151
|
Myszor IT, Gudmundsson GH. Modulation of innate immunity in airway epithelium for host-directed therapy. Front Immunol 2023; 14:1197908. [PMID: 37251385 PMCID: PMC10213533 DOI: 10.3389/fimmu.2023.1197908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Innate immunity of the mucosal surfaces provides the first-line defense from invading pathogens and pollutants conferring protection from the external environment. Innate immune system of the airway epithelium consists of several components including the mucus layer, mucociliary clearance of beating cilia, production of host defense peptides, epithelial barrier integrity provided by tight and adherens junctions, pathogen recognition receptors, receptors for chemokines and cytokines, production of reactive oxygen species, and autophagy. Therefore, multiple components interplay with each other for efficient protection from pathogens that still can subvert host innate immune defenses. Hence, the modulation of innate immune responses with different inducers to boost host endogenous front-line defenses in the lung epithelium to fend off pathogens and to enhance epithelial innate immune responses in the immunocompromised individuals is of interest for host-directed therapy. Herein, we reviewed possibilities of modulation innate immune responses in the airway epithelium for host-directed therapy presenting an alternative approach to standard antibiotics.
Collapse
Affiliation(s)
- Iwona T. Myszor
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Gudmundur Hrafn Gudmundsson
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
152
|
Alladina J, Smith NP, Kooistra T, Slowikowski K, Kernin IJ, Deguine J, Keen HL, Manakongtreecheep K, Tantivit J, Rahimi RA, Sheng SL, Nguyen ND, Haring AM, Giacona FL, Hariri LP, Xavier RJ, Luster AD, Villani AC, Cho JL, Medoff BD. A human model of asthma exacerbation reveals transcriptional programs and cell circuits specific to allergic asthma. Sci Immunol 2023; 8:eabq6352. [PMID: 37146132 PMCID: PMC10440046 DOI: 10.1126/sciimmunol.abq6352] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/13/2023] [Indexed: 05/07/2023]
Abstract
Asthma is a chronic disease most commonly associated with allergy and type 2 inflammation. However, the mechanisms that link airway inflammation to the structural changes that define asthma are incompletely understood. Using a human model of allergen-induced asthma exacerbation, we compared the lower airway mucosa in allergic asthmatics and allergic non-asthmatic controls using single-cell RNA sequencing. In response to allergen, the asthmatic airway epithelium was highly dynamic and up-regulated genes involved in matrix degradation, mucus metaplasia, and glycolysis while failing to induce injury-repair and antioxidant pathways observed in controls. IL9-expressing pathogenic TH2 cells were specific to asthmatic airways and were only observed after allergen challenge. Additionally, conventional type 2 dendritic cells (DC2 that express CD1C) and CCR2-expressing monocyte-derived cells (MCs) were uniquely enriched in asthmatics after allergen, with up-regulation of genes that sustain type 2 inflammation and promote pathologic airway remodeling. In contrast, allergic controls were enriched for macrophage-like MCs that up-regulated tissue repair programs after allergen challenge, suggesting that these populations may protect against asthmatic airway remodeling. Cellular interaction analyses revealed a TH2-mononuclear phagocyte-basal cell interactome unique to asthmatics. These pathogenic cellular circuits were characterized by type 2 programming of immune and structural cells and additional pathways that may sustain and amplify type 2 signals, including TNF family signaling, altered cellular metabolism, failure to engage antioxidant responses, and loss of growth factor signaling. Our findings therefore suggest that pathogenic effector circuits and the absence of proresolution programs drive structural airway disease in response to type 2 inflammation.
Collapse
Affiliation(s)
- Jehan Alladina
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Neal P. Smith
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Tristan Kooistra
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kamil Slowikowski
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Isabela J. Kernin
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Jacques Deguine
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Henry L. Keen
- Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Kasidet Manakongtreecheep
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Jessica Tantivit
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Rod A. Rahimi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Susan L. Sheng
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nhan D. Nguyen
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexis M. Haring
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Francesca L. Giacona
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lida P. Hariri
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Ramnik J. Xavier
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew D. Luster
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Josalyn L. Cho
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Benjamin D. Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
153
|
Ning B, Tilston-Lunel AM, Simonetti J, Hicks-Berthet J, Matschulat A, Pfefferkorn R, Spira A, Edwards M, Mazzilli S, Lenburg ME, Beane JE, Varelas X. Convergence of YAP/TAZ, TEAD and TP63 activity is associated with bronchial premalignant severity and progression. J Exp Clin Cancer Res 2023; 42:116. [PMID: 37150829 PMCID: PMC10165825 DOI: 10.1186/s13046-023-02674-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Bronchial premalignant lesions (PMLs) are composed primarily of cells resembling basal epithelial cells of the airways, which through poorly understood mechanisms have the potential to progress to lung squamous cell carcinoma (LUSC). Despite ongoing efforts that have mapped gene expression and cell diversity across bronchial PML pathologies, signaling and transcriptional events driving malignancy are poorly understood. Evidence has suggested key roles for the Hippo pathway effectors YAP and TAZ and associated TEAD and TP63 transcription factor families in bronchial basal cell biology and LUSC. In this study we examine the functional association of YAP/TAZ, TEADs and TP63 in bronchial epithelial cells and PMLs. METHODS We performed RNA-seq in primary human bronchial epithelial cells following small interfering RNA (siRNA)-mediated depletion of YAP/TAZ, TEADs or TP63, and combined these data with ChIP-seq analysis of these factors. Directly activated or repressed genes were identified and overlapping genes were profiled across gene expression data obtained from progressive or regressive human PMLs and across lung single cell RNA-seq data sets. RESULTS Analysis of genes regulated by YAP/TAZ, TEADs, and TP63 in human bronchial epithelial cells revealed a converged transcriptional network that is strongly associated with the pathological progression of bronchial PMLs. Our observations suggest that YAP/TAZ-TEAD-TP63 associate to cooperatively promote basal epithelial cell proliferation and repress signals associated with interferon responses and immune cell communication. Directly repressed targets we identified include the MHC Class II transactivator CIITA, which is repressed in progressive PMLs and associates with adaptive immune responses in the lung. Our findings provide molecular insight into the control of gene expression events driving PML progression, including those contributing to immune evasion, offering potential new avenues for lung cancer interception. CONCLUSIONS Our study identifies important gene regulatory functions for YAP/TAZ-TEAD-TP63 in the early stages of lung cancer development, which notably includes immune-suppressive roles, and suggest that an assessment of the activity of this transcriptional complex may offer a means to identify immune evasive bronchial PMLs and serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Boting Ning
- Department of Medicine, Computational Biomedicine Section, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
- Bioinformatics Program, Boston University, 72 East Concord Street, Boston, MA, 02215, USA
| | - Andrew M Tilston-Lunel
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Room K620, Boston, MA, 02118, USA
| | - Justice Simonetti
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Room K620, Boston, MA, 02118, USA
| | - Julia Hicks-Berthet
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Room K620, Boston, MA, 02118, USA
| | - Adeline Matschulat
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Room K620, Boston, MA, 02118, USA
| | - Roxana Pfefferkorn
- Department of Medicine, Computational Biomedicine Section, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
- Bioinformatics Program, Boston University, 72 East Concord Street, Boston, MA, 02215, USA
| | - Avrum Spira
- Department of Medicine, Computational Biomedicine Section, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
- Johnson and Johnson Innovation, Cambridge, MA, 02142, USA
| | | | - Sarah Mazzilli
- Department of Medicine, Computational Biomedicine Section, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
- Bioinformatics Program, Boston University, 72 East Concord Street, Boston, MA, 02215, USA
| | - Marc E Lenburg
- Department of Medicine, Computational Biomedicine Section, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA.
- Bioinformatics Program, Boston University, 72 East Concord Street, Boston, MA, 02215, USA.
| | - Jennifer E Beane
- Department of Medicine, Computational Biomedicine Section, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA.
- Bioinformatics Program, Boston University, 72 East Concord Street, Boston, MA, 02215, USA.
| | - Xaralabos Varelas
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Room K620, Boston, MA, 02118, USA.
| |
Collapse
|
154
|
Kicic-Starcevich E, Hancock DG, Iosifidis T, Agudelo-Romero P, Caparros-Martin JA, Silva D, Turkovic L, Le Souef PN, Bosco A, Martino DJ, Kicic A, Prescott SL, Stick SM. Airway Epithelium Respiratory Illnesses and Allergy (AERIAL) birth cohort: study protocol. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.29.23289314. [PMID: 37205501 PMCID: PMC10187351 DOI: 10.1101/2023.04.29.23289314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Introduction Recurrent wheezing disorders including asthma are complex and heterogeneous diseases that affect up to 30% of all children, contributing to a major burden on children, their families, and global healthcare systems. It is now recognized that a dysfunctional airway epithelium plays a central role in the pathogenesis of recurrent wheeze, although the underlying mechanisms are still not fully understood. This prospective birth cohort aims to bridge this knowledge gap by investigating the influence of intrinsic epithelial dysfunction on the risk for developing respiratory disorders and the modulation of this risk by maternal morbidities, in utero exposures, and respiratory exposures in the first year of life. Methods and Analysis The Airway Epithelium Respiratory Illnesses and Allergy (AERIAL) study is nested within the ORIGINS Project and will monitor 400 infants from birth to five years. The primary outcome of the AERIAL study will be the identification of epithelial endotypes and exposure variables that influence the development of recurrent wheezing, asthma, and allergic sensitisation. Nasal respiratory epithelium at birth to six weeks, one, three, and five years will be analysed by bulk RNA-seq and DNA methylation sequencing. Maternal morbidities and in utero exposures will be identified on maternal history and their effects measured through transcriptomic and epigenetic analyses of the amnion and newborn epithelium. Exposures within the first year of life will be identified based on infant medical history as well as on background and symptomatic nasal sampling for viral PCR and microbiome analysis. Daily temperatures and symptoms recorded in a study-specific Smartphone App will be used to identify symptomatic respiratory illnesses. Ethics and Dissemination Ethical approval has been obtained from Ramsey Health Care HREC WA-SA (#1908). Results will be disseminated through open-access peer-reviewed manuscripts, conference presentations, and through different media channels to consumers, ORIGINS families, and the wider community.
Collapse
|
155
|
Rustam S, Hu Y, Mahjour SB, Rendeiro AF, Ravichandran H, Urso A, D’Ovidio F, Martinez FJ, Altorki NK, Richmond B, Polosukhin V, Kropski JA, Blackwell TS, Randell SH, Elemento O, Shaykhiev R. A Unique Cellular Organization of Human Distal Airways and Its Disarray in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2023; 207:1171-1182. [PMID: 36796082 PMCID: PMC10161760 DOI: 10.1164/rccm.202207-1384oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Rationale: Remodeling and loss of distal conducting airways, including preterminal and terminal bronchioles (pre-TBs/TBs), underlie progressive airflow limitation in chronic obstructive pulmonary disease (COPD). The cellular basis of these structural changes remains unknown. Objectives: To identify biological changes in pre-TBs/TBs in COPD at single-cell resolution and determine their cellular origin. Methods: We established a novel method of distal airway dissection and performed single-cell transcriptomic profiling of 111,412 cells isolated from different airway regions of 12 healthy lung donors and pre-TBs of 5 patients with COPD. Imaging CyTOF and immunofluorescence analysis of pre-TBs/TBs from 24 healthy lung donors and 11 subjects with COPD were performed to characterize cellular phenotypes at a tissue level. Region-specific differentiation of basal cells isolated from proximal and distal airways was studied using an air-liquid interface model. Measurements and Main Results: The atlas of cellular heterogeneity along the proximal-distal axis of the human lung was assembled and identified region-specific cellular states, including SCGB3A2+ SFTPB+ terminal airway-enriched secretory cells (TASCs) unique to distal airways. TASCs were lost in COPD pre-TBs/TBs, paralleled by loss of region-specific endothelial capillary cells, increased frequency of CD8+ T cells normally enriched in proximal airways, and augmented IFN-γ signaling. Basal cells residing in pre-TBs/TBs were identified as a cellular origin of TASCs. Regeneration of TASCs by these progenitors was suppressed by IFN-γ. Conclusions: Altered maintenance of the unique cellular organization of pre-TBs/TBs, including loss of the region-specific epithelial differentiation in these bronchioles, represents the cellular manifestation and likely the cellular basis of distal airway remodeling in COPD.
Collapse
Affiliation(s)
| | - Yang Hu
- Caryl and Israel Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | | | - Andre F. Rendeiro
- Caryl and Israel Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Hiranmayi Ravichandran
- Caryl and Israel Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Andreacarola Urso
- Department of Surgery, Columbia University Irving Medical Center, New York, New York
| | - Frank D’Ovidio
- Department of Surgery, Columbia University Irving Medical Center, New York, New York
| | | | - Nasser K. Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, New York
| | - Bradley Richmond
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University, Nashville, Tennessee; and
| | | | - Jonathan A. Kropski
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University, Nashville, Tennessee; and
| | - Timothy S. Blackwell
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University, Nashville, Tennessee; and
| | - Scott H. Randell
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | | |
Collapse
|
156
|
Blackburn JB, Li NF, Bartlett NW, Richmond BW. An update in club cell biology and its potential relevance to chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2023; 324:L652-L665. [PMID: 36942863 PMCID: PMC10110710 DOI: 10.1152/ajplung.00192.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Club cells are found in human small airways where they play an important role in immune defense, xenobiotic metabolism, and repair after injury. Over the past few years, data from single-cell RNA sequencing (scRNA-seq) studies has generated new insights into club cell heterogeneity and function. In this review, we integrate findings from scRNA-seq experiments with earlier in vitro, in vivo, and microscopy studies and highlight the many ways club cells contribute to airway homeostasis. We then discuss evidence for loss of club cells or club cell products in the airways of patients with chronic obstructive pulmonary disease (COPD) and discuss potential mechanisms through which this might occur.
