151
|
Nanoudis S, Pikilidou M, Yavropoulou M, Zebekakis P. The Role of MicroRNAs in Arterial Stiffness and Arterial Calcification. An Update and Review of the Literature. Front Genet 2017; 8:209. [PMID: 29312437 PMCID: PMC5733083 DOI: 10.3389/fgene.2017.00209] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022] Open
Abstract
Arterial stiffness is an independent risk factor for fatal and non-fatal cardiovascular events, such as systolic hypertension, coronary artery disease, stroke, and heart failure. Moreover it reflects arterial aging which in many cases does not coincide with chronological aging, a fact that is in large attributed to genetic factors. In addition to genetic factors, microRNAs (miRNAs) seem to largely affect arterial aging either by advancing or by regressing arterial stiffness. MiRNAs are small RNA molecules, ~22 nucleotides long that can negatively control their target gene expression posttranscriptionally. Pathways that affect main components of stiffness such as fibrosis and calcification seem to be influenced by up or downregulation of specific miRNAs. Identification of this aberrant production of miRNAs can help identify epigenetic changes that can be therapeutic targets for prevention and treatment of vascular diseases. The present review summarizes the specific role of the so far discovered miRNAs that are involved in pathways of arterial stiffness.
Collapse
Affiliation(s)
- Sideris Nanoudis
- Hypertension Excellence Center, 1st Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Maria Pikilidou
- Hypertension Excellence Center, 1st Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Maria Yavropoulou
- Division of Endocrinology and Metabolism, AHEPA University Hospital, Thessaloniki, Greece
| | - Pantelis Zebekakis
- Hypertension Excellence Center, 1st Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
152
|
Lightell DJ, Moss SC, Woods TC. Upregulation of miR-221 and -222 in response to increased extracellular signal-regulated kinases 1/2 activity exacerbates neointimal hyperplasia in diabetes mellitus. Atherosclerosis 2017; 269:71-78. [PMID: 29276985 DOI: 10.1016/j.atherosclerosis.2017.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Diabetes is associated with accelerated arterial intimal thickening that contributes to the increased cardiovascular disease seen in this population. In healthy arteries, intimal thickening is inhibited by elevated levels of the cyclin-dependent kinase inhibitor, p27Kip1, and intimal thickening is promoted by activation of the mammalian Target of Rapamycin to promote degradation of p27Kip1 protein. Recently, we reported that two microRNAs, miR-221 and -222, which promote intimal thickening via down-regulation of mRNA encoding p27Kip1, are elevated in the arteries of diabetic patients. To determine if these miRNAs are critical to the increased intimal thickening under diabetic conditions, we examined the regulation of p27Kip1in a mouse model of diabetes. METHODS Comparisons of p27Kip1 signaling in NONcNZO10 mice fed a diabetogenic versus control diet were performed using immunochemistry and real-time PCR. RESULTS Vascular smooth muscle cells and arteries of diabetic mice exhibited decreased levels of p27Kip1 that derived from destabilization of p27Kip1 mRNA in an extracellular signal response kinase-1/2 (ERK-1/2) dependent manner. The activity of ERK-1/2 is increased in the arteries of diabetic mice and promotes an increase in miR-221 and -222. Inhibition of miR-221 and -222 restores normal levels of p27Kip1 mRNA and protein in the arteries of diabetic mice and reduces intimal thickening following wire injury. CONCLUSIONS These data suggest diabetes is accompanied by increases in arterial miR-221 and -222 expression that promotes intimal thickening. Inhibition of the increased miR-221 and -222 may be efficacious in the prevention of the cardiovascular complications of diabetes.
Collapse
Affiliation(s)
- Daniel J Lightell
- Department of Physiology and the Section of Cardiology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA; Laboratory of Molecular Cardiology, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Stephanie C Moss
- Laboratory of Molecular Cardiology, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - T Cooper Woods
- Department of Physiology and the Section of Cardiology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA; Laboratory of Molecular Cardiology, Ochsner Clinic Foundation, New Orleans, LA, USA.
| |
Collapse
|
153
|
Qian LB, Jiang SZ, Tang XQ, Zhang J, Liang YQ, Yu HT, Chen J, Xu Z, Liu RM, Keller BB, Ji HL, Cai L. Exacerbation of diabetic cardiac hypertrophy in OVE26 mice by angiotensin II is associated with JNK/c-Jun/miR-221-mediated autophagy inhibition. Oncotarget 2017; 8:106661-106671. [PMID: 29290979 PMCID: PMC5739764 DOI: 10.18632/oncotarget.21302] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/18/2017] [Indexed: 12/31/2022] Open
Abstract
Both diabetes and angiotensin II (Ang II) excess trigger cardiac remodeling and dysfunction, and diabetic cardiomyopathy. We hypothesized that cardiac hypertrophy associated with the development of diabetic cardiomyopathy is worsened by increased Ang II. Male type 1 diabetic OVE26 and wild-type mice were given Ang II (sc., 1.15 mg/kg, twice a day) for 14 days. Diabetes-induced cardiac dysfunction and hypertrophy was exacerbated by Ang II treatment as determined by echocardiography, wheat germ agglutinin staining and atrial natriuretic peptide. Ang II treatment dramatically exacerbated diabetes-caused decreased LC3-II, a marker of autophagy, and increased p62, an indicator of cytosolic protein clearance. Ang II treatment also augmented diabetes-associated increased phosphorylated levels of c-Jun, JNK, mTOR, and miR-221, and decreased of p27 expression, a direct target of miR-221. Chromatin immunoprecipitation assay showed that Ang II elevated c-Jun binding to the promoter of miR-221 in diabetic mice. These results suggest that Ang II accelerates cardiac hypertrophy in the early stage of murine diabetes, probably through activation of the JKN/c-Jun/miR-221 axis and inhibition of downstream autophagy. Therefore, inhibition of Ang II or miR-221 in diabetic individuals may be a potential approach for delaying the onset and/or reducing the severity of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Ling-Bo Qian
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China
- Department of Basic Medical Sciences, Hangzhou Medical College, Hangzhou 310053, China
- Pediatric Research Institute, Department of Pediatrics of the University of Louisville, Louisville, Kentucky 40202, USA
| | - Sai-Zhi Jiang
- Pediatric Research Institute, Department of Pediatrics of the University of Louisville, Louisville, Kentucky 40202, USA
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiao-Qiang Tang
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China
- Pediatric Research Institute, Department of Pediatrics of the University of Louisville, Louisville, Kentucky 40202, USA
| | - Jian Zhang
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China
- Pediatric Research Institute, Department of Pediatrics of the University of Louisville, Louisville, Kentucky 40202, USA
| | - Ya-Qin Liang
- Pediatric Research Institute, Department of Pediatrics of the University of Louisville, Louisville, Kentucky 40202, USA
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hai-Tao Yu
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China
- Pediatric Research Institute, Department of Pediatrics of the University of Louisville, Louisville, Kentucky 40202, USA
| | - Jing Chen
- Pediatric Research Institute, Department of Pediatrics of the University of Louisville, Louisville, Kentucky 40202, USA
| | - Zheng Xu
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China
- Pediatric Research Institute, Department of Pediatrics of the University of Louisville, Louisville, Kentucky 40202, USA
| | - Rui-Ming Liu
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294, USA
| | - Bradley B. Keller
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky 40202, USA
| | - Hong-Lei Ji
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China
- Pediatric Research Institute, Department of Pediatrics of the University of Louisville, Louisville, Kentucky 40202, USA
| | - Lu Cai
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China
- Pediatric Research Institute, Department of Pediatrics of the University of Louisville, Louisville, Kentucky 40202, USA
| |
Collapse
|
154
|
Cilostazol attenuates intimal hyperplasia in a mouse model of chronic kidney disease. PLoS One 2017; 12:e0187872. [PMID: 29206849 PMCID: PMC5716535 DOI: 10.1371/journal.pone.0187872] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 10/29/2017] [Indexed: 11/21/2022] Open
Abstract
Intimal hyperplasia (IH) is a common cause of vasculopathy due to direct endothelial damage (such as post-coronary revascularization) or indirect injury (such as chronic kidney disease, or CKD). Although the attenuation of coronary revascularization-induced IH (direct-vascular-injury-induced IH) by cilostazol, a phosphodiesterase III inhibitor, has been demonstrated, our understanding of the effect on CKD-induced IH (indirect-vascular-injury-induced IH) is limited. Herein, we tested if cilostazol attenuated CKD-induced IH in a mouse model of ischemic-reperfusion injury with unilateral nephrectomy (Chr I/R), a normotensive non-proteinuria CKD model. Cilostazol (50 mg/kg/day) or placebo was orally administered once daily from 1-week post-nephrectomy. At 20 weeks, cilostazol significantly attenuated aortic IH as demonstrated by a 34% reduction in the total intima area with 50% and 47% decreases in the ratios of tunica intima area/tunica media area and tunica intima area/(tunica intima + tunica media area), respectively. The diameters of aorta and renal function were unchanged by cilostazol. Interestingly, cilostazol decreased miR-221, but enhanced miR-143 and miR-145 in either in vitro or aortic tissue, as well as attenuated several pro-inflammatory mediators, including asymmetrical dimethylarginine, high-sensitivity C-reactive protein, vascular endothelial growth factor in aorta and serum pro-inflammatory cytokines (IL-6 and TNF-α). We demonstrated a proof of concept of the effectiveness of cilostazol in attenuating IH in a Chr I/R mouse model, a CKD model with predominantly indirect-vascular-injury-induced IH. These considerations warrant further investigation to develop a new primary prevention strategy for CKD-related IH.
Collapse
|
155
|
Yu F, Pillman KA, Neilsen CT, Toubia J, Lawrence DM, Tsykin A, Gantier MP, Callen DF, Goodall GJ, Bracken CP. Naturally existing isoforms of miR-222 have distinct functions. Nucleic Acids Res 2017; 45:11371-11385. [PMID: 28981911 PMCID: PMC5737821 DOI: 10.1093/nar/gkx788] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022] Open
Abstract
Deep-sequencing reveals extensive variation in the sequence of endogenously expressed microRNAs (termed ‘isomiRs’) in human cell lines and tissues, especially in relation to the 3′ end. From the immunoprecipitation of the microRNA-binding protein Argonaute and the sequencing of associated small RNAs, we observe extensive 3′-isomiR variation, including for miR-222 where the majority of endogenously expressed miR-222 is extended by 1–5 nt compared to the canonical sequence. We demonstrate this 3′ heterogeneity has dramatic implications for the phenotype of miR-222 transfected cells, with longer isoforms promoting apoptosis in a size (but not 3′ sequence)-dependent manner. The transfection of longer miR-222 isomiRs did not induce an interferon response, but did downregulate the expression of many components of the pro-survival PI3K-AKT pathway including PIK3R3, a regulatory subunit whose knockdown phenocopied the expression of longer 222 isoforms in terms of apoptosis and the inhibition of other PI3K-AKT genes. As this work demonstrates the capacity for 3′ isomiRs to mediate differential functions, we contend more attention needs to be given to 3′ variance given the prevalence of this class of isomiR.
