151
|
Zhu Y, Xu L, Collins JJ, Vadivel A, Cyr-Depauw C, Zhong S, Mense L, Möbius MA, Thébaud B. Human Umbilical Cord Mesenchymal Stromal Cells Improve Survival and Bacterial Clearance in Neonatal Sepsis in Rats. Stem Cells Dev 2017; 26:1054-1064. [DOI: 10.1089/scd.2016.0329] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Yueniu Zhu
- Department of Pediatric Critical Care Medicine, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Pediatrics, Children's Hospital of Eastern Ontario and Children's Hospital of Ontario Research Institute (CHEORI), Ottawa, Ontario, Canada
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute (OHRI), Ottawa, Ontario, Canada
| | - Liqun Xu
- Department of Pediatrics, Children's Hospital of Eastern Ontario and Children's Hospital of Ontario Research Institute (CHEORI), Ottawa, Ontario, Canada
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute (OHRI), Ottawa, Ontario, Canada
| | - Jennifer J.P. Collins
- Department of Pediatrics, Children's Hospital of Eastern Ontario and Children's Hospital of Ontario Research Institute (CHEORI), Ottawa, Ontario, Canada
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute (OHRI), Ottawa, Ontario, Canada
- Department of Cellular and Molecular Biology, University of Ottawa, Ontario, Canada
| | - Arul Vadivel
- Department of Pediatrics, Children's Hospital of Eastern Ontario and Children's Hospital of Ontario Research Institute (CHEORI), Ottawa, Ontario, Canada
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute (OHRI), Ottawa, Ontario, Canada
| | - Chanèle Cyr-Depauw
- Department of Pediatrics, Children's Hospital of Eastern Ontario and Children's Hospital of Ontario Research Institute (CHEORI), Ottawa, Ontario, Canada
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute (OHRI), Ottawa, Ontario, Canada
| | - Shumei Zhong
- Department of Pediatrics, Children's Hospital of Eastern Ontario and Children's Hospital of Ontario Research Institute (CHEORI), Ottawa, Ontario, Canada
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute (OHRI), Ottawa, Ontario, Canada
| | - Lars Mense
- Department of Pediatrics, Children's Hospital of Eastern Ontario and Children's Hospital of Ontario Research Institute (CHEORI), Ottawa, Ontario, Canada
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute (OHRI), Ottawa, Ontario, Canada
| | - Marius A. Möbius
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute (OHRI), Ottawa, Ontario, Canada
| | - Bernard Thébaud
- Department of Pediatrics, Children's Hospital of Eastern Ontario and Children's Hospital of Ontario Research Institute (CHEORI), Ottawa, Ontario, Canada
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute (OHRI), Ottawa, Ontario, Canada
- Department of Cellular and Molecular Biology, University of Ottawa, Ontario, Canada
| |
Collapse
|
152
|
Stromal derived factor-1 mediates the lung regenerative effects of mesenchymal stem cells in a rodent model of bronchopulmonary dysplasia. Respir Res 2017; 18:137. [PMID: 28701189 PMCID: PMC5506612 DOI: 10.1186/s12931-017-0620-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/03/2017] [Indexed: 02/08/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) attenuate lung injury in experimental models of bronchopulmonary dysplasia (BPD). Stromal derived factor-1 (SDF-1), a chemokine secreted by MSCs, modulates angiogenesis and stem cell recruitment. Here we tested the hypothesis that SDF-1 mediates MSC protective effects in experimental BPD by modulating angiogenesis. Methods SDF-1 was knocked down in MSCs using lentiviral vectors carrying anti-SDF-1 short hairpin RNA (MSC-SDF KD). Non-silencing short hairpin RNA was used as control (MSC-NS control). Newborn rats exposed to normoxia or hyperoxia (FiO2 = 0.85) for 3 weeks, were randomly assigned to receive a single intra-tracheal injection (IT) of MSC-NS control or MSC-SDF KD (1 × 106 cells/50 μl) or placebo on postnatal day 7. The degree of alveolarization, lung angiogenesis, inflammation, and pulmonary hypertension (PH) were assessed at postnatal day 21. Results Administration of IT MSC-NS control improved lung alveolarization, angiogenesis and inflammation, and attenuated PH in newborn rats with hyperoxia-induced lung injury (HILI). In contrast, knockdown of SDF-1 in MSCs significantly reduced their beneficial effects on alveolarization, angiogenesis, inflammation and PH. Conclusions The therapeutic benefits of MSCs in neonatal HILI are in part mediated by SDF-1, through anti-inflammatory and angiogenesis promoting mechanisms. Therapies directly targeting this chemokine may provide a novel strategy for the treatment of BPD.
Collapse
|
153
|
Ahn SY, Chang YS, Kim JH, Sung SI, Park WS. Two-Year Follow-Up Outcomes of Premature Infants Enrolled in the Phase I Trial of Mesenchymal Stem Cells Transplantation for Bronchopulmonary Dysplasia. J Pediatr 2017; 185:49-54.e2. [PMID: 28341525 DOI: 10.1016/j.jpeds.2017.02.061] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/30/2016] [Accepted: 02/22/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine the long-term safety and outcomes of mesenchymal stem cells (MSCs) for bronchopulmonary dysplasia in premature infants enrolled in a previous phase I clinical trial up to 2 years of corrected age (CA). STUDY DESIGN We assessed serious adverse events, somatic growth, and respiratory and neurodevelopmental outcomes at visit 1 (4-6 months of CA), visit 2 (8-12 months of CA), and visit 3 (18-24 months of CA) in a prospective longitudinal follow-up study up to 2 years' CA of infants who received MSCs (MSC group). We compared these data with those from a historical case-matched comparison group. RESULTS One of 9 infants in the MSC group died of Enterobacter cloacae sepsis at 6 months of CA, the remaining 8 infants survived without any transplantation-related adverse outcomes, including tumorigenicity. No infant in the MSC group was discharged with home supplemental oxygen compared with 22% in the comparison group. The average rehospitalization rate in the MSC group was 1.4/patient because of respiratory infections during 2 years of follow-up. The mean body weight of the MSC group at visit 3 was significantly higher compared with that of the comparison group. No infant in the MSC group was diagnosed with cerebral palsy, blindness, or developmental delay; in the comparison group, 1 infant was diagnosed with cerebral palsy and 1 with developmental delay. CONCLUSIONS Intratracheal transplantation of MSCs in preterm infants appears to be safe, with no adverse respiratory, growth, and neurodevelopmental effects at 2 years' CA. TRIAL REGISTRATION ClinicalTrials.gov: NCT01632475.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea; Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Ji Hye Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea; Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
154
|
Cryopreserved, Xeno-Free Human Umbilical Cord Mesenchymal Stromal Cells Reduce Lung Injury Severity and Bacterial Burden in Rodent Escherichia coli-Induced Acute Respiratory Distress Syndrome. Crit Care Med 2017; 45:e202-e212. [PMID: 27861182 DOI: 10.1097/ccm.0000000000002073] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Although mesenchymal stem/stromal cells represent a promising therapeutic strategy for acute respiratory distress syndrome, clinical translation faces challenges, including scarcity of bone marrow donors, and reliance on bovine serum during mesenchymal stem/stromal cell proliferation. We wished to compare mesenchymal stem/stromal cells from human umbilical cord, grown in xeno-free conditions, with mesenchymal stem/stromal cells from human bone marrow, in a rat model of Escherichia coli pneumonia. In addition, we wished to determine the potential for umbilical cord-mesenchymal stem/stromal cells to reduce E. coli-induced oxidant injury. DESIGN Randomized animal study. SETTING University research laboratory. SUBJECTS Male Sprague-Dawley rats. INTERVENTIONS Acute respiratory distress syndrome was induced in rats by intratracheal instillation of E. coli (1.5-2 × 10 CFU/kg). "Series 1" compared the effects of freshly thawed cryopreserved umbilical cord-mesenchymal stem/stromal cells with bone marrow-mesenchymal stem/stromal cells on physiologic indices of lung injury, cellular infiltration, and E. coli colony counts in bronchoalveolar lavage. "Series 2" examined the effects of cryopreserved umbilical cord-mesenchymal stem/stromal cells on survival, as well as measures of injury, inflammation and oxidant stress, including production of reactive oxidative species, reactive oxidative species scavenging by superoxide dismutase-1 and superoxide dismutase-2. MEASUREMENTS AND MAIN RESULTS In "Series 1," animals subjected to E. coli pneumonia who received umbilical cord-mesenchymal stem/stromal cells had improvements in oxygenation, respiratory static compliance, and wet-to-dry ratios comparable to bone marrow-mesenchymal stem/stromal cell treatment. E. coli colony-forming units in bronchoalveolar lavage were reduced in both cell therapy groups, despite a reduction in bronchoalveolar lavage neutrophils. In series 2, umbilical cord-mesenchymal stem/stromal cells enhanced animal survival and decreased alveolar protein and proinflammatory cytokine concentrations, whereas increasing interleukin-10 concentrations. Umbilical cord-mesenchymal stem/stromal cell therapy decreased nicotinamide adenine dinucleotide phosphate-oxidase 2 and inducible nitric oxide synthase and enhanced lung concentrations of superoxide dismutase-2, thereby reducing lung tissue reactive oxidative species concentrations. CONCLUSIONS Our results demonstrate that freshly thawed cryopreserved xeno-free human umbilical cord-mesenchymal stem/stromal cells reduce the severity of rodent E. coli-induced acute respiratory distress syndrome. Umbilical cord-mesenchymal stem/stromal cells, therefore, represent an attractive option for future clinical trials in acute respiratory distress syndrome.
Collapse
|
155
|
Collins JJP, Tibboel D, de Kleer IM, Reiss IKM, Rottier RJ. The Future of Bronchopulmonary Dysplasia: Emerging Pathophysiological Concepts and Potential New Avenues of Treatment. Front Med (Lausanne) 2017; 4:61. [PMID: 28589122 PMCID: PMC5439211 DOI: 10.3389/fmed.2017.00061] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Yearly more than 15 million babies are born premature (<37 weeks gestational age), accounting for more than 1 in 10 births worldwide. Lung injury caused by maternal chorioamnionitis or preeclampsia, postnatal ventilation, hyperoxia, or inflammation can lead to the development of bronchopulmonary dysplasia (BPD), one of the most common adverse outcomes in these preterm neonates. BPD patients have an arrest in alveolar and microvascular development and more frequently develop asthma and early-onset emphysema as they age. Understanding how the alveoli develop, and repair, and regenerate after injury is critical for the development of therapies, as unfortunately there is still no cure for BPD. In this review, we aim to provide an overview of emerging new concepts in the understanding of perinatal lung development and injury from a molecular and cellular point of view and how this is paving the way for new therapeutic options to prevent or treat BPD, as well as a reflection on current treatment procedures.