Collapse
Affiliation(s)
- Jessica B Blackburn
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, United States
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Ngan Fung Li
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States
| | - Nathan W Bartlett
- Viral Immunology and Respiratory Disease Group, University of Newcastle, Callaghan, New South Wales, Australia
| | - Bradley W Richmond
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, United States
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
157
|
Cao S, Feng H, Yi H, Pan M, Lin L, Zhang YS, Feng Z, Liang W, Cai B, Li Q, Xiong Z, Shen Q, Ke M, Zhao X, Chen H, He Q, Min M, Cai Q, Liu H, Wang J, Pei D, Chen J, Ma Y. Single-cell RNA sequencing reveals the developmental program underlying proximal-distal patterning of the human lung at the embryonic stage. Cell Res 2023:10.1038/s41422-023-00802-6. [PMID: 37085732 PMCID: PMC10119843 DOI: 10.1038/s41422-023-00802-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/21/2023] [Indexed: 04/23/2023] Open
Abstract
The lung is the primary respiratory organ in human, in which the proximal airway and the distal alveoli are responsible for air conduction and gas exchange, respectively. However, the regulation of proximal-distal patterning at the embryonic stage of human lung development is largely unknown. Here we investigated the early lung development of human embryos at weeks 4-8 post fertilization (Carnegie stages 12-21) using single-cell RNA sequencing, and obtained a transcriptomic atlas of 169,686 cells. We observed discernible gene expression patterns of proximal and distal epithelia at week 4, upon the initiation of lung organogenesis. Moreover, we identified novel transcriptional regulators of the patterning of proximal (e.g., THRB and EGR3) and distal (e.g., ETV1 and SOX6) epithelia. Further dissection revealed various stromal cell populations, including an early-embryonic BDNF+ population, providing a proximal-distal patterning niche with spatial specificity. In addition, we elucidated the cell fate bifurcation and maturation of airway and vascular smooth muscle progenitor cells at the early stage of lung development. Together, our study expands the scope of human lung developmental biology at early embryonic stages. The discovery of intrinsic transcriptional regulators and novel niche providers deepens the understanding of epithelial proximal-distal patterning in human lung development, opening up new avenues for regenerative medicine.
Collapse
Affiliation(s)
- Shangtao Cao
- Guangzhou Laboratory, Guangzhou, Guangdong, China.
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Huijian Feng
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Hongyan Yi
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Mengjie Pan
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Lihui Lin
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yao Santo Zhang
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Ziyu Feng
- Guangzhou Laboratory, Guangzhou, Guangdong, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weifang Liang
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Baomei Cai
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China
| | - Zhi Xiong
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qingmei Shen
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Minjing Ke
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xing Zhao
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China
| | - Huilin Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qina He
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China
| | - Mingwei Min
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Quanyou Cai
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - He Liu
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jie Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China.
| | - Jiekai Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China.
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
- University of the Chinese Academy of Sciences, Beijing, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China.
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
158
|
Ievlev V, Pai AC, Dillon DS, Kuhl S, Lynch TJ, Freischlag KW, Gries CB, Engelhardt JF, Parekh KR. Development and characterization of ferret ex vivo tracheal injury and cell engraftment model. Front Med (Lausanne) 2023; 10:1144754. [PMID: 37113613 PMCID: PMC10126424 DOI: 10.3389/fmed.2023.1144754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
The field of airway biology research relies primarily on in vitro and in vivo models of disease and injury. The use of ex vivo models to study airway injury and cell-based therapies remains largely unexplored although such models have the potential to overcome certain limitations of working with live animals and may more closely replicate in vivo processes than in vitro models can. Here, we characterized a ferret ex vivo tracheal injury and cell engraftment model. We describe a protocol for whole-mount staining of cleared tracheal explants, and showed that it provides a more comprehensive structural overview of the surface airway epithelium (SAE) and submucosal glands (SMGs) than 2D sections, revealing previously underappreciated structural anatomy of tracheal innervation and vascularization. Using an ex vivo model of tracheal injury, we evaluated the injury responses in the SAE and SMGs that turned out to be consistent with published in vivo work. We used this model to assess factors that influence engraftment of transgenic cells, providing a system for optimizing cell-based therapies. Finally, we developed a novel 3D-printed reusable culture chamber that enables live imaging of tracheal explants and differentiation of engrafted cells at an air-liquid interface. These approaches promise to be useful for modeling pulmonary diseases and testing therapies. Graphical abstract1,2. We describe here a method for differential mechanical injury of ferret tracheal explants that can be used to evaluate airway injury responses ex vivo. 3. Injured explants can be cultured at ALI (using the novel tissue-transwell device on the right) and submerged long-term to evaluate tissue-autonomous regeneration responses. 4. Tracheal explants can also be used for low throughput screens of compounds to improve cell engraftment efficiency or can be seeded with particular cells to model a disease phenotype. 5. Lastly, we demonstrate that ex vivo-cultured tracheal explants can be evaluated by various molecular assays and by immunofluorescent imaging that can be performed live using our custom-designed tissue-transwell.
Collapse
Affiliation(s)
- Vitaly Ievlev
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Albert C. Pai
- Department of Cardiothoracic Surgery, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Drew S. Dillon
- Protostudios, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Spencer Kuhl
- Protostudios, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Thomas J. Lynch
- Department of Cardiothoracic Surgery, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Kyle W. Freischlag
- Department of Cardiothoracic Surgery, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Caitlyn B. Gries
- Department of Cardiothoracic Surgery, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Kalpaj R. Parekh
- Department of Cardiothoracic Surgery, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| |
Collapse
|
159
|
Hill W, Lim EL, Weeden CE, Lee C, Augustine M, Chen K, Kuan FC, Marongiu F, Evans EJ, Moore DA, Rodrigues FS, Pich O, Bakker B, Cha H, Myers R, van Maldegem F, Boumelha J, Veeriah S, Rowan A, Naceur-Lombardelli C, Karasaki T, Sivakumar M, De S, Caswell DR, Nagano A, Black JRM, Martínez-Ruiz C, Ryu MH, Huff RD, Li S, Favé MJ, Magness A, Suárez-Bonnet A, Priestnall SL, Lüchtenborg M, Lavelle K, Pethick J, Hardy S, McRonald FE, Lin MH, Troccoli CI, Ghosh M, Miller YE, Merrick DT, Keith RL, Al Bakir M, Bailey C, Hill MS, Saal LH, Chen Y, George AM, Abbosh C, Kanu N, Lee SH, McGranahan N, Berg CD, Sasieni P, Houlston R, Turnbull C, Lam S, Awadalla P, Grönroos E, Downward J, Jacks T, Carlsten C, Malanchi I, Hackshaw A, Litchfield K, DeGregori J, Jamal-Hanjani M, Swanton C. Lung adenocarcinoma promotion by air pollutants. Nature 2023; 616:159-167. [PMID: 37020004 PMCID: PMC7614604 DOI: 10.1038/s41586-023-05874-3] [Citation(s) in RCA: 321] [Impact Index Per Article: 160.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/21/2023] [Indexed: 04/07/2023]
Abstract
A complete understanding of how exposure to environmental substances promotes cancer formation is lacking. More than 70 years ago, tumorigenesis was proposed to occur in a two-step process: an initiating step that induces mutations in healthy cells, followed by a promoter step that triggers cancer development1. Here we propose that environmental particulate matter measuring ≤2.5 μm (PM2.5), known to be associated with lung cancer risk, promotes lung cancer by acting on cells that harbour pre-existing oncogenic mutations in healthy lung tissue. Focusing on EGFR-driven lung cancer, which is more common in never-smokers or light smokers, we found a significant association between PM2.5 levels and the incidence of lung cancer for 32,957 EGFR-driven lung cancer cases in four within-country cohorts. Functional mouse models revealed that air pollutants cause an influx of macrophages into the lung and release of interleukin-1β. This process results in a progenitor-like cell state within EGFR mutant lung alveolar type II epithelial cells that fuels tumorigenesis. Ultradeep mutational profiling of histologically normal lung tissue from 295 individuals across 3 clinical cohorts revealed oncogenic EGFR and KRAS driver mutations in 18% and 53% of healthy tissue samples, respectively. These findings collectively support a tumour-promoting role for PM2.5 air pollutants and provide impetus for public health policy initiatives to address air pollution to reduce disease burden.
Collapse
Affiliation(s)
- William Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Emilia L Lim
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Clare E Weeden
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Claudia Lee
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Division of Medicine, University College London, London, UK
| | - Marcellus Augustine
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Division of Medicine, University College London, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Kezhong Chen
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Thoracic Surgery and Thoracic Oncology Institute, Peking University People's Hospital, Beijing, China
| | - Feng-Che Kuan
- Department of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| | - Fabio Marongiu
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Edward J Evans
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David A Moore
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Felipe S Rodrigues
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Bjorn Bakker
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Hongui Cha
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Renelle Myers
- BC Cancer Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Febe van Maldegem
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jesse Boumelha
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Selvaraju Veeriah
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Takahiro Karasaki
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - Monica Sivakumar
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Swapnanil De
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Deborah R Caswell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Ai Nagano
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - James R M Black
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Carlos Martínez-Ruiz
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Min Hyung Ryu
- Department of Medicine, Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, Vancouver Coastal Health Research Institute, UBC, Vancouver, British Columbia, Canada
| | - Ryan D Huff
- Department of Medicine, Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, Vancouver Coastal Health Research Institute, UBC, Vancouver, British Columbia, Canada
| | - Shijia Li
- Department of Medicine, Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, Vancouver Coastal Health Research Institute, UBC, Vancouver, British Columbia, Canada
| | | | - Alastair Magness
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Alejandro Suárez-Bonnet
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK
- Experimental Histopathology, The Francis Crick Institute, London, UK
| | - Simon L Priestnall
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK
- Experimental Histopathology, The Francis Crick Institute, London, UK
| | - Margreet Lüchtenborg
- National Disease Registration Service (NDRS), NHS England, Leeds, UK
- Centre for Cancer, Society and Public Health, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Katrina Lavelle
- National Disease Registration Service (NDRS), NHS England, Leeds, UK
| | - Joanna Pethick
- National Disease Registration Service (NDRS), NHS England, Leeds, UK
| | - Steven Hardy
- National Disease Registration Service (NDRS), NHS England, Leeds, UK
| | - Fiona E McRonald
- National Disease Registration Service (NDRS), NHS England, Leeds, UK
| | - Meng-Hung Lin
- Health Information and Epidemiology Laboratory, Chang-Gung Memorial Hospital, Chiayi, Taiwan
| | - Clara I Troccoli
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Flagship Biosciences, Boulder, CO, USA
| | - Moumita Ghosh
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - York E Miller
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Veterans Affairs Eastern Colorado Healthcare System, Aurora, CO, USA
| | - Daniel T Merrick
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert L Keith
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Veterans Affairs Eastern Colorado Healthcare System, Aurora, CO, USA
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Chris Bailey
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Mark S Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Lao H Saal
- SAGA Diagnostics, Lund, Sweden
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Yilun Chen
- SAGA Diagnostics, Lund, Sweden
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anthony M George
- SAGA Diagnostics, Lund, Sweden
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Christopher Abbosh
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | | | - Peter Sasieni
- Comprehensive Cancer Centre, King's College London, London, UK
| | - Richard Houlston
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Stephen Lam
- BC Cancer Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Philip Awadalla
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Eva Grönroos
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christopher Carlsten
- Department of Medicine, Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, Vancouver Coastal Health Research Institute, UBC, Vancouver, British Columbia, Canada
| | - Ilaria Malanchi
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Allan Hackshaw
- Cancer Research UK and UCL Cancer Trials Centre, London, UK
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Department of Oncology, University College London Hospitals, London, UK.
| |
Collapse
|
160
|
Wong SL, Kardia E, Vijayan A, Umashankar B, Pandzic E, Zhong L, Jaffe A, Waters SA. Molecular and Functional Characteristics of Airway Epithelium under Chronic Hypoxia. Int J Mol Sci 2023; 24:ijms24076475. [PMID: 37047450 PMCID: PMC10095024 DOI: 10.3390/ijms24076475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
Localized and chronic hypoxia of airway mucosa is a common feature of progressive respiratory diseases, including cystic fibrosis (CF). However, the impact of prolonged hypoxia on airway stem cell function and differentiated epithelium is not well elucidated. Acute hypoxia alters the transcription and translation of many genes, including the CF transmembrane conductance regulator (CFTR). CFTR-targeted therapies (modulators) have not been investigated in vitro under chronic hypoxic conditions found in CF airways in vivo. Nasal epithelial cells (hNECs) derived from eight CF and three non-CF participants were expanded and differentiated at the air-liquid interface (26-30 days) at ambient and 2% oxygen tension (hypoxia). Morphology, global proteomics (LC-MS/MS) and function (barrier integrity, cilia motility and ion transport) of basal stem cells and differentiated cultures were assessed. hNECs expanded at chronic hypoxia, demonstrating epithelial cobblestone morphology and a similar proliferation rate to hNECs expanded at normoxia. Hypoxia-inducible proteins and pathways in stem cells and differentiated cultures were identified. Despite the stem cells' plasticity and adaptation to chronic hypoxia, the differentiated epithelium was significantly thinner with reduced barrier integrity. Stem cell lineage commitment shifted to a more secretory epithelial phenotype. Motile cilia abundance, length, beat frequency and coordination were significantly negatively modulated. Chronic hypoxia reduces the activity of epithelial sodium and CFTR ion channels. CFTR modulator drug response was diminished. Our findings shed light on the molecular pathophysiology of hypoxia and its implications in CF. Targeting hypoxia can be a strategy to augment mucosal function and may provide a means to enhance the efficacy of CFTR modulators.
Collapse
Affiliation(s)
- Sharon L Wong
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Egi Kardia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Abhishek Vijayan
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bala Umashankar
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Elvis Pandzic
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW 2052, Australia
| | - Adam Jaffe
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW 2052, Australia
| | - Shafagh A Waters
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales, Sydney, NSW 2052, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW 2052, Australia
| |
Collapse
|
161
|
Shah VS, Hou J, Vinarsky V, Xu J, Surve MV, Lin CP, Rajagopal J. Autofluorescence imaging permits label-free cell type assignment and reveals the dynamic formation of airway secretory cell associated antigen passages (SAPs). eLife 2023; 12:e84375. [PMID: 36994985 PMCID: PMC10154029 DOI: 10.7554/elife.84375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/29/2023] [Indexed: 03/31/2023] Open
Abstract
The specific functional properties of a tissue are distributed amongst its component cell types. The various cells act coherently, as an ensemble, in order to execute a physiologic response. Modern approaches for identifying and dissecting novel physiologic mechanisms would benefit from an ability to identify specific cell types in live tissues that could then be imaged in real time. Current techniques require the use of fluorescent genetic reporters that are not only cumbersome, but which only allow the study of three or four cell types at a time. We report a non-invasive imaging modality that capitalizes on the endogenous autofluorescence signatures of the metabolic cofactors NAD(P)H and FAD. By marrying morphological characteristics with autofluorescence signatures, all seven of the airway epithelial cell types can be distinguished simultaneously in mouse tracheal explants in real time. Furthermore, we find that this methodology for direct cell type-specific identification avoids pitfalls associated with the use of ostensibly cell type-specific markers that are, in fact, altered by clinically relevant physiologic stimuli. Finally, we utilize this methodology to interrogate real-time physiology and identify dynamic secretory cell associated antigen passages (SAPs) that form in response to cholinergic stimulus. The identical process has been well documented in the intestine where the dynamic formation of SAPs and goblet cell associated antigen passages (GAPs) enable luminal antigen sampling. Airway secretory cells with SAPs are frequently juxtaposed to antigen presenting cells, suggesting that airway SAPs, like their intestinal counterparts, not only sample antigen but convey their cargo for immune cell processing.