Collapse
Affiliation(s)
- Feng Yu
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Corine T Neilsen
- School of Health, Medical and Applied Sciences, Central Queensland University, Queensland 4000, Australia
| | - John Toubia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - David M Lawrence
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Anna Tsykin
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Michael P Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - David F Callen
- School of Medicine, Discipline of Medicine, University of Adelaide, SA 5000, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,School of Medicine, Discipline of Medicine, University of Adelaide, SA 5000, Australia
| | - Cameron P Bracken
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,School of Medicine, Discipline of Medicine, University of Adelaide, SA 5000, Australia
| |
Collapse
|
156
|
miR-221 modulates skeletal muscle satellite cells proliferation and differentiation. In Vitro Cell Dev Biol Anim 2017; 54:147-155. [PMID: 29197032 DOI: 10.1007/s11626-017-0210-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/12/2017] [Indexed: 01/16/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, which play important roles in animals by targeting mRNA transcripts for translational repression. Many recent studies have shown that miRNAs are involved in the control of muscle development. In this study, the expression levels of miR-221 in different tissues and during rabbit skeletal muscle satellite cells (SMSCs) differentiation were detected. Gene ontology term enrichment was used to predict the potential biological roles of miR-221. A synthetic miR-221 mimic and a miR-221 inhibitor were used to investigate the functions of miR-221 during SMSCs proliferation and differentiation to further verify the functions of miR-221 in muscle development. In this report, we compared the expression levels of miR-221 in different tissues. The expression levels of miR-221 were upregulated after the induction of differentiation, and then were gradually downregulated during SMSCs differentiation. Overexpression of miR-221 promoted SMSCs proliferation, whereas inhibiting expression restrained proliferation in the EdU and CCK-8 assays. In addition, overexpression of miR-221 led to a decline in the expression levels of the differentiation marker genes MyoG and MHC. miR-221 overexpression suppressed SMSCs myotube formation. On the contrary, inhibition of miR-221 promoted myotube formation. Our data showed that miR-221 increased SMSCs proliferation and decreased differentiation.
Collapse
|
157
|
Decoding resistant hypertension signalling pathways. Clin Sci (Lond) 2017; 131:2813-2834. [PMID: 29184046 DOI: 10.1042/cs20171398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 01/01/2023]
Abstract
Resistant hypertension (RH) is a clinical condition in which the hypertensive patient has become resistant to drug therapy and is often associated with increased cardiovascular morbidity and mortality. Several signalling pathways have been studied and related to the development and progression of RH: modulation of sympathetic activity by leptin and aldosterone, primary aldosteronism, arterial stiffness, endothelial dysfunction and variations in the renin-angiotensin-aldosterone system (RAAS). miRNAs comprise a family of small non-coding RNAs that participate in the regulation of gene expression at post-transcriptional level. miRNAs are involved in the development of both cardiovascular damage and hypertension. Little is known of the molecular mechanisms that lead to development and progression of this condition. This review aims to cover the potential roles of miRNAs in the mechanisms associated with the development and consequences of RH, and explore the current state of the art of diagnostic and therapeutic tools based on miRNA approaches.
Collapse
|
158
|
Sahu A, Jha PK, Prabhakar A, Singh HD, Gupta N, Chatterjee T, Tyagi T, Sharma S, Kumari B, Singh S, Nair V, Goel S, Ashraf MZ. MicroRNA-145 Impedes Thrombus Formation via Targeting Tissue Factor in Venous Thrombosis. EBioMedicine 2017; 26:175-186. [PMID: 29217135 PMCID: PMC5832640 DOI: 10.1016/j.ebiom.2017.11.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 11/07/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022] Open
Abstract
Venous thromboembolism (VTE), the third leading cardiovascular complication, requires more understanding at molecular levels. Here, we have identified miR-145 as a key molecule for regulating thrombus formation in venous thrombosis (VT) employing network based bioinformatics approach and in vivo experiments. Levels of miR-145 showed an inverse correlation with thrombus load determined by coagulation variables. MiRNA target prediction tools and in vitro study identified tissue factor (TF) as a target gene for miR-145. The restoration of miR-145 levels in thrombotic animals via in vivo miR-145 mimic delivery resulted in decreased TF level and activity, accompanied by reduced thrombogenesis. MiR-145 levels were also reduced in VT patients and correlated with increased TF levels in patients, thereby, confirming our preclinical findings. Our study identifies a previously undescribed role of miRNA in VT by regulating TF expression. Therefore, restoration of miR-145 levels may serve as a promising therapeutic strategy for management of VT. MiR-145 is a regulator of venous thrombus formation. Tissue factor is a direct target of miR-145. MiR-145 is down regulated in human venous thrombosis patients. Restoration of miRNA-145 via in vivo miRNA mimic delivery attenuated thrombus formation.
In this study we provide an insight into the molecular mechanisms of VT regulated by miRNA. Multiple investigations conducted with animal model and VT patients showed relatively reduced miR-145 expression levels under diseased condition. MiR-145 play important role in thrombus formation by regulating TF expression which have a critical role in VT. MiR-145 overexpression in animal model of VT reduces TF levels and attenuates thrombus formation which might have important implications for miRNA based therapeutic strategies in VT. This study highlights the role of miR-145 in the etiopathology of VT and also underscores the use of miR-145 mimic as an advancement to the field.
Collapse
Affiliation(s)
- Anita Sahu
- Defence Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| | | | - Amit Prabhakar
- Defence Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| | | | - Neha Gupta
- Defence Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| | | | - Tarun Tyagi
- Defence Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| | - Swati Sharma
- Defence Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| | - Babita Kumari
- Defence Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| | - Somnath Singh
- Defence Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| | - Velu Nair
- Armed Forces Medical College, Pune, India
| | | | - Mohammad Zahid Ashraf
- Defence Institute of Physiology and Allied Sciences, DRDO, Delhi, India; Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
159
|
Zhan J, Qin S, Lu L, Hu X, Zhou J, Sun Y, Yang J, Liu Y, Wang Z, Tan N, Chen J, Zhang C. miR-34a is a common link in both HIV- and antiretroviral therapy-induced vascular aging. Aging (Albany NY) 2017; 8:3298-3310. [PMID: 27889708 PMCID: PMC5270669 DOI: 10.18632/aging.101118] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/09/2016] [Indexed: 02/01/2023]
Abstract
Both HIV and antiretroviral therapy could induce vascular aging with unclear mechanisms. In this study, via microarray analysis, we identified, for the first time, that miR-34a expression was significantly increased in both HIV-infected, and antiretroviral agents-treated vessels and vascular endothelial cells (ECs) from these vessels. In cultured ECs, miR-34a expression was significantly increased by HIV-Tat protein and by the antiretroviral agents, lopinavir/ritonavir. Both HIV-Tat protein and antiretroviral agents could induce EC senescence, which was inhibited by miR-34a inhibition. In contrast, EC senescence was exacerbated by miR-34a overexpression. In addition, the vascular ECs isolated from miR-34a knockout mice were resistant to HIV and antiretroviral agents-mediated senescence. In vivo, miR-34a expression in mouse vascular walls and their ECs was increased by antiretroviral therapy and by HIV-1 Tat transgenic approach. miR-34a inhibition could effectively inhibit both HIV-Tat protein and antiretroviral therapy-induced vascular aging in mice. The increased miR-34a was induced via p53, whereas Sirt1 was a downstream target gene of miR-34a in both HIV-Tat protein and antiretroviral agents-treated ECs and vessels. The study has demonstrated that miR-34a is a common link in both HIV and antiretroviral therapy-mediated vascular aging.
Collapse
Affiliation(s)
- Jiaxin Zhan
- Guangdong Key Laboratory of Coronary artery disease, Guangdong Cardiovascular Institute and Guangdong General Hospital, Guangzhou, 510100, China
| | - Shanshan Qin
- Department of Biomedical Engineering, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Lili Lu
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Xiamin Hu
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jun Zhou
- Department of Biomedical Engineering, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Yeying Sun
- Department of Biomedical Engineering, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jian Yang
- Department of Biomedical Engineering, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ying Liu
- Department of Biomedical Engineering, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Zunzhe Wang
- Department of Biomedical Engineering, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ning Tan
- Guangdong Key Laboratory of Coronary artery disease, Guangdong Cardiovascular Institute and Guangdong General Hospital, Guangzhou, 510100, China
| | - Jiyan Chen
- Guangdong Key Laboratory of Coronary artery disease, Guangdong Cardiovascular Institute and Guangdong General Hospital, Guangzhou, 510100, China
| | - Chunxiang Zhang
- Guangdong Key Laboratory of Coronary artery disease, Guangdong Cardiovascular Institute and Guangdong General Hospital, Guangzhou, 510100, China.,Department of Biomedical Engineering, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
160
|
Ham O, Lee SY, Song BW, Lee CY, Lee J, Seo HH, Kim SW, Lim S, Kim IK, Lee S, Hwang KC. Small molecule-mediated induction of miR-9 suppressed vascular smooth muscle cell proliferation and neointima formation after balloon injury. Oncotarget 2017; 8:93360-93372. [PMID: 29212155 PMCID: PMC5706801 DOI: 10.18632/oncotarget.21382] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/04/2017] [Indexed: 01/04/2023] Open
Abstract
Pathologic proliferation and migration of vascular smooth muscle cells (VSMCs) exacerbate cardiovascular disease. MicroRNAs (miRNAs), as endogenous inhibitors of protein synthesis, are expected to modulate pathologic proliferation of VSMCs. Here we report that both platelet-derived growth factor receptor (PDGFR) targeting miR-9 and a small molecule that increases miR-9 can inhibit the serum-induced proliferation of VSMCs. First, based on miRNA-target prediction databases and empirical data, we have selected miR-9 as a potent anti-proliferative miRNA in VSMCs. Further examination indicated that miR-9 directly targets PDGFR disrupting downstream signaling cascades, and this resulted in inhibition of VSMC proliferation and migration. Exogenous delivery of miR-9 inhibited VSMC proliferation in vitro, and a small molecule that increased miR-9 expression also inhibited neointima formation following balloon injury in vivo. We provide evidence of miRNA-mediated modulation of VSMC proliferation and further demonstrate that small molecule-mediated regulation of miRNA targeting a key regulator of VSMC proliferation is a viable therapeutic strategy for treating vascular disease involving pathologic VSMC proliferation such as restenosis.
Collapse
Affiliation(s)
- Onju Ham
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se-Yeon Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byeong-Wook Song
- EIT/LOFUS R&D Center, International St. Mary’s Hospital, Incheon, Republic of Korea
| | - Chang Youn Lee
- Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Jiyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyang-Hee Seo
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Incheon, Republic of Korea
| | - Soyeon Lim
- Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Il-Kwon Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Incheon, Republic of Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Incheon, Republic of Korea
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Incheon, Republic of Korea
| |
Collapse
|
161
|
Chen C, Yan Y, Liu X. microRNA-612 is downregulated by platelet-derived growth factor-BB treatment and has inhibitory effects on vascular smooth muscle cell proliferation and migration via directly targeting AKT2. Exp Ther Med 2017; 15:159-165. [PMID: 29399059 PMCID: PMC5768077 DOI: 10.3892/etm.2017.5428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/21/2017] [Indexed: 12/14/2022] Open
Abstract
Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) has been implicated in neointimal formation, and therefore is suggested to contribute to arteriosclerosis and restenosis. Previous studies have suggested that some microRNAs (miRs) serve crucial roles in VSMC proliferation and invasion; however, the underlying mechanism remains largely unknown. In the present study, it was demonstrated that treatment with platelet-derived growth factor (PDGF)-BB significantly promoted the proliferation and migration of VSMCs, and decreased miR-612 levels in VSMCs. Overexpression of miR-612 significantly inhibited PDGF-BB-induced migration and invasion of VSMCs, through inducing cell cycle arrest at G1 stage. AKT2 was further identified as a direct target gene of miR-612, and its expression was negatively regulated by miR-612 in VSMCs. Further investigation confirmed that overexpression of miR-612 suppressed the PDGF-BB-induced upregulation of AKT2 protein expression. In conclusion, the present study demonstrated that miR-612 is downregulated by PDGF-BB treatment and has inhibitory effects on VSMC proliferation and migration via targeting AKT2. These findings suggest that miR-612 may be used as a potential therapeutic candidate for neointimal formation in patients with atherosclerosis.
