151
|
Matera MG, Calzetta L, Annibale R, Russo F, Cazzola M. Classes of drugs that target the cellular components of inflammation under clinical development for COPD. Expert Rev Clin Pharmacol 2021; 14:1015-1027. [PMID: 33957839 DOI: 10.1080/17512433.2021.1925537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION The persistent inflammation that characterizes COPD and affects its natural course also impacting on symptoms has prompted research to find molecules that can regulate the inflammatory process but still available anti-inflammatory therapies provide little or no benefit in COPD patients. Consequently, numerous anti-inflammatory molecules that are effective in animal models of COPD have been or are being evaluated in humans. AREAS COVERED In this article we describe several classes of drugs that target the cellular components of inflammation under clinical development for COPD. EXPERT OPINION Although the results of many clinical trials with new molecules have often been disappointing, several studies are underway to investigate whether some of these molecules may be effective in treating specific subgroups of COPD patients. Indeed, the current perspective is to apply a more personalized treatment to the patient. This means being able to better define the patient's inflammatory state and treat it in a targeted manner. Unfortunately, the difficulty in translating encouraging experimental data into human clinical trials, the redundancy in the effects induced by signal-transmitting substances and the nonspecific effects of many classes that are undergoing clinical trials, do not yet allow specific inflammatory cell types to be targeted.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rosa Annibale
- Pharmacy Unit, "Luigi Vanvitelli" University Hospital, Naples, Italy
| | - Francesco Russo
- Pharmacy Unit, "Luigi Vanvitelli" University Hospital, Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
152
|
Kazi AA, Subba Reddy BV, Ravithej Singh L. Synthetic approaches to FDA approved drugs for asthma and COPD from 1969 to 2020. Bioorg Med Chem 2021; 41:116212. [PMID: 34000507 DOI: 10.1016/j.bmc.2021.116212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 10/24/2022]
Abstract
Respiratory infections resulting from pulmonary inflammation emerging as a leading cause of death worldwide. However, only twenty-seven new drugs were approved in the last five decades. In this review, we presented synthetic approaches for twenty-seven FDA-approved medications used to treat asthma and chronic obstructive pulmonary diseases (COPD), along with their mode of action.
Collapse
Affiliation(s)
- Ayazoddin Aunoddin Kazi
- Fluoro-Agrochemicals Division, CSIR - Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - B V Subba Reddy
- Fluoro-Agrochemicals Division, CSIR - Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India; Chemical Sciences Division, Academy of Scientific and Innovative Research, Ghaziabad 201 002, India.
| | - L Ravithej Singh
- Fluoro-Agrochemicals Division, CSIR - Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India; Chemical Sciences Division, Academy of Scientific and Innovative Research, Ghaziabad 201 002, India.
| |
Collapse
|
153
|
Fitzpatrick AM, Chipps BE, Holguin F, Woodruff PG. T2-"Low" Asthma: Overview and Management Strategies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 8:452-463. [PMID: 32037109 DOI: 10.1016/j.jaip.2019.11.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Although the term "asthma" has been applied to all patients with airway lability and variable chest symptoms for centuries, phenotypes of asthma with distinct clinical and molecular features that may warrant different treatment approaches are well recognized. Patients with type 2 (T2)-"high" asthma are characterized by upregulation of T2 immune pathways (ie, IL-4 and IL-13 gene sets) and eosinophilic airway inflammation, whereas these features are absent in patients with T2-"low" asthma and may contribute to poor responsiveness to corticosteroid treatment. This review details definitions and clinical features of T2-"low" asthma, potential mechanisms and metabolic aspects, pediatric considerations, and potential treatment approaches. Priority research questions for T2-"low" asthma are also discussed.
Collapse
Affiliation(s)
| | - Bradley E Chipps
- Capital Allergy and Respiratory Disease Center, Sacramento, Calif
| | - Fernando Holguin
- University of Colorado, Pulmonary Sciences and Critical Care Medicine, Denver, Colo
| | - Prescott G Woodruff
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, and the Cardiovascular Research Institute, University of California, San Francisco, Calif
| |
Collapse
|
154
|
Kyriakopoulos C, Gogali A, Bartziokas K, Kostikas K. Identification and treatment of T2-low asthma in the era of biologics. ERJ Open Res 2021; 7:00309-2020. [PMID: 34109244 PMCID: PMC8181790 DOI: 10.1183/23120541.00309-2020] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022] Open
Abstract
Currently, and based on the development of relevant biologic therapies, T2-high is the most well-defined endotype of asthma. Although much progress has been made in elucidating T2-high inflammation pathways, no specific clinically applicable biomarkers for T2-low asthma have been identified. The therapeutic approach of T2-low asthma is a problem urgently needing resolution, firstly because these patients have poor response to steroids, and secondly because they are not candidates for the newer targeted biologic agents. Thus, there is an unmet need for the identification of biomarkers that can help the diagnosis and endotyping of T2-low asthma. Ongoing investigation is focusing on neutrophilic airway inflammation mediators as therapeutic targets, including interleukin (IL)-8, IL-17, IL-1, IL-6, IL-23 and tumour necrosis factor-α; molecules that target restoration of corticosteroid sensitivity, mainly mitogen-activated protein kinase inhibitors, tyrosine kinase inhibitors and phosphatidylinositol 3-kinase inhibitors; phosphodiesterase (PDE)3 inhibitors that act as bronchodilators and PDE4 inhibitors that have an anti-inflammatory effect; and airway smooth muscle mass attenuation therapies, mainly for patients with paucigranulocytic inflammation. This article aims to review the evidence for noneosinophilic inflammation being a target for therapy in asthma; discuss current and potential future therapeutic approaches, such as novel molecules and biologic agents; and assess clinical trials of licensed drugs in the treatment of T2-low asthma.
Collapse
Affiliation(s)
- Chris Kyriakopoulos
- Respiratory Medicine Dept, University of Ioannina School of Medicine, Ioannina, Greece
| | - Athena Gogali
- Respiratory Medicine Dept, University of Ioannina School of Medicine, Ioannina, Greece
| | | | - Konstantinos Kostikas
- Respiratory Medicine Dept, University of Ioannina School of Medicine, Ioannina, Greece
| |
Collapse
|
155
|
Wenzel SE. Severe Adult Asthmas: Integrating Clinical Features, Biology, and Therapeutics to Improve Outcomes. Am J Respir Crit Care Med 2021; 203:809-821. [PMID: 33326352 PMCID: PMC8017568 DOI: 10.1164/rccm.202009-3631ci] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022] Open
Abstract
Evaluation and effective management of asthma, and in particular severe asthma, remains at the core of pulmonary practice. Over the last 20-30 years, there has been increasing appreciation that "severe asthma" encompasses multiple different subgroups or phenotypes, each with differing presentations. Using clinical phenotyping, in combination with rapidly advancing molecular tools and targeted monoclonal antibodies (human knockouts), the understanding of these phenotypes, and our ability to treat them, have greatly advanced. Type-2 (T2)-high and -low severe asthmas are now easily identified. Fractional exhaled nitric oxide and blood eosinophil counts can be routinely employed in clinical settings to identify these phenotypes and predict responses to specific therapies, meeting the initial goals of precision medicine. Integration of molecular signals, biomarkers, and clinical responses to targeted therapies has enabled identification of critical molecular pathways and, in certain phenotypes, advanced them to near-endotype status. Despite these advances, little guidance is available to determine which class of biologic is appropriate for a given patient, and current "breakthrough" therapies remain expensive and even inaccessible to many patients. Many of the most severe asthmas, with and without T2-biomarker elevations, remain poorly understood and treated. Nevertheless, conceptual understanding of "the severe asthmas" has evolved dramatically in a mere 25 years, leading to dramatic improvements in the lives of many.
Collapse
Affiliation(s)
- Sally E Wenzel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh Asthma and Environmental Lung Health Institute at UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
156
|
Ramakrishnan RK, Al Heialy S, Hamid Q. Implications of preexisting asthma on COVID-19 pathogenesis. Am J Physiol Lung Cell Mol Physiol 2021; 320:L880-L891. [PMID: 33759572 PMCID: PMC8143784 DOI: 10.1152/ajplung.00547.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic spreading at an alarming rate has taken a heavy toll on the public healthcare systems and economies worldwide. An abnormal and overactivated inflammatory response is occasionally elicited by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and this hyperinflammation is associated with worse prognosis of COVID-19. Theoretically, one would expect patients with asthma to be at a greater risk of SARS-CoV-2 infection considering their increased susceptibility to common respiratory virus-associated exacerbations. Surprisingly, current data do not consistently suggest an increased prevalence of asthma among patients with COVID-19. Considering the high global prevalence of asthma, the characteristics of the disease and/or their conventional therapy might play a role in their potential defense against COVID-19. This may be attributed to the T helper type 2 immune response predominantly seen in patients with asthma. Likewise, asthma therapeutics, including corticosteroids and biologics, may in fact benefit the patients with asthma by alleviating the development of hyperinflammation. On the other hand, elevated IL-17 levels are characteristically seen in a subset of asthma patients with severe disease as well as in patients with COVID-19. Targeting the IL-17 pathway as a treatment strategy could plausibly alleviate acute respiratory distress syndrome (ARDS) in patients with COVID-19 and asthma demonstrating a predominant T helper type 17 response. A clinical trial including a drug targeting this pathway may thus, constitute a logical addition to the global pursuit for effective therapeutics against COVID-19. The complex interplay between the asthma endotypes and COVID-19 is not very well understood and will be discussed in this mini-review.
Collapse
Affiliation(s)
- Rakhee K Ramakrishnan
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Saba Al Heialy
- College of Medicine, Mohammed bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Meakins-Christie Laboratories, Research Institute of the McGill University Healthy Center, McGill University, Montreal, Quebec, Canada
| | - Qutayba Hamid
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, Research Institute of the McGill University Healthy Center, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
157
|
Leija-Martínez JJ, Del-Río-Navarro BE, Sanchéz-Muñoz F, Muñoz-Hernández O, Hong E, Giacoman-Martínez A, Romero-Nava R, Patricio-Román KL, Hall-Mondragon MS, Espinosa-Velazquez D, Villafaña S, Huang F. Associations of TNFA, IL17A, and RORC mRNA expression levels in peripheral blood leukocytes with obesity-related asthma in adolescents. Clin Immunol 2021; 229:108715. [PMID: 33771687 DOI: 10.1016/j.clim.2021.108715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/10/2021] [Accepted: 03/21/2021] [Indexed: 01/10/2023]
Abstract
Obesity is associated with a unique non-T2 asthma phenotype, characterised by a Th17 immune response. Retinoid-related orphan receptor C (RORC) is the master transcription factor for Th17 polarisation. We investigated the association of TNFA, IL17A, and RORC mRNA expression levels with the non-T2 phenotype. We conducted a cross-sectional study in adolescents, subdivided as follows: healthy (HA), allergic asthma without obesity (AA), obesity without asthma (OB), and non-allergic asthma with obesity (NAO). TNFA, IL17A, and RORC mRNA expression in peripheral blood leukocytes were assessed by RT-PCR. NAO exhibited higher TNFA mRNA expression levels than HA or OB, as well as the highest IL17A and RORC mRNA expression levels among the four groups. The best biomarker for discriminating non-allergic asthma among obese adolescents was RORC mRNA expression levels (area under the curve: 0.95). RORC mRNA expression levels were associated with the non-T2 asthma phenotype, hinting at a therapeutic target in obesity-related asthma.