Collapse
Affiliation(s)
- Viral S Shah
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General HospitalBostonUnited States
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
| | - Jue Hou
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Vladimir Vinarsky
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
| | - Jiajie Xu
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
| | - Manalee V Surve
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
| | - Charles P Lin
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Jayaraj Rajagopal
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General HospitalBostonUnited States
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
- Klarman Cell Observatory, Broad InstituteCambridgeUnited States
| |
Collapse
|
162
|
Cho HJ, Chung YW, Moon S, Seo JH, Kang M, Nam JS, Lee SN, Kim CH, Choi AMK, Yoon JH. IL-4 drastically decreases deuterosomal and multiciliated cells via alteration in progenitor cell differentiation. Allergy 2023. [PMID: 36883528 DOI: 10.1111/all.15705] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Allergic inflammation affects the epithelial cell populations resulting in goblet cell hyperplasia and decreased ciliated cells. Recent advances in single-cell RNA sequencing (scRNAseq) have enabled the identification of new cell subtypes and genomic features of single cells. In this study, we aimed to investigate the effect of allergic inflammation in nasal epithelial cell transcriptomes at the single-cell level. METHODS We performed scRNAseq in cultured primary human nasal epithelial (HNE) cells and in vivo nasal epithelium. The transcriptomic features and epithelial cell subtypes were determined under IL-4 stimulation, and cell-specific marker genes and proteins were identified. RESULTS We confirmed that cultured HNE cells were similar to in vivo epithelial cells through scRNAseq. Cell-specific marker genes were utilized to cluster the cell subtypes, and FOXJ1+ -ciliated cells were sub-classified into multiciliated and deuterosomal cells. PLK4 and CDC20B were specific for deuterosomal cells, and SNTN, CPASL, and GSTA2 were specific for multiciliated cells. IL-4 altered the proportions of cell subtypes, resulting in a decrease in multiciliated cells and loss of deuterosomal cells. The trajectory analysis revealed deuterosomal cells as precursor cells of multiciliated cells and deuterosomal cells function as a bridge between club and multiciliated cells. A decrease in deuterosomal cell marker genes was observed in nasal tissue samples with type 2 inflammation. CONCLUSION The effects of IL-4 appear to be mediated through the loss of the deuterosomal population, resulting in the reduction in multiciliated cells. This study also newly suggests cell-specific markers that might be pivotal for investigating respiratory inflammatory diseases.
Collapse
Affiliation(s)
- Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Youn Wook Chung
- Global Research Laboratory for Allergic Airway Disease, Yonsei University College of Medicine, Seoul, South Korea
| | - Sungmin Moon
- Global Research Laboratory for Allergic Airway Disease, Yonsei University College of Medicine, Seoul, South Korea
| | - Ju Hee Seo
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Miran Kang
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Sung Nam
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Nam Lee
- Global Research Laboratory for Allergic Airway Disease, Yonsei University College of Medicine, Seoul, South Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Augustine M K Choi
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, New York, USA
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, South Korea.,Global Research Laboratory for Allergic Airway Disease, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
163
|
Liu J, Lu H, Hu S, Wang F, Tang X, Wan H, Luo F. Transcriptomic profiles of age-related genes in female trachea and bronchus. Front Genet 2023; 14:1120350. [PMID: 36968579 PMCID: PMC10031059 DOI: 10.3389/fgene.2023.1120350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/30/2023] [Indexed: 03/10/2023] Open
Abstract
Background: Studies demonstrated that age-related cellular and functional changes of airway significantly contribute to the pathogenesis of many airway diseases. However, our understanding on the age-related molecular alterations of human airway remains inadequate.Methods: Airway (trachea and bronchus) brushing specimens were collected from 14 healthy, female non-smokers with ages ranging from 20 to 60 years. Bulk RNA sequencing was performed on all the specimens (n = 28). Airway cell types and their relative proportions were estimated using CIBERSORTx. The cell type proportions were compared between the younger (age 20–40) and elder group (age 40–60) in the trachea and bronchus respectively. The linear association between cell type proportion and age was assessed using the Pearson correlation coefficient. Differentially expressed genes (DEGs) between the two age groups were identified using DESeq2. Three kinds of enrichment analysis of the age-related DEGs were performed, including Gene ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and disease enrichment analysis.Results: Sixteen and thirteen cell types were separately identified in tracheal and bronchial brushings, with the airway epithelial cells (including suprabasal, submucosal gland (SMG) goblet, serous, secretory, multiciliated, cycling.basal, basal cells) accounting for 85.1% in the trachea and 92.5% in the bronchus. The lymphatic cell and NK cells had a higher abundance ratio in the trachea, compared with the bronchus. The proportion of basal cells was negatively related to age both in the trachea and bronchus. Thirty-one and fifty-two age-related DEGs (p < 0.1) were identified in the trachea and bronchus, respectively. Among them, five common DEGs (CXCL2, CXCL8, TCIM, P4HA3, AQP10) were identified. Pathway enrichment analysis showed both tracheal and bronchial age-related DEGs were primarily involved in immune regulatory signaling pathways (TNF, NF-kappa B, IL-17 et al.). Disease enrichment analysis suggested that tracheal age-related DEGs significantly related to asthmatic pulmonary eosinophilia, and chronic airflow obstruction et al., and that bronchial age-related DEGs were enriched in airflow obstruction, bronchiectasis, pulmonary emphysema, and low respiratory tract infection et al.Conclusion: We found the proportion of basal cells decreased with age in both the trachea and bronchus, suggesting a weakening of their self-renew ability with age. We identified transcriptomic signature genes associated with the early aging process of the human trachea and bronchus, and provided evidence to support that changes in their immune regulatory function may play critical roles in age-related airway diseases.
Collapse
Affiliation(s)
- Jia Liu
- Clinical Research Center for Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Haiyan Lu
- Clinical Research Center for Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Silu Hu
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Faping Wang
- Clinical Research Center for Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoju Tang
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Huajing Wan
- Clinical Research Center for Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Huajing Wan, ; Fengming Luo,
| | - Fengming Luo
- Clinical Research Center for Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Huajing Wan, ; Fengming Luo,
| |
Collapse
|
164
|
In Vitro Characteristics of Canine Primary Tracheal Epithelial Cells Maintained at an Air-Liquid Interface Compared to In Vivo Morphology. Int J Mol Sci 2023; 24:ijms24054987. [PMID: 36902418 PMCID: PMC10003254 DOI: 10.3390/ijms24054987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Culturing respiratory epithelial cells at an air-liquid interface (ALI) represents an established method for studies on infection or toxicology by the generation of an in vivo-like respiratory tract epithelial cellular layer. Although primary respiratory cells from a variety of animals have been cultured, an in-depth characterization of canine tracheal ALI cultures is lacking despite the fact that canines are a highly relevant animal species susceptible to various respiratory agents, including zoonotic pathogens such as severe acute respiratory coronavirus 2 (SARS-CoV-2). In this study, canine primary tracheal epithelial cells were cultured under ALI conditions for four weeks, and their development was characterized during the entire culture period. Light and electron microscopy were performed to evaluate cell morphology in correlation with the immunohistological expression profile. The formation of tight junctions was confirmed using transepithelial electrical resistance (TEER) measurements and immunofluorescence staining for the junctional protein ZO-1. After 21 days of culture at the ALI, a columnar epithelium containing basal, ciliated and goblet cells was seen, resembling native canine tracheal samples. However, cilia formation, goblet cell distribution and epithelial thickness differed significantly from the native tissue. Despite this limitation, tracheal ALI cultures could be used to investigate the pathomorphological interactions of canine respiratory diseases and zoonotic agents.
Collapse
|
165
|
Abstract
The human lung cellular portfolio, traditionally characterized by cellular morphology and individual markers, is highly diverse, with over 40 cell types and a complex branching structure highly adapted for agile airflow and gas exchange. While constant during adulthood, lung cellular content changes in response to exposure, injury, and infection. Some changes are temporary, but others are persistent, leading to structural changes and progressive lung disease. The recent advance of single-cell profiling technologies allows an unprecedented level of detail and scale to cellular measurements, leading to the rise of comprehensive cell atlas styles of reporting. In this review, we chronical the rise of cell atlases and explore their contributions to human lung biology in health and disease.
Collapse
Affiliation(s)
- Taylor S Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA;
| | - Arnaud Marlier
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA;
| |
Collapse
|
166
|
Sahu SK, Ozantürk AN, Kulkarni DH, Ma L, Barve RA, Dannull L, Lu A, Starick M, McPhatter J, Garnica L, Sanfillipo-Burchman M, Kunen J, Wu X, Gelman AE, Brody SL, Atkinson JP, Kulkarni HS. Lung epithelial cell-derived C3 protects against pneumonia-induced lung injury. Sci Immunol 2023; 8:eabp9547. [PMID: 36735773 PMCID: PMC10023170 DOI: 10.1126/sciimmunol.abp9547] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
The complement component C3 is a fundamental plasma protein for host defense, produced largely by the liver. However, recent work has demonstrated the critical importance of tissue-specific C3 expression in cell survival. Here, we analyzed the effects of local versus peripheral sources of C3 expression in a model of acute bacterial pneumonia induced by Pseudomonas aeruginosa. Whereas mice with global C3 deficiency had severe pneumonia-induced lung injury, those deficient only in liver-derived C3 remained protected, comparable to wild-type mice. Human lung transcriptome analysis showed that secretory epithelial cells, such as club cells, express high levels of C3 mRNA. Mice with tamoxifen-induced C3 gene ablation from club cells in the lung had worse pulmonary injury compared with similarly treated controls, despite maintaining normal circulating C3 levels. Last, in both the mouse pneumonia model and cultured primary human airway epithelial cells, we showed that stress-induced death associated with C3 deficiency parallels that seen in Factor B deficiency rather than C3a receptor deficiency. Moreover, C3-mediated reduction in epithelial cell death requires alternative pathway component Factor B. Thus, our findings suggest that a pathway reliant on locally derived C3 and Factor B protects the lung mucosal barrier.
Collapse
Affiliation(s)
- Sanjaya K. Sahu
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Ayşe N. Ozantürk
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Devesha H. Kulkarni
- Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Lina Ma
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Ruteja A Barve
- Department of Genetics, Washington University School of Medicine; St. Louis, USA
| | - Linus Dannull
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Angel Lu
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Marick Starick
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Ja’Nia McPhatter
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Lorena Garnica
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Maxwell Sanfillipo-Burchman
- Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine; St. Louis, USA
| | - Jeremy Kunen
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Xiaobo Wu
- Division of Rheumatology, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine; St. Louis, USA
| | - Steven L. Brody
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - John P. Atkinson
- Division of Rheumatology, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Hrishikesh S. Kulkarni
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| |
Collapse
|
167
|
Yang W, Li Y, Shi F, Liu H. Human lung organoid: Models for respiratory biology and diseases. Dev Biol 2023; 494:26-34. [PMID: 36470449 DOI: 10.1016/j.ydbio.2022.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The human respiratory system, consisting of the airway and alveoli, is one of the most complex organs directly interfaced with the external environment. The diverse epithelial cells lining the surface are usually the first cell barrier that comes into contact with pathogens that could lead to deadly pulmonary disease. There is an urgent need to understand the mechanisms of self-renewal and protection of these epithelial cells against harmful pathogens, such as SARS-CoV-2. Traditional models, including cell lines and mouse models, have extremely limited native phenotypic features. Therefore, in recent years, to mimic the complexity of the lung, airway and alveoli organoid technology has been developed and widely applied. TGF-β/BMP/SMAD, FGF and Wnt/β-catenin signaling have been proven to play a key role in lung organoid expansion and differentiation. Thus, we summarize the current novel lung organoid culture strategies and discuss their application for understanding the lung biological features and pathophysiology of pulmonary diseases, especially COVID-19. Lung organoids provide an excellent in vitro model and research platform.
Collapse
Affiliation(s)
- Wenhao Yang
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology Sichuan University, Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yingna Li
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology Sichuan University, Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Fang Shi
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology Sichuan University, Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology Sichuan University, Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
168
|
Januska MN, Walsh MJ. Single-Cell RNA Sequencing Reveals New Basic and Translational Insights in the Cystic Fibrosis Lung. Am J Respir Cell Mol Biol 2023; 68:131-139. [PMID: 36194688 PMCID: PMC9986558 DOI: 10.1165/rcmb.2022-0038tr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 10/04/2022] [Indexed: 02/03/2023] Open
Abstract
Cystic fibrosis (CF) is a multisystemic, autosomal recessive disorder caused by mutations in the CFTR (cystic fibrosis transmembrane conductance regulator) gene, with the majority of morbidity and mortality extending from lung disease. Single-cell RNA sequencing (scRNA-seq) has been leveraged in the lung and elsewhere in the body to articulate discrete cell populations, describing cell types, states, and lineages as well as their roles in health and disease. In this translational review, we provide an overview of the current applications of scRNA-seq to the study of the normal and CF lungs, allowing the beginning of a new cellular and molecular narrative of CF lung disease, and we highlight some of the future opportunities to further leverage scRNA-seq and complementary single-cell technologies in the study of CF as we bridge from scientific understanding to clinical application.
Collapse
Affiliation(s)
- Megan N. Januska
- Department of Pediatrics
- Department of Genetics and Genomic Sciences, and
| | - Martin J. Walsh
- Department of Pediatrics
- Department of Genetics and Genomic Sciences, and
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and
- Mount Sinai Center for RNA Biology and Medicine, New York, New York
| |
Collapse
|
169
|
Liu D, Xu C, Jiang L, Zhu X. Pulmonary endogenous progenitor stem cell subpopulation: Physiology, pathogenesis, and progress. JOURNAL OF INTENSIVE MEDICINE 2023; 3:38-51. [PMID: 36789358 PMCID: PMC9924023 DOI: 10.1016/j.jointm.2022.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/09/2022] [Accepted: 08/13/2022] [Indexed: 06/18/2023]
Abstract
Lungs are structurally and functionally complex organs consisting of diverse cell types from the proximal to distal axis. They have direct contact with the external environment and are constantly at risk of various injuries. Capable to proliferate and differentiate, pulmonary endogenous progenitor stem cells contribute to the maintenance of lung structure and function both under homeostasis and following injuries. Discovering candidate pulmonary endogenous progenitor stem cell types and underlying regenerative mechanisms provide insights into therapeutic strategy development for lung diseases. In this review, we reveal their compositions, roles in lung disease pathogenesis and injury repair, and the underlying mechanisms. We further underline the advanced progress in research approach and potential therapy for lung regeneration. We also demonstrate the feasibility and prospects of pulmonary endogenous stem cell transplantation for lung disease treatment.