Collapse
Affiliation(s)
- Chen Chen
- Department of Cardiology, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, P.R. China
| | - Yan Yan
- Emergency Centre, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Xiaodan Liu
- Department of Hematology, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, P.R. China
| |
Collapse
|
162
|
Wang XW, Zhang C, Lee KC, He XJ, Lu ZQ, Huang C, Wu QC. Adenovirus-Mediated Gene Transfer of microRNA-21 Sponge Inhibits Neointimal Hyperplasia in Rat Vein Grafts. Int J Biol Sci 2017; 13:1309-1319. [PMID: 29104497 PMCID: PMC5666529 DOI: 10.7150/ijbs.20254] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023] Open
Abstract
Background:Vein graft failure due to neointimal hyperplasia remains an important and unresolved complication of cardiovascular surgery. microRNA-21 (miR-21) plays a major role in regulating vascular smooth muscle cell (VSMC) proliferation and phenotype transformation. Thus, the purpose of this study was to determine whether adenovirus-mediated miR-21 sponge gene therapy was able to inhibit neointimal hyperplasia in rat vein grafts. Methods:Adenovirus-mediated miR-21 sponge was used to inhibit VSMC proliferation in vitro and neointimal formation in vivo. To improve efficiency of delivery gene transfer to the vein grafts, 20% poloxamer F-127 gel was used to increase virus contact time and 0.25% trypsin to increase virus penetration. Morphometric analyses and cellular proliferation were assessed for neointimal hyperplasia and VSMC proliferation. Results:miR-21 sponge can significantly decrease the expression of miR-21 and proliferation in cultured VSMCs. Cellular proliferation rates were significantly reduced in miR-21 sponge-treated grafts compared with controls at 28 days after bypass surgery (14.6±9.4 vs 34.9±10.8%, P=0.0032). miR-21 sponge gene transfer therapy reduced the intimal/media area ratio in vein grafts compared with the controls (1.38±0.08 vs. 0.6±0.10, P<0.0001). miR-21 sponge treatment also improved vein graft hemodynamics. We further identified that phosphatase and tensin homolog (PTEN) is a potential target gene that was involved in the miR-21-mediated effect on neointimal hyperplasia in vein grafts. Conclusions:Adenovirus-mediated miR-21 sponge gene therapy effectively reduced neointimal formation in vein grafts. These results suggest that there is potential for miR-21 sponge to be used to prevent vein graft failure.
Collapse
Affiliation(s)
- Xiao-Wen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Department of Cardiothoracic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Centre for Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Kai-Chuen Lee
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiang-Jun He
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhi-Qian Lu
- Department of Cardiothoracic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chun Huang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qing-Chen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
163
|
Tang Y, Yu S, Liu Y, Zhang J, Han L, Xu Z. MicroRNA-124 controls human vascular smooth muscle cell phenotypic switch via Sp1. Am J Physiol Heart Circ Physiol 2017; 313:H641-H649. [PMID: 28667053 DOI: 10.1152/ajpheart.00660.2016] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 01/07/2023]
Abstract
Phenotypic switch of vascular smooth muscle cells (VSMCs) plays an important role in the pathogenesis of atherosclerosis and aortic dissection. However, the mechanisms of phenotypic modulation are still unclear. MicroRNAs have emerged as important regulators of VSMC function. We recently found that microRNA-124 (miR-124) was downregulated in proliferative vascular diseases that were characterized by a VSMC phenotypic switch. Therefore, we speculated that the aberrant expression of miR-124 might play a critical role in human aortic VSMC phenotypic switch. Using quantitative RT-PCR, we found that miR-124 was dramatically downregulated in the aortic media of clinical specimens of the dissected aorta and correlated with molecular markers of the contractile VSMC phenotype. Overexpression of miR-124 by mimicking transfection significantly attenuated platelet-derived growth factor-BB-induced human aortic VSMC proliferation and phenotypic switch. Furthermore, we identified specificity protein 1 (Sp1) as the downstream target of miR-124. A luciferase reporter assay was used to confirm direct miR-124 targeting of the 3'-untranslated region of the Sp1 gene and repression of Sp1 expression in human aortic VSMCs. Furthermore, constitutively active Sp1 in miR-124-overexpressing VSMCs reversed the antiproliferative effects of miR-124. These results demonstrated a novel mechanism of miR-124 modulation of VSMC phenotypic switch by targeting Sp1 expression.NEW & NOTEWORTHY Previous studies have demonstrated that miR-124 is involved in the proliferation of a variety of cell types. However, miRNAs are expressed in a tissue-specific manner. We first identified miR-124 as a critical regulator in human aortic vascular smooth muscle cell differentiation, proliferation, and phenotype switch by targeting the 3'-untranslated region of specificity protein 1.
Collapse
Affiliation(s)
- Yangfeng Tang
- Changhai Hospital of the Second Military College, Shanghai, China
| | - Shangyi Yu
- Changhai Hospital of the Second Military College, Shanghai, China
| | - Yang Liu
- Changhai Hospital of the Second Military College, Shanghai, China
| | - Jiajun Zhang
- Changhai Hospital of the Second Military College, Shanghai, China
| | - Lin Han
- Changhai Hospital of the Second Military College, Shanghai, China
| | - Zhiyun Xu
- Changhai Hospital of the Second Military College, Shanghai, China
| |
Collapse
|
164
|
Boyle EC, Sedding DG, Haverich A. Targeting vasa vasorum dysfunction to prevent atherosclerosis. Vascul Pharmacol 2017; 96-98:5-10. [DOI: 10.1016/j.vph.2017.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/15/2017] [Indexed: 01/19/2023]
|
165
|
Paloschi V, Maegdefessel L. Towards Point-of-Care Measurements Using Noncoding RNAs. ACTA ACUST UNITED AC 2017; 10:CIRCGENETICS.117.001859. [DOI: 10.1161/circgenetics.117.001859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Valentina Paloschi
- From the Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (V.P., L.M.); and Department of Medicine, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden (L.M.)
| | - Lars Maegdefessel
- From the Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (V.P., L.M.); and Department of Medicine, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden (L.M.)
| |
Collapse
|
166
|
Gomes CPC, Spencer H, Ford KL, Michel LYM, Baker AH, Emanueli C, Balligand JL, Devaux Y. The Function and Therapeutic Potential of Long Non-coding RNAs in Cardiovascular Development and Disease. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:494-507. [PMID: 28918050 PMCID: PMC5565632 DOI: 10.1016/j.omtn.2017.07.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 02/09/2023]
Abstract
The popularization of genome-wide analyses and RNA sequencing led to the discovery that a large part of the human genome, while effectively transcribed, does not encode proteins. Long non-coding RNAs have emerged as critical regulators of gene expression in both normal and disease states. Studies of long non-coding RNAs expressed in the heart, in combination with gene association studies, revealed that these molecules are regulated during cardiovascular development and disease. Some long non-coding RNAs have been functionally implicated in cardiac pathophysiology and constitute potential therapeutic targets. Here, we review the current knowledge of the function of long non-coding RNAs in the cardiovascular system, with an emphasis on cardiovascular development and biology, focusing on hypertension, coronary artery disease, myocardial infarction, ischemia, and heart failure. We discuss potential therapeutic implications and the challenges of long non-coding RNA research, with directions for future research and translational focus.
Collapse
Affiliation(s)
- Clarissa P C Gomes
- Cardiovascular Research Unit, Luxembourg Institute of Health, 1526 Luxembourg, Luxembourg
| | - Helen Spencer
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Kerrie L Ford
- Bristol Heart Institute, University of Bristol, Bristol BS8 1TH, UK
| | - Lauriane Y M Michel
- Unité de Pharmacologie et de Thérapeutique, Institut de Recherche Experimentale et Clinique, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Costanza Emanueli
- Bristol Heart Institute, University of Bristol, Bristol BS8 1TH, UK; National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Jean-Luc Balligand
- Unité de Pharmacologie et de Thérapeutique, Institut de Recherche Experimentale et Clinique, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, 1526 Luxembourg, Luxembourg.
| | | |
Collapse
|
167
|
Jansen F, Schäfer L, Wang H, Schmitz T, Flender A, Schueler R, Hammerstingl C, Nickenig G, Sinning JM, Werner N. Kinetics of Circulating MicroRNAs in Response to Cardiac Stress in Patients With Coronary Artery Disease. J Am Heart Assoc 2017; 6:JAHA.116.005270. [PMID: 28751542 PMCID: PMC5586407 DOI: 10.1161/jaha.116.005270] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Circulating microRNAs (miRNAs/miRs) are regulated in patients with coronary artery disease. The impact of transient coronary ischemia on circulating miRNA levels is unknown. We aimed to investigate circulating miRNA kinetics in response to cardiac stress in patients with or without significant coronary stenosis. Methods and Results Eighty of 105 screened patients with stable coronary artery disease underwent dobutamine stress echocardiography before coronary angiography. Nine circulating vascular miRNAs (miRNA‐21, miRNA‐26, miRNA‐27a, miRNA‐92a, miRNA‐126‐3p, miRNA‐133a, miRNA‐222, miRNA‐223, and miRNA‐199‐5p) were quantified in plasma by reverse transcription polymerase chain reaction before, immediately after, and 4 and 24 hours after dobutamine stress echocardiography. Quantitative polymerase chain reaction revealed increased miRNA‐21, miRNA‐126‐3p, and miRNA‐222 levels at 24 hours after dobutamine stress echocardiography in all patients. On coronary angiography, significant coronary artery stenoses (>80% diameter stenosis) were found in 41 patients. Stratifying patients according to the prevalence of significant stenoses, patients with stenosis showed an increase of circulating miRNA‐21, miRNA‐126‐3p, and miRNA‐222 in response to cardiac stress. In patients without significant stenoses (<50% diameter stenosis), miRNA‐92a levels gradually increased in response to cardiac stress. Conclusions miRNAs are distinctly released into the circulation in response to cardiac stress depending on the prevalence of significant coronary stenoses.
Collapse
Affiliation(s)
- Felix Jansen
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Lisa Schäfer
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Han Wang
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Theresa Schmitz
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Anna Flender
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Robert Schueler
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Christoph Hammerstingl
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Jan-Malte Sinning
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Nikos Werner
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| |
Collapse
|
168
|
Kumar MM, Goyal R. LncRNA as a Therapeutic Target for Angiogenesis. Curr Top Med Chem 2017; 17:1750-1757. [PMID: 27848894 DOI: 10.2174/1568026617666161116144744] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/25/2016] [Accepted: 09/21/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Out of 3 billion base pairs in human genome only ~2% code for proteins; and out of 180,000 transcripts in human cells, about 20,000 code for protein, remaining 160,000 are non-coding transcripts. Most of these transcripts are more than 200 base pairs and constitute a group of long non-coding RNA (lncRNA). Many of the lncRNA have its own promoter, and are well conserved in mammals. Accumulating evidence indicates that lncRNAs act as molecular switches in cellular differentiation, movement, apoptosis, and in the reprogramming of cell states by altering gene expression patterns. However, the role of this important group of molecules in angiogenesis is not well understood. Angiogenesis is a complex process and depends on precise regulation of gene expression. CONCLUSION Dysregulation of transcription during this process may lead to several diseases including various cancers. As angiogenesis is an important process in cancer pathogenesis and treatment, lncRNA may be playing an important role in angiogenesis. In support of this, lncRNA microvascular invasion in hepatocellular carcinoma (MVIH) has been shown to activate angiogenesis. Furthermore, lncRNA-Meg3-knockout mouse showed increased expression of vascular endothelial growth factor pathway genes and increased cortical microvessel density. Overall, there is strong evidence that lncRNA is an important class of regulatory molecule, and a number of studies have demonstrated that these can be targeted to change cellular physiology and functions. In this review, we have attempted to summarize these studies and elucidate the potential of this novel regulatory molecule as a therapeutic target.