Collapse
Affiliation(s)
- Jennifer J P Collins
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Ismé M de Kleer
- Division of Pediatric Pulmonology, Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Irwin K M Reiss
- Division of Neonatology, Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
156
|
Möbius MA, Thébaud B. Bronchopulmonary Dysplasia: Where Have All the Stem Cells Gone?: Origin and (Potential) Function of Resident Lung Stem Cells. Chest 2017; 152:1043-1052. [PMID: 28479114 DOI: 10.1016/j.chest.2017.04.173] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/05/2017] [Accepted: 04/25/2017] [Indexed: 12/12/2022] Open
Abstract
Celebrating its 50th anniversary in 2017, bronchopulmonary dysplasia (BPD)-the chronic lung disease of prematurity that follows ventilator and oxygen therapy for acute respiratory failure-remains the most frequent complication of extreme prematurity. Survival of premature infants born at increasingly earlier stages of gestation has made the prevention of lung injury increasingly challenging. BPD is postulated to be a misdirection of many functions in the developing lung, including growth factor signalling and matrix as well as cellular composition, resulting in impaired alveolar and lung vascular growth. Despite improvements in understanding the mechanisms that regulate normal lung development, BPD remains without therapies. Insights into stem cell biology have identified the repair potential of stem cells. Promising preclinical studies demonstrated the lung protective effects of stem cell-based therapies in animal models mimicking BPD, leading to early-phase clinical trials. Although the time is ripe to conduct well-designed early-phase clinical trials, much more needs to be learned about the biology of these cells to develop safe, efficient, high-quality, clinical-grade cell products. Stem cells are essential for normal organ development, maintenance, and repair. It is therefore biologically plausible that exhaustion/dysfunction of resident lung stem cells contributes to the inability of the immature lung to repair itself. Understanding how normal lung stem cells function and how these cells are perturbed in BPD may prove useful in designing superior cell products with enhanced repair capabilities to ensure the successful translation of basic research into clinical practice.
Collapse
Affiliation(s)
- Marius Alexander Möbius
- Department of Neonatology and Pediatric Critical Care Medicine, Technische Universität Dresden, Dresden, Germany; DFG Research Center and Cluster of Excellence for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany; Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Bernard Thébaud
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada; Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
157
|
Greenough A, Papalexopoulou N. The roles of drug therapy given via the endotracheal tube to neonates. Arch Dis Child Fetal Neonatal Ed 2017; 102:F277-F281. [PMID: 28270430 DOI: 10.1136/archdischild-2016-311711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/01/2017] [Accepted: 02/04/2017] [Indexed: 11/04/2022]
Abstract
Many drugs are given to intubated neonates by the inhalation route. The optimum aerosol delivery system, however, has not been identified and there are many challenges in delivering drugs effectively to the lower airways of intubated neonates. The effectiveness of surfactant in prematurely born infants and nitric oxide has been robustly investigated. Other drugs are being used on very limited evidence.
Collapse
Affiliation(s)
- Anne Greenough
- Division of Asthma, Allergy and Lung Biology, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK.,NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Niovi Papalexopoulou
- Division of Asthma, Allergy and Lung Biology, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| |
Collapse
|
158
|
Lee H, Kim KC, Choi SJ, Hong YM. Optimal Dose and Timing of Umbilical Stem Cells Treatment in Pulmonary Arterial Hypertensive Rats. Yonsei Med J 2017; 58:570-580. [PMID: 28332363 PMCID: PMC5368143 DOI: 10.3349/ymj.2017.58.3.570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Pulmonary arterial hypertension (PAH) is a fatal disease which is characterized by an increase in pulmonary arterial pressure leading to increases in right ventricular afterload. Human umbilical cord blood derived-mesenchymal stem cells (hUCB-MSCs) administered via the jugular vein have been previously shown to improve PAH by reversal treatment. However, the effect of low dosage and transfusion timing of hUCB-MSCs on PAH has not yet been clearly established. Obviously, low dosage treatment can lead to a reduction in costs. This is the first study on early transfusion effect. MATERIALS AND METHODS This study was divided into two parts. The first part is an investigation of dose-dependent effect. hUCB-MSCs were administered into 3 groups of rats (UA: 3×10⁶ cells, UB: 1.5×10⁶ cells, UC: 3×10⁵ cells) via the external jugular vein at week 1 after monocrotaline (MCT) injection. The second part is a search for optimal treatment timing in 3×10⁵ cells dose of hUCB-MSCs administered at day 1 for UD group (low dose of hUCB-MSCs at day 1), at day 1 and week 1 for the UE group (dual transfusion of low dose of hUCB-MSCs at day 1 and week 1) and at 1 week for the UF group (reversal treatment of low dose hUCB-MSC at week 1) after MCT injection. RESULTS The administration of 3×10⁵ hUCB-MSCs was as effective as the 3×10⁶ dose in decreasing mean right ventricle (RV) pressure and pulmonary pathological changes. Early treatment with hUCB-MSCs improved mean RV pressure, pulmonary pathological changes and heart collagen 3 protein expression levels in PAH. CONCLUSION Low-dose early treatment of hUCB-MSCs is as effective as a high dose treatment of hUCB-MSCs in improving PAH although dual or reversal treatment is still more effective.
Collapse
Affiliation(s)
- Hyeryon Lee
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, Korea
| | - Kwan Chang Kim
- Department of Thoracic and Cardiovascular Surgery, Ewha Womans University School of Medicine, Seoul, Korea
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST, Co., Seoul, Korea
| | - Young Mi Hong
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, Korea.
| |
Collapse
|
159
|
Schmiedl A, Roolfs T, Tutdibi E, Gortner L, Monz D. Influence of prenatal hypoxia and postnatal hyperoxia on morphologic lung maturation in mice. PLoS One 2017; 12:e0175804. [PMID: 28426693 PMCID: PMC5398543 DOI: 10.1371/journal.pone.0175804] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 03/31/2017] [Indexed: 01/15/2023] Open
Abstract
Background Oxygen supply as a lifesaving intervention is frequently used to treat preterm infants suffering additionally from possible prenatal or perinatal pathogen features. The impact of oxygen and/or physical lung injury may influence the morphological lung development, leading to a chronic postnatal lung disease called bronchopulmonary dysplasia (BPD). At present different experimental BPD models are used. However, there are no systematic comparative studies regarding different influences of oxygen on morphological lung maturation. Objective We investigated the influence of prenatal hypoxia and/or postnatal hyperoxia on morphological lung maturation based on stereological parameters, to find out which model best reflects morphological changes in lung development comparable with alterations found in BPD. Methods Pregnant mice were exposed to normoxia, the offspring to normoxia (No/No) or to hyperoxia (No/Hyper). Furthermore, pregnant mice were exposed to hypoxia and the offspring to normoxia (Hypo/No) or to hyperoxia (Hypo/Hyper). Stereological investigations were performed on all pups at 14 days after birth. Results Compared to controls (No/No) 1) the lung volume was significantly reduced in the No/Hyper and Hypo/Hyper groups, 2) the volume weighted mean volume of the parenchymal airspaces was significantly higher in the Hypo/Hyper group, 3) the total air space volume was significantly lower in the No/Hyper and Hypo/Hyper groups, 4) the total septal surface showed significantly lower values in the No/Hyper and Hypo/Hyper groups, 5) the wall thickness of septa showed the highest values in the Hypo/Hyper group without reaching significance, 6) the volume density and the volume weighted mean volume of lamellar bodies in alveolar epithelial cells type II (AEII) were significantly lower in the Hypo/Hyper group. Conclusion Prenatal hypoxia and postnatal hyperoxia differentially influence the maturation of lung parenchyma. In 14 day old mice a significant retardation of morphological lung development leading to BPD-like alterations indicated by different parameters was only seen after hypoxia and hyperoxia.
Collapse
Affiliation(s)
- Andreas Schmiedl
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage und Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Torge Roolfs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Erol Tutdibi
- Department of Pediatrics and Neonatology, Saarland University, Homburg/Saar, Germany
| | - Ludwig Gortner
- Department of Pediatrics and Neonatology, Saarland University, Homburg/Saar, Germany
| | - Dominik Monz
- Department of Pediatrics and Neonatology, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
160
|
Mesenchymal Stem Cells Promoted Lung Wound Repair through Hox A9 during Endotoxemia-Induced Acute Lung Injury. Stem Cells Int 2017; 2017:3648020. [PMID: 28465690 PMCID: PMC5390609 DOI: 10.1155/2017/3648020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 01/19/2017] [Indexed: 12/14/2022] Open
Abstract
Objectives. Acute lung injury (ALI) is a common clinical critical disease. Stem cells transplantation is recognized as an effective way to repair injured lung tissues. The present study was designed to evaluate the effects of mesenchymal stem cells (MSCs) on repair of lung and its mechanism. Methods. MSCs carrying GFP were administrated via trachea into wild-type SD rats 4 hours later after LPS administration. The lung histological pathology and the distribution of MSCs were determined by HE staining and fluorescence microscopy, respectively. Next, differentially expressed HOX genes were screened by using real-time PCR array and abnormal expression and function of Hox A9 were analyzed in the lung and the cells. Results. MSCs promoted survival rate of ALI animals. The expression levels of multiple HOX genes had obvious changes after MSCs administration and HOX A9 gene increased by 5.94-fold after MSCs administration into ALI animals. HOX A9 was distributed in endothelial cells and epithelial cells in animal models and overexpression of Hox A9 can promote proliferation and inhibit inflammatory adhesion of MSCs. Conclusion. HoxA9 overexpression induced by MSCs may be closely linked with lung repair after endotoxin shock.
Collapse
|
161
|
Mills DR, Mao Q, Chu S, Falcon Girard K, Kraus M, Padbury JF, De Paepe ME. Effects of human umbilical cord blood mononuclear cells on respiratory system mechanics in a murine model of neonatal lung injury. Exp Lung Res 2017; 43:66-81. [PMID: 28353351 DOI: 10.1080/01902148.2017.1300713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Mononuclear cells (MNCs) have well-documented beneficial effects in a wide range of adult pulmonary diseases. The effects of human umbilical cord blood-derived MNCs on neonatal lung injury, highly relevant for potential autologous application in preterm newborns at risk for bronchopulmonary dysplasia (BPD), remain incompletely established. The aim of this study was to determine the long-term morphologic and functional effects of systemically delivered MNCs in a murine model of neonatal lung injury. MATERIALS AND METHODS MNCs from cryopreserved cord blood (1 × 106 cells per pup) were given intravenously to newborn mice exposed to 90% O2 from birth; controls received cord blood total nucleated cells (TNCs) or granular cells, or equal volume vehicle buffer (sham controls). In order to avoid immune rejection, we used SCID mice as recipients. Lung mechanics (flexiVent™), engraftment, growth, and alveolarization were evaluated eight weeks postinfusion. RESULTS Systemic MNC administration to hyperoxia-exposed newborn mice resulted in significant attenuation of methacholine-induced airway hyperreactivity, leading to reduction of central airway resistance to normoxic levels. These bronchial effects were associated with mild improvement of alveolarization, lung compliance, and elastance. TNCs had no effects on alveolar remodeling and were associated with worsened methacholine-induced bronchial hyperreactivity. Granular cell administration resulted in a marked morphologic and functional emphysematous phenotype, associated with high mortality. Pulmonary donor cell engraftment was sporadic in all groups. CONCLUSIONS These results suggest that cord blood MNCs may have a cell type-specific role in therapy of pulmonary conditions characterized by increased airway resistance, such as BPD and asthma. Future studies need to determine the active MNC subtype(s), their mechanisms of action, and optimal purification methods to minimize granular cell contamination.