Collapse
Affiliation(s)
- José J Leija-Martínez
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico; Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico
| | - Blanca E Del-Río-Navarro
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico; Hospital Infantil de México Federico Gómez, Department of Paediatric Allergy Clinical Immunology, Mexico City, Mexico
| | - Fausto Sanchéz-Muñoz
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico; Departamento de Inmunología, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Onofre Muñoz-Hernández
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico
| | - Enrique Hong
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico; Department of Pharmacobiology, Centro de Investigacion de Estudio Avanzados del Instituto Politecnico Nacional, Mexico City, Calz. de Los Tenorios 235, Col. Granjas Coapa, 14330, Mexico
| | - Abraham Giacoman-Martínez
- Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico
| | - Rodrigo Romero-Nava
- Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico; Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Karla L Patricio-Román
- Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico; Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Margareth S Hall-Mondragon
- Hospital Infantil de México Federico Gómez, Department of Paediatric Allergy Clinical Immunology, Mexico City, Mexico; Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social. IMSS, Mexico
| | - Dario Espinosa-Velazquez
- Hospital Infantil de México Federico Gómez, Department of Paediatric Allergy Clinical Immunology, Mexico City, Mexico
| | - Santiago Villafaña
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Fengyang Huang
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico; Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico.
| |
Collapse
|
158
|
Salvermoser M, Zeber K, Boeck A, Klucker E, Schaub B. Childhood asthma: Novel endotyping by cytokines, validated through sensitization profiles and clinical characteristics. Clin Exp Allergy 2021; 51:654-665. [PMID: 33650157 DOI: 10.1111/cea.13858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND Specific allergy sensitization pattern, using "component-resolved diagnosis" (CRD), is a central component of allergy and asthma in childhood. Besides this, allergic asthma has been characterized by a Th2-shifted endotype with elevation of classical Th2 cytokines. Recently, other endotypes with distinct mechanisms focusing on cytokine regulation evolved, yet those pathways are still not well understood. OBJECTIVE (a) To define reproducible immunological endotypes using cytokine expression in an asthma cohort and (b) to characterize their sensitization profile and clinical phenotype. METHODS Supernatants from PBMCs of 234 children (median age 10 years) of an asthma cohort were analysed for cytokine expressions. The children were split into a training (n = 49) and validation (n = 185) group. The training group was used to identify immunological endotypes by clustering cytokine expressions, which were then assessed regarding clinical characteristics and specific IgE of recombinant allergen components. Next, our findings were validated in the validation group. RESULTS We identified novel endotypes based on primarily unstimulated cytokine expression. One endotype showed an IFN-γ/Interleukin (IL)-17/IL-5 predominance, a different sensitization pattern (high in birch/apple; p < .01), and inferior lung function (p < .01). A second endotype grouped young children with food allergy and reduced lung function. Our findings were reproducible in the validation group. CONCLUSION AND CLINICAL RELEVANCE We identified two novel clinical asthma endotypes via cytokine expression pattern with distinct sensitization patterns. These novel findings are critical for clinical guidance and open avenues for identifying underlying mechanisms and more patient-specific therapies.
Collapse
Affiliation(s)
- Michael Salvermoser
- Department of Pulmonary and Allergy, Dr. von Hauner Children's Hospital, LMU University of Munich, Munich, Germany
| | - Kathrin Zeber
- Department of Pulmonary and Allergy, Dr. von Hauner Children's Hospital, LMU University of Munich, Munich, Germany
| | - Andreas Boeck
- Department of Pulmonary and Allergy, Dr. von Hauner Children's Hospital, LMU University of Munich, Munich, Germany
| | - Elisabeth Klucker
- Dr. von Hauner Children's Hospital, LMU University of Munich, Munich, Germany
| | - Bianca Schaub
- Department of Pulmonary and Allergy, Dr. von Hauner Children's Hospital, LMU University of Munich, Munich, Germany.,German Centre of Lung Research, Munich, Germany
| |
Collapse
|
159
|
The basic immunology of asthma. Cell 2021; 184:1469-1485. [PMID: 33711259 DOI: 10.1016/j.cell.2021.02.016] [Citation(s) in RCA: 519] [Impact Index Per Article: 129.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/21/2021] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
In many asthmatics, chronic airway inflammation is driven by IL-4-, IL-5-, and IL-13-producing Th2 cells or ILC2s. Type 2 cytokines promote hallmark features of the disease such as eosinophilia, mucus hypersecretion, bronchial hyperresponsiveness (BHR), IgE production, and susceptibility to exacerbations. However, only half the asthmatics have this "type 2-high" signature, and "type 2-low" asthma is more associated with obesity, presence of neutrophils, and unresponsiveness to corticosteroids, the mainstay asthma therapy. Here, we review the underlying immunological basis of various asthma endotypes by discussing results obtained from animal studies as well as results generated in clinical studies targeting specific immune pathways.
Collapse
|
160
|
Schneider AL, Schleimer RP, Tan BK. Targetable pathogenic mechanisms in nasal polyposis. Int Forum Allergy Rhinol 2021; 11:1220-1234. [PMID: 33660425 DOI: 10.1002/alr.22787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) represents a challenging disease entity with significant rates of recurrence following appropriate medical and surgical therapy. Recent approval of targeted biologics in CRSwNP compels deeper understanding of underlying disease pathophysiology. Both of the approved biologics for CRSwNP modulate the type 2 inflammatory pathway, and the majority of drugs in the clinical trials pathway are similarly targeted. However, there remain multiple other pathogenic mechanisms relevant to CRSwNP for which targeted therapeutics already exist in other inflammatory diseases that have not been studied directly. In this article we summarize pathogenic mechanisms of interest in CRSwNP and discuss the results of ongoing clinical studies of targeted therapeutics in CRSwNP and other related human inflammatory diseases.
Collapse
Affiliation(s)
| | - Robert P Schleimer
- Department of Otolaryngology, Head and Neck Surgery, Chicago, Illinois, USA.,Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bruce K Tan
- Department of Otolaryngology, Head and Neck Surgery, Chicago, Illinois, USA.,Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
161
|
Pandey R, Parkash V, Kant S, Verma AK, Sankhwar SN, Agrawal A, Parmar D, Verma S, Ahmad MK. An update on the diagnostic biomarkers for asthma. J Family Med Prim Care 2021; 10:1139-1148. [PMID: 34041141 PMCID: PMC8140254 DOI: 10.4103/jfmpc.jfmpc_2037_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/02/2020] [Accepted: 01/01/2021] [Indexed: 01/13/2023] Open
Abstract
Asthma is a respiratory disorder accounts for ~339 million cases per annum. The initial diagnosis of asthma relies on the symptomatic identification of characters, such as wheeze, shortness of breath, chest tightness, and cough. The presence of two or more of these symptoms may be considered as indicative of asthma. The asthma-diagnostic also involves spirometry test before and after inhaling a bronchodilator like albuterol. Because asthma pathophysiology involves participation of immune system, the cytokines play an important role. The review discusses various molecules that are or may be used as biomarkers for the asthma diagnosis.
Collapse
Affiliation(s)
- Rashmi Pandey
- Department of Pulmonary and Critical Care Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Ved Parkash
- Department of Pulmonary and Critical Care Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Surya Kant
- Department of Respiratory Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Ajay K. Verma
- Department of Respiratory Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - S. N. Sankhwar
- Department of Urology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Avinash Agrawal
- Department of Critical Care Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Devendra Parmar
- Department of Development Toxicology, CSIR IITR, Lucknow, Uttar Pradesh, India
| | - Sheetal Verma
- Department of Microbiology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Md. Kaleem Ahmad
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
162
|
Dai R, Niu M, Wang N, Wang Y. Syringin alleviates ovalbumin-induced lung inflammation in BALB/c mice asthma model via NF-κB signaling pathway. ENVIRONMENTAL TOXICOLOGY 2021; 36:433-444. [PMID: 33146439 DOI: 10.1002/tox.23049] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Asthma is an allergic chronic inflammatory disease of the pulmonary airways, characterized by the infiltration of white blood cells and release of inflammatory cytokines of complex pathways linked to its pathogenesis. Syringin extracted from various medicinal plants has been used extensively for the treatment of inflammatory diseases. Hence, this study was conducted to further explore the protective effects of the syringin in ovalbumin (OVA) induced-asthma mice model. OVA-sensitized BALB mice were treated intraperitonealy with three doses (25, 50 and 100 mg/kg) of the syringin which was validated by the alteration in the immunoglobulin E (IgE) levels, cytokines levels, histopathological evaluation inflammatory cell count, lung weight, nitrite (NO) levels, oxidative stress biomarkers and gene markers. The treatment of syringin intensely reduced the increased IgE, inflammatory cytokines, WBC count and restored the antioxidant stress markers OVA stimulated animals. In addition, a significant reduction in inflammation and mucus production was evidenced in histopathological analysis which was further validated by suppression NF-κB pathway activation by syringin. These results suggest that syringin may improve asthma symptoms in OVA-induced mice by modulating NF-κB pathway activation.
Collapse
Affiliation(s)
- Rui Dai
- Department of Pediatric, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Manman Niu
- Department of Pediatric, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ningling Wang
- Department of Pediatric, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Pediatric, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
163
|
Crisford H, Sapey E, Rogers GB, Taylor S, Nagakumar P, Lokwani R, Simpson JL. Neutrophils in asthma: the good, the bad and the bacteria. Thorax 2021; 76:thoraxjnl-2020-215986. [PMID: 33632765 PMCID: PMC8311087 DOI: 10.1136/thoraxjnl-2020-215986] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/30/2022]
Abstract
Airway inflammation plays a key role in asthma pathogenesis but is heterogeneous in nature. There has been significant scientific discovery with regard to type 2-driven, eosinophil-dominated asthma, with effective therapies ranging from inhaled corticosteroids to novel biologics. However, studies suggest that approximately 1 in 5 adults with asthma have an increased proportion of neutrophils in their airways. These patients tend to be older, have potentially pathogenic airway bacteria and do not respond well to classical therapies. Currently, there are no specific therapeutic options for these patients, such as neutrophil-targeting biologics.Neutrophils comprise 70% of the total circulatory white cells and play a critical defence role during inflammatory and infective challenges. This makes them a problematic target for therapeutics. Furthermore, neutrophil functions change with age, with reduced microbial killing, increased reactive oxygen species release and reduced production of extracellular traps with advancing age. Therefore, different therapeutic strategies may be required for different age groups of patients.The pathogenesis of neutrophil-dominated airway inflammation in adults with asthma may reflect a counterproductive response to the defective neutrophil microbial killing seen with age, resulting in bystander damage to host airway cells and subsequent mucus hypersecretion and airway remodelling. However, in children with asthma, neutrophils are less associated with adverse features of disease, and it is possible that in children, neutrophils are less pathogenic.In this review, we explore the mechanisms of neutrophil recruitment, changes in cellular function across the life course and the implications this may have for asthma management now and in the future. We also describe the prevalence of neutrophilic asthma globally, with a focus on First Nations people of Australia, New Zealand and North America.
