. Evolving knowledge of resistance mechanisms to AR targeted treatments will lead to additional research on designing more effective therapies for advanced-stage prostate cancer.
Collapse
Affiliation(s)
- Shiv Verma
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Kumari Sunita Prajapati
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Prem Prakash Kushwaha
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Mohd Shuaib
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Atul Kumar Singh
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Shashank Kumar
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
- Divison of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
160
|
Expression of AR-V7 (Androgen Receptor Variant 7) Protein in Granular Cytoplasmic Structures Is an Independent Prognostic Factor in Prostate Cancer Patients. Cancers (Basel) 2020; 12:cancers12092639. [PMID: 32947898 PMCID: PMC7564112 DOI: 10.3390/cancers12092639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/03/2020] [Accepted: 09/08/2020] [Indexed: 11/18/2022] Open
Abstract
Simple Summary The expression of the androgen receptor (AR) and its splice variant AR-V7 is crucial for prostate cancer (PCa) biology. An immunohistochemical staining was performed on a tissue microarray with specimens from 410 PCa patients. AR staining, neither in the nucleus nor in the cytoplasm was associated with prognosis. AR-V7 staining of the general cytoplasm was associated with a shorter relapse free survival (RFS), whereas AR-V7 staining of cytoplasmic granules was associated with a longer RFS. Further subgroup stratification for AR-V7 granular staining revealed it as an independent prognostic factor in younger patients (age ≤ 65), patients with negative CK20 staining and patients with perineural invasion. Altogether, AR-V7 protein detected in granular cytoplasmic structures is an independent prognostic factor for RFS in PCa patients. Abstract Prostate cancer (PCa) is the second most common cancer, causing morbidity and mortality among men world-wide. The expression of the androgen receptor (AR) and its splice variants is a crucial factor of prostate cancer biology that has not been comprehensively studied in PCa tumors. The aim of this study was to characterize the protein expression of the AR and its splice variant, AR-V7, and their subcellular distributions in PCa by immunohistochemistry and to correlate the results to the clinicopathological data and prognosis. Immunohistochemical staining for AR and AR-V7 was performed on a tissue microarray (TMA) with specimens from 410 PCa patients using an immunoreactive score (IRS) or only the percentage of AR-V7 staining in cytoplasmic granules. Nuclear or cytoplasmic AR staining was not associated with prognosis. AR-V7 staining was only occasionally observed in the nucleus. However, AR-V7 staining in the cytoplasm or in cytoplasmic granules was associated with relapse-free survival (RFS). AR-V7 staining of the cytoplasm was associated with a shorter RFS, whereas AR-V7 staining of cytoplasmic granules was associated with a longer RFS. In a multivariate Cox’s regression analysis, only negative (<5%) AR-V7 staining of cytoplasmic granules remained an independent prognostic factor for RFS (HR = 5.3; p = 0.006). In a further subgroup analysis by multivariate Cox’s regression analysis, AR-V7 was an independent prognostic factor in the following groups: age ≤ 65 (HR = 9.7; p = 0.029), negative CK20 staining (HR = 7.0; p = 0.008), and positive perineural invasion (HR = 3.7; p = 0.034). Altogether, AR-V7 protein in granular cytoplasmic structures is an independent prognostic factor for RFS in PCa patients.
Collapse
|
161
|
Fergany AAM, Tatarskiy VV. RNA Splicing: Basic Aspects Underlie Antitumor Targeting. Recent Pat Anticancer Drug Discov 2020; 15:293-305. [PMID: 32900350 DOI: 10.2174/1574892815666200908122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND RNA splicing, a fundamental step in gene expression, is aimed at intron removal and ordering of exons to form the protein's reading frame. OBJECTIVE This review is focused on the role of RNA splicing in cancer biology; the splicing abnormalities that lead to tumor progression emerge as targets for therapeutic intervention. METHODS We discuss the role of aberrant mRNA splicing in carcinogenesis and drug response. RESULTS AND CONCLUSION Pharmacological modulation of RNA splicing sets the stage for treatment approaches in situations where mRNA splicing is a clinically meaningful mechanism of the disease.
Collapse
Affiliation(s)
- Alzahraa A M Fergany
- Department of Occupational and Environmental Health, Graduate School of Pharmaceutical Science, Tokyo University of Science, Chiba, Japan
| | - Victor V Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
162
|
Lin C, Chou FJ, Lu J, Lin W, Truong M, Tian H, Sun Y, Luo J, Yang R, Niu Y, Nadal R, Antonarakis ES, Cordon-Cardo C, Sahasrabudhe D, Huang CP, Yeh S, Li G, Chang C. Preclinical studies show using enzalutamide is less effective in docetaxel-pretreated than in docetaxel-naïve prostate cancer cells. Aging (Albany NY) 2020; 12:17694-17712. [PMID: 32920545 PMCID: PMC7521536 DOI: 10.18632/aging.103917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/25/2020] [Indexed: 01/24/2023]
Abstract
Anti-androgen therapy with Enzalutamide (Enz) has been used as a therapy for castration resistant prostate cancer (CRPC) patients after development of resistance to chemotherapy with Docetaxel (Doc). The potential impacts of Doc-chemotherapy on the subsequent Enz treatment, however, remain unclear. Here we found the overall survival rate of patients that received Enz was significantly less in patients that received prior Doc-chemotherapy than those who had not. In vitro studies from 3 established Doc resistant CRPC (DocRPC) cell lines are consistent with the clinical findings showing DocRPC patients had decreased Enz-sensitivity as well as accelerated development of Enz-resistance via enhanced androgen receptor (AR) splicing variant 7 (ARv7) expression. Mechanism dissection found that Doc treatment might increase the generation of ARv7 via altering the MALAT1-SF2 RNA splicing complex. Preclinical studies using in vivo mouse models and in vitro cell lines proved that targeting the MALAT1/SF2/ARv7 axis with small molecules, including siMALAT1, shSF2, and shARv7 or ARv7 degradation enhancers: Cisplatin or ASC-J9®, can restore/increase the Enz sensitivity to further suppress DocRPC cell growth. Therefore, combined therapy of Doc-chemotherapy with anti-ARv7 therapy, including Cisplatin or ASC-J9®, may be developed to increase the efficacy of Enz to further suppress DocRPC in patients.
Collapse
Affiliation(s)
- Changyi Lin
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY 14642, USA
| | - Fu-Ju Chou
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY 14642, USA
| | - Jieyang Lu
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY 14642, USA
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Wanying Lin
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY 14642, USA
| | - Matthew Truong
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY 14642, USA
| | - Hao Tian
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY 14642, USA
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University, Tianjin 300211, China
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY 14642, USA
| | - Jie Luo
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY 14642, USA
| | - Rachel Yang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY 14642, USA
| | - Yuanjie Niu
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY 14642, USA
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University, Tianjin 300211, China
| | - Rosa Nadal
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | | | - Carlos Cordon-Cardo
- Department of Pathology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Deepak Sahasrabudhe
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY 14642, USA
| | - Chi-Ping Huang
- Sex Hormone Research Center, Department of Urology, China Medical University and Hospital, Taichung 404, Taiwan
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY 14642, USA
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY 14642, USA
- Sex Hormone Research Center, Department of Urology, China Medical University and Hospital, Taichung 404, Taiwan
| |
Collapse
|
163
|
Kim EH, Cao D, Mahajan NP, Andriole GL, Mahajan K. ACK1-AR and AR-HOXB13 signaling axes: epigenetic regulation of lethal prostate cancers. NAR Cancer 2020; 2:zcaa018. [PMID: 32885168 PMCID: PMC7454006 DOI: 10.1093/narcan/zcaa018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/22/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022] Open
Abstract
The androgen receptor (AR) is a critical transcription factor in prostate cancer (PC) pathogenesis. Its activity in malignant cells is dependent on interactions with a diverse set of co-regulators. These interactions fluctuate depending on androgen availability. For example, the androgen depletion increases the dependence of castration-resistant PCs (CRPCs) on the ACK1 and HOXB13 cell survival pathways. Activated ACK1, an oncogenic tyrosine kinase, phosphorylates cytosolic and nuclear proteins, thereby avoiding the inhibitory growth consequences of androgen depletion. Notably, ACK1-mediated phosphorylation of histone H4, which leads to epigenetic upregulation of AR expression, has emerged as a critical mechanism of CRPC resistance to anti-androgens. This resistance can be targeted using the ACK1-selective small-molecule kinase inhibitor (R)- 9b. CRPCs also deploy the bromodomain and extra-terminal domain protein BRD4 to epigenetically increase HOXB13 gene expression, which in turn activates the MYC target genes AURKA/AURKB. HOXB13 also facilitates ligand-independent recruitment of the AR splice variant AR-V7 to chromatin, compensating for the loss of the chromatin remodeling protein, CHD1, and restricting expression of the mitosis control gene HSPB8. These studies highlight the crosstalk between AR-ACK1 and AR-HOXB13 pathways as key mediators of CRPC recurrence.
Collapse
Affiliation(s)
- Eric H Kim
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Dengfeng Cao
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nupam P Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Gerald L Andriole
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
164
|
Protective effects of combination of Stauntonia hexaphylla and Cornus officinalis on testosterone-induced benign prostatic hyperplasia through inhibition of 5α- reductase type 2 and induced cell apoptosis. PLoS One 2020; 15:e0236879. [PMID: 32790676 PMCID: PMC7425886 DOI: 10.1371/journal.pone.0236879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/15/2020] [Indexed: 11/19/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is a progressive pathological condition associated with proliferation of prostatic tissues, prostate enlargement, and lower-urinary tract symptoms. However, the mechanism underlying the pathogenesis of BPH is unclear. The aim of this study was to investigate the protective effects of a combination of Stauntonia hexaphylla and Cornus officinalis (SC extract) on a testosterone propionate (TP)-induced BPH model. The effect of SC extract was examined in a TP-induced human prostate adenocarcinoma cell line. Male Sprague-Dawley rats were randomly divided into 5 groups (n = 6) for in vivo experiments. To induce BPH, all rats, except those in the control group, were administered daily with subcutaneous injections of TP (5 mg/kg) and orally treated with appropriate phosphate buffered saline/drugs (finasteride/saw palmetto/SC extract) for 4 consecutive weeks. SC extract significantly downregulated the androgen receptor (AR), prostate specific antigen (PSA), and 5α-reductase type 2 in TP-induced BPH in vitro. In in vivo experiments, SC extract significantly reduced prostate weight, size, serum testosterone, and dihydrotestosterone (DHT) levels. Histologically, SC extract markedly recovered TP-induced abnormalities and reduced prostatic hyperplasia, thereby improving the histo-architecture of TP-induced BPH rats. SC extract also significantly downregulated AR and PSA expression, as assayed using immunoblotting. Immunostaining revealed that SC extract markedly reduced the 5α-reductase type 2 and significantly downregulated the expression of proliferating cell nuclear antigen. In addition, immunoblotting of B-cell lymphoma 2 (Bcl-2) family proteins indicated that SC extract significantly downregulated anti-apoptotic Bcl-2 and markedly upregulated pro-apoptotic B cell lymphoma-associated X (Bax) expression. Furthermore, SC treatment significantly decreased the Bcl-2/Bax ratio, indicating induced prostate cell apoptosis in TP-induced BPH rats. Thus, our findings demonstrated that SC extract protects against BPH by inhibiting 5α-reductase type 2 and inducing prostate cell apoptosis. Therefore, SC extract might be useful in the clinical treatment of BPH.