Collapse
Affiliation(s)
- Mohan M Kumar
- Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, United States
| | - Ravi Goyal
- Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University, School of Medicine, Loma Linda, CA 92350, United States
| |
Collapse
|
169
|
Albinsson S, Della Corte A, Alajbegovic A, Krawczyk KK, Bancone C, Galderisi U, Cipollaro M, De Feo M, Forte A. Patients with bicuspid and tricuspid aortic valve exhibit distinct regional microrna signatures in mildly dilated ascending aorta. Heart Vessels 2017; 32:750-767. [PMID: 28102444 DOI: 10.1007/s00380-016-0942-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/26/2016] [Indexed: 01/25/2023]
Abstract
MicroRNAs are able to modulate gene expression in a range of diseases. We focused on microRNAs as potential contributors to the pathogenesis of ascending aorta (AA) dilatation in patients with stenotic tricuspid (TAV) or bicuspid aortic valve (BAV). Aortic specimens were collected from the 'concavity' and the 'convexity' of mildly dilated AAs and of normal AAs from heart transplant donors. Aortic RNA was analyzed through PCR arrays, profiling the expression of 84 microRNAs involved in cardiovascular disease. An in silico analysis identified the potential microRNA-mRNA interactions and the enriched KEGG pathways potentially affected by microRNA changes in dilated AAs. Distinct signatures of differentially expressed microRNAs are evident in TAV and BAV patients vs. donors, as well as differences between aortic concavity and convexity in patients only. MicroRNA changes suggest a switch of SMC phenotype, with particular reference to TAV concavity. MicroRNA changes potentially affecting mechanotransduction pathways exhibit a higher prevalence in BAV convexity and in TAV concavity, with particular reference to TGF-β1, Hippo, and PI3K/Akt/FoxO pathways. Actin cytoskeleton emerges as potentially affected by microRNA changes in BAV convexity only. MicroRNAs could play distinct roles in BAV and TAV aortopathy, with possible implications in diagnosis and therapy.
Collapse
Affiliation(s)
| | | | - Azra Alajbegovic
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Ciro Bancone
- Department of Cardiothoracic Sciences, Second University of Naples, Naples, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples, Via L De Crecchio, 7, 80138, Naples, Italy
| | - Marilena Cipollaro
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples, Via L De Crecchio, 7, 80138, Naples, Italy
| | - Marisa De Feo
- Department of Cardiothoracic Sciences, Second University of Naples, Naples, Italy
| | - Amalia Forte
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples, Via L De Crecchio, 7, 80138, Naples, Italy.
| |
Collapse
|
170
|
Abu-Halima M, Poryo M, Ludwig N, Mark J, Marsollek I, Giebels C, Petersen J, Schäfers HJ, Grundmann U, Pickardt T, Keller A, Meese E, Abdul-Khaliq H. Differential expression of microRNAs following cardiopulmonary bypass in children with congenital heart diseases. J Transl Med 2017; 15:117. [PMID: 28558735 PMCID: PMC5450060 DOI: 10.1186/s12967-017-1213-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/16/2017] [Indexed: 11/10/2022] Open
Abstract
Background Children with congenital heart defects (CHDs) are at high risk for myocardial failure after operative procedures with cardiopulmonary bypass (CPB). Recent studies suggest that microRNAs (miRNA) are involved in the development of CHDs and myocardial failure. Therefore, the aim of this study was to determine alterations in the miRNA profile in heart tissue after cardiac surgery using CPB. Methods In total, 14 tissue samples from right atrium were collected from patients before and after connection of the CPB. SurePrint™ 8 × 60K Human v21 miRNA array and quantitative reverse transcription-polymerase chain reaction (RT-qPCR) were employed to determine the miRNA expression profile from three patients before and after connection of the CPB. Enrichment analyses of altered miRNA expression were predicted using bioinformatic tools. Results According to miRNA array, a total of 90 miRNAs were significantly altered including 29 miRNAs with increased and 61 miRNAs with decreased expression after de-connection of CPB (n = 3) compared to before CPB (n = 3). Seven miRNAs had been validated using RT-qPCR in an independent cohort of 11 patients. Enrichment analyses applying the KEGG database displayed the highest correlation for signaling pathways, cellular community, cardiovascular disease and circulatory system. Conclusion Our result identified the overall changes of the miRNome in right atrium tissue of patients with CHDs after CPB. The differentially altered miRNAs lay a good foundation for further understanding of the molecular function of changed miRNAs in regulating CHDs and after CPB in particular. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1213-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Masood Abu-Halima
- Department of Human Genetics, Saarland University, 66421, Homburg/Saar, Germany. .,Department of Human Genetics, Saarland University Medical Center, 66421, Homburg/Saar, Germany.
| | - Martin Poryo
- Department of Pediatric Cardiology, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| | - Nicole Ludwig
- Department of Human Genetics, Saarland University, 66421, Homburg/Saar, Germany
| | - Janine Mark
- Department of Pediatric Cardiology, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| | - Ina Marsollek
- Department of Pediatric Cardiology, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| | - Christian Giebels
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| | - Johannes Petersen
- Department of Pediatric Cardiology, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| | - Hans-Joachim Schäfers
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| | - Ulrich Grundmann
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| | - Thomas Pickardt
- Competence Network for Congenital Heart Defects, National Register for Congenital Heart Defects, DZHK, 13347, Berlin, Germany
| | - Andreas Keller
- Department of Clinical Bioinformatics, Saarland University, 66041, Saarbruecken, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, 66421, Homburg/Saar, Germany
| | - Hashim Abdul-Khaliq
- Department of Pediatric Cardiology, Saarland University Medical Center, 66421, Homburg/Saar, Germany.,Competence Network for Congenital Heart Defects, National Register for Congenital Heart Defects, DZHK, 13347, Berlin, Germany
| |
Collapse
|
171
|
Aji K, Zhang Y, Aimaiti A, Wang Y, Rexiati M, Azhati B, Tusong H, Cui L, Wang C. MicroRNA-145 regulates the differentiation of human adipose-derived stem cells to smooth muscle cells via targeting Krüppel-like factor 4. Mol Med Rep 2017; 15:3787-3795. [PMID: 28440409 DOI: 10.3892/mmr.2017.6478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 11/04/2016] [Indexed: 11/05/2022] Open
Abstract
Understanding the molecular mechanisms underlying human adipose-derived stem cell (hASC) differentiation to smooth muscle may contribute to the development of effective therapies for relevant muscle defects, such as bladder wall and urethral defects. A previous study described the differentiation of hASCs to smooth muscle cells (SMCs) by transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein‑4 (BMP4) treatment. The present study investigated whether microRNA-145 (miR‑145) may be involved in the process of hASC differentiation. The expression of miR‑145 was significantly increased during differentiation of ASCs to SMCs. SMC‑specific genes and proteins, including a‑smooth muscle actin (α‑SMA), smooth muscle protein‑22α(SM22α), calponin and myosin heavy chain (SM‑MHC) were upregulated by transfection of a miR‑145 mimic. By contrast, these factors were downregulated following introduction of antisense oligonucleotides. In addition, Krüppel‑like factor 4 (KLF4) levels, which decreased during the differentiation of hASCs, were downregulated when the cells were transfected miR‑145 mimics. Futhermore, inhibition of KLF4 by treatment with short‑interfering‑RNA against KLF4, resulted in increased expression of SMC‑specific genes and proteins. In conclusion, the results of the present study demonstrated that by regulating KLF4, miR‑145 may be involved in regulating smooth muscle differentiation of ASCs induced by TGF‑β1 and BMP4.
Collapse
Affiliation(s)
- Kaisaier Aji
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yun Zhang
- Department of Orthopedics, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Abudusaimi Aimaiti
- Department of Joint Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yujie Wang
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Mulati Rexiati
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Baihetiya Azhati
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Hamulati Tusong
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Lei Cui
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Chen Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
172
|
Venkatesh P, Phillippi J, Chukkapalli S, Rivera-Kweh M, Velsko I, Gleason T, VanRyzin P, Aalaei-Andabili SH, Ghanta RK, Beaver T, Chan EKL, Kesavalu L. Aneurysm-Specific miR-221 and miR-146a Participates in Human Thoracic and Abdominal Aortic Aneurysms. Int J Mol Sci 2017; 18:ijms18040875. [PMID: 28425970 PMCID: PMC5412456 DOI: 10.3390/ijms18040875] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 01/02/2023] Open
Abstract
Altered microRNA expression is implicated in cardiovascular diseases. Our objective was to determine microRNA signatures in thoracic aortic aneurysms (TAAs) and abdominal aortic aneurysms (AAAs) compared with control non-aneurysmal aortic specimens. We evaluated the expression of fifteen selected microRNA in human TAA and AAA operative specimens compared to controls. We observed significant upregulation of miR-221 and downregulation of miR-1 and -133 in TAA specimens. In contrast, upregulation of miR-146a and downregulation of miR-145 and -331-3p were found only for AAA specimens. Upregulation of miR-126 and -486-5p and downregulation of miR-30c-2*, -155, and -204 were observed in specimens of TAAs and AAAs. The data reveal microRNA expression signatures unique to aneurysm location and common to both thoracic and abdominal pathologies. Thus, changes in miR-1, -29a, -133a, and -221 are involved in TAAs and miR-145, -146, and -331-3p impact AAAs. This work validates prior studies on microRNA expression in aneurysmal diseases.
Collapse
Affiliation(s)
| | - Julie Phillippi
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | - Sasanka Chukkapalli
- Department of Periodontology, University of Florida, Gainesville, FL 32610, USA.
| | - Mercedes Rivera-Kweh
- Department of Periodontology, University of Florida, Gainesville, FL 32610, USA.
| | - Irina Velsko
- Department of Periodontology, University of Florida, Gainesville, FL 32610, USA.
| | - Thomas Gleason
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | - Paul VanRyzin
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | | | - Ravi Kiran Ghanta
- Michael E. Debakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Thomas Beaver
- Departments of Surgery, University of Florida, Gainesville, FL 32610, USA.
| | | | - Lakshmyya Kesavalu
- Department of Periodontology, University of Florida, Gainesville, FL 32610, USA.
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
173
|
Zong Y, Wu P, Nai C, Luo Y, Hu F, Gao W, Zhai N, Xu T, Li D. Effect of MicroRNA-30e on the Behavior of Vascular Smooth Muscle Cells via Targeting Ubiquitin-Conjugating Enzyme E2I. Circ J 2017; 81:567-576. [PMID: 28123167 DOI: 10.1253/circj.cj-16-0751] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Many microRNAs (miRNAs) have recently been shown to demonstrate critical roles in differentiation, proliferation and migration of vascular smooth muscle cells (VSMCs). METHODS AND RESULTS In this study, a certain amount of miRNA expression in VSMCs was evaluated by real-time polymerase chain reaction, and it was found that microRNA-30e (miR-30e) was expressed more strongly than other common vascular well-expressed miRNAs in vitro. Subsequently, both a gain and loss of function study was performed in vitro and in vivo. It was found that miR-30e in VSMCs was strongly downregulated concomitantly with stimulation, and miR-30e inhibited VSMCs proliferation and migration both in vitro and in vivo. Furthermore, ubiquitin-conjugating enzyme E2I (Ube2i) was identified as the target gene of endogenous miR-30e by luciferase reporter assay, and it was confirmed that overexpression of miR-30e significantly reduced Ube2i and inhibited the phenotypic switch of VSMCs. Knockdown of Ube2i had an influence over the proliferation and migration of cultured VSMCs, as same as the miR-30e mimic did. Overexpression of miR-30e induced the apoptosis of VSMCs and deregulated the protein expression of IkBα, which is crucial for the NFκB signal pathway. CONCLUSIONS The results of this study indicated that miR-30e in VSMCs exerted an anti-atherosclerosis effect via inhibiting proliferation and migration, and promoting apoptosis of VSMCs. More specifically, it was demonstrated that miR-30e exhibited these effects on VSMCs partially through targeting Ube2i and downregulating the IκBα/NFκB signaling pathway.