Collapse
Affiliation(s)
- Helena Crisford
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Geraint B Rogers
- SAHMRI Microbiome Research Laboratory, Flinders University College of Medicine and Public Health, Adelaide, South Australia, Australia
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Steven Taylor
- SAHMRI Microbiome Research Laboratory, Flinders University College of Medicine and Public Health, Adelaide, South Australia, Australia
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Prasad Nagakumar
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Respiratory Medicine, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Ravi Lokwani
- Faculty of Health and Medicine, Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Jodie L Simpson
- Faculty of Health and Medicine, Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
164
|
Biologics in asthma management - Are we out of breath yet? Allergol Select 2021; 5:96-102. [PMID: 33615123 PMCID: PMC7890935 DOI: 10.5414/alx02192e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
The biologics authorized for the add-on therapy of severe asthma are monoclonal antibodies (mAbs). Before they are considered for therapy intensification, the patient’s asthma endotype is determined on the basis of phenotypic characteristics. So far, 5 biologics are available that target the signaling pathways of the “TH2-high” asthma endotype, in which cytokines of the inflammation cascade mediated by type 2 T-helper cells are upregulated. The corresponding phenotype of this inflammatory endotype is severe eosinophilic asthma, with elevated eosinophils, immunoglobulin E, and fractional exhaled nitric oxide (FeNO). In contrast, the heterogeneous “TH2-low” endotype is not yet sufficiently understood. Frequently described in this variant is an increase of sputum neutrophils and an increased expression of the TH17-mediated interleukin-17 signaling pathway. There are numerous biologics currently in clinical trials, the thymic stromal lymphopoietin (TSLP) mAbs in particular have shown promising results independent of the asthma phenotype.
Collapse
|
165
|
Pelaia C, Pelaia G, Crimi C, Longhini F, Lombardo N, Savino R, Sciacqua A, Vatrella A. Biologics in severe asthma. Minerva Med 2021; 113:51-62. [PMID: 33555158 DOI: 10.23736/s0026-4806.21.07296-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Asthma is a chronic airway disease consisting of usually variable airflow limitation and bronchial hyperresponsiveness. Many different phenotypes characterize the clinical expression of asthma, determined by heterogeneous inflammatory patterns driven by distinct cellular and molecular mechanisms known as endotypes. Inside the complex framework of asthma pathobiology, several molecules such as immunoglobulins E (IgE), pro-inflammatory cytokines and their receptors can be targeted by present and future biological treatments of severe asthma. Within this context, already registered monoclonal antibodies including omalizumab, mepolizumab, reslizumab, benralizumab and dupilumab may interfere at various levels with the pathogenic pathways responsible for type-2 airway inflammation. In particular, these drugs target IgE (omalizumab), IL-5 (mepolizumab and reslizumab), IL-5 receptor (benralizumab) and IL-4/IL-13 receptors (dupilumab), respectively. Moreover, other biological therapies are under evaluation in pre-marketing trials, mainly aimed to assess the efficacy and safety of monoclonal antibodies directed against innate cytokines such as IL-33 and thymic stromal lymphopoietin (TSLP). Among current and perspective therapeutic approaches, clinicians can choose phenotype/endotype-driven tailored treatments, able to pursue an effective control of difficult to treat type-2 asthma.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy -
| | - Giulia Pelaia
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Federico Longhini
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Nicola Lombardo
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Rocco Savino
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| |
Collapse
|
166
|
Lauhkonen E, Holster A, Teräsjärvi J, Nuolivirta K, He Q, Korppi M. IL17RA variations showed no associations with post-bronchiolitis asthma or lung function. Pediatr Int 2021; 63:196-201. [PMID: 32654355 DOI: 10.1111/ped.14387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Interleukin-17A (IL-17A) and IL-17F are involved in the pathogenesis of asthma and allergy. Interleukin-17 receptor A (IL-17RA), encoded by the IL17RA gene, is a common receptor for IL-17A and IL-17F. The aim of the present study was to evaluate the association of IL17RA gene variations with asthma, allergy, and lung function at school age in children prospectively followed up after hospitalization for bronchiolitis in early infancy. METHODS Data on IL17RA rs4819553, rs4819554, and rs4819558 polymorphisms and clinical outcomes, including asthma and allergic rhinitis, were available for 145 former bronchiolitis patients at 5-7 years and for 125 at 11-13 years of age. One hundred children underwent impulse oscillometry at 5-7 years and 84 underwent flow-volume spirometry at 11-13 years of age. The IL17RA rs4819553, rs4819554 and rs4819558 were completely co-segregating in Finnish children in our previous studies. RESULTS The distributions of the studied IL17RA wild versus variant genotypes and major versus minor allele frequencies did not differ between bronchiolitis cases and population controls. These variations showed no significant association with asthma or allergic rhinitis nor with lung function reduction at 5-7 or 11-13 years of ages. Only 5.6% to 6.4% of the variations were homozygous. CONCLUSIONS The IL17RA gene variations that were studied showed no association with susceptibility to severe bronchiolitis in infancy, nor with post-bronchiolitis asthma or lung function at school age. Future studies should evaluate other IL17RA polymorphisms and include more cases, and especially cases with homozygous variations.
Collapse
Affiliation(s)
- Eero Lauhkonen
- Center for Child Health Research, Faculty of Medicine and Life Sciences, University of Tampere and University Hospital, Tampere, Finland
| | - Annukka Holster
- Center for Child Health Research, Faculty of Medicine and Life Sciences, University of Tampere and University Hospital, Tampere, Finland
| | | | - Kirsi Nuolivirta
- Department of Pediatrics, Seinäjoki Central Hospital, Seinäjoki, Finland
| | - Qiushui He
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Matti Korppi
- Center for Child Health Research, Faculty of Medicine and Life Sciences, University of Tampere and University Hospital, Tampere, Finland
| |
Collapse
|
167
|
Shilovskiy IP, Nikolskii AA, Kurbacheva OM, Khaitov MR. Modern View of Neutrophilic Asthma Molecular Mechanisms and Therapy. BIOCHEMISTRY (MOSCOW) 2021; 85:854-868. [PMID: 33045947 DOI: 10.1134/s0006297920080027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
For a long time asthma was commonly considered as a homogeneous disease. However, recent studies provide increasing evidence of its heterogeneity and existence of different phenotypes of the disease. Currently, classification of asthma into several phenotypes is based on clinical and physiological features, anamnesis, and response to therapy. This review describes five most frequently identified asthma phenotypes. Neutrophilic asthma (NA) deserves special attention, since neutrophilic inflammation of the lungs is closely associated with severity of the disease and with the resistance to conventional corticosteroid therapy. This review focuses on molecular mechanisms of neutrophilic asthma pathogenesis and on the role of Th1- and Th17-cells in the development of this type of asthma. In addition, this review presents current knowledge of neutrophil biology. It has been established that human neutrophils are represented by at least three subpopulations with different biological functions. Therefore, total elimination of neutrophils from the lungs can result in negative consequences. Based on the new knowledge of NA pathogenesis and biology of neutrophils, the review summarizes current approaches for treatment of neutrophilic asthma and suggests new promising ways to treat this type of asthma that could be developed in future.
Collapse
Affiliation(s)
- I P Shilovskiy
- National Research Center - Institute of Immunology, Federal Medico-Biological Agency, Moscow, 115522, Russia.
| | - A A Nikolskii
- National Research Center - Institute of Immunology, Federal Medico-Biological Agency, Moscow, 115522, Russia
| | - O M Kurbacheva
- National Research Center - Institute of Immunology, Federal Medico-Biological Agency, Moscow, 115522, Russia
| | - M R Khaitov
- National Research Center - Institute of Immunology, Federal Medico-Biological Agency, Moscow, 115522, Russia
| |
Collapse
|
168
|
Abstract
PURPOSE OF REVIEW The alarmins, thymic stromal lymphopoietin (TSLP), interleukin (IL)-25 and IL-33, are upstream regulators of T2 (type 2) inflammation and found to be expressed at high levels in airway epithelium of patients with T2 asthma. This review will summarize how alarmins regulate the inflamed asthmatic airways through previously described and newly identified mechanisms. RECENT FINDINGS Alarmins drive allergic and nonallergic asthma through activation of innate lymphoid cell 2 (ILC2), which are a rich source of cytokines such as IL-5 and IL-13, with resulting effects on eosinophilopoeisis and remodelling, respectively. Findings from bronchial allergen challenges have illustrated widespread expression of alarmins and their receptors across many effector cells in airways, and recent studies have emphasized alarmin regulation of CD4 T lymphocytes, eosinophils and basophils, and their progenitors. Furthermore, a link between alarmins and lipid mediators is being uncovered. SUMMARY Alarmins can drive well defined inflammatory pathways through activation of dendritic cells and polarizing T cells to produce type 2 cytokines, as well as they can directly activate many other effector cells that play a central role in allergic and nonallergic asthma. Clinical trials support a central role for TSLP in driving airway inflammation and asthma exacerbations, while ongoing trials blocking IL-33 and IL-25 will help to define their respective role in asthma.
Collapse
|
169
|
Xu Y, Thakur A, Zhang Y, Foged C. Inhaled RNA Therapeutics for Obstructive Airway Diseases: Recent Advances and Future Prospects. Pharmaceutics 2021; 13:pharmaceutics13020177. [PMID: 33525500 PMCID: PMC7912103 DOI: 10.3390/pharmaceutics13020177] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
Obstructive airway diseases, e.g., chronic obstructive pulmonary disease (COPD) and asthma, represent leading causes of morbidity and mortality worldwide. However, the efficacy of currently available inhaled therapeutics is not sufficient for arresting disease progression and decreasing mortality, hence providing an urgent need for development of novel therapeutics. Local delivery to the airways via inhalation is promising for novel drugs, because it allows for delivery directly to the target site of action and minimizes systemic drug exposure. In addition, novel drug modalities like RNA therapeutics provide entirely new opportunities for highly specific treatment of airway diseases. Here, we review state of the art of conventional inhaled drugs used for the treatment of COPD and asthma with focus on quality attributes of inhaled medicines, and we outline the therapeutic potential and safety of novel drugs. Subsequently, we present recent advances in manufacturing of thermostable solid dosage forms for pulmonary administration, important quality attributes of inhalable dry powder formulations, and obstacles for the translation of inhalable solid dosage forms to the clinic. Delivery challenges for inhaled RNA therapeutics and delivery technologies used to overcome them are also discussed. Finally, we present future prospects of novel inhaled RNA-based therapeutics for treatment of obstructive airways diseases, and highlight major knowledge gaps, which require further investigation to advance RNA-based medicine towards the bedside.
Collapse
Affiliation(s)
- You Xu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (Y.X.); (A.T.); (Y.Z.)
| | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (Y.X.); (A.T.); (Y.Z.)
| | - Yibang Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (Y.X.); (A.T.); (Y.Z.)
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (Y.X.); (A.T.); (Y.Z.)
- Correspondence: ; Tel.: +45-3533-6402
| |
Collapse
|
170
|
Dorey-Stein ZL, Shenoy KV. Tezepelumab as an Emerging Therapeutic Option for the Treatment of Severe Asthma: Evidence to Date. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:331-338. [PMID: 33536746 PMCID: PMC7850420 DOI: 10.2147/dddt.s250825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
Asthma is a complex heterogeneous disease defined by chronic inflammation of the airways. Patients present with wheezing, chest tightness, cough and shortness of breath. Bronchial hyperresponsiveness and variable expiratory airflow limitation are hallmark features. About 3.6-6.1% of patients, despite receiving high-dose inhaled corticosteroids (ICS) and a second controller medication, report persistent symptoms referred to as severe asthma. Uncontrolled severe asthma is associated with increased mortality, morbidity, diminished quality of life and increased health expenditures. The development of modern biological therapy has revolutionized severe asthma treatment. By targeting specific chemokines, asthma control has drastically improved, resulting in better quality of life, less emergency department visits and inpatient admissions, and decreased chronic systemic corticosteroid utilization. Despite these advances, there remains a subset of asthma patients who remain symptomatic with poor quality of life and heavy utilization of the healthcare system. Recently attention has been given to pharmaceutical therapy directed at receptors and cytokines on the epithelial layer of the lung referred to as "alarmins". Thymic stromal lymphopoietin (TSLP) is an interleukin-7-like receptor family found on the epithelial layer of the lung that releases a cytokine cascade inducing eosinophilic inflammation, mucus production and airflow obstruction in asthmatics. Tezepelumab is the first investigational monoclonal antibody that inhibits TSLP. Proof of concept study and phase IIb studies demonstrated reduced asthma exacerbations, improvement in quality of life, less decline in FEV1 and decrease in biochemical inflammatory markers in comparison to placebo. It is presently undergoing three phase III studies and an additional phase II study.
