151
|
Boselli L, Pomili T, Donati P, Pompa PP. Nanosensors for Visual Detection of Glucose in Biofluids: Are We Ready for Instrument-Free Home-Testing? MATERIALS 2021; 14:ma14081978. [PMID: 33920934 PMCID: PMC8071272 DOI: 10.3390/ma14081978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022]
Abstract
Making frequent large-scale screenings for several diseases economically affordable would represent a real breakthrough in healthcare. One of the most promising routes to pursue such an objective is developing rapid, non-invasive, and cost-effective home-testing devices. As a first step toward a diagnostic revolution, glycemia self-monitoring represents a solid base to start exploring new diagnostic strategies. Glucose self-monitoring is improving people's life quality in recent years; however, current approaches still present vast room for improvement. In most cases, they still involve invasive sampling processes (i.e., finger-prick), quite discomforting for frequent measurements, or implantable devices which are costly and commonly dedicated to selected chronic patients, thus precluding large-scale monitoring. Thanks to their unique physicochemical properties, nanoparticles hold great promises for the development of rapid colorimetric devices. Here, we overview and analyze the main instrument-free nanosensing strategies reported so far for glucose detection, highlighting their advantages/disadvantages in view of their implementation as cost-effective rapid home-testing devices, including the potential use of alternative non-invasive biofluids as samples sources.
Collapse
Affiliation(s)
- Luca Boselli
- Nanobiointeractions and Nanodiagnostics, Italian Institute of Technology (IIT), Via Morego 30, 16163 Genova, Italy; (T.P.); (P.D.)
- Correspondence: (L.B.); (P.P.P.); Tel.: +39-010-2896-837 (P.P.P.)
| | - Tania Pomili
- Nanobiointeractions and Nanodiagnostics, Italian Institute of Technology (IIT), Via Morego 30, 16163 Genova, Italy; (T.P.); (P.D.)
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Paolo Donati
- Nanobiointeractions and Nanodiagnostics, Italian Institute of Technology (IIT), Via Morego 30, 16163 Genova, Italy; (T.P.); (P.D.)
| | - Pier P. Pompa
- Nanobiointeractions and Nanodiagnostics, Italian Institute of Technology (IIT), Via Morego 30, 16163 Genova, Italy; (T.P.); (P.D.)
- Correspondence: (L.B.); (P.P.P.); Tel.: +39-010-2896-837 (P.P.P.)
| |
Collapse
|
152
|
Tomei S, Manjunath HS, Murugesan S, Al Khodor S. The Salivary miRNome: A Promising Biomarker of Disease. Microrna 2021; 10:29-38. [PMID: 33845754 DOI: 10.2174/2211536610666210412154455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/20/2020] [Accepted: 02/22/2021] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs ranging from 18-24 nucleotides also known to regulate the human genome mainly at the post-transcriptional level. MiRNAs were shown to play an important role in most biological processes such as apoptosis and in the pathogenesis of many diseases such as cardiovascular diseases and cancer. Recent developments of advanced molecular high-throughput technologies have enhanced our knowledge of miRNAs. MiRNAs can now be discovered, interrogated, and quantified in various body fluids, and hence can serve as diagnostic and therapeutic markers for many diseases. While most studies use blood as a sample source to measure circulating miRNAs as possible biomarkers for disease pathogenesis, fewer studies have assessed the role of salivary miRNAs in health and disease. This review aims at providing an overview of the current knowledge of the salivary miRNome, addressing the technical aspects of saliva sampling and highlighting the applicability of miRNA screening to clinical practice.
Collapse
Affiliation(s)
- Sara Tomei
- Research Department, Sidra Medicine, Doha. Qatar
| | | | | | | |
Collapse
|
153
|
Yamamoto S, Okamura K, Fujii R, Kawano T, Ueda K, Yajima Y, Shiba K. Specimen-specific drift of densities defines distinct subclasses of extracellular vesicles from human whole saliva. PLoS One 2021; 16:e0249526. [PMID: 33831057 PMCID: PMC8032098 DOI: 10.1371/journal.pone.0249526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/21/2021] [Indexed: 12/26/2022] Open
Abstract
Extracellular vesicles (EVs) in body fluids constitute heterogenous populations, which mirror their diverse parental cells as well as distinct EV-generation pathways. Various methodologies have been proposed to differentiate EVs in order to deepen the current understanding of EV biology. Equilibrium density-gradient centrifugation has often been used to separate EVs based on their buoyant densities; however, the standard conditions used for the method do not necessarily allow all EVs to move to their equilibrium density positions, which complicates the categorization of EVs. Here, by prolonging ultracentrifugation time to 96 h and fractionating EVs both by floating up or spinning down directions, we allowed 111 EV-associated protein markers from the whole saliva of three healthy volunteers to attain equilibrium. Interestingly, the determined buoyant densities of the markers drifted in a specimen-specific manner, and drift patterns differentiated EVs into at least two subclasses. One class carried classical exosomal markers, such as CD63 and CD81, and the other was characterized by the molecules involved in membrane remodeling or vesicle trafficking. Distinct patterns of density drift may represent the differences in generation pathways of EVs.
Collapse
Affiliation(s)
- Satoshi Yamamoto
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College, Tokyo, Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Center for Child Health and Development, Tokyo, Japan
| | - Risa Fujii
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takamasa Kawano
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Tokyo Dental College, Chiba, Japan
| | - Koji Ueda
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yasutomo Yajima
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College, Tokyo, Japan
| | - Kiyotaka Shiba
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- * E-mail:
| |
Collapse
|
154
|
Davidovich E, Polak D, Brand HS, Shapira J, Shapiro R. Salivary biochemical variables in liver transplanted children and young adults. Eur Arch Paediatr Dent 2021; 22:257-263. [PMID: 33135122 DOI: 10.1007/s40368-020-00573-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To investigate associations between levels of blood parameters used to monitor liver-transplanted children with their salivary levels, and compare the salivary parameters of transplant recipients with those of healthy controls. METHODS Saliva and blood samples from 30 liver transplanted recipients, mean age 11.7 years and saliva from age and sex matched 27 healthy patients were analyzed using a standard complete blood count test. RESULTS Uric acid and alkaline phosphatase levels correlated significantly between saliva and blood samples in the transplanted subjects. Median salivary sodium level was significantly lower and the median salivary potassium level significantly higher in transplant recipients compared with healthy subjects. No differences were found between the groups in salivary glucose, urea, chloride, total protein, albumin, calcium, phosphorus, uric acid, total bilirubin, alkaline phosphatase, lactate dehydrogenase (LDH), glutamic oxaloacetic transaminase (GOT), triglycerides, cholesterol, iron, transferrin, glutamic pyruvic transaminase (GPT) and gamma-glutamyltranspeptidase (GGT). CONCLUSION Specific correlations of serum and salivary chemistry were found in liver transplant patients. Such information may lead to the development of noninvasive monitoring tools for this population.
Collapse
Affiliation(s)
- E Davidovich
- Department of Pediatric Dentistry, Hebrew University, Hadassah School of Dental Medicine, Jerusalem, Israel.
| | - D Polak
- Department of Periodontology, Hebrew University, Hadassah School of Dental Medicine, Jerusalem, Israel
| | - H S Brand
- Department of Periodontology and Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - J Shapira
- Department of Pediatric Dentistry, Hebrew University, Hadassah School of Dental Medicine, Jerusalem, Israel
| | - R Shapiro
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
155
|
Comfort N, Bloomquist TR, Shephard AP, Petty CR, Cunningham A, Hauptman M, Phipatanakul W, Baccarelli A. Isolation and characterization of extracellular vesicles in saliva of children with asthma. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2021; 2:29-48. [PMID: 34368811 PMCID: PMC8340923 DOI: 10.20517/evcna.2020.09] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/21/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
AIM To confirm the presence of extracellular vesicles (EVs) in cell-free saliva (CFS) of children with asthma and describe the isolated EV population. METHODS A pooled sample of CFS EVs isolated from 180 participants using ExoQuick-TC was examined in downstream analyses. Transmission electron microscopy (TEM) was used to confirm the presence of EVs. Nanoparticle tracking analysis (NTA) and single particle interferometric reflectance imaging sensing (SP-IRIS) with fluorescence were used for sizing, counting, and phenotyping of EVs. Capillary immunoassays were used for protein quantitation. RESULTS TEM confirmed the presence of EVs of diverse sizes, indicating the prep contained a heterogeneous population of EVs. Capillary immunoassays confirmed the presence of EV-associated proteins (CD9, CD63, CD81, ICAM-1, and ANXA5) and indicated limited cellular contamination. As others have also reported, there were discrepancies in the EV sizing and enumeration across platforms. Fluorescent NTA detected particles with a mode diameter of ~90 nm, whereas SP-IRIS reported sizes of ~55-60 nm that more closely approximated the TEM results. Consistent with protein immunoassay results, SP-IRIS with fluorescence showed that the majority of these EVs were CD9- and CD63-positive, with little expression of CD81. CONCLUSION EVs from CFS can be isolated using a high-throughput method that can be scaled to large epidemiological studies. To our knowledge, we are the first to characterize CFS EVs from patients with asthma. The use of CFS EVs as potential novel biomarkers in asthma warrants further investigation and opens a new avenue of research for future studies.
Collapse
Affiliation(s)
- Nicole Comfort
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Tessa R. Bloomquist
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Alex P. Shephard
- NanoView Biosciences, Malvern Hills Science Park, Malvern, Worcestershire WR14 3SZ, UK
| | - Carter R. Petty
- Brigham and Women's Hospital, Boston, MA; Boston Children's Hospital, Clinical Research Center Boston, MA 02115, USA
| | | | - Marissa Hauptman
- Harvard Medical School, Boston, MA 02115, USA
- Division of Allergy and Immunology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Wanda Phipatanakul
- Harvard Medical School, Boston, MA 02115, USA
- Division of Allergy and Immunology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| |
Collapse
|
156
|
Zian Z, Bouhoudan A, Mourabit N, Azizi G, Bennani Mechita M. Salivary Cytokines as Potential Diagnostic Biomarkers for Systemic Lupus Erythematosus Disease. Mediators Inflamm 2021; 2021:8847557. [PMID: 33776578 PMCID: PMC7979309 DOI: 10.1155/2021/8847557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/05/2021] [Accepted: 03/03/2021] [Indexed: 01/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune inflammatory disease characterized by an unknown etiology and a highly variable clinical presentation. This clinical heterogeneity might be explained by dysregulation of tolerance to self and apoptotic mechanisms, overproduction of autoantibodies, and abnormal cytokine levels. Cytokine imbalance levels have been associated with disease activity and severity in SLE patients. In the last years, salivary cytokines related to SLE have gained significant attention and researchers have begun to focus on the identification of cytokines in the saliva of SLE patients using it as a diagnostic fluid for the inflammatory process underlying SLE. This review highlights and summarizes recent studies revealing the cytokines that have been identified in the saliva of individuals with SLE. Data reported and discussed in this report may provide useful additional information to better understand the mechanisms associated with the disease.
Collapse
Affiliation(s)
- Zeineb Zian
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Assia Bouhoudan
- Faculty of Sciences of Tetouan, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Nadira Mourabit
- Higher Institute of Nursing Professions and Technical Health of Tangier, Morocco
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohcine Bennani Mechita
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
157
|
Villa TG, Sánchez-Pérez Á, Sieiro C. Oral lichen planus: a microbiologist point of view. Int Microbiol 2021; 24:275-289. [PMID: 33751292 PMCID: PMC7943413 DOI: 10.1007/s10123-021-00168-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Oral lichen planus (OLP) is a chronic disease of uncertain etiology, although it is generally considered as an immune-mediated disease that affects the mucous membranes and even the skin and nails. Over the years, this disease was attributed to a variety of causes, including different types of microorganisms. This review analyzes the present state of the art of the disease, from a microbiological point of view, while considering whether or not the possibility of a microbial origin for the disease can be supported. From the evidence presented here, OLP should be considered an immunological disease, as it was initially proposed, as opposed to an illness of microbiological origin. The different microorganisms so far described as putative disease-causing agents do not fulfill Koch’s postulates; they are, actually, not the cause, but a result of the disease that provides the right circumstances for microbial colonization. This means that, at this stage, and unless new data becomes available, no microorganism can be envisaged as the causative agent of lichen planus.