Collapse
Affiliation(s)
- David R Mills
- a Department of Pathology , Women and Infants Hospital , Providence , Rhode Island , USA
| | - Quanfu Mao
- a Department of Pathology , Women and Infants Hospital , Providence , Rhode Island , USA.,b Department of Pathology and Laboratory Medicine , Alpert Medical School of Brown University , Providence , Rhode Island , USA
| | - Sharon Chu
- a Department of Pathology , Women and Infants Hospital , Providence , Rhode Island , USA.,b Department of Pathology and Laboratory Medicine , Alpert Medical School of Brown University , Providence , Rhode Island , USA
| | | | - Morey Kraus
- c ViaCord LLC, a Perkin Elmer Company , Cambridge , Massachusetts , USA
| | - James F Padbury
- d Department of Pediatrics , Women and Infants Hospital , Providence , Rhode Island , USA.,e Department of Pediatrics , Alpert Medical School of Brown University , Providence , Rhode Island , USA
| | - Monique E De Paepe
- a Department of Pathology , Women and Infants Hospital , Providence , Rhode Island , USA.,b Department of Pathology and Laboratory Medicine , Alpert Medical School of Brown University , Providence , Rhode Island , USA
| |
Collapse
|
162
|
Lesage F, Jimenez J, Toelen J, Deprest J. Preclinical evaluation of cell-based strategies to prevent or treat bronchopulmonary dysplasia in animal models: a systematic review. J Matern Fetal Neonatal Med 2017; 31:958-966. [PMID: 28277906 DOI: 10.1080/14767058.2017.1301927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bronchopulmonary dysplasia (BPD) remains the most common complication of extreme prematurity as no effective treatment is available to date. This calls for the exploration of new therapeutic options like cell therapy, which is already effective for various human (lung) disorders. We systematically searched the MEDLINE, Embase, and Web of Science databases from the earliest date till January 2017 and included original studies on the perinatal use of cell-based therapies (i.e. cells and/or cell-derivatives) to treat BDP in animal models. Fourth publications describing 47 interventions were retrieved. Newborn mice/rats raised in a hyperoxic environment were studied in most interventions. Different cell types - either intact cells or their conditioned medium - were administered, but bone marrow and umbilical cord blood derived mesenchymal stem cells were most prevalent. All studies reported positive effects on outcome parameters including alveolar and vascular morphometry, lung function, and inflammation. Cell homing to the lungs was demonstrated in some studies, but the therapeutic effects seemed to be mostly mediated via paracrine modulation of inflammation, fibrosis and angiogenesis. CONCLUSION Multiple rat/mouse studies show promise for cell therapy for BPD. Yet careful study of action mechanisms and side effects in large animal models is imperative before clinical translation can be achieved.
Collapse
Affiliation(s)
- Flore Lesage
- a Department of Development and Regeneration, Group Biomedical Sciences , KU Leuven , Leuven , Belgium
| | - Julio Jimenez
- a Department of Development and Regeneration, Group Biomedical Sciences , KU Leuven , Leuven , Belgium.,b Department of Obstetrics and Gynaecology , Clínica Alemana Universidad del Desarrollo , Santiago , Chile
| | - Jaan Toelen
- a Department of Development and Regeneration, Group Biomedical Sciences , KU Leuven , Leuven , Belgium.,c Department of Pediatrics , University Hospitals Leuven , Leuven , Belgium
| | - Jan Deprest
- a Department of Development and Regeneration, Group Biomedical Sciences , KU Leuven , Leuven , Belgium.,d Research Department of Maternal Fetal Medicine , UCL Institute for Women's Health (IWH), University College London , London , United Kingdom
| |
Collapse
|
163
|
Abstract
Despite recent advances in neonatal medicine, neonatal disorders, such as bronchopulmonary dysplasia and intraventricular hemorrhage in preterm neonates and hypoxic ischemic encephalopathy in term neonates, remain major causes of mortality and morbidities. Promising preclinical research results suggest that stem cell therapies represent the next breakthrough in the treatment of currently intractable and devastating neonatal disorders with complex multifactorial etiologies. This review focuses primarily on the potential role of stem cell therapy in the above mentioned neonatal disorders, highlighting the results of human clinical trials and the challenges that remain to be addressed for their safe and successful translation into clinical care of newborn infants.
Collapse
Affiliation(s)
- Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sein Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
164
|
Kardia E, Zakaria N, Sarmiza Abdul Halim NS, Widera D, Yahaya BH. The use of mesenchymal stromal cells in treatment of lung disorders. Regen Med 2017; 12:203-216. [DOI: 10.2217/rme-2016-0112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The therapeutic use of mesenchymal stromal cells (MSCs) represents a promising alternative clinical strategy for treating acute and chronic lung disorders. Several preclinical reports demonstrated that MSCs can secrete multiple paracrine factors and that their immunomodulatory properties can support endothelial and epithelial regeneration, modulate the inflammatory cascade and protect lungs from damage. The effects of MSC transplantation into patients suffering from lung diseases should be fully evaluated through careful assessment of safety and associated risks, which is a prerequisite for translation of preclinical research into clinical practice. In this article, we summarize the current status of preclinical research and review initial MSC-based clinical trials for treating lung injuries and lung disorders.
Collapse
Affiliation(s)
- Egi Kardia
- Regenerative Medicine Cluster, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bandar Putra Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Norashikin Zakaria
- Regenerative Medicine Cluster, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bandar Putra Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Nur Shuhaidatul Sarmiza Abdul Halim
- Regenerative Medicine Cluster, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bandar Putra Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Darius Widera
- Stem Cell Biology & Regenerative Medicine, School of Pharmacy, University of Reading, Whiteknights, RG6 6UB Reading, UK
| | - Badrul Hisham Yahaya
- Regenerative Medicine Cluster, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bandar Putra Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| |
Collapse
|
165
|
Ling R, Greenough A. Advances in emerging treatment options to prevent bronchopulmonary dysplasia. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1281736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
166
|
Goss KN, Everett AD, Mourani PM, Baker CD, Abman SH. Addressing the challenges of phenotyping pediatric pulmonary vascular disease. Pulm Circ 2017; 7:7-19. [PMID: 28680562 PMCID: PMC5448545 DOI: 10.1086/689750] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022] Open
Abstract
Pediatric pulmonary vascular disease (PVD) and pulmonary hypertension (PH) represent phenotypically and pathophysiologically diverse disease categories, contributing substantial morbidity and mortality to a complex array of pediatric conditions. Here, we review the multifactorial nature of pediatric PVD, with an emphasis on improved recognition, phenotyping, and endotyping strategies for pediatric PH. Novel tailored approaches to diagnosis and treatment in pediatric PVD, as well as the implications for long-term outcomes, are highlighted.
Collapse
Affiliation(s)
- Kara N Goss
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Allen D Everett
- Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter M Mourani
- Section of Pediatric Critical Care, Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Christopher D Baker
- Pediatric Pulmonary Medicine, Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Steven H Abman
- Pediatric Pulmonary Medicine, Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
167
|
Kim SY, Burgess JK, Wang Y, Kable EP, Weiss DJ, Chan HK, Chrzanowski W. Atomized Human Amniotic Mesenchymal Stromal Cells for Direct Delivery to the Airway for Treatment of Lung Injury. J Aerosol Med Pulm Drug Deliv 2016; 29:514-524. [DOI: 10.1089/jamp.2016.1289] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sally Yunsun Kim
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Janette K. Burgess
- Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
- Discipline of Pharmacology, The University of Sydney, Sydney, Australia
| | - Yiwei Wang
- ANZAC Research Institute, The University of Sydney, Concord, Australia
| | - Eleanor P.W. Kable
- Australian Centre for Microscopy & Microanalysis, The University of Sydney, Sydney, Australia
| | - Daniel J. Weiss
- College of Medicine, University of Vermont College of Medicine, Burlington, Vermont
| | - Hak-Kim Chan
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Wojciech Chrzanowski
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
- Australian Institute of Nanoscale Science and Technology, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
168
|
Bruzauskaite I, Raudoniute J, Denkovskij J, Bagdonas E, Meidute-Abaraviciene S, Simonyte V, Bironaite D, Siaurys A, Bernotiene E, Aldonyte R. Native matrix-based human lung alveolar tissue model in vitro: studies of the reparatory actions of mesenchymal stem cells. Cytotechnology 2016; 69:1-17. [PMID: 27905026 DOI: 10.1007/s10616-016-0021-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 08/22/2016] [Indexed: 12/22/2022] Open
Abstract
Studies of lung diseases in vitro often rely on flat, plastic-based monocultures, due to short lifespan of primary cells, complicated anatomy, lack of explants, etc. We hereby present a native 3D model with cues for repopulating epithelial cells. Abilities of mesenchymal stem cells (MSC) to modulate bacterial lipopolysaccharide (LPS) and cigarette smoke-induced injury to pulmonary epithelium were tested in our model. Post-mortem human lung tissue was sliced, cut and decellularized. Resulting matrix pads were reseeded with pulmonary epithelium (A549 line). Markers of the layer integrity and certain secreted proteins in the presence of cigarette smoke extract (CSE) and LPS were assessed via Western blot, ELISA and RT-PCR assays. In parallel, the effects of MSC paracrine factors on exposed epithelial cells were also investigated at gene and protein levels. When cultured on native 3D matrix, A549 cells obtain dual, type I- and II-like morphology. Exposure to CSE and LPS leads to downregulation of several epithelial proteins and suppressed proliferation rate. MSC medium added to the model restores proliferation rate and some of the epithelial proteins, i.e. e-cadherin and beta-catenin. CSE also increases secretion of pro-inflammatory cytokines by epithelial cells and upregulates transcription factor NFκB. Some of these effects might be counteracted by MSC in our model. We introduce repopulated decellularized lung matrix that highly resembles in vivo situation and is convenient for studies of disease pathogenesis, cytotoxicology and for exploring therapeutic strategies in the human lung context in vitro. MSC paracrine products have produced protecting effects in our model.
Collapse
Affiliation(s)
- Ieva Bruzauskaite
- State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08046, Vilnius, Lithuania
| | - Jovile Raudoniute
- State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08046, Vilnius, Lithuania
| | - Jaroslav Denkovskij
- State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08046, Vilnius, Lithuania
| | - Edvardas Bagdonas
- State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08046, Vilnius, Lithuania
| | | | - Vaida Simonyte
- Department of Pathology, Vilnius City Hospital, Antakalnio 57, Vilnius, Lithuania
| | - Daiva Bironaite
- State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08046, Vilnius, Lithuania
| | - Almantas Siaurys
- State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08046, Vilnius, Lithuania
| | - Eiva Bernotiene
- State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08046, Vilnius, Lithuania
| | - Ruta Aldonyte
- State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08046, Vilnius, Lithuania.
| |
Collapse
|
169
|
Progressive Vascular Functional and Structural Damage in a Bronchopulmonary Dysplasia Model in Preterm Rabbits Exposed to Hyperoxia. Int J Mol Sci 2016; 17:ijms17101776. [PMID: 27783043 PMCID: PMC5085800 DOI: 10.3390/ijms17101776] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 11/17/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is caused by preterm neonatal lung injury and results in oxygen dependency and pulmonary hypertension. Current clinical management fails to reduce the incidence of BPD, which calls for novel therapies. Fetal rabbits have a lung development that mimics humans and can be used as a translational model to test novel treatment options. In preterm rabbits, exposure to hyperoxia leads to parenchymal changes, yet vascular damage has not been studied in this model. In this study we document the early functional and structural changes of the lung vasculature in preterm rabbits that are induced by hyperoxia after birth. Pulmonary artery Doppler measurements, micro-CT barium angiograms and media thickness of peripheral pulmonary arteries were affected after seven days of hyperoxia when compared to controls. The parenchyma was also affected both at the functional and structural level. Lung function testing showed higher tissue resistance and elastance, with a decreased lung compliance and lung capacity. Histologically hyperoxia leads to fewer and larger alveoli with thicker walls, less developed distal airways and more inflammation than normoxia. In conclusion, we show that the rabbit model develops pulmonary hypertension and developmental lung arrest after preterm lung injury, which parallel the early changes in human BPD. Thus it enables the testing of pharmaceutical agents that target the cardiovascular compartment of the lung for further translation towards the clinic.
Collapse
|
170
|
O'Reilly M, Thébaud B. Cell-based therapies for neonatal lung disease. Cell Tissue Res 2016; 367:737-745. [PMID: 27770256 DOI: 10.1007/s00441-016-2517-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023]
Abstract
Preterm birth occurs in approximately 11 % of all births worldwide. Advances in perinatal care have enabled the survival of preterm infants born as early as 23-24 weeks of gestation. However, many are affected by bronchopulmonary dysplasia (BPD)-a common respiratory complication of preterm birth, which has life-long consequences for lung health. Currently, there is no specific treatment for BPD. Recent advances in stem cell research have opened new therapeutic avenues for prevention/repair of lung damage. This review summarizes recent pre-clinical data and early clinical translation of cell-based therapies for BPD.