Collapse
Affiliation(s)
- Zachariah L Dorey-Stein
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Kartik V Shenoy
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
171
|
Hinks TSC, Levine SJ, Brusselle GG. Treatment options in type-2 low asthma. Eur Respir J 2021; 57:13993003.00528-2020. [PMID: 32586877 DOI: 10.1183/13993003.00528-2020] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Monoclonal antibodies targeting IgE or the type-2 cytokines interleukin (IL)-4, IL-5 and IL-13 are proving highly effective in reducing exacerbations and symptoms in people with severe allergic and eosinophilic asthma, respectively. However, these therapies are not appropriate for 30-50% of patients in severe asthma clinics who present with non-allergic, non-eosinophilic, "type-2 low" asthma. These patients constitute an important and common clinical asthma phenotype, driven by distinct, yet poorly understood pathobiological mechanisms. In this review we describe the heterogeneity and clinical characteristics of type-2 low asthma and summarise current knowledge on the underlying pathobiological mechanisms, which includes neutrophilic airway inflammation often associated with smoking, obesity and occupational exposures and may be driven by persistent bacterial infections and by activation of a recently described IL-6 pathway. We review the evidence base underlying existing treatment options for specific treatable traits that can be identified and addressed. We focus particularly on severe asthma as opposed to difficult-to-treat asthma, on emerging data on the identification of airway bacterial infection, on the increasing evidence base for the use of long-term low-dose macrolides, a critical appraisal of bronchial thermoplasty, and evidence for the use of biologics in type-2 low disease. Finally, we review ongoing research into other pathways including tumour necrosis factor, IL-17, resolvins, apolipoproteins, type I interferons, IL-6 and mast cells. We suggest that type-2 low disease frequently presents opportunities for identification and treatment of tractable clinical problems; it is currently a rapidly evolving field with potential for the development of novel targeted therapeutics.
Collapse
Affiliation(s)
- Timothy S C Hinks
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Nuffield Dept of Medicine, Experimental Medicine, University of Oxford, Oxford, UK
| | - Stewart J Levine
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guy G Brusselle
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.,Depts of Epidemiology and Respiratory Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
172
|
Borowczyk J, Shutova M, Brembilla NC, Boehncke WH. IL-25 (IL-17E) in epithelial immunology and pathophysiology. J Allergy Clin Immunol 2021; 148:40-52. [PMID: 33485651 DOI: 10.1016/j.jaci.2020.12.628] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
IL-25, also known as IL-17E, is a unique cytokine of the IL-17 family. Indeed, IL-25 exclusively was shown to strongly induce expression of the cytokines associated with type 2 immunity. Although produced by several types of immune cells, such as T cells, dendritic cells, or group 2 innate lymphoid cells, a vast amount of IL-25 derives from epithelial cells. The functions of IL-25 have been actively studied in the context of physiology and pathology of various organs including skin, airways and lungs, gastrointestinal tract, and thymus. Accumulating evidence suggests that IL-25 is a "barrier surface" cytokine whose expression depends on extrinsic environmental factors and when upregulated may lead to inflammatory disorders such as atopic dermatitis, psoriasis, or asthma. This review summarizes the progress of the recent years regarding the effects of IL-25 on the regulation of immune response and the balance between its homeostatic and pathogenic role in various epithelia. We revisit IL-25's general and tissue-specific mechanisms of action, mediated signaling pathways, and transcription factors activated in immune and resident cells. Finally, we discuss perspectives of the IL-25-based therapies for inflammatory disorders and compare them with the mainstream ones that target IL-17A.
Collapse
Affiliation(s)
- Julia Borowczyk
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Maria Shutova
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Division of Dermatology and Venereology, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
173
|
Royer DJ, Cook DN. Regulation of Immune Responses by Nonhematopoietic Cells in Asthma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:292-301. [PMID: 33397743 PMCID: PMC8581969 DOI: 10.4049/jimmunol.2000885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
Nonhematopoietic cells are emerging as important contributors to many inflammatory diseases, including allergic asthma. Recent advances have led to a deeper understanding of how these cells interact with traditional immune cells, thereby modulating their activities in both homeostasis and disease. In addition to their well-established roles in gas exchange and barrier function, lung epithelial cells express an armament of innate sensors that can be triggered by various inhaled environmental agents, leading to the production of proinflammatory molecules. Advances in cell lineage tracing and single-cell RNA sequencing have expanded our knowledge of rare, but immunologically important nonhematopoietic cell populations. In parallel with these advances, novel reverse genetic approaches are revealing how individual genes in different lung-resident nonhematopoietic cell populations contribute to the initiation and maintenance of asthma. This knowledge is already revealing new pathways that can be selectively targeted to treat distinct forms of asthma.
Collapse
Affiliation(s)
- Derek J Royer
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Donald N Cook
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| |
Collapse
|
174
|
Jappe U, Beckert H, Bergmann KC, Gülsen A, Klimek L, Philipp S, Pickert J, Rauber-Ellinghaus MM, Renz H, Taube C, Treudler R, Wagenmann M, Werfel T, Worm M, Zuberbier T. Biologics for atopic diseases: Indication, side effect management, and new developments. Allergol Select 2021; 5:1-25. [PMID: 33426426 PMCID: PMC7787364 DOI: 10.5414/alx02197e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022] Open
Abstract
With the advent of biologicals, more and more therapeutics are available that specifically address specific switch points in the pathomechanism of immunologically dominated diseases. Thus, the focus of diagnostics and therapy (precision medicine) is more on the individual disease characteristics of the individual patient. Regarding the different phenotypes of atopic diseases, severe asthma was the first entity for which biologicals were approved, followed by urticaria, and finally atopic dermatitis and chronic rhinosinusitis with nasal polyps. Experience in the treatment of severe bronchial asthma has shown that the intensity of the response to biological therapy depends on the quality of clinical and immunological phenotyping of the patients. This also applies to different diseases of the atopic form, as patients can suffer from several atopic diseases at the same time, each with different characteristics. Biologics are already emerging that may represent a suitable therapy for allergic bronchial asthma, which often occurs together with severe neurodermatitis, and chronic rhinosinusitis with nasal polyps. In practice, however, the question of possible combinations of biologicals for the therapy of complex clinical pictures of individual patients is increasingly arising. In doing so, the side effect profile must be taken into account, including hypersensitivity reactions, whose diagnostic and logistical management must aim at a safe and efficient therapy of the underlying disease. Increased attention must also be paid to biological therapy in pregnancy and planned (predictable) vaccinations as well as existing infections, such as SARS-CoV-2 infection. Before starting a biological therapy, the immune status should be checked with regard to chronic viral and bacterial infections and, if necessary, the vaccination status should be refreshed or missing vaccinations should be made up for before starting therapy. Currently, reliable data on the effect of biologicals on the immunological situation of SARS-CoV-2 infection and COVID-19 are not available. Therefore, research and development of suitable diagnostic methods for detection of immunologically caused side effects as well as detection of potential therapy responders and non-responders is of great importance.
Collapse
Affiliation(s)
- Uta Jappe
- Research Group Clinical and Molecular Allergology of the Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL)
- Interdisciplinary Allergy Outpatient Clinic, Medical Clinic III, University of Lübeck
| | - Hendrik Beckert
- Department of Pulmonary Medicine, University Hospital Essen – Ruhrlandklinik, Essen
| | - Karl-Christian Bergmann
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
| | - Askin Gülsen
- Interdisciplinary Allergy Outpatient Clinic, Medical Clinic III, University of Lübeck
| | | | - Sandra Philipp
- Dermatology practice Dr. Markus Friedrich/Dr. Sandra Philipp, Oranienburg
| | - Julia Pickert
- Department of Dermatology and Allergology, University Hospital Gießen and Marburg, Marburg site
| | | | - Harald Renz
- Department of Medicine, Institute of Laboratory Medicine and Pathobiochemistry – Molecular Diagnostics, Member of the German Centre for Lung Research (DZL), Philipps-University, Marburg
| | - Christian Taube
- Department of Pulmonary Medicine, University Hospital Essen – Ruhrlandklinik, Essen
| | - Regina Treudler
- Leipzig Comprehensive Allergy Center LICA-CAC, Department of Dermatology, Venereology and Allergology, University of Leipzig
| | - Martin Wagenmann
- Department of Otorhinolaryngology, HNO-Klinik, Universitätsklinikum Düsseldorf, Düsseldorf
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover
| | - Margita Worm
- Dermatology, Venerology and Allergology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
| | - Torsten Zuberbier
- Department of Dermatology and Allergy, Charité Universitätsmedizin, Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Comprehensive Allergy Center, Berlin, Germany
| |
Collapse
|
175
|
Abstract
Background: Severe asthma is a heterogeneous disease that consists of various phenotypes driven by different pathways. Associated with significant morbidity, an important negative impact on the quality of life of patients, and increased health care costs, severe asthma represents a challenge for the clinician. With the introduction of various antibodies that target type 2 inflammation (T2) pathways, severe asthma therapy is gradually moving to a personalized medicine approach. Objective: The purpose of this review was to emphasize the important role of personalized medicine in adult severe asthma management. Methods: An extensive research was conducted in medical literature data bases by applying terms such as "severe asthma" associated with "structured approach," "comorbidities," "biomarkers," "phenotypes/endotypes," and "biologic therapies." Results: The management of severe asthma starts with a structured approach to confirm the diagnosis, assess the adherence to medications and identify confounding factors and comorbidities. The definition of phenotypes or endotypes (phenotypes defined by mechanisms and identified through biomarkers) is an important step toward the use of personalized medicine in asthma. Severe allergic and nonallergic eosinophilic asthma are two defined T2 phenotypes for which there are efficacious targeted biologic therapies currently available. Non-T2 phenotype remains to be characterized, and less efficient target therapy exists. Conclusion: Despite important progress in applying personalized medicine to severe asthma, especially in T2 inflammatory phenotypes, future research is needed to find valid biomarkers predictive for the response to available biologic therapies to develop more effective therapies in non-T2 phenotype.
