151
|
Antitumor Effect of Periplocin in TRAIL-Resistant Human Hepatocellular Carcinoma Cells through Downregulation of IAPs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:958025. [PMID: 23365613 PMCID: PMC3549389 DOI: 10.1155/2013/958025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/15/2012] [Accepted: 11/15/2012] [Indexed: 12/16/2022]
Abstract
Cortex periplocae is the dried root bark of Periploca sepium Bge., a traditional Chinese herb medicine. It contains high amounts of cardiac glycosides. Several cardiac glycosides have been reported to inhibit tumor growth or induce tumor cell apoptosis. We extracted and purified cortex periplocae and identified periplocin as the active ingredient that inhibited the growth of TNF-related apoptosis-inducing ligand-(TRAIL-) resistant hepatocellular carcinoma cells. The antitumor activity of periplocin was further increased by TRAIL cotreatment. Periplocin sensitized TRAIL-resistant HCC through the following two mechanisms. First, periplocin induced the expression of DR4 and FADD. Second, the cotreatment of TRAIL and periplocin suppressed several inhibitors of apoptosis (IAPs). Both mechanisms resulted in the activation of caspase 3, 8, and 9 and led to cell apoptosis. In addition, intraperitoneal injection (IP) of periplocin repressed the growth of hepatocellular carcinoma (HCC) in xenograft tumor model in mice. In summary, periplocin sensitized TRAIL-resistant HCC cells to TRAIL treatment and resulted in tumor cell apoptosis and the repression of tumor growth in vivo.
Collapse
|
152
|
Cheng K, Agarwal R, Mitra S, Mills G. Rab25 Small GTPase Mediates Secretion of Tumor Necrosis Factor Receptor Superfamily Member 11b (osteoprotegerin) Protecting Cancer Cells from Effects of TRAIL. ACTA ACUST UNITED AC 2013; 4. [PMID: 25520884 PMCID: PMC4266180 DOI: 10.4172/2157-7412.1000153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Expression of Rab25, which is located in the 1q amplicon present at high frequency in many cancer lineages, promotes cancer cell survival under multiple stress conditions. While Rab proteins play essential roles in all stages of vesicle trafficking, the functions and endogenous cargoes for Rab25 remain to be fully elucidated. Osteoprotegerin (OPG) is a secreted glycoprotein that binds the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) thus preventing it from activating the TNF-family death receptors. In the present study, we demonstrated that Rab25 regulates OPG at both the transcription and secretion level. METHODS The effect of Rab25 on OPG expression and its effect on TRAIL-induced cell were examined in both ovarian and breast cells. Signal transduction pathways regulation of OPG expression was examined in cells using pharmacogenetic approaches. RESULTS Expression of Rab25 to levels similar to those in tumors with RAB25 amplification, increased OPG mRNA expression and secretion from ovarian and breast cancer cell lines, whereas down regulation with Rab25 specific siRNA decreased OPG secretion and sensitized cells to TRAIL-induced cell death. Critically, exogenous OPG mimicked the effects of Rab25 on cell death supporting the contention that Rab25-induced accumulation of OPG protects cancer cells from the effects of TRAIL. Rab25 cooperates with EGFR-mediated MAPK signaling to increase TRAIL production and release. Importantly, priming cells with EGFR inhibitors increased sensitivity to TRAIL-induced cells death regardless of the Rab25 background. CONCLUSION Increased OPG expression induced by Rab25 may provide a mechanistic advantage for cancer development and progression.
Collapse
Affiliation(s)
- Kw Cheng
- Department of Systems Biology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - R Agarwal
- Department of Surgery & Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, London, W12 0NN, UK
| | - S Mitra
- Department of Systems Biology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gb Mills
- Department of Systems Biology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
153
|
Anisomycin treatment enhances TRAIL-mediated apoptosis in renal carcinoma cells through the down-regulation of Bcl-2, c-FLIP(L) and Mcl-1. Biochimie 2012; 95:858-65. [PMID: 23261849 DOI: 10.1016/j.biochi.2012.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 12/03/2012] [Indexed: 11/24/2022]
Abstract
Anisomycin is known to inhibit protein synthesis and induce ribotoxic stress. In this study, we investigated whether anisomycin treatment could modulate TRAIL-mediated apoptosis in human renal carcinoma Caki cells. We found that anisomycin treatment (10-15 nM) alone had no effect on the level of apoptosis, but a combination treatment of anisomycin and TRAIL significantly increased the level of apoptosis in human renal carcinoma (Caki, ACHN and A498), human glioma (U251MG), and human breast carcinoma (MDA-MB-361 and MCF7) cells. Anisomycin treatment led to the down-regulation of Bcl-2 expression at the transcriptional level, and the over-expression of Bcl-2 inhibited the apoptosis induced by the combination treatment of anisomycin and TRAIL. Furthermore, anisomycin treatment resulted in the down-regulation of c-FLIP(L) and Mcl-1 at the post-transcriptional level, and the over-expression of c-FLIP(L) and Mcl-1 blocked the induction of apoptosis caused by the combination treatment of anisomycin with TRAIL. In contrast, anisomycin treatment had no effect on the levels of TRAIL-mediated apoptosis in mouse kidney cells (TMCK-1) or normal human skin fibroblasts (HSF). Cumulatively, our study demonstrates that anisomycin treatment enhances TRAIL-mediated apoptosis through the down-regulation of Bcl-2, c-FLIP(L) and Mcl-1 at the transcriptional or post-transcriptional level.
Collapse
|
154
|
Kriegl L, Jung A, Horst D, Rizzani A, Jackstadt R, Hermeking H, Gallmeier E, Gerbes AL, Kirchner T, Göke B, De Toni EN. Microsatellite instability, KRAS mutations and cellular distribution of TRAIL-receptors in early stage colorectal cancer. PLoS One 2012; 7:e51654. [PMID: 23284732 PMCID: PMC3527471 DOI: 10.1371/journal.pone.0051654] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 11/05/2012] [Indexed: 01/23/2023] Open
Abstract
Background The fact that the receptors for the TNF-related apoptosis inducing ligand (TRAIL) are almost invariably expressed in colorectal cancer (CRC) represents the rationale for the employment of TRAIL-receptors targeting compounds for the therapy of patients affected by this tumor. Yet, first reports on the use of these bioactive agents provided disappointing results. We therefore hypothesized that loss of membrane-bound TRAIL-R might be a feature of some CRC and that the evaluation of membrane staining rather than that of the overall expression of TRAIL-R might predict the response to TRAIL-R targeting compounds in this tumor. Aim and Methods Thus, we evaluated the immunofluorescence pattern of TRAIL-receptors and E-cadherin to assess the fraction of membrane-bound TRAIL-receptors in 231 selected patients with early-stage CRC undergoing surgical treatment only. Moreover, we investigated whether membrane staining for TRAIL-receptors as well as the presence of KRAS mutations or of microsatellite instability (MSI) had an effect on survival and thus a prognostic effect. Results As expected, almost all CRC samples stained positive for TRAIL-R1 and 2. Instead, membrane staining for these receptors was positive in only 71% and 16% of samples respectively. No correlation between KRAS mutation status or MSI-phenotype and prognosis could be detected. TRAIL-R1 staining intensity correlated with survival in univariate analysis, but only membranous staining of TRAIL-R1 and TRAIL-R2 on cell membranes was an independent predictor of survival (cox multivariate analysis: TRAIL-R1: p = 0.019, RR 2.06[1.12–3.77]; TRAIL-R2: p = 0.033, RR 3.63[1.11–11.84]). Conclusions In contrast to the current assumptions, loss of membrane staining for TRAIL-receptors is a common feature of early stage CRC which supersedes the prognostic significance of their staining intensity. Failure to achieve therapeutic effects in recent clinical trials using TRAIL-receptors targeting compounds might be due to insufficient selection of patients bearing tumors with membrane-bound TRAIL-receptors.