Collapse
Affiliation(s)
- Megan O'Reilly
- Department of Physiology and Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada, T6G 2E1
| | - Bernard Thébaud
- Sinclair Centre for Regenerative Medicine and Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, Canada, K1H 8L6. .,Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, 401 Smyth Road, Ottawa, ON, Canada, K1H 5B2.
| |
Collapse
|
171
|
Sammour I, Somashekar S, Huang J, Batlahally S, Breton M, Valasaki K, Khan A, Wu S, Young KC. The Effect of Gender on Mesenchymal Stem Cell (MSC) Efficacy in Neonatal Hyperoxia-Induced Lung Injury. PLoS One 2016; 11:e0164269. [PMID: 27711256 PMCID: PMC5053475 DOI: 10.1371/journal.pone.0164269] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/22/2016] [Indexed: 12/28/2022] Open
Abstract
Background Mesenchymal stem cells (MSC) improve alveolar and vascular structures in experimental models of bronchopulmonary dysplasia (BPD). Female MSC secrete more anti-inflammatory and pro-angiogenic factors as compared to male MSC. Whether the therapeutic efficacy of MSC in attenuating lung injury in an experimental model of BPD is influenced by the sex of the donor MSC or recipient is unknown. Here we tested the hypothesis that female MSC would have greater lung regenerative properties than male MSC in experimental BPD and this benefit would be more evident in males. Objective To determine whether intra-tracheal (IT) administration of female MSC to neonatal rats with experimental BPD has more beneficial reparative effects as compared to IT male MSC. Methods Newborn Sprague-Dawley rats exposed to normoxia (RA) or hyperoxia (85% O2) from postnatal day (P) 2- P21 were randomly assigned to receive male or female IT bone marrow (BM)-derived green fluorescent protein (GFP+) MSC (1 x 106 cells/50 μl), or Placebo on P7. Pulmonary hypertension (PH), vascular remodeling, alveolarization, and angiogenesis were assessed at P21. PH was determined by measuring right ventricular systolic pressure (RVSP) and pulmonary vascular remodeling was evaluated by quantifying the percentage of muscularized peripheral pulmonary vessels. Alveolarization was evaluated by measuring mean linear intercept (MLI) and radial alveolar count (RAC). Angiogenesis was determined by measuring vascular density. Data are expressed as mean ± SD, and analyzed by ANOVA. Results There were no significant differences in the RA groups. Exposure to hyperoxia resulted in a decrease in vascular density and RAC, with a significant increase in MLI, RVSP, and the percentage of partially and fully muscularized pulmonary arterioles. Administration of both male and female MSC significantly improved vascular density, alveolarization, RVSP, percent of muscularized vessels and alveolarization. Interestingly, the improvement in PH and vascular remodeling was more robust in the hyperoxic rodents who received MSC from female donors. In keeping with our hypothesis, male animals receiving female MSC, had a greater improvement in vascular remodeling. This was accompanied by a more significant decrease in lung pro-inflammatory markers and a larger increase in anti-inflammatory and pro-angiogenic markers in male rodents that received female MSC. There were no significant differences in MSC engraftment among groups. Conclusions Female BM-derived MSC have greater therapeutic efficacy than male MSC in reducing neonatal hyperoxia-induced lung inflammation and vascular remodeling. Furthermore, the beneficial effects of female MSC were more pronounced in male animals. Together, these findings suggest that female MSC maybe the most potent BM-derived MSC population for lung repair in severe BPD complicated by PH.
Collapse
Affiliation(s)
- Ibrahim Sammour
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Santhosh Somashekar
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Jian Huang
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Sunil Batlahally
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Matthew Breton
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Krystalenia Valasaki
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Aisha Khan
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Shu Wu
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Karen C. Young
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
- * E-mail:
| |
Collapse
|
172
|
Mordant P, Nakajima D, Kalaf R, Iskender I, Maahs L, Behrens P, Coutinho R, Iyer RK, Davies JE, Cypel M, Liu M, Waddell TK, Keshavjee S. Mesenchymal stem cell treatment is associated with decreased perfusate concentration of interleukin-8 during ex vivo perfusion of donor lungs after 18-hour preservation. J Heart Lung Transplant 2016; 35:1245-1254. [DOI: 10.1016/j.healun.2016.04.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/28/2016] [Accepted: 04/25/2016] [Indexed: 01/16/2023] Open
|
173
|
Möbius MA, Thébaud B. Cell Therapy for Bronchopulmonary Dysplasia: Promises and Perils. Paediatr Respir Rev 2016; 20:33-41. [PMID: 27425012 DOI: 10.1016/j.prrv.2016.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/07/2016] [Indexed: 12/13/2022]
Abstract
Despite great achievements in neonatal and perinatal medicine over the past decades, the immature lung remains the most critical organ to care for after premature birth. As a consequence, bronchopulmonary dysplasia (BPD) remains the most common complication of extreme prematurity. BPD impairs normal development and may cause lifelong morbidities. At present, there is no effective treatment for BPD - including preventing premature birth. Recent insights into the biology of stem and progenitor cells have ignited the hope of protecting the immature lung, and even regenerating an already damaged lung by using exogenous stem- or progenitor cells as therapeutics. These therapies are still experimental, and knowledge on the exact mechanisms behind the beneficial effects seen in various animal models of BPD is limited. Nevertheless, early phase clinical trials have started, and encouraging steps towards the therapeutic use of these cells are being made. This review aims to (I) provide an overview of the role of stem/progenitor cells in development and therapy of BPD for the practicing clinician, (II) discuss the potential clinical applications of cell products as therapeutic agents to prevent neonatal lung injury and (III) examine potential obstacles towards the manufacturing of clinical grade cell products for use in the care for premature infants.
Collapse
Affiliation(s)
- Marius Alexander Möbius
- Department of Neonatology and Pediatric Critical Care Medicine, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; DFG Research Center and Cluster of Excellence for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany; Sinclair Centre for Regenerative Medicine, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.
| | - Bernard Thébaud
- Sinclair Centre for Regenerative Medicine, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada; Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
174
|
Urbanek K, De Angelis A, Spaziano G, Piegari E, Matteis M, Cappetta D, Esposito G, Russo R, Tartaglione G, De Palma R, Rossi F, D’Agostino B. Intratracheal Administration of Mesenchymal Stem Cells Modulates Tachykinin System, Suppresses Airway Remodeling and Reduces Airway Hyperresponsiveness in an Animal Model. PLoS One 2016; 11:e0158746. [PMID: 27434719 PMCID: PMC4951036 DOI: 10.1371/journal.pone.0158746] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/21/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The need for new options for chronic lung diseases promotes the research on stem cells for lung repair. Bone marrow-derived mesenchymal stem cells (MSCs) can modulate lung inflammation, but the data on cellular processes involved in early airway remodeling and the potential involvement of neuropeptides are scarce. OBJECTIVES To elucidate the mechanisms by which local administration of MSCs interferes with pathophysiological features of airway hyperresponsiveness in an animal model. METHODS GFP-tagged mouse MSCs were intratracheally delivered in the ovalbumin mouse model with subsequent functional tests, the analysis of cytokine levels, neuropeptide expression and histological evaluation of MSCs fate and airway pathology. Additionally, MSCs were exposed to pro-inflammatory factors in vitro. RESULTS Functional improvement was observed after MSC administration. Although MSCs did not adopt lung cell phenotypes, cell therapy positively affected airway remodeling reducing the hyperplastic phase of the gain in bronchial smooth muscle mass, decreasing the proliferation of epithelium in which mucus metaplasia was also lowered. Decrease of interleukin-4, interleukin-5, interleukin-13 and increase of interleukin-10 in bronchoalveolar lavage was also observed. Exposed to pro-inflammatory cytokines, MSCs upregulated indoleamine 2,3-dioxygenase. Moreover, asthma-related in vivo upregulation of pro-inflammatory neurokinin 1 and neurokinin 2 receptors was counteracted by MSCs that also determined a partial restoration of VIP, a neuropeptide with anti-inflammatory properties. CONCLUSION Intratracheally administered MSCs positively modulate airway remodeling, reduce inflammation and improve function, demonstrating their ability to promote tissue homeostasis in the course of experimental allergic asthma. Because of a limited tissue retention, the functional impact of MSCs may be attributed to their immunomodulatory response combined with the interference of neuropeptide system activation and tissue remodeling.
Collapse
MESH Headings
- Animals
- Bronchoalveolar Lavage Fluid/chemistry
- Bronchoalveolar Lavage Fluid/immunology
- Gene Expression
- Genes, Reporter
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Interleukin-10/genetics
- Interleukin-10/immunology
- Interleukin-13/genetics
- Interleukin-13/immunology
- Interleukin-4/genetics
- Interleukin-4/immunology
- Interleukin-5/genetics
- Interleukin-5/immunology
- Intubation, Intratracheal
- Lung/immunology
- Lung/pathology
- Mesenchymal Stem Cell Transplantation
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/immunology
- Mice
- Mice, Inbred BALB C
- Ovalbumin
- Receptors, Neurokinin-1/genetics
- Receptors, Neurokinin-1/immunology
- Receptors, Neurokinin-2/genetics
- Receptors, Neurokinin-2/immunology
- Respiratory Hypersensitivity/chemically induced
- Respiratory Hypersensitivity/immunology
- Respiratory Hypersensitivity/pathology
- Respiratory Hypersensitivity/therapy
Collapse
Affiliation(s)
- Konrad Urbanek
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
- * E-mail: (AA); (BA)
| | - Giuseppe Spaziano
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Elena Piegari
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Maria Matteis
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Grazia Esposito
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Rosa Russo
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Gioia Tartaglione
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Raffaele De Palma
- Department of Clinical and Experimental Medicine, Second University of Naples, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Bruno D’Agostino
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
- * E-mail: (AA); (BA)
| |
Collapse
|
175
|
Meiners S, Hilgendorff A. Early injury of the neonatal lung contributes to premature lung aging: a hypothesis. Mol Cell Pediatr 2016; 3:24. [PMID: 27406259 PMCID: PMC4942446 DOI: 10.1186/s40348-016-0052-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/04/2016] [Indexed: 12/20/2022] Open
Abstract
Chronic lung disease of the newborn, also known as bronchopulmonary dysplasia (BPD), is the most common chronic lung disease in early infancy and results in an increased risk for long-lasting pulmonary impairment in the adult. BPD develops upon injury of the immature lung by oxygen toxicity, mechanical ventilation, and infections which trigger sustained inflammatory immune responses and extensive remodeling of the extracellular matrix together with dysregulated growth factor signaling. Histopathologically, BPD is characterized by impaired alveolarization, disrupted vascular development, and saccular wall fibrosis. Here, we explore the hypothesis that development of BPD involves disturbance of conserved pathways of molecular aging that may contribute to premature aging of the lung and an increased susceptibility to chronic lung diseases in adulthood.