Collapse
Affiliation(s)
- Di Liu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Chufan Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, 800 Xiangyin Road, Shanghai 200433, China
| |
Collapse
|
170
|
Fernandez-Montero A, Zuaznabar J, Pina-Sanchez M, Maestro S, Martin-Navarro L, Muñoz-Rodríguez N, Olagüe C, Pastrana M, Martínez-Fernández M, Camps G, Rodriguez JA, Marchese F, Zazpe J, Pozuelo M, Del Pozo J, Quiroga J, Pineda-Lucena A, Reina G, Kolenda J, Moreno-Galarraga L, Gonzalez-Aseguinolaza G, Rua M, Smerdou C, Carmona-Torre F, Argemi J. Photodynamic nasal SARS-CoV-2 decolonization shortens infectivity and influences specific T-Cell responses. Front Cell Infect Microbiol 2023; 13:1110467. [PMID: 36761900 PMCID: PMC9905247 DOI: 10.3389/fcimb.2023.1110467] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Background The main objective was to evaluate the efficacy of intranasal photodynamic therapy (PDT) in SARS-CoV-2 mildly symptomatic carriers on decreasing the infectivity period. SARS-CoV-2-specific immune-stimulating effects and safety were also analysed. Methods We performed a randomized, placebo-controlled, clinical trial in a tertiary hospital (NCT05184205). Patients with a positive SARS-CoV-2 PCR in the last 48 hours were recruited and aleatorily assigned to PDT or placebo. Patients with pneumonia were excluded. Participants and investigators were masked to group assignment. The primary outcome was the reduction in in vitro infectivity of nasopharyngeal samples at days 3 and 7. Additional outcomes included safety assessment and quantification of humoral and T-cell immune-responses. Findings Patients were recruited between December 2021 and February 2022. Most were previously healthy adults vaccinated against COVID-19 and most carried Omicron variant. 38 patients were assigned to placebo and 37 to PDT. Intranasal PDT reduced infectivity at day 3 post-treatment when compared to placebo with a β-coefficient of -812.2 (CI95%= -478660 - -1.3, p<0.05) infectivity arbitrary units. The probability of becoming PCR negative (ct>34) at day 7 was higher on the PDT-group, with an OR of 0.15 (CI95%=0.04-0.58). There was a decay in anti-Spike titre and specific SARS-CoV-2 T cell immunity in the placebo group 10 and 20 weeks after infection, but not in the PDT-group. No serious adverse events were reported. Interpretation Intranasal-PDT is safe in pauci-symptomatic COVID-19 patients, it reduces SARS-CoV-2 infectivity and decelerates the decline SARS-CoV-2 specific immune-responses.
Collapse
Affiliation(s)
- Alejandro Fernandez-Montero
- Department of Occupational Medicine, University of Navarra, Pamplona, Spain,COVID19 Unit, Clinica Universidad de Navarra, Pamplona, Spain,Instituto de Investigación Sanitaria de Navarra (IdisNA), Pamplona, Spain
| | - Jon Zuaznabar
- Internal Medicine Department, Clinica Universidad de Navarra, Pamplona, Spain
| | | | - Sheila Maestro
- Instituto de Investigación Sanitaria de Navarra (IdisNA), Pamplona, Spain,Division of Gene Therapy and Regulation of Gene Expression, CIMA, Universidad de Navarra, Pamplona, Spain
| | | | | | - Cristina Olagüe
- Instituto de Investigación Sanitaria de Navarra (IdisNA), Pamplona, Spain,Division of Gene Therapy and Regulation of Gene Expression, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Marta Pastrana
- Internal Medicine Department, Clinica Universidad de Navarra, Pamplona, Spain
| | | | - Gracian Camps
- Division of Gene Therapy and Regulation of Gene Expression, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Jose Antonio Rodriguez
- Instituto de Investigación Sanitaria de Navarra (IdisNA), Pamplona, Spain,Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Pamplona, Spain,Centro de Investigacion Biomedica en Red (CIBER-CV), Madrid, Spain,Genomics Unit, CIMA Universidad de Navarra, Pamplona, Spain
| | | | - Jon Zazpe
- Genomics Unit, CIMA Universidad de Navarra, Pamplona, Spain
| | - Marta Pozuelo
- Genomics Unit, CIMA Universidad de Navarra, Pamplona, Spain,Bioinformatics Platform, CIMA Universidad de Navarra, Pamplona, Spain
| | - José Luis Del Pozo
- COVID19 Unit, Clinica Universidad de Navarra, Pamplona, Spain,Instituto de Investigación Sanitaria de Navarra (IdisNA), Pamplona, Spain,Microbiology Department, Clinica Universidad de Navarra, Pamplona, Spain,Infectious Diseases Division, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jorge Quiroga
- COVID19 Unit, Clinica Universidad de Navarra, Pamplona, Spain,Instituto de Investigación Sanitaria de Navarra (IdisNA), Pamplona, Spain,Internal Medicine Department, Clinica Universidad de Navarra, Pamplona, Spain
| | | | - Gabriel Reina
- COVID19 Unit, Clinica Universidad de Navarra, Pamplona, Spain,Instituto de Investigación Sanitaria de Navarra (IdisNA), Pamplona, Spain,Microbiology Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Jack Kolenda
- Department of Otolaryngology Head and Neck Surgery, University of Toronto, Toronto, ON, Canada
| | - Laura Moreno-Galarraga
- Instituto de Investigación Sanitaria de Navarra (IdisNA), Pamplona, Spain,Department of Pediatrics, Complejo Hospitalario de Navarra, Servicio Navarro de Salud, Pamplona, Spain
| | - Gloria Gonzalez-Aseguinolaza
- Instituto de Investigación Sanitaria de Navarra (IdisNA), Pamplona, Spain,Division of Gene Therapy and Regulation of Gene Expression, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Marta Rua
- Microbiology Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Cristian Smerdou
- Instituto de Investigación Sanitaria de Navarra (IdisNA), Pamplona, Spain,Division of Gene Therapy and Regulation of Gene Expression, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Francisco Carmona-Torre
- COVID19 Unit, Clinica Universidad de Navarra, Pamplona, Spain,Instituto de Investigación Sanitaria de Navarra (IdisNA), Pamplona, Spain,Infectious Diseases Division, Clínica Universidad de Navarra, Pamplona, Spain
| | - Josepmaria Argemi
- COVID19 Unit, Clinica Universidad de Navarra, Pamplona, Spain,Instituto de Investigación Sanitaria de Navarra (IdisNA), Pamplona, Spain,Internal Medicine Department, Clinica Universidad de Navarra, Pamplona, Spain,Genomics Unit, CIMA Universidad de Navarra, Pamplona, Spain,Liver Unit, Hepatology Program, Clinica Universidad de Navarra, CIMA Universidad de Navarra, Pamplona, Spain,*Correspondence: Josepmaria Argemi,
| |
Collapse
|
171
|
Ievlev V, Lynch TJ, Freischlag KW, Gries CB, Shah A, Pai AC, Ahlers BA, Park S, Engelhardt JF, Parekh KR. Krt14 and Krt15 differentially regulate regenerative properties and differentiation potential of airway basal cells. JCI Insight 2023; 8:e162041. [PMID: 36512409 PMCID: PMC9977304 DOI: 10.1172/jci.insight.162041] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Keratin expression dynamically changes in airway basal cells (BCs) after acute and chronic injury, yet the functional consequences of these changes on BC behavior remain unknown. In bronchiolitis obliterans (BO) after lung transplantation, BC clonogenicity declines, which is associated with a switch from keratin15 (Krt15) to keratin14 (Krt14). We investigated these keratins' roles using Crispr-KO in vitro and in vivo and found that Krt14-KO and Krt15-KO produce contrasting phenotypes in terms of differentiation and clonogenicity. Primary mouse Krt14-KO BCs did not differentiate into club and ciliated cells but had enhanced clonogenicity. By contrast, Krt15-KO did not alter BC differentiation but impaired clonogenicity in vitro and reduced the number of label-retaining BCs in vivo after injury. Krt14, but not Krt15, bound the tumor suppressor stratifin (Sfn). Disruption of Krt14, but not of Krt15, reduced Sfn protein abundance and increased expression of the oncogene dNp63a during BC differentiation, whereas dNp63a levels were reduced in Krt15-KO BCs. Overall, the phenotype of Krt15-KO BCs contrasts with Krt14-KO phenotype and resembles the phenotype in BO with decreased clonogenicity, increased Krt14, and decreased dNp63a expression. This work demonstrates that Krt14 and Krt15 functionally regulate BC behavior, which is relevant in chronic disease states like BO.
Collapse
Affiliation(s)
- Vitaly Ievlev
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Thomas J. Lynch
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| | - Kyle W. Freischlag
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| | - Caitlyn B. Gries
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| | - Anit Shah
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Albert C. Pai
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| | - Bethany A. Ahlers
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| | - Soo Park
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - John F. Engelhardt
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Kalpaj R. Parekh
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
172
|
Kotas ME, O'Leary CE, Locksley RM. Tuft Cells: Context- and Tissue-Specific Programming for a Conserved Cell Lineage. ANNUAL REVIEW OF PATHOLOGY 2023; 18:311-335. [PMID: 36351364 PMCID: PMC10443898 DOI: 10.1146/annurev-pathol-042320-112212] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tuft cells are found in tissues with distinct stem cell compartments, tissue architecture, and luminal exposures but converge on a shared transcriptional program, including expression of taste transduction signaling pathways. Here, we summarize seminal and recent findings on tuft cells, focusing on major categories of function-instigation of type 2 cytokine responses, orchestration of antimicrobial responses, and emerging roles in tissue repair-and describe tuft cell-derived molecules used to affect these functional programs. We review what is known about the development of tuft cells from epithelial progenitors under homeostatic conditions and during disease. Finally, we discuss evidence that immature, or nascent, tuft cells with potential for diverse functions are driven toward dominant effector programs by tissue- or perturbation-specific contextual cues, which may result in heterogeneous mature tuft cell phenotypes both within and between tissues.
Collapse
Affiliation(s)
- Maya E Kotas
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, California, USA
| | - Claire E O'Leary
- Department of Medicine, University of California, San Francisco, California, USA
- Current affiliation: Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Richard M Locksley
- Department of Medicine, University of California, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA;
- Howard Hughes Medical Institute, University of California, San Francisco, California, USA
| |
Collapse
|
173
|
Chan JFW, Huang X, Hu B, Chai Y, Shi H, Zhu T, Yuen TTT, Liu Y, Liu H, Shi J, Wen L, Shuai H, Hou Y, Yoon C, Cai JP, Zhang AJ, Zhou J, Yin F, Yuan S, Zhang BZ, Brindley MA, Shi ZL, Yuen KY, Chu H. Altered host protease determinants for SARS-CoV-2 Omicron. SCIENCE ADVANCES 2023; 9:eadd3867. [PMID: 36662861 PMCID: PMC9858505 DOI: 10.1126/sciadv.add3867] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/19/2022] [Indexed: 05/02/2023]
Abstract
Successful severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection requires proteolytic cleavage of the viral spike protein. While the role of the host transmembrane protease serine 2 in SARS-CoV-2 infection is widely recognized, the involvement of other proteases capable of facilitating SARS-CoV-2 entry remains incompletely explored. Here, we show that multiple members from the membrane-type matrix metalloproteinase (MT-MMP) and a disintegrin and metalloproteinase families can mediate SARS-CoV-2 entry. Inhibition of MT-MMPs significantly reduces SARS-CoV-2 replication in vitro and in vivo. Mechanistically, we show that MT-MMPs can cleave SARS-CoV-2 spike and angiotensin-converting enzyme 2 and facilitate spike-mediated fusion. We further demonstrate that Omicron BA.1 has an increased efficiency on MT-MMP usage, while an altered efficiency on transmembrane serine protease usage for virus entry compared with that of ancestral SARS-CoV-2. These results reveal additional protease determinants for SARS-CoV-2 infection and enhance our understanding on the biology of coronavirus entry.
Collapse
Affiliation(s)
- Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Centre for Virology, Vaccinology, and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong, Special Administrative Region, People’s Republic of China
- Academician Workstation of Hainan Province, Hainan Medical University–The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan Province, People’s Republic of China; and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Guangzhou Laboratory, Guangdong Province, China
| | - Xiner Huang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Bingjie Hu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Yue Chai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Hongyu Shi
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, NY, New York, USA
| | - Tianrenzheng Zhu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Terrence Tsz-Tai Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Yuanchen Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Huan Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jialu Shi
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Lei Wen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Yuxin Hou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Chaemin Yoon
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Anna Jinxia Zhang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Centre for Virology, Vaccinology, and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Feifei Yin
- Academician Workstation of Hainan Province, Hainan Medical University–The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan Province, People’s Republic of China; and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan Province, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Centre for Virology, Vaccinology, and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
| | - Bao-Zhong Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People’s Republic of China
| | - Melinda A. Brindley
- Department of Infectious Diseases and Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan Institute of Virology, Wuhan, Hubei, People’s Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Centre for Virology, Vaccinology, and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong, Special Administrative Region, People’s Republic of China
- Academician Workstation of Hainan Province, Hainan Medical University–The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan Province, People’s Republic of China; and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Guangzhou Laboratory, Guangdong Province, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Centre for Virology, Vaccinology, and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
| |
Collapse
|
174
|
Hughes T, Dijkstra KK, Rawlins EL, Hynds RE. Open questions in human lung organoid research. Front Pharmacol 2023; 13:1083017. [PMID: 36712670 PMCID: PMC9880211 DOI: 10.3389/fphar.2022.1083017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Organoids have become a prominent model system in pulmonary research. The ability to establish organoid cultures directly from patient tissue has expanded the repertoire of physiologically relevant preclinical model systems. In addition to their derivation from adult lung stem/progenitor cells, lung organoids can be derived from fetal tissue or induced pluripotent stem cells to fill a critical gap in modelling pulmonary development in vitro. Recent years have seen important progress in the characterisation and refinement of organoid culture systems. Here, we address several open questions in the field, including how closely organoids recapitulate the tissue of origin, how well organoids recapitulate patient cohorts, and how well organoids capture diversity within a patient. We advocate deeper characterisation of models using single cell technologies, generation of more diverse organoid biobanks and further standardisation of culture media.