Collapse
Affiliation(s)
- Lydia Kriegl
- Institute of Pathology, University of Munich, Munich, Germany
| | - Andreas Jung
- Institute of Pathology, University of Munich, Munich, Germany
| | - David Horst
- Institute of Pathology, University of Munich, Munich, Germany
| | - Antonia Rizzani
- Department of Medicine II, University Hospital Grosshadern, University of Munich, Munich, Germany
| | - Rene Jackstadt
- Institute of Pathology, University of Munich, Munich, Germany
| | - Heiko Hermeking
- Institute of Pathology, University of Munich, Munich, Germany
| | - Eike Gallmeier
- Department of Medicine II, University Hospital Grosshadern, University of Munich, Munich, Germany
| | - Alexander L. Gerbes
- Department of Medicine II, University Hospital Grosshadern, University of Munich, Munich, Germany
| | - Thomas Kirchner
- Institute of Pathology, University of Munich, Munich, Germany
| | - Burkhard Göke
- Department of Medicine II, University Hospital Grosshadern, University of Munich, Munich, Germany
| | - Enrico N. De Toni
- Department of Medicine II, University Hospital Grosshadern, University of Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
155
|
OUYANG WEN, YANG CHUNXU, ZHANG SIMIN, LIU YU, YANG BO, ZHANG JUNHONG, ZHOU FUXIANG, ZHOU YUNFENG, XIE CONGHUA. Absence of death receptor translocation into lipid rafts in acquired TRAIL-resistant NSCLC cells. Int J Oncol 2012; 42:699-711. [DOI: 10.3892/ijo.2012.1748] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 11/30/2012] [Indexed: 11/05/2022] Open
|
156
|
Chanvorachote P, Pongrakhananon V. Ouabain downregulates Mcl-1 and sensitizes lung cancer cells to TRAIL-induced apoptosis. Am J Physiol Cell Physiol 2012; 304:C263-72. [PMID: 23174563 DOI: 10.1152/ajpcell.00225.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a prerequisite for cancer progression, and TRAIL resistance is prevalent in lung cancer. Ouabain, a recently identified human hormone, has shown therapeutic promise by potentiating the apoptotic response of metastatic lung cancer cells to TRAIL. Nontoxic concentrations of ouabain are shown to increase caspase-3 activation, poly(ADP-ribose) polymerase (PARP) cleavage, and apoptosis of H292 cells in response to TRAIL. While ouabain had a minimal effect on c-FLIP, Bcl-2, and Bax levels, we show that it possesses an ability to downregulate the antiapoptotic Mcl-1 protein. The present study also reveals that the sensitizing effect of ouabain is associated with its ability to generate reactive oxygen species (ROS), and hydrogen peroxide is identified as the principle ROS triggering proteasomal Mcl-1 degradation. In summary, our results indicate a novel function for ouabain in TRAIL-mediated cancer cell death through Mcl-1 downregulation, thereby providing new insight into a potential lung cancer treatment as well as a better understanding of the physiological activity of ouabain.
Collapse
Affiliation(s)
- Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
157
|
Huangfu WC, Fuchs SY. Ubiquitination-dependent regulation of signaling receptors in cancer. Genes Cancer 2012; 1:725-34. [PMID: 21127735 DOI: 10.1177/1947601910382901] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ubiquitination of signaling cell surface receptors is a key mechanism regulating the availability of these receptors to interact with extracellular ligands. Accordingly, this regulation determines the sensitivity of cells to the humoral and locally secreted regulators of cell function, proliferation, and viability. Alterations in receptor ubiquitination and degradation are often encountered in cancers. Malignant cells utilize modified ubiquitination of signaling receptors to augment or attenuate signaling pathways on the basis of whether the outcome of this signaling is conducive or not for tumor growth and survival. These mechanisms as well as their significance for the treatment of human cancers are discussed.
Collapse
Affiliation(s)
- Wei-Chun Huangfu
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
158
|
Woo SM, Min KJ, Kwon TK. Calyculin A causes sensitization to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by ROS-mediated down-regulation of cellular FLICE-inhibiting protein (c-FLIP) and by enhancing death receptor 4 mRNA stabilization. Apoptosis 2012; 17:1223-34. [DOI: 10.1007/s10495-012-0753-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
159
|
Breast cancer proteome takes more than two to tango on TRAIL: beat them at their own game. J Membr Biol 2012; 245:763-77. [PMID: 22899350 DOI: 10.1007/s00232-012-9490-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 07/16/2012] [Indexed: 12/21/2022]
Abstract
Breast carcinogenesis is a multidimensional disease that has resisted drug-related solutions to date because of heterogeneity, disorganized spatiotemporal behavior of signal transduction cascades, cell cycle checkpoints, cell transition, plasticity, and impaired pro-apoptotic response. These synchronized oncogenic events, including protein-protein interaction, transcriptional-regulatory, and signaling networks, trigger genomic and transcriptional disturbances in TRAIL-mediated signaling network neighborhoods. Therefore, tumor cells often acquire the ability to escape death by suppressing cell death pathways that normally function to eliminate damaged and harmful cells. This review describes the TRAIL-mediated cell death signaling pathways, the interactions between these pathways, and the ways in which these pathways are deregulated in breast cancer.
Collapse
|
160
|
Modulation of tumor necrosis factor related apoptosis-inducing ligand (TRAIL) receptors in a human osteoclast model in vitro. Apoptosis 2012; 17:121-31. [PMID: 21972115 DOI: 10.1007/s10495-011-0662-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
TRAIL (TNF-related apoptosis-inducing ligand) has been shown to induce apoptosis by binding to TRAIL-R1 and -R2 death receptors, but not to TRAIL-R3 or -R4, its decoy receptors that lack the internal death domain. Osteoclasts (Ocs) are sensitive to TRAIL-induced apoptosis, and modulation of these receptors may change Oc sensitivity to TRAIL. Using human Oc cultures, we first investigated the gene expression profile of these receptors (TNFRSF10 -A, -B, -C, -D encoding TRAIL-Rs 1-4) by real time PCR after adding osteotropic factors during the last week of Oc cultures. We observed a significant decrease in the expression of TNFRSF10-A after the addition of TGFβ, and an increase in that of TNFRSF10-A and -B post-PTH stimulation. Protein expression of TRAIL-R1 and -R3 was upregulated in the presence of MIP-1α, but down-regulated in the presence of TGFβ (R1), TRAIL (R2) or OPG (R3). The percentage of Ocs expressing the TRAIL-R1 and/or -R2 at their surface was increased by MIP-1α and TRAIL, increased (R2) or decreased (R1) by TGFβ, and the percentage expressing TRAIL-R3 was increased by MIP-1α, TRAIL and RANKL. Although significant, the magnitude of all these changes was of about 10-15%. While a direct correlation between these changes and TRAIL-induced Oc apoptosis was less clear, a protective effect was observed in Ocs that had been treated with OPG, and an additive effect in Ocs pre-treated with TRAIL or TGFβ increased TRAIL sensitivity.