Collapse
Affiliation(s)
- Yu Zong
- Institute of Cardiovascular Disease, Xuzhou Medical University
| | | | | | | | | | | | | | | | | |
Collapse
|
174
|
de Gonzalo-Calvo D, Cenarro A, Garlaschelli K, Pellegatta F, Vilades D, Nasarre L, Camino-Lopez S, Crespo J, Carreras F, Leta R, Catapano AL, Norata GD, Civeira F, Llorente-Cortes V. Translating the microRNA signature of microvesicles derived from human coronary artery smooth muscle cells in patients with familial hypercholesterolemia and coronary artery disease. J Mol Cell Cardiol 2017; 106:55-67. [PMID: 28342976 DOI: 10.1016/j.yjmcc.2017.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 12/17/2022]
Abstract
AIMS To analyze the impact of atherogenic lipoproteins on the miRNA signature of microvesicles derived from human coronary artery smooth muscle cells (CASMC) and to translate these results to familial hypercholesterolemia (FH) and coronary artery disease (CAD) patients. METHODS Conditioned media was collected after exposure of CASMC to atherogenic lipoproteins. Plasma samples were collected from two independent populations of diagnosed FH patients and matched normocholesterolemic controls (Study population 1, N=50; Study population 2, N=24) and a population of patients with suspected CAD (Study population 3, N=50). Extracellular vesicles were isolated and characterized using standard techniques. A panel of 30 miRNAs related to vascular smooth muscle cell (VSMC) (patho-)physiology was analyzed using RT-qPCR. RESULTS Atherogenic lipoproteins significantly reduced levels of miR-15b-5p, -24-3p, -29b-3p, -130a-3p, -143-3p, -146a-3p, -222-3p, -663a levels (P<0.050) in microvesicles (0.1μm-1μm in diameter) released by CASMC. Two of these miRNAs, miR-24-3p and miR-130a-3p, were reduced in circulating microvesicles from FH patients compared with normocholesterolemic controls in a pilot study (Study population 1) and in different validation studies (Study populations 1 and 2) (P<0.050). Supporting these results, plasma levels of miR-24-3p and miR-130a-3p were also downregulated in FH patients compared to controls (P<0.050). In addition, plasma levels of miR-130a-3p were inversely associated with coronary atherosclerosis in a cohort of suspected CAD patients (Study population 3) (P<0.050). CONCLUSIONS Exposure to atherogenic lipoproteins modifies the miRNA profile of CASMC-derived microvesicles and these alterations are reflected in patients with FH. Circulating miR-130a-3p emerges as a potential biomarker for coronary atherosclerosis.
Collapse
Affiliation(s)
- David de Gonzalo-Calvo
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.
| | - Ana Cenarro
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; Lipid Unit and Molecular Research Laboratory, IIS Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain
| | - Katia Garlaschelli
- SISA Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello B, Italy
| | - Fabio Pellegatta
- SISA Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello B, Italy; IRCCS Multimedica, Milan, Italy
| | - David Vilades
- Cardiac Imaging Unit, Cardiology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Laura Nasarre
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Sandra Camino-Lopez
- Catalan Institute of Cardiovascular Sciences, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Javier Crespo
- Catalan Institute of Cardiovascular Sciences, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Francesc Carreras
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; Cardiac Imaging Unit, Cardiology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Rubén Leta
- Cardiac Imaging Unit, Cardiology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Alberico Luigi Catapano
- IRCCS Multimedica, Milan, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Giuseppe Danilo Norata
- SISA Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello B, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Fernando Civeira
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; Lipid Unit and Molecular Research Laboratory, IIS Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain
| | - Vicenta Llorente-Cortes
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; Institute of Biomedical Research of Barcelona (IIBB) - Spanish National Research Council (CSIC), Barcelona, Spain.
| |
Collapse
|
175
|
Stefanadis C, Antoniou CK, Tsiachris D, Pietri P. Coronary Atherosclerotic Vulnerable Plaque: Current Perspectives. J Am Heart Assoc 2017; 6:JAHA.117.005543. [PMID: 28314799 PMCID: PMC5524044 DOI: 10.1161/jaha.117.005543] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | | | - Dimitrios Tsiachris
- National and Kapodistrian University of Athens and Athens Heart Center, Athens, Greece
| | - Panagiota Pietri
- National and Kapodistrian University of Athens and Athens Heart Center, Athens, Greece
| |
Collapse
|
176
|
Nicotine facilitates VSMC dysfunction through a miR-200b/RhoGDIA/cytoskeleton module. Sci Rep 2017; 7:43798. [PMID: 28252009 PMCID: PMC5333142 DOI: 10.1038/srep43798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/30/2017] [Indexed: 12/27/2022] Open
Abstract
Nicotine can induce the abnormal migration and proliferation of vascular smooth muscle cells (VSMCs). We have previously shown that cytoskeletal proteins and RhoGDIA, a negative regulator of the Rho GTPase pathway, are involved in the nicotine-induced dysfunction of VSMCs. Here, we found that nicotine can activate the Rho GTPase pathway and induce the synthesis of the cytoskeletal proteins in VSMCs through the activation of intracellular downstream signaling pathways, including targets such as MYPT1, PAK1 and PI3K/AKT. Upon nicotine treatment, the mRNA level of RhoGDIA is increased but protein level is decreased both in vitro and in vivo, which suggested a mechanism of post-translational regulation. By the dual luciferase reporter assay, we identified the microRNA-200b (miR-200b) as a modulator of the behavioural changes of VSMCs in response to nicotine through targeting RhoGDIA directly. Introducing miR-200b inhibitors into cultured VSMCs significantly attenuated cell proliferation and migration. Additionally, we found that hypomethylation in the CpG island shore region of miR-200b was responsible for the nicotine-induced miR-200b up-regulation in VSMCs. The study demonstrates that nicotine facilitates VSMC dysfunction through a miR-200b/RhoGDIA/cytoskeleton module through the hypomethylation of miR-200b promoter and suggests that epigenetic modifications may play an important role in the pathological progression.
Collapse
|
177
|
Cho JR, Lee CY, Lee J, Seo HH, Choi E, Chung N, Kim SM, Hwang KC, Lee S. MicroRNA-761 inhibits Angiotensin II-induced vascular smooth muscle cell proliferation and migration by targeting mammalian target of rapamycin. Clin Hemorheol Microcirc 2017; 63:45-56. [PMID: 26444612 DOI: 10.3233/ch-151981] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aberrant vascular smooth muscle cell (VSMC) proliferation and migration are a major pathological phenomenon in vascular disease characterized by intimal thickening. The important role of the mammalian target of rapamycin (mTOR) signaling in VSMC proliferation has been previously reported. Consequently, down-regulation of mTOR pathway may be an effective way of controlling excessive VSMC proliferation. Since microRNAs (miRNA) are newly emerging regulators of virtually all the biological processes including cellular proliferation, miRNAs targeting mTOR pathway may be utilized to suppress aberrant VSMC proliferation during pathologic conditions. Thus, in the present study, we screened miRNAs targeting mTOR, and we identified miR-761 as a new mTOR targeting miRNA. Luciferase assay using luciferase vector containing 3'UTR of mTOR indicated that miR-761 directly targets mTOR mRNA leading to suppression of mTOR protein expression. Our data also indicate that miR-761 expression decreases during angiotensin II (AngII)-induced proliferation of VSMCs, and exogenous miR-761 delivery effectively inhibit the AngII-induced VSMC proliferation. Additionally, the results of migration tests demonstrate that down-regulation of mTOR using exogenous miR-761 suppresses AngII-induced migration of VSMCs as well. Taken together, the present study provided evidence that miR-761 can be a potent anti-proliferative agent for vascular diseases such as atherosclerosis and restenosis, and warrants further studies to validate the effectiveness of miR-761 in vivo.
Collapse
Affiliation(s)
- Jung Rae Cho
- Department of Medicine, The Graduate School, Yonsei University, Seoul, Korea.,Cardiology Division, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Chang Yeon Lee
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul, Korea
| | - Jiyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Hyang-Hee Seo
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Eunhyun Choi
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Korea.,Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, Korea
| | - Namsik Chung
- Department of Medicine, The Graduate School, Yonsei University, Seoul, Korea
| | - Sung-Man Kim
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, Korea
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Korea.,Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Korea.,Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, Korea
| |
Collapse
|
178
|
Chen ST, Huang CH, Kok VC, Huang CYF, Ciou JS, Tsai JJP, Kurubanjerdjit N, Ng KL. Drug repurposing and therapeutic anti-microRNA predictions for inhibition of oxidized low-density lipoprotein-induced vascular smooth muscle cell-associated diseases. J Bioinform Comput Biol 2017; 15:1650043. [PMID: 28150521 DOI: 10.1142/s0219720016500438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Drug repurposing is a new method for disease treatments, which accelerates the identification of new uses for existing drugs with minimal side effects for patients. MicroRNA-based therapeutics are a class of drugs that have been used in gene therapy following the FDA's approval of the first anti-sense therapy. This study examines the effects of oxLDL on vascular smooth muscle cells (VSMCs) and identifies potential drugs and antimiRs for treating VSMC-associated diseases. The Connectivity Map (cMap) database is utilized to identify potential new uses of existing drugs. The success of the identifications was supported by MTT assay, clonogenic assay and clinical trial data. Specifically, 37 drugs, some of which are undergoing clinical trials, were identified. Three of the identified drugs exhibit IC50 activities. Among the 37 drugs' targets, three differentially expressed genes (DEGs) are identified as drug targets by using both the DrugBank and the NCBI PubChem Compound databases. Also, one DEG, DNMT1, which is regulated by 17 miRNAs, where these miRNAs are potential targets for developing antimiR-based miRNA therapy, is found.
Collapse
Affiliation(s)
- Shun-Tsung Chen
- * Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan 41354, R.O.C
| | - Chien-Hung Huang
- † Department of Computer Science and Information Engineering, National Formosa University, Yun-Lin, Taiwan 63205, R.O.C
| | - Victor C Kok
- * Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan 41354, R.O.C
- ‡ Division of Medical Oncology, Kuang Tien General Hospital Cancer, Center Taichung, Taiwan 43303, R.O.C
| | - Chi-Ying F Huang
- § Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan 112, R.O.C
| | - Jin-Shuei Ciou
- * Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan 41354, R.O.C
| | - Jeffrey J P Tsai
- * Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan 41354, R.O.C
| | - Nilubon Kurubanjerdjit
- ¶ School of Information Technology, Mae Fah Luang University, Chiang Rai, Thailand 57100, Thailand
| | - Ka-Lok Ng
- * Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan 41354, R.O.C
- ∥ Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan 40402, R.O.C
| |
Collapse
|
179
|
Downregulation of microRNA‑34b is responsible for the elevation of blood pressure in spontaneously hypertensive rats. Mol Med Rep 2017; 15:1031-1036. [PMID: 28098882 PMCID: PMC5367366 DOI: 10.3892/mmr.2017.6122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/17/2016] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to identify the microRNA (miRNA) responsible for the development of primary hypertension, and examine the downstream signaling pathway, which mediates the effect of the miRNA. Reverse transcription‑quantitative polymerase chain reaction analysis was performed to identify which miRNA may be involved in the pathogenesis of hypertension. In silico analysis and a luciferase assay were used to validate the target of the selected miRNA, and miRNA mimics and small interfering (si)RNA of the target were transfected into smooth muscle cells to examine its effect on the biological activity of the cells. miR‑34b was found to be upregulated in spontaneously hypertensive rats (SHRs), compared with Wistar Kyoto (WKY) rats. Therefore, the present study used online miRNA target prediction tools to predict the candidate target genes of miR‑34b in the database, and consequently identified cyclin G1 (CCNG1) and cyclin‑dependent kinase 6 (CDK6) as its possible target genes. CDK6 subsequently identified to be the direct target gene of miR‑34b using a luciferase reporter assay in vascular smooth muscle cells (VSMCs). The present study also established the possible negative regulatory association between miR‑34b and CDK6 via investigating the mRNA and protein expression levels of CDK6 and CCNG1 in VSMCs collected from the SHRs and WKY rats, respectively. To investigate the signaling pathways between miR‑34b and CDK6, the mRNA and protein expression levels of CDK6, and the proliferation rates were compared in VSMCs transfected with CDK6 siRNA or miR‑34b mimics, the results of which indicated that the miR‑34b mimics exerted the same effects on the expression of CDK6 and cell proliferation as CDK6 siRNA. The negative regulatory association between miR‑34b and its target, CDK6, was confirmed, which may offer potential as a novel therapeutic target in the treatment of hypertension.