Collapse
Affiliation(s)
- Tessa Hughes
- Wellcome Trust/CRUK Gurdon Institute and Department Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Krijn K. Dijkstra
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Emma L. Rawlins
- Wellcome Trust/CRUK Gurdon Institute and Department Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Robert E. Hynds
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, Great Ormond Street UCL Institute of Child Health, University College London, London, United Kingdom
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
175
|
Baines DL, Vasiljevs S, Kalsi KK. Getting sweeter: new evidence for glucose transporters in specific cell types of the airway? Am J Physiol Cell Physiol 2023; 324:C153-C166. [PMID: 36409177 PMCID: PMC9829484 DOI: 10.1152/ajpcell.00140.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
New technologies such as single-cell RNA sequencing (scRNAseq) has enabled identification of the mRNA transcripts expressed by individual cells. This review provides insight from recent scRNAseq studies on the expression of glucose transporters in the epithelial cells of the airway epithelium from trachea to alveolus. The number of studies analyzed was limited, not all reported the full range of glucose transporters and there were differences between cells freshly isolated from the airways and those grown in vitro. Furthermore, glucose transporter mRNA transcripts were expressed at lower levels than other epithelial marker genes. Nevertheless, these studies highlighted that there were differences in cellular expression of glucose transporters. GLUT1 was the most abundant of the broadly expressed transporters that included GLUT8, 10, and 13. GLUT9 transcripts were more common in basal cells and GLUT12 in ionocytes/ciliated cells. In addition to alveolar cells, SGLT1 transcripts were present in secretory cells. GLUT3 mRNA transcripts were expressed in a cell cluster that expressed monocarboxylate (MCT2) transporters. Such distributions likely underlie cell-specific metabolic requirements to support proliferation, ion transport, mucous secretion, environment sensing, and airway glucose homeostasis. These studies have also highlighted the role of glucose transporters in the movement of dehydroascorbic acid/vitamin C/myoinositol/urate, which are factors important to the innate immune properties of the airways. Discrepancies remain between detection of mRNAs, protein, and function of glucose transporters in the lungs. However, collation of the data from further scRNAseq studies may provide a better consensus and understanding, supported by qPCR, immunohistochemistry, and functional experiments.
Collapse
Affiliation(s)
- Deborah L. Baines
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Stanislavs Vasiljevs
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Kameljit K. Kalsi
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| |
Collapse
|
176
|
Xu K, Diaz AA, Duan F, Lee M, Xiao X, Liu H, Liu G, Cho MH, Gower AC, Alekseyev YO, Spira A, Aberle DR, Washko GR, Billatos E, Lenburg ME. Bronchial gene expression alterations associated with radiological bronchiectasis. Eur Respir J 2023; 61:2200120. [PMID: 36229050 PMCID: PMC9881226 DOI: 10.1183/13993003.00120-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/15/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Discovering airway gene expression alterations associated with radiological bronchiectasis may improve the understanding of the pathobiology of early-stage bronchiectasis. METHODS Presence of radiological bronchiectasis in 173 individuals without a clinical diagnosis of bronchiectasis was evaluated. Bronchial brushings from these individuals were transcriptomically profiled and analysed. Single-cell deconvolution was performed to estimate changes in cellular landscape that may be associated with early disease progression. RESULTS 20 participants have widespread radiological bronchiectasis (three or more lobes). Transcriptomic analysis reflects biological processes associated with bronchiectasis including decreased expression of genes involved in cell adhesion and increased expression of genes involved in inflammatory pathways (655 genes, false discovery rate <0.1, log2 fold-change >0.25). Deconvolution analysis suggests that radiological bronchiectasis is associated with an increased proportion of ciliated and deuterosomal cells, and a decreased proportion of basal cells. Gene expression patterns separated participants into three clusters: normal, intermediate and bronchiectatic. The bronchiectatic cluster was enriched by participants with more lobes of radiological bronchiectasis (p<0.0001), more symptoms (p=0.002), higher SERPINA1 mutation rates (p=0.03) and higher computed tomography derived bronchiectasis scores (p<0.0001). CONCLUSIONS Genes involved in cell adhesion, Wnt signalling, ciliogenesis and interferon-γ pathways had altered expression in the bronchus of participants with widespread radiological bronchiectasis, possibly associated with decreased basal and increased ciliated cells. This gene expression pattern is not only highly enriched among individuals with radiological bronchiectasis, but also associated with airway-related symptoms in those without discernible radiological bronchiectasis, suggesting that it reflects a bronchiectasis-associated, but non-bronchiectasis-specific lung pathophysiological process.
Collapse
Affiliation(s)
- Ke Xu
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- K. Xu and A.A. Diaz contributed equally to this work
| | - Alejandro A Diaz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- K. Xu and A.A. Diaz contributed equally to this work
| | - Fenghai Duan
- Department of Biostatistics and Center for Statistical Sciences, Brown University School of Public Health, Providence, RI, USA
| | - Minyi Lee
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Xiaohui Xiao
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Hanqiao Liu
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Gang Liu
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Michael H Cho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Adam C Gower
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Yuriy O Alekseyev
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Denise R Aberle
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ehab Billatos
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- E. Billatos and M.E. Lenburg contributed equally to this article as lead authors and supervised the work
| | - Marc E Lenburg
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- E. Billatos and M.E. Lenburg contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
177
|
Madissoon E, Oliver AJ, Kleshchevnikov V, Wilbrey-Clark A, Polanski K, Richoz N, Ribeiro Orsi A, Mamanova L, Bolt L, Elmentaite R, Pett JP, Huang N, Xu C, He P, Dabrowska M, Pritchard S, Tuck L, Prigmore E, Perera S, Knights A, Oszlanczi A, Hunter A, Vieira SF, Patel M, Lindeboom RGH, Campos LS, Matsuo K, Nakayama T, Yoshida M, Worlock KB, Nikolić MZ, Georgakopoulos N, Mahbubani KT, Saeb-Parsy K, Bayraktar OA, Clatworthy MR, Stegle O, Kumasaka N, Teichmann SA, Meyer KB. A spatially resolved atlas of the human lung characterizes a gland-associated immune niche. Nat Genet 2023; 55:66-77. [PMID: 36543915 PMCID: PMC9839452 DOI: 10.1038/s41588-022-01243-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/25/2022] [Indexed: 12/24/2022]
Abstract
Single-cell transcriptomics has allowed unprecedented resolution of cell types/states in the human lung, but their spatial context is less well defined. To (re)define tissue architecture of lung and airways, we profiled five proximal-to-distal locations of healthy human lungs in depth using multi-omic single cell/nuclei and spatial transcriptomics (queryable at lungcellatlas.org ). Using computational data integration and analysis, we extend beyond the suspension cell paradigm and discover macro and micro-anatomical tissue compartments including previously unannotated cell types in the epithelial, vascular, stromal and nerve bundle micro-environments. We identify and implicate peribronchial fibroblasts in lung disease. Importantly, we discover and validate a survival niche for IgA plasma cells in the airway submucosal glands (SMG). We show that gland epithelial cells recruit B cells and IgA plasma cells, and promote longevity and antibody secretion locally through expression of CCL28, APRIL and IL-6. This new 'gland-associated immune niche' has implications for respiratory health.
Collapse
Affiliation(s)
- Elo Madissoon
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge, UK
| | - Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | | | | | - Nathan Richoz
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, UK
| | - Ana Ribeiro Orsi
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Rasa Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - J Patrick Pett
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Ni Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Chuan Xu
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Peng He
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge, UK
| | - Monika Dabrowska
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Sophie Pritchard
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Liz Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Shani Perera
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Andrew Knights
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Agnes Oszlanczi
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Adam Hunter
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Sara F Vieira
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Minal Patel
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Lia S Campos
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | | | - Masahiro Yoshida
- UCL Respiratory, Division of Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - Kaylee B Worlock
- UCL Respiratory, Division of Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - Marko Z Nikolić
- UCL Respiratory, Division of Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - Nikitas Georgakopoulos
- Department of Surgery, University of Cambridge, and Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - Krishnaa T Mahbubani
- Department of Surgery, University of Cambridge, and Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, and Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | | | - Menna R Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, UK
| | - Oliver Stegle
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | | | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Theory of Condensed Matter, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge, UK.
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
| |
Collapse
|
178
|
van der Staal A, Göhring J, Ohradanova-Repic A, Kramer M, Donner C, Zech A, Idzko M, Stockinger H. Immune cell profiles and patient clustering in complex cases of interstitial lung disease. Immunol Lett 2023; 253:30-40. [PMID: 36608905 DOI: 10.1016/j.imlet.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
Interstitial lung disease comprises numerous clinical entities posing significant challenges towards a prompt and accurate diagnosis. Amongst the contributing factors are intricate pathophysiological mechanisms, an overlap between conditions, and interobserver disagreement. We developed a model for patient clustering offering an additional approach to such complex clinical cases. The model is based on surface phenotyping of over 40 markers on immune cells isolated from bronchoalveolar lavage in combination with clinical data. Based on the marker expression pattern we constructed an individual immune cell profile, then merged these to create a global profile encompassing various pathologies. The contribution of each participant to the global profile was assessed through dimensionality reduction tools and the ensuing similarity between samples was calculated. Our model enables two approaches. First, assessing the immune cell population landscape similarity between patients within a diagnostic group allows rapid identification of divergent profiles, which is particularly helpful for cases with uncertain diagnoses. Second, sample clustering is based exclusively on the calculated similarity of the immune cell profiles, thereby removing physician bias and relying on cellular nearest neighbors.
Collapse
Affiliation(s)
- Alexandra van der Staal
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Janett Göhring
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Anna Ohradanova-Repic
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Markus Kramer
- Medical University of Vienna, Division of Pulmonology, Department of Medicine II, Vienna General Hospital, Vienna, Austria
| | - Clemens Donner
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Andreas Zech
- Medical University of Vienna, Division of Pulmonology, Department of Medicine II, Vienna General Hospital, Vienna, Austria
| | - Marco Idzko
- Medical University of Vienna, Division of Pulmonology, Department of Medicine II, Vienna General Hospital, Vienna, Austria
| | - Hannes Stockinger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria.
| |
Collapse
|
179
|
Brasier AR. Innate Immunity, Epithelial Plasticity, and Remodeling in Asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:265-285. [PMID: 37464126 DOI: 10.1007/978-3-031-32259-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Innate immune responses (IIR) of the epithelium play a critical role in the initiation and progression of asthma. The core of the IIR is an intracellular signaling pathway activated by pattern recognition receptors (PRRs) to limit the spread of infectious organisms. This chapter will focus on the epithelium as the major innate sentinel cell and its role in acute exacerbations (AEs). Although the pathways of how the IIR activates the NFκB transcription factor, triggering cytokine secretion, dendritic cell activation, and Th2 polarization are well-described, recent exciting work has developed mechanistic insights into how chronic activation of the IIR is linked to mucosal adaptive responses. These adaptations include changes in cell state, now called epithelial-mesenchymal plasticity (EMP). EMP is a coordinated, genomic response to airway injury disrupting epithelial barrier function, expanding the basal lamina, and producing airway remodeling. EMP is driven by activation of the unfolded protein response (UPR), a transcriptional response producing metabolic shunting of glucose through the hexosamine biosynthetic pathway (HBP) to protein N-glycosylation. NFκB signaling and UPR activation pathways potentiate each other in remodeling the basement membrane. Understanding of injury-repair process of epithelium provides new therapeutic targets for precision approaches to the treatment of asthma exacerbations and their sequelae.
Collapse
Affiliation(s)
- Allan R Brasier
- Department of Medicine and Institute for Clinical and Translational Research (ICTR), School of Medicine and Public Health (SMPH), University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
180
|
Gautam LK, Harriott NC, Caceres AM, Ryan AL. Basic Science Perspective on Engineering and Modeling the Large Airways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:73-106. [PMID: 37195527 DOI: 10.1007/978-3-031-26625-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The airway epithelium provides a physical and biochemical barrier playing a key role in protecting the lung from infiltration of pathogens and irritants and is, therefore, crucial in maintaining tissue homeostasis and regulating innate immunity. Due to continual inspiration and expiration of air during breathing, the epithelium is exposed to a plethora of environmental insults. When severe or persistent, these insults lead to inflammation and infection. The effectiveness of the epithelium as a barrier is reliant upon its capacity for mucociliary clearance, immune surveillance, and regeneration upon injury. These functions are accomplished by the cells that comprise the airway epithelium and the niche in which they reside. Engineering of new physiological and pathological models of the proximal airways requires the generation of complex structures comprising the surface airway epithelium, submucosal gland epithelium, extracellular matrix, and niche cells, including smooth muscle cells, fibroblasts, and immune cells. This chapter focuses on the structure-function relationships in the airways and the challenges of developing complex engineered models of the human airway.
Collapse
Affiliation(s)
- Lalit K Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Noa C Harriott
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Adrian M Caceres
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Amy L Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
181
|
Zambalde ÉP, Dias TL, Maktura GC, Amorim MR, Brenha B, Santos LN, Buscaratti L, Elston JGDA, Mancini MCS, Pavan ICB, Toledo-Teixeira DA, Bispo-dos-Santos K, Parise PL, Morelli AP, da Silva LGS, de Castro ÍMS, Saccon TD, Mori MA, Granja F, Nakaya HI, Proenca-Modena JL, Marques-Souza H, Simabuco FM. Increased mTOR Signaling and Impaired Autophagic Flux Are Hallmarks of SARS-CoV-2 Infection. Curr Issues Mol Biol 2022; 45:327-336. [PMID: 36661509 PMCID: PMC9858158 DOI: 10.3390/cimb45010023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 01/03/2023] Open
Abstract
The COVID-19 (Coronavirus Disease 2019), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), severely affects mainly individuals with pre-existing comorbidities. Here our aim was to correlate the mTOR (mammalian/mechanistic Target of Rapamycin) and autophagy pathways with the disease severity. Through western blotting and RNA analysis, we found increased mTOR signaling and suppression of genes related to autophagy, lysosome, and vesicle fusion in Vero E6 cells infected with SARS-CoV-2 as well as in transcriptomic data mining of bronchoalveolar epithelial cells from severe COVID-19 patients. Immunofluorescence co-localization assays also indicated that SARS-CoV-2 colocalizes within autophagosomes but not with a lysosomal marker. Our findings indicate that SARS-CoV-2 can benefit from compromised autophagic flux and inhibited exocytosis in individuals with chronic hyperactivation of mTOR signaling.