Collapse
|
161
|
Labovsky V, Vallone VBF, Martinez LM, Otaegui J, Chasseing NA. Expression of osteoprotegerin, receptor activator of nuclear factor kappa-B ligand, tumor necrosis factor-related apoptosis-inducing ligand, stromal cell-derived factor-1 and their receptors in epithelial metastatic breast cancer cell lines. Cancer Cell Int 2012; 12:29. [PMID: 22709548 PMCID: PMC3478192 DOI: 10.1186/1475-2867-12-29] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/18/2012] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND While breast cancer (BC) is the major cause of death among women worldwide, there is no guarantee of better patient survival because many of these patients develop primarily metastases, despite efforts to detect it in its early stages. Bone metastasis is a common complication that occurs in 65-80 % of patients with disseminated disease, but the molecular basis underlying dormancy, dissemination and establishment of metastasis is not understood. Our objective has been to evaluate simultaneously osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), stromal cell-derived factor-1 (SDF-1), and their receptors (R) in 2 human BC cell lines, MDA-MB-231 and MCF-7. METHODS OPG, RANKL, TRAIL and SDF-1 expression and release, in addition to the expression of their receptors has been investigated using immunofluorescence, immunocytochemistry and ELISA analyses. RESULTS MCF-7 cells released higher levels of OPG in conditioned media (CM) than MDA-MB-231 cells; 100 % of both types of cell expressed OPG, RANKL, TRAIL and SDF-1. Moreover, 100 % in both lines expressed membrane RANKL and RANK, whereas only 50 % expressed CXCR4. Furthermore, 100 % expressed TRAIL-R1 and R4, 30-50 % TRAIL-R2, and 40-55 % TRAIL-R3. CONCLUSIONS MCF-7 and MDA-MB-231 cells not only released OPG, but expressed RANKL, TRAIL and SDF-1. The majority of the cells also expressed RANK, CXCR4 and TRAIL-R. Since these ligands and their receptors are implicated in the regulation of proliferation, survival, migration and future bone metastasis during breast tumor progression, assessment of these molecules in tumor biopsies of BC patients could be useful in identifying patients with more aggressive tumors that are also at risk of bone metastasis, which may thus improve the available options for therapeutic intervention.
Collapse
Affiliation(s)
- Vivian Labovsky
- Laboratorio de Inmuno-Hematología, Instituto de Biología y Medicina Experimental (IBYME), Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
162
|
Farooqi AA, Bhatti S, Ismail M. TRAIL and vitamins: opting for keys to castle of cancer proteome instead of open sesame. Cancer Cell Int 2012; 12:22. [PMID: 22672528 PMCID: PMC3502079 DOI: 10.1186/1475-2867-12-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/26/2012] [Indexed: 12/18/2022] Open
Abstract
Cancer is a multifaceted molecular disorder that is modulated by a combination of genetic, metabolic and signal transduction aberrations, which severely impair the normal homeostasis of cell growth and death. Accumulating findings highlight the fact that different genetic alterations, such as mutations in tumor suppressor genes, might be related to distinct and differential sensitivity to targeted therapies. It is becoming increasingly apparent that a multipronged approach that addresses genetic milieu (alterations in upstream and/or parallel pathways) eventually determines the response of individual tumors to therapy. Cancerous cells often acquire the ability to evade death by attenuating cell death pathways that normally function to eliminate damaged and harmful cells. Therefore impaired cell death nanomachinery and withdrawal of death receptors from cell surface are some of major determinants for the development of chemotherapeutic resistance encountered during treatment. It is therefore essential to emphasize underlying factors which predispose cells to refractoriness against TRAIL mediated cell death pathway and the relevant regulatory components involved. We bring to limelight the strategies to re-sensitize TRAIL resistant cells via vitamins to induce apoptosis.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Lab for Translational Oncology and Personalized Medicine, Rashid Latif Medical College (RLMC), 35 km Ferozepur Road, Lahore, Pakistan.
| | | | | |
Collapse
|
163
|
Kang Z, Sun SY, Cao L. Activating Death Receptor DR5 as a Therapeutic Strategy for Rhabdomyosarcoma. ISRN ONCOLOGY 2012; 2012:395952. [PMID: 22577581 PMCID: PMC3345273 DOI: 10.5402/2012/395952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 01/24/2012] [Indexed: 11/23/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. It is believed to arise from skeletal muscle progenitors, preserving the expression of genes critical for embryonic myogenic development such as MYOD1 and myogenin. RMS is classified as embryonal, which is more common in younger children, or alveolar, which is more prevalent in elder children and adults. Despite aggressive management including surgery, radiation, and chemotherapy, the outcome for children with metastatic RMS is dismal, and the prognosis has remained unchanged for decades. Apoptosis is a highly regulated process critical for embryonic development and tissue and organ homeostasis. Like other types of cancers, RMS develops by evading intrinsic apoptosis via mutations in the p53 tumor suppressor gene. However, the ability to induce apoptosis via the death receptor-dependent extrinsic pathway remains largely intact in tumors with p53 mutations. This paper focuses on activating extrinsic apoptosis as a therapeutic strategy for RMS by targeting the death receptor DR5 with a recombinant TRAIL ligand or agonistic antibodies directed against DR5.
Collapse
Affiliation(s)
- Zhigang Kang
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
164
|
Downregulation of Mcl-1 by daunorubicin pretreatment reverses resistance of breast cancer cells to TNF-related apoptosis-inducing ligand. Biochem Biophys Res Commun 2012; 422:42-7. [DOI: 10.1016/j.bbrc.2012.04.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/17/2012] [Indexed: 01/26/2023]
|
165
|
Piechocki MP, Wu GS, Jones RF, Jacob JB, Gibson H, Ethier SP, Abrams J, Yagita H, Venuprasad K, Wei WZ. Induction of proapoptotic antibodies to triple-negative breast cancer by vaccination with TRAIL death receptor DR5 DNA. Int J Cancer 2012; 131:2562-72. [PMID: 22419388 DOI: 10.1002/ijc.27534] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 02/20/2012] [Indexed: 11/11/2022]
Abstract
TNF-related apoptosis-inducing ligand receptor 2 [TRAIL-R2 or death receptor 5 (DR5)] is expressed at elevated levels in a broad range of solid tumors to mediate apoptotic signals from TRAIL or agonist antibodies. We tested the hypothesis that DR5 DNA vaccination will induce proapoptotic antibody to trigger apoptosis of tumor cells. BALB/c mice were electrovaccinated with DNA-encoding wild-type human DR5 (phDR5) or its derivatives. Resulting immune serum or purified immune IgG induced apoptosis in triple-negative breast cancer (TNBC) cells, which were also TRAIL sensitive. The proapoptotic activity of immune serum at dilutions of 0.5-2% was comparable to that of 1-2 μg/ml of TRAIL. Apoptotic activity of immune serum was enhanced by antibody crosslinking. Apoptotic cell death induced by anti-DR5 antibody was shown by the cleavage of PARP and caspase-3. In contrast, immune serum had no effect on the proliferation of activated human T cells, which expressed low levels of DR5. In vivo, hDR5 reactive immune serum prevented growth of SUM159 TNBC cells in severe combined immune-deficient mice. DR5-specific IFN-γ-secreting T cells were also induced by DNA vaccination. Furthermore, the feasibility to overcome immune tolerance to self DR5 was shown by the induction of mouse DR5-binding antibody after electrovaccination of BALB/c mice with pmDR5ectm-Td1 encoding a fusion protein of mouse DR5 and an immunogenic fragment of tetanus toxin. These findings support DR5 as a promising vaccine target for controlling TNBC and other DR5-positive cancers.