Collapse
Affiliation(s)
- Tomás G. Villa
- Department of Microbiology, Faculty of Pharmacy, University of Santiago de Compostela, 15706 Santiago de Compostela, EU Spain
| | - Ángeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camperdown, NSW 2006 Australia
| | - Carmen Sieiro
- Department of Functional Biology and Health Sciences, Microbiology Area, Faculty of Biology, University of Vigo, 36310 Vigo, Pontevedra, EU Spain
| |
Collapse
|
158
|
Wang J, Yu J, Wang T, Li C, Wei Y, Deng X, Chen X. Emerging intraoral biosensors. J Mater Chem B 2021; 8:3341-3356. [PMID: 31904075 DOI: 10.1039/c9tb02352f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biomedical devices that involved continuous and real-time health-care monitoring have drawn much attention in modern medicine, of which skin electronics and implantable devices are widely investigated. Skin electronics are characterized for their non-invasive access to the physiological signals, and implantable devices are superior at the diagnosis and therapy integration. Despite the significant progress achieved, many gaps remain to be explored to provide a more comprehensive overview of human health. As the connecting point of the outer environment and human systems, the oral cavity contains many unique biomarkers that are absent in skin or inner organs, and hence, this could become a promising alternative locus for designing health-care monitoring devices. In this review, we outline the status of the oral cavity during the communication of the environment and human systems and compare the intraoral devices with skin electronics and implantable devices from the biophysical and biochemical aspects. We further summarize the established diagnosis database and technologies that could be adopted to design intraoral biosensors. Finally, the challenges and potential opportunities for intraoral biosensors are discussed. Intraoral biosensors could become an important complement for existing biomedical devices to constitute a more reliable health-care monitoring system.
Collapse
Affiliation(s)
- Jianwu Wang
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | | | | | | | | | | | | |
Collapse
|
159
|
Derruau S, Gobinet C, Untereiner V, Sockalingum GD, Nassif A, Viguier M, Piot O, Lorimier S. New insights into hidradenitis suppurativa diagnosis via salivary infrared biosignatures: A pilot study. JOURNAL OF BIOPHOTONICS 2021; 14:e202000327. [PMID: 33231348 DOI: 10.1002/jbio.202000327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 06/11/2023]
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease which can lead to a prolonged physical disability. HS diagnosis is exclusively clinical with the absence of biomarkers. Our study aims at assessing the HS-diagnostic potential of infrared spectroscopy from saliva, as a biofluid reflecting the body's pathophysiological state. Infrared spectra from 127 patients (57 HS and 70 non-HS) were processed by multivariate methods: principal component analysis coupled with Kruskal-Wallis or Mann-Whitney tests to identify discriminant spectral wavenumbers and linear discriminant analysis to evaluate the performances of HS-diagnostic approach. Infrared features, mainly in the 1300 cm-1 -1600 cm-1 region, were identified as discriminant for HS and prediction models revealed diagnostic performances of about 80%. Tobacco and obesity, two main HS risk factors, do not seem to alter the infrared diagnosis. This pilot study shows the potential of salivary "liquid biopsy" associated to vibrational spectroscopy to develop a personalized medical approach for HS patients' management.
Collapse
Affiliation(s)
- Stéphane Derruau
- Université de Reims Champagne-Ardenne, BioSpect EA 7506, UFR de Pharmacie, Reims, France
- Université de Reims Champagne-Ardenne, UFR Odontologie, Département de Biologie Orale, Reims, France
- Centre Hospitalier Universitaire de Reims, Pôle de Médecine Bucco-dentaire, Reims, France
| | - Cyril Gobinet
- Université de Reims Champagne-Ardenne, BioSpect EA 7506, UFR de Pharmacie, Reims, France
| | | | - Ganesh D Sockalingum
- Université de Reims Champagne-Ardenne, BioSpect EA 7506, UFR de Pharmacie, Reims, France
| | - Aude Nassif
- Service de Pathologie Infectieuse et Tropicale, Institut Pasteur, Centre Médical, Paris, France
| | - Manuelle Viguier
- Centre Hospitalier Universitaire de Reims, Service de Dermatologie -Vénéréologie, Reims, France
| | - Olivier Piot
- Université de Reims Champagne-Ardenne, BioSpect EA 7506, UFR de Pharmacie, Reims, France
- Université de Reims Champagne-Ardenne, PICT, Reims, France
| | - Sandrine Lorimier
- Université de Reims Champagne-Ardenne, UFR Odontologie, Département de Biologie Orale, Reims, France
- Centre Hospitalier Universitaire de Reims, Pôle de Médecine Bucco-dentaire, Reims, France
- Université de Reims Champagne-Ardenne, GRESPI EA-4694, UFR Sciences Exactes et Naturelles, Reims, France
| |
Collapse
|
160
|
Derruau S, Bouchet J, Nassif A, Baudet A, Yasukawa K, Lorimier S, Prêcheur I, Bloch-Zupan A, Pellat B, Chardin H, Jung S. COVID-19 and Dentistry in 72 Questions: An Overview of the Literature. J Clin Med 2021; 10:779. [PMID: 33669185 PMCID: PMC7919689 DOI: 10.3390/jcm10040779] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
The outbreak of Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has significantly affected the dental care sector. Dental professionals are at high risk of being infected, and therefore transmitting SARS-CoV-2, due to the nature of their profession, with close proximity to the patient's oropharyngeal and nasal regions and the use of aerosol-generating procedures. The aim of this article is to provide an update on different issues regarding SARS-CoV-2 and COVID-19 that may be relevant for dentists. Members of the French National College of Oral Biology Lecturers ("Collège National des EnseignantS en Biologie Orale"; CNESBO-COVID19 Task Force) answered seventy-two questions related to various topics, including epidemiology, virology, immunology, diagnosis and testing, SARS-CoV-2 transmission and oral cavity, COVID-19 clinical presentation, current treatment options, vaccine strategies, as well as infection prevention and control in dental practice. The questions were selected based on their relevance for dental practitioners. Authors independently extracted and gathered scientific data related to COVID-19, SARS-CoV-2 and the specific topics using scientific databases. With this review, the dental practitioners will have a general overview of the COVID-19 pandemic and its impact on their practice.
Collapse
Affiliation(s)
- Stéphane Derruau
- UFR Odontologie, Université de Reims Champagne-Ardenne, 51100 Reims, France; (S.D.); (S.L.)
- Pôle de Médecine Bucco-dentaire, Centre Hospitalier Universitaire de Reims, 51092 Reims, France
- BioSpecT EA-7506, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51096 Reims, France
| | - Jérôme Bouchet
- UFR Odontologie-Montrouge, Université de Paris, 92120 Montrouge, France; (J.B.); (B.P.); (H.C.)
- Laboratory “Orofacial Pathologies, Imaging and Biotherapies” URP 2496, University of Paris, 92120 Montrouge, France
| | - Ali Nassif
- UFR Odontologie-Garancière, Université de Paris, 75006 Paris, France;
- AP-HP, Sites hospitaliers Pitié Salpêtrière et Rothschild, Service d’Orthopédie Dento-Faciale, Centre de Référence Maladies Rares Orales et Dentaires (O-Rares), 75013-75019 Paris, France
- INSERM, UMR_S 1138, Laboratoire de Physiopathologie Orale et Moléculaire, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Alexandre Baudet
- Faculté de Chirurgie Dentaire, Université de Lorraine, 54505 Vandœuvre-lès-Nancy, France; (A.B.); (K.Y.)
- Centre Hospitalier Régional Universitaire de Nancy, 54000 Nancy, France
| | - Kazutoyo Yasukawa
- Faculté de Chirurgie Dentaire, Université de Lorraine, 54505 Vandœuvre-lès-Nancy, France; (A.B.); (K.Y.)
- Centre Hospitalier Régional Universitaire de Nancy, 54000 Nancy, France
| | - Sandrine Lorimier
- UFR Odontologie, Université de Reims Champagne-Ardenne, 51100 Reims, France; (S.D.); (S.L.)
- Pôle de Médecine Bucco-dentaire, Centre Hospitalier Universitaire de Reims, 51092 Reims, France
- Université de Reims Champagne-Ardenne, MATIM EA, UFR Sciences, 51687 Reims, France
| | - Isabelle Prêcheur
- Faculté de Chirurgie Dentaire, Université Côte d’Azur, 06000 Nice, France;
- Pôle Odontologie, Centre Hospitalier Universitaire de Nice, 06000 Nice, France
- Laboratoire Microbiologie Orale, Immunothérapie et Santé (MICORALIS EA 7354), Faculté de Chirurgie Dentaire, 06300 Nice, France
| | - Agnès Bloch-Zupan
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000 Strasbourg, France;
- Pôle de Médecine et de Chirurgie Bucco-Dentaires, Centre de Référence Maladies Rares Orales et Dentaires (O-Rares), Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Bernard Pellat
- UFR Odontologie-Montrouge, Université de Paris, 92120 Montrouge, France; (J.B.); (B.P.); (H.C.)
- Laboratory “Orofacial Pathologies, Imaging and Biotherapies” URP 2496, University of Paris, 92120 Montrouge, France
| | - Hélène Chardin
- UFR Odontologie-Montrouge, Université de Paris, 92120 Montrouge, France; (J.B.); (B.P.); (H.C.)
- AP-HP, Hôpital Henri Mondor, 94010 Créteil, France
- ESPCI, UMR CBI 8231, 75005 Paris, France
| | - Sophie Jung
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000 Strasbourg, France;
- Pôle de Médecine et de Chirurgie Bucco-Dentaires, Centre de Référence Maladies Rares Orales et Dentaires (O-Rares), Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- INSERM UMR_S 1109 «Molecular Immuno-Rheumatology», Institut Thématique Interdisciplinaire de Médecine de Précision de Strasbourg, Transplantex NG, Fédération hospitalo-universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, 67000 Strasbourg, France
| | | |
Collapse
|
161
|
Hiraga C, Yamamoto S, Hashimoto S, Kasahara M, Minamisawa T, Matsumura S, Katakura A, Yajima Y, Nomura T, Shiba K. Pentapartite fractionation of particles in oral fluids by differential centrifugation. Sci Rep 2021; 11:3326. [PMID: 33558596 PMCID: PMC7870959 DOI: 10.1038/s41598-021-82451-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/18/2021] [Indexed: 12/30/2022] Open
Abstract
Oral fluids (OFs) contain small extracellular vesicles (sEVs or exosomes) that carry disease-associated diagnostic molecules. However, cells generate extracellular vesicles (EVs) other than sEVs, so the EV population is quite heterogeneous. Furthermore, molecules not packaged in EVs can also serve as diagnostic markers. For these reasons, developing a complete picture of particulate matter in the oral cavity is important before focusing on specific subtypes of EVs. Here, we used differential centrifugation to fractionate human OFs from healthy volunteers and patients with oral squamous cell carcinoma into 5 fractions, and we characterized the particles, nucleic acids, and proteins in each fraction. Canonical exosome markers, including CD63, CD9, CD133, and HSP70, were found in all fractions, whereas CD81 and AQP5 were enriched in the 160K fraction, with non-negligible amounts in the 2K fraction. The 2K fraction also contained its characteristic markers that included short derivatives of EGFR and E-cadherin, as well as an autophagosome marker, LC3, and large multi-layered vesicles were observed by electronic microscopy. Most of the DNA and RNA was recovered from the 0.3K and 2K fractions, with some in the 160K fraction. These results can provide guideline information for development of purpose-designed OF-based diagnostic systems.