Collapse
Affiliation(s)
- Silke Meiners
- Comprehensive Pneumology Center (CPC), Ludwig-Maximilians University, Helmholtz Zentrum München, German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377, München, Germany.
| | - Anne Hilgendorff
- Comprehensive Pneumology Center (CPC), Ludwig-Maximilians University, Helmholtz Zentrum München, German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377, München, Germany.,Perinatal Center Grosshadern, Dr. von Haunersches Children's Hospital, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
176
|
Villalón H, Peñaloza G, Tuma D. TERAPIA REGENERATIVA EN NEONATOLOGÍA. REVISTA MÉDICA CLÍNICA LAS CONDES 2016. [DOI: 10.1016/j.rmclc.2016.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
177
|
Zhang ZH, Pan YY, Jing RS, Luan Y, Zhang L, Sun C, Kong F, Li KL, Wang YB. Protective effects of BMSCs in combination with erythropoietin in bronchopulmonary dysplasia-induced lung injury. Mol Med Rep 2016; 14:1302-8. [PMID: 27279073 DOI: 10.3892/mmr.2016.5378] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 05/12/2016] [Indexed: 11/05/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common type of chronic lung disease in infancy, for which no effective therapy is currently available. The aim of the present study was to investigate the effect of treatment with bone marrow mesenchymal stem cells (BMSCs) in combination with recombinant human erythropoietin (rHuEPO) on BPD‑induced mouse lung injury, and discuss the underlying mechanism. The BPD model was established by the exposure of neonatal mice to continuous high oxygen exposure for 14 days, following which 1x106 BMSCs and 5,000 U/kg rHuEPO were injected into the mice 1 h prior to and 7 days following exposure to hyperoxia. The animals received four treatments in total (n=10 in each group). After 14 days, the body weights, airway structure, and levels of matrix metalloproteinase‑9 (MMP‑9) and vascular endothelial growth factor (VEGF) were detected using histological and immunohistochemical analyses. The effect on cell differentiation was observed by examining the presence of platelet endothelial cell adhesion molecule (PECAM) and VEGF using immunofluorescence. Compared with the administration of BMSCs alone, the body weight, airway structure, and the levels of MMP‑9 and VEGF were significantly improved in the BMSCs/rHuEPO group. The results of the present study demonstrated that the intravenous injection of BMSCs significantly improved lung damage in the hyperoxia‑exposed neonatal mouse model. Furthermore, the injection of BMSCs in combination with intraperitoneal injection of rHuEPO had a more marked effect, compared with BMSCs alone, and the mechanism may be mediated by the promoting effects of BMSCs and EPO. The results of the present study provided information, which may assist in future clinical trials.
Collapse
Affiliation(s)
- Zhao-Hua Zhang
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yan-Yan Pan
- Department of Pediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong 066600, P.R. China
| | - Rui-Sheng Jing
- Department of Internal Medicine, Xinji Central Hospital, Changli, Hebei 250000, P.R. China
| | - Yun Luan
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Luan Zhang
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Chao Sun
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Feng Kong
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Kai-Lin Li
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yi-Biao Wang
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
178
|
Alvira CM. Aberrant Pulmonary Vascular Growth and Remodeling in Bronchopulmonary Dysplasia. Front Med (Lausanne) 2016; 3:21. [PMID: 27243014 PMCID: PMC4873491 DOI: 10.3389/fmed.2016.00021] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/28/2016] [Indexed: 01/12/2023] Open
Abstract
In contrast to many other organs, a significant portion of lung development occurs after birth during alveolarization, thus rendering the lung highly susceptible to injuries that may disrupt this developmental process. Premature birth heightens this susceptibility, with many premature infants developing the chronic lung disease, bronchopulmonary dysplasia (BPD), a disease characterized by arrested alveolarization. Over the past decade, tremendous progress has been made in the elucidation of mechanisms that promote postnatal lung development, including extensive data suggesting that impaired pulmonary angiogenesis contributes to the pathogenesis of BPD. Moreover, in addition to impaired vascular growth, patients with BPD also frequently demonstrate alterations in pulmonary vascular remodeling and tone, increasing the risk for persistent hypoxemia and the development of pulmonary hypertension. In this review, an overview of normal lung development will be presented, and the pathologic features of arrested development observed in BPD will be described, with a specific emphasis on the pulmonary vascular abnormalities. Key pathways that promote normal pulmonary vascular development will be reviewed, and the experimental and clinical evidence demonstrating alterations of these essential pathways in BPD summarized.
Collapse
Affiliation(s)
- Cristina M Alvira
- Department of Pediatrics, Division of Critical Care Medicine, Stanford University School of Medicine , Stanford, CA , USA
| |
Collapse
|
179
|
Möbius MA, Rüdiger M. Mesenchymal stromal cells in the development and therapy of bronchopulmonary dysplasia. Mol Cell Pediatr 2016; 3:18. [PMID: 27142639 PMCID: PMC4854850 DOI: 10.1186/s40348-016-0046-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/21/2016] [Indexed: 12/12/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD), the chronic lung disease of prematurity, remains a major healthcare burden. Despite great progresses in perinatal medicine over the past decades, no cure for BPD has been found. The complex pathophysiology of the disease further hampers the development of effective treatment strategies, but recent insights into the biology of mesenchymal stem (MSCs) and progenitor cells in lung development and disease have ignited the hope of preventing or even treating BPD. The promising results of pre-clinical studies have lead to the first early phase clinical trials. However, these treatments are experimental and much more needs to be learned about the mechanism of action and manufacturing of MSCs. In this mini review, we briefly summarize the role of resident and exogenous MSCs in the development and treatment of BPD.
Collapse
Affiliation(s)
- Marius A Möbius
- Department of Neonatology and Pediatric Critical Care Medicine, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, Dresden, 01307, Germany. .,DFG Research Center and Cluster of Excellence for Regenerative Therapies (CRTD), Technische Universität Dresden, Fetscherstrasse 105, Dresden, 01307, Germany. .,Sinclair Centre for Regenerative Medicine, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
| | - Mario Rüdiger
- Department of Neonatology and Pediatric Critical Care Medicine, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, Dresden, 01307, Germany.,DFG Research Center and Cluster of Excellence for Regenerative Therapies (CRTD), Technische Universität Dresden, Fetscherstrasse 105, Dresden, 01307, Germany
| |
Collapse
|
180
|
Laube M, Stolzing A, Thome UH, Fabian C. Therapeutic potential of mesenchymal stem cells for pulmonary complications associated with preterm birth. Int J Biochem Cell Biol 2016; 74:18-32. [PMID: 26928452 DOI: 10.1016/j.biocel.2016.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/22/2022]
Abstract
Preterm infants frequently suffer from pulmonary complications resulting in significant morbidity and mortality. Physiological and structural lung immaturity impairs perinatal lung transition to air breathing resulting in respiratory distress. Mechanical ventilation and oxygen supplementation ensure sufficient oxygen supply but enhance inflammatory processes which might lead to the establishment of a chronic lung disease called bronchopulmonary dysplasia (BPD). Current therapeutic options to prevent or treat BPD are limited and have salient side effects, highlighting the need for new therapeutic approaches. Mesenchymal stem cells (MSCs) have demonstrated therapeutic potential in animal models of BPD. This review focuses on MSC-based therapeutic approaches to treat pulmonary complications and critically compares results obtained in BPD models. Thereby bottlenecks in the translational systems are identified that are preventing progress in combating BPD. Notably, current animal models closely resemble the so-called "old" BPD with profound inflammation and injury, whereas clinical improvements shifted disease pathology towards a "new" BPD in which arrest of lung maturation predominates. Future studies need to evaluate the utility of MSC-based therapies in animal models resembling the "new" BPD though promising in vitro evidence suggests that MSCs do possess the potential to stimulate lung maturation. Furthermore, we address the mode-of-action of MSC-based therapies with regard to lung development and inflammation/fibrosis. Their therapeutic efficacy is mainly attributed to an enhancement of regeneration and immunomodulation due to paracrine effects. In addition, we discuss current improvement strategies by genetic modifications or precondition of MSCs to enhance their therapeutic efficacy which could also prove beneficial for BPD therapies.
Collapse
Affiliation(s)
- Mandy Laube
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany.
| | - Alexandra Stolzing
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Loughborough University, Wolfson School of Mechanical and Manufacturing Engineering, Centre for Biological Engineering, Loughborough, UK.
| | - Ulrich H Thome
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany.
| | - Claire Fabian
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
181
|
Monsel A, Zhu YG, Gudapati V, Lim H, Lee JW. Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases. Expert Opin Biol Ther 2016; 16:859-71. [PMID: 27011289 DOI: 10.1517/14712598.2016.1170804] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Acute respiratory distress syndrome is a major cause of respiratory failure in critically ill patients. Despite extensive research into its pathophysiology, mortality remains high. No effective pharmacotherapy exists. Based largely on numerous preclinical studies, administration of mesenchymal stem or stromal cell (MSC) as a therapeutic for acute lung injury holds great promise, and clinical trials are currently underway. However, concern for the use of stem cells, specifically the risk of iatrogenic tumor formation, remains unresolved. Accumulating evidence now suggest that novel cell-free therapies including MSC-derived conditioned medium and extracellular vesicles released from MSCs might constitute compelling alternatives. AREAS COVERED The current review summarizes the preclinical studies testing MSC conditioned medium and/or MSC extracellular vesicles as treatment for acute lung injury and other inflammatory lung diseases. EXPERT OPINION While certain logistical obstacles limit the clinical applications of MSC conditioned medium such as the volume required for treatment, the therapeutic application of MSC extracellular vesicles remains promising, primarily due to ability of extracellular vesicles to maintain the functional phenotype of the parent cell. However, utilization of MSC extracellular vesicles will require large-scale production and standardization concerning identification, characterization and quantification.
Collapse
Affiliation(s)
- Antoine Monsel
- a Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care , La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, University Pierre and Marie Curie (UPMC) Univ Paris 06 , Paris , France
| | - Ying-Gang Zhu
- b Department of Pulmonary Disease , Huadong Hospital, Fudan University , Shanghai , China
| | - Varun Gudapati
- c Department of Anesthesiology , University of California San Francisco , San Francisco , CA , USA
| | - Hyungsun Lim
- c Department of Anesthesiology , University of California San Francisco , San Francisco , CA , USA
| | - Jae W Lee
- c Department of Anesthesiology , University of California San Francisco , San Francisco , CA , USA
| |
Collapse
|
182
|
Jagarapu J, Kelchtermans J, Rong M, Chen S, Hehre D, Hummler S, Faridi MH, Gupta V, Wu S. Efficacy of Leukadherin-1 in the Prevention of Hyperoxia-Induced Lung Injury in Neonatal Rats. Am J Respir Cell Mol Biol 2016; 53:793-801. [PMID: 25909334 DOI: 10.1165/rcmb.2014-0422oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lung inflammation plays a key role in the pathogenesis of bronchopulmonary dysplasia (BPD), a chronic lung disease of premature infants. The challenge in BPD management is the lack of effective and safe antiinflammatory agents. Leukadherin-1 (LA1) is a novel agonist of the leukocyte surface integrin CD11b/CD18 that enhances leukocyte adhesion to ligands and vascular endothelium and thus reduces leukocyte transendothelial migration and influx to the injury sites. Its functional significance in preventing hyperoxia-induced neonatal lung injury is unknown. We tested the hypothesis that administration of LA1 is beneficial in preventing hyperoxia-induced neonatal lung injury, an experimental model of BPD. Newborn rats were exposed to normoxia (21% O2) or hyperoxia (85% O2) and received twice-daily intraperitoneal injection of LA1 or placebo for 14 days. Hyperoxia exposure in the presence of the placebo resulted in a drastic increase in the influx of neutrophils and macrophages into the alveolar airspaces. This increased leukocyte influx was accompanied by decreased alveolarization and angiogenesis and increased pulmonary vascular remodeling and pulmonary hypertension (PH), the pathological hallmarks of BPD. However, administration of LA1 decreased macrophage infiltration in the lungs during hyperoxia. Furthermore, treatment with LA1 improved alveolarization and angiogenesis and decreased pulmonary vascular remodeling and PH. These data indicate that leukocyte recruitment plays an important role in the experimental model of BPD induced by hyperoxia. Targeting leukocyte trafficking using LA1, an integrin agonist, is beneficial in preventing lung inflammation and protecting alveolar and vascular structures during hyperoxia. Thus, targeting integrin-mediated leukocyte recruitment and inflammation may provide a novel strategy in preventing and treating BPD in preterm infants.