Collapse
|
165
|
Giacomini A, Grillo E, Rezzola S, Ribatti D, Rusnati M, Ronca R, Presta M. The FGF/FGFR system in the physiopathology of the prostate gland. Physiol Rev 2020; 101:569-610. [PMID: 32730114 DOI: 10.1152/physrev.00005.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factors (FGFs) are a family of proteins possessing paracrine, autocrine, or endocrine functions in a variety of biological processes, including embryonic development, angiogenesis, tissue homeostasis, wound repair, and cancer. Canonical FGFs bind and activate tyrosine kinase FGF receptors (FGFRs), triggering intracellular signaling cascades that mediate their biological activity. Experimental evidence indicates that FGFs play a complex role in the physiopathology of the prostate gland that ranges from essential functions during embryonic development to modulation of neoplastic transformation. The use of ligand- and receptor-deleted mouse models has highlighted the requirement for FGF signaling in the normal development of the prostate gland. In adult prostate, the maintenance of a functional FGF/FGFR signaling axis is critical for organ homeostasis and function, as its disruption leads to prostate hyperplasia and may contribute to cancer progression and metastatic dissemination. Dissection of the molecular landscape modulated by the FGF family will facilitate ongoing translational efforts directed toward prostate cancer therapy.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Domenico Ribatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| |
Collapse
|
166
|
Kafka M, Mayr F, Temml V, Möller G, Adamski J, Höfer J, Schwaiger S, Heidegger I, Matuszczak B, Schuster D, Klocker H, Bektic J, Stuppner H, Eder IE. Dual Inhibitory Action of a Novel AKR1C3 Inhibitor on Both Full-Length AR and the Variant AR-V7 in Enzalutamide Resistant Metastatic Castration Resistant Prostate Cancer. Cancers (Basel) 2020; 12:E2092. [PMID: 32731472 PMCID: PMC7465893 DOI: 10.3390/cancers12082092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 11/23/2022] Open
Abstract
The expanded use of second-generation antiandrogens revolutionized the treatment landscape of progressed prostate cancer. However, resistances to these novel drugs are already the next obstacle to be solved. Various previous studies depicted an involvement of the enzyme AKR1C3 in the process of castration resistance as well as in the resistance to 2nd generation antiandrogens like enzalutamide. In our study, we examined the potential of natural AKR1C3 inhibitors in various prostate cancer cell lines and a three-dimensional co-culture spheroid model consisting of cancer cells and cancer-associated fibroblasts (CAFs) mimicking enzalutamide resistant prostate cancer. One of our compounds, named MF-15, expressed strong antineoplastic effects especially in cell culture models with significant enzalutamide resistance. Furthermore, MF-15 exhibited a strong effect on androgen receptor (AR) signaling, including significant inhibition of AR activity, downregulation of androgen-regulated genes, lower prostate specific antigen (PSA) production, and decreased AR and AKR1C3 expression, indicating a bi-functional effect. Even more important, we demonstrated a persisting inhibition of AR activity in the presence of AR-V7 and further showed that MF-15 non-competitively binds within the DNA binding domain of the AR. The data suggest MF-15 as useful drug to overcome enzalutamide resistance.
Collapse
Affiliation(s)
- Mona Kafka
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.K.); (J.H.); (I.H.); (H.K.); (J.B.)
| | - Fabian Mayr
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (F.M.); (V.T.); (S.S.); (H.S.)
| | - Veronika Temml
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (F.M.); (V.T.); (S.S.); (H.S.)
| | - Gabriele Möller
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (G.M.); (J.A.)
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (G.M.); (J.A.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 637551, Singapore
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85354 Freising-Weihenstephan, Germany
| | - Julia Höfer
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.K.); (J.H.); (I.H.); (H.K.); (J.B.)
| | - Stefan Schwaiger
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (F.M.); (V.T.); (S.S.); (H.S.)
| | - Isabel Heidegger
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.K.); (J.H.); (I.H.); (H.K.); (J.B.)
| | - Barbara Matuszczak
- Institute of Pharmacy/Pharmaceutical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (B.M.); (D.S.)
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (B.M.); (D.S.)
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Helmut Klocker
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.K.); (J.H.); (I.H.); (H.K.); (J.B.)
| | - Jasmin Bektic
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.K.); (J.H.); (I.H.); (H.K.); (J.B.)
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (F.M.); (V.T.); (S.S.); (H.S.)
| | - Iris E. Eder
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.K.); (J.H.); (I.H.); (H.K.); (J.B.)
| |
Collapse
|
167
|
Yu X, Yi P, Hamilton RA, Shen H, Chen M, Foulds CE, Mancini MA, Ludtke SJ, Wang Z, O'Malley BW. Structural Insights of Transcriptionally Active, Full-Length Androgen Receptor Coactivator Complexes. Mol Cell 2020; 79:812-823.e4. [PMID: 32668201 DOI: 10.1016/j.molcel.2020.06.031] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 01/15/2023]
Abstract
Steroid receptors activate gene transcription by recruiting coactivators to initiate transcription of their target genes. For most nuclear receptors, the ligand-dependent activation function domain-2 (AF-2) is a primary contributor to the nuclear receptor (NR) transcriptional activity. In contrast to other steroid receptors, such as ERα, the activation function of androgen receptor (AR) is largely dependent on its ligand-independent AF-1 located in its N-terminal domain (NTD). It remains unclear why AR utilizes a different AF domain from other receptors despite that NRs share similar domain organizations. Here, we present cryoelectron microscopy (cryo-EM) structures of DNA-bound full-length AR and its complex structure with key coactivators, SRC-3 and p300. AR dimerization follows a unique head-to-head and tail-to-tail manner. Unlike ERα, AR directly contacts a single SRC-3 and p300. The AR NTD is the primary site for coactivator recruitment. The structures provide a basis for understanding assembly of the AR:coactivator complex and its domain contributions for coactivator assembly and transcriptional regulation.
Collapse
Affiliation(s)
- Xinzhe Yu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ping Yi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ross A Hamilton
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hong Shen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muyuan Chen
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven J Ludtke
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhao Wang
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
168
|
Stuopelyte K, Sabaliauskaite R, Bakavicius A, Haflidadóttir BS, Visakorpi T, Väänänen RM, Patel C, Danila DC, Lilja H, Lazutka JR, Ulys A, Jankevicius F, Jarmalaite S. Analysis of AR-FL and AR-V1 in Whole Blood of Patients with Castration Resistant Prostate Cancer as a Tool for Predicting Response to Abiraterone Acetate. J Urol 2020; 204:71-78. [PMID: 32068491 PMCID: PMC7301408 DOI: 10.1097/ju.0000000000000803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2020] [Indexed: 01/22/2023]
Abstract
PURPOSE Reliable molecular diagnostic tools are still unavailable for making informed treatment decisions and monitoring the response in patients with castration resistant prostate cancer. We evaluated the significance of whole blood circulating androgen receptor transcripts of full length (AR-FL) and splice variants (AR-V1, AR-V3 and AR-V7) as biomarkers of abiraterone acetate treatment resistance in patients with castration resistant prostate cancer. MATERIALS AND METHODS After retrospective analysis in 112 prostate specimens AR-FL, AR-V1, AR-V3 and AR-V7 were evaluated in 185 serial blood samples, prospectively collected from 102 patients with castration resistant prostate cancer before and during abiraterone acetate therapy via reverse transcription quantitative polymerase chain reaction. RESULTS AR-FL was present in all samples while AR-V1, AR-V3, AR-V7 and at least 1 of them was detected in 17%, 55%, 65% and 81% of castration resistant prostate cancer blood samples, respectively. The highest amount of AR-V1 was found in blood of patients whose response time was short and medium in comparison to extended. Patients with a higher level of AR-FL and/or AR-V1 had the shortest progression-free survival and overall survival (p <0.0001). CONCLUSIONS Blood circulating AR-FL or AR-V1 can serve as blood based biomarkers for identification of the primary resistance to abiraterone acetate and the tool to monitor de novo resistance development during abiraterone acetate treatment.
Collapse
Affiliation(s)
- Kristina Stuopelyte
- Institute of Biomedical Sciences, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, Vilnius 10257, Lithuania
- National Cancer Institute, Santariskiu 1, Vilnius 08406, Lithuania
| | | | - Arnas Bakavicius
- National Cancer Institute, Santariskiu 1, Vilnius 08406, Lithuania
- Urology Centre, Vilnius University, Santariskiu 2, Vilnius 08410, Lithuania
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, Vilnius 03101, Lithuania
| | - Benedikta S. Haflidadóttir
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland
- Fimlab Laboratories, Tampere University Hospital, Arvo Ylpön katu 4, Tampere 33520, Finland
| | - Tapio Visakorpi
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland
- Fimlab Laboratories, Tampere University Hospital, Arvo Ylpön katu 4, Tampere 33520, Finland
| | - Riina-Minna Väänänen
- Department of Biotechnology, University of Turku, Tykistökatu 6 A, Turku 20520, Finland
| | - Chintan Patel
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York 10065, NY, USA
| | - Daniel C. Danila
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York 10065, NY, USA
- Department of Medicine, Weill Cornell Medical College, 407 E 61st St, New York 10065, NY, USA
| | - Hans Lilja
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York 10065, NY, USA
- Department of Surgery (Urology Service), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York 10065, NY, USA
- Departments of Laboratory Medicine and Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York 10065, NY, USA
- Department of Translational Medicine, Lund University, J Waldenströms gata 35, Malmö 20502, Sweden
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Juozas R. Lazutka
- Institute of Biomedical Sciences, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, Vilnius 10257, Lithuania
| | - Albertas Ulys
- National Cancer Institute, Santariskiu 1, Vilnius 08406, Lithuania
| | - Feliksas Jankevicius
- National Cancer Institute, Santariskiu 1, Vilnius 08406, Lithuania
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, Vilnius 03101, Lithuania
| | - Sonata Jarmalaite
- Institute of Biomedical Sciences, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, Vilnius 10257, Lithuania
- National Cancer Institute, Santariskiu 1, Vilnius 08406, Lithuania
| |
Collapse
|
169
|
Kaczorowski A, Chen X, Herpel E, Merseburger AS, Kristiansen G, Bernemann C, Hohenfellner M, Cronauer MV, Duensing S. Antibody selection influences the detection of AR-V7 in primary prostate cancer. Cancer Treat Res Commun 2020; 24:100186. [PMID: 32619831 DOI: 10.1016/j.ctarc.2020.100186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/10/2020] [Accepted: 06/20/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND The androgen receptor (AR) splice variant V7 (AR-V7) is an emerging marker to aid clinical decision-making in patients with castration-resistant prostate cancer (CRPC). A number of studies have shown that a subset of patients also express AR-V7 in the primary tumor. These findings have recently been challenged by a study showing that AR-V7 becomes only detectable in CRPC but is virtually absent in castration-naïve prostate cancer. METHODS Herein, we directly compare the two relevant antibodies used for the immunodetection of AR-V7 in the conflicting studies (clones AG10008 and RM7) in a predominantly high-risk prostate cancer patient cohort with primary tumor specimens assembled in a tissue microarray (TMA). RESULTS The overall rate of AR-V7 positive TMA cores was comparable (AG10008, 24.9%; RM7, 21%). However, the percentage agreement of identical staining intensities of positive cores was only 7%. In contrast, the percentage agreement of negative cores was 62.8%. In approximately 30% of the cores, the antibodies produced discordant staining intensities. Only one of the two antibody stainings (AG10008) conveyed prognostic information and was associated with a shorter progression-free patient survival. CONCLUSIONS Our study underscores that nuclear AR-V7 expression can be detected in primary prostate cancer prior to long-term androgen deprivation and castration resistance. There are staining differences between the two antibodies in tumor tissue, for which we currently have no explanation. Clearly, improvements in the detection of functional AR-V7 in prostate cancer are urgently needed.