Collapse
Affiliation(s)
- Érika Pereira Zambalde
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, SP, Brazil
| | - Thomaz Luscher Dias
- Computational Systems Biology Lab (CSBL), Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Grazielle Celeste Maktura
- Brazilian Laboratory on Silencing Technologies (BLaST), Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas 13083-872, SP, Brazil
| | - Mariene R. Amorim
- Brazilian Laboratory on Silencing Technologies (BLaST), Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas 13083-872, SP, Brazil
| | - Bianca Brenha
- Brazilian Laboratory on Silencing Technologies (BLaST), Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas 13083-872, SP, Brazil
| | - Luana Nunes Santos
- Brazilian Laboratory on Silencing Technologies (BLaST), Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas 13083-872, SP, Brazil
| | - Lucas Buscaratti
- Brazilian Laboratory on Silencing Technologies (BLaST), Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas 13083-872, SP, Brazil
| | - João Gabriel de Angeli Elston
- Brazilian Laboratory on Silencing Technologies (BLaST), Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas 13083-872, SP, Brazil
| | - Mariana Camargo Silva Mancini
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, SP, Brazil
| | - Isadora Carolina Betim Pavan
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, SP, Brazil
- Laboratory of Signaling Mechanisms (LMS), School of Pharmaceutical Sciences (FCF), University of Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
| | - Daniel A. Toledo-Teixeira
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
| | - Karina Bispo-dos-Santos
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
| | - Pierina L. Parise
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
| | - Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, SP, Brazil
| | - Luiz Guilherme Salvino da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, SP, Brazil
| | - Ícaro Maia Santos de Castro
- Computational Systems Biology Lab (CSBL), Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
| | - Tatiana D. Saccon
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
| | - Marcelo A. Mori
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
| | - Fabiana Granja
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
- Biodiversity Research Centre, Federal University of Roraima, Boa Vista 69310-000, RR, Brazil
| | - Helder I. Nakaya
- Computational Systems Biology Lab (CSBL), Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil
| | - Jose Luiz Proenca-Modena
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
| | - Henrique Marques-Souza
- Brazilian Laboratory on Silencing Technologies (BLaST), Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas 13083-872, SP, Brazil
- Correspondence: (H.M.-S.); (F.M.S.)
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, SP, Brazil
- Department of Biochemistry, Federal University of São Paulo, São Paulo 04044-020, SP, Brazil
- Correspondence: (H.M.-S.); (F.M.S.)
| |
Collapse
|
182
|
Rocha-Hasler M, Müller L, Wagner A, Tu A, Stanek V, Campion NJ, Bartosik T, Zghaebi M, Stoshikj S, Gompelmann D, Zech A, Mei H, Kratochwill K, Spittler A, Idzko M, Schneider S, Eckl-Dorna J. Using mass cytometry for the analysis of samples of the human airways. Front Immunol 2022; 13:1004583. [PMID: 36578479 PMCID: PMC9791368 DOI: 10.3389/fimmu.2022.1004583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
Mass cytometry (MC) is a powerful method for mapping complex cellular systems at single-cell levels, based on the detection of cellular proteins. Numerous studies have been performed using human blood, but there is a lack of protocols describing the processing and labeling of bronchoalveolar lavage fluid (BALF) and nasal polyps (NP) for acquisition by MC. These specimens are essential in the investigation of immune cell characteristics in airway diseases such as asthma and chronic rhinosinusitis with NP (CRSwNP). Here we optimized a workflow for processing, labeling, and acquisition of BALF and NP cells by MC. Among three methods tested for NP digestion, combined enzymatic/mechanical processing yielded maximum cell recovery, viability and labeling patterns compared to the other methods. Treatment with DNAse improved sample acquisition by MC. In a final step, we performed a comparison of blood, BALF and NP cell composition using a 31-marker MC antibody panel, revealing expected differences between the different tissue but also heterogeneity among the BALF and NP samples. We here introduce an optimized workflow for the MC analysis of human NP and BALF, which enables comparative analysis of different samples in larger cohorts. A deeper understanding of immune cell characteristics in these samples may guide future researchers and clinicians to a better disease management.
Collapse
Affiliation(s)
- Marianne Rocha-Hasler
- Allergology and Sinusitis Research Lab, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Lena Müller
- Core Facility Flow Cytometry & Department of Surgery, Research Lab, Medical University of Vienna, Vienna, Austria
| | - Anja Wagner
- Core Facility Proteomics, Medical University of Vienna, Vienna, Austria,Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Aldine Tu
- Allergology and Sinusitis Research Lab, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Victoria Stanek
- Allergology and Sinusitis Research Lab, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Nicholas James Campion
- Allergology and Sinusitis Research Lab, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Tina Bartosik
- Allergology and Sinusitis Research Lab, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Mohammed Zghaebi
- Allergology and Sinusitis Research Lab, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Slagjana Stoshikj
- Division of Pulmonology, Department of Internal Medicine II, Medical University Vienna, Vienna, Austria
| | - Daniela Gompelmann
- Division of Pulmonology, Department of Internal Medicine II, Medical University Vienna, Vienna, Austria
| | - Andreas Zech
- Division of Pulmonology, Department of Internal Medicine II, Medical University Vienna, Vienna, Austria
| | - Henrik Mei
- German Rheumatism Research Center Berlin, Berlin, Germany
| | - Klaus Kratochwill
- Core Facility Proteomics, Medical University of Vienna, Vienna, Austria,Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Andreas Spittler
- Core Facility Flow Cytometry & Department of Surgery, Research Lab, Medical University of Vienna, Vienna, Austria
| | - Marco Idzko
- Division of Pulmonology, Department of Internal Medicine II, Medical University Vienna, Vienna, Austria
| | - Sven Schneider
- Allergology and Sinusitis Research Lab, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria,*Correspondence: Sven Schneider,
| | - Julia Eckl-Dorna
- Allergology and Sinusitis Research Lab, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
183
|
He P, Lim K, Sun D, Pett JP, Jeng Q, Polanski K, Dong Z, Bolt L, Richardson L, Mamanova L, Dabrowska M, Wilbrey-Clark A, Madissoon E, Tuong ZK, Dann E, Suo C, Goh I, Yoshida M, Nikolić MZ, Janes SM, He X, Barker RA, Teichmann SA, Marioni JC, Meyer KB, Rawlins EL. A human fetal lung cell atlas uncovers proximal-distal gradients of differentiation and key regulators of epithelial fates. Cell 2022; 185:4841-4860.e25. [PMID: 36493756 DOI: 10.1016/j.cell.2022.11.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/11/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
We present a multiomic cell atlas of human lung development that combines single-cell RNA and ATAC sequencing, high-throughput spatial transcriptomics, and single-cell imaging. Coupling single-cell methods with spatial analysis has allowed a comprehensive cellular survey of the epithelial, mesenchymal, endothelial, and erythrocyte/leukocyte compartments from 5-22 post-conception weeks. We identify previously uncharacterized cell states in all compartments. These include developmental-specific secretory progenitors and a subtype of neuroendocrine cell related to human small cell lung cancer. Our datasets are available through our web interface (https://lungcellatlas.org). To illustrate its general utility, we use our cell atlas to generate predictions about cell-cell signaling and transcription factor hierarchies which we rigorously test using organoid models.
Collapse
Affiliation(s)
- Peng He
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Kyungtae Lim
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | - Dawei Sun
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | | | - Quitz Jeng
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | | | - Ziqi Dong
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | - Liam Bolt
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | - Lira Mamanova
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | | | - Elo Madissoon
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Zewen Kelvin Tuong
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Emma Dann
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Chenqu Suo
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Department of Paediatrics, Cambridge University Hospitals, Hills Road, Cambridge CB2 0 QQ, UK
| | - Isaac Goh
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Masahiro Yoshida
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Marko Z Nikolić
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Xiaoling He
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - John C Marioni
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK.
| |
Collapse
|
184
|
Humbert MV, Spalluto CM, Bell J, Blume C, Conforti F, Davies ER, Dean LSN, Elkington P, Haitchi HM, Jackson C, Jones MG, Loxham M, Lucas JS, Morgan H, Polak M, Staples KJ, Swindle EJ, Tezera L, Watson A, Wilkinson TMA. Towards an artificial human lung: modelling organ-like complexity to aid mechanistic understanding. Eur Respir J 2022; 60:2200455. [PMID: 35777774 DOI: 10.1183/13993003.00455-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/11/2022] [Indexed: 11/05/2022]
Abstract
Respiratory diseases account for over 5 million deaths yearly and are a huge burden to healthcare systems worldwide. Murine models have been of paramount importance to decode human lung biology in vivo, but their genetic, anatomical, physiological and immunological differences with humans significantly hamper successful translation of research into clinical practice. Thus, to clearly understand human lung physiology, development, homeostasis and mechanistic dysregulation that may lead to disease, it is essential to develop models that accurately recreate the extraordinary complexity of the human pulmonary architecture and biology. Recent advances in micro-engineering technology and tissue engineering have allowed the development of more sophisticated models intending to bridge the gap between the native lung and its replicates in vitro Alongside advanced culture techniques, remarkable technological growth in downstream analyses has significantly increased the predictive power of human biology-based in vitro models by allowing capture and quantification of complex signals. Refined integrated multi-omics readouts could lead to an acceleration of the translational pipeline from in vitro experimental settings to drug development and clinical testing in the future. This review highlights the range and complexity of state-of-the-art lung models for different areas of the respiratory system, from nasal to large airways, small airways and alveoli, with consideration of various aspects of disease states and their potential applications, including pre-clinical drug testing. We explore how development of optimised physiologically relevant in vitro human lung models could accelerate the identification of novel therapeutics with increased potential to translate successfully from the bench to the patient's bedside.
Collapse
Affiliation(s)
- Maria Victoria Humbert
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Cosma Mirella Spalluto
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- M.V. Humbert and C.M. Spalluto are co-first authors and contributed equally to this work
| | - Joseph Bell
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Cornelia Blume
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Franco Conforti
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Elizabeth R Davies
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Lareb S N Dean
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Paul Elkington
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Hans Michael Haitchi
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Claire Jackson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Mark G Jones
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Matthew Loxham
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Jane S Lucas
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Hywel Morgan
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, UK
| | - Marta Polak
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Karl J Staples
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Emily J Swindle
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Liku Tezera
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Infection and Immunity, Faculty of Medicine, University College London, London, UK
| | - Alastair Watson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Tom M A Wilkinson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| |
Collapse
|
185
|
Edwards CE, Tata A, Baric RS. Human lung organoids as a model for respiratory virus replication and countermeasure performance in human hosts. Transl Res 2022; 250:36-45. [PMID: 35850445 DOI: 10.1016/j.trsl.2022.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/09/2022]
Abstract
Human respiratory viruses induce a wide breadth of disease phenotypes and outcomes of varying severity. Innovative models that recapitulate the human respiratory tract are needed to study such viruses, understand the virus-host interactions underlying replication and pathogenesis, and to develop effective countermeasures for prevention and treatment. Human organoid models provide a platform to study virus-host interactions in the proximal to distal lung in the absence of a human in vivo model. These cultures fill the niche of a suitable ex vivo model that represents the in vivo lung environment and encapsulates the structure and function of the native human lung.
Collapse
Affiliation(s)
- Caitlin E Edwards
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina
| | - Ralph S Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
186
|
Barton TE, Frost F, Fothergill JL, Neill DR. Challenges and opportunities in the development of novel antimicrobial therapeutics for cystic fibrosis. J Med Microbiol 2022; 71. [PMID: 36748497 DOI: 10.1099/jmm.0.001643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic respiratory infection is the primary driver of mortality in individuals with cystic fibrosis (CF). Existing drug screening models utilised in preclinical antimicrobial development are unable to mimic the complex CF respiratory environment. Consequently, antimicrobials showing promising activity in preclinical models often fail to translate through to clinical efficacy in people with CF. Model systems used in CF anti-infective drug discovery and development range from antimicrobial susceptibility testing in nutrient broth, through to 2D and 3D in vitro tissue culture systems and in vivo models. No single model fully recapitulates every key aspect of the CF lung. To improve the outcomes of people with CF (PwCF) it is necessary to develop a set of preclinical models that collectively recapitulate the CF respiratory environment to a high degree of accuracy. Models must be validated for their ability to mimic aspects of the CF lung and associated lung infection, through evaluation of biomarkers that can also be assessed following treatment in the clinic. This will give preclinical models greater predictive power for identification of antimicrobials with clinical efficacy. The landscape of CF is changing, with the advent of modulator therapies that correct the function of the CFTR protein, while antivirulence drugs and phage therapy are emerging alternative treatments to chronic infection. This review discusses the challenges faced in current antimicrobial development pipelines, including the advantages and disadvantages of current preclinical models and the impact of emerging treatments.
Collapse
Affiliation(s)
- Thomas E Barton
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool, L69 7BE, UK
| | - Frederick Frost
- Adult Cystic Fibrosis Centre, Liverpool Heart & Chest Hospital NHS Foundation Trust, Liverpool, UK.,Liverpool Centre for Cardiovascular Sciences, University of Liverpool, Liverpool, UK
| | - Joanne L Fothergill
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool, L69 7BE, UK
| | - Daniel R Neill
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool, L69 7BE, UK
| |
Collapse
|
187
|
Xu X, Liu X, Dong X, Yang Y, Liu L. MiR-199a-3p-regulated alveolar macrophage-derived secretory autophagosomes exacerbate lipopolysaccharide-induced acute respiratory distress syndrome. Front Cell Infect Microbiol 2022; 12:1061790. [PMID: 36523634 PMCID: PMC9745060 DOI: 10.3389/fcimb.2022.1061790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose Acute respiratory distress syndrome (ARDS) is a prevalent illness in intensive care units. Extracellular vesicles and particles released from activated alveolar macrophages (AMs) assist in ARDS lung injury and the inflammatory process through mechanisms that are unclear. This study investigated the role of AM-derived secretory autophagosomes (SAPs) in lung injury and microRNA (MiR)-199a-3p-regulated inflammation associated with ARDS in vitro and in a murine model. Methods The ARDS model in mouse was established by intratracheal LPS lipopolysaccharide (LPS) injection. The agomirs or antagomirs of MiR-199a-3p were injected into the caudal vein to figure out whether MiR-199a-3p could influence ARDS inflammation and lung injury, whereas the mimics or inhibitors of MiR-199a-3p, siRNA of Rab8a, or PAK4 inhibitor were transfected or applied to RAW264.7 cells to evaluate the mechanism of SAP release. Culture supernatants of RAW264.7 cells treated with LPS or bronchoalveolar lavage fluid from mice were collected for the isolation of SAPs. Results We found that MiR-199a-3p was over-expressed in the lungs of ARDS mice. The MiR-199a-3p antagomir alleviated, whereas the MiR-199a-3p agomir exacerbated LPS-induced inflammation in mice by promoting AM-derived SAP secretion. In addition, MiR-199a-3p over-expression exacerbated LPS-induced ARDS via activating Rab8a, and Rab8a silencing significantly suppressed the promoting influence of the MiR-199a-3p mimic on SAP secretion. Furthermore, MiR-199a-3p mimic activated Rab8a by directly inhibiting PAK4 expression. Conclusion The novel finding of this study is that MiR-199a-3p participated in the regulation of SAP secretion and the inflammatory process via targeting of PAK4/Rab8a, and is a potential therapeutic candidate for ARDS treatment.