Collapse
Affiliation(s)
- Jawahar Jagarapu
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Jelte Kelchtermans
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Min Rong
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Shaoyi Chen
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Dorothy Hehre
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Stefanie Hummler
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Mohd Hafeez Faridi
- 2 Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Vineet Gupta
- 2 Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Shu Wu
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| |
Collapse
|
183
|
Mitsialis SA, Kourembanas S. Stem cell-based therapies for the newborn lung and brain: Possibilities and challenges. Semin Perinatol 2016; 40:138-51. [PMID: 26778234 PMCID: PMC4808378 DOI: 10.1053/j.semperi.2015.12.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There have been substantial advances in neonatal medical care over the past 2 decades that have resulted in the increased survival of very low birth weight infants, survival that in some centers extends to 22 weeks gestational age. Despite these advances, there continues to be significant morbidity associated with extreme preterm birth that includes both short-term and long-term pulmonary and neurologic consequences. No single therapy has proven to be effective in preventing or treating either developmental lung and brain injuries in preterm infants or the hypoxic-ischemic injury that can be inflicted on the full-term brain as a result of in utero or perinatal complications. Stem cell-based therapies are emerging as a potential paradigm-shifting approach for such complex diseases with multifactorial etiologies, but a great deal of work is still required to understand the role of stem/progenitor cells in normal development and in the repair of injured tissue. This review will summarize the biology of the various stem/progenitor cells, their effects on tissue repair in experimental models of lung and brain injury, the recent advances in our understanding of their mechanism of action, and the challenges that remain to be addressed before their eventual application to clinical care.
Collapse
|
184
|
|
185
|
Gülaşı S, Atıcı A, Yılmaz ŞN, Polat A, Yılmaz M, Laçin MT, Örekici G, Çelik Y. Mesenchymal stem cell treatment in hyperoxia-induced lung injury in newborn rats. Pediatr Int 2016. [PMID: 26208034 DOI: 10.1111/ped.12764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The aim of this study was to evaluate the effectiveness of tracheally delivered mesenchymal stem cells (MSC) on lung pathology in a hyperoxia-induced lung injury (HILI) model in neonatal rats. METHODS For the HILI model, rat pups were exposed to 85-95% oxygen during the first 10 days of life. Rats were divided into six groups: room-air normoxia (n = 11); room air, sham (n = 11); hyperoxia exposed with normal saline as placebo (n = 9); hyperoxia exposed with culture medium of MSC (n = 10); hyperoxia exposed with medium remaining after harvesting of MSC (n = 8); and hyperoxia exposed with MSC (n = 17). Pathologic changes, number and diameter of alveoli, α-smooth muscle actin (α-SMA) expression and localization of MSC in the lungs were assessed. RESULTS Number of alveoli increased and alveolar diameter decreased in the mesenchymal stem cell group so that there were no differences when compared with the normoxia group (P = 0.126 and P = 0.715, respectively). Expression of α-SMA decreased significantly in the mesenchymal stem cell group compared with the placebo group (P < 0001). Green fluorescent protein-positive cells were found in lung tissue from all rats given MSC. Some green fluorescent protein-positive MSC also expressed surfactant protein-C. CONCLUSION Mesenchymal stem cells became localized in damaged lung tissue, and recovery approximated the room air control.
Collapse
Affiliation(s)
- Selvi Gülaşı
- Department of Pediatrics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Aytuğ Atıcı
- Department of Pediatrics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Şakir Necat Yılmaz
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Ayşe Polat
- Department of Pathology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Mustafa Yılmaz
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Melisa Türkoğlu Laçin
- Advanced Technology Education-Research and Application Center, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Gülhan Örekici
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Yalçın Çelik
- Department of Pediatrics, Faculty of Medicine, Mersin University, Mersin, Turkey
| |
Collapse
|
186
|
Chou HC, Li YT, Chen CM. Human mesenchymal stem cells attenuate experimental bronchopulmonary dysplasia induced by perinatal inflammation and hyperoxia. Am J Transl Res 2016; 8:342-353. [PMID: 27158330 PMCID: PMC4846887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/29/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Systemic maternal inflammation and neonatal hyperoxia arrest alveolarization in neonates. The aims were to test whether human mesenchymal stem cells (MSCs) reduce lung inflammation and improve lung development in perinatal inflammation- and hyperoxia-induced experimental bronchopulmonary dysplasia. METHODS Pregnant Sprague-Dawley rats were intraperitoneally injected with lipopolysaccharide (LPS, 0.5 mg/kg/day) on Gestational Days 20 and 21. Human MSCs (3×10(5) and 1×10(6) cells) in 0.03 ml normal saline (NS) were administered intratracheally on Postnatal Day 5. Pups were reared in room air (RA) or an oxygen-enriched atmosphere (O2) from Postnatal Days 1 to 14, and six study groups were obtained: LPS+RA+NS, LPS+RA+MSC (3×10(5) cells), LPS+RA+MSC (1×10(6) cells), LPS+O2+NS, LPS+O2+MSC (3×10(5) cells), and LPS+O2+MSC (1×10(6) cells). The lungs were excised for cytokine, vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF) expression, and histological analyses on Postnatal Day 14. RESULTS Body weight was significantly lower in rats reared in hyperoxia than in those reared in RA. The LPS+O2+NS group exhibited a significantly higher mean linear intercept (MLI) and collagen density and a significantly lower vascular density than the LPS+RA+NS group did. Administering MSC to hyperoxia-exposed rats improved MLI and vascular density and reduced tumor necrosis factor-α and interleukin-6 levels and collagen density to normoxic levels. This improvement in lung development and fibrosis was accompanied by an increase and decrease in lung VEGF and CTGF expression, respectively. CONCLUSION Human MSCs attenuated perinatal inflammation- and hyperoxia-induced defective alveolarization and angiogenesis and reduced lung fibrosis, likely through increased VEGF and decreased CTGF expression.
Collapse
Affiliation(s)
- Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
| | | | - Chung-Ming Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
- Department of Pediatrics, Taipei Medical University HospitalTaipei, Taiwan
| |
Collapse
|
187
|
Bohlin K. Cell-based strategies to reconstitute vital functions in preterm infants with organ failure. Best Pract Res Clin Obstet Gynaecol 2016; 31:99-111. [DOI: 10.1016/j.bpobgyn.2015.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/31/2015] [Indexed: 12/14/2022]
|
188
|
Heise RL, Link PA, Farkas L. From Here to There, Progenitor Cells and Stem Cells Are Everywhere in Lung Vascular Remodeling. Front Pediatr 2016; 4:80. [PMID: 27583245 PMCID: PMC4988064 DOI: 10.3389/fped.2016.00080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/20/2016] [Indexed: 01/27/2023] Open
Abstract
The field of stem cell biology, cell therapy, and regenerative medicine has expanded almost exponentially, in the last decade. Clinical trials are evaluating the potential therapeutic use of stem cells in many adult and pediatric lung diseases with vascular component, such as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), or pulmonary arterial hypertension (PAH). Extensive research activity is exploring the lung resident and circulating progenitor cells and their contribution to vascular complications of chronic lung diseases, and researchers hope to use resident or circulating stem/progenitor cells to treat chronic lung diseases and their vascular complications. It is becoming more and more clear that progress in mechanobiology will help to understand the various influences of physical forces and extracellular matrix composition on the phenotype and features of the progenitor cells and stem cells. The current review provides an overview of current concepts in the field.
Collapse
Affiliation(s)
- Rebecca L Heise
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University , Richmond, VA , USA
| | - Patrick A Link
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University , Richmond, VA , USA
| | - Laszlo Farkas
- Department of Internal Medicine, Division of Pulmonary Disease and Critical Care Medicine, School of Medicine, Virginia Commonwealth University , Richmond, VA , USA
| |
Collapse
|
189
|
Rivera L, Siddaiah R, Oji-Mmuo C, Silveyra GR, Silveyra P. Biomarkers for Bronchopulmonary Dysplasia in the Preterm Infant. Front Pediatr 2016; 4:33. [PMID: 27065351 PMCID: PMC4814627 DOI: 10.3389/fped.2016.00033] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/22/2016] [Indexed: 12/20/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic inflammatory lung disease of very-low-birth-weight (VLBW) preterm infants, associated with arrested lung development and a need for supplemental oxygen. Over the past few decades, the incidence of BPD has significantly raised as a result of improved survival of VLBW infants requiring mechanical ventilation. While early disease detection is critical to prevent chronic lung remodeling and complications later in life, BPD is often difficult to diagnose and prevent due to the lack of good biomarkers for identification of infants at risk, and overlapping symptoms with other diseases, such as pulmonary hypertension (PH). Due to the current lack of effective treatment available for BPD and PH, research is currently focused on primary prevention strategies, and identification of biomarkers for early diagnosis, that could also represent potential therapeutic targets. In addition, novel histopathological, biochemical, and molecular factors have been identified in the lung tissue and in biological fluids of BPD and PH patients that could associate with the disease phenotype. In this review, we provide an overview of biomarkers for pediatric BPD and PH that have been identified in clinical studies using various biological fluids. We also present a brief summary of the information available on current strategies and guidelines to prevent and diagnose BPD and PH, as well as their pathophysiology, risk factors, and experimental therapies currently available.
Collapse
Affiliation(s)
- Lidys Rivera
- Department of Pediatrics, The Pennsylvania State University College of Medicine , Hershey, PA , USA
| | - Roopa Siddaiah
- Department of Pediatrics, The Pennsylvania State University College of Medicine , Hershey, PA , USA
| | - Christiana Oji-Mmuo
- Department of Pediatrics, The Pennsylvania State University College of Medicine , Hershey, PA , USA
| | - Gabriela R Silveyra
- Department of Pediatrics, The Pennsylvania State University College of Medicine , Hershey, PA , USA
| | - Patricia Silveyra
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
190
|
Pierro M, Ciarmoli E, Thébaud B. Bronchopulmonary Dysplasia and Chronic Lung Disease: Stem Cell Therapy. Clin Perinatol 2015; 42:889-910. [PMID: 26593085 DOI: 10.1016/j.clp.2015.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Bronchopulmonary dysplasia (BPD), a major complication of premature birth, still lacks safe and effective treatment. Mesenchymal stem cells (MSCs) have been proven to ameliorate critical aspects of the BPD pathogenesis. MSCs seem to exert therapeutic effects through the paracrine secretion of anti-inflammatory, antioxidant, antiapoptotic, trophic, and proangiogenic factors. Although these findings are promising, understanding the mechanism of action of MSCs and MSC manufacturing is still evolving. Several aspects can affect the efficacy of MSC therapy. Further research is required to optimize this potentially game-changing treatment but the translation of regenerative cell therapies for patients has begun.