Collapse
Affiliation(s)
- Adam Kaczorowski
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, Heidelberg, D-69120, Germany
| | - Xin Chen
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, Heidelberg, D-69120, Germany
| | - Esther Herpel
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, Heidelberg, D-69120, Germany; Tissue Bank of the National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 224, Heidelberg, D-69120, Germany
| | - Axel S Merseburger
- Department of Urology, University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, Lübeck, D-23538, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, Sigmund-Freud-Strasse 25, Bonn, D-53127, Germany
| | - Christof Bernemann
- Department of Urology, University Hospital Münster, Albert-Schweitzer Campus 1, Münster, D-48149, Germany
| | - Markus Hohenfellner
- Department of Urology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 110, Heidelberg, D-69120, Germany
| | - Marcus V Cronauer
- Department of Urology, University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, Lübeck, D-23538, Germany; Institute of Pathology, University Hospital Bonn, Sigmund-Freud-Strasse 25, Bonn, D-53127, Germany.
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, Heidelberg, D-69120, Germany; Department of Urology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 110, Heidelberg, D-69120, Germany.
| |
Collapse
|
170
|
Coordinated AR and microRNA regulation in prostate cancer. Asian J Urol 2020; 7:233-250. [PMID: 32742925 PMCID: PMC7385519 DOI: 10.1016/j.ajur.2020.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 03/22/2020] [Accepted: 04/17/2020] [Indexed: 12/26/2022] Open
Abstract
The androgen receptor (AR) remains a key driver of prostate cancer (PCa) progression, even in the advanced castrate-resistant stage, where testicular androgens are absent. It is therefore of critical importance to understand the molecular mechanisms governing its activity and regulation during prostate tumourigenesis. MicroRNAs (miRs) are small ∼22 nt non-coding RNAs that regulate target gene, often through association with 3′ untranslated regions (3′UTRs) of transcripts. They display dysregulation during cancer progression, can function as oncogenes or tumour suppressors, and are increasingly recognised as targets or regulators of hormonal action. Thus, understanding factors which modulate miRs synthesis is essential. There is increasing evidence for complex and dynamic bi-directional cross-talk between the multi-step miR biogenesis cascade and the AR signalling axis in PCa. This review summarises the wealth of mechanisms by which miRs are regulated by AR, and conversely, how miRs impact AR's transcriptional activity, including that of AR splice variants. In addition, we assess the implications of the convergence of these pathways on the clinical employment of miRs as PCa biomarkers and therapeutic targets.
Collapse
|
171
|
The MAO inhibitors phenelzine and clorgyline revert enzalutamide resistance in castration resistant prostate cancer. Nat Commun 2020; 11:2689. [PMID: 32483206 PMCID: PMC7264333 DOI: 10.1038/s41467-020-15396-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/06/2020] [Indexed: 12/28/2022] Open
Abstract
The antiandrogen enzalutamide (Enz) has improved survival in castration resistant prostate cancer (CRPC) patients. However, most patients eventually develop Enz resistance that may involve inducing the androgen receptor (AR) splicing variant 7 (ARv7). Here we report that high expression of monoamine oxidase-A (MAO-A) is associated with positive ARv7 detection in CRPC patients following Enz treatment. Targeting MAO-A with phenelzine or clorgyline, the FDA-approved drugs for antidepression, resensitize the Enz resistant (EnzR) cells to Enz treatment and further suppress EnzR cell growth in vitro and in vivo. Our findings suggest that Enz-increased ARv7 expression can transcriptionally enhance MAO-A expression resulting in Enz resistance via altering the hypoxia HIF-1α signals. Together, our results show that targeting the Enz/ARv7/MAO-A signaling with the antidepressants phenelzine or clorgyline can restore Enz sensitivity to suppress EnzR cell growth, which may indicate that these antidepression drugs can overcome the Enz resistance to further suppress the EnzR CRPC. Castration resistant prostate cancer patients treated with enzalutamide may develop resistance to the drug. Here, the authors report that monoamine oxidase-A expression is increased in these resistant tumors and that the antidepressants phenelzine/clorgyline can reverse such resistance to further suppress tumor growth
Collapse
|
172
|
Hu H, Wang C, Zhang R, Xiao C, Lai C, Li Z, Xu D. Branched worm-like nanoparticles featured with programmed drug release for synergistic castration-resistant prostate cancer therapy. JOURNAL OF MATERIALS SCIENCE 2020; 55:6992-7008. [DOI: 10.1007/s10853-020-04495-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/20/2020] [Indexed: 03/28/2025]
|
173
|
Xu J, Qiu Y. Current opinion and mechanistic interpretation of combination therapy for castration-resistant prostate cancer. Asian J Androl 2020; 21:270-278. [PMID: 30924449 PMCID: PMC6498727 DOI: 10.4103/aja.aja_10_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent advances in genomics technology have led to the massive discovery of new drug targets for prostate cancer; however, none of the currently available therapeutics is curative. One of the greatest challenges is drug resistance. Combinations of therapies with distinct mechanisms of action represent a promising strategy that has received renewed attention in recent years. Combination therapies exert cancer killing functions through either concomitant targeting of multiple pro-cancer factors or more effective inhibition of a single pathway. Theoretically, the combination therapy can improve efficacy and efficiency compared with monotherapy. Although increasing numbers of drug combinations are currently being tested in clinical trials, the mechanisms by which these combinations can overcome drug resistance have yet to be fully understood. The purpose of this review is to summarize recent work on therapeutic combinations in the treatment of castration-resistant prostate cancer and discuss emerging mechanisms underlying drug resistance. In addition, we provide an overview of the current preclinical mechanistic studies on potential therapeutic combinations to overcome drug resistance.
Collapse
Affiliation(s)
- Jin Xu
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yun Qiu
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
174
|
Chen Z, Cai A, Zheng H, Huang H, Sun R, Cui X, Ye W, Yao Q, Chen R, Kou L. Carbidopa suppresses prostate cancer via aryl hydrocarbon receptor-mediated ubiquitination and degradation of androgen receptor. Oncogenesis 2020; 9:49. [PMID: 32404918 PMCID: PMC7220950 DOI: 10.1038/s41389-020-0236-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/23/2022] Open
Abstract
Carbidopa, a peripheral decarboxylase inhibitor used with L-DOPA to treat Parkinson’s disease, has attracted significant interest in recent years for its anticancer effect. Increasing evidence reveals that Carbidopa can inhibit cancer cell growth and induce apoptosis through aryl hydrocarbon receptor (AHR) in some cancers. However, the antitumor effect of Carbidopa in prostate cancer (PCa) is not fully understood. Androgen receptor (AR) plays a central role in PCa, even in advanced “castrate-resistant” disease. In the present study, we report that Carbidopa suppresses the growth of PCa by downregulating the protein expression of AR. Carbidopa inhibits proliferation and migration of LNCaP cells and promotes apoptosis, but has no effect on the AR-independent prostate cell line DU145. Carbidopa increases ubiquitination of AR in LNCaP cells. Several studies have shown that AHR can act as an E3 ubiquitin ligase and promote the proteasomal degradation of AR. Quantitative RT-PCR, immunofluorescence staining and immunoblotting assay demonstrate that AHR is induced and activated by Carbidopa, and the co-immunoprecipitation assay shows that AR interacts with AHR, firmly confirming that Carbidopa decreases AR protein level though AHR-induced proteasomal degradation. In addition, Carbidopa suppresses PCa growth in vivo when xenografted into immunocompromised mice. Carbidopa treatment increases AHR protein level and decreases AR protein level in tumor tissues. Taken together, our study implicates Carbidopa for the first time in effective suppression of prostate cancer via a mechanism, involving AHR-mediated proteasomal degradation of AR.
Collapse
Affiliation(s)
- Zhiwei Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.,Wenzhou Municipal Key Laboratory of Paediatric Pharmacy, Wenzhou, 325027, China
| | - Aimin Cai
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Hailun Zheng
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Huirong Huang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Rui Sun
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiao Cui
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Weijian Ye
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.,Wenzhou Municipal Key Laboratory of Paediatric Pharmacy, Wenzhou, 325027, China
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Paediatric Pharmacy, Wenzhou, 325027, China. .,Department of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China. .,Wenzhou Municipal Key Laboratory of Paediatric Pharmacy, Wenzhou, 325027, China.
| | - Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China. .,Wenzhou Municipal Key Laboratory of Paediatric Pharmacy, Wenzhou, 325027, China.