Collapse
Affiliation(s)
- Chiho Hiraga
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Ariake 3-8-31, Koto-ku, Tokyo, 135-8550, Japan
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Tokyo Dental College, 5-11-13 Sugano, Ichikawa, Chiba, 272-8513, Japan
| | - Satoshi Yamamoto
- Department of Pharmacology, Tokyo Dental College, 2-1-14 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Sadamitsu Hashimoto
- Laboratory of Biology, Tokyo Dental College, 2-9-7 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Masataka Kasahara
- Department of Pharmacology, Tokyo Dental College, 2-1-14 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Tamiko Minamisawa
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Ariake 3-8-31, Koto-ku, Tokyo, 135-8550, Japan
| | - Sachiko Matsumura
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Ariake 3-8-31, Koto-ku, Tokyo, 135-8550, Japan
| | - Akira Katakura
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Yasutomo Yajima
- Department of Oral Implantology, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Takeshi Nomura
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Tokyo Dental College, 5-11-13 Sugano, Ichikawa, Chiba, 272-8513, Japan
| | - Kiyotaka Shiba
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Ariake 3-8-31, Koto-ku, Tokyo, 135-8550, Japan.
| |
Collapse
|
162
|
Menini M, De Giovanni E, Bagnasco F, Delucchi F, Pera F, Baldi D, Pesce P. Salivary Micro-RNA and Oral Squamous Cell Carcinoma: A Systematic Review. J Pers Med 2021; 11:jpm11020101. [PMID: 33557138 PMCID: PMC7913841 DOI: 10.3390/jpm11020101] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a widespread malignancy with high mortality. In particular, a delay in its diagnosis dramatically decreases the survival rate. The aim of this systematic review was to investigate and summarize clinical results in the literature, regarding the potential use of salivary microRNAs (miRNAs) as diagnostic and prognostic biomarkers for OSCC patients. Twelve papers were selected, including both case-control and cohort studies, and all of them detected significantly dysregulated miRNAs in OSCC patients compared to healthy controls. Based on our results, salivary miRNAs might provide a non-invasive and cost-effective method in the diagnosis of OSCC, and also to monitor more easily its evolution and therapeutic response and therefore aid in the establishment of specific therapeutic strategies.
Collapse
Affiliation(s)
- Maria Menini
- Division of Prosthodontics and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genova, 16126 Genova, Italy; (E.D.G.); (F.B.); (F.D.); (D.B.); (P.P.)
- Correspondence: ; Tel.: +39-010-3537421
| | - Emanuele De Giovanni
- Division of Prosthodontics and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genova, 16126 Genova, Italy; (E.D.G.); (F.B.); (F.D.); (D.B.); (P.P.)
| | - Francesco Bagnasco
- Division of Prosthodontics and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genova, 16126 Genova, Italy; (E.D.G.); (F.B.); (F.D.); (D.B.); (P.P.)
| | - Francesca Delucchi
- Division of Prosthodontics and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genova, 16126 Genova, Italy; (E.D.G.); (F.B.); (F.D.); (D.B.); (P.P.)
| | - Francesco Pera
- Department of Surgical Sciences, CIR-Dental School, University of Turin, 10126 Turin, Italy;
| | - Domenico Baldi
- Division of Prosthodontics and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genova, 16126 Genova, Italy; (E.D.G.); (F.B.); (F.D.); (D.B.); (P.P.)
| | - Paolo Pesce
- Division of Prosthodontics and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genova, 16126 Genova, Italy; (E.D.G.); (F.B.); (F.D.); (D.B.); (P.P.)
| |
Collapse
|
163
|
Janigro D, Bailey DM, Lehmann S, Badaut J, O'Flynn R, Hirtz C, Marchi N. Peripheral Blood and Salivary Biomarkers of Blood-Brain Barrier Permeability and Neuronal Damage: Clinical and Applied Concepts. Front Neurol 2021; 11:577312. [PMID: 33613412 PMCID: PMC7890078 DOI: 10.3389/fneur.2020.577312] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Within the neurovascular unit (NVU), the blood–brain barrier (BBB) operates as a key cerebrovascular interface, dynamically insulating the brain parenchyma from peripheral blood and compartments. Increased BBB permeability is clinically relevant for at least two reasons: it actively participates to the etiology of central nervous system (CNS) diseases, and it enables the diagnosis of neurological disorders based on the detection of CNS molecules in peripheral body fluids. In pathological conditions, a suite of glial, neuronal, and pericyte biomarkers can exit the brain reaching the peripheral blood and, after a process of filtration, may also appear in saliva or urine according to varying temporal trajectories. Here, we specifically examine the evidence in favor of or against the use of protein biomarkers of NVU damage and BBB permeability in traumatic head injury, including sport (sub)concussive impacts, seizure disorders, and neurodegenerative processes such as Alzheimer's disease. We further extend this analysis by focusing on the correlates of human extreme physiology applied to the NVU and its biomarkers. To this end, we report NVU changes after prolonged exercise, freediving, and gravitational stress, focusing on the presence of peripheral biomarkers in these conditions. The development of a biomarker toolkit will enable minimally invasive routines for the assessment of brain health in a broad spectrum of clinical, emergency, and sport settings.
Collapse
Affiliation(s)
- Damir Janigro
- Department of Physiology Case Western Reserve University, Cleveland, OH, United States.,FloTBI Inc., Cleveland, OH, United States
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, United Kingdom
| | - Sylvain Lehmann
- IRMB, INM, UFR Odontology, University Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Jerome Badaut
- Brain Molecular Imaging Lab, CNRS UMR 5287, INCIA, University of Bordeaux, Bordeaux, France
| | - Robin O'Flynn
- IRMB, INM, UFR Odontology, University Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Christophe Hirtz
- IRMB, INM, UFR Odontology, University Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM, University of Montpellier), Montpellier, France
| |
Collapse
|
164
|
Datla S, Kitchanan S, Sethuraman G. Diagnostic Reliability of Salivary C-Reactive Protein as an Alternative Noninvasive Biomarker of Neonatal Sepsis. Indian Pediatr 2021. [DOI: 10.1007/s13312-021-2284-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
165
|
Relvas M, Regueira-Iglesias A, Balsa-Castro C, Salazar F, Pacheco JJ, Cabral C, Henriques C, Tomás I. Relationship between dental and periodontal health status and the salivary microbiome: bacterial diversity, co-occurrence networks and predictive models. Sci Rep 2021; 11:929. [PMID: 33441710 PMCID: PMC7806737 DOI: 10.1038/s41598-020-79875-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
The present study used 16S rRNA gene amplicon sequencing to assess the impact on salivary microbiome of different grades of dental and periodontal disease and the combination of both (hereinafter referred to as oral disease), in terms of bacterial diversity, co-occurrence network patterns and predictive models. Our scale of overall oral health was used to produce a convenience sample of 81 patients from 270 who were initially recruited. Saliva samples were collected from each participant. Sequencing was performed in Illumina MiSeq with 2 × 300 bp reads, while the raw reads were processed according to the Mothur pipeline. The statistical analysis of the 16S rDNA sequencing data at the species level was conducted using the phyloseq, DESeq2, Microbiome, SpiecEasi, igraph, MixOmics packages. The simultaneous presence of dental and periodontal pathology has a potentiating effect on the richness and diversity of the salivary microbiota. The structure of the bacterial community in oral health differs from that present in dental, periodontal or oral disease, especially in high grades. Supragingival dental parameters influence the microbiota’s abundance more than subgingival periodontal parameters, with the former making a greater contribution to the impact that oral health has on the salivary microbiome. The possible keystone OTUs are different in the oral health and disease, and even these vary between dental and periodontal disease: half of them belongs to the core microbiome and are independent of the abundance parameters. The salivary microbiome, involving a considerable number of OTUs, shows an excellent discriminatory potential for distinguishing different grades of dental, periodontal or oral disease; considering the number of predictive OTUs, the best model is that which predicts the combined dental and periodontal status.
Collapse
Affiliation(s)
- M Relvas
- Institute of Research and Advanced Training in Health Sciences and Tecnologies (IINFACTS), IUCS-Cespu-Instituto Universitário de Ciencias da Saúde, Gandra, Paredes, Portugal
| | - A Regueira-Iglesias
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Galicia, 15872, Santiago de Compostela, Spain
| | - C Balsa-Castro
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Galicia, 15872, Santiago de Compostela, Spain
| | - F Salazar
- Institute of Research and Advanced Training in Health Sciences and Tecnologies (IINFACTS), IUCS-Cespu-Instituto Universitário de Ciencias da Saúde, Gandra, Paredes, Portugal
| | - J J Pacheco
- Institute of Research and Advanced Training in Health Sciences and Tecnologies (IINFACTS), IUCS-Cespu-Instituto Universitário de Ciencias da Saúde, Gandra, Paredes, Portugal
| | - C Cabral
- Institute of Research and Advanced Training in Health Sciences and Tecnologies (IINFACTS), IUCS-Cespu-Instituto Universitário de Ciencias da Saúde, Gandra, Paredes, Portugal
| | - C Henriques
- Institute of Research and Advanced Training in Health Sciences and Tecnologies (IINFACTS), IUCS-Cespu-Instituto Universitário de Ciencias da Saúde, Gandra, Paredes, Portugal
| | - I Tomás
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Galicia, 15872, Santiago de Compostela, Spain.
| |
Collapse
|
166
|
Janíková M, Hodosy J, Boor P, Klempa B, Celec P. Loop-mediated isothermal amplification for the detection of SARS-CoV-2 in saliva. Microb Biotechnol 2021; 14:307-316. [PMID: 33497538 PMCID: PMC7888461 DOI: 10.1111/1751-7915.13737] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
In the fight against the recent COVID-19 pandemics, testing is crucial. Nasopharyngeal swabs and real-time RT-PCR are used for the detection of the viral RNA. The collection of saliva is non-invasive, pain-free and does not require trained personnel. An alternative to RT-PCR is loop-mediated isothermal amplification coupled with reverse transcription (RT-LAMP) that is easy to perform, quick and does not require a thermal cycler. The aim of this study was to test whether SARS-CoV-2 RNA can be detected directly in saliva using RT-LAMP. We have tested 16 primer mixes from the available literature in three rounds of sensitivity assays. The selected RT-LAMP primer mix has a limit of detection of 6 copies of viral RNA per reaction in comparison with RT-PCR with 1 copy per reaction. Whole saliva, as well as saliva collected using Salivette collection tubes, interfered with the RT-LAMP analysis. Neither Chelex-100 nor protease treatment of saliva prevented the inhibitory effect of saliva. With the addition of the ribonuclease inhibitor, the sensitivity of the RT-LAMP assay was 12 copies per reaction of RNA in Salivette® saliva samples and 6 copies per reaction of RNA in whole saliva samples. This study shows that it is possible to combine the use of saliva and RT-LAMP for SARS-CoV-2 RNA detection without RNA extraction which was confirmed on a small set of correctly diagnosed clinical samples. Further studies should prove whether this protocol is suitable for point of care testing in the clinical setting.
Collapse
Affiliation(s)
- Monika Janíková
- Institute of Molecular BiomedicineFaculty of MedicineComenius UniversityBratislavaSlovakia
| | - Július Hodosy
- Institute of Molecular BiomedicineFaculty of MedicineComenius UniversityBratislavaSlovakia
- University HospitalBratislavaSlovakia
| | - Peter Boor
- Institute of PathologyDepartment of NephrologyUniversity Clinic of the RWTHAachenGermany
| | - Boris Klempa
- Institute of VirologyBiomedical Research CenterSlovak Academy of SciencesBratislavaSlovakia
| | - Peter Celec
- Institute of Molecular BiomedicineFaculty of MedicineComenius UniversityBratislavaSlovakia
- Institute of PathophysiologyFaculty of MedicineComenius UniversityBratislavaSlovakia
- Department of Molecular BiologyFaculty of Natural SciencesComenius UniversityBratislavaSlovakia
| |
Collapse
|
167
|
Goldoni R, Farronato M, Connelly ST, Tartaglia GM, Yeo WH. Recent advances in graphene-based nanobiosensors for salivary biomarker detection. Biosens Bioelectron 2021; 171:112723. [PMID: 33096432 PMCID: PMC7666013 DOI: 10.1016/j.bios.2020.112723] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/11/2022]
Abstract
As biosensing research is rapidly advancing due to significant developments in materials, chemistry, and electronics, researchers strive to build cutting-edge biomedical devices capable of detecting health-monitoring biomarkers with high sensitivity and specificity. Biosensors using nanomaterials are highly promising because of the wide detection range, fast response time, system miniaturization, and enhanced sensitivity. In the recent development of biosensors and electronics, graphene has rapidly gained popularity due to its superior electrical, biochemical, and mechanical properties. For biomarker detection, human saliva offers easy access with a large variety of analytes, making it a promising candidate for its use in point-of-care (POC) devices. Here, we report a comprehensive review that summarizes the most recent graphene-based nanobiosensors and oral bioelectronics for salivary biomarker detection. We discuss the details of structural designs of graphene electronics, use cases of salivary biomarkers, the performance of existing sensors, and applications in health monitoring. This review also describes current challenges in materials and systems and future directions of the graphene bioelectronics for clinical POC applications. Collectively, the main contribution of this paper is to deliver an extensive review of the graphene-enabled biosensors and oral electronics and their successful applications in human salivary biomarker detection.