Collapse
Affiliation(s)
| | | | | | - Yi Yang
- *Correspondence: Yi Yang, ; Ling Liu,
| | - Ling Liu
- *Correspondence: Yi Yang, ; Ling Liu,
| |
Collapse
|
188
|
Jurmeister P, Glöß S, Roller R, Leitheiser M, Schmid S, Mochmann LH, Payá Capilla E, Fritz R, Dittmayer C, Friedrich C, Thieme A, Keyl P, Jarosch A, Schallenberg S, Bläker H, Hoffmann I, Vollbrecht C, Lehmann A, Hummel M, Heim D, Haji M, Harter P, Englert B, Frank S, Hench J, Paulus W, Hasselblatt M, Hartmann W, Dohmen H, Keber U, Jank P, Denkert C, Stadelmann C, Bremmer F, Richter A, Wefers A, Ribbat-Idel J, Perner S, Idel C, Chiariotti L, Della Monica R, Marinelli A, Schüller U, Bockmayr M, Liu J, Lund VJ, Forster M, Lechner M, Lorenzo-Guerra SL, Hermsen M, Johann PD, Agaimy A, Seegerer P, Koch A, Heppner F, Pfister SM, Jones DTW, Sill M, von Deimling A, Snuderl M, Müller KR, Forgó E, Howitt BE, Mertins P, Klauschen F, Capper D. DNA methylation-based classification of sinonasal tumors. Nat Commun 2022; 13:7148. [PMID: 36443295 PMCID: PMC9705411 DOI: 10.1038/s41467-022-34815-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
The diagnosis of sinonasal tumors is challenging due to a heterogeneous spectrum of various differential diagnoses as well as poorly defined, disputed entities such as sinonasal undifferentiated carcinomas (SNUCs). In this study, we apply a machine learning algorithm based on DNA methylation patterns to classify sinonasal tumors with clinical-grade reliability. We further show that sinonasal tumors with SNUC morphology are not as undifferentiated as their current terminology suggests but rather reassigned to four distinct molecular classes defined by epigenetic, mutational and proteomic profiles. This includes two classes with neuroendocrine differentiation, characterized by IDH2 or SMARCA4/ARID1A mutations with an overall favorable clinical course, one class composed of highly aggressive SMARCB1-deficient carcinomas and another class with tumors that represent potentially previously misclassified adenoid cystic carcinomas. Our findings can aid in improving the diagnostic classification of sinonasal tumors and could help to change the current perception of SNUCs.
Collapse
Affiliation(s)
- Philipp Jurmeister
- grid.411095.80000 0004 0477 2585Institute of Pathology, Ludwig Maximilians University Hospital Munich, Munich, Germany ,grid.6363.00000 0001 2218 4662Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584 German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Glöß
- grid.6363.00000 0001 2218 4662Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, Berlin, Germany
| | - Renée Roller
- grid.6363.00000 0001 2218 4662Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.484013.a0000 0004 6879 971XProteomics Platform, Berlin Institute of Health (BIH) and Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Maximilian Leitheiser
- grid.6363.00000 0001 2218 4662Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Simone Schmid
- grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.6363.00000 0001 2218 4662Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, Berlin, Germany
| | - Liliana H. Mochmann
- grid.411095.80000 0004 0477 2585Institute of Pathology, Ludwig Maximilians University Hospital Munich, Munich, Germany
| | - Emma Payá Capilla
- grid.411095.80000 0004 0477 2585Institute of Pathology, Ludwig Maximilians University Hospital Munich, Munich, Germany
| | - Rebecca Fritz
- grid.6363.00000 0001 2218 4662Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carsten Dittmayer
- grid.6363.00000 0001 2218 4662Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, Berlin, Germany
| | - Corinna Friedrich
- grid.6363.00000 0001 2218 4662Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.419491.00000 0001 1014 0849MDC Graduate School, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany ,grid.7468.d0000 0001 2248 7639Humboldt Universität zu Berlin, Institute of Chemistry, Berlin, Germany
| | - Anne Thieme
- grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.6363.00000 0001 2218 4662Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, Berlin, Germany
| | - Philipp Keyl
- grid.6363.00000 0001 2218 4662Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Armin Jarosch
- grid.6363.00000 0001 2218 4662Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Simon Schallenberg
- grid.6363.00000 0001 2218 4662Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hendrik Bläker
- grid.411339.d0000 0000 8517 9062Institute of Pathology, University Hospital Leipzig, Leipzig, Germany
| | - Inga Hoffmann
- grid.6363.00000 0001 2218 4662Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia Vollbrecht
- grid.6363.00000 0001 2218 4662Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Annika Lehmann
- grid.6363.00000 0001 2218 4662Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Hummel
- grid.6363.00000 0001 2218 4662Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Heim
- grid.6363.00000 0001 2218 4662Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mohamed Haji
- grid.484013.a0000 0004 6879 971XProteomics Platform, Berlin Institute of Health (BIH) and Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Patrick Harter
- grid.7497.d0000 0004 0492 0584 German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7839.50000 0004 1936 9721Institute of Neurology (Edinger Institute), Goethe-University Frankfurt am Main, Frankfurt am Main, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benjamin Englert
- grid.411095.80000 0004 0477 2585Institute of Neuropathology, Ludwig Maximilians University Hospital Munich, Munich, Germany
| | - Stephan Frank
- grid.410567.1Department of Neuropathology, Institute of Pathology, Basel University Hospital, Basel, Switzerland
| | - Jürgen Hench
- grid.410567.1Department of Neuropathology, Institute of Pathology, Basel University Hospital, Basel, Switzerland
| | - Werner Paulus
- grid.16149.3b0000 0004 0551 4246Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Martin Hasselblatt
- grid.16149.3b0000 0004 0551 4246Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Wolfgang Hartmann
- grid.16149.3b0000 0004 0551 4246Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Hildegard Dohmen
- grid.8664.c0000 0001 2165 8627Institute of Neuropathology, University of Giessen, Giessen, Germany
| | - Ursula Keber
- grid.10253.350000 0004 1936 9756Institute of Neuropathology, Philipps-University, Marburg, Germany
| | - Paul Jank
- grid.10253.350000 0004 1936 9756Institute of Pathology, Philipps-University Marburg and University Hospital Marburg, Marburg, Germany
| | - Carsten Denkert
- grid.10253.350000 0004 1936 9756Institute of Pathology, Philipps-University Marburg and University Hospital Marburg, Marburg, Germany
| | - Christine Stadelmann
- grid.411984.10000 0001 0482 5331Institute for Neuropathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Felix Bremmer
- grid.411984.10000 0001 0482 5331Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Annika Richter
- grid.411984.10000 0001 0482 5331Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Annika Wefers
- grid.5253.10000 0001 0328 4908Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.13648.380000 0001 2180 3484Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julika Ribbat-Idel
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Sven Perner
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany ,grid.418187.30000 0004 0493 9170Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany ,grid.452624.3German Center for Lung Research (DZL), Partner Site Luebeck, Luebeck, Germany
| | - Christian Idel
- grid.412468.d0000 0004 0646 2097Department of Otorhinolaryngology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Lorenzo Chiariotti
- grid.4691.a0000 0001 0790 385XDipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Naples, Italy ,grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Rosa Della Monica
- grid.4691.a0000 0001 0790 385XCEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Alfredo Marinelli
- grid.4691.a0000 0001 0790 385XDepartment of Medicina Clinica e Chirurgia, University Federico II, Naples, Italy
| | - Ulrich Schüller
- grid.13648.380000 0001 2180 3484Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ,grid.13648.380000 0001 2180 3484Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ,grid.470174.1Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Michael Bockmayr
- grid.6363.00000 0001 2218 4662Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany ,grid.13648.380000 0001 2180 3484Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ,grid.470174.1Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Jacklyn Liu
- grid.83440.3b0000000121901201UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT UK ,grid.83440.3b0000000121901201UCL Academic Head and Neck Centre, Division of Surgery and Interventional Science, University College London, London, UK
| | - Valerie J. Lund
- grid.83440.3b0000000121901201UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT UK ,grid.83440.3b0000000121901201UCL Academic Head and Neck Centre, Division of Surgery and Interventional Science, University College London, London, UK
| | - Martin Forster
- grid.83440.3b0000000121901201UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT UK ,grid.83440.3b0000000121901201UCL Academic Head and Neck Centre, Division of Surgery and Interventional Science, University College London, London, UK
| | - Matt Lechner
- grid.83440.3b0000000121901201UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT UK ,grid.83440.3b0000000121901201UCL Academic Head and Neck Centre, Division of Surgery and Interventional Science, University College London, London, UK
| | - Sara L. Lorenzo-Guerra
- grid.511562.4Department of Head and Neck Oncology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Mario Hermsen
- grid.511562.4Department of Head and Neck Oncology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Pascal D. Johann
- Swabian Childrens’ Cancer Center, University Childrens’ Hospital Augsburg and EU-RHAB Registry, Augsburg, Germany
| | - Abbas Agaimy
- grid.411668.c0000 0000 9935 6525Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital, Erlangen, Germany
| | - Philipp Seegerer
- grid.6734.60000 0001 2292 8254Machine-Learning Group, Department of Software Engineering and Theoretical Computer Science, Technical University of Berlin, Berlin, Germany
| | - Arend Koch
- grid.6363.00000 0001 2218 4662Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, Berlin, Germany
| | - Frank Heppner
- grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.6363.00000 0001 2218 4662Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, Berlin, Germany
| | - Stefan M. Pfister
- grid.510964.fHopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Department of Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - David T. W. Jones
- grid.510964.fHopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Sill
- grid.510964.fHopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Andreas von Deimling
- grid.5253.10000 0001 0328 4908Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matija Snuderl
- grid.240324.30000 0001 2109 4251Division of Neuropathology, NYU Langone Health, New York, USA ,grid.240324.30000 0001 2109 4251Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, USA ,grid.240324.30000 0001 2109 4251Division of Molecular Pathology and Diagnostics, NYU Langone Health, New York, USA
| | - Klaus-Robert Müller
- grid.6734.60000 0001 2292 8254Machine-Learning Group, Department of Software Engineering and Theoretical Computer Science, Technical University of Berlin, Berlin, Germany ,grid.222754.40000 0001 0840 2678Department of Artificial Intelligence, Korea University, Seoul, South Korea ,grid.419528.30000 0004 0491 9823Max-Planck-Institute for Informatics, Saarbrücken, Germany ,BIFOLD – Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
| | - Erna Forgó
- grid.168010.e0000000419368956Stanford University School of Medicine, Stanford, CA USA
| | - Brooke E. Howitt
- grid.168010.e0000000419368956Stanford University School of Medicine, Stanford, CA USA
| | - Philipp Mertins
- grid.484013.a0000 0004 6879 971XProteomics Platform, Berlin Institute of Health (BIH) and Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Frederick Klauschen
- grid.411095.80000 0004 0477 2585Institute of Pathology, Ludwig Maximilians University Hospital Munich, Munich, Germany ,grid.7497.d0000 0004 0492 0584 German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany ,BIFOLD – Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
| | - David Capper
- grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.6363.00000 0001 2218 4662Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, Berlin, Germany
| |
Collapse
|
189
|
Acosta‐Gutiérrez S, Buckley J, Battaglia G. The Role of Host Cell Glycans on Virus Infectivity: The SARS-CoV-2 Case. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2201853. [PMID: 36417571 PMCID: PMC9811451 DOI: 10.1002/advs.202201853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Glycans are ubiquitously expressed sugars, coating the cell and protein surfaces. They are found on many proteins as either short and branched chains or long chains sticking out from special membrane proteins, known as proteoglycans. This sugar cushion, the glycocalyx, modulates specific interactions and protects the cell. Here it is shown that both the expression of proteoglycans and the glycans expressed on the surface of both the host and virus proteins have a critical role in modulating viral attachment to the cell. A mathematical model using SARS-Cov-2 as an archetypical virus to study the glycan role during infection is proposed. It is shown that this occurs via a tug-of-war of forces. On one side, the multivalent molecular recognition that viral proteins have toward specific host glycans and receptors. On the other side, the glycan steric repulsion that a virus must overcome to approach such specific receptors. By balancing both interactions, viral tropism can be predicted. In other words, the authors can map out the cells susceptible to virus infection in terms of receptors and proteoglycans compositions.
Collapse
Affiliation(s)
- Silvia Acosta‐Gutiérrez
- Institute for the Physics of Living SystemsUniversity College LondonLondonCentral LondonUK
- Institute of Structural and Molecular BiologyUniversity College LondonLondonCentral LondonUK
- Department of ChemistryUniversity College London20 Gordon StLondonCentral LondonWC1H 0AJUK
| | - Joseph Buckley
- Institute for the Physics of Living SystemsUniversity College LondonLondonCentral LondonUK
- Institute of Structural and Molecular BiologyUniversity College LondonLondonCentral LondonUK
- Department of ChemistryUniversity College London20 Gordon StLondonCentral LondonWC1H 0AJUK
| | - Giuseppe Battaglia
- Institute for the Physics of Living SystemsUniversity College LondonLondonCentral LondonUK
- Institute of Structural and Molecular BiologyUniversity College LondonLondonCentral LondonUK
- Department of ChemistryUniversity College London20 Gordon StLondonCentral LondonWC1H 0AJUK
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and TechnologyBarcelonaBarcelona08028Spain
- Catalan Institution for Research and Advances Studies (ICREA)BarcelonaSpain
| |
Collapse
|
190
|
Jeong HO, Lee H, Kim H, Jang J, Kim S, Hwang T, Choi DWY, Kim HS, Lee N, Lee YM, Park S, Jung HA, Sun JM, Ahn JS, Ahn MJ, Park K, Lee S, Lee SH. Cellular plasticity and immune microenvironment of malignant pleural effusion are associated with EGFR-TKI resistance in non–small-cell lung carcinoma. iScience 2022; 25:105358. [PMID: 36339256 PMCID: PMC9626676 DOI: 10.1016/j.isci.2022.105358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/24/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Malignant pleural effusion (MPE) is a complication of lung cancer that can be used as an alternative method for tissue sampling because it is generally simple and minimally invasive. Our study evaluated the diagnostic potential of non–small-cell lung carcinoma (NSCLC)-associated MPE in terms of understanding tumor heterogeneity and identifying response factors for EGFR tyrosine kinase inhibitor (TKI) therapy. We performed a single-cell RNA sequencing analysis of 31,743 cells isolated from the MPEs of 9 patients with NSCLC (5 resistant and 4 sensitive to EGFR TKI) with EGFR mutations. Interestingly, lung epithelial precursor-like cells with upregulated GNB2L1 and CAV1 expression were enriched in the EGFR TKI-resistant group. Moreover, GZMK upregulated transitional effector T cells, and plasmacytoid dendritic cells were significantly enriched in the EGFR TKI-resistant patients. Our results suggest that cellular plasticity and immunosuppressive microenvironment in MPEs are potentially associated with the TKI response of patients with EGFR-mutated NSCLC. ScRNA-seq reveals associations between cellular plasticity and EGFR-TKI response Lung epithelial progenitor-like cells are abundant in the TKI-resistant group HLA-II gene expression are upregulated in the epithelial cells of TKI-sensitive group Immunosuppressive TME was associated with the TKI resistance in NSCLC
Collapse
Affiliation(s)
- Hyoung-oh Jeong
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - Hayoon Lee
- Medical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hyemin Kim
- Medical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jinho Jang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - Seunghoon Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - Taejoo Hwang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - David Whee-Young Choi
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - Hong Sook Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Naeun Lee
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Yoo Mi Lee
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Sehhoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyun Ae Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong-Mu Sun
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Keunchil Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Semin Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
- Corresponding author
| | - Se-Hoon Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Corresponding author
| |
Collapse
|
191
|
Sui H, Xu X, Su Y, Gong Z, Yao M, Liu X, Zhang T, Jiang Z, Bai T, Wang J, Zhang J, Xu C, Luo M. Gene therapy for cystic fibrosis: Challenges and prospects. Front Pharmacol 2022; 13:1015926. [PMID: 36304167 PMCID: PMC9592762 DOI: 10.3389/fphar.2022.1015926] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Cystic fibrosis (CF) is a life-threatening autosomal-recessive disease caused by mutations in a single gene encoding cystic fibrosis transmembrane conductance regulator (CFTR). CF effects multiple organs, and lung disease is the primary cause of mortality. The median age at death from CF is in the early forties. CF was one of the first diseases to be considered for gene therapy, and efforts focused on treating CF lung disease began shortly after the CFTR gene was identified in 1989. However, despite the quickly established proof-of-concept for CFTR gene transfer in vitro and in clinical trials in 1990s, to date, 36 CF gene therapy clinical trials involving ∼600 patients with CF have yet to achieve their desired outcomes. The long journey to pursue gene therapy as a cure for CF encountered more difficulties than originally anticipated, but immense progress has been made in the past decade in the developments of next generation airway transduction viral vectors and CF animal models that reproduced human CF disease phenotypes. In this review, we look back at the history for the lessons learned from previous clinical trials and summarize the recent advances in the research for CF gene therapy, including the emerging CRISPR-based gene editing strategies. We also discuss the airway transduction vectors, large animal CF models, the complexity of CF pathogenesis and heterogeneity of CFTR expression in airway epithelium, which are the major challenges to the implementation of a successful CF gene therapy, and highlight the future opportunities and prospects.