| |
Collapse
|
175
|
Wang Z, Shen H, Liang Z, Mao Y, Wang C, Xie L. The characteristics of androgen receptor splice variant 7 in the treatment of hormonal sensitive prostate cancer: a systematic review and meta-analysis. Cancer Cell Int 2020; 20:149. [PMID: 32390764 PMCID: PMC7201592 DOI: 10.1186/s12935-020-01229-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Accumulating evidence suggests androgen receptor splice variant 7 (AR-V7) may be associated with the prognosis of castration-resistant prostate cancer (CRPC) received novel hormonal therapy while its characteristic and prognosis value in hormonal sensitive prostate cancer is unclear. METHODS We aimed to evaluate the prognostic role of AR-V7 by progression free survival (PFS) and overall survival (OS) in hormonal sensitive prostate cancer (HSPC), and the AR-V7-positive-proportion difference in HSPC and CRPC. A search of PubMed, Embase, and the Web of Science was performed using the keywords prostate cancer, prostate tumor, prostate neoplasm, prostate carcinoma; AR-V7, AR3, androgen receptor splicing variant-7, or androgen receptor-3. Seventeen trials published due December 2019 were enrolled. RESULTS AR-V7-positive proportion in CRPC was significantly larger than newly diagnosed prostate cancer (PCa) (odds ratio [OR] 7.06, 95% confidence interval [CI] 2.52-19.83, P < 0.001). Subgroup analyses indicated significantly higher AR-V7-positive proportion in CRPC derived from RNA in situ hybridization (OR 65.23, 95% CI 1.34-3171.43, P = 0.04), exosome RNA (OR 3.88, 95% CI 0.98-15.39, P = 0.05) and tissue RNA (OR 10.89, 95% CI 4.13-28.73, P < 0.001). AR-V7-positive patients had a significantly shorter PFS than those who were AR-V7-negative treated with first-line hormonal therapy (hazard ratio [HR] 3.63, 95% CI 1.85-7.10, P < 0.001) and prostatectomy (HR 2.49, 95% CI 1.33-4.64, P = 0.004). OS (HR 5.59, 95% CI 2.89-10.80, P < 0.001) were better in AR-V7-negative than AR-V7-positive HSPC patients treated with first-line hormonal therapy. The limitations of our meta-analysis were differences in study sample size and design, AR-V7 detection assay, and disease characteristics. CONCLUSION AR-V7-positive proportion was significantly higher in CRPC than that in newly diagnosed PCa. AR-V7 positive HSPC patients portend worse prognosis of first-line hormonal therapy and prostatectomy. Additional studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Zhize Wang
- Department of Urology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000 China
| | - Haixiang Shen
- Department of Urology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000 China
| | - Zhen Liang
- Department of Urology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000 China
| | - Yeqing Mao
- Department of Urology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000 China
| | - Chaojun Wang
- Department of Urology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000 China
| | - Liping Xie
- Department of Urology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000 China
| |
Collapse
|
176
|
The Role of Crosstalk between AR3 and E2F1 in Drug Resistance in Prostate Cancer Cells. Cells 2020; 9:cells9051094. [PMID: 32354165 PMCID: PMC7290672 DOI: 10.3390/cells9051094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 01/20/2023] Open
Abstract
Background: Drug resistance is one of the most prevalent causes of death in advanced prostate cancer patients. Combination therapies that target cancer cells via different mechanisms to overcome resistance have gained increased attention in recent years. However, the optimal drug combinations and the underlying mechanisms are yet to be fully explored. Aim and methods: The aim of this study is to investigate drug combinations that inhibit the growth of drug-resistant cells and determine the underlying mechanisms of their actions. In addition, we also established cell lines that are resistant to combination treatments and tested new compounds to overcome the phenomenon of double drug-resistance. Results: Our results show that the combination of enzalutamide (ENZ) and docetaxel (DTX) effectively inhibit the growth of prostate cancer cells that are resistant to either drug alone. The downregulation of transcription factor E2F1 plays a crucial role in cellular inhibition in response to the combined therapy. Notably, we found that the androgen receptor (AR) variant AR3 (a.k.a. AR-V7), but not AR full length (AR-FL), positively regulates E2F1 expression in these cells. E2F1 in turn regulates AR3 and forms a positive regulatory feedforward loop. We also established double drug-resistant cell lines that are resistant to ENZ+DTX combination therapy and found that the expression of both AR3 and E2F1 was restored in these cells. Furthermore, we identified that auranofin, an FDA-approved drug for the treatment of rheumatoid arthritis, overcame drug resistance and inhibited the growth of drug-resistant prostate cancer cells both in vitro and in vivo. Conclusion and significance: This proof-of-principle study demonstrates that targeting the E2F1/AR3 feedforward loop via a combination therapy or a multi-targeting drug could circumvent castration resistance in prostate cancer.
Collapse
|
177
|
Li Y, Yang R, Henzler CM, Ho Y, Passow C, Auch B, Carreira S, Nava Rodrigues D, Bertan C, Hwang TH, Quigley DA, Dang HX, Morrissey C, Fraser M, Plymate SR, Maher CA, Feng FY, de Bono JS, Dehm SM. Diverse AR Gene Rearrangements Mediate Resistance to Androgen Receptor Inhibitors in Metastatic Prostate Cancer. Clin Cancer Res 2020; 26:1965-1976. [PMID: 31932493 PMCID: PMC7165042 DOI: 10.1158/1078-0432.ccr-19-3023] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/04/2019] [Accepted: 01/09/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Prostate cancer is the second leading cause of male cancer deaths. Castration-resistant prostate cancer (CRPC) is a lethal stage of the disease that emerges when endocrine therapies are no longer effective at suppressing activity of the androgen receptor (AR) transcription factor. The purpose of this study was to identify genomic mechanisms that contribute to the development and progression of CRPC. EXPERIMENTAL DESIGN We used whole-genome and targeted DNA-sequencing approaches to identify mechanisms underlying CRPC in an aggregate cohort of 272 prostate cancer patients. We analyzed structural rearrangements at the genome-wide level and carried out a detailed structural rearrangement analysis of the AR locus. We used genome engineering to perform experimental modeling of AR gene rearrangements and long-read RNA sequencing to analyze effects on expression of AR and truncated AR variants (AR-V). RESULTS AR was among the most frequently rearranged genes in CRPC tumors. AR gene rearrangements promoted expression of diverse AR-V species. AR gene rearrangements occurring in the context of AR amplification correlated with AR overexpression. Cell lines with experimentally derived AR gene rearrangements displayed high expression of tumor-specific AR-Vs and were resistant to endocrine therapies, including the AR antagonist enzalutamide. CONCLUSIONS AR gene rearrangements are an important mechanism of resistance to endocrine therapies in CRPC.
Collapse
Affiliation(s)
- Yingming Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Rendong Yang
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Christine M Henzler
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota
| | - Yeung Ho
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Courtney Passow
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, Minnesota
| | - Benjamin Auch
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, Minnesota
| | | | | | - Claudia Bertan
- The Institute for Cancer Research, London, United Kingdom
| | - Tae Hyun Hwang
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Ha X Dang
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
- Department of Internal Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington
| | - Michael Fraser
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario
| | - Stephen R Plymate
- Division of Gerontology, Geriatric Medicine, University of Washington, Seattle, Washington
- Geriatric Research Education and Clinical Centers, VA Puget Sound Health Care System, Seattle, Washington
| | - Christopher A Maher
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
- Department of Internal Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Johann S de Bono
- The Institute for Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
- Department of Urology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
178
|
Yu J, Zhou P, Du W, Xu R, Yan G, Deng Y, Li X, Chen Y. Metabolically stable diphenylamine derivatives suppress androgen receptor and BET protein in prostate cancer. Biochem Pharmacol 2020; 177:113946. [PMID: 32247852 DOI: 10.1016/j.bcp.2020.113946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/31/2020] [Indexed: 02/05/2023]
Abstract
Androgen receptor (AR) is a crucial driver of prostate cancer (PC). AR-relevant resistance remains a major challenge in castration-resistant prostate cancer (CRPC). Bromodomain and extra-terminal domain (BET) family are critical AR coregulators. Here, we developed several diphenylamine derivatives and identified compound 7d that disrupted the functions of AR and BET family in prostate cancer and exhibited favorable metabolic stability in vitro and high drug exposure in vivo. We showed 7d not only bound to AR, suppressed transactivation of wild-type AR (wt-AR) and the mutant that mediates Enzalutamide resistance, but also reduced c-Myc protein expression through BET inhibition. In addition, 7d inhibited the proliferation of AR-positive PC cells with favorable selectivity and suppressed AR-V7-expressing VCaP and 22Rv1 xenografts growth in vivo. Collectively, these results indicate the potential of lead compound 7d as an orally available AR and BET inhibitor to treat CRPC and overcome antiandrogen resistance.
Collapse
Affiliation(s)
- Jiang Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Peiting Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Wu Du
- Hinova Pharmaceuticals Inc., 4th Floor, Building RongYao A, No. 5, Keyuan South Road, Chengdu 610041, China
| | - Ruixue Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Guoyi Yan
- Department of Hepatobiliary Pancreatic Surgery, Henan Province People's Hospital, Zhengzhou 450003, China
| | - Yufang Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xinghai Li
- Hinova Pharmaceuticals Inc., 4th Floor, Building RongYao A, No. 5, Keyuan South Road, Chengdu 610041, China
| | - Yuanwei Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; Hinova Pharmaceuticals Inc., 4th Floor, Building RongYao A, No. 5, Keyuan South Road, Chengdu 610041, China.
| |
Collapse
|
179
|
The Prospect of Identifying Resistance Mechanisms for Castrate-Resistant Prostate Cancer Using Circulating Tumor Cells: Is Epithelial-to-Mesenchymal Transition a Key Player? Prostate Cancer 2020; 2020:7938280. [PMID: 32292603 PMCID: PMC7149487 DOI: 10.1155/2020/7938280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/19/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (PCa) is initially driven by excessive androgen receptor (AR) signaling with androgen deprivation therapy (ADT) being a major therapeutic approach to its treatment. However, the development of drug resistance is a significant limitation on the effectiveness of both first-line and more recently developed second-line ADTs. There is a need then to study AR signaling within the context of other oncogenic signaling pathways that likely mediate this resistance. This review focuses on interactions between AR signaling, the well-known phosphatidylinositol-3-kinase/AKT pathway, and an emerging mediator of these pathways, the Hippo/YAP1 axis in metastatic castrate-resistant PCa, and their involvement in the regulation of epithelial-mesenchymal transition (EMT), a feature of disease progression and ADT resistance. Analysis of these pathways in circulating tumor cells (CTCs) may provide an opportunity to evaluate their utility as biomarkers and address their importance in the development of resistance to current ADT with potential to guide future therapies.
Collapse
|
180
|
Zhang M, Lai Y, Vasquez JL, James DI, Smith KM, Waddell ID, Ogilvie DJ, Liu Y, Agoulnik IU. Androgen Receptor and Poly(ADP-ribose) Glycohydrolase Inhibition Increases Efficiency of Androgen Ablation in Prostate Cancer Cells. Sci Rep 2020; 10:3836. [PMID: 32123273 PMCID: PMC7052214 DOI: 10.1038/s41598-020-60849-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
There is mounting evidence of androgen receptor signaling inducing genome instability and changing DNA repair capacity in prostate cancer cells. Expression of genes associated with base excision repair (BER) is increased with prostate cancer progression and correlates with poor prognosis. Poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG) are key enzymes in BER that elongate and degrade PAR polymers on target proteins. While PARP inhibitors have been tested in clinical trials and are a promising therapy for prostate cancer patients with TMPRSS2-ERG fusions and mutations in DNA repair genes, PARG inhibitors have not been evaluated. We show that PARG is a direct androgen receptor (AR) target gene. AR is recruited to the PARG locus and induces PARG expression. Androgen ablation combined with PARG inhibition synergistically reduces BER capacity in independently derived LNCaP and LAPC4 prostate cancer cell lines. A combination of PARG inhibition with androgen ablation or with the DNA damaging drug, temozolomide, significantly reduces cellular proliferation and increases DNA damage. PARG inhibition alters AR transcriptional output without changing AR protein levels. Thus, AR and PARG are engaged in reciprocal regulation suggesting that the success of androgen ablation therapy can be enhanced by PARG inhibition in prostate cancer patients.