Collapse
Affiliation(s)
- Riccardo Goldoni
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Atlanta, GA, 30332, USA; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Marco Farronato
- Department of Medicine, Surgery, and Dentistry, Università Degli Studi di Milano, Milan, Italy; Maxillofacial and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Italy
| | - Stephen Thaddeus Connelly
- Department of Oral & Maxillofacial Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Gianluca Martino Tartaglia
- Department of Medicine, Surgery, and Dentistry, Università Degli Studi di Milano, Milan, Italy; Maxillofacial and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Italy
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, 30332, USA; Center for Human-Centric Interfaces and Engineering, Neural Engineering Center, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
168
|
Irani S. New Insights into Oral Cancer-Risk Factors and Prevention: A Review of Literature. Int J Prev Med 2020; 11:202. [PMID: 33815726 PMCID: PMC8000242 DOI: 10.4103/ijpvm.ijpvm_403_18] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
The oral cancer constitutes 48% of head and neck cancer cases. Ninety percent of oral cancer cases are histologically diagnosed as oral squamous cell carcinomas (OSCCs). Despite new management strategies, the 5-year survival rate of oral cancer is still below 50% in most countries. Head and neck cancers are heterogeneous tumors, and this characteristic of them provides a challenge to treatment plan. Due to the poor outcomes in oral cancer, prevention is a necessity. In this review, a relevant English Literature search in PubMed, ScienceDirect, and Google Scholar from 2000 to mid-2018 was performed. All published articles related to oral cancer and its prevention were included. The risk factors of oral cancer and strategies of oral cancer prevention will be discussed.
Collapse
Affiliation(s)
- Soussan Irani
- Dental Research Centre, Department of Oral Pathology, Dental Faculty, Hamadan University of Medical Sciences, Hamadan, Iran
- School of Medicine, Griffith University, Gold Coast, Australia
| |
Collapse
|
169
|
Gopinath D, Kunnath Menon R, Chun Wie C, Banerjee M, Panda S, Mandal D, Behera PK, Roychoudhury S, Kheur S, George Botelho M, Johnson NW. Salivary bacterial shifts in oral leukoplakia resemble the dysbiotic oral cancer bacteriome. J Oral Microbiol 2020; 13:1857998. [PMID: 33391629 PMCID: PMC7734041 DOI: 10.1080/20002297.2020.1857998] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective: While some oral carcinomas appear to arise de novo, others develop within long-standing conditions of the oral cavity that have malignant potential, now known as oral potentially malignant disorders (OPMDs). The oral bacteriome associated with OPMD has been studied to a lesser extent than that associated with oral cancer. To characterize the association in detail we compared the bacteriome in whole mouth fluid (WMF) in patients with oral leukoplakia, oral cancer and healthy controls. Methods: WMF bacteriome from 20 leukoplakia patients, 31 patients with oral cancer and 23 healthy controls were profiled using the Illumina MiSeq platform. Sequencing reads were processed using DADA2, and taxonomical classification was performed using the phylogenetic placement method. Sparse Partial Least Squares Regression Discriminant Analysis model was used to identify bacterial taxa that best discriminate the studied groups. Results: We found considerable overlap between the WMF bacteriome of leukoplakia and oral cancer while a clearer separation between healthy controls and the former two disorders was observed. Specifically, the separation was attributed to 14 taxa belonging to the genera Megaspheara, unclassified enterobacteria, Prevotella, Porphyromonas, Rothia and Salmonella, Streptococcus, and Fusobacterium. The most discriminative bacterial genera between leukoplakia and oral cancer were Megasphaera, unclassified Enterobacteriae, Salmonella and Prevotella. Conclusion: Oral bacteria may play a role in the early stages of oral carcinogenesis as a dysbiotic bacteriome is associated with oral leukoplakia and this resembles that of oral cancer more than healthy controls. Our findings may have implications for developing oral cancer prevention strategies targeting early microbial drivers of oral carcinogenesis.
Collapse
Affiliation(s)
- Divya Gopinath
- Faculty of Dentistry, University of Hong Kong, Hong Kong SAR, China.,Oral Diagnostics and Surgical Science, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Rohit Kunnath Menon
- Clinical Dentistry Division, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Chong Chun Wie
- School of Pharmacy, Monash University, Selangor, Malaysia
| | - Moinak Banerjee
- Human Molecular Genetics Lab, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Swagatika Panda
- Department of Oral Pathology and Microbiology, Siksha O Anusandhan University, Bhubaneswar, India
| | - Deviprasad Mandal
- Department of Oral Pathology and Microbiology, Siksha O Anusandhan University, Bhubaneswar, India
| | - Paresh Kumar Behera
- Head and Neck Oncology, Acharya Harihara Regional Cancer Centre, Bhubaneswar, India
| | - Susanta Roychoudhury
- Basic research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Supriya Kheur
- Department of Oral Pathology and Microbiology, D.Y. Patil Dental College, Pune, India
| | | | - Newell W Johnson
- Faculty of Dentistry, University of Hong Kong, Hong Kong SAR, China.,Menzies Health Institute Queensland and School of Dentistry and Oral Health, Griffith University, Australia.,Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, UK
| |
Collapse
|
170
|
Abstract
Introduction: Saliva is an ideal biofluid that can be collected in a noninvasive manner, enabling safe and frequent screening of various diseases. Recent studies have revealed that salivary metabolomics analysis has the potential to detect both oral and systemic cancers. Area covered: We reviewed the technical aspects, as well as applications, of salivary metabolomics for cancer detection. The topics include the effects of preconditioning and the method of sample collection, sample storage, processing, measurement, data analysis, and validation of the results. We also examined the rational relationship between salivary biomarkers and tumors distant from the oral cavity. A strategy to establish standard operating protocols for obtaining reproducible quantification data is also discussed Expert opinion: Salivary metabolomics reflects oral and systematic health status, which potently enables cancer detection. The sensitivity and specificity of each marker and their combinations have been well evaluated, but a validation study is required. Further, the standard operating protocol for each procedure should be established to obtain reproducible data before clinical usage.
Collapse
Affiliation(s)
- Masahiro Sugimoto
- Research and Development Centre for Minimally Invasive Therapies, Medical Research Institute, Tokyo Medical University , Tokyo, Japan.,Institute for Advanced Biosciences, Keio University , Yamagata, Japan
| |
Collapse
|
171
|
Pappa E, Vougas K, Zoidakis J, Vastardis H. Proteomic advances in salivary diagnostics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140494. [DOI: 10.1016/j.bbapap.2020.140494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/21/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022]
|
172
|
Hernández Jiménez J, Borrás Blasco C. [Analysis of liquid biopsies for cancer diagnosis: Systematic review]. Rev Esp Geriatr Gerontol 2020; 55:343-349. [PMID: 33032851 DOI: 10.1016/j.regg.2020.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The incidence of cancer has increased in recent years, especially in those over 65 years of age, posing a major health problem. Many tumours have a poor prognosis because they are diagnosed at very advanced stages. It is therefore especially important to incorporate liquid biopsy into clinical practice as a method for detecting tumours at very early stages. A systematic review was conducted, with the main objective of analysing the available literature on the use of liquid biopsy in the early diagnosis of cancer, and as a secondary objective, to determine the types of tumours that can be diagnosed early by liquid biopsy and the available biomarkers. The results indicate a lack of agreement with the biomarkers detected and the technologies applied. This highlights the need for multicentre studies to look at large cohorts and to establish protocols of action, as well as to increase analytical validity and the possibility of using a screening test for each type of tumour. This could be a very important step forward, as it could improve the management of cancer patients to a great extent.
Collapse
Affiliation(s)
- Joana Hernández Jiménez
- Departamento de Fisiología, Facultad de Medicina y Odontología, Universidad de Valencia, Valencia, España
| | - Consuelo Borrás Blasco
- Departamento de Fisiología, Facultad de Medicina y Odontología, Universidad de Valencia, Valencia, España.
| |
Collapse
|
173
|
Jeon YS, Cha JK, Choi SH, Lee JH, Lee JS. Transcriptomic profiles and their correlations in saliva and gingival tissue biopsy samples from periodontitis and healthy patients. J Periodontal Implant Sci 2020; 50:313-326. [PMID: 33124209 PMCID: PMC7606893 DOI: 10.5051/jpis.1905460273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/23/2020] [Accepted: 08/17/2020] [Indexed: 11/22/2022] Open
Abstract
Purpose This study was conducted to analyze specific RNA expression profiles in gingival tissue and saliva samples in periodontitis patients and healthy individuals, and to determine their correlations in light of the potential use of microarray-based analyses of saliva samples as a periodontal monitoring tool. Methods Gingival tissue biopsies and saliva samples from 22 patients (12 with severe periodontitis and 10 with a healthy periodontium) were analyzed using transcriptomic microarray analysis. Differential gene expression was assessed, and pathway and clustering analyses were conducted for the samples. The correlations between the results for the gingival tissue and saliva samples were analyzed at both the gene and pathway levels. Results There were 621 differentially expressed genes (DEGs; 320 upregulated and 301 downregulated) in the gingival tissue samples of the periodontitis group, and 154 DEGs (44 upregulated and 110 downregulated) in the saliva samples. Nine of these genes overlapped between the sample types. The periodontitis patients formed a distinct cluster group based on gene expression profiles for both the tissue and saliva samples. Database for Annotation, Visualization and Integrated Discovery analysis revealed 159 enriched pathways from the tissue samples of the periodontitis patients, as well as 110 enriched pathways In the saliva samples. Thirty-four pathways overlapped between the sample types. Conclusions The present results indicate the possibility of using the salivary transcriptome to distinguish periodontitis patients from healthy individuals. Further work is required to enhance the extraction of available RNA from saliva samples.
Collapse
Affiliation(s)
- Yoon Sun Jeon
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Jae Kook Cha
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Seong Ho Choi
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Ji Hyun Lee
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University College of Medicine, Seoul, Korea.,Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Korea
| | - Jung Seok Lee
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea.
| |
Collapse
|
174
|
Nguyen TTH, Sodnom-Ish B, Choi SW, Jung HI, Cho J, Hwang I, Kim SM. Salivary biomarkers in oral squamous cell carcinoma. J Korean Assoc Oral Maxillofac Surg 2020; 46:301-312. [PMID: 33122454 PMCID: PMC7609938 DOI: 10.5125/jkaoms.2020.46.5.301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
In disease diagnostics and health surveillance, the use of saliva has potential because its collection is convenient and noninvasive. Over the past two decades, the development of salivary utilization for the early detection of cancer, especially oral cavity and oropharynx cancer has gained the interest of the researcher and clinician. Until recently, the oral cavity and oropharynx cancers are still having a five-year survival rate of 62%, one of the lowest in all major human cancers. More than 90% of oral cancers are oral squamous cell carcinoma (OSCC). Despite the ease of accessing the oral cavity in clinical examination, most OSCC lesions are not diagnosed in the early stage, which is suggested to be the main cause of the low survival rate. Many studies have been performed and reported more than 100 potential saliva biomarkers for OSCC. However, there are still obstacles in figuring out the reliable OSCC salivary biomarkers and the clinical application of the early diagnosis protocol. The current review article discusses the emerging issues and is hoped to raise awareness of this topic in both researchers and clinicians. We also suggested the potential salivary biomarkers that are reliable, specific, and sensitive for the early detection of OSCC.