Collapse
|
180
|
Lew JKS, Pearson JT, Schwenke DO, Katare R. Exercise mediated protection of diabetic heart through modulation of microRNA mediated molecular pathways. Cardiovasc Diabetol 2017; 16:10. [PMID: 28086863 PMCID: PMC5237289 DOI: 10.1186/s12933-016-0484-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/17/2016] [Indexed: 12/18/2022] Open
Abstract
Hyperglycaemia, hypertension, dyslipidemia and insulin resistance collectively impact on the myocardium of people with diabetes, triggering molecular, structural and myocardial abnormalities. These have been suggested to aggravate oxidative stress, systemic inflammation, myocardial lipotoxicity and impaired myocardial substrate utilization. As a consequence, this leads to the development of a spectrum of cardiovascular diseases, which may include but not limited to coronary endothelial dysfunction, and left ventricular remodelling and dysfunction. Diabetic heart disease (DHD) is the term used to describe the presence of heart disease specifically in diabetic patients. Despite significant advances in medical research and long clinical history of anti-diabetic medications, the risk of heart failure in people with diabetes never declines. Interestingly, sustainable and long-term exercise regimen has emerged as an effective synergistic therapy to combat the cardiovascular complications in people with diabetes, although the precise molecular mechanism(s) underlying this protection remain unclear. This review provides an overview of the underlying mechanisms of hyperglycaemia- and insulin resistance-mediated DHD with a detailed discussion on the role of different intensities of exercise in mitigating these molecular alterations in diabetic heart. In particular, we provide the possible role of exercise on microRNAs, the key molecular regulators of several pathophysiological processes.
Collapse
Affiliation(s)
- Jason Kar Sheng Lew
- Department of Physiology, HeartOtago, University of Otago, 270, Great King Street, Dunedin, 9010 New Zealand
| | - James T. Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka Japan
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Daryl O. Schwenke
- Department of Physiology, HeartOtago, University of Otago, 270, Great King Street, Dunedin, 9010 New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, University of Otago, 270, Great King Street, Dunedin, 9010 New Zealand
| |
Collapse
|
181
|
Pan Q, Liu H, Zheng C, Zhao Y, Liao X, Wang Y, Chen Y, Zhao B, Lazartigues E, Yang Y, Ma X. Microvesicles Derived from Inflammation-Challenged Endothelial Cells Modulate Vascular Smooth Muscle Cell Functions. Front Physiol 2017; 7:692. [PMID: 28127288 PMCID: PMC5226944 DOI: 10.3389/fphys.2016.00692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/27/2016] [Indexed: 12/13/2022] Open
Abstract
Purpose: Microvesicles (MV) can modulate the function of recipient cells by transferring their contents. Our previous study highlighted that MV released from tumor necrosis factor-α (TNF-α) plus serum deprivation (SD)-stimulated endothelial progenitor cells, induce detrimental effects on endothelial cells. In this study, we investigated the potential effects of endothelial MV (EMV) on proliferation, migration, and apoptosis of human brain vascular smooth cells (HBVSMC). Methods: EMV were prepared from human brain microvascular endothelial cells (HBMEC) cultured in a TNF-α plus SD medium. RNase-EMV were made by treating EMV with RNase A for RNA depletion. The proliferation, apoptosis and migration abilities of HBVSMC were determined after co-culture with EMV or RNase-EMV. The Mek1/2 inhibitor, PD0325901, was used for pathway analysis. Western blot was used for analyzing the proteins of Mek1/2, Erk1/2, phosphorylation Erk1/2, activated caspase-3 and Bcl-2. The level of miR-146a-5p was measured by qRT-PCR. Results: (1) EMV significantly promoted the proliferation and migration of HBVSMC. The effects were accompanied by an increase in Mek1/2 and p-Erk1/2, which could be abolished by PD0325901; (2) EMV decreased the apoptotic rate of HBVSMC by approximately 35%, which was accompanied by cleaved caspase-3 down-regulation and Bcl-2 up-regulation; (3) EMV increased miR-146a-5p level in HBVSMC by about 2-folds; (4) RNase-treated EMV were less effective than EMV on HBVSMC activities and miR-146a-5p expression. Conclusion: EMV generated under inflammation challenge can modulate HBVSMC function and fate via their carried RNA. This is associated with activation of theMek1/2/Erk1/2 pathway and caspase-3/Bcl-2 regulation, during which miR-146a-5p may play an important role. The data suggest that EMV derived from inflammation-challenged endothelial cells are detrimental to HBVSMC homeostatic functions, highlighting potential novel therapeutic targets for vascular diseases.
Collapse
Affiliation(s)
- Qunwen Pan
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University Zhanjiang, China
| | - Hua Liu
- College of Health Science, Wuhan Sports University Wuhan, China
| | - Chunyan Zheng
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University Zhanjiang, China
| | - Yuhui Zhao
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University Guangzhou, China
| | - Xiaorong Liao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University Zhanjiang, China
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University Zhanjiang, China
| | - Yanfang Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical UniversityZhanjiang, China; Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State UniversityDayton, OH, USA
| | - Bin Zhao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University Zhanjiang, China
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences New Orleans, LA, USA
| | - Yi Yang
- College of Health Science, Wuhan Sports University Wuhan, China
| | - Xiaotang Ma
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University Zhanjiang, China
| |
Collapse
|
182
|
Laffont B, Rayner KJ. MicroRNAs in the Pathobiology and Therapy of Atherosclerosis. Can J Cardiol 2017; 33:313-324. [PMID: 28232017 DOI: 10.1016/j.cjca.2017.01.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/02/2017] [Accepted: 01/02/2017] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are short noncoding RNAs, expressed in humans and involved in sequence-specific post-transcriptional regulation of gene expression. They have emerged as key players in a wide array of biological processes, and changes in their expression and/or function have been associated with plethora of human diseases. Atherosclerosis and its related clinical complications, such as myocardial infarction or stroke, represent the leading cause of death in the Western world. Accumulating experimental evidence has revealed a key role for microRNAs in regulating cellular and molecular processes related to atherosclerosis development, ranging from risk factors, to plaque initiation and progression, up to atherosclerotic plaque rupture. In this review, we focus on how microRNAs can influence atherosclerosis biology, as well as the potential clinical applications of microRNAs, which are being developed as targets as well as therapeutic agents for a growing industry hoping to harness the power of RNA-guided gene regulation to fight disease and infection.
Collapse
Affiliation(s)
- Benoit Laffont
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Katey J Rayner
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
183
|
MiR-221-3p targets ARF4 and inhibits the proliferation and migration of epithelial ovarian cancer cells. Biochem Biophys Res Commun 2017; 497:1162-1170. [PMID: 28057486 DOI: 10.1016/j.bbrc.2017.01.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/01/2017] [Indexed: 01/03/2023]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer. Although molecular diagnostic tools and targeted therapies have been developed over the past few decades, the survival rate is still rather low. Numerous researches suggest that some microRNAs (miRNAs) are key regulators of tumor progression. Among those miRNAs that has attracted much attention for their multiple roles in human cancers, the function of miR-221-3p in EOC has not been elucidated. Herein, we examined the expression of miR-221-3p in EOC patients and cell lines. Our data revealed that higher expression of miR-221-3p was linked to better overall survival in EOC patients. In-vitro experiments indicated that miR-221-3p inhibited EOC cell proliferation and migration. By performing subsequent systematic molecular biological and bioinformatic analyses, we found ADP-ribosylation factor (ARF) 4 is one of the putative target genes, the direct binding relationship was further confirmed by dual-luciferase reporter assay. Finally, a distinct gene expression between miR-221-3p and ARF4 in EOC group and normal group was identified, and the negative correlation between their expression levels in EOC specimens was further confirmed. Taken together, our research uncovered the tumor suppressive role of miR-221-3p in EOC and directly targeted ARF4, suggesting that miR-221-3p might be a novel potential candidate for clinical prognosis and therapeutics of EOC.
Collapse
|
184
|
MiR-222 in Cardiovascular Diseases: Physiology and Pathology. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4962426. [PMID: 28127557 PMCID: PMC5239839 DOI: 10.1155/2017/4962426] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs and miRs) are endogenous 19–22 nucleotide, small noncoding RNAs with highly conservative and tissue specific expression. They can negatively modulate target gene expressions through decreasing transcription or posttranscriptional inducing mRNA decay. Increasing evidence suggests that deregulated miRNAs play an important role in the genesis of cardiovascular diseases. Additionally, circulating miRNAs can be biomarkers for cardiovascular diseases. MiR-222 has been reported to play important roles in a variety of physiological and pathological processes in the heart. Here we reviewed the recent studies about the roles of miR-222 in cardiovascular diseases. MiR-222 may be a potential cardiovascular biomarker and a new therapeutic target in cardiovascular diseases.
Collapse
|
185
|
Pujol-López M, Ortega-Paz L, Garabito M, Brugaletta S, Sabaté M, Paula Dantas A. miRNA Update: A Review Focus on Clinical Implications of miRNA in Vascular Remodeling. AIMS MEDICAL SCIENCE 2017. [DOI: 10.3934/medsci.2017.1.99] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
186
|
Dolz S, Górriz D, Tembl JI, Sánchez D, Fortea G, Parkhutik V, Lago A. Circulating MicroRNAs as Novel Biomarkers of Stenosis Progression in Asymptomatic Carotid Stenosis. Stroke 2017; 48:10-16. [DOI: 10.1161/strokeaha.116.013650] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 10/13/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022]
Abstract
Background and Purpose—
Progression of asymptomatic carotid artery stenosis (ACAS) in patients with >50% luminal narrowing is considered a potential risk factor for ischemic stroke; however, subclinical molecular biomarkers of ACAS progression are lacking. Recent studies suggest a regulatory function for several microRNAs (miRNAs) on the evolution of carotid plaque, but its role in ACAS progression is mostly unknown. The aim of our study was to investigate a wide miRNA panel in peripheral blood exosomes from patients with ACAS to associate circulating miRNA expression profiles with stenosis progression.
Methods—
The study included 60 patients with ACAS carrying >50% luminal narrowing. First, miRNA expression profiles of circulating exosomes were determined by Affymetrix microarrays from plasma samples of 16 patients from the cohort. Second, those miRNAs among the most differentially expressed in patients with ACAS progression were quantified by real-time polymerase chain reaction in a separate replication cohort of 39 subjects within the patient sample.
Results—
Our results showed that ACAS progression was associated with development of stroke. MiR-199b-3p, miR-27b-3p, miR-130a-3p, miR-221-3p, and miR-24-3p presented significant higher expression in those patients with ACAS progression.
Conclusions—
In conclusion, our study supports that specific circulating miRNA expression profiles could provide a new tool that complements the monitoring of ACAS progression, improving therapeutic approaches to prevent ischemic stroke.