Collapse
Affiliation(s)
- Maria Pierro
- Department of Clinical Sciences and Community Health, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, University of Milan, Via della Commenda 12, Milan 20122, Italy; Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, 5, Genova 16148, Italy.
| | - Elena Ciarmoli
- Neonatal Intensive Care Unit, MBBM Foundation, San Gerardo Hospital, Via Pergolesi 33, Monza 20900, Italy
| | - Bernard Thébaud
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada; Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, 501 Smyth Road, Ottawa, Ontario K1H8L6, Canada; Department of Cellular and Molecular Medicine, Sinclair Institute of Regenerative Medicine, University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
191
|
Gavin KM, Gutman JA, Kohrt WM, Wei Q, Shea KL, Miller HL, Sullivan TM, Erickson PF, Helm KM, Acosta AS, Childs CR, Musselwhite E, Varella-Garcia M, Kelly K, Majka SM, Klemm DJ. De novo generation of adipocytes from circulating progenitor cells in mouse and human adipose tissue. FASEB J 2015; 30:1096-108. [PMID: 26581599 DOI: 10.1096/fj.15-278994] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/02/2015] [Indexed: 12/21/2022]
Abstract
White adipocytes in adults are typically derived from tissue resident mesenchymal progenitors. The recent identification of de novo production of adipocytes from bone marrow progenitor-derived cells in mice challenges this paradigm and indicates an alternative lineage specification that adipocytes exist. We hypothesized that alternative lineage specification of white adipocytes is also present in human adipose tissue. Bone marrow from transgenic mice in which luciferase expression is governed by the adipocyte-restricted adiponectin gene promoter was adoptively transferred to wild-type recipient mice. Light emission was quantitated in recipients by in vivo imaging and direct enzyme assay. Adipocytes were also obtained from human recipients of hematopoietic stem cell transplantation. DNA was isolated, and microsatellite polymorphisms were exploited to quantify donor/recipient chimerism. Luciferase emission was detected from major fat depots of transplanted mice. No light emission was observed from intestines, liver, or lungs. Up to 35% of adipocytes in humans were generated from donor marrow cells in the absence of cell fusion. Nontransplanted mice and stromal-vascular fraction samples were used as negative and positive controls for the mouse and human experiments, respectively. This study provides evidence for a nontissue resident origin of an adipocyte subpopulation in both mice and humans.
Collapse
Affiliation(s)
- Kathleen M Gavin
- *Division of Geriatric Medicine, Division of Medical Oncology, and Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, School of Medicine, Flow Cytometry Shared Resource, Molecular Pathology/Cytogenetics Shared Resource, University of Colorado Cancer Center, Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, and Colorado Obesity Research Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Diagnostic Laboratory, Children's Hospital Colorado, Aurora, Colorado, USA; and Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and **Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jonathan A Gutman
- *Division of Geriatric Medicine, Division of Medical Oncology, and Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, School of Medicine, Flow Cytometry Shared Resource, Molecular Pathology/Cytogenetics Shared Resource, University of Colorado Cancer Center, Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, and Colorado Obesity Research Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Diagnostic Laboratory, Children's Hospital Colorado, Aurora, Colorado, USA; and Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and **Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Wendy M Kohrt
- *Division of Geriatric Medicine, Division of Medical Oncology, and Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, School of Medicine, Flow Cytometry Shared Resource, Molecular Pathology/Cytogenetics Shared Resource, University of Colorado Cancer Center, Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, and Colorado Obesity Research Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Diagnostic Laboratory, Children's Hospital Colorado, Aurora, Colorado, USA; and Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and **Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Qi Wei
- *Division of Geriatric Medicine, Division of Medical Oncology, and Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, School of Medicine, Flow Cytometry Shared Resource, Molecular Pathology/Cytogenetics Shared Resource, University of Colorado Cancer Center, Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, and Colorado Obesity Research Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Diagnostic Laboratory, Children's Hospital Colorado, Aurora, Colorado, USA; and Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and **Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Karen L Shea
- *Division of Geriatric Medicine, Division of Medical Oncology, and Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, School of Medicine, Flow Cytometry Shared Resource, Molecular Pathology/Cytogenetics Shared Resource, University of Colorado Cancer Center, Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, and Colorado Obesity Research Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Diagnostic Laboratory, Children's Hospital Colorado, Aurora, Colorado, USA; and Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and **Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Heidi L Miller
- *Division of Geriatric Medicine, Division of Medical Oncology, and Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, School of Medicine, Flow Cytometry Shared Resource, Molecular Pathology/Cytogenetics Shared Resource, University of Colorado Cancer Center, Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, and Colorado Obesity Research Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Diagnostic Laboratory, Children's Hospital Colorado, Aurora, Colorado, USA; and Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and **Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Timothy M Sullivan
- *Division of Geriatric Medicine, Division of Medical Oncology, and Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, School of Medicine, Flow Cytometry Shared Resource, Molecular Pathology/Cytogenetics Shared Resource, University of Colorado Cancer Center, Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, and Colorado Obesity Research Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Diagnostic Laboratory, Children's Hospital Colorado, Aurora, Colorado, USA; and Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and **Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Paul F Erickson
- *Division of Geriatric Medicine, Division of Medical Oncology, and Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, School of Medicine, Flow Cytometry Shared Resource, Molecular Pathology/Cytogenetics Shared Resource, University of Colorado Cancer Center, Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, and Colorado Obesity Research Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Diagnostic Laboratory, Children's Hospital Colorado, Aurora, Colorado, USA; and Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and **Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Karen M Helm
- *Division of Geriatric Medicine, Division of Medical Oncology, and Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, School of Medicine, Flow Cytometry Shared Resource, Molecular Pathology/Cytogenetics Shared Resource, University of Colorado Cancer Center, Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, and Colorado Obesity Research Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Diagnostic Laboratory, Children's Hospital Colorado, Aurora, Colorado, USA; and Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and **Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alistaire S Acosta
- *Division of Geriatric Medicine, Division of Medical Oncology, and Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, School of Medicine, Flow Cytometry Shared Resource, Molecular Pathology/Cytogenetics Shared Resource, University of Colorado Cancer Center, Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, and Colorado Obesity Research Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Diagnostic Laboratory, Children's Hospital Colorado, Aurora, Colorado, USA; and Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and **Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Christine R Childs
- *Division of Geriatric Medicine, Division of Medical Oncology, and Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, School of Medicine, Flow Cytometry Shared Resource, Molecular Pathology/Cytogenetics Shared Resource, University of Colorado Cancer Center, Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, and Colorado Obesity Research Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Diagnostic Laboratory, Children's Hospital Colorado, Aurora, Colorado, USA; and Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and **Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Evelyn Musselwhite
- *Division of Geriatric Medicine, Division of Medical Oncology, and Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, School of Medicine, Flow Cytometry Shared Resource, Molecular Pathology/Cytogenetics Shared Resource, University of Colorado Cancer Center, Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, and Colorado Obesity Research Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Diagnostic Laboratory, Children's Hospital Colorado, Aurora, Colorado, USA; and Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and **Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Marileila Varella-Garcia
- *Division of Geriatric Medicine, Division of Medical Oncology, and Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, School of Medicine, Flow Cytometry Shared Resource, Molecular Pathology/Cytogenetics Shared Resource, University of Colorado Cancer Center, Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, and Colorado Obesity Research Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Diagnostic Laboratory, Children's Hospital Colorado, Aurora, Colorado, USA; and Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and **Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kimberly Kelly
- *Division of Geriatric Medicine, Division of Medical Oncology, and Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, School of Medicine, Flow Cytometry Shared Resource, Molecular Pathology/Cytogenetics Shared Resource, University of Colorado Cancer Center, Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, and Colorado Obesity Research Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Diagnostic Laboratory, Children's Hospital Colorado, Aurora, Colorado, USA; and Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and **Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Susan M Majka
- *Division of Geriatric Medicine, Division of Medical Oncology, and Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, School of Medicine, Flow Cytometry Shared Resource, Molecular Pathology/Cytogenetics Shared Resource, University of Colorado Cancer Center, Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, and Colorado Obesity Research Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Diagnostic Laboratory, Children's Hospital Colorado, Aurora, Colorado, USA; and Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and **Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Dwight J Klemm
- *Division of Geriatric Medicine, Division of Medical Oncology, and Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, School of Medicine, Flow Cytometry Shared Resource, Molecular Pathology/Cytogenetics Shared Resource, University of Colorado Cancer Center, Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, and Colorado Obesity Research Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Diagnostic Laboratory, Children's Hospital Colorado, Aurora, Colorado, USA; and Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and **Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
192
|
Mesenchymal stem cells for the prevention and treatment of bronchopulmonary dysplasia in preterm infants. Hippokratia 2015. [DOI: 10.1002/14651858.cd011932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
193
|
Chen YB, Lan YW, Chen LG, Huang TT, Choo KB, Cheng WTK, Lee HS, Chong KY. Mesenchymal stem cell-based HSP70 promoter-driven VEGFA induction by resveratrol alleviates elastase-induced emphysema in a mouse model. Cell Stress Chaperones 2015; 20:979-89. [PMID: 26243699 PMCID: PMC4595438 DOI: 10.1007/s12192-015-0627-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/01/2015] [Accepted: 07/19/2015] [Indexed: 01/03/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a sustained blockage of the airways due to lung inflammation occurring with chronic bronchitis and/or emphysema. Progression of emphysema may be slowed by vascular endothelial growth factor A (VEGFA), which reduces apoptotic tissue depletion. Previously, authors of the present report demonstrated that cis-resveratrol (c-RSV)-induced heat-shock protein 70 (HSP70) promoter-regulated VEGFA expression promoted neovascularization of genetically modified mesenchymal stem cells (HSP-VEGFA-MSC) in a mouse model of ischemic disease. Here, this same stem cell line was evaluated for its protective capacity to alleviate elastase-induced pulmonary emphysema in mice. Results of this study showed that c-RSV-treatment of HSP-VEGFA-MSC exhibited synergy between HSP70 transcription activity and induced expression of anti-oxidant-related genes when challenged by cigarette smoke extracts. Eight weeks after jugular vein injection of HSP-VEGFA-MSC into mice with elastase-induced pulmonary emphysema followed by c-RSV treatment to induce transgene expression, significant improvement was observed in respiratory functions. Expression of VEGFA, endogenous nuclear factor erythroid 2-related factor (Nrf 2), and manganese superoxide dismutase (MnSOD) was significantly increased in the lung tissues of the c-RSV-treated mice. Histopathologic examination of treated mice revealed gradual but significant abatement of emphysema and restoration of airspace volume. In conclusion, the present investigation demonstrates that c-RSV-regulated VEGFA expression in HSP-VEGFA-MSC significantly improved the therapeutic effects on the treatment of COPD in the mouse, possibly avoiding side effects associated with constitutive VEGFA expression.
Collapse
Affiliation(s)
- Young-Bin Chen
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Ying-Wei Lan
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| | - Lih-Geeng Chen
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi, 600, Taiwan, Republic of China
| | - Tsung-Teng Huang
- Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| | - Kong-Bung Choo
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences and Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Winston T K Cheng
- Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan, Republic of China
| | - Hsuan-Shu Lee
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan, Republic of China.
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicne, Taipei, Taiwan, Republic of China.
| | - Kowit-Yu Chong
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
- Department of Family Medicine, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan, Republic of China.
| |
Collapse
|
194
|
Wang H, Wang X, Qu J, Yue Q, Hu Y, Zhang H. VEGF Enhances the Migration of MSCs in Neural Differentiation by Regulating Focal Adhesion Turnover. J Cell Physiol 2015; 230:2728-42. [PMID: 25820249 DOI: 10.1002/jcp.24997] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/23/2015] [Indexed: 12/26/2022]
Abstract
Mesenchymal stem cells (MSCs) hold great promise in neural regeneration, due to their intrinsic neuronal potential and migratory tropism to damaged nervous tissues. However, the chemotactic signals mediating the migration of MSCs remain poorly understood. Here, we investigated the regulatory roles for focal adhesion kinase (FAK) and Rac1 in vascular endothelial growth factor (VEGF)-stimulated migration of MSCs in neural differentiation. We found that MSCs in various differentiation states show significant different chemotactic responses to VEGF and cells in 24-h preinduction state possess the highest migration speed and efficiency. FAK, as the downstream signaling molecule, is involved in the VEGF-induced migration by regulating the assembly and distribution of focal adhesions (FAs) and reorganization of F-actin. The features of FAs and cytoskeletons and the ability of lamellipodia formation are closely related to the neural differentiation states of MSCs. VEGF promotes FA formation with an asymmetric distribution of FAs and induces the activation of Y397-FAK and Y31/118-paxillin of undifferentiated and 24-h preinduced MSCs in a time-dependent manner. Inhibition of FAK by PF-228 or expressing FAK-Y397F mutant impairs the dynamics of FAs in MSCs during VEGF-induced migration. Furthermore, Rac1 regulates FA formation in a FAK-dependent manner. Overexpression of constitutive activated mutants of Rac1 increases the number of FAs in undifferentiated and 24-h preinduced MSCs, while VEGF-induced increase of FA formation is decreased by inhibiting FAK by PF-228. Collectively, these results demonstrate that FAK and Rac1 signalings coordinately regulate the dynamics of FAs during VEGF-induced migration of MSCs in varying neural differentiation states.