Collapse
Affiliation(s)
- Truc Thi Hoang Nguyen
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Buyanbileg Sodnom-Ish
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Sung Weon Choi
- Oral Oncology Clinic, Research Institute & Hospital, National Cancer Center, Goyang, Korea
| | - Hyo-Il Jung
- School of Mechanical Engineering, Yonsei University, Seoul, Korea
| | | | | | - Soung Min Kim
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea.,Oral and Maxillofacial Microvascular Reconstruction LAB, Brong Ahafo Regional Hospital, Sunyani, Ghana
| |
Collapse
|
175
|
Sugimoto M, Ota S, Kaneko M, Enomoto A, Soga T. Quantification of Salivary Charged Metabolites using Capillary Electrophoresis Time-of-flight-mass Spectrometry. Bio Protoc 2020; 10:e3797. [PMID: 33659451 DOI: 10.21769/bioprotoc.3797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/17/2020] [Accepted: 08/22/2020] [Indexed: 12/28/2022] Open
Abstract
Salivary metabolomics have provided the potentials to detect both oral and systemic diseases. Capillary electrophoresis time-of-flight-mass spectrometry (CE-TOFMS) enables the identification and quantification of various charged metabolites. This method has been employed to biomarker discoveries using human saliva samples, especially for various types of cancers. The untargeted analysis contributes to finding new biomarkers. i.e., the analysis of all detectable signals including both known and unknown metabolites extends the coverage of metabolite to be observed. However, the observed data includes thousands of peaks. Besides, non-linear migration time fluctuation and skewed peaks are caused by the sample condition. The presented pretreatment protocols of saliva samples enhance the reproducibility of migration time drift, which facilitates the matching peaks across the samples and also results in reproducible absolute concentrations of the detected metabolites. The described protocols are utilized not only for saliva but for any liquid samples with slight modifications.
Collapse
Affiliation(s)
- Masahiro Sugimoto
- Research and Development Center for Minimally Invasive Therapies, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan.,Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Sana Ota
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Miku Kaneko
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Ayame Enomoto
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| |
Collapse
|
176
|
Trius‐Soler M, Santillán‐Alarcón DA, Martínez‐Huélamo M, Lamuela‐Raventós RM, Moreno JJ. Effect of physiological factors, pathologies, and acquired habits on the sweet taste threshold: A systematic review and meta‐analysis. Compr Rev Food Sci Food Saf 2020; 19:3755-3773. [DOI: 10.1111/1541-4337.12643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Marta Trius‐Soler
- Department of Nutrition Food Sciences and Gastronomy School of Pharmacy and Food Sciences University of Barcelona Barcelona Spain
- INSA‐UB Nutrition and Food Safety Research Institute University of Barcelona Santa Coloma de Gramanet Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) Instituto de Salud Carlos III Madrid Spain
| | - Dimitri A. Santillán‐Alarcón
- Department of Nutrition Food Sciences and Gastronomy School of Pharmacy and Food Sciences University of Barcelona Barcelona Spain
| | - Miriam Martínez‐Huélamo
- Department of Nutrition Food Sciences and Gastronomy School of Pharmacy and Food Sciences University of Barcelona Barcelona Spain
- INSA‐UB Nutrition and Food Safety Research Institute University of Barcelona Santa Coloma de Gramanet Spain
| | - Rosa M. Lamuela‐Raventós
- Department of Nutrition Food Sciences and Gastronomy School of Pharmacy and Food Sciences University of Barcelona Barcelona Spain
- INSA‐UB Nutrition and Food Safety Research Institute University of Barcelona Santa Coloma de Gramanet Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) Instituto de Salud Carlos III Madrid Spain
| | - Juan José Moreno
- Department of Nutrition Food Sciences and Gastronomy School of Pharmacy and Food Sciences University of Barcelona Barcelona Spain
- INSA‐UB Nutrition and Food Safety Research Institute University of Barcelona Santa Coloma de Gramanet Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) Instituto de Salud Carlos III Madrid Spain
| |
Collapse
|
177
|
Derevtsova SN, Romanenko AA, Kolenchukova OA, Stepanova LV, Nikolaev VG, Sindeeva LV, Kratasyuk VA, Medvedeva NN. Indicators of chemiluminescent and bioluminescent tests of biological liquids in the assessment of physical health. Klin Lab Diagn 2020; 65:541-546. [PMID: 33245638 DOI: 10.18821/0869-2084-2020-65-9-541-546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The study includes anthropometry of 172 young male, obtained data on the length and body mass, measured the transverse diameters of the shoulders and pelvis, various body types was identified by the J.M. Tanner sexual dimorphism index (andromorphic, mesomorphic, gynecomorphic). The chemiluminescent and bioluminescent study of saliva and blood was conducted in the examined young male. We studied the indicators of the antioxidant defense system under the influence of stress. The antioxidant status of saliva was determined using the H2O2-luminol-dependent chemiluminescence method. Data on the activity of NAD (P) -dependent dehydrogenases in blood lymphocytes was obtained from a bioluminescent method of research. Young male of andromorphic body type had large overall and transverse body sizes. Indicators of antioxidant protection of saliva and blood in men of adolescence, the body type of the sexual dimorphism index J.M. Tanner was different. The persons of the andromorphic body type differed in terms of chemiluminescence in comparison with the young male of gynecomorphic body type. The results of bioluminescent blood tests suggest a violation of the catabolic and anabolic processes of carbohydrate and fat metabolism in young men of mesomorphic and gynecomorphic body types. Indicators of the system of antioxidant protection of saliva and blood reflect the sexual characteristics of the body of young male and can be used as additional criteria for diagnosing sex inversion and assessing the risk of developing socially attributed diseases.
Collapse
Affiliation(s)
| | - A A Romanenko
- Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University
| | - O A Kolenchukova
- Federal State Budgetary Scientific Institution "Federal Research Center" Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences "a separate division of the Research Institute of Medical Problems of the North; Federal State Autonomous Educational Institution of Higher Education «Siberian Federal University»
| | - L V Stepanova
- Federal State Autonomous Educational Institution of Higher Education «Siberian Federal University»
| | - V G Nikolaev
- Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University
| | - L V Sindeeva
- Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University
| | - V A Kratasyuk
- Federal State Autonomous Educational Institution of Higher Education «Siberian Federal University»; Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences - a separate division of the Federal State Budget Scientific Institution Federal Research Center «Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences»
| | - N N Medvedeva
- Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University
| |
Collapse
|
178
|
Bartlett A, Gullickson RG, Singh R, Ro S, Omaye ST. The Link between Oral and Gut Microbiota in Inflammatory Bowel Disease and a Synopsis of Potential Salivary Biomarkers. APPLIED SCIENCES 2020; 10:6421. [DOI: 10.3390/app10186421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The objective of this review is to provide recent evidence for the oral–gut axis connection and to discuss gastrointestinal (GI) immune response, inflammatory bowel disease (IBD) pathogenesis, and potential salivary biomarkers for determining GI health. IBD affects an estimated 1.3% of the US adult population. While genetic predisposition and environment play a role, abnormal immune activity and microbiota dysbiosis within the gastrointestinal tract are also linked in IBD pathogenesis. It has been inferred that a reduced overall richness of bacterial species as well as colonization of opportunistic bacteria induce systemic inflammation in the GI tract. Currently, there is supporting evidence that both oral and gut microbiota may be related to the development of IBD. Despite this, there are currently no curative therapies for IBD, and diagnosis requires samples of blood, stool, and invasive diagnostic imaging techniques. Considering the relative ease of collection, emerging evidence of association with non-oral diseases may imply that saliva microbiome research may have the potential for gut diagnostic or prognostic value. This review demonstrates a link between saliva and intestinal profiles in IBD patients, suggesting that saliva sampling has the potential to serve as a non-invasive biomarker for gut diseases such as IBD in the oral–gut axis.
Collapse
Affiliation(s)
- Allison Bartlett
- Department of Physiology & Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA
| | | | - Rajan Singh
- Department of Physiology & Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA
| | - Seungil Ro
- Department of Physiology & Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA
- Environmental Sciences Graduate Program, University of Nevada, Reno, NV 89557, USA
| | - Stanley T. Omaye
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA
- Environmental Sciences Graduate Program, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
179
|
Gaudin A, Badran Z, Chevalier V, Aubeux D, Prud'homme T, Amador del Valle G, Cloitre A. COVID-19 and Oral Fluids. FRONTIERS IN DENTAL MEDICINE 2020. [DOI: 10.3389/fdmed.2020.00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
180
|
Derruau S, Robinet J, Untereiner V, Piot O, Sockalingum GD, Lorimier S. Vibrational Spectroscopy Saliva Profiling as Biometric Tool for Disease Diagnostics: A Systematic Literature. Molecules 2020; 25:E4142. [PMID: 32927716 PMCID: PMC7570680 DOI: 10.3390/molecules25184142] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023] Open
Abstract
Saliva is a biofluid that can be considered as a "mirror" reflecting our body's health status. Vibrational spectroscopy, Raman and infrared, can provide a detailed salivary fingerprint that can be used for disease biomarker discovery. We propose a systematic literature review based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to evaluate the potential of vibrational spectroscopy to diagnose oral and general diseases using saliva as a biological specimen. Literature searches were recently conducted in May 2020 through MEDLINE-PubMed and Scopus databases, without date limitation. Finally, over a period of 10 years, 18 publications were included reporting on 10 diseases (three oral and seven general diseases), with very high diagnostic performance rates in terms of sensitivity, specificity, and accuracy. Thirteen articles were related to six different cancers of the following anatomical sites: mouth, nasopharynx, lung, esophagus, stomach, and breast. The other diseases investigated and included in this review were periodontitis, Sjögren's syndrome, diabetes, and myocardial infarction. Moreover, most articles focused on Raman spectroscopy (n = 16/18) and more specifically surface-enhanced Raman spectroscopy (n = 12/18). Interestingly, vibrational spectroscopy appears promising as a rapid, label-free, and non-invasive diagnostic salivary biometric tool. Furthermore, it could be adapted to investigate subclinical diseases-even if developmental studies are required.
Collapse
Affiliation(s)
- Stéphane Derruau
- Université de Reims Champagne-Ardenne, Département de Biologie Orale, UFR Odontologie, 2 rue du Général Koenig, 51100 Reims, France; (S.D.); (J.R.)
- Pôle de Médecine Bucco-dentaire, Centre Hospitalier Universitaire de Reims, 45 rue Cognacq-Jay, 51092 Reims, France
- Université de Reims Champagne-Ardenne, BioSpecT-EA7506, UFR de Pharmacie, 51 rue Cognacq-Jay, 51097 Reims, France; (O.P.); (G.D.S.)
| | - Julien Robinet
- Université de Reims Champagne-Ardenne, Département de Biologie Orale, UFR Odontologie, 2 rue du Général Koenig, 51100 Reims, France; (S.D.); (J.R.)
| | - Valérie Untereiner
- Université de Reims Champagne-Ardenne, PICT, 51 rue Cognacq-Jay, 51097 Reims, France;
| | - Olivier Piot
- Université de Reims Champagne-Ardenne, BioSpecT-EA7506, UFR de Pharmacie, 51 rue Cognacq-Jay, 51097 Reims, France; (O.P.); (G.D.S.)
- Université de Reims Champagne-Ardenne, PICT, 51 rue Cognacq-Jay, 51097 Reims, France;
| | - Ganesh D. Sockalingum
- Université de Reims Champagne-Ardenne, BioSpecT-EA7506, UFR de Pharmacie, 51 rue Cognacq-Jay, 51097 Reims, France; (O.P.); (G.D.S.)
| | - Sandrine Lorimier
- Université de Reims Champagne-Ardenne, Département de Biologie Orale, UFR Odontologie, 2 rue du Général Koenig, 51100 Reims, France; (S.D.); (J.R.)