Collapse
Affiliation(s)
- Angelica Tiotiu
- From the Department of Pulmonology, University Hospital of Nancy, Nancy, France; and
| |
Collapse
|
176
|
Hussien HA, Habieb MS, Hamdan AM. Evaluation of Serum Total Immunoglobulin E, Interleukin-17 and Pentraxin-3 as Biomarkers for Chronic Rhinosinusitis With Nasal Polyposis. Am J Rhinol Allergy 2020; 35:640-646. [DOI: 10.1177/1945892420983787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Different biomarkers are detectable in cases of chronic rhinosinusitis with nasal polyposis (CRSwNP) with need for evaluation of their diagnostic and prognostic roles. Objective To assess the serum levels of total IgE, interleukin-17 and Pentraxin-3 in patients with CRSwNP and correlate them with the clinical evaluation using Sino-Nasal Outcome Test (SNOT-22), radiological evaluation using Lund – Mackay (LM) computed tomography scan score, and polyposis recurrence. Methods This cross-sectional comparative study was carried out on fifty patients with CRSwNP and twenty-five age and gender matched healthy volunteers as control group. Patients were assessed clinically by SNOT-22 and radiologically by LM score. Blood samples of patients and controls were analyzed for serum levels of total immunoglobulin E (IgE), Interleukin-17 (IL-17) and Pentraxin-3 (PTX-3). The correlation between the serum levels of every two markers of the study markers was assessed. The levels of the three biomarkers were correlated with SNOT-22 and LM scores and polyp recurrence with assessment of their sensitivity and specificity to diagnose CRSwNP. Results This study showed significantly higher values of the three biomarkers in patients group compared with control group (p < 0.001 for all). There were significant positive correlations between the levels of the three markers and SNOT 22 and LM scores (p < 0.001 for all) and with recurrence of polyposis (p < 0.001, p = 0.005 and p = 0.032 respectively). Agreement (sensitivity and specificity) for these markers to diagnose patient group was statistically significant (p < 0.001 for all). There was a significant positive correlation between every two markers of the study markers. Conclusion Serum levels of total IgE, IL-17 and PTX-3 are important biological markers for diagnosis and follow up of cases of CRSwNP with high sensitivity and specificity in detection of such cases. They should be included in the routine laboratory workup for cases of CRSwNP.
Collapse
Affiliation(s)
- Hossam A. Hussien
- Otorhinolaryngology Department, Faculty of Medicine, Menoufia University, Shibin el Kom, Egypt
| | - Mona S. Habieb
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Shibin el Kom, Egypt
| | - Ahmad M. Hamdan
- Otorhinolaryngology Department, Faculty of Medicine, Menoufia University, Shibin el Kom, Egypt
| |
Collapse
|
177
|
Matera MG, Cazzola M, Page C. Prospects for COPD treatment. Curr Opin Pharmacol 2020; 56:74-84. [PMID: 33333428 DOI: 10.1016/j.coph.2020.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/10/2020] [Indexed: 02/09/2023]
Abstract
The management of chronic obstructive pulmonary disease (COPD) is fundamentally still heavily dependent on the use of bronchodilators and corticosteroids. Therefore, there is a need for alternative, more effective and safer therapeutic approaches. In particular, since inflammation in COPD lungs is often poorly responsive to corticosteroid treatment, novel pharmacological anti-inflammatory approaches are needed to optimally treat COPD patients. There have been multiple attempts to develop drugs that inhibit recruitment and activation of inflammatory cells, such as macrophages, neutrophils and T-lymphocytes, in the lungs of patients with COPD or target inflammatory mediators that are important in the recruitment or activation of these inflammatory cells or released by such cells. This review article focuses on novel classes of anti-inflammatory drugs that have already been tested in humans as possible treatments for patients with COPD.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cazzola
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Clive Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
178
|
Lyly A, Laulajainen-Hongisto A, Gevaert P, Kauppi P, Toppila-Salmi S. Monoclonal Antibodies and Airway Diseases. Int J Mol Sci 2020; 21:E9477. [PMID: 33322143 PMCID: PMC7763928 DOI: 10.3390/ijms21249477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022] Open
Abstract
Monoclonal antibodies, biologics, are a relatively new treatment option for severe chronic airway diseases, asthma, allergic rhinitis, and chronic rhinosinusitis (CRS). In this review, we focus on the physiological and pathomechanisms of monoclonal antibodies, and we present recent study results regarding their use as a therapeutic option against severe airway diseases. Airway mucosa acts as a relative barrier, modulating antigenic stimulation and responding to environmental pathogen exposure with a specific, self-limited response. In severe asthma and/or CRS, genome-environmental interactions lead to dysbiosis, aggravated inflammation, and disease. In healthy conditions, single or combined type 1, 2, and 3 immunological response pathways are invoked, generating cytokine, chemokine, innate cellular and T helper (Th) responses to eliminate viruses, helminths, and extracellular bacteria/fungi, correspondingly. Although the pathomechanisms are not fully known, the majority of severe airway diseases are related to type 2 high inflammation. Type 2 cytokines interleukins (IL) 4, 5, and 13, are orchestrated by innate lymphoid cell (ILC) and Th subsets leading to eosinophilia, immunoglobulin E (IgE) responses, and permanently impaired airway damage. Monoclonal antibodies can bind or block key parts of these inflammatory pathways, resulting in less inflammation and improved disease control.
Collapse
Affiliation(s)
- Annina Lyly
- Inflammation Centre, Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, P.O. Box 160, 00029 HUS Helsinki, Finland;
- Department of Otorhinolaryngology—Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, 00029 HUS Helsinki, Finland;
| | - Anu Laulajainen-Hongisto
- Department of Otorhinolaryngology—Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, 00029 HUS Helsinki, Finland;
| | - Philippe Gevaert
- Department of Otorhinolaryngology, Upper Airway Research Laboratory, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Paula Kauppi
- Heart and Lung Center, Pulmonary Department, University of Helsinki and Helsinki University Hospital, 00029 HUS Helsinki, Finland;
| | - Sanna Toppila-Salmi
- Inflammation Centre, Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, P.O. Box 160, 00029 HUS Helsinki, Finland;
- Medicum, Haartman Institute, University of Helsinki, 00029 HUS Helsinki, Finland
| |
Collapse
|
179
|
Calzetta L, Matera MG, Coppola A, Rogliani P. Prospects for severe asthma treatment. Curr Opin Pharmacol 2020; 56:52-60. [PMID: 33310456 DOI: 10.1016/j.coph.2020.10.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Biological drugs are approved to treat patients with severe uncontrolled asthma and are directed against mediators of type 2 immunity. These agents are effective in reducing the risk of exacerbation, maintaining asthma symptom control and reducing the need of systemic corticosteroids. Although biological drugs have revolutionized the management of the disease, to date there are no head-to-head studies across the current available molecules and there remains the need of specific biomarkers for the diagnosis, prognosis and response to treatment. Moreover, there is still an urgent need to identify further molecular targets to offer effective treatments for those patients who are not responsive to the currently available biological drugs, by moving upstream in the inflammatory cascade to inhibit multiple inflammatory pathways and/or identify effective nontype 2 immunity mechanisms.
Collapse
Affiliation(s)
- Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy.
| | - Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Angelo Coppola
- Division of Respiratory Medicine, University Hospital "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Division of Respiratory Medicine, University Hospital "Tor Vergata", Rome, Italy; Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
180
|
Checa J, Aran JM. Airway Redox Homeostasis and Inflammation Gone Awry: From Molecular Pathogenesis to Emerging Therapeutics in Respiratory Pathology. Int J Mol Sci 2020; 21:E9317. [PMID: 33297418 PMCID: PMC7731288 DOI: 10.3390/ijms21239317] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/05/2020] [Indexed: 02/06/2023] Open
Abstract
As aerobic organisms, we are continuously and throughout our lifetime subjected to an oxidizing atmosphere and, most often, to environmental threats. The lung is the internal organ most highly exposed to this milieu. Therefore, it has evolved to confront both oxidative stress induced by reactive oxygen species (ROS) and a variety of pollutants, pathogens, and allergens that promote inflammation and can harm the airways to different degrees. Indeed, an excess of ROS, generated intrinsically or from external sources, can imprint direct damage to key structural cell components (nucleic acids, sugars, lipids, and proteins) and indirectly perturb ROS-mediated signaling in lung epithelia, impairing its homeostasis. These early events complemented with efficient recognition of pathogen- or damage-associated recognition patterns by the airway resident cells alert the immune system, which mounts an inflammatory response to remove the hazards, including collateral dead cells and cellular debris, in an attempt to return to homeostatic conditions. Thus, any major or chronic dysregulation of the redox balance, the air-liquid interface, or defects in epithelial proteins impairing mucociliary clearance or other defense systems may lead to airway damage. Here, we review our understanding of the key role of oxidative stress and inflammation in respiratory pathology, and extensively report current and future trends in antioxidant and anti-inflammatory treatments focusing on the following major acute and chronic lung diseases: acute lung injury/respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and cystic fibrosis.
Collapse
Affiliation(s)
| | - Josep M. Aran
- Immune-Inflammatory Processes and Gene Therapeutics Group, IDIBELL, L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| |
Collapse
|
181
|
Pelaia C, Crimi C, Vatrella A, Tinello C, Terracciano R, Pelaia G. Molecular Targets for Biological Therapies of Severe Asthma. Front Immunol 2020; 11:603312. [PMID: 33329598 PMCID: PMC7734054 DOI: 10.3389/fimmu.2020.603312] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022] Open
Abstract
Asthma is a heterogeneous respiratory disease characterized by usually reversible bronchial obstruction, which is clinically expressed by different phenotypes driven by complex pathobiological mechanisms (endotypes). Within this context, during the last years several molecular effectors and signalling pathways have emerged as suitable targets for biological therapies of severe asthma, refractory to standard treatments. Indeed, various therapeutic antibodies currently allow to intercept at different levels the chain of pathogenic events leading to type 2 (T2) airway inflammation. In addition to pro-allergic immunoglobulin E (IgE), that chronologically represents the first molecule against which an anti-asthma monoclonal antibody (omalizumab) was developed, today other targets are successfully exploited by biological treatments of severe asthma. In particular, pro-eosinophilic interleukin 5 (IL-5) can be targeted by mepolizumab or reslizumab, whereas benralizumab is a selective blocker of IL-5 receptor. Moreover, dupilumab behaves as a dual receptor antagonist of pleiotropic interleukins 4 (IL-4) and 13 (IL-13). Besides these drugs that are already available in medical practice, other biologics are under clinical development such as those targeting innate cytokines, also including the alarmin thymic stromal lymphopoietin (TSLP), which plays a key role in the pathogenesis of type 2 asthma. Therefore, ongoing and future biological therapies are significantly changing the global scenario of severe asthma management. These new therapeutic options make it possible to implement phenotype/endotype-specific treatments, that are delineating personalized approaches precisely addressing the individual traits of asthma pathobiology. Such tailored strategies are thus allowing to successfully target the immune-inflammatory responses underlying uncontrolled T2-high asthma.
Collapse
Affiliation(s)
- Corrado Pelaia
- Respiratory Medicine Unit, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Caterina Tinello
- Pediatrics Unit, Provincial Outpatient Center of Catanzaro, Catanzaro, Italy
| | - Rosa Terracciano
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Girolamo Pelaia
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
182
|
Shastri MD, Chong WC, Dua K, Peterson GM, Patel RP, Mahmood MQ, Tambuwala M, Chellappan DK, Hansbro NG, Shukla SD, Hansbro PM. Emerging concepts and directed therapeutics for the management of asthma: regulating the regulators. Inflammopharmacology 2020; 29:15-33. [PMID: 33152094 DOI: 10.1007/s10787-020-00770-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/17/2020] [Indexed: 12/19/2022]
Abstract
Asthma is a common, heterogeneous and serious disease, its prevalence has steadily risen in most parts of the world, and the condition is often inadequately controlled in many patients. Hence, there is a major need for new therapeutic approaches. Mild-to-moderate asthma is considered a T-helper cell type-2-mediated inflammatory disorder that develops due to abnormal immune responses to otherwise innocuous allergens. Prolonged exposure to allergens and persistent inflammation results in myofibroblast infiltration and airway remodelling with mucus hypersecretion, airway smooth muscle hypertrophy, and excess collagen deposition. The airways become hyper-responsive to provocation resulting in the characteristic wheezing and obstructed airflow experienced by patients. Extensive research has progressed the understanding of the underlying mechanisms and the development of new treatments for the management of asthma. Here, we review the basis of the disease, covering new areas such as the role of vascularisation and microRNAs, as well as associated potential therapeutic interventions utilising reports from animal and human studies. We also cover novel drug delivery strategies that are being developed to enhance therapeutic efficacy and patient compliance. Potential avenues to explore to improve the future of asthma management are highlighted.