Collapse
Affiliation(s)
- Huihui Wang
- Department of Cell Biology, Jiangsu Key Laboratory of Stem Cell Research, Medical College of Soochow University, Suzhou, China
| | - Xingkai Wang
- Department of Cell Biology, Jiangsu Key Laboratory of Stem Cell Research, Medical College of Soochow University, Suzhou, China
| | - Jing Qu
- Department of Cell Biology, Jiangsu Key Laboratory of Stem Cell Research, Medical College of Soochow University, Suzhou, China
| | - Qing Yue
- Department of Cell Biology, Jiangsu Key Laboratory of Stem Cell Research, Medical College of Soochow University, Suzhou, China
| | - Ya'nan Hu
- Department of Cell Biology, Jiangsu Key Laboratory of Stem Cell Research, Medical College of Soochow University, Suzhou, China
| | - Huanxiang Zhang
- Department of Cell Biology, Jiangsu Key Laboratory of Stem Cell Research, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
195
|
Stabler CT, Lecht S, Lazarovici P, Lelkes PI. Mesenchymal stem cells for therapeutic applications in pulmonary medicine. Br Med Bull 2015; 115:45-56. [PMID: 26063231 DOI: 10.1093/bmb/ldv026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2015] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) of different biological sources are in Phase 1 clinical trials and are being considered for Phase 2 therapy of lung disorders, and lung (progenitor) cells derived from pluripotent stem cells (SCs) are under development in preclinical animal models. SOURCES OF DATA PubMed.gov and ClinicalTrials.gov. AREAS OF AGREEMENT There is consensus about the therapeutic potential of transplanted SCs, mainly MSCs, primarily involves paracrine 'bystander' effects that confer protection of the epithelial and endothelial linings of the lung caused by inflammation and/or fibrosis and lead to increased survival in animal models. Clinical trials of Phase 1 indicate safety and suggest that the efficacy of SC therapy in patients with various lung diseases will require a higher dosage than previously evaluated. AREAS OF CONTROVERSY A growing interest in the re-epithelialization and re-endothelialization of damaged lung tissue involves the putative pulmonary differentiation of exogenous MSCs. Currently, it is not clear whether or not the observed regeneration of distal airways/vasculature is derived from lung-resident and/or transplanted SCs. GROWING POINTS Important topics under investigation include optimization of the cell source with a decrease in cell population heterogeneity characterized by defined markers, route of delivery for effective treatment, potential dose and therapeutic protocol of SC application, development of quantitative assays and biomarkers of lung disease and repair, and the potential use of tissue engineered lung. AREAS TIMELY FOR DEVELOPING RESEARCH Ability of MSCs to differentiate into epithelial cells of the lung, use of autologous induced pluripotent SCs (iPSCs) derived from the patients, complete biochemical characterization of the secretome of SCs used for therapy, and the incorporation of simultaneous and/or subsequent treatment with drugs which also aid in lung repair and regeneration. CAUTIONARY NOTE Although safety of MSC-based cell therapy was proved in Phase 1, efficacy, long-term survival and preservation of lung respiratory function need to be further evaluated, cautioning against hastily translating SCs therapy from animal models of lung injury to clinical trials of patients with lung disorders.
Collapse
Affiliation(s)
- Collin T Stabler
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Shimon Lecht
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Philip Lazarovici
- School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA Temple Institute for Regenerative Medicine and Engineering (TIME), Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
196
|
Abstract
Stem cell transplantation (SCT) is an established first-line or adjunctive therapy for a variety of neonatal and adult diseases. New evidence in preclinical models as well as a few human studies show the potential utility of SCT in neuroprotection and in the modulation of inflammatory injury in at risk-neonates. This review briefly summarizes current understanding of human stem cell biology during ontogeny and present recent evidence supporting SCT as a viable approach for postinsult neonatal injury.
Collapse
Affiliation(s)
- Momoko Yoshimoto
- Assistant Research Professor, Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, 1044W Walnut Street R4-W116, Indianapolis, IN 46202, Tel: 317-278-0598
| | - Joyce M Koenig
- Pediatrics, E Doisy Research Center, Saint Louis University School of Medicine, 1100 South Grand Boulevard, St Louis, MO 63104, USA; Molecular Microbiology & Immunology, E Doisy Research Center, Saint Louis University School of Medicine, 1100 South Grand Boulevard, St Louis, MO 63106, USA.
| |
Collapse
|
197
|
Möbius MA, Thébaud B. Stem Cells and Their Mediators - Next Generation Therapy for Bronchopulmonary Dysplasia. Front Med (Lausanne) 2015; 2:50. [PMID: 26284246 PMCID: PMC4520239 DOI: 10.3389/fmed.2015.00050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/15/2015] [Indexed: 01/13/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains a major complication of premature birth. Despite great achievements in perinatal medicine over the past decades, there is no treatment for BPD. Recent insights into the biology of stem/progenitor cells have ignited the hope of regenerating damaged organs. Animal experiments revealed promising lung protection/regeneration with stem/progenitor cells in experimental models of BPD and led to first clinical studies in infants. However, these therapies are still experimental and knowledge on the exact mechanisms of action of these cells is limited. Furthermore, heterogeneity of the therapeutic cell populations and missing potency assays currently limit our ability to predict a cell product’s efficacy. Here, we review the therapeutic potential of mesenchymal stromal, endothelial progenitor, and amniotic epithelial cells for BPD. Current knowledge on the mechanisms behind the beneficial effects of stem cells is briefly summarized. Finally, we discuss the obstacles constraining their transition from bench-to-bedside and present potential approaches to overcome them.
Collapse
Affiliation(s)
- Marius A Möbius
- Department of Neonatology and Pediatric Critical Care Medicine, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden , Dresden , Germany ; DFG Research Center and Cluster of Excellence for Regenerative Therapies (CRTD), Technische Universität Dresden , Dresden , Germany ; Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa , Ottawa, ON , Canada
| | - Bernard Thébaud
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa , Ottawa, ON , Canada ; Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
198
|
Lee HS, Lee DG. rIL-10 enhances IL-10 signalling proteins in foetal alveolar type II cells exposed to hyperoxia. J Cell Mol Med 2015; 19:1538-47. [PMID: 26059905 PMCID: PMC4511352 DOI: 10.1111/jcmm.12596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/17/2015] [Indexed: 12/27/2022] Open
Abstract
Although the mechanisms by which hyperoxia promotes bronchopulmonary dysplasia are not fully defined, the inability to maintain optimal interleukin (IL)-10 levels in response to injury secondary to hyperoxia seems to play an important role. We previously defined that hyperoxia decreased IL-10 production and pre-treatment with recombinant IL-10 (rIL-10) protected these cells from injury. The objectives of these studies were to investigate the responses of IL-10 receptors (IL-10Rs) and IL-10 signalling proteins (IL-10SPs) in hyperoxic foetal alveolar type II cells (FATIICs) with and without rIL-10. FATIICs were isolated on embryonic day 19 and exposed to 65%-oxygen for 24 hrs. Cells in room air were used as controls. IL-10Rs protein and mRNA were analysed by ELISA and qRT-PCR, respectively. IL-10SPs were assessed by Western blot using phospho-specific antibodies. IL-10Rs protein and mRNA increased significantly in FATIICs during hyperoxia, but JAK1 and TYK2 phosphorylation showed the opposite pattern. To evaluate the impact of IL-8 (shown previously to be increased) and the role of IL-10Rs, IL-10SPs were reanalysed in IL-8-added normoxic cells and in the IL-10Rs' siRNA-treated hyperoxic cells. The IL-10Rs' siRNA-treated hyperoxic cells and IL-8-added normoxic cells showed the same pattern in IL10SPs with the hyproxic cells. And pre-treatment with rIL-10 prior to hyperoxia exposure increased phosphorylated IL-10SPs, compared to the rIL-10-untreated hyperoxic cells. These studies suggest that JAK1 and TYK2 were significantly suppressed during hyperoxia, where IL-8 may play a role, and rIL-10 may have an effect on reverting the suppressed JAK1 and TYK2 in FATIICs exposed to hyperoxia.
Collapse
Affiliation(s)
- Hyeon-Soo Lee
- Department of Pediatrics, Dongtan Jeil Women and Infants’ HospitalWhasung, South Korea
- Institute of Medical Sciences, Kangwon National University School of MedicineChuncheon, Kangwon, South Korea
| | - Dong Gun Lee
- Medical and Bio-Materials Research Center, Kangwon National University School of MedicineChuncheon, Kangwon, South Korea
| |
Collapse
|
199
|
Abstract
Bronchopulmonary dysplasia (BPD), the chronic lung disease associated with preterm birth, results from the disruption of normal pulmonary vascular and alveolar growth. Though BPD was once described as primarily due to postnatal injury from mechanical ventilation and oxygen therapy after preterm birth, it is increasingly appreciated that BPD results from antenatal and perinatal factors that interrupt lung development in infants born at the extremes of prematurity. The lung in BPD consists of a simplified parenchymal architecture that limits gas exchange and leads to increased cardiopulmonary morbidity and mortality. This review outlines recent advances in the understanding of pulmonary vascular development and describes how the disruption of these mechanisms results in BPD. We point to future therapies that may augment postnatal vascular growth to prevent and treat this severe chronic lung disease.
Collapse
Affiliation(s)
- Christopher D Baker
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colo., USA
| | | |
Collapse
|
200
|
Bagdonas E, Raudoniute J, Bruzauskaite I, Aldonyte R. Novel aspects of pathogenesis and regeneration mechanisms in COPD. Int J Chron Obstruct Pulmon Dis 2015; 10:995-1013. [PMID: 26082624 PMCID: PMC4459624 DOI: 10.2147/copd.s82518] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a major cause of death and morbidity worldwide, is characterized by expiratory airflow limitation that is not fully reversible, deregulated chronic inflammation, and emphysematous destruction of the lungs. Despite the fact that COPD is a steadily growing global healthcare problem, the conventional therapies remain palliative, and regenerative approaches for disease management are not available yet. We aim to provide an overview of key reviews, experimental, and clinical studies addressing lung emphysema development and repair mechanisms published in the past decade. Novel aspects discussed herein include integral revision of the literature focused on lung microflora changes in COPD, autoimmune component of the disease, and environmental risk factors other than cigarette smoke. The time span of studies on COPD, including emphysema, chronic bronchitis, and asthmatic bronchitis, covers almost 200 years, and several crucial mechanisms of COPD pathogenesis are described and studied. However, we still lack the holistic understanding of COPD development and the exact picture of the time-course and interplay of the events during stable, exacerbated, corticosteroid-treated COPD states, and transitions in-between. Several generally recognized mechanisms will be discussed shortly herein, ie, unregulated inflammation, proteolysis/antiproteolysis imbalance, and destroyed repair mechanisms, while novel topics such as deviated microbiota, air pollutants-related damage, and autoimmune process within the lung tissue will be discussed more extensively. Considerable influx of new data from the clinic, in vivo and in vitro studies stimulate to search for novel concise explanation and holistic understanding of COPD nowadays.
Collapse
Affiliation(s)
- Edvardas Bagdonas
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| | - Jovile Raudoniute
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| | - Ieva Bruzauskaite
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| | - Ruta Aldonyte
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|