- Pôle de Médecine Bucco-dentaire, Centre Hospitalier Universitaire de Reims, 45 rue Cognacq-Jay, 51092 Reims, France
- Université de Reims Champagne-Ardenne, GRESPI-EA4694, UFR Sciences Exactes et Naturelles, 51687 Reims, France
| |
Collapse
|
181
|
Menéndez-Valladares P, Sola-Idígora N, Fuerte-Hortigón A, Alonso-Pérez I, Duque-Sánchez C, Domínguez-Mayoral AM, Ybot-González P, Montaner J. Lessons learned from proteome analysis of perinatal neurovascular pathologies. Expert Rev Proteomics 2020; 17:469-481. [PMID: 32877618 DOI: 10.1080/14789450.2020.1807335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Perinatal and pediatric diseases related to neurovascular disorders cause significant problems during life, affecting a population with a long life expectancy. Early diagnosis and assessment of the severity of these diseases are crucial to establish an appropriate neuroprotective treatment. Currently, physical examination, neuroimaging and clinical judgment are the main tools for diagnosis, although these tests have certain limitations. There is growing interest in the potential value of noninvasive biomarkers that can be used to monitor child patients at risk of brain damage, allowing accurate, and reproducible measurements. AREAS COVERED This review describes potential biomarkers for the diagnosis of perinatal neurovascular diseases and discusses the possibilities they open for the classification and treatment of neonatal neurovascular diseases. EXPERT OPINION Although high rates of ischemic and hemorrhagic stroke exist in pediatric populations, most studies have focused on biomarkers of hypoxic-ischemic encephalopathy. Inflammatory and neuronal biomarkers such as S-100B and GFAP, in combination with others yet to be discovered, could be considered as part of multiplex panels to diagnose these diseases and potentially for monitoring response to treatments. Ideally, noninvasive biofluids would be the best source for evaluating these biomarkers in proteomic assays in perinatal patients.
Collapse
Affiliation(s)
| | - Noelia Sola-Idígora
- Neurodevelopment Group, Hospital Universitario Virgen Del Rocio/IBIS/CSIC/US , Sevilla, Spain
| | | | - Irene Alonso-Pérez
- Neuropediatric Unit, Hospital Universitario Virgen De Macarena , Sevilla, Spain
| | | | | | - Patricia Ybot-González
- Neurology Unit, Hospital Universitario Virgen De Macarena , Sevilla, Spain.,Neurodevelopment Group, Hospital Universitario Virgen Del Rocio/IBIS/CSIC/US , Sevilla, Spain
| | - Joan Montaner
- Neurology Unit, Hospital Universitario Virgen De Macarena , Sevilla, Spain.,The Neurovascular Research Lab, IBIS/HUVR/CSIC/US , Sevilla, Spain
| |
Collapse
|
182
|
Mediouni M, Bergantin LB, Madiouni R, Kaczor-Urbanowicz KE, Urbanowicz A. Can we represent the depreobesity genetically? OBESITY MEDICINE 2020; 19:100273. [DOI: 10.1016/j.obmed.2020.100273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
|
183
|
Sapkota D, Søland TM, Galtung HK, Sand LP, Giannecchini S, To KKW, Mendes-Correa MC, Giglio D, Hasséus B, Braz-Silva PH. COVID-19 salivary signature: diagnostic and research opportunities. J Clin Pathol 2020; 74:jclinpath-2020-206834. [PMID: 32769214 DOI: 10.1136/jclinpath-2020-206834] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 01/05/2023]
Abstract
The COVID-19 (caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) epidemic started in Wuhan (Hubei Province, China) in mid-December 2019 and quickly spread across the world as a pandemic. As a key to tracing the disease and to implement strategies aimed at breaking the chain of disease transmission, extensive testing for SARS-CoV-2 was suggested. Although nasopharyngeal/oropharyngeal swabs are the most commonly used biological samples for SARS-CoV-2 diagnosis, they have a number of limitations related to sample collection and healthcare personnel safety. In this context, saliva is emerging as a promising alternative to nasopharyngeal/oropharyngeal swabs for COVID-19 diagnosis and monitoring. Saliva collection, being a non-invasive approach with possibility for self-collection, circumvents to a great extent the limitations associated with the use of nasopharyngeal/oropharyngeal swabs. In addition, various salivary biomarkers including the salivary metabolomics offer a high promise to be useful for better understanding of COVID-19 and possibly in the identification of patients with various degrees of severity, including asymptomatic carriers. This review summarises the clinical and scientific basis for the potential use of saliva for COVID-19 diagnosis and disease monitoring. Additionally, we discuss saliva-based biomarkers and their potential clinical and research applications related to COVID-19.
Collapse
Affiliation(s)
- Dipak Sapkota
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Tine Merete Søland
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Pathology, Rikshospitalet University Hospital, Oslo, Norway
| | - Hilde Kanli Galtung
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Lars Peter Sand
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, Universita degli Studi di Firenze, Firenze, Toscana, Italy
| | - Kelvin K W To
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li KaShing Faculty of Medicine of the University of Hong Kong, Hong Kong, China
- Department of Microbiology, Queen Mary Hospital, Hong Kong, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Maria Cassia Mendes-Correa
- Laboratory of Virology (LIM-52), Institute of Tropical Medicine of São Paulo, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Daniel Giglio
- Department of Clinical Oncology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Hasséus
- Department of Oral Medicine and Pathology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinic of Oral Medicine, Region Västra Götaland, Gothenburg, Sweden
| | - Paulo Henrique Braz-Silva
- Laboratory of Virology (LIM-52), Institute of Tropical Medicine of São Paulo, School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
184
|
Czumbel LM, Kiss S, Farkas N, Mandel I, Hegyi A, Nagy Á, Lohinai Z, Szakács Z, Hegyi P, Steward MC, Varga G. Saliva as a Candidate for COVID-19 Diagnostic Testing: A Meta-Analysis. Front Med (Lausanne) 2020; 7:465. [PMID: 32903849 PMCID: PMC7438940 DOI: 10.3389/fmed.2020.00465] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022] Open
Abstract
Background: COVID-19 is a serious and potentially deadly disease. Early diagnosis of infected individuals will play an important role in stopping its further escalation. The present gold standard for sampling is the nasopharyngeal swab method. However, several recent papers suggested that saliva-based testing is a promising alternative that could simplify and accelerate COVID-19 diagnosis. Objectives: Our aim was to conduct a meta-analysis on the reliability and consistency of SARS-CoV-2 viral RNA detection in saliva specimens. Methods: We have reported our meta-analysis according to the Cochrane Handbook. We searched the Cochrane Library, Embase, Pubmed, Scopus, Web of Science and clinical trial registries for eligible studies published between 1 January and 25 April 2020. The number of positive tests and the total number of tests conducted were collected as raw data. The proportion of positive tests in the pooled data were calculated by score confidence-interval estimation with the Freeman-Tukey transformation. Heterogeneity was assessed using the I 2 measure and the χ2-test. Results: The systematic search revealed 96 records after removal of duplicates. Twenty-six records were included for qualitative analysis and 5 records for quantitative synthesis. We found 91% (CI 80-99%) sensitivity for saliva tests and 98% (CI 89-100%) sensitivity for nasopharyngeal swab (NPS) tests in previously confirmed COVID-19 patients, with moderate heterogeneity among the studies. Additionally, we identified 18 registered, ongoing clinical trials of saliva-based tests for detection of the virus. Conclusion: Saliva tests offer a promising alternative to NPS for COVID-19 diagnosis. However, further diagnostic accuracy studies are needed to improve their specificity and sensitivity.
Collapse
Affiliation(s)
- László Márk Czumbel
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Szabolcs Kiss
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
| | - Nelli Farkas
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Iván Mandel
- Department of Dentistry, Oral and Maxillofacial Surgery, Medical School, University of Pécs, Pécs, Hungary
| | - Anita Hegyi
- Department of Dentistry, Oral and Maxillofacial Surgery, Medical School, University of Pécs, Pécs, Hungary
| | - Ákos Nagy
- Department of Dentistry, Oral and Maxillofacial Surgery, Medical School, University of Pécs, Pécs, Hungary
| | - Zsolt Lohinai
- Department of Conservative Dentistry, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Zsolt Szakács
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Martin C. Steward
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
- School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Gábor Varga
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
185
|
Overcoming challenges in human saliva gene expression measurements. Sci Rep 2020; 10:11147. [PMID: 32636420 PMCID: PMC7341869 DOI: 10.1038/s41598-020-67825-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/10/2020] [Indexed: 11/26/2022] Open
Abstract
Saliva, as a non-invasive and easily accessible biofluid, has been shown to contain RNA biomarkers for prediction and diagnosis of several diseases. However, systematic analysis done by our group identified two problematic issues not coherently described before: (1) most of the isolated RNA originates from the oral microbiome and (2) the amount of isolated human RNA is comparatively low. The degree of bacterial contamination showed ratios up to 1:900,000, so that only about one out of 900,000 RNA copies was of human origin, but the RNA quality (average RIN 6.7 + /− 0.8) allowed for qRT-PCR. Using 12 saliva samples from healthy donors, we modified the methodology to (1) select only human RNA during cDNA synthesis by aiming at the poly(A)+-tail and (2) introduced a pre-amplification of human RNA before qRT-PCR. Further, the manufacturer’s criteria for successful pre-amplification (Ct values ≤ 35 for unamplified cDNA) had to be replaced by (3) proofing linear pre-amplification for each gene, thus, increasing the number of evaluable samples up to 70.6%. When considering theses three modifications unbiased gene expression analysis on human salivary RNA can be performed.
Collapse
|
186
|
Kapur BM, Aleksa K. What the lab can and cannot do: clinical interpretation of drug testing results. Crit Rev Clin Lab Sci 2020; 57:548-585. [PMID: 32609540 DOI: 10.1080/10408363.2020.1774493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Urine drug testing is one of the objective tools available to assess adherence. To monitor adherence, quantitative urinary results can assist in differentiating "new" drug use from "previous" (historical) drug use. "Spikes" in urinary concentration can assist in identifying patterns of drug use. Coupled chromatographic-mass spectrometric methods are capable of identifying very small amounts of analyte and can make clinical interpretation rather challenging, specifically for drugs that have a longer half-life. Polypharmacy is common in treatment and rehabilitation programs because of co-morbidities. Medications prescribed for comorbidities can cause drug-drug interaction and phenoconversion of genotypic extensive metabolizers into phenotypic poor metabolizers of the treatment drug. This can have significant impact on both pharmacokinetic (PK) and pharmacodynamic properties of the treatment drug. Therapeutic drug monitoring (TDM) coupled with PKs can assist in interpreting the effects of phenoconversion. TDM-PKs reflects the cumulative effects of pathophysiological changes in the patient as well as drug-drug interactions and should be considered for treatment medications/drugs used to manage pain and treat substance abuse. Since only a few enzyme immunoassays for TDM are available, this is a unique opportunity for clinical laboratory scientists to develop TDM-PK protocols that can have a significant impact on patient care and personalized medicine. Interpretation of drug screening results should be done with caution while considering pharmacological properties and the presence or absence of the parent drug and its metabolites. The objective of this manuscript is to review and address the variables that influence interpretation of different drugs analyzed from a rehabilitation and treatment programs perspective.
Collapse
Affiliation(s)
- Bhushan M Kapur
- Clini Tox Inc., Oakville, Canada.,Seroclinix Corporation, Mississauga, Canada
| | | |
Collapse
|
187
|
Idkaidek N, Qawasmi H, Hanahen A, Abuqatouseh L, Hamadi S, Bustami M. Applicability of Saliva for Evaluation of Some Biochemical Parameters of Kidney and Liver Function in Healthy Individuals. MEDICAL LABORATORY JOURNAL 2020. [DOI: 10.29252/mlj.14.4.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
188
|
Defining Parallels between the Salivary Glands and Pancreas to Better Understand Pancreatic Carcinogenesis. Biomedicines 2020; 8:biomedicines8060178. [PMID: 32604970 PMCID: PMC7345998 DOI: 10.3390/biomedicines8060178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with a dismal prognosis, largely due to its late presentation. Methods for early detection, the development of reliable screening tools, and the identification of sensitive and specific biomarkers have remained essential research priorities to improve early patient management and outcomes. The pancreas and salivary glands share histological and functional similarities, and the salivary glands have demonstrated a role in oral and systemic health. This review focuses on the similarities and differences between the pancreas and salivary glands and how these can inform our understanding of PDAC genesis and early diagnosis. In particular, chemical exposure, which alters salivary gland gene transcription and morphogenesis, may not only directly impact salivary gland regulation but alter pancreatic function via the systemic secretion of growth hormones. Diabetes and obesity are associated with an increased risk of pancreatic cancer, and a link between chemical exposure and the development of diabetes, obesity, and consequently PDAC genesis is proposed. Possible mechanisms include altering salivary or pancreatic morphology and organ function, disrupting endocrine signaling, or altering pro-inflammatory homeostasis. Finally, saliva contains putative specific biomarkers that show promise as non-invasive diagnostic tools for PDAC.