Collapse
Affiliation(s)
- Marie P Piechocki
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Guo L, Fan L, Ren J, Pang Z, Ren Y, Li J, Wen Z, Qian Y, Zhang L, Ma H, Jiang X. Combination of TRAIL and actinomycin D liposomes enhances antitumor effect in non-small cell lung cancer. Int J Nanomedicine 2012; 7:1449-60. [PMID: 22619505 PMCID: PMC3356168 DOI: 10.2147/ijn.s24711] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The intractability of non-small cell lung cancer (NSCLC) to multimodality treatments plays a large part in its extremely poor prognosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cytokine for selective induction of apoptosis in cancer cells; however, many NSCLC cell lines are resistant to TRAIL-induced apoptosis. The therapeutic effect can be restored by treatments combining TRAIL with chemotherapeutic agents. Actinomycin D (ActD) can sensitize NSCLC cells to TRAIL-induced apoptosis by upregulation of death receptor 4 (DR4) or 5 (DR5). However, the use of ActD has significant drawbacks due to the side effects that result from its nonspecific biodistribution in vivo. In addition, the short half-life of TRAIL in serum also limits the antitumor effect of treatments combining TRAIL and ActD. In this study, we designed a combination treatment of long-circulating TRAIL liposomes and ActD liposomes with the aim of resolving these problems. The combination of TRAIL liposomes and ActD liposomes had a synergistic cytotoxic effect against A-549 cells. The mechanism behind this combination treatment includes both increased expression of DR5 and caspase activation. Moreover, systemic administration of the combination of TRAIL liposomes and ActD liposomes suppressed both tumor formation and growth of established subcutaneous NSCLC xenografts in nude mice, inducing apoptosis without causing significant general toxicity. These results provide preclinical proof-of-principle for a novel therapeutic strategy in which TRAIL liposomes are safely combined with ActD liposomes.
Collapse
Affiliation(s)
- Liangran Guo
- School of Pharmacy, Fudan University, Zhangheng Road, Shanghai, People’s Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Maksimovic-Ivanic D, Stosic-Grujicic S, Nicoletti F, Mijatovic S. Resistance to TRAIL and how to surmount it. Immunol Res 2012; 52:157-68. [DOI: 10.1007/s12026-012-8284-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
168
|
Niu Y, Li Y, Zang J, Huang H, Deng J, Cui Z, Yu D, Deng J. Death receptor 5 and neuroproliferation. Cell Mol Neurobiol 2012; 32:255-65. [PMID: 21938487 PMCID: PMC11498502 DOI: 10.1007/s10571-011-9757-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 09/08/2011] [Indexed: 02/06/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand or Apo2 ligand is a member of the tumor necrosis factor superfamily of cytokines that induces apoptosis upon binding to its death domain-containing transmembrane receptors, death receptors 4 and 5 (DR4, DR5). However, DR5 is also expressed in the developing CNS where it appears to play a role unrelated to apoptosis, and instead may be involved in the regulation of neurogenesis. We report on the distribution of DR5 expression in mouse hippocampus, cerebellum, and rostral migratory stream (RMS) of olfactory bulb from embryonic (E) day 16 (E16) to postnatal (P) day (P180). At E16, DR5-positive cells were distributed widely in embryonic hippocampus with strong immunostaining in the developing dentate gyrus. In newborn hippocampus, DR5-positive cells were predominantly located in proliferative zones, such as dentate gyrus, subventricular zone, and RMS. After postnatal day 7 (P7), the number of DR5-positive cells decreased, and cells with intense fluorescence were primarily restricted to the subgranular layer (SGL), although the granular cell layer showed weak fluorescence. After P30, only few DR5-positive cells were found in SGL, and mature granule cells were negative for DR5 expression. To address whether DR5 expression is a restricted to progenitor cells and newborn neurons, we performed 5-bromo-deoxyuridine labeling. We report that proliferative cells in the SGL selectively express DR5, with lower levels of expression in cells positive for doublecortin, a marker of newborn neurons. In addition, the stem cells in intestine, cerebellum, and RMS were also demonstrated to be DR5-positive. In the meantime, in cerebellum, DR5-positive cells were also positive for glial fibrillary acidic protein, a marker of proliferative Bergmann cells. We conclude that DR5 is selectively expressed by neuroprogenitor cells and newborn neurons, suggesting that the DR5 death receptor is likely to play a key role in neuroproliferation and differentiation.
Collapse
Affiliation(s)
- Yanli Niu
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, 475004 Henan People’s Republic of China
| | - Yongqiang Li
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, 475004 Henan People’s Republic of China
| | - Jianfeng Zang
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, 475004 Henan People’s Republic of China
| | - Hongen Huang
- Jiujiang Traditional Hospital, Jiujiang, 332000 China
| | - Jiexin Deng
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, 475004 Henan People’s Republic of China
| | - Zhanjun Cui
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, 475004 Henan People’s Republic of China
| | - Dongming Yu
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, 475004 Henan People’s Republic of China
| | - Jinbo Deng
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, 475004 Henan People’s Republic of China
| |
Collapse
|
169
|
Garimella SV, Rocca A, Lipkowitz S. WEE1 inhibition sensitizes basal breast cancer cells to TRAIL-induced apoptosis. Mol Cancer Res 2011; 10:75-85. [PMID: 22112940 DOI: 10.1158/1541-7786.mcr-11-0500] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
TRAIL is a member of the TNF super family and has been shown to induce apoptosis in many cancer cell lines but not in normal cells. Breast cancers can be divided into different subgroups on the basis of the expression of estrogen and progesterone receptors, HER-2 amplification, or the lack of these three markers (known as triple-negative or basal-type breast cancer). Our group and others have shown previously that triple-negative breast cancer cell lines are sensitive to TRAIL whereas others are relatively resistant. In an earlier study, we reported that inhibition of WEE1, a cell-cycle checkpoint regulator, causes increased cell death in breast cancer cell lines. In this study, we tested the effects of WEE1 inhibition on TRAIL-mediated apoptosis in breast cancer cell lines. Pretreatment with WEE1 inhibitor or knockdown of WEE1 increased the toxicity of TRAIL in the basal/triple-negative breast cancer cell lines compared with WEE1 inhibitor or TRAIL treatment alone. The enhanced cell death is attributed to increased surface expression of death receptors, increased caspase activation which could be blocked by the pan-caspase inhibitor, Z-VAD-FMK, thereby rescuing cells from caspase-mediated apoptosis. The cell death was initiated primarily by caspase-8 because knockdown of caspase-8 and not of any other initiator caspases (i.e., caspase-2, -9, or -10) rescued cells from WEE1 inhibitor-sensitized TRAIL-induced cell death. Taken together, the data suggest that the combination of WEE1 inhibitor and TRAIL could provide a novel combination for the treatment of basal/triple-negative breast cancer.