Collapse
Affiliation(s)
- Madhur D Shastri
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | - Wai Chin Chong
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia.,Priority Research Centre for Healthy Lungs, School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia.,Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gregory M Peterson
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | - Rahul P Patel
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | - Malik Q Mahmood
- Faculty of Health, School of Medicine, Deakin University, Melbourne, Australia
| | - Murtaza Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Belfast, Northern Ireland, UK
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia.,Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia. .,Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia. .,Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
183
|
Davis KU, Sheats MK. The Role of Neutrophils in the Pathophysiology of Asthma in Humans and Horses. Inflammation 2020; 44:450-465. [PMID: 33150539 DOI: 10.1007/s10753-020-01362-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Asthma is a common and debilitating chronic airway disease that affects people and horses of all ages worldwide. While asthma in humans most commonly involves an excessive type 2 immune response and eosinophilic inflammation, neutrophils have also been recognized as key players in the pathophysiology of asthma, including in the severe asthma phenotype where neutrophilic inflammation predominates. Severe equine asthma syndrome (sEAS) features prominent neutrophilic inflammation and has been increasingly used as a naturally occurring animal model for the study of human neutrophilic asthma. This comparative review examines the recent literature in order to explore the role of neutrophil inflammatory functions in the pathophysiology and immunology of asthma in humans and horses.
Collapse
Affiliation(s)
- Kaori Uchiumi Davis
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC, 27607, USA.,Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA
| | - M Katie Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC, 27607, USA. .,Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA.
| |
Collapse
|
184
|
Mechanisms of non-type 2 asthma. Curr Opin Immunol 2020; 66:123-128. [PMID: 33160187 DOI: 10.1016/j.coi.2020.10.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022]
Abstract
Non-type 2 inflammation (Non-T2)-mediated asthma is difficult to define due to lack of signature biomarkers. It exists in the absence of T2-high or eosinophilic inflammation and includes neutrophilic and paucigranulocytic subtypes. Several cell types and cytokines, including Th1, Th17, IL-6, and IL-17, contribute to mechanisms of non-T2 asthma. Neutrophil extracellular traps (NETs) and inflammasome activation likely play a role in severe neutrophilic asthma. Several mechanisms lead to uncoupling of airway hyperresponsiveness and remodeling from airway inflammation in paucigranulocytic asthma. Recent research on transcriptomics and proteomics in non-T2 asthma is discussed in this review. Investigations of specific drug therapies for non-T2 asthma have been disappointing, and remain an important area for future clinical studies.
Collapse
|
185
|
Saeki M, Kaminuma O, Hiroi T. [A new mechanism of bronchial hyperresponsiveness revealed by murine Th9 cell-transferred asthma model]. Nihon Yakurigaku Zasshi 2020; 155:375-380. [PMID: 33132253 DOI: 10.1254/fpj.20054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Bronchial asthma is a complex disease involving various inflammatory cells and tissue constituent cells. The spread of inhaled corticosteroids is changing asthma into a controllable disease, though the existence of intractable patients implies new mechanisms for the development and deterioration of asthma. Based on the difference in the pathological condition (phenotypes) and molecular mechanism (endotypes), subdivision of disease understanding is recently progressing. Accordingly, various T cell subsets other than Th2 cells, which have been considered to play a major role for many years, are being implicated in the pathogenesis of asthma. Therefore, we aimed to deepen the understanding of the complex mechanisms of intractable asthma by reviewing the characteristics of allergic inflammation mediated by each T cell subset and the trend of therapeutic strategies targeting their representative functional molecules. Among them, recently identified Th9 cells were reported to induce asthma-like eosinophilic inflammation with bronchial hyperresponsiveness (BHR). These phenotypes resemble to Th2 cells-mediated airway inflammation, though we found that Th9 but not Th2 cell-dependent asthma model develops eosinophil-independent and steroid-resistant BHR. Here, we would like to introduce our recent findings and an approach to elucidate a new mechanism of BHR, based on antigen-specific T cell subset-transferred mouse models we have established.
Collapse
Affiliation(s)
- Mayumi Saeki
- Allergy and Immunology, Tokyo Metropolitan Institute of Medical Science
| | - Osamu Kaminuma
- Allergy and Immunology, Tokyo Metropolitan Institute of Medical Science.,Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University
| | - Takachika Hiroi
- Allergy and Immunology, Tokyo Metropolitan Institute of Medical Science
| |
Collapse
|
186
|
De Volder J, Vereecke L, Joos G, Maes T. Targeting neutrophils in asthma: A therapeutic opportunity? Biochem Pharmacol 2020; 182:114292. [PMID: 33080186 DOI: 10.1016/j.bcp.2020.114292] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
Suppression of airway inflammation with inhaled corticosteroids has been the key therapeutic approach for asthma for many years. Identification of inflammatory phenotypes in asthma has moreover led to important breakthroughs, e.g. with specific targeting of the IL-5 pathway as add-on treatment in difficult-to-treat eosinophilic asthma. However, the impact of interfering with the neutrophilic component in asthma is less documented and understood. This review provides an overview of established and recent insights with regard to the role of neutrophils in asthma, focusing on research in humans. We will describe the main drivers of neutrophilic responses in asthma, the heterogeneity in neutrophils and how they could contribute to asthma pathogenesis. Moreover we will describe findings from clinical trials, in which neutrophilic inflammation was targeted. It is clear that neutrophils are important actors in asthma development and play a role in exacerbations. However, more research is required to fully understand how modulation of neutrophil activity could lead to a significant benefit in asthma patients with airway neutrophilia.
Collapse
Affiliation(s)
- Joyceline De Volder
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Lars Vereecke
- VIB Inflammation Research Center, Ghent, Belgium; Ghent Gut Inflammation Group (GGIG), Ghent University, Belgium; Department of Rheumatology, Ghent University Hospital, Belgium
| | - Guy Joos
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Tania Maes
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
187
|
Mandlik DS, Mandlik SK. New perspectives in bronchial asthma: pathological, immunological alterations, biological targets, and pharmacotherapy. Immunopharmacol Immunotoxicol 2020; 42:521-544. [PMID: 32938247 DOI: 10.1080/08923973.2020.1824238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Asthma is the most common, long-lasting inflammatory airway disease that affects more than 10% of the world population. It is characterized by bronchial narrowing, airway hyperresponsiveness, vasodilatation, airway edema, and stimulation of sensory nerve endings that lead to recurring events of breathlessness, wheezing, chest tightness, and coughing. It is the main reason for global morbidity and occurs as a result of the weakening of the immune system in response to exposure to allergens or environmental exposure. In asthma condition, it results in the activation of numerous inflammatory cells like the mast and dendritic cells along with the accumulation of activated eosinophils and lymphocytes at the inflammation site. The structural cells such as airway epithelial cells and smooth muscle cells release inflammatory mediators that promote the bronchial inflammation. Long-lasting bronchial inflammation can cause pathological alterations, viz. the improved thickness of the bronchial epithelium and friability of airway epithelial cells, epithelium fibrosis, hyperplasia, and hypertrophy of airway smooth muscle, angiogenesis, and mucus gland hyperplasia. The stimulation of bronchial epithelial cell would result in the release of inflammatory cytokines and chemokines that attract inflammatory cells into bronchial airways and plays an important role in asthma. Asthma patients who do not respond to marketed antiasthmatic drugs needed novel biological medications to regulate the asthmatic situation. The present review enumerates various types of asthma, etiological factors, and in vivo animal models for the induction of asthma. The underlying pathological, immunological mechanism of action, the role of inflammatory mediators, the effect of inflammation on the bronchial airways, newer treatment approaches, and novel biological targets of asthma have been discussed in this review.
Collapse
Affiliation(s)
- Deepa S Mandlik
- Department of Pharmacology, Bharat Vidyapeeth Deemed University, Poona College of Pharmacy, Erandawane, India
| | - Satish K Mandlik
- Department of Pharmaceutics, Sinhgad College of Pharmacy, Vadgaon, Maharashtra, India
| |
Collapse
|
188
|
Zhu X, Wei Y, Dong J. Long Noncoding RNAs in the Regulation of Asthma: Current Research and Clinical Implications. Front Pharmacol 2020; 11:532849. [PMID: 33013382 PMCID: PMC7516195 DOI: 10.3389/fphar.2020.532849] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/25/2020] [Indexed: 01/21/2023] Open
Abstract
Asthma is a chronic airway inflammatory disorder related to variable expiratory airflow limitation, leading to wheeze, shortness of breath, chest tightness, and cough. Its characteristic features include airway inflammation, airway remodeling and airway hyperresponsiveness. The pathogenesis of asthma remains extremely complicated and the detailed mechanisms are not clarified. Long noncoding RNAs (lncRNAs) have been reported to play a prominent role in asthma and function as modulators of various aspects in pathological progress of asthma. Here, we summarize recent advances of lncRNAs in asthma pathogenesis to guide future researches, clinical treatment and drug development, including their regulatory functions in the T helper (Th) 1/Th2 imbalance, Th17/T regulatory (Treg) imbalance, eosinophils dysfunction, macrophage polarization, airway smooth muscle cells proliferation, and glucocorticoid insensitivity.
Collapse
Affiliation(s)
- Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
189
|
Papanicolaou A, Wang H, Satzke C, Vlahos R, Wilson N, Bozinovski S. Novel Therapies for Pneumonia-Associated Severe Asthma Phenotypes. Trends Mol Med 2020; 26:1047-1058. [PMID: 32828703 DOI: 10.1016/j.molmed.2020.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022]
Abstract
Distinct asthma phenotypes are emerging from well-defined cohort studies and appear to be associated with a history of pneumonia. Asthmatics are more susceptible to infections caused by Streptococcus pneumoniae; however, the mechanisms that underlie defective immunity to this pathogen are still being elucidated. Here, we discuss how alternatively activated macrophages (AAMs) in asthmatics are defective in bacterial phagocytosis and how respiratory viruses disrupt essential host immunity to cause bacterial dispersion deeper into the lungs. We also describe how respiratory pathogens instigate neutrophilic inflammation and amplify type-2 inflammation in asthmatics. Finally, we propose novel dual-acting strategies including granulocyte-colony-stimulating factor receptor (G-CSFR) antagonism and specialised pro-resolving mediators (SPMs) to suppress type-2 and neutrophilic inflammation without compromising pathogen clearance.
Collapse
Affiliation(s)
- Angelica Papanicolaou
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Hao Wang
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Catherine Satzke
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Ross Vlahos
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | | | - Steven Bozinovski
- Chronic Infectious and Inflammatory Disease Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.
| |
Collapse
|
190
|
Corren J. New Targeted Therapies for Uncontrolled Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 7:1394-1403. [PMID: 31076057 DOI: 10.1016/j.jaip.2019.03.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
Abstract
Mechanistic studies have improved our understanding of molecular and cellular components involved in asthma and our ability to treat severe patients. An mAb directed against IgE (omalizumab) has become an established add-on therapy for patients with uncontrolled allergic asthma and mAbs specific for IL-5 (reslizumab, mepolizumab), IL-5R (benralizumab), and IL-4R (dupilumab) have been approved as add-on treatments for uncontrolled eosinophilic (type 2) asthma. While these medications have proven highly effective, some patients with severe allergic and/or eosinophilic asthma, as well as most patients with severe non-type-2 disease, have poorly controlled disease. Agents that have recently been evaluated in clinical trials include an antibody directed against thymic stromal lymphopoietin, small molecule antagonists to the chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) and the receptor for stem cell factor on mast cells (KIT), and a DNA enzyme directed at GATA3. Antibodies to IL-33 and its receptor, ST2, are being evaluated in ongoing clinical studies. In addition, a number of antagonists directed against other potential targets are under consideration for future trials, including IL-25, IL-6, TNF-like ligand 1A, CD6, and activated cell adhesion molecule (ALCAM). Clinical data from ongoing and future trials will be important in determining whether these new medications will offer benefits in place of or in addition to existing therapies for asthma.