Collapse
|
189
|
Kholafazad Kordasht H, Hasanzadeh M. Biomedical analysis of exosomes using biosensing methods: recent progress. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2795-2811. [PMID: 32930202 DOI: 10.1039/d0ay00722f] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Exosomes are membrane-bound extracellular vesicles (EVs) that are produced in the endosomal compartments of most eukaryotic cells; they play important roles in intercellular communication in diverse cellular processes and transmit different types of biomolecules. Endocytic pathways release exosomes, which have diameters ranging from 50 to 200 nm. The unique functions of exosomes have been introduced as cancer bio-markers due to the cargo (protein, DNA and RNA) of external exosomes (tetraspanin) and internal exosomes (syntenin). The early detection of cancer by exosomes can be an excellent method for the treatment of cancer. Although detection methods based on exosomes are important, they require extensive sample purification, have high false-positive rates, and encounter labeling difficulties due to the small size of exosomes. Here, we have reviewed three major types of biosensors, namely, electrochemical biosensors, optical biosensors and electrochemiluminescence biosensors for the detection of exosomes released from breast, ovarian, pancreatic, lung, and cervical cancer cells. In addition, the importance of nanomaterials and their applications in the biomedical analysis of exosomes are discussed. Although exosomes can be used to identify various types of external and internal biomarkers by conjugating with recognition elements, most designed biosensors are based on CD9 and CD63. Therefore, the development of novel biosensors for the selective and sensitive detection of exosomes is a current challenge. We hope that this review will serve as a beneficial study for improving exosome detection in clinical samples.
Collapse
Affiliation(s)
- Houman Kholafazad Kordasht
- Department of Food Hygiene and Aquatic, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
190
|
Staller S, Lindsay AK, Ramos ED, Thomas P, Srinivasan M. Changes in salivary microbial sensing proteins CD14 and TLR2 with aging. Clin Oral Investig 2020; 24:2523-2528. [PMID: 32529494 DOI: 10.1007/s00784-020-03274-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/04/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Soluble toll-like receptor-2 (sTLR2) and soluble CD14 (sCD14) in saliva are defense proteins that bind specific microbe-associated molecular patterns. Since the oral flora changes with aging, the objective of this study is to determine and compare the concentration of sTLR2 and sCD14 in the saliva of healthy individuals in age groups from the first to the sixth decade of life. METHODS Unstimulated whole saliva was collected after obtaining informed consent. The concentration of sCD14 and sTLR-2 was measured by enzyme-linked immunosorbent assay. Statistical differences between the age groups were determined by analysis of variance. The relationship between the two markers in each age group was evaluated by Pearson's correlation coefficient and linear regression analyses. RESULTS The concentration of salivary sTLR2 was highest in the youngest, and that of the sCD14 was highest in the oldest age group. While the salivary sCD14 and the sTLR2 exhibited a moderate negative correlation in the youngest, the relationship between the two markers was inversed in the oldest age group. CONCLUSIONS AND CLINICAL RELEVANCE The results of our exploratory study suggest a need to adjust for age-dependent changes in sCD14 and sTLR2 in healthy saliva while assessing the two proteins as biomarkers.
Collapse
Affiliation(s)
- Sable Staller
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Alison K Lindsay
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Elizabeth D Ramos
- Department of Periodontics and Allied Dental Health, Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Priya Thomas
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Mythily Srinivasan
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis, Indianapolis, IN, USA. .,Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|
191
|
Wei F, Sun X, Tong P, Gao Y, Zhu C, Chen F, Zheng S. The stability of children's salivary peptidome profiles in response to short-term beverage consumption. Clin Chim Acta 2020; 509:101-107. [PMID: 32531253 DOI: 10.1016/j.cca.2020.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Salivary peptidome profiling analysis has advantages of simplicity and non-invasiveness and great potentiality for screening, monitoring or primary diagnosis of diseases, but may be subjected to change against interferences like diet. METHODS We conducted a 5-day study to investigate the influence of 3 kinds of beverages (orange juice, sugar-free tea, and sugar-free liquid yoghurt; water as control) on children's salivary peptidome using mass spectrometry techniques. RESULTS All the groups shared a relatively stable pattern in heatmaps during the experimental days. Principal component analysis plot presented slight shifts in all the intervention groups between the baseline and intervention period while samples were not distinctly separated by date. The numbers of significantly changed peptides after short-term orange juice and tea intervention were four and three, respectively, while no changes occurred in the yoghurt group and control. Four of these peptides were identified as histatin-3, collagen alpha-1(IV) chain, zinc finger protein 805, and quinolinate synthase A. CONCLUSIONS Salivary peptidome has its own stability against beverage intervention, confirming the feasibility and validity of using it as a potential reference for the healthy state of the body, with diet habits recorded and considered as a confounder if necessary.
Collapse
Affiliation(s)
- Fangqiao Wei
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Xiangyu Sun
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Peiyuan Tong
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Yufeng Gao
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Ce Zhu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Shuguo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China.
| |
Collapse
|
192
|
Assad DX, Mascarenhas ECP, Normando AGC, Chardin H, Barra GB, Pratesi R, Nóbrega YKDM, Acevedo AC, Guerra ENS. Correlation between salivary and serum CA15-3 concentrations in patients with breast cancer. Mol Clin Oncol 2020; 13:155-161. [PMID: 32714539 PMCID: PMC7366245 DOI: 10.3892/mco.2020.2062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/30/2020] [Indexed: 12/24/2022] Open
Abstract
The early detection of breast cancer enables the use of less aggressive treatment and increases patient survival. The transmembrane glycoprotein mucin 1, which is also known as cancer antigen 15-3 (CA15-3), is aberrantly glycosylated and overexpressed in a variety of epithelial cancers, and serves a crucial role in the progression of the disease. CA15-3 is currently used as a marker of breast cancer. In the present study, CA15-3 concentrations in saliva and blood of patients with breast cancer were evaluated to test new assays to detect salivary CA15-3 in addition to ELISA and its diagnostic value. To the best of our knowledge, there are no previous reports of the use of chemiluminescence assay (CLIA) and electrochemiluminescence assay (ECLIA) in saliva. Saliva and blood were collected on the same day from patients with breast cancer (n=26) and healthy controls (n=28). For each subject, the level of serum CA15-3 was measured using ECLIA, and the level of salivary CA15-3 was measured using ECLIA, CLIA and enzyme-linked immunosorbent assay (ELISA). ELISA and CLIA were able to detect CA15-3 in saliva; however, ECLIA could not detect salivary CA15-3. There was no significant difference between the mean serum and salivary CA15-3 levels in patients with breast cancer or healthy controls. The levels of CA15-3 were highest for luminal breast cancer subtypes and stage IV cases. A moderate correlation was observed between salivary and serum CA15-3 levels as measured by ELISA in breast cancer patients (r=0.56; P=0.0047). The results demonstrated that ECLIA was not a good method to detect salivary CA15-3, although it is the gold standard for detecting serum CA15-3. The presence of CA15-3 in saliva was confirmed, and this will be useful in future research. Further investigations are necessary to confirm the ability to detect salivary CA15-3 and its correlation with serum CA15-3.
Collapse
Affiliation(s)
- Daniele Xavier Assad
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília Campus Universitário Darcy Ribeiro, Brasília, DF 70910-900, Brazil.,Medical Oncology Department, Hospital Sírio-Libanês, Brasília, DF 70200-730, Brazil
| | - Elisa Cançado Porto Mascarenhas
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília Campus Universitário Darcy Ribeiro, Brasília, DF 70910-900, Brazil.,Department Medical Oncology, Cettro-Centro de Câncer de Brasília, Brasilia, DF 70710-904, Brazil
| | - Ana Gabriela Costa Normando
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília Campus Universitário Darcy Ribeiro, Brasília, DF 70910-900, Brazil
| | - Hélène Chardin
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), ESPCI Paris, PSL Research University, Paris 75005, France.,Faculty of Dental Surgery, Paris Descartes Sorbonne Paris Cité University, Paris 92120, France
| | | | - Riccardo Pratesi
- Interdisciplinary Laboratory of Biosciences and Celiac Disease Research Center, School of Medicine, University of Brasilia, Brasília, DF 70910-900, Brazil
| | - Yanna Karla de Medeiros Nóbrega
- Applied Analysis Laboratory, Department of Pharmaceutical Sciences, Health Sciences Faculty, University of Brasília, Brasília, DF 70910-900, Brazil
| | - Ana Carolina Acevedo
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília Campus Universitário Darcy Ribeiro, Brasília, DF 70910-900, Brazil
| | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília Campus Universitário Darcy Ribeiro, Brasília, DF 70910-900, Brazil
| |
Collapse
|
193
|
Li Y, Ren B, Peng X, Hu T, Li J, Gong T, Tang B, Xu X, Zhou X. Saliva is a non-negligible factor in the spread of COVID-19. Mol Oral Microbiol 2020; 35:141-145. [PMID: 32367576 PMCID: PMC7267240 DOI: 10.1111/omi.12289] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 02/05/2023]
Abstract
SARS‐CoV‐2, a novel emerging coronavirus, has caused severe disease (COVID‐19), and rapidly spread worldwide since the beginning of 2020. SARS‐CoV‐2 mainly spreads by coughing, sneezing, droplet inhalation, and contact. SARS‐CoV‐2 has been detected in saliva samples, making saliva a potential transmission route for COVID‐19. The participants in dental practice confront a particular risk of SARS‐CoV‐2 infection due to close contact with the patients and potential exposure to saliva‐contaminated droplets and aerosols generated during dental procedures. In addition, saliva‐contaminated surfaces could lead to potential cross‐infection. Hence, the control of saliva‐related transmission in the dental clinic is critical, particularly in the epidemic period of COVID‐19. Based on our experience of the COVID‐19 epidemic, some protective measures that can help reduce the risk of saliva‐related transmission are suggested, in order to avoid the potential spread of SARS‐CoV‐2 among patients, visitors, and dental practitioners.
Collapse
Affiliation(s)
- Yuqing Li
- Human Saliva Laboratory of State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Biao Ren
- Human Saliva Laboratory of State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xian Peng
- Human Saliva Laboratory of State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tao Hu
- Human Saliva Laboratory of State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiyao Li
- Human Saliva Laboratory of State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tao Gong
- Human Saliva Laboratory of State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Boyu Tang
- Human Saliva Laboratory of State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xin Xu
- Human Saliva Laboratory of State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xuedong Zhou
- Human Saliva Laboratory of State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
194
|
Campello CP, Pellizzer EP, Vasconcelos BCDE, Moraes SLD, Lemos CAA, Muniz MTC. Evaluation of IL-6 levels and +3954 polymorphism of IL-1β in burning mouth syndrome: A systematic review and meta-analysis. J Oral Pathol Med 2020; 49:961-968. [PMID: 32274841 DOI: 10.1111/jop.13018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/29/2020] [Accepted: 03/29/2020] [Indexed: 12/30/2022]
Abstract
This study evaluated IL-6 salivary levels as well as the +3954 polymorphism of IL-1β in patients with burning mouth syndrome and healthy individuals, through case-control studies. This systematic review and meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We conducted this research in PubMed/MEDLINE, Cochrane Library and Web of Science databases. The risk of bias was measured based in the Newcastle-Ottawa Scale. Researches with a group of patients with burning mouth syndrome and a control group in which the presence of the +3954 polymorphism of IL-1β and/ or IL-6 salivary levels through non-stimulated saliva were evaluated to detect if this interleukin concentrations are increased in patients and if the polymorphism is a risk factor for this syndrome. We identified seven studies with total of 440 participants, 229 patients with burning mouth syndrome and 211 healthy controls, ages 24-84 years old. The female gender was predominant. Patients in the majority of studies did not present increased levels of IL-6 and the +3954 polymorphism of IL-1β is not a risk factor for this syndrome. A few studies researched biomarkers in this pathology and more investigations are required not only to identify salivary levels and the polymorphism evaluated, but also other interleukins and polymorphisms in order to clarify the etiopathogenesis of this syndrome as well as for propose new diagnostic methods and treatments.