Collapse
Affiliation(s)
- Sireesha V Garimella
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
170
|
Jiang HH, Kim TH, Lee S, Chen X, Youn YS, Lee KC. PEGylated TNF-related apoptosis-inducing ligand (TRAIL) for effective tumor combination therapy. Biomaterials 2011; 32:8529-37. [DOI: 10.1016/j.biomaterials.2011.07.051] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 07/16/2011] [Indexed: 11/24/2022]
|
171
|
Chen JJ, Knudsen S, Mazin W, Dahlgaard J, Zhang B. A 71-gene signature of TRAIL sensitivity in cancer cells. Mol Cancer Ther 2011; 11:34-44. [PMID: 22027696 DOI: 10.1158/1535-7163.mct-11-0620] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
TNF-related apoptosis inducing ligand (TRAIL) is a promising anticancer agent because of its ability to selectively induce apoptosis in cancer cells but not in most normal cells. However, some cancer cells are resistant to TRAIL cytotoxicity thereby limiting its therapeutic efficacy. Using genome-wide mRNA expression profiles from the NCI60 panel and their differential sensitivities to TRAIL-induced apoptosis, we have identified 71 genes whose expression levels are systemically higher in TRAIL-sensitive cell lines than resistant lines. The elevated expression of the 71 genes was able to accurately predict TRAIL sensitivity in the NCI60 training set and two test sets consisting of a total of 95 human cancer cell lines. Interestingly, the 71-gene signature is dominated by two functionally related gene families-interferon (IFN)-induced genes and the MHC genes. Consistent with this result, treatment with IFN-γ augmented TRAIL-induced apoptosis. The 71-gene signature could be evaluated clinically for predicting tumor response to TRAIL-related therapies.
Collapse
Affiliation(s)
- Jun-Jie Chen
- Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
172
|
Min KJ, Jang JH, Lee JT, Choi KS, Kwon TK. Glucocorticoid receptor antagonist sensitizes TRAIL-induced apoptosis in renal carcinoma cells through up-regulation of DR5 and down-regulation of c-FLIP(L) and Bcl-2. J Mol Med (Berl) 2011; 90:309-19. [PMID: 22008998 DOI: 10.1007/s00109-011-0821-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/28/2011] [Accepted: 10/07/2011] [Indexed: 01/01/2023]
Abstract
RU486 (Mifepristone) has been known as antiprogesterone and antiglucocorticoid agent. RU486 is also used for treatment of several cancers, such as breast, ovarian, prostate, and glaucoma. Here, we investigated the effect of RU486 on TRAIL-induced apoptosis in human renal carcinoma Caki cells. Low dose of RU486 (30-50 μM) alone had no effect on apoptosis, but RU486 markedly sensitized Caki cells to TRAIL-induced apoptosis. We found that up-regulation of death receptor 5 (DR5; receptor for TRAIL ligand), and down-regulation of Bcl-2 and c-FLIP (caspase regulator) contributes to RU-486 induced TRAIL sensitization. Down-regulation of DR5 by siRNA also blocked RU486 induced TRAIL sensitization. Furthermore, overexpression of Bcl-1 or c-FLIP(L) inhibited the cell death induced by the combined treatment with RU486 and TRAIL. RU486 increased DR5 expression at the transcriptional levels through induction of CHOP expression. By contrast, RU486 did not sensitize normal human mesangial cells to TRAIL-mediated apoptosis. Effect of RU486 on TRAIL-induced cancer cell apoptosis was independent of glucocorticoid receptor and progesterone receptor. Taken together, RU486 enhances TRAIL-mediated apoptosis through down-regulation of Bcl-2 and c-FLIP(L) as well as CHOP-mediated DR5 up-regulation.
Collapse
Affiliation(s)
- Kyoung-Jin Min
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea
| | | | | | | | | |
Collapse
|
173
|
TRAIL and doxorubicin combination enhances anti-glioblastoma effect based on passive tumor targeting of liposomes. J Control Release 2011; 154:93-102. [DOI: 10.1016/j.jconrel.2011.05.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/23/2011] [Accepted: 05/06/2011] [Indexed: 11/22/2022]
|
174
|
Guo L, Fan L, Ren J, Pang Z, Ren Y, Li J, Wen Z, Jiang X. A novel combination of TRAIL and doxorubicin enhances antitumor effect based on passive tumor-targeting of liposomes. NANOTECHNOLOGY 2011; 22:265105. [PMID: 21586819 DOI: 10.1088/0957-4484/22/26/265105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a novel anticancer agent for non-small cell lung cancer (NSCLC). However, approximately half of NSCLC cell lines are highly resistant to TRAIL. Doxorubicin (DOX) can sensitize NSCLC cells to TRAIL-induced apoptosis, indicating the possibility of combination therapy. Unfortunately, the therapeutic effect of a DOX and TRAIL combination is limited by multiple factors including the short serum half-life of TRAIL, poor compliance and application difficulty in the clinic, chronic DOX-induced cardiac toxicity, and the multidrug resistance (MDR) property of NSCLC cells. To solve such problems, we developed the combination of TRAIL liposomes (TRAIL-LP) and DOX liposomes (DOX-LP). An in vitro cytotoxicity study indicated that DOX-LP sensitized the NSCLC cell line A-549 to TRAIL-LP-induced apoptosis. Furthermore, this combination therapy of TRAIL-LP and DOX-LP displayed a stronger antitumor effect on NSCLC in xenografted mice when compared with free drugs or liposomal drugs alone. Therefore, the TRAIL-LP and DOX-LP combination therapy has excellent potential to become a new therapeutic approach for patients with advanced NSCLC.
Collapse
Affiliation(s)
- Liangran Guo
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
175
|
TRAIL-R4 promotes tumor growth and resistance to apoptosis in cervical carcinoma HeLa cells through AKT. PLoS One 2011; 6:e19679. [PMID: 21625476 PMCID: PMC3098831 DOI: 10.1371/journal.pone.0019679] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 04/13/2011] [Indexed: 11/20/2022] Open
Abstract
Background TRAIL/Apo2L is a pro-apoptotic ligand of the TNF family that engages the apoptotic machinery through two pro-apoptotic receptors, TRAIL-R1 and TRAIL-R2. This cell death program is tightly controlled by two antagonistic receptors, TRAIL-R3 and TRAIL-R4, both devoid of a functional death domain, an intracellular region of the receptor, required for the recruitment and the activation of initiator caspases. Upon TRAIL-binding, TRAIL-R4 forms a heteromeric complex with the agonistic receptor TRAIL-R2 leading to reduced caspase-8 activation and apoptosis. Methodology/Principal Findings We provide evidence that TRAIL-R4 can also exhibit, in a ligand independent manner, signaling properties in the cervical carcinoma cell line HeLa, through Akt. Ectopic expression of TRAIL-R4 in HeLa cells induced morphological changes, with cell rounding, loss of adherence and markedly enhanced cell proliferation in vitro and tumor growth in vivo. Disruption of the PI3K/Akt pathway using the pharmacological inhibitor LY294002, siRNA targeting the p85 regulatory subunit of phosphatidylinositol-3 kinase, or by PTEN over-expression, partially restored TRAIL-mediated apoptosis in these cells. Moreover, the Akt inhibitor, LY294002, restituted normal cell proliferation index in HeLa cells expressing TRAIL-R4. Conclusions/Significance Altogether, these results indicate that, besides its ability to directly inhibit TRAIL-induced cell death at the membrane, TRAIL-R4 can also trigger the activation of signaling pathways leading to cell survival and proliferation in HeLa cells. Our findings raise the possibility that TRAIL-R4 may contribute to cervical carcinogenesis.