Collapse
MESH Headings
- Activated-Leukocyte Cell Adhesion Molecule/immunology
- Anti-Asthmatic Agents/therapeutic use
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/immunology
- Asthma/drug therapy
- Asthma/immunology
- Asthma/physiopathology
- Cytokines/antagonists & inhibitors
- Cytokines/immunology
- DNA, Catalytic/therapeutic use
- Eosinophils/immunology
- GATA3 Transcription Factor
- Humans
- Imatinib Mesylate/therapeutic use
- Indoleacetic Acids/therapeutic use
- Interleukin-17/antagonists & inhibitors
- Interleukin-17/immunology
- Interleukin-6/immunology
- Lymphocytes/immunology
- Mast Cells/immunology
- Molecular Targeted Therapy
- Omalizumab/therapeutic use
- Proto-Oncogene Proteins c-kit/antagonists & inhibitors
- Proto-Oncogene Proteins c-kit/immunology
- Pyridines/therapeutic use
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/immunology
- Receptors, Interleukin-17/antagonists & inhibitors
- Receptors, Interleukin-17/immunology
- Receptors, Prostaglandin/antagonists & inhibitors
- Receptors, Prostaglandin/immunology
- Ribonucleases/therapeutic use
- Th2 Cells/immunology
- Tumor Necrosis Factor Ligand Superfamily Member 15/antagonists & inhibitors
- Tumor Necrosis Factor Ligand Superfamily Member 15/immunology
Collapse
Affiliation(s)
- Jonathan Corren
- Departments of Medicine and Pediatrics, Division of Allergy and Clinical Immunology, David Geffen School of Medicine at UCLA, Los Angeles, Calif.
| |
Collapse
|
191
|
Virus-Induced Asthma Exacerbations: SIRT1 Targeted Approach. J Clin Med 2020; 9:jcm9082623. [PMID: 32823491 PMCID: PMC7464235 DOI: 10.3390/jcm9082623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
The prevalence of asthma has increased worldwide. Asthma exacerbations triggered by upper respiratory tract viral infections remain a major clinical problem and account for hospital admissions and time lost from work. Virus-induced asthma exacerbations cause airway inflammation, resulting in worsening asthma and deterioration in the patients’ quality of life, which may require systemic corticosteroid therapy. Despite recent advances in understanding the cellular and molecular mechanisms underlying asthma exacerbations, current therapeutic modalities are inadequate for complete prevention and treatment of these episodes. The pathological role of cellular senescence, especially that involving the silent information regulator 2 homolog sirtuin (SIRT) protein family, has recently been demonstrated in stable and exacerbated chronic respiratory disease states. This review discusses the role of SIRT1 in the pathogenesis of bronchial asthma. It also discusses the role of SIRT1 in inflammatory cells that play an important role in virus-induced asthma exacerbations. Recent studies have hypothesized that SIRT1 is one of major contributors to cellular senescence. SIRT1 levels decrease in Th2 and non-Th2-related airway inflammation, indicating the role of SIRT1 in several endotypes and phenotypes of asthma. Moreover, several models have demonstrated relationships between viral infection and SIRT1. Therefore, targeting SIRT1 is a novel strategy that may be effective for treating virus-induced asthma exacerbations in the future.
Collapse
|
192
|
Menson KE, Mank MM, Reed LF, Walton CJ, Van Der Vliet KE, Ather JL, Chapman DG, Smith BJ, Rincon M, Poynter ME. Therapeutic efficacy of IL-17A neutralization with corticosteroid treatment in a model of antigen-driven mixed-granulocytic asthma. Am J Physiol Lung Cell Mol Physiol 2020; 319:L693-L709. [PMID: 32783616 DOI: 10.1152/ajplung.00204.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many mouse models of allergic asthma exhibit eosinophil-predominant cellularity rather than the mixed-granulocytic cytology in steroid-unresponsive severe disease. Therefore, we sought to implement a novel mouse model of antigen-driven, mixed-granulocytic, severe allergic asthma to determine biomarkers of the disease process and potential therapeutic targets. C57BL/6J wild-type, interleukin-6 knockout (IL-6-/-), and IL-6 receptor knockout (IL-6R-/-), mice were injected with an emulsion of complete Freund's adjuvant and house dust mite antigen (CFA/HDM) on day 1. Dexamethasone, a lymphocyte-depleting biological, or anti-IL-17A was administered during the intranasal HDM challenge on days 19-22. On day 23, the CFA/HDM model elicited mixed bronchoalveolar lavage (BAL) cellularity (typically 80% neutrophils and 10% eosinophils), airway hyperresponsiveness (AHR) to methacholine, diffusion impairment, lung damage, body weight loss, corticosteroid resistance, and elevated levels of serum amyloid A (SAA), pro-inflammatory cytokines, and T helper type 1/ T helper type 17 (Th1/Th17) cytokines compared with eosinophilic models of HDM-driven allergic airway disease. BAL cells in IL-6- or IL-6R-deficient mice were predominantly eosinophilic and associated with elevated T helper type 2 (Th2) and reduced Th1/Th17 cytokine production, along with an absence of SAA. Nevertheless, AHR remained in IL-6-deficient mice even when dexamethasone was administered. However, combined administration of anti-IL-17A and systemic corticosteroid significantly attenuated both overall and neutrophilic airway inflammation and also reduced AHR and body weight loss. Inhibition of IL-17A combined with systemic corticosteroid treatment during antigen-driven exacerbations may provide a novel therapeutic approach to prevent the pathological pulmonary and constitutional changes that greatly impact patients with the mixed-granulocytic endotype of severe asthma.
Collapse
Affiliation(s)
- Katherine E Menson
- Division of Pulmonary Disease & Critical Care, Department of Medicine, The Vermont Lung Center, University of Vermont, Burlington, Vermont
| | - Madeleine M Mank
- Division of Pulmonary Disease & Critical Care, Department of Medicine, The Vermont Lung Center, University of Vermont, Burlington, Vermont
| | - Leah F Reed
- Division of Pulmonary Disease & Critical Care, Department of Medicine, The Vermont Lung Center, University of Vermont, Burlington, Vermont
| | - Camille J Walton
- Division of Pulmonary Disease & Critical Care, Department of Medicine, The Vermont Lung Center, University of Vermont, Burlington, Vermont
| | - Katherine E Van Der Vliet
- Division of Pulmonary Disease & Critical Care, Department of Medicine, The Vermont Lung Center, University of Vermont, Burlington, Vermont
| | - Jennifer L Ather
- Division of Pulmonary Disease & Critical Care, Department of Medicine, The Vermont Lung Center, University of Vermont, Burlington, Vermont
| | - David G Chapman
- Translational Airways Group, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Bradford J Smith
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Mercedes Rincon
- Department of Immunology & Microbiology, University of Colorado Anschutz School of Medicine, Aurora, Colorado
| | - Matthew E Poynter
- Division of Pulmonary Disease & Critical Care, Department of Medicine, The Vermont Lung Center, University of Vermont, Burlington, Vermont
| |
Collapse
|
193
|
Abstract
PURPOSE OF REVIEW To analyze the status of precision medicine in atopic diseases. RECENT FINDINGS Atopic diseases are increasingly recognized as heterogeneous in nature and they can be quite different in severity, response to therapy, triggers, genetic back ground, ancestral risk and type of inflammation. This significant variability in the landscape of atopic diseases is not reflected in the common treatment guidelines that follow 'one fits all' approach for their management. Such an approach is largely based on minimal 'phenotype' elements, such as severity of disease and response to therapy and does not reflect the information accumulate in the last 20 years about particular pathogenic pathways (endotypes) leading to disease (phenotypes) based on biomolecular analysis of the single individuals. Accumulating data have defined asthma allergic rhinitis, food allergy based on their endotypes and clinically relevant phenotypes. In general, atopic diseases can be largely classified as high or low Th2 inflammatory status, which may explain the severity and response to therapy. SUMMARY Precision medicine is aiming to use known endotype phenotype to guide specific individualized treatment. The work aimed in deep characterization of diseases to guide the disease management is crucial in light of the availability of ever more precise treatment able to target specific pathways.
Collapse
|
194
|
YALCIN ARZUDIDEM, ONBASI KEVSER, UZUN RUSEN, HERTH FELIX, SCHNABEL PHILIPPALBERT. Human(ized) monoclonal antibodies in atopic patients - state of the art. Cent Eur J Immunol 2020; 45:195-201. [PMID: 33456331 PMCID: PMC7792442 DOI: 10.5114/ceji.2020.97909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/13/2017] [Indexed: 02/05/2023] Open
Abstract
Asthma is an important chronic disease affecting a lot of people worldwide. Treatment options for asthma like biological agents are being developed more frequently nowadays. Despite a lot of treatment options, some patients still remain symptomatic. As more and more practitioners choose treatment with biologic agents as a convenient way of therapy, biologic agents and other valuable methods must be discovered in order to cope with a growing number of treatment agents. This manuscript emphasizes on new generation monoclonal human(ized) antibodies in asthmatics and off-label use . The first developed biologic agent is the anti-immunoglobulin E monoclonal antibody called omalizumab. Currently it is an approved treatment option for asthma.
Collapse
Affiliation(s)
- ARZU DIDEM YALCIN
- Department of Internal Medicine, Allergy and Clinical Immunology, Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Allergy and Clinical Immunology, Antalya Training and Research Hospital, University of Medical Science, Antalya, Turkey
| | - KEVSER ONBASI
- Department of Internal Medicine, Allergy and Clinical Immunology, Dumlupinar University, Kütahya, Turkey
| | - RUSEN UZUN
- Department of Pulmonology, Antalya Training and Research Hospital, University of Medical Science, Antalya, Turkey
| | - FELIX HERTH
- Department of Pulmonary and Critical Care Medicine, Thoraxklinik Translational Lung Research Center, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
195
|
Scichilone N, Barnes PJ, Battaglia S, Benfante A, Brown R, Canonica GW, Caramori G, Cazzola M, Centanni S, Cianferoni A, Corsico A, De Carlo G, Di Marco F, Gaga M, Hawrylowicz C, Heffler E, Matera MG, Matucci A, Paggiaro P, Papi A, Popov T, Rogliani P, Santus P, Solidoro P, Togias A, Boulet LP. The Hidden Burden of Severe Asthma: From Patient Perspective to New Opportunities for Clinicians. J Clin Med 2020; 9:jcm9082397. [PMID: 32727032 PMCID: PMC7463666 DOI: 10.3390/jcm9082397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Severe asthma is an important topic in respiratory diseases, due to its high impact on morbidity and mortality as well as on health-care resources. The many challenges that still exist in the management of the most difficult-to-treat forms of the disease, and the acknowledgement of the existence of unexplored areas in the pathophysiological mechanisms and the therapeutic targets represent an opportunity to gather experts in the field with the immediate goals to summarize current understanding about the natural history of severe asthma and to identify gaps in knowledge and research opportunities, with the aim to contribute to improved medical care and health outcomes. This article is a consensus document from the “International Course on Severe Asthma” that took place in Palermo, Italy, on May 10–11, 2019. Emerging topics in severe asthma were addressed and discussed among experts, with special focus on patient’s needs and research opportunities, with the aim to highlight the unanswered questions in the diagnostic process and therapeutic approach.