Collapse
Affiliation(s)
- Hongshu Sui
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| | - Xinghua Xu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Yanping Su
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Zhaoqing Gong
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Minhua Yao
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Xiaocui Liu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ting Zhang
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ziyao Jiang
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Tianhao Bai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Junzuo Wang
- The Affiliated Tai’an City Central Hospital of Qingdao University, Tai’an, Shandong, China
| | - Jingjun Zhang
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Changlong Xu
- The Reproductive Medical Center of Nanning Second People’s Hospital, Nanning, China
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| | - Mingjiu Luo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| |
Collapse
|
192
|
Abstract
Lung epithelium, the lining that covers the inner surface of the respiratory tract, is directly exposed to the environment and thus susceptible to airborne toxins, irritants, and pathogen-induced damages. In adult mammalian lungs, epithelial cells are generally quiescent but can respond rapidly to repair of damaged tissues. Evidence from experimental injury models in rodents and human clinical samples has led to the identification of these regenerative cells, as well as pathological metaplastic states specifically associated with different forms of damages. Here, we provide a compendium of cells and cell states that exist during homeostasis in normal lungs and the lineage relationships between them. Additionally, we discuss various experimental injury models currently being used to probe the cellular sources-both resident and recruited-that contribute to repair, regeneration, and remodeling following acute and chronic injuries. Finally, we discuss certain maladaptive regeneration-associated cell states and their role in disease pathogenesis.
Collapse
Affiliation(s)
- Arvind Konkimalla
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Medical Scientist Training Program, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, North Carolina 27710, USA
- Duke Regeneration Center, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
193
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
194
|
Moreau M, Fisher J, Andersen ME, Barnwell A, Corzine S, Ranade A, McMullen PD, Slattery SD. NAM-based Prediction of Point-of-contact Toxicity in the Lung: A Case Example With 1,3-dichloropropene. Toxicology 2022; 481:153340. [PMID: 36183849 DOI: 10.1016/j.tox.2022.153340] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/13/2022] [Accepted: 09/27/2022] [Indexed: 11/27/2022]
Abstract
Time, cost, ethical, and regulatory considerations surrounding in vivo testing methods render them insufficient to meet existing and future chemical safety testing demands. There is a need for the development of in vitro and in silico alternatives to replace traditional in vivo methods for inhalation toxicity assessment. Exposures of differentiated airway epithelial cultures to gases or aerosols at the air-liquid interface (ALI) can assess tissue responses and in vitro to in vivo extrapolation can align in vitro exposure levels with in-life exposures expected to give similar tissue exposures. Because the airway epithelium varies along its length, with various regions composed of different cell types, we have introduced a known toxic vapor to five human-derived, differentiated, in vitro airway epithelial cell culture models-MucilAir of nasal, tracheal, or bronchial origin, SmallAir, and EpiAlveolar-representing five regions of the airway epithelium-nasal, tracheal, bronchial, bronchiolar, and alveolar. We have monitored toxicity in these cultures 24hours after acute exposure using an assay for transepithelial conductance (for epithelial barrier integrity) and the lactate dehydrogenase (LDH) release assay (for cytotoxicity). Our vapor of choice in these experiments was 1,3-dichloropropene (1,3-DCP). Finally, we have developed an airway dosimetry model for 1,3-DCP vapor to predict in vivo external exposure scenarios that would produce toxic local tissue concentrations as determined by in vitro experiments. Measured in vitro points of departure (PoDs) for all tested cell culture models were similar. Calculated rat equivalent inhaled concentrations varied by model according to position of the modeled tissue within the airway, with nasal respiratory tissue being the most proximal and most sensitive tissue, and alveolar epithelium being the most distal and least sensitive tissue. These predictions are qualitatively in accordance with empirically determined in vivo PoDs. The predicted PoD concentrations were close to, but slightly higher than, PoDs determined by in vivo subchronic studies.
Collapse
Affiliation(s)
- Marjory Moreau
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Jeff Fisher
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Melvin E Andersen
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Asayah Barnwell
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Sage Corzine
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Aarati Ranade
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Patrick D McMullen
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA
| | - Scott D Slattery
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Durham, North Carolina, 27709, USA.
| |
Collapse
|
195
|
Pulmonary neuroendocrine cells sense succinate to stimulate myoepithelial cell contraction. Dev Cell 2022; 57:2221-2236.e5. [PMID: 36108628 DOI: 10.1016/j.devcel.2022.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/19/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022]
Abstract
Pulmonary neuroendocrine cells (PNECs) are rare airway cells with potential sensory capacity linked to vagal neurons and immune cells. How PNECs sense and respond to external stimuli remains poorly understood. We discovered PNECs located within pig and human submucosal glands, a tissue that produces much of the mucus that defends the lung. These PNECs sense succinate, an inflammatory molecule in liquid lining the airway surface. The results indicate that succinate migrates down the submucosal gland duct to the acinus, where it triggers apical succinate receptors, causing PNECs to release ATP. The short-range ATP signal stimulates the contraction of myoepithelial cells wrapped tightly around the submucosal glands. Succinate-triggered gland contraction may complement the action of neurotransmitters that induce mucus release but not gland contraction to promote mucus ejection onto the airway surface. These findings identify a local circuit in which rare PNECs within submucosal glands sense an environmental cue to orchestrate the function of airway glands.
Collapse
|
196
|
Sesé L, Mahay G, Barnig C, Guibert N, Leroy S, Guilleminault L. [Markers of severity and predictors of response to treatment in severe asthma]. Rev Mal Respir 2022; 39:740-757. [PMID: 36115752 DOI: 10.1016/j.rmr.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
Asthma is a multifactorial disease with complex pathophysiology. Knowledge of its immunopathology and inflammatory mechanisms is progressing and has led to the development over recent years of increasingly targeted therapeutic strategies. The objective of this review is to pinpoint the different predictive markers of asthma severity and therapeutic response. Obesity, nasal polyposis, gastroesophageal reflux disease and intolerance to aspirin have all been considered as clinical markers associated with asthma severity, as have functional markers such as bronchial obstruction, low FEV1, small daily variations in FEV1, and high FeNO. While sinonasal polyposis and allergic comorbidities are associated with better response to omalizumab, nasal polyposis or long-term systemic steroid use are associated with better response to antibodies targeting the IL5 pathway. Elevated total IgE concentrations and eosinophil counts are classic biological markers regularly found in severe asthma. Blood eosinophils are predictive biomarkers of response to anti-IgE, anti-IL5, anti-IL5R and anti-IL4R biotherapies. Dupilumab is particularly effective in a subgroup of patients with marked type 2 inflammation (long-term systemic corticosteroid therapy, eosinophilia≥150/μl or FENO>20 ppb). Chest imaging may help to identify severe patients by seeking out bronchial wall thickening and bronchial dilation. Study of the patient's environment is crucial insofar as exposure to tobacco, dust mites and molds, as well as outdoor and indoor air pollutants (cleaning products), can trigger asthma exacerbation. Wider and more systematic use of markers of severity or response to treatment could foster increasingly targeted and tailored approaches to severe asthma.
Collapse
Affiliation(s)
- L Sesé
- AP-HP, service de physiologie, hôpital Avicenne, Bobigny, France
| | - G Mahay
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, CHU Rouen, Rouen, France
| | - C Barnig
- INSERM, EFS BFC, LabEx LipSTIC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, University Bourgogne Franche-Comté, Besançon, France; Service de pneumologie, oncologie thoracique et allergologie respiratoire, CHRU Besançon, Besançon, France
| | - N Guibert
- AP-HP, service de physiologie, hôpital Avicenne, Bobigny, France
| | - S Leroy
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, CNRS UMR 7275-FHU OncoAge, service de pneumologie oncologie thoracique et soins intensifs respiratoires, CHU de Nice, hôpital Pasteur, Nice, France
| | - L Guilleminault
- AP-HP, service de physiologie, hôpital Avicenne, Bobigny, France; Institut Toulousain des maladies infectieuses et inflammatoires (Infinity) inserm UMR1291-CNRS UMR5051-université Toulouse III, CRISALIS F-CRIN, Toulouse, France.
| |
Collapse
|
197
|
Abstract
The mammalian respiratory system or lung is a tree-like branching structure, and the main site of gas exchange with the external environment. Structurally, the lung is broadly classified into the proximal (or conducting) airways and the distal alveolar region, where the gas exchange occurs. In parallel with the respiratory tree, the pulmonary vasculature starts with large pulmonary arteries that subdivide rapidly ending in capillaries adjacent to alveolar structures to enable gas exchange. The NOTCH signalling pathway plays an important role in lung development, differentiation and regeneration post-injury. Signalling via the NOTCH pathway is mediated through activation of four NOTCH receptors (NOTCH1-4), with each receptor capable of regulating unique biological processes. Dysregulation of the NOTCH pathway has been associated with development and pathophysiology of multiple adult acute and chronic lung diseases. This includes accumulating evidence that alteration of NOTCH3 signalling plays an important role in the development and pathogenesis of chronic obstructive pulmonary disease, lung cancer, asthma, idiopathic pulmonary fibrosis and pulmonary arterial hypertension. Herein, we provide a comprehensive summary of the role of NOTCH3 signalling in regulating repair/regeneration of the adult lung, its association with development of lung disease and potential therapeutic strategies to target its signalling activity.
Collapse
|
198
|
Costantini C, Nunzi E, Romani L. From the nose to the lungs: the intricate journey of airborne pathogens amidst commensal bacteria. Am J Physiol Cell Physiol 2022; 323:C1036-C1043. [PMID: 36036448 PMCID: PMC9529274 DOI: 10.1152/ajpcell.00287.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The recent COVID-19 pandemic has dramatically brought the pitfalls of airborne pathogens to the attention of the scientific community. Not only viruses but also bacteria and fungi may exploit air transmission to colonize and infect potential hosts and be the cause of significant morbidity and mortality in susceptible populations. The efforts to decipher the mechanisms of pathogenicity of airborne microbes have brought to light the delicate equilibrium that governs the homeostasis of mucosal membranes. The microorganisms already thriving in the permissive environment of the respiratory tract represent a critical component of this equilibrium and a potent barrier to infection by means of direct competition with airborne pathogens or indirectly via modulation of the immune response. Moving down the respiratory tract, physicochemical and biological constraints promote site-specific expansion of microbes that engage in cross talk with the local immune system to maintain homeostasis and promote protection. In this review, we critically assess the site-specific microbial communities that an airborne pathogen encounters in its hypothetical travel along the respiratory tract and discuss the changes in the composition and function of the microbiome in airborne diseases by taking fungal and SARS-CoV-2 infections as examples. Finally, we discuss how technological and bioinformatics advancements may turn microbiome analysis into a valuable tool in the hands of clinicians to predict the risk of disease onset, the clinical course, and the response to treatment of individual patients in the direction of personalized medicine implementation.
Collapse
Affiliation(s)
- Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
199
|
Stancil IT, Michalski JE, Schwartz DA. An Airway-Centric View of Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2022; 206:410-416. [PMID: 35446237 PMCID: PMC12039158 DOI: 10.1164/rccm.202109-2219pp] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | - David A Schwartz
- Department of Medicine and
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
200
|
Human Nasal Organoids Model SARS-CoV-2 Upper Respiratory Infection and Recapitulate the Differential Infectivity of Emerging Variants. mBio 2022; 13:e0194422. [PMID: 35938726 PMCID: PMC9426414 DOI: 10.1128/mbio.01944-22] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The human upper respiratory tract, specifically the nasopharyngeal epithelium, is the entry portal and primary infection site of respiratory viruses. Productive infection of SARS-CoV-2 in the nasal epithelium constitutes the cellular basis of viral pathogenesis and transmissibility. Yet a robust and well-characterized in vitro model of the nasal epithelium remained elusive. Here we report an organoid culture system of the nasal epithelium. We derived nasal organoids from easily accessible nasal epithelial cells with a perfect establishment rate. The derived nasal organoids were consecutively passaged for over 6 months. We then established differentiation protocols to generate 3-dimensional differentiated nasal organoids and organoid monolayers of 2-dimensional format that faithfully simulate the nasal epithelium. Moreover, when differentiated under a slightly acidic pH, the nasal organoid monolayers represented the optimal correlate of the native nasal epithelium for modeling the high infectivity of SARS-CoV-2, superior to all existing organoid models. Notably, the differentiated nasal organoid monolayers accurately recapitulated higher infectivity and replicative fitness of the Omicron variant than the prior variants. SARS-CoV-2, especially the more transmissible Delta and Omicron variants, destroyed ciliated cells and disassembled tight junctions, thereby facilitating virus spread and transmission. In conclusion, we establish a robust organoid culture system of the human nasal epithelium for modeling upper respiratory infections and provide a physiologically-relevant model for assessing the infectivity of SARS-CoV-2 emerging variants.
Collapse
|