Collapse
Affiliation(s)
- Manqi Zhang
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA
| | - Yanhao Lai
- Department of Chemistry and Biochemistry, College of Arts, Sciences and Education, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Judy L Vasquez
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Dominic I James
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK104TG, UK
| | - Kate M Smith
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK104TG, UK
| | - Ian D Waddell
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK104TG, UK
- CRL, Chesterford Research Park, CB10 1XL, Alderley Park, UK
| | - Donald J Ogilvie
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK104TG, UK
| | - Yuan Liu
- Department of Chemistry and Biochemistry, College of Arts, Sciences and Education, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Irina U Agoulnik
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
181
|
Bader DA, McGuire SE. Tumour metabolism and its unique properties in prostate adenocarcinoma. Nat Rev Urol 2020; 17:214-231. [PMID: 32112053 DOI: 10.1038/s41585-020-0288-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
Abstract
Anabolic metabolism mediated by aberrant growth factor signalling fuels tumour growth and progression. The first biochemical descriptions of the altered metabolic nature of solid tumours were reported by Otto Warburg almost a century ago. Now, the study of tumour metabolism is being redefined by the development of new molecular tools, tumour modelling systems and precise instrumentation together with important advances in genetics, cell biology and spectroscopy. In contrast to Warburg's original hypothesis, accumulating evidence demonstrates a critical role for mitochondrial metabolism and substantial variation in the way in which different tumours metabolize nutrients to generate biomass. Furthermore, computational and experimental approaches suggest a dominant influence of the tissue-of-origin in shaping the metabolic reprogramming that enables tumour growth. For example, the unique metabolic properties of prostate adenocarcinoma are likely to stem from the distinct metabolism of the prostatic epithelium from which it emerges. Normal prostatic epithelium employs comparatively glycolytic metabolism to sustain physiological citrate secretion, whereas prostate adenocarcinoma consumes citrate to power oxidative phosphorylation and fuel lipogenesis, enabling tumour progression through metabolic reprogramming. Current data suggest that the distinct metabolic aberrations in prostate adenocarcinoma are driven by the androgen receptor, providing opportunities for functional metabolic imaging and novel therapeutic interventions that will be complementary to existing diagnostic and treatment options.
Collapse
Affiliation(s)
- David A Bader
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA. .,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA.
| | - Sean E McGuire
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA. .,Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
182
|
Fontana F, Raimondi M, Marzagalli M, Di Domizio A, Limonta P. Natural Compounds in Prostate Cancer Prevention and Treatment: Mechanisms of Action and Molecular Targets. Cells 2020; 9:cells9020460. [PMID: 32085497 PMCID: PMC7072821 DOI: 10.3390/cells9020460] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) represents a major cause of cancer mortality among men in developed countries. Patients with recurrent disease initially respond to androgen-deprivation therapy, but the tumor eventually progresses into castration-resistant PCa; in this condition, tumor cells acquire the ability to escape cell death and develop resistance to current therapies. Thus, new therapeutic approaches for PCa management are urgently needed. In this setting, natural products have been extensively studied for their anti-PCa activities, such as tumor growth suppression, cell death induction, and inhibition of metastasis and angiogenesis. Additionally, numerous studies have shown that phytochemicals can specifically target the androgen receptor (AR) signaling, as well as the PCa stem cells (PCSCs). Interestingly, many clinical trials have been conducted to test the efficacy of nutraceuticals in human subjects, and they have partially confirmed the promising results obtained in vitro and in preclinical models. This article summarizes the anti-cancer mechanisms and therapeutic potentials of different natural compounds in the context of PCa prevention and treatment.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
| | - Alessandro Di Domizio
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
- SPILLOproject, 20037 Paderno Dugnano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
- Correspondence: ; Tel.: +39-0250318213
| |
Collapse
|
183
|
Ylitalo EB, Thysell E, Thellenberg‐Karlsson C, Lundholm M, Widmark A, Bergh A, Josefsson A, Brattsand M, Wikström P. Marked response to cabazitaxel in prostate cancer xenografts expressing androgen receptor variant 7 and reversion of acquired resistance by anti-androgens. Prostate 2020; 80:214-224. [PMID: 31799745 PMCID: PMC6973163 DOI: 10.1002/pros.23935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/20/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Taxane treatment may be a suitable therapeutic option for patients with castration-resistant prostate cancer and high expression of constitutively active androgen receptor variants (AR-Vs). The aim of the study was to compare the effects of cabazitaxel and androgen deprivation treatments in a prostate tumor xenograft model expressing high levels of constitutively active AR-V7. Furthermore, mechanisms behind acquired cabazitaxel resistance were explored. METHODS Mice were subcutaneously inoculated with 22Rv1 cells and treated with surgical castration (n = 7), abiraterone (n = 9), cabazitaxel (n = 6), castration plus abiraterone (n = 8), castration plus cabazitaxel (n = 11), or vehicle and/or sham operation (n = 23). Tumor growth was followed for about 2 months or to a volume of approximately 1000 mm3 . Two cabazitaxel resistant cell lines; 22Rv1-CabR1 and 22Rv1-CabR2, were established from xenografts relapsing during cabazitaxel treatment. Differential gene expression between the cabazitaxel resistant and control 22Rv1 cells was examined by whole-genome expression array analysis followed by immunoblotting, immunohistochemistry, and functional pathway analysis. RESULTS Abiraterone treatment alone or in combination with surgical castration had no major effect on 22Rv1 tumor growth, while cabazitaxel significantly delayed and in some cases totally abolished 22Rv1 tumor growth on its own and in combination with surgical castration. The cabazitaxel resistant cell lines; 22Rv1-CabR1 and 22Rv1-CabR2, both showed upregulation of the ATP-binding cassette sub-family B member 1 (ABCB1) efflux pump. Treatment with ABCB1 inhibitor elacridar completely restored susceptibility to cabazitaxel, while treatment with AR-antagonists bicalutamide and enzalutamide partly restored susceptibility to cabazitaxel in both cell lines. The cholesterol biosynthesis pathway was induced in the 22Rv1-CabR2 cell line, which was confirmed by reduced sensitivity to simvastatin treatment. CONCLUSIONS Cabazitaxel efficiently inhibits prostate cancer growth despite the high expression of constitutively active AR-V7. Acquired cabazitaxel resistance involving overexpression of efflux transporter ABCB1 can be reverted by bicalutamide or enzalutamide treatment, indicating the great clinical potential for combined treatment with cabazitaxel and anti-androgens.
Collapse
Affiliation(s)
| | - Elin Thysell
- Department of Medical Biosciences, PathologyUmeå UniversityUmeåSweden
| | | | - Marie Lundholm
- Department of Medical Biosciences, PathologyUmeå UniversityUmeåSweden
| | - Anders Widmark
- Department of Radiation Sciences, OncologyUmeå UniversityUmeåSweden
| | - Anders Bergh
- Department of Medical Biosciences, PathologyUmeå UniversityUmeåSweden
| | - Andreas Josefsson
- Department of Urology, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Surgical and Perioperative Sciences, Urology and AndrologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
| | - Maria Brattsand
- Department of Medical Biosciences, PathologyUmeå UniversityUmeåSweden
| | - Pernilla Wikström
- Department of Medical Biosciences, PathologyUmeå UniversityUmeåSweden
| |
Collapse
|
184
|
Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nat Rev Urol 2020; 16:302-317. [PMID: 30962568 DOI: 10.1038/s41585-019-0178-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The accurate identification and stratified treatment of clinically significant early-stage prostate cancer have been ongoing concerns since the outcomes of large international prostate cancer screening trials were reported. The controversy surrounding clinical and cost benefits of prostate cancer screening has highlighted the lack of strategies for discriminating high-risk disease (that requires early treatment) from low-risk disease (that could be managed using watchful waiting or active surveillance). Advances in molecular subtyping and multiomics nanotechnology-based prostate cancer risk delineation can enable refinement of prostate cancer molecular taxonomy into clinically meaningful and treatable subtypes. Furthermore, the presence of intertumoural and intratumoural heterogeneity in prostate cancer warrants the development of novel nanodiagnostic technologies to identify clinically significant prostate cancer in a rapid, cost-effective and accurate manner. Circulating and urinary next-generation prostate cancer biomarkers for disease molecular subtyping and the newest complementary nanodiagnostic platforms for enhanced biomarker detection are promising tools for precision prostate cancer management. However, challenges in merging both aspects and clinical translation still need to be overcome.
Collapse
|
185
|
Zhu Y, Luo J. Regulation of androgen receptor variants in prostate cancer. Asian J Urol 2020; 7:251-257. [PMID: 33024700 PMCID: PMC7525062 DOI: 10.1016/j.ajur.2020.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/19/2022] Open
Abstract
Aberrant activation of androgen receptor (AR) signaling occurs in patients treated with AR-targeted therapies, contributing to the development of castration-resistant prostate cancer (CRPC) and therapeutic resistance. Over the past decade, many AR variants (AR-Vs) have been identified in prostate cancer cell lines and clinical CRPC specimens. These AR-Vs lack the COOH-terminal ligand-binding domain (LBD), and may mediate constitutively active AR signaling acquired following AR-targeting therapies. AR splice variant-7 (AR-V7), one of the most well characterized AR-Vs, can be reliably measured in tissue and liquid biopsy specimens, and blood-based detection of AR-V7 is a reliable indicator of poor outcome to relatively novel hormonal therapies (NHT) such as abiraterone and enzalutamide in men with metastatic CRPC (mCRPC). Given the important clinical implication of AR-Vs, this short review will focus on studies addressing how AR-Vs are regulated in prostate cancer. With regard to the molecular origin of AR-Vs, it is established that expression of AR-Vs is highly correlated with androgen deprivation and suppression of AR signaling. Therapeutic targeting of the AR axis may result in active transcription of the AR gene, elevated activities of certain components of the mRNA splicing machinery, as well as AR genomic alterations, all of which may explain the molecular origin of AR-Vs. Although a unified hypothesis is currently lacking, existing data suggest that elevated expression of AR-Vs, which in general occurs quite specifically in a cellular environment where the canonical AR signaling is suppressed, is driven by both genomic and epigenomic features acquired in the development of CRPC.
Collapse
Affiliation(s)
- Yezi Zhu
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA.,LIVESTRONG Cancer Institutes, The University of Texas, Austin, TX, USA
| | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
186
|
Khurana N, Chandra PK, Kim H, Abdel-Mageed AB, Mondal D, Sikka SC. Bardoxolone-Methyl (CDDO-Me) Suppresses Androgen Receptor and Its Splice-Variant AR-V7 and Enhances Efficacy of Enzalutamide in Prostate Cancer Cells. Antioxidants (Basel) 2020; 9:antiox9010068. [PMID: 31940946 PMCID: PMC7022272 DOI: 10.3390/antiox9010068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 01/01/2023] Open
Abstract
Androgen receptor (AR) signaling is fundamental to prostate cancer (PC) progression, and hence, androgen deprivation therapy (ADT) remains a mainstay of treatment. However, augmented AR signaling via both full length AR (AR-FL) and constitutively active AR splice variants, especially AR-V7, is associated with the recurrence of castration resistant prostate cancer (CRPC). Oxidative stress also plays a crucial role in anti-androgen resistance and CRPC outgrowth. We examined whether a triterpenoid antioxidant drug, Bardoxolone-methyl, known as CDDO-Me or RTA 402, can decrease AR-FL and AR-V7 expression in PC cells. Nanomolar (nM) concentrations of CDDO-Me rapidly downregulated AR-FL in LNCaP and C4-2B cells, and both AR-FL and AR-V7 in CWR22Rv1 (22Rv1) cells. The AR-suppressive effect of CDDO-Me was evident at both the mRNA and protein levels. Mechanistically, acute exposure (2 h) to CDDO-Me increased and long-term exposure (24 h) decreased reactive oxygen species (ROS) levels in cells. This was concomitant with an increase in the anti-oxidant transcription factor, Nrf2. The anti-oxidant N-acetyl cysteine (NAC) could overcome this AR-suppressive effect of CDDO-Me. Co-exposure of PC cells to CDDO-Me enhanced the efficacy of a clinically approved anti-androgen, enzalutamide (ENZ), as evident by decreased cell-viability along with migration and colony forming ability of PC cells. Thus, CDDO-Me which is in several late-stage clinical trials, may be used as an adjunct to ADT in PC patients.