Collapse
Affiliation(s)
- Sandra Dolz
- From the IIS-HUIP La Fe, Valencia, Spain (S.D., D.S.); Thrombosis, Vascular Biology and Hemostasis Research Group, IIS-HUIP La Fe, Valencia, Spain (S.D., A.L.); Department of Neurology, HUIP La Fe, Valencia, Spain (D.G., J.I.T., G.F., V.P., A.L.); and Genomics Unit, HUIP La Fe, Valencia, Spain (D.S.)
| | - David Górriz
- From the IIS-HUIP La Fe, Valencia, Spain (S.D., D.S.); Thrombosis, Vascular Biology and Hemostasis Research Group, IIS-HUIP La Fe, Valencia, Spain (S.D., A.L.); Department of Neurology, HUIP La Fe, Valencia, Spain (D.G., J.I.T., G.F., V.P., A.L.); and Genomics Unit, HUIP La Fe, Valencia, Spain (D.S.)
| | - José Ignacio Tembl
- From the IIS-HUIP La Fe, Valencia, Spain (S.D., D.S.); Thrombosis, Vascular Biology and Hemostasis Research Group, IIS-HUIP La Fe, Valencia, Spain (S.D., A.L.); Department of Neurology, HUIP La Fe, Valencia, Spain (D.G., J.I.T., G.F., V.P., A.L.); and Genomics Unit, HUIP La Fe, Valencia, Spain (D.S.)
| | - Dolors Sánchez
- From the IIS-HUIP La Fe, Valencia, Spain (S.D., D.S.); Thrombosis, Vascular Biology and Hemostasis Research Group, IIS-HUIP La Fe, Valencia, Spain (S.D., A.L.); Department of Neurology, HUIP La Fe, Valencia, Spain (D.G., J.I.T., G.F., V.P., A.L.); and Genomics Unit, HUIP La Fe, Valencia, Spain (D.S.)
| | - Gerardo Fortea
- From the IIS-HUIP La Fe, Valencia, Spain (S.D., D.S.); Thrombosis, Vascular Biology and Hemostasis Research Group, IIS-HUIP La Fe, Valencia, Spain (S.D., A.L.); Department of Neurology, HUIP La Fe, Valencia, Spain (D.G., J.I.T., G.F., V.P., A.L.); and Genomics Unit, HUIP La Fe, Valencia, Spain (D.S.)
| | - Vera Parkhutik
- From the IIS-HUIP La Fe, Valencia, Spain (S.D., D.S.); Thrombosis, Vascular Biology and Hemostasis Research Group, IIS-HUIP La Fe, Valencia, Spain (S.D., A.L.); Department of Neurology, HUIP La Fe, Valencia, Spain (D.G., J.I.T., G.F., V.P., A.L.); and Genomics Unit, HUIP La Fe, Valencia, Spain (D.S.)
| | - Aida Lago
- From the IIS-HUIP La Fe, Valencia, Spain (S.D., D.S.); Thrombosis, Vascular Biology and Hemostasis Research Group, IIS-HUIP La Fe, Valencia, Spain (S.D., A.L.); Department of Neurology, HUIP La Fe, Valencia, Spain (D.G., J.I.T., G.F., V.P., A.L.); and Genomics Unit, HUIP La Fe, Valencia, Spain (D.S.)
| |
Collapse
|
187
|
Wang D, Liu M, Gu S, Zhou Y, Li S. Microtopography Attenuates Endothelial Cell Proliferation by Regulating MicroRNAs. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/jbnb.2017.83013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
188
|
Function, Role, and Clinical Application of MicroRNAs in Vascular Aging. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6021394. [PMID: 28097140 PMCID: PMC5209603 DOI: 10.1155/2016/6021394] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/07/2016] [Accepted: 11/23/2016] [Indexed: 01/31/2023]
Abstract
Vascular aging, a specific type of organic aging, is related to age-dependent changes in the vasculature, including atherosclerotic plaques, arterial stiffness, fibrosis, and increased intimal thickening. Vascular aging could influence the threshold, process, and severity of various cardiovascular diseases, thus making it one of the most important risk factors in the high mortality of cardiovascular diseases. As endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are the main cell biological basis of these pathology changes of the vasculature, the structure and function of ECs and VSMCs play a key role in vascular aging. MicroRNAs (miRNAs), small noncoding RNAs, have been shown to regulate the expression of multiple messenger RNAs (mRNAs) posttranscriptionally, contributing to many crucial aspects of cell biology. Recently, miRNAs with functions associated with aging or aging-related diseases have been studied. In this review, we will summarize the reported role of miRNAs in the process of vascular aging with special emphasis on EC and VSMC functions. In addition, the potential application of miRNAs to clinical practice for the diagnosis and treatment of cardiovascular diseases will also be discussed.
Collapse
|
189
|
Afzal TA, Luong LA, Chen D, Zhang C, Yang F, Chen Q, An W, Wilkes E, Yashiro K, Cutillas PR, Zhang L, Xiao Q. NCK Associated Protein 1 Modulated by miRNA-214 Determines Vascular Smooth Muscle Cell Migration, Proliferation, and Neointima Hyperplasia. J Am Heart Assoc 2016; 5:e004629. [PMID: 27927633 PMCID: PMC5210428 DOI: 10.1161/jaha.116.004629] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/28/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND MicroRNA miR-214 has been implicated in many biological cellular functions, but the impact of miR-214 and its target genes on vascular smooth muscle cell (VSMC) proliferation, migration, and neointima smooth muscle cell hyperplasia is unknown. METHODS AND RESULTS Expression of miR-214 was closely regulated by different pathogenic stimuli in VSMCs through a transcriptional mechanism and decreased in response to vascular injury. Overexpression of miR-214 in serum-starved VSMCs significantly decreased VSMC proliferation and migration, whereas knockdown of miR-214 dramatically increased VSMC proliferation and migration. Gene and protein biochemical assays, including proteomic analyses, showed that NCK associated protein 1 (NCKAP1)-a major component of the WAVE complex that regulates lamellipodia formation and cell motility-was negatively regulated by miR-214 in VSMCs. Luciferase assays showed that miR-214 substantially repressed wild-type but not the miR-214 binding site mutated version of NCKAP1 3' untranslated region luciferase activity in VSMCs. This result confirmed that NCKAP1 is the functional target of miR-214 in VSMCs. NCKAP1 knockdown in VSMCs recapitulates the inhibitory effects of miR-214 overexpression on actin polymerization, cell migration, and proliferation. Data from cotransfection experiments also revealed that inhibition of NCKAP1 is required for miR-214-mediated lamellipodia formation, cell motility, and growth. Importantly, locally enforced expression of miR-214 in the injured vessels significantly reduced NCKAP1 expression levels, inhibited VSMC proliferation, and prevented neointima smooth muscle cell hyperplasia after injury. CONCLUSIONS We uncovered an important role of miR-214 and its target gene NCKAP1 in modulating VSMC functions and neointima hyperplasia. Our findings suggest that miR-214 represents a potential therapeutic target for vascular diseases.
Collapse
Affiliation(s)
- Tayyab Adeel Afzal
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Le Anh Luong
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Dan Chen
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Cheng Zhang
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Yang
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qishan Chen
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiwei An
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Edmund Wilkes
- Centre for Haemato-Oncology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Kenta Yashiro
- Translational Medicine & Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Pedro R Cutillas
- Centre for Haemato-Oncology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| |
Collapse
|
190
|
Abstract
PURPOSE OF REVIEW Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are becoming fundamentally important in the pathophysiology relating to injury-induced vascular remodelling. We highlight recent studies that demonstrate the involvement of ncRNAs in vein graft disease, in in-stent restenosis and in pulmonary arterial hypertension, with a particular focus on endothelial cell and vascular smooth muscle cell function. We also briefly discuss the emerging role of exosomal-derived ncRNAs and how this mechanism impacts on vascular function. RECENT FINDINGS ncRNAs have been described as novel regulators in the pathophysiology of vascular injury, inflammation, and vessel wall remodelling. In particular, several studies have demonstrated that manipulation of miRNAs can reduce the burden of pathological vascular remodelling. Such studies have also shown that exosomal miRNA-mediated, cell-to-cell communication between endothelial cells and vascular smooth muscle cells is critical in the disease process. In addition to miRNAs, lncRNAs are emerging as regulators of vascular function in health and disease. Although lncRNAs are complex in both their sheer numbers and mechanisms of action, identifying their contribution to vascular disease is essential. SUMMARY Given the important roles of ncRNAs in vascular injury and remodelling together will their capacity for cell-to-cell communication, manipulating ncRNA might provide novel therapeutic interventions.
Collapse
Affiliation(s)
- Lin Deng
- aBHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow bCentre for Cardiovascular Science, Queen's Medical Research Institute, BHF/University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
191
|
Circulating miR-221-3p as a novel marker for early prediction of acute myocardial infarction. Gene 2016; 591:90-96. [DOI: 10.1016/j.gene.2016.06.059] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/10/2016] [Accepted: 06/28/2016] [Indexed: 01/06/2023]
|
192
|
O Sullivan JF, Neylon A, McGorrian C, Blake GJ. miRNA-93-5p and other miRNAs as predictors of coronary artery disease and STEMI. Int J Cardiol 2016; 224:310-316. [PMID: 27665403 DOI: 10.1016/j.ijcard.2016.09.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/07/2016] [Accepted: 09/11/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs), small non-coding RNAs, have been implicated as regulators of all mediators of atherosclerosis, and some reports have suggested increased levels in coronary artery disease (CAD) and acute myocardial infarction (AMI). However, the potential of miRNAs as biomarkers or predictors of disease remains to be established. METHODS We designed a study comprising 150 patients (50 Control, 50 Stable CAD, and 50 ST Elevation Myocardial Infarction (STEMI)), and measured plasma miRNAs in each. We then determined the ability of differential miRNAs, adjusting for Framingham Heart Study (FHS) risk factors, to discriminate between CAD vs Control, and STEMI vs Control. RESULTS Three miRNAs (miR15a-5p, miR16-5p, and miR93-5p) were significantly increased in Stable CAD vs Control groups and one (miR146a-5p) was significantly decreased in Stable CAD vs Control. One miRNA - miR499a-5p - was significantly increased in the STEMI group compared to Controls. After adjustment for FHS risk factors, miR93-5p levels remained an independent predictor of the presence of CAD (Odds Ratio [OR]=8.76, P=0.002). All 4 miRNAs improved discriminatory power for CAD over FHS alone in ROC analysis. Similarly, after adjustment for risk factors miR499-5p remained an independent predictor of STEMI (OR=3.03, P=0.001) and improved discriminatory power for STEMI in ROC analyses. CONCLUSION We identified 4 miRNAs that were differentially expressed among stable CAD and control patients, and 1 miRNA that was elevated in STEMI patients vs controls. MiR93-5p was the strongest predictor of CAD after adjustment for traditional risk factors, suggesting potential diagnostic utility.
Collapse
Affiliation(s)
- John F O Sullivan
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.; Heart Research Institute, Newtown, NSW 2042, Australia.; Charles Perkins Centre, Johns Hopkins Drive, The University of Sydney, NSW 2006, Australia; Department of Cardiology, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland..
| | - Antoinette Neylon
- Department of Cardiology, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Catherine McGorrian
- Department of Cardiology, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland.; A/Prof, University College Dublin, Dublin, Ireland
| | - Gavin J Blake
- Department of Cardiology, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland.; A/Prof, University College Dublin, Dublin, Ireland
| |
Collapse
|
193
|
Zhou JY, Xu B, Li L. A New Role for an Old Drug: Metformin Targets MicroRNAs in Treating Diabetes and Cancer. Drug Dev Res 2016; 76:263-9. [PMID: 26936407 DOI: 10.1002/ddr.21265] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are a family of short, noncoding, 19-23 base pair RNA molecules. Due to their unique role in gene regulation in various tissues, miRNAs play important roles in regulating insulin secretion, metabolic disease, and cancer biology. Emerging evidence demonstrates that miRNAs could also be novel diagnostic markers for a variety of disease states. Additionally, miRNAs have been found to function either as oncogenes, or tumor suppressor genes in cerian cancers. An increasing number of studies have been conducted investigating new drugs targeting miRNAs as a potential anticancer therapy. Metformin is the most widely prescribed medication for treating Type 2 diabetes (T2D). Recent clinical data suggests that metformin impacts the miRNA profile in T2D subjects. Most excitingly, studies have found that metformin is protective against cancer. The anticancer activity of metformin is mediated through a direct regulation of miRNAs, which further modulates several downstream genes in metabolic or preoncogenic pathways. These miRNAs are, therefore, prospective therapeutic targets for treating diabetes and cancer which is the topic of this review. Further study on the regulation of miRNAs by metformin could result in novel therapeutic strategies for recurrent or drug-esistant cancer, and as part of combinatorial approaches with conventional anticancer therapies.