Collapse
|
176
|
Tang H, Qin Y, Li J, Gong X. The scavenging of superoxide radicals promotes apoptosis induced by a novel cell-permeable fusion protein, sTRAIL:FeSOD, in tumor necrosis factor-related apoptosis-inducing ligand-resistant leukemia cells. BMC Biol 2011; 9:18. [PMID: 21418589 PMCID: PMC3068130 DOI: 10.1186/1741-7007-9-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 03/19/2011] [Indexed: 12/25/2022] Open
Abstract
Background Many cancer cells develop resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, necessitating combination with chemotherapy, and normal cells manifest side effects due to the combined treatment regimen of TRAIL and chemotherapeutic drugs. A novel cancer therapy utilizing TRAIL is thus urgently needed. Results In this study, we exploited TRAIL receptor-mediated endocytosis for the first time to produce a cell-permeable molecule, soluble forms of recombinant TRAIL:iron superoxide dismutase (sTRAIL:FeSOD), which possesses sTRAIL-induced apoptotic ability and FeSOD antioxidant activity. The FeSOD component was rapidly introduced into the cell by sTRAIL and intracellular superoxide radical (O2-), which have been implicated as potential modulators of apoptosis in cancer cells, was eliminated, resulting in a highly reduced cellular environment. The decrease in cellular O2-, which was accompanied by a brief accumulation of H2O2 and downregulation of phosphorylated Akt (p-Akt) and cellular FLICE-inhibitory protein, sensitized K562 leukemia cells and human promyelocytic leukemia (HL-60) cells to TRAIL-induced apoptosis. The low H2O2 levels protected human LO2 hepatocytes from sTRAIL:FeSOD-induced apoptosis despite downregulation of p-Akt. We also obtained evidence that the lack of response to sTRAIL:FeSOD in normal T cells occurred because sTRAIL:FeSOD shows much stronger shifts of redox state in erythroleukemia (K562) and HL-60 cells compared to that in normal T cells. K562 and HL-60 cells underwent sTRAIL:FeSOD-induced apoptosis without the dysfunction of mitochondria. Conclusions The fusion protein overcomes the inability of FeSOD to permeate the cell membrane, exhibits synergistic apoptotic effects on K562 and HL-60 cells and demonstrates minimal toxicity to normal T cells and the normal liver cell line LO2, indicating its potential value for the treatment of leukemia.
Collapse
Affiliation(s)
- Hongyun Tang
- Institute of Biochemistry, College of Life Sciences, Zijingang campus, Room 345, Zhejiang University, Hangzhou, PR China
| | | | | | | |
Collapse
|
177
|
Kang Z, Chen JJ, Yu Y, Li B, Sun SY, Zhang B, Cao L. Drozitumab, a human antibody to death receptor 5, has potent antitumor activity against rhabdomyosarcoma with the expression of caspase-8 predictive of response. Clin Cancer Res 2011; 17:3181-92. [PMID: 21385927 DOI: 10.1158/1078-0432.ccr-10-2874] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Rhabdomyosarcoma (RMS) is a common pediatric soft-tissue tumor. In this study, we evaluated the efficacy and selectivity of drozitumab, a death receptor DR5-targeted therapeutic antibody, in RMS preclinical models. EXPERIMENTAL DESIGN A panel of 11 RMS cell lines was used for in vitro studies. The molecular marker predictive of response to drozitumab was interrogated. Selected RMS cell lines were injected into the gastrocnemius muscle of mice for in vivo assessment of the potency and selectivity of drozitumab. RESULTS We report that DR5, but not DR4, persisted at high levels and on the surface of all RMS cell lines. DR5 antibody drozitumab was effective in vitro against the majority of RMS cell lines. There was a strong correlation between caspase-8 expression and the sensitivity to drozitumab, which induced the rapid assembly of the death-induced signaling complex and the cleavage of caspase-8 only in sensitive cells. More importantly, caspase-8 catalytic activity was both necessary and sufficient for mediating the sensitivity to drozitumab. Furthermore, drozitumab had potent antitumor activity against established RMS xenografts with a specificity predicted from the in vitro analysis and with tumor-free status in half of the treated mice. CONCLUSION Our study provides the first preclinical evaluation of the potency and selectivity of a death receptor antibody in RMS. Drozitumab is effective, in vitro, against the majority of RMS cell lines that express caspase-8 and, in vivo, may provide long-term control of RMS.
Collapse
Affiliation(s)
- Zhigang Kang
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
178
|
Singhal SS, Wickramarachchi D, Yadav S, Singhal J, Leake K, Vatsyayan R, Chaudhary P, Lelsani P, Suzuki S, Yang S, Awasthi YC, Awasthi S. Glutathione-conjugate transport by RLIP76 is required for clathrin-dependent endocytosis and chemical carcinogenesis. Mol Cancer Ther 2011; 10:16-28. [PMID: 21220488 PMCID: PMC3065778 DOI: 10.1158/1535-7163.mct-10-0699] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Targeted depletion of the RALBP1-encoded 76-kDa splice variant, RLIP76, causes marked and sustained regression of human xenografts of lung, colon, prostate, and kidney cancers without toxicity in nude mouse models. We proposed that the remarkable efficacy and broad spectrum of RLIP76-targeted therapy is because its glutathione-conjugate (GS-E) transport activity is required for clathrin-dependent endocytosis (CDE), which regulates all ligand-receptor signaling, and that RLIP76 is required not only for survival of cancer cells but also for their very existence. We studied RLIP76 mutant proteins and the functional consequences of their expression into RLIP76(-/-) MEFs, identified key residues for GS-E binding in RLIP76, established the requirement of RLIP76-mediated GS-E transport for CDE, and showed a direct correlation between GS-E transport activities with CDE. Depletion of RLIP76 nearly completely blocked signaling downstream of EGF in a CDE-dependent manner and Wnt5a signaling in a CDE-independent manner. The seminal prediction of this hypothesis-RLIP76(-/-) mice will be deficient in chemical neoplasia-was confirmed. Benzo[a]pyrene, dimethylbenzanthracene, and phorbol esters are ineffective in causing neoplasia in RLIP76(-/-). PMA-induced skin carcinogenesis in RLIP76(+/+) mouse was suppressed completely by depletion of either PKCα or RLIP76 by siRNA or antisense and could be restored by topical application of RLIP76 protein in RLIP76(-/-) mouse skin. Likewise, chemical pulmonary carcinogenesis was absent in female and nearly absent in male RLIP76(-/-) mice. In RLIP76(-/-) mice, p53, p38, and JNK activation did not occur in response to either carcinogen. Our findings show a fundamental role of RLIP76 in chemical carcinogenesis.