Collapse
Affiliation(s)
- Namrata Khurana
- Department of Urology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (N.K.); (H.K.); (A.B.A.-M.)
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA;
- Department of Internal Medicine-Medical Oncology, Washington University in St. Louis Medical Campus, 660 S Euclid Ave, St. Louis, MO 63110-1010, USA
| | - Partha K. Chandra
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA;
| | - Hogyoung Kim
- Department of Urology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (N.K.); (H.K.); (A.B.A.-M.)
| | - Asim B. Abdel-Mageed
- Department of Urology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (N.K.); (H.K.); (A.B.A.-M.)
| | - Debasis Mondal
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA;
- Department of Microbiology, Lincoln Memorial University—Debusk College of Osteopathic Medicine, 9737 Coghill Drive, Knoxville, TN 37932, USA
- Correspondence: (D.M.); (S.C.S.); Tel.: +865-338-5715 (D.M.); +504-988-5179 (S.C.S.)
| | - Suresh C. Sikka
- Department of Urology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (N.K.); (H.K.); (A.B.A.-M.)
- Correspondence: (D.M.); (S.C.S.); Tel.: +865-338-5715 (D.M.); +504-988-5179 (S.C.S.)
| |
Collapse
|
187
|
Carbajal-García A, Reyes-García J, Montaño LM. Androgen Effects on the Adrenergic System of the Vascular, Airway, and Cardiac Myocytes and Their Relevance in Pathological Processes. Int J Endocrinol 2020; 2020:8849641. [PMID: 33273918 PMCID: PMC7676939 DOI: 10.1155/2020/8849641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/17/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Androgen signaling comprises nongenomic and genomic pathways. Nongenomic actions are not related to the binding of the androgen receptor (AR) and occur rapidly. The genomic effects implicate the binding to a cytosolic AR, leading to protein synthesis. Both events are independent of each other. Genomic effects have been associated with different pathologies such as vascular ischemia, hypertension, asthma, and cardiovascular diseases. Catecholamines play a crucial role in regulating vascular smooth muscle (VSM), airway smooth muscle (ASM), and cardiac muscle (CM) function and tone. OBJECTIVE The aim of this review is an updated analysis of the role of androgens in the adrenergic system of vascular, airway, and cardiac myocytes. Body. Testosterone (T) favors vasoconstriction, and its concentration fluctuation during life stages can affect the vascular tone and might contribute to the development of hypertension. In the VSM, T increases α1-adrenergic receptors (α 1-ARs) and decreases adenylyl cyclase expression, favoring high blood pressure and hypertension. Androgens have also been associated with asthma. During puberty, girls are more susceptible to present asthma symptoms than boys because of the increment in the plasmatic concentrations of T in young men. In the ASM, β 2-ARs are responsible for the bronchodilator effect, and T augments the expression of β 2-ARs evoking an increase in the relaxing response to salbutamol. The levels of T are also associated with an increment in atherosclerosis and cardiovascular risk. In the CM, activation of α 1A-ARs and β 2-ARs increases the ionotropic activity, leading to the development of contraction, and T upregulates the expression of both receptors and improves the myocardial performance. CONCLUSIONS Androgens play an essential role in the adrenergic system of vascular, airway, and cardiac myocytes, favoring either a state of health or disease. While the use of androgens as a therapeutic tool for treating asthma symptoms or heart disease is proposed, the vascular system is warmly affected.
Collapse
Affiliation(s)
- Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Luis M. Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| |
Collapse
|
188
|
Schuppe ER, Miles MC, Fuxjager MJ. Evolution of the androgen receptor: Perspectives from human health to dancing birds. Mol Cell Endocrinol 2020; 499:110577. [PMID: 31525432 DOI: 10.1016/j.mce.2019.110577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/23/2022]
Abstract
Androgenic hormones orchestrate the development and activation of diverse reproductive phenotypes across vertebrates. Although extensive work investigates how selection for these traits modifies individual elements of this signaling system (e.g., hormone or androgen receptor [AR] levels), we know less about natural variation in the AR sequence across vertebrates. Our knowledge of AR sequence mutations is largely limited to work in human patients or cell-lines, providing a framework to contextualize single mutations at the expense of evolutionary timescale. Here we unite both perspectives in a review that explores the functional significance of AR on a domain-by-domain basis, using existing knowledge to highlight how and why each region might evolve. We then examine AR sequence variation on different timescales by examining sequence variation in clades originating in the Cambrian (vertebrates; >500 mya) and Cretaceous (birds; >65 mya). In each case, we characterize how the receptor has changed over time and discuss which regions are most likely to evolve in response to selection. Overall, domains that are required for androgenic signaling to function (e.g., DNA- and ligand-binding) tend to be conserved. Meanwhile, areas that interface with co-regulatory molecules can exhibit notable variation even between closely related species. We propose that accumulating mutations in regulatory regions is one way that AR structure might act as a substrate for selection to guide the evolution of reproductive traits. By synthesizing literature across disciplines and highlighting the evolutionary potential of specific AR regions, we hope to inspire new avenues of integrative research into endocrine system evolution.
Collapse
Affiliation(s)
- Eric R Schuppe
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Meredith C Miles
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02912, USA
| | - Matthew J Fuxjager
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
189
|
Ferroni C, Varchi G. Non-Steroidal Androgen Receptor Antagonists and Prostate Cancer: A Survey on Chemical Structures Binding this Fast-Mutating Target. Curr Med Chem 2019; 26:6053-6073. [PMID: 30209993 DOI: 10.2174/0929867325666180913095239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 02/01/2023]
Abstract
The Androgen Receptor (AR) pathway plays a major role in both the pathogenesis and progression of prostate cancer. In particular, AR is chiefly involved in the development of Castration-Resistant Prostate Cancer (CRPC) as well as in the resistance to the secondgeneration AR antagonist enzalutamide, and to the selective inhibitor of cytochrome P450 17A1 (CYP17A1) abiraterone. Several small molecules acting as AR antagonists have been designed and developed so far, also as a result of the ability of cells expressing this molecular target to rapidly develop resistance and turn pure receptor antagonists into ineffective or event detrimental molecules. This review covers a survey of most promising classes of non-steroidal androgen receptor antagonists, also providing insights into their mechanism of action and efficacy in treating prostate cancer.
Collapse
Affiliation(s)
- Claudia Ferroni
- Institute of Organic Synthesis and Photoreactivity - ISOF, Italian National Research Council, Bologna, Italy
| | - Greta Varchi
- Institute of Organic Synthesis and Photoreactivity - ISOF, Italian National Research Council, Bologna, Italy
| |
Collapse
|
190
|
Dong X, Chen R. Understanding aberrant RNA splicing to facilitate cancer diagnosis and therapy. Oncogene 2019; 39:2231-2242. [PMID: 31819165 DOI: 10.1038/s41388-019-1138-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022]
Abstract
Almost all genes in normal cells undergo alternative RNA splicing to generate a greater extent of diversification of gene products for normal cellular functions. RNA splicing is tightly regulated and closely interplays with genetic and epigenetic machinery. While DNA polymorphism and somatic mutations modulate alternative splicing patterns, RNA splicing also controls genomic stability, chromatin organization, and transcriptome. Tumor cells, in turn, often take advantage of aberrant RNA splicing to develop, grow and progress into therapy-resistant tumors. Understanding alternative RNA splicing in tumor cells would, therefore, provide us opportunities to gain further insights into tumor biology, identify diagnostic or prognosis biomarkers, as well as to design effective therapeutic means to control tumor progression. Here, we provide an overview of RNA splicing mechanisms and use prostate cancer as an example to review recent advancements in our understanding of RNA splicing in cancer progression and therapy resistance. We also discuss emerging diagnostic and therapeutic potentials of RNA splicing events or RNA splicing factors.
Collapse
Affiliation(s)
- Xuesen Dong
- Department of Urologic Sciences, Faculty of Medicine, The University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada. .,The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
| | - Ruiqi Chen
- Faculty of Medicine, University of Toronto, 27 King's College Circle 8, Toronto, ON, M5S 1A1, Canada
| |
Collapse
|
191
|
Su B, Zhang L, Liu S, Chen X, Zhang W. GABARAPL1 Promotes AR+ Prostate Cancer Growth by Increasing FL-AR/AR-V Transcription Activity and Nuclear Translocation. Front Oncol 2019; 9:1254. [PMID: 31803623 PMCID: PMC6872515 DOI: 10.3389/fonc.2019.01254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022] Open
Abstract
The next generation Androgen receptor (AR)-targeted therapies are now in widespread clinical use and prolong prostate cancer (CaP) patient survival. However, the therapies are not curative due to diverse range of resistance mechanisms. AR variants (AR-V), one major mechanism of resistance, has recently gained momentum. Here, we found that GABARAPL1 knockdown inhibits the growth of AR-positive LNCaP and CWR22rv1 CaP cells in vitro and in vivo, decreases AR/AR-V transcription activity and AR nuclear translocation. Pulldown assay shows that both of Full-length (FL)-AR and AR-V were able to interact with GABARAPL1, suggesting that GABARAPL1 may play its role through directly scaffolding AR. The further analysis from Oncomine database showed that negative correlation between GABARAPL1 expression and 5-years survival in CaP cases. Our findings have identified GABARAPL1 as critical regulator of FL-AR/AR-V, suggesting the potential benefit of targeting GABARAPL1 to treat AR-positive CaP that is resistant to next generation AR inhibitors.
Collapse
Affiliation(s)
- Bing Su
- Xinxiang Key Lab of Translational Cancer Research, The Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Lijuan Zhang
- Xinxiang Key Lab of Translational Cancer Research, The Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Shenglin Liu
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xiaofan Chen
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Wei Zhang
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
192
|
Liu WJ, Zhao G, Zhang CY, Yang CQ, Zeng XB, Li J, Zhu K, Zhao SQ, Lu HM, Yin DC, Lin SX. Comparison of the roles of estrogens and androgens in breast cancer and prostate cancer. J Cell Biochem 2019; 121:2756-2769. [PMID: 31693255 DOI: 10.1002/jcb.29515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/10/2019] [Indexed: 12/29/2022]
Abstract
Breast cancer (BC) and prostate cancer (PC) are the second most common malignant tumors in women and men in western countries, respectively. The risks of death are 14% for BC and 9% for PC. Abnormal estrogen and androgen levels are related to carcinogenesis of the breast and prostate. Estradiol stimulates cancer development in BC. The effect of estrogen on PC is concentration-dependent, and estrogen can regulate androgen production, further affecting PC. Estrogen can also increase the risk of androgen-induced PC. Androgen has dual effects on BC via different metabolic pathways, and the role of the androgen receptor (AR) in BC also depends on cell subtype and downstream target genes. Androgen and AR can stimulate both primary PC and castration-resistant PC. Understanding the mechanisms of the effects of estrogen and androgen on BC and PC may help us to improve curative BC and PC treatment strategies.