Collapse
Affiliation(s)
- Joseph Yi Zhou
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada, H3A 0G4
| | - Biao Xu
- Department of Cardiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lixin Li
- Department of Physician Assistant, College of Health Professions, Central Michigan University, Mount Pleasant, MI, 48859, USA
| |
Collapse
|
194
|
Darabi F, Aghaei M, Movahedian A, Pourmoghadas A, Sarrafzadegan N. The role of serum levels of microRNA-21 and matrix metalloproteinase-9 in patients with acute coronary syndrome. Mol Cell Biochem 2016; 422:51-60. [PMID: 27590242 DOI: 10.1007/s11010-016-2805-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 08/25/2016] [Indexed: 01/09/2023]
Abstract
Acute coronary syndrome (ACS) is one of the leading causes of cardiovascular death. It seems that microRNA-21 and matrix metalloproteinase-9 implicated in the pathogenesis of cardiovascular diseases. The aim of this study was to investigate the role of circulating miR-21 and MMP-9 as biomarkers for ACS. Based on coronary angiography and electrocardiography results, 50 patients with ACS and 50 patients with stable coronary artery disease (stable CAD) were enrolled in this study. Samples were collected from patients and stored at -80 °C. Serum miR-21 gene expression was measured by quantitative real-time PCR method. Serum total MMP-9 was measured by enzyme-linked immunosorbent assay kit. Also, the activity of MMP-9 was measured by gelatin zymography. Patients with ACS had a significantly higher miR-21 level compared to the stable CAD ([Formula: see text] = 0.88 ± 0.06 and 0.31 ± 0.08 respectively, P < 0.001). At the same time, the serum levels and activity of MMP-9 were significantly higher in ACS patients compared to those with stable CAD (324.01 ± 17.57 and 204.6 ± 12.39 ng/mL, P < 0.001, and 2524.5 ± 131.3 and 1280.8 ± 19.6 units, P < 0.001, respectively). miR-21 expression levels were correlated positively with MMP-9, hs-CRP, and age and negatively with HDL-cholesterol (r = 0.33, P < 0.001, r = 0.22, P < 0.031, r = 0.26, P < 0.008, r = -0.32, P < 0.001, respectively). We concluded that increased serum expression of miR-21 and higher serum activity of MMP-9 may be useful indicators for ACS. However, we suggest further studies to be performed.
Collapse
Affiliation(s)
- Faramarz Darabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Movahedian
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran. .,Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar-Jerib St., Isfahan, Iran.
| | - Ali Pourmoghadas
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
195
|
Meydan C, Shenhar-Tsarfaty S, Soreq H. MicroRNA Regulators of Anxiety and Metabolic Disorders. Trends Mol Med 2016; 22:798-812. [DOI: 10.1016/j.molmed.2016.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/06/2016] [Accepted: 07/09/2016] [Indexed: 12/19/2022]
|
196
|
Gareri C, De Rosa S, Indolfi C. MicroRNAs for Restenosis and Thrombosis After Vascular Injury. Circ Res 2016; 118:1170-84. [PMID: 27034278 DOI: 10.1161/circresaha.115.308237] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/01/2016] [Indexed: 12/21/2022]
Abstract
Percutaneous revascularization revolutionized the therapy of patients with coronary artery disease. Despite continuous technical advances that substantially improved patients' outcome after percutaneous revascularization, some issues are still open. In particular, restenosis still represents a challenge, even though it was dramatically reduced with the advent of drug-eluting stents. At the same time, drug-eluting stent thrombosis emerged as a major concern because of incomplete or delayed re-endothelialization after vascular injury. The discovery of microRNAs revealed a previously unknown layer of regulation for several biological processes, increasing our knowledge on the biological mechanisms underlying restenosis and stent thrombosis, revealing novel promising targets for more efficient and selective therapies. The present review summarizes recent experimental and clinical evidence on the role of microRNAs after arterial injury, focusing on practical aspects of their potential therapeutic application for selective inhibition of smooth muscle cell proliferation, enhancement of endothelial regeneration, and inhibition of platelet activation after coronary interventions. Application of circulating microRNAs as potential biomarkers is also discussed.
Collapse
Affiliation(s)
- Clarice Gareri
- From the Department of Medicine, Duke University, Durham, NC (C.G.); Division of Cardiology, Department of Medical and Surgical Science, "Magna Graecia" University, Catanzaro, Italy (S.D.R., C.I.); and URT-CNR, Department of Medicine, URT of Consiglio Nazionale delle Ricerche, Catanzaro, Italy (C.I.)
| | - Salvatore De Rosa
- From the Department of Medicine, Duke University, Durham, NC (C.G.); Division of Cardiology, Department of Medical and Surgical Science, "Magna Graecia" University, Catanzaro, Italy (S.D.R., C.I.); and URT-CNR, Department of Medicine, URT of Consiglio Nazionale delle Ricerche, Catanzaro, Italy (C.I.)
| | - Ciro Indolfi
- From the Department of Medicine, Duke University, Durham, NC (C.G.); Division of Cardiology, Department of Medical and Surgical Science, "Magna Graecia" University, Catanzaro, Italy (S.D.R., C.I.); and URT-CNR, Department of Medicine, URT of Consiglio Nazionale delle Ricerche, Catanzaro, Italy (C.I.).
| |
Collapse
|
197
|
Nicholson CJ, Seta F, Lee S, Morgan KG. MicroRNA-203 mimics age-related aortic smooth muscle dysfunction of cytoskeletal pathways. J Cell Mol Med 2016; 21:81-95. [PMID: 27502584 PMCID: PMC5192880 DOI: 10.1111/jcmm.12940] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/23/2016] [Indexed: 12/20/2022] Open
Abstract
Increased aortic stiffness is a biomarker for subsequent adverse cardiovascular events. We have previously reported that vascular smooth muscle Src-dependent cytoskeletal remodelling, which contributes to aortic plasticity, is impaired with ageing. Here, we use a multi-scale approach to determine the molecular mechanisms behind defective Src-dependent signalling in an aged C57BL/6 male mouse model. Increased aortic stiffness, as measured in vivo by pulse wave velocity, was found to have a comparable time course to that in humans. Bioinformatic analyses predicted several miRs to regulate Src-dependent cytoskeletal remodelling. qRT-PCR was used to determine the relative levels of predicted miRs in aortas and, notably, the expression of miR-203 increased almost twofold in aged aorta. Increased miR-203 expression was associated with a decrease in both mRNA and protein expression of Src, caveolin-1 and paxillin in aged aorta. Probing with phospho-specific antibodies confirmed that overexpression of miR-203 significantly attenuated Src and extracellular signal regulated kinase (ERK) signalling, which we have previously found to regulate vascular smooth muscle stiffness. In addition, transfection of miR-203 into aortic tissue from young mice increased phenylephrine-induced aortic stiffness ex vivo, mimicking the aged phenotype. Upstream of miR-203, we found that DNA methyltransferases (DNMT) 1, 3a, and 3b are also significantly decreased in the aged mouse aorta and that DNMT inhibition significantly increases miR-203 expression. Thus, the age-induced increase in miR-203 may be caused by epigenetic promoter hypomethylation in the aorta. These findings indicate that miR-203 promotes a re-programming of Src/ERK signalling pathways in vascular smooth muscle, impairing the regulation of stiffness in aged aorta.
Collapse
Affiliation(s)
| | - Francesca Seta
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sophie Lee
- Department of Health Sciences, Boston University, Boston, MA, USA
| | | |
Collapse
|
198
|
Fang YC, Yeh CH. Role of microRNAs in Vascular Remodeling. Curr Mol Med 2016; 15:684-96. [PMID: 26391551 PMCID: PMC5384354 DOI: 10.2174/1566524015666150921105031] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 09/06/2015] [Accepted: 09/18/2015] [Indexed: 12/20/2022]
Abstract
Besides being involved in the gradual formation of blood vessels during embryonic development, vascular remodeling also contributes to the progression of various cardiovascular diseases, such as; myocardial infarction, heart failure, atherosclerosis, pulmonary artery hypertension, restenosis, aneurysm, etc. The integrated mechanisms; proliferation of medial smooth muscle cell, dysregulation of intimal endothelial cell, activation of adventitial fibroblast, inflammation of macrophage, and the participation of extracellular matrix proteins are important factors in vascular remodeling. In the recent studies, microRNAs (miRs) have been shown to be expressed in all of these cell-types and play important roles in the mechanisms of vascular remodeling. Therefore, some miRs may be involved in prevention and others in the aggravation of the vascular lesions. miRs are small, endogenous, conserved, single-stranded, non-coding RNAs; which degrade target RNAs or inhibit translation post-transcriptionally. In this paper, we reviewed the function and mechanisms of miRs, which are highly expressed in various cells types, especially endothelial and smooth muscle cells, which are closely involved in the process of vascular remodeling. We also assess the functions of these miRs in the hope that they may provide new possibilities of diagnosis and treatment choices for the related diseases.
Collapse
Affiliation(s)
| | - C-H Yeh
- Department of Thoracic & Cardiovascular Surgery, Chang Gung Memorial Hospital at Keelung, 222 Mai-Chin Road, Keelung, 204, Taiwan.
| |
Collapse
|
199
|
microRNA expression profile in human coronary smooth muscle cell-derived microparticles is a source of biomarkers. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2016; 28:167-77. [DOI: 10.1016/j.arteri.2016.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/05/2016] [Indexed: 12/11/2022]
|
200
|
Yeh CH, Jin L, Shen F, Balian G, Li X. miR-221 attenuates the osteogenic differentiation of human annulus fibrosus cells. Spine J 2016; 16:896-904. [PMID: 26997108 PMCID: PMC4970913 DOI: 10.1016/j.spinee.2016.03.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 01/30/2016] [Accepted: 03/11/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND In the moderate and end stages of intervertebral disc (IVD) degeneration, endochondral ossifications are found in the IVD. PURPOSE The aim of this study was to investigate whether endochondral ossification in the late stages of disc degeneration is due to the differentiation of resident progenitor cell in the annulus fibrosus (AF) and the potential signaling pathways in vitro. STUDY DESIGN This is an in vitro study of AF cell osteogenic differentiation and possible mechanisms METHODS Normal annulus fibrosus (NAF) and degenerated annulus fibrosus (DAF) cells were isolated from tissue removed surgically from juvenile patients with idiopathic scoliosis and adult patients with degenerative scoliosis. Osteogenic differentiation was investigated using quantitative reverse transcription polymerase chain reaction (RT-PCR) and histology. The effects of miR-221 on osteogenesis were measured by overexpression of miR-221 with lentivirus. BMP2 and phospho-Smad proteins were detected by Western blotting. RESULTS Both NAF and DAF cells underwent osteogenic differentiation, which was confirmed by detecting mineralization of the cell cultures and by an increase in the expression mRNAs for BMP2, runx2, alkaline phosphatase (ALP), and osteocalcin. DAF cells exhibited increased osteogenic differentiation potential over the NAF cells. By contrast to the elevated phospho-Smads, the basal level of miR-221 significantly decreased in DAF cells compared with that in NAF cells. Cultures of both cell types in osteogenic medium showed a decrease in miR-221 expression, and overexpression of miR-221 markedly decreased the level of BMP2, phospho-Smads, and the expression of osteogenic genes in DAF cells. The osteogenic potential of DAF cells diminished by the overexpression of miR-221. CONCLUSION Compared with NAF cells, AF cells from degenerated discs have a greater tendency for osteogenic differentiation, which involves the BMP-Smad pathways and can be regulated by miR-221. These observations may be developed into a therapeutic to prevent the endochondral ossification.
Collapse
Affiliation(s)
| | | | | | | | - Xudong Li
- Corresponding Author: Dr. Xudong Li, Mailing Address: Orthopaedic Surgery Laboratory, University of Virginia, Charlottesville, VA 22908, USA, , Tel: 434-982-4135, Fax: 434-922-1691
| |
Collapse
|