Collapse
Affiliation(s)
- Sharad S Singhal
- Corresponding Authors: Sanjay Awasthi or Sharad S. Singhal, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Berger A, Quast SA, Plötz M, Hein M, Kunz M, Langer P, Eberle J. Sensitization of melanoma cells for death ligand-induced apoptosis by an indirubin derivative—Enhancement of both extrinsic and intrinsic apoptosis pathways. Biochem Pharmacol 2011; 81:71-81. [DOI: 10.1016/j.bcp.2010.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/09/2010] [Accepted: 09/10/2010] [Indexed: 02/07/2023]
|
180
|
Yang A, Wilson NS, Ashkenazi A. Proapoptotic DR4 and DR5 signaling in cancer cells: toward clinical translation. Curr Opin Cell Biol 2010; 22:837-44. [DOI: 10.1016/j.ceb.2010.08.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/04/2010] [Accepted: 08/05/2010] [Indexed: 01/14/2023]
|
181
|
Brunelle JK, Zhang B. Apoptosis assays for quantifying the bioactivity of anticancer drug products. Drug Resist Updat 2010; 13:172-9. [DOI: 10.1016/j.drup.2010.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 09/06/2010] [Accepted: 09/07/2010] [Indexed: 01/23/2023]
|
182
|
Lin T, Ding Z, Li N, Xu J, Luo G, Liu J, Shen J. 2-Tellurium-bridged β-cyclodextrin, a thioredoxin reductase inhibitor, sensitizes human breast cancer cells to TRAIL-induced apoptosis through DR5 induction and NF-κB suppression. Carcinogenesis 2010; 32:154-67. [PMID: 21081474 DOI: 10.1093/carcin/bgq234] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) exhibits potent antitumor activity via membrane receptors on cancer cells without deleterious side effects for normal tissue. Unfortunately, breast cancer cells, as many other cancer types, develop resistance to TRAIL; therefore, TRAIL sensitizing agents are currently being explored. 2-Tellurium-bridged β-cyclodextrin (2-TeCD) is a synthetic organotellurium compound, with both glutathione peroxidase-like catalytic ability and thioredoxin reductase inhibitor activity. In the present study, we reported that 2-TeCD sensitized TRAIL-resistant human breast cancer cells and xenograft tumors to undergo apoptosis. In vitro, 2-TeCD efficiently sensitized MDA-MB-468 and T47D cells, but not untransformed human mammary epithelial cells, to TRAIL-mediated apoptosis, as evidenced by enhanced caspase activity and poly (adenosine diphosphate-ribose) polymerase cleavage. From a mechanistic standpoint, we showed that 2-TeCD treatment of breast cancer cells significantly upregulated the messenger RNA and protein levels of TRAIL receptor, death receptor (DR) 5, in a transcription factor Sp1-dependent manner. 2-TeCD treatment also suppressed TRAIL-induced nuclear factor-κB (NF-κB) prosurvival pathways by preventing cytosolic IκBα degradation, as well as p65 nuclear translocation. Consequently, the combined administration suppressed anti-apoptotic molecules that are transcriptionally regulated by NF-κB. In vivo, 2-TeCD and TRAIL were well tolerated in mice and their combination significantly inhibited growth of MDA-MB-468 xenografts and promoted apoptosis. Upregulation of DR5 and downregulation of NF-κB by the dual treatment were also observed in tumor tissues. Overall, 2-TeCD sensitizes resistant breast cancer cells to TRAIL-based apoptosis in vitro and in vivo. These findings provide strong evidence for the therapeutic potential of this combination against breast cancers.
Collapse
Affiliation(s)
- Tingting Lin
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
183
|
Expression, Cellular Distribution, and Prognostic Relevance of TRAIL Receptors in Hepatocellular Carcinoma. Clin Cancer Res 2010; 16:5529-38. [DOI: 10.1158/1078-0432.ccr-09-3403] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
184
|
Tumour-mediated TRAIL-Receptor expression indicates effective apoptotic depletion of infiltrating CD8+ immune cells in clinical colorectal cancer. Eur J Cancer 2010; 46:2314-23. [PMID: 20580220 DOI: 10.1016/j.ejca.2010.05.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 05/19/2010] [Accepted: 05/24/2010] [Indexed: 12/15/2022]
Abstract
Expression of apoptosis-related proteins on tumour cells has been shown in several experimental models to be an efficient mechanism for a counterattack against host anti-tumour immune responses in solid tumours. Here we provide a clinical evidence for such a tumour immune escape mechanism by demonstrating tumour to T cell-directed death receptor signalling (TRAIL/TRAIL-Receptor (TRAIL-R)) in colorectal cancer (CRC). In a series of patients with CRC and completed 5-year follow up, we investigated apoptosis and expression levels of apoptosis-related proteins. Gene and protein profiles in the tumours demonstrated intratumoural upregulated gene expression for Fas, Fas-L, TRAIL, TRAIL-R and TNF-alpha (RT-qPCR). Levels of terminaldeoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick-end labelling (TUNEL)-positive events were positively correlated with TRAIL-R1-expression on tumour infiltrating immune cells. Among the immune cells, preferentially CD8+ T cells were found to express TRAIL-R1 while serial immunostaining in the same patient tumours showed abundant apoptotic (TUNEL-positive) immune cells. In conclusion, our results in tumour samples from CRC patients suggest TRAIL-R1-mediated apoptotic depletion of infiltrating immune cells (CD8+) in response to TRAIL expression by the tumour itself. This supports the notion of an efficient escape from tumour immune response and thus evasion from the attack of activated CD8+ T cells. These findings may enhance our understanding of tumour progression in CRC and might be helpful for the development of TRAIL and its death receptor-based therapy.
Collapse
|
185
|
Hirata H, Hinoda Y, Zaman MS, Chen Y, Ueno K, Majid S, Tripsas C, Rubin M, Chen LM, Dahiya R. Function of UDP-glucuronosyltransferase 2B17 (UGT2B17) is involved in endometrial cancer. Carcinogenesis 2010; 31:1620-6. [PMID: 20554747 DOI: 10.1093/carcin/bgq124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Endometrial cancer (EC) is a steroid hormone-dependent cancer. Uridine 5'-diphospho-glucuronosyltransferase enzymes conjugate and detoxify endogenous and exogenous steroid hormones and environmental carcinogens. Among these enzymes, the function of UGT2B17 is unknown except for glucuronidation. The messenger RNA expression of UGT2B17 and myeloid cell leukemia-1 (Mcl-1) was significantly increased in EC tissues compared with matched normal endometrial tissues. Therefore, we focused on the function of UGT2B17 in EC. A total of nine patients with confirmed EC were enrolled in this study to investigate the expression of UGT2B17 and target genes. EC cell lines were used for functional tests including cell growth, invasion, apoptosis and cell cycle analyses. To find the target genes of UGT2B17, we performed microarray analysis to see which genes were upregulated or downregulated by UGT2B17-transfected cells. Functional analysis showed decreased numbers of viable cells and increased numbers of apoptotic cells in si-UGT2B17-transfected Ishikawa cells. Among microarray target genes, Mcl-1 was significantly downregulated in si-UGT2B17-transfected cells. We also found upregulation of Puma protein, a target of Mcl-1, in si-UGT2B17-transfected cells. This is the first report to show that UGT2B17 and Mcl-1 expression are upregulated in EC tissues and that UGT2B17 depletion induces inhibition of cell growth and apoptosis in EC cells through Mcl-1 downregulation.