Collapse
Affiliation(s)
- Nicola Scichilone
- Division of Respiratory Diseases, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Piazza delle Cliniche 2, 90143 Palermo, Italy; (S.B.); (A.B.)
- Correspondence: ; Tel.: +39-091-655-2146
| | - Peter John Barnes
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK;
| | - Salvatore Battaglia
- Division of Respiratory Diseases, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Piazza delle Cliniche 2, 90143 Palermo, Italy; (S.B.); (A.B.)
| | - Alida Benfante
- Division of Respiratory Diseases, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Piazza delle Cliniche 2, 90143 Palermo, Italy; (S.B.); (A.B.)
| | - Robert Brown
- Department of Anesthesiology and Critical Care Medicine, Medicine, Department of Medicine, Division of Pulmonary Medicine, Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21287, USA;
| | - Giorgio Walter Canonica
- Personalised Medicine Clinic Asthma & Allergy, Humanitas University, Department of Biomedical Sciences, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (G.W.C.); (E.H.)
| | - Gaetano Caramori
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, 98122 Messina, Italy;
| | - Mario Cazzola
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.C.); (P.R.)
| | - Stefano Centanni
- Respiratory Unit, ASST Santi Paolo e Carlo, San Paolo Hospital, Department of Health Sciences, University of Milan, 20142 Milan, Italy;
| | - Antonella Cianferoni
- Pediatrics Department, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Angelo Corsico
- Division of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and Department of Internal Medicine and Therapeutics – University of Pavia, 27100 Pavia, Italy;
| | - Giuseppe De Carlo
- The European Federation of Allergy and Airways Diseases Patients Associations (EFA), 1000 Brussels, Belgium;
| | - Fabiano Di Marco
- Respiratory Unit, ASST - Papa Giovanni XXIII Hospital, Bergamo, University of Milan, 24127 Milan, Italy;
| | - Mina Gaga
- 7th Respiratory Medicine Dept, Asthma Cen, Athens Chest Hospital, 11527 Athens, Greece;
| | - Catherine Hawrylowicz
- Division of Asthma, Allergy and Lung Biology, King’s College London, Guy’s Hospital, London SE1 9RT, UK;
| | - Enrico Heffler
- Personalised Medicine Clinic Asthma & Allergy, Humanitas University, Department of Biomedical Sciences, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (G.W.C.); (E.H.)
| | - Maria Gabriella Matera
- Unit of Pharmacology, Dept. Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Andrea Matucci
- Immunoallergology Unit, Careggi University Hospital, 50139 Florence, Italy;
| | - Pierluigi Paggiaro
- Department of Surgery, Medicine, Molecular Biology and Critical Care, University of Pisa, 56126 Pisa, Italy;
| | - Alberto Papi
- Research Center on Asthma and COPD, Dept of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Todor Popov
- Clinic of Occupational Diseases, University Hospital Sv. Ivan Rilski, 1431 Sofia, Bulgaria;
| | - Paola Rogliani
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.C.); (P.R.)
| | - Pierachille Santus
- Division of Respiratory Diseases, Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Ospedale L. Sacco, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy;
| | - Paolo Solidoro
- Pneumology Unit U, Cardiovascular and Thoracic Department, AOU Città della Salute e della Scienza di Torino, University of Turin, 10126 Turin, Italy;
| | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, Bethesda, MD 20814, USA;
| | | |
Collapse
|
196
|
Zwicky P, Unger S, Becher B. Targeting interleukin-17 in chronic inflammatory disease: A clinical perspective. J Exp Med 2020; 217:jem.20191123. [PMID: 31727781 PMCID: PMC7037236 DOI: 10.1084/jem.20191123] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/26/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
Although many chronic inflammatory diseases share the feature of elevated IL-17 production, therapeutic targeting of IL-17 has vastly different clinical outcomes. Here the authors summarize the recent progress in understanding the protective and pathogenic role of the IL-23/IL-17 axis in preclinical models and human inflammatory diseases. Chronic inflammatory diseases like psoriasis, Crohn’s disease (CD), multiple sclerosis (MS), rheumatoid arthritis (RA), and others are increasingly recognized as disease entities, where dysregulated cytokines contribute substantially to tissue-specific inflammation. A dysregulation in the IL-23/IL-17 axis can lead to inflammation of barrier tissues, whereas its role in internal organ inflammation remains less clear. Here we discuss the most recent developments in targeting IL-17 for the treatment of chronic inflammation in preclinical models and in patients afflicted with chronic inflammatory diseases.
Collapse
Affiliation(s)
- Pascale Zwicky
- Institute of Experimental Immunology, Department of Inflammation Research, University of Zurich, Zurich, Switzerland
| | - Susanne Unger
- Institute of Experimental Immunology, Department of Inflammation Research, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, Department of Inflammation Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|
197
|
Tiotiu A, Labor M, Nedeva D, Novakova S, Oguzulgen IK, Mihaicuta S, Braido F. How to apply the personalized medicine in obesity-associated asthma? Expert Rev Respir Med 2020; 14:905-915. [PMID: 32506978 DOI: 10.1080/17476348.2020.1780123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Obesity-associated asthma (OA) is frequently severe, with an increased rate of hospitalizations, numerous comorbidities and low response to corticosteroids. Despite progress in applying for personalized medicine in asthma, no specific recommendations exist for the management of OA. AREAS COVERED The aim of this review is to summarize recent data about the relationship obesity-asthma, describe clinical characteristics, potential mechanisms involved and possible therapeutic interventions to improve OA outcomes. Extensive research in the PubMed was performed using the following terms: "asthma and obesity" and "obese asthma" in combination with "phenotypes", "airway inflammation", "biomarkers", "lung function", "weight loss", "lifestyle interventions", "therapies" Currently two phenotypes are described. Early-onset atopic asthma is conventional allergic asthma aggravated by the pro-inflammatory properties of adipose tissue in excess, while late-onset non-atopic asthma is due to airway dysfunction as a consequence of the chronic lung compression caused by the obese chest walls. Previous data showed that different therapeutic strategies used in weight loss have a positive impact on OA outcomes. EXPERT OPINION The presence of a multidisciplinary team (chest physician, nutritionist, exercise physiologist, physiotherapist, psychologist, bariatric surgeon) and the collaboration between different specialists are mandatory to optimize the management and to apply the personalized medicine in OA.
Collapse
Affiliation(s)
- Angelica Tiotiu
- Department of Pulmonology, University Hospital of Nancy , Nancy, France.,EA3450 DevAH - Development, Adaptation and Disadvantage, Cardio-respiratory Regulations and Motor Control, University of Lorraine , Nancy, France
| | - Marina Labor
- Department of Pulmonology, University Hospital Centre Osijek , Osijek, Croatia.,Medical Faculty Osijek, J.J. Strossmayer University , Osijek, Croatia
| | | | - Silviya Novakova
- Allergy Unit, Internal Consulting Department, University Hospital "St. George" , Plovdiv, Bulgaria
| | | | | | - Fulvio Braido
- Respiratory and Allergy Department, University of Genoa, Ospedale Policlinico San Martino , Genoa, Italy
| |
Collapse
|
198
|
Zhang J, Zhu Z, Zuo X, Pan H, Gu Y, Yuan Y, Wang G, Wang S, Zheng R, Liu Z, Wang F, Zheng J. The role of NTHi colonization and infection in the pathogenesis of neutrophilic asthma. Respir Res 2020; 21:170. [PMID: 32620122 PMCID: PMC7333292 DOI: 10.1186/s12931-020-01438-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/30/2020] [Indexed: 12/15/2022] Open
Abstract
Asthma is a complex heterogeneous disease. The neutrophilic subtypes of asthma are described as persistent, more severe and corticosteroid-resistant, with higher hospitalization and mortality rates, which seriously affect the lives of asthmatic patients. With the development of high-throughput sequencing technology, an increasing amount of evidence has shown that lower airway microbiome dysbiosis contributes to the exacerbation of asthma, especially neutrophilic asthma. Nontypeable Haemophilus influenzae is normally found in the upper respiratory tract of healthy adults and is one of the most common strains in the lower respiratory tract of neutrophilic asthma patients, in whom its presence is related to the occurrence of corticosteroid resistance. To understand the pathogenic mechanism by which nontypeable Haemophilus influenzae colonization leads to the progression of neutrophilic asthma, we reviewed the previous literature on nontypeable Haemophilus influenzae colonization and subsequent aggravation of neutrophilic asthma and corticosteroid resistance. We discussed nontypeable Haemophilus influenzae as a potential therapeutic target to prevent the progression of neutrophilic asthma.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Intensive Care Unit, First Hospital of Jilin University, Changchun, 130021, China.,Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Zhenxing Zhu
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xu Zuo
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - He Pan
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yinuo Gu
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yuze Yuan
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Shiji Wang
- Department of Intensive Care Unit, First Hospital of Jilin University, Changchun, 130021, China
| | - Ruipeng Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.,Department of Interventional Therapy, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhongmin Liu
- Department of Intensive Care Unit, First Hospital of Jilin University, Changchun, 130021, China
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jingtong Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China. .,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
199
|
Vatrella A, Maglio A, Pellegrino S, Pelaia C, Stellato C, Pelaia G, Vitale C. Phenotyping severe asthma: a rationale for biologic therapy. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1776106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Angelantonio Maglio
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Simona Pellegrino
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Corrado Pelaia
- Department of Medical and Surgical Sciences, Section of Respiratory Diseases, “Magna Græcia” University of Catanzaro, Catanzaro, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Girolamo Pelaia
- Department of Medical and Surgical Sciences, Section of Respiratory Diseases, “Magna Græcia” University of Catanzaro, Catanzaro, Italy
| | - Carolina Vitale
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| |
Collapse
|
200
|
Ray A, Camiolo M, Fitzpatrick A, Gauthier M, Wenzel SE. Are We Meeting the Promise of Endotypes and Precision Medicine in Asthma? Physiol Rev 2020; 100:983-1017. [PMID: 31917651 PMCID: PMC7474260 DOI: 10.1152/physrev.00023.2019] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 02/07/2023] Open
Abstract
While the term asthma has long been known to describe heterogeneous groupings of patients, only recently have data evolved which enable a molecular understanding of the clinical differences. The evolution of transcriptomics (and other 'omics platforms) and improved statistical analyses in combination with large clinical cohorts opened the door for molecular characterization of pathobiologic processes associated with a range of asthma patients. When linked with data from animal models and clinical trials of targeted biologic therapies, emerging distinctions arose between patients with and without elevations in type 2 immune and inflammatory pathways, leading to the confirmation of a broad categorization of type 2-Hi asthma. Differences in the ratios, sources, and location of type 2 cytokines and their relation to additional immune pathway activation appear to distinguish several different (sub)molecular phenotypes, and perhaps endotypes of type 2-Hi asthma, which respond differently to broad and targeted anti-inflammatory therapies. Asthma in the absence of type 2 inflammation is much less well defined, without clear biomarkers, but is generally linked with poor responses to corticosteroids. Integration of "big data" from large cohorts, over time, using machine learning approaches, combined with validation and iterative learning in animal (and human) model systems is needed to identify the biomarkers and tightly defined molecular phenotypes/endotypes required to fulfill the promise of precision medicine.
Collapse
Affiliation(s)
- Anuradha Ray
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Matthew Camiolo
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Anne Fitzpatrick
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Marc Gauthier
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| |
Collapse
|