Collapse
Affiliation(s)
- Wen-Jing Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Gang Zhao
- Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Chang-Qing Yang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Xiang-Bin Zeng
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jin Li
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Kun Zhu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Shi-Qi Zhao
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Hui-Meng Lu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Sheng-Xiang Lin
- Department of Molecular Medicine, Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL), Laval University, Québec, Canada
| |
Collapse
|
193
|
Lin HP, Ho HM, Chang CW, Yeh SD, Su YW, Tan TH, Lin WJ. DUSP22 suppresses prostate cancer proliferation by targeting the EGFR-AR axis. FASEB J 2019; 33:14653-14667. [PMID: 31693867 DOI: 10.1096/fj.201802558rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dual-specificity phosphatases (DUSPs) regulate the activity of various downstream kinases through serine or threonine or tyrosine dephosphorylation. Loss of function and aberrant expression of DUSPs has been implicated in cancer progression and poor survival, yet the function of DUSP22 in prostate cancer (PCa) cells is not clear. Gene Expression Omnibus and cBioPortal microarray database analyses showed that DUSP22 expression was lower in PCa tissues than normal prostate tissues, and altered DUSP22 expression was associated with shorter progression-free and disease-free survival of patients with PCa. Exogenous DUSP22 expression in LNCaP, PC3, and C4-2B PCa cells inhibited cellular proliferation and colony formation, supporting a growth inhibitory role for DUSP22 in PCa cells. DUSP22 expression significantly attenuated epidermal growth factor (EGF) receptor (EGFR) and its downstream ERK1/2 signaling by dephosphorylation. However, DUSP22 failed to suppress the growth of CWR22Rv1 and DU145 cells with elevated phosphorylated (p-)ERK1/2 levels. A serine-to-alanine mutation at position 58, a potential ERK1/2-targeted phosphorylation site in DUSP22, was sufficient to suppress growth of CWR22Rv1 cells with elevated p-ERK1/2 levels, suggesting a mutually antagonistic relationship between DUSP22 and ERK1/2 dependent on phosphorylation status. We showed that DUSP22 can suppress prostate-specific antigen gene expression through phosphatase-dependent pathways, suggesting that DUSP22 is an important regulator of the androgen receptor (AR) in PCa cells. Mechanistically, DUSP22 can interact with AR as a regulatory partner and interfere with EGF-induced AR phosphorylation at Tyr534, suggesting that DUSP22 serves as a crucial suppressor of both EGFR and AR-dependent signaling in PCa cells via dephosphorylation. Our findings indicate that loss of function of DUSP22 in PCa cells leads to aberrant activation of both EGFR-ERKs and AR signaling and ultimately progression of PCa, supporting the potential for novel therapeutic design of harnessing DUSP22 in the treatment of PCa.-Lin, H.-P., Ho, H.-M., Chang, C.-W., Yeh, S.-D., Su, Y.-W., Tan, T.-H., Lin, W.-J. DUSP22 suppresses prostate cancer proliferation by targeting the EGFR-AR axis.
Collapse
Affiliation(s)
- Hsiu-Ping Lin
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan; and
| | - Hui-Min Ho
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan; and
| | - Cheng-Wei Chang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan; and
| | - Shauh-Der Yeh
- Department of Urology, Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Su
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan; and
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan; and
| | - Wen-Jye Lin
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan; and
| |
Collapse
|
194
|
Hu H, Zhou H, Zhen Z, Wu Z, Zhang R, Xu D. Methoxylpoly(ethylene glycol)‐retinoic acid Micelles Loaded with Dimethylcurcumin for Efficient Castration‐Resistant Prostate Cancer Therapy. ChemistrySelect 2019. [DOI: 10.1002/slct.201902562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hang Hu
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou 213164 P. R. China
| | - Huan Zhou
- Center for Health Science and EngineeringTianjin Key Laboratory of Materials Laminating Fabrication and Interface Control TechnologySchool of Materials Science and EngineeringHebei University of Technology Tianjin 300130 P. R. China
- School of Mechanical EngineeringJiangsu University of Technology, Changzhou Jiangsu 213001 P. R. China
| | - Zihan Zhen
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou 213164 P. R. China
| | - Zhe Wu
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou 213164 P. R. China
| | - Rong Zhang
- School of Materials Science & EngineeringChangzhou University Changzhou 213164 P. R. China
| | - Defeng Xu
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou 213164 P. R. China
- National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of BiomassChangzhou University Changzhou 213164 P. R. China
| |
Collapse
|
195
|
Maillet D, Allioli N, Peron J, Plesa A, Decaussin-Petrucci M, Tartas S, Ruffion A, Crouzet S, Rimokh R, Gillet PG, Freyer G, Vlaeminck-Guillem V. Improved Androgen Receptor Splice Variant 7 Detection Using a Highly Sensitive Assay to Predict Resistance to Abiraterone or Enzalutamide in Metastatic Prostate Cancer Patients. Eur Urol Oncol 2019; 4:609-617. [PMID: 31676281 DOI: 10.1016/j.euo.2019.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/04/2019] [Accepted: 08/15/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND In metastatic castration-resistant prostate cancer (mCRPC), androgen receptor splice variant 7 (AR-V7) expression is associated with a low response to androgen receptor signaling (ARS) inhibitors such as abiraterone or enzalutamide. OBJECTIVE To perform a highly sensitive assay for detecting AR-V7 (hsAR-V7) in circulating tumor cells (CTCs) and evaluate its ability to predict response to ARS inhibitors. DESIGN, SETTING, AND PARTICIPANTS From 41 mCRPC patients, CTCs were prospectively enriched using AdnaTest platform and analyzed for AR-V7 with and without the highly sensitive assay. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The first objective of the study was to compare AR-V7 detection rates with and without the highly sensitive assay. Next, we investigated how AR-V7 (detected without the highly sensitive assay) and hsAR-V7 status influenced prostate-specific antigen (PSA) response and long-term clinical outcomes (PSA progression-free survival [PFS] and radiological PFS) after ARS-inhibitor treatment. Finally, discriminatory abilities of the assays were assessed by C-index to compare their impact on long-term clinical outcomes. RESULTS AND LIMITATIONS AR-V7 detection rates increased from 22% to 56% when the highly sensitive assay was used. The discriminatory abilities of hsAR-V7 for PSA PFS (C-index, 0.74; 95% confidence interval [CI], 0.60-0.88) and radiological PFS (0.70; 95% CI, 0.55-0.85) were higher than those of AR-V7 detected without the highly sensitive assay (0.60, 0.51-0.72, and 0.56, 0.44-0.67, respectively). After ARS-inhibitor treatment, PSA response was lower in hsAR-V7+ (53%) than in hsAR-V7- (93%) patients (p = 0.016). AR-V7+ patients had shorter median PSA PFS (3.0 vs 10.6 mo, p = 0.032) and nonsignificantly shorter median radiological PFS (6.0 vs 14.8 mo, p = 0.24) compared with AR-V7- patients. The hsAR-V7+ status was associated with shorter median PSA PFS (3.0 mo vs not reached, p = 0.0001) and radiological PFS (median, 6.0 mo vs not reached, p = 0.0026). CONCLUSIONS The hsAR-V7 assay achieved the highest AR-V7 detection rates among those reported in mCRPC. Discriminatory abilities for long-term clinical outcomes were better with hsAR-V7 assay. PATIENT SUMMARY We prospectively analyzed circulating tumor cells from men with metastatic castration-resistant prostate cancer for androgen receptor splice variant 7 (AR-V7) status using a highly sensitive assay. It yielded higher AR-V7 detection rates and predicted resistance to androgen receptor signaling inhibitors with better discriminatory abilities for long-term clinical outcomes.
Collapse
Affiliation(s)
- Denis Maillet
- Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France; Centre de Recherche en Cancérologie de Lyon, INSERM 1052 CNRS UMR 5286, Centre Léon Berard, Université Claude Bernard Lyon 1, Lyon, France; Centre d'études, de Recherche et de Valorisation en Oncologie (CERVO), Faculté de Médecine et de Maïeutique Lyon Sud-Charles Mérieux, Pierre-Bénite, France.
| | - Nathalie Allioli
- Centre de Recherche en Cancérologie de Lyon, INSERM 1052 CNRS UMR 5286, Centre Léon Berard, Université Claude Bernard Lyon 1, Lyon, France; Centre d'études, de Recherche et de Valorisation en Oncologie (CERVO), Faculté de Médecine et de Maïeutique Lyon Sud-Charles Mérieux, Pierre-Bénite, France; Institut des Sciences Pharmaceutiques et Biologiques, Faculté de Pharmacie, Université Claude Bernard Lyon 1, Lyon, France
| | - Julien Peron
- Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France; Service de Biostatistique et Bioinformatique, Hospices Civils de Lyon, Lyon, France; Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique-Santé, CNRS UMR 5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Adriana Plesa
- Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France; Service d'Hématologie Biologique, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Myriam Decaussin-Petrucci
- Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France; Centre de Recherche en Cancérologie de Lyon, INSERM 1052 CNRS UMR 5286, Centre Léon Berard, Université Claude Bernard Lyon 1, Lyon, France; Faculté de Médecine et de Maïeutique Lyon-Sud-Charles Mérieux, Université Claude Bernard Lyon 1, Pierre-Bénite, France; Service d'Anatomie et de Cytologie Pathologiques, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Sophie Tartas
- Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France
| | - Alain Ruffion
- Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France; Centre de Recherche en Cancérologie de Lyon, INSERM 1052 CNRS UMR 5286, Centre Léon Berard, Université Claude Bernard Lyon 1, Lyon, France; Centre d'études, de Recherche et de Valorisation en Oncologie (CERVO), Faculté de Médecine et de Maïeutique Lyon Sud-Charles Mérieux, Pierre-Bénite, France; Faculté de Médecine et de Maïeutique Lyon-Sud-Charles Mérieux, Université Claude Bernard Lyon 1, Pierre-Bénite, France; Service d'Urologie, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Sébatien Crouzet
- Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France; Service d'Urologie, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France; Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon, France
| | - Ruth Rimokh
- Centre de Recherche en Cancérologie de Lyon, INSERM 1052 CNRS UMR 5286, Centre Léon Berard, Université Claude Bernard Lyon 1, Lyon, France
| | - Pierre-Germain Gillet
- Centre de Recherche en Cancérologie de Lyon, INSERM 1052 CNRS UMR 5286, Centre Léon Berard, Université Claude Bernard Lyon 1, Lyon, France; Centre d'études, de Recherche et de Valorisation en Oncologie (CERVO), Faculté de Médecine et de Maïeutique Lyon Sud-Charles Mérieux, Pierre-Bénite, France; Faculté de Médecine et de Maïeutique Lyon-Sud-Charles Mérieux, Université Claude Bernard Lyon 1, Pierre-Bénite, France; Service d'Anatomie et de Cytologie Pathologiques, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Gilles Freyer
- Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France; Faculté de Médecine et de Maïeutique Lyon-Sud-Charles Mérieux, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Virginie Vlaeminck-Guillem
- Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France; Centre de Recherche en Cancérologie de Lyon, INSERM 1052 CNRS UMR 5286, Centre Léon Berard, Université Claude Bernard Lyon 1, Lyon, France; Centre d'études, de Recherche et de Valorisation en Oncologie (CERVO), Faculté de Médecine et de Maïeutique Lyon Sud-Charles Mérieux, Pierre-Bénite, France; Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon, France; Service de Biochimie Biologie Moléculaire Sud, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France.