Collapse
Affiliation(s)
- Hiroshi Hirata
- Department of Urology, Veterans Affairs Medical Center and University of California at San Francisco, 4150 Clement Street, San Francisco, CA 94121, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Yoshida T, Zhang Y, Rivera Rosado LA, Zhang B. Repeated Treatment with Subtoxic Doses of TRAIL Induces Resistance to Apoptosis through Its Death Receptors in MDA-MB-231 Breast Cancer Cells. Mol Cancer Res 2009; 7:1835-44. [DOI: 10.1158/1541-7786.mcr-09-0244] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
187
|
Sensitization of human K562 leukemic cells to TRAIL-induced apoptosis by inhibiting the DNA-PKcs/Akt-mediated cell survival pathway. Biochem Pharmacol 2009; 78:573-82. [DOI: 10.1016/j.bcp.2009.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/12/2009] [Accepted: 05/13/2009] [Indexed: 01/09/2023]
|
188
|
Rozanov DV, Savinov AY, Golubkov VS, Rozanova OL, Postnova TI, Sergienko EA, Vasile S, Aleshin AE, Rega MF, Pellecchia M, Strongin AY. Engineering a leucine zipper-TRAIL homotrimer with improved cytotoxicity in tumor cells. Mol Cancer Ther 2009; 8:1515-25. [PMID: 19509255 DOI: 10.1158/1535-7163.mct-09-0202] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Successful cancer therapies aim to induce selective apoptosis in neoplastic cells. The current suboptimal efficiency and selectivity drugs have therapeutic limitations and induce concomitant side effects. Recently, novel cancer therapies based on the use of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) have emerged. TRAIL, a key component of the natural antitumor immune response, selectively kills many tumor cell types. Earlier studies with recombinant TRAIL, however, revealed its many shortcomings including a short half-life, off-target toxicity, and existence of TRAIL-resistant tumor cells. We improved the efficacy of recombinant TRAIL by redesigning its structure and the expression and purification procedures. The result is a highly stable leucine zipper (LZ)-TRAIL chimera that is simple to produce and purify. This chimera functions as a trimer in a manner that is similar to natural TRAIL. The formulation of the recombinant LZ-TRAIL we have developed has displayed high specific activity in both cell-based assays in vitro and animal tests in vivo. Our results have shown that the half-life of LZ-TRAIL is improved and now exceeds 1 h in mice compared with a half-life of only minutes reported earlier for recombinant TRAIL. We have concluded that our LZ-TRAIL construct will serve as a foundation for a new generation of fully human LZ-TRAIL proteins suitable for use in preclinical and clinical studies and for effective combination therapies to overcome tumor resistance to TRAIL.
Collapse
Affiliation(s)
- Dmitri V Rozanov
- Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Sun XM, Canda-Sánchez A, Manjeri GR, Cohen GM, Pinkoski MJ. Phenylarsine oxide interferes with the death inducing signaling complex and inhibits tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induced apoptosis. Exp Cell Res 2009; 315:2453-62. [PMID: 19465019 DOI: 10.1016/j.yexcr.2009.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 05/08/2009] [Accepted: 05/14/2009] [Indexed: 12/15/2022]
Abstract
The mechanism by which tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces death is the subject of intense scrutiny due to its preferential targeting of transformed cells for deletion. Based on recent findings that the TRAIL-dependent death inducing signaling complex (DISC) forms and signals at the plasma membrane without being internalized, we investigated the possibility that agents that prevent endocytosis may stabilize the surface bound DISC and thereby enhance TRAIL-dependent signaling. We utilized phenylarsine oxide (PAO), a trivalent arsenical that has been reported to inhibit endocytosis and to induce mitochondrial permeability transition. Therefore PAO could, by two separate and independent activities, enhance TRAIL-induced killing. Paradoxically, we found that rather than synergizing with TRAIL, PAO was an effective inhibitor of TRAIL-induced killing. Recruitment of FADD and caspase-8 to the TRAIL-dependent DISC was diminished in a concentration-dependent manner in cells exposed to PAO. The effects of PAO could not be reversed by washing cells under non-reducing conditions, suggesting covalent linkage of PAO with its cellular target(s); however, 2,3-dimercaptoethanol effectively overcame the inhibitory action of PAO and restored sensitivity to TRAIL-induced apoptosis. PAO inhibited formation of the TRAIL-dependent DISC and therefore prevented all subsequent apoptotic events.
Collapse
Affiliation(s)
- Xiao-Ming Sun
- Medical Research Council Toxicology Unit, University of Leicester, Hodgkin Building, PO Box 138, Leicester LE1 9HN, UK
| | | | | | | | | |
Collapse
|
190
|
Jin J, Liu H, Yang C, Li G, Liu X, Qian Q, Qian W. Effective gene-viral therapy of leukemia by a new fiber chimeric oncolytic adenovirus expressing TRAIL: in vitro and in vivo evaluation. Mol Cancer Ther 2009; 8:1387-97. [PMID: 19417152 DOI: 10.1158/1535-7163.mct-08-0962] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Conditionally replicating adenoviruses (CRAd) have been under extensive investigations as anticancer agents. Previously, we found that ZD55, an adenovirus serotype 5-based CRAd, infected and killed the leukemia cells expressing coxsackie adenovirus receptor (CAR). However, majority of leukemic cells lack CAR expression on their cell surface, resulting in resistance to CRAd infection. In this study, we showed that SG235, a novel fiber chimeric CRAd that has Ad35 tropism, permitted CAR-independent cell entry, and this in turn produced selective cytopathic effects in a variety of human leukemic cells in vitro and in vivo. Moreover, SG235 expressing exogenous tumor necrosis factor-related apoptosis-inducing ligand (SG235-TRAIL) effectively induced apoptosis of leukemic cells via the activation of extrinsic and intrinsic apoptotic pathway and elicited a superior antileukemia activity compared with SG235. In addition, normal hematopoietic progenitors were resistant to the inhibitory activity of SG235 and SG235-TRAIL. Our data suggest that these novel oncolytic agents may serve as useful tools for the treatment of leukemia.
Collapse
Affiliation(s)
- Jie Jin
- Key Lab of Combined Multi-Organ Transplantation, Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Ministry of Public Health, Hangzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
191
|
Abstract
Breast cancers can be classified into those which express the estrogen (ER) and progesterone (PR) receptors, those with HER-2 amplification, and those without expression of ER, PR, or amplified HER-2 (referred to as triple-negative or basal-like breast cancer). Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) activates apoptosis upon binding to its receptors in many tumor types and the ligand and agonist antibodies are currently being studied in patients in clinical phases I and II trials. Cell line studies suggest that many breast cancer cell lines are very resistant to TRAIL-induced apoptosis. However, recent data suggest that a subset of triple-negative/basal-like breast cancer cells is sensitive to TRAIL as a single agent. In addition, many studies have demonstrated that resistance to TRAIL-mediated apoptosis in breast cancer cells can be overcome by combinations of TRAIL with chemotherapy, radiation, and various targeted agents. This chapter will discuss the current understanding of the mechanisms, which control TRAIL-mediated apoptosis in breast cancer cells. The preclinical data supporting the use of TRAIL ligands and agonistic antibodies alone and in combination in breast cancer will also be discussed.
Collapse
Affiliation(s)
- Monzur Rahman
- Department of Pediatric Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|