| |
Collapse
|
196
|
Luo J, Li Y, Zheng W, Xie N, Shi Y, Long Z, Xie L, Fazli L, Zhang D, Gleave M, Dong X. Characterization of a Prostate- and Prostate Cancer-Specific Circular RNA Encoded by the Androgen Receptor Gene. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:916-926. [PMID: 31760376 PMCID: PMC6883311 DOI: 10.1016/j.omtn.2019.10.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/21/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
The linear mRNAs transcribed under alternative RNA splicing and overexpression/amplification of the androgen receptor (AR) gene are poor prognostic biomarkers of castrate-resistant prostate cancer (PCa). Whether the AR gene also transcribes non-coding circular RNAs that are associated with PCa development and tumor progression remains unclear. Here, we identified and characterized an AR circular RNA, called circAR3, that is widely expressed in PCa cell models and prostate tumors. circAR3 can be secreted into culture media of PCa cell lines and is detectable in the serum from mice bearing PCa xenografts. In PCa patient tissues, circAR3 is highly expressed in benign prostate and hormone naive PCa but downregulated when tumors were treated with neoadjuvant hormone therapy and further reduced when tumors progressed to the castrate-resistant stage. However, circAR3 levels in plasma are extremely low in patients with benign prostate, are upregulated in PCa patients with high Gleason scores and lymph node metastasis, and become undetectable in men after radical prostatectomy. circAR3 does not affect AR signaling, PCa cell proliferation, and invasion rates. Our results demonstrated that the origin of the detectable plasma circAR3 is from the prostate/PCa. Plasma circAR3 may be developed to be a PCa biomarker to monitor PCa development and tumor progression.
Collapse
Affiliation(s)
- Jindan Luo
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yinan Li
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Wei Zheng
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou 310024, China
| | - Ning Xie
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Yao Shi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Zhi Long
- Department of Urology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Liping Xie
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Ladan Fazli
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Dahong Zhang
- Department of Urology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Martin Gleave
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Xuesen Dong
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
197
|
Jiménez-Vacas JM, Herrero-Aguayo V, Gómez-Gómez E, León-González AJ, Sáez-Martínez P, Alors-Pérez E, Fuentes-Fayos AC, Martínez-López A, Sánchez-Sánchez R, González-Serrano T, López-Ruiz DJ, Requena-Tapia MJ, Castaño JP, Gahete MD, Luque RM. Spliceosome component SF3B1 as novel prognostic biomarker and therapeutic target for prostate cancer. Transl Res 2019; 212:89-103. [PMID: 31344348 DOI: 10.1016/j.trsl.2019.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/19/2019] [Accepted: 07/05/2019] [Indexed: 12/27/2022]
Abstract
Prostate cancer (PCa) is one of the most common cancers types among men. Development and progression of PCa is associated with aberrant expression of oncogenic splicing-variants (eg, AR-v7), suggesting that dysregulation of the splicing process might represent a potential actionable target for PCa. Expression levels (mRNA and protein) of SF3B1, one of the main components of the splicing machinery, were analyzed in different cohorts of PCa patients (clinically localized [n = 84], highly aggressive PCa [n = 42], and TCGA dataset [n = 497]). Functional and mechanistic assays were performed in response to pladienolide-B in nontumor and tumor-derived prostate cells. Our results revealed that SF3B1 was overexpressed in PCa tissues and its levels were associated with clinically relevant PCa-aggressive features (eg, metastasis/AR-v7 expression). Moreover, inhibition of SF3B1 activity by pladienolide-B reduced functional parameters of aggressiveness (proliferation/migration/tumorspheres-formation/apoptosis) in PCa cell lines, irrespective of AR-v7 expression, and reduced viability of primary PCa cells. Antitumor actions of pladienolide-B involved: (1) inhibition of PI3K/AKT and JNK signaling pathways, (2) modulation of tumor markers and splicing variants (AR-v7/In1-ghrelin), and (3) regulation of key components of mRNA homeostasis-associated machineries (spliceosome/SURF/EJC). Altogether, our results demonstrated that SF3B1 is overexpressed and associated with malignant features in PCa, and its inhibition reduces PCa aggressiveness, suggesting that SF3B1 could represent a novel prognostic biomarker and a therapeutic target in PCa.
Collapse
Affiliation(s)
- Juan M Jiménez-Vacas
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Vicente Herrero-Aguayo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Urology Service, HURS/IMIBIC, Córdoba, Spain
| | - Antonio J León-González
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Prudencio Sáez-Martínez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Emilia Alors-Pérez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Ana Martínez-López
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Anatomical Pathology Service, HURS, Córdoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Anatomical Pathology Service, HURS, Córdoba, Spain
| | - Teresa González-Serrano
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Anatomical Pathology Service, HURS, Córdoba, Spain
| | - Daniel J López-Ruiz
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Radiology Service, HURS/IMIBIC
| | - María J Requena-Tapia
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Urology Service, HURS/IMIBIC, Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain.
| |
Collapse
|
198
|
Zhang T, Karsh LI, Nissenblatt MJ, Canfield SE. Androgen Receptor Splice Variant, AR-V7, as a Biomarker of Resistance to Androgen Axis-Targeted Therapies in Advanced Prostate Cancer. Clin Genitourin Cancer 2019; 18:1-10. [PMID: 31653572 DOI: 10.1016/j.clgc.2019.09.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
Many therapeutic options are now available for men with metastatic castration-resistant prostate cancer (mCRPC), including next-generation androgen receptor axis-targeted therapies (AATTs), immunotherapy, chemotherapy, and radioisotope therapies. No clear consensus has been reached for the optimal sequencing of treatments for patients with mCRPC, and few well-validated molecular markers exist to guide the treatment decisions for individual patients. The androgen receptor splice variant 7 (AR-V7), a splice variant of the androgen receptor mRNA resulting in the truncation of the ligand-binding domain, has emerged as a biomarker for resistance to AATT. AR-V7 expression in circulating tumor cells has been associated with poor outcomes in patients treated with second- and third-line AATTs. Clinically validated assays are now commercially available for the AR-V7 biomarker. In the present review of the current literature, we have summarized the biology of resistance to AATT, with a focus on the AR-V7; and the clinical studies that have validated AR-V7 expression as a strong independent predictor of a lack of clinical benefit from AATTs. Existing evidence has indicated that patients with AR-V7-positive mCRPC will have better outcomes if treated with taxane chemotherapy regimens rather than additional AATTs.
Collapse
Affiliation(s)
- Tian Zhang
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Duke University School of Medicine, Durham, NC.
| | | | - Michael J Nissenblatt
- Department of Medicine, Regional Cancer Care Associates and Robert Wood Johnson University Medical School, East Brunswick, NJ
| | - Steven E Canfield
- Department of Surgery, University of Texas McGovern Medical School, Houston, TX
| |
Collapse
|
199
|
Shapovalova M, Lee JK, Li Y, Vander Griend DJ, Coleman IM, Nelson PS, Dehm SM, LeBeau AM. PEG10 Promoter-Driven Expression of Reporter Genes Enables Molecular Imaging of Lethal Prostate Cancer. Cancer Res 2019; 79:5668-5680. [PMID: 31530569 DOI: 10.1158/0008-5472.can-19-2181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/30/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
Abstract
The retrotransposon-derived paternally expressed gene 10 (PEG10) protein is ordinarily expressed at high levels in the placenta. Recently, it was discovered that PEG10 isoforms promote the progression of prostate cancer to a highly lethal androgen receptor (AR)-negative phenotype. The presence of PEG10 in other subtypes of prostate cancer has not been explored and a utility for PEG10 overexpression has not been developed. Here, we found that in addition to AR-null disease, PEG10 was also expressed in prostate cancer with constitutively active AR-splice variants. A molecular genetic imaging strategy for noninvasive imaging of AR-splice variant prostate cancer was developed by utilizing the cancer specificity of the PEG10 promoter to drive the expression of reporter genes. Plasmid insertion of a PEG10 promoter sequence optimized for enhanced output upstream of a reporter gene allowed detection of prostate cancer by near-infrared and positron emission tomography imaging after systemic administration of the plasmid in vivo. PEG10 expressing subcutaneous xenograft and intratibial tumor models were imaged by both modalities using this molecular genetic imaging strategy. This study demonstrates a preclinical proof-of-concept that the PEG10 promoter is a powerful and specific tool that can be utilized for noninvasive detection of aggressive prostate cancer subtypes. SIGNIFICANCE: PEG10 is expressed by prostate cancer with constitutively active AR-splice variants that can be exploited for noninvasive molecular imaging of this aggressive prostate cancer subytpe.
Collapse
Affiliation(s)
- Mariya Shapovalova
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - John K Lee
- Division of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yingming Li
- Department of Laboratory Medicine and Pathology, Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Donald J Vander Griend
- Department of Laboratory Medicine and Pathology, Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Ilsa M Coleman
- Division of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Peter S Nelson
- Division of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Scott M Dehm
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Aaron M LeBeau
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota.
| |
Collapse
|
200
|
Hille C, Gorges TM, Riethdorf S, Mazel M, Steuber T, Amsberg GV, König F, Peine S, Alix-Panabières C, Pantel K. Detection of Androgen Receptor Variant 7 ( ARV7) mRNA Levels in EpCAM-Enriched CTC Fractions for Monitoring Response to Androgen Targeting Therapies in Prostate Cancer. Cells 2019; 8:cells8091067. [PMID: 31514447 PMCID: PMC6770695 DOI: 10.3390/cells8091067] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Expression of the androgen receptor splice variant 7 (ARV7) in circulating tumor cells (CTCs) has been associated with resistance towards novel androgen receptor (AR)-targeting therapies. While a multitude of ARV7 detection approaches have been developed, the simultaneous enumeration of CTCs and assessment of ARV7 status and the integration of validated technologies for CTC enrichment/detection into their workflow render interpretation of the results more difficult and/or require shipment to centralized labs. Here, we describe the establishment and technical validation of a novel ARV7 detection method integrating the CellSearch® technology, the only FDA-cleared CTC-enrichment method for metastatic prostate cancer available so far. A highly sensitive and specific qPCR-based assay was developed, allowing detection of ARV7 and keratin 19 transcripts from as low as a single ARV7+/K19+ cell, even after 24 h of sample storage. Clinical feasibility was demonstrated on blood samples from 26 prostate cancer patients and assay sensitivity and specificity was corroborated. Our novel approach can now be included into prospective clinical trials aimed to assess the predictive values of CTC/ARV7 measurements in prostate cancer.
Collapse
Affiliation(s)
- Claudia Hille
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Tobias M Gorges
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Sabine Riethdorf
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Martine Mazel
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier-UM EA2415, 34295 Montpellier, France.
| | - Thomas Steuber
- Martini Clinic, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Gunhild von Amsberg
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Frank König
- ATURO, Urology Practice, 14197 Berlin, Germany.
| | - Sven Peine
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier-UM EA2415, 34295 Montpellier, France.
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|