Collapse
Affiliation(s)
- Camilla Porto Campello
- Postgraduate Program in Biotechnology, Rede Nordeste de Biotecnologia- RENORBIO, UFRPE/UPE, Recife, Brazil
| | - Eduardo Piza Pellizzer
- Department of Dental Materials and Prosthodontics, Dental School, Universidade Estadual Paulista- UNESP, Araçatuba, Brazil
| | | | | | | | | |
Collapse
|
195
|
Rapado-González Ó, Martínez-Reglero C, Salgado-Barreira Á, Takkouche B, López-López R, Suárez-Cunqueiro MM, Muinelo-Romay L. Salivary biomarkers for cancer diagnosis: a meta-analysis. Ann Med 2020; 52:131-144. [PMID: 32056455 PMCID: PMC7877992 DOI: 10.1080/07853890.2020.1730431] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: Saliva represents a promising non-invasive source of novel biomarkers for diagnosis and prognosis cancer. This meta-analysis evaluates the diagnostic value of salivary biomarkers for detection of malignant non-oral tumours to better define the value of saliva as an alternative liquid biopsy.Materials and methods: We performed a systematic review and meta-analysis. PubMed, Embase, LILACS and the Cochrane Library were searched to identify articles that examined the potential of salivary biomarkers for the diagnosis of malignant non-oral tumours. To assess the overall accuracy, we calculated the diagnostic odds ratio (DOR), area under hierarchical summary receiver operating characteristic (AUC) curve, sensitivity, specificity, positive likelihood ratio (PLR) and negative likelihood ratio (NLR) using a random- or fixed-effects model. Heterogeneity and publication bias were assessed. Statistical tests were two-sided.Results: One hundred fifty-five study units from 29 articles with 11,153 subjects were included. The pooled sensitivity, specificity, PLR, NLR, DOR and AUC were 0.76 (95% confidence intervals (CI), 0.74-0.77), 0.76 (95% CI, 0.75-0.77), 3.22 (95% CI, 2.92-3.55), 0.31 (95% CI, 0.28-0.34), 13.42 (95% CI, 12.28-15.96) and 0.85 (95% CI, 0.84-0.87), respectively.Conclusion: Salivary biomarkers may be potentially used for non-invasive diagnosis of malignant non-oral tumours.Key messagesThis meta-analysis evaluates the diagnostic value of salivary biomarkers for detection of malignant non-oral tumours to better define the role of saliva as an alternative liquid biopsy.Salivary biomarkers showed 85% accuracy for cancer distant to the oral cavity.Saliva represents a promising non-invasive source of novel biomarkers in cancer.
Collapse
Affiliation(s)
- Óscar Rapado-González
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, University of Santiago de Compostela, Santiago de Compostela, Spain.,Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Ángel Salgado-Barreira
- Methodology and Statistics Unit, Galicia Sur Health Research Institute (IISGS), Vigo, Spain
| | - Bahi Takkouche
- Department of Preventive Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), Santiago de Compostela, Spain
| | - Rafael López-López
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.,Translational Medical Oncology (Oncomet), Health Research Foundation Institute of Santiago (IDIS,), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - María Mercedes Suárez-Cunqueiro
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, University of Santiago de Compostela, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.,Oral Sciences Research Group, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Laura Muinelo-Romay
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
196
|
Kang JH, Kho HS. Blood contamination in salivary diagnostics: current methods and their limitations. Clin Chem Lab Med 2020; 57:1115-1124. [PMID: 30511922 DOI: 10.1515/cclm-2018-0739] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/31/2018] [Indexed: 01/15/2023]
Abstract
The use of saliva samples in clinical studies has increased. However, the diagnostic value of whole saliva is compromised in the presence of blood contamination, owing to the higher levels of analytes in blood compared with those in saliva. The aim of this study was to review the existing methods and their limitations for measuring the levels of blood contamination in saliva. A literature search was performed using Web of Science, SCOPUS, and PubMed databases and 49 articles dealing with salivary diagnostics and measurements of blood contamination were included. Five methods for measuring the degree of blood components in saliva were discussed, including "visual inspection", use of "strip for urinalysis", and detection of plasma proteins such as "hemoglobin", "albumin", and "transferrin". Each method has its limitations, and transferrin has been regarded as the most reliable and valid marker for blood contamination in saliva. However, transferrin in whole saliva may not be solely a product of blood, and its level in whole saliva can be influenced by several factors such as age, gonadal hormones, salivary flow rate, chewing performance, and oral microorganisms. In conclusion, when quantitatively analyzing whole saliva samples, the influence of blood contamination should be considered.
Collapse
Affiliation(s)
- Jeong-Hyun Kang
- Department of Oral Medicine and Oral Diagnosis, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, Korea (ROK).,Clinic of Oral Medicine and Orofacial Pain, Institute of Oral Health Science, Ajou University School of Medicine, Suwon, Korea (ROK)
| | - Hong-Seop Kho
- Department of Oral Medicine and Oral Diagnosis, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, Korea (ROK).,Institute on Aging, Seoul National University, Seoul, Korea (ROK), Phone: +82-2-2072-3989, Fax: +82-2-744-9135
| |
Collapse
|
197
|
Buzalaf MAR, Ortiz ADC, Carvalho TS, Fideles SOM, Araújo TT, Moraes SM, Buzalaf NR, Reis FN. Saliva as a diagnostic tool for dental caries, periodontal disease and cancer: is there a need for more biomarkers? Expert Rev Mol Diagn 2020; 20:543-555. [PMID: 32223655 DOI: 10.1080/14737159.2020.1743686] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: A biomarker is a biological indicator of normal or pathogenic processes. Identification of biomarkers is useful for the prevention, diagnosis and prognosis of diseases as well as for monitoring the progression of pathological disorders. Several types of molecules present in biological fluids can act as biomarkers such as DNA, coding and non-coding RNA, lipids, metabolites, proteins and even microbes. In this context, saliva emerges as a useful diagnostic tool for the detection of biomarkers involved with oral and systemic diseases, since it reflects the pathophysiological conditions of the organism and allows early, rapid, practical and noninvasive detection of biomarkers.Areas covered: This review discusses the properties of saliva as a diagnostic tool and addresses the main identified biomarkers related to dental caries, periodontal disease, head and neck cancer and other types of cancer of considerable incidence among the world population.Expert commentary: Despite extensive efforts which have been directed toward the identification of one or a combination of biomarkers with good predictive values for the early detection of dental caries, periodontal disease and cancer, these biomarkers still need validation before chairside point-of-care devices can be widely used in the clinic.
Collapse
|
198
|
Wijnant K, Van Meulebroek L, Pomian B, De Windt K, De Henauw S, Michels N, Vanhaecke L. Validated Ultra-High-Performance Liquid Chromatography Hybrid High-Resolution Mass Spectrometry and Laser-Assisted Rapid Evaporative Ionization Mass Spectrometry for Salivary Metabolomics. Anal Chem 2020; 92:5116-5124. [PMID: 32150679 DOI: 10.1021/acs.analchem.9b05598] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Whereas urine and blood are typically targeted in clinical research, saliva represents an interesting alternative because its intrinsic metabolome is chemically diverse and reflective for various biological processes. Moreover, saliva collection is easy and noninvasive, which is especially valuable for cohorts in which sample collection is challenging, for example, infants and children. With this rationale, we established a validated ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS) method for salivary metabolic profiling and fingerprinting. Hereby, 450 μL of saliva was centrifuged and passed over a 0.45-μm polyamide membrane filter, after which the extract was subjected to chromatographic analysis (HSS T3 column) and Q-Exactive Orbitrap-MS. For the majority of the profiled metabolites, good linearity (R2 ≥ 0.99) and precision (coefficient of variance ≤ 15%) was achieved. The fingerprinting performance was evaluated based on the complete metabolome (11 385 components), whereby 76.8% was found compliant with the criteria for precision (coefficient of variance ≤ 30%) and 82.7% with linearity (R2 ≥ 0.99). In addition, the method was proven fit-for-purpose for a cohort of 140 adolescents (6-16 years, stratified according to weight), yielding relevant profiles (45 obesity-related metabolites) and discriminative fingerprints (Q2 of 0.784 for supervised discriminant analysis). Alternatively, laser-assisted rapid evaporative ionization mass spectrometry (LA-REIMS) was established for rapid fingerprinting of saliva, thereby using a Nd:YAG laser and Xevo G2-XS QToF-MS. With an acquisition time of 0.5 min per sample, LA-REIMS offers unique opportunities for point-of-care applications. In conclusion, this work presents a platform of UHPLC-HRMS and LA-REIMS, complementing each other to perform salivary metabolomics.
Collapse
Affiliation(s)
- Kathleen Wijnant
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.,Unit Nutrition and Food Safety, Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000 Gent, Belgium
| | - Lieven Van Meulebroek
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Beata Pomian
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Kimberly De Windt
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Stefaan De Henauw
- Unit Nutrition and Food Safety, Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000 Gent, Belgium
| | - Nathalie Michels
- Unit Nutrition and Food Safety, Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000 Gent, Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.,Queen's University, School of Biological Sciences, Institute for Global Food Security, University Road, BT7 1NN Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
199
|
Murugesan S, Al Ahmad SF, Singh P, Saadaoui M, Kumar M, Al Khodor S. Profiling the Salivary microbiome of the Qatari population. J Transl Med 2020; 18:127. [PMID: 32169076 PMCID: PMC7071716 DOI: 10.1186/s12967-020-02291-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The role of the human microbiome in human health and disease has been studied in various body sites. However, compared to the gut microbiome, where most of the research focus is, the salivary microbiome still bears a vast amount of information that needs to be revealed. This study aims to characterize the salivary microbiome composition in the Qatari population, and to explore specific microbial signatures that can be associated with various lifestyles and different oral conditions. MATERIALS AND METHODS We characterized the salivary microbiome of 997 Qatari adults using high-throughput sequencing of the V1-V3 region of the 16S rRNA gene. RESULTS In this study, we have characterized the salivary microbiome of 997 Qatari participants. Our data show that Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria are the common phyla isolated from the saliva samples, with Bacteroidetes being the most predominant phylum. Bacteroidetes was also more predominant in males versus females in the study cohort, although differences in the microbial diversity were not statistically significant. We also show that, a lower diversity of the salivary microbiome is observed in the elderly participants, with Prevotella and Treponema being the most significant genera. In participants with oral conditions such as mouth ulcers, bleeding or painful gum, our data show that Prevotella and Capnocytophaga are the most dominant genera as compared to the controls. Similar patterns were observed in participants with various smoking habits as compared to the non-smoking participants. Our data show that Streptococcus and Neisseria are more dominant among denture users, as compared to the non-denture users. Our data also show that, abnormal oral conditions are associated with a reduced microbial diversity and microbial richness. Moreover, in this study we show that frequent coffee drinkers have higher microbial diversity compared to the non-drinkers, indicating that coffee may cause changes to the salivary microbiome. Furthermore, tea drinkers show higher microbial richness as compared to the non-tea drinkers. CONCLUSION This is the first study to assess the salivary microbiome in an Arab population, and one of the largest population-based studies aiming to the characterize the salivary microbiome composition and its association with age, oral health, denture use, smoking and coffee-tea consumption.
Collapse
Affiliation(s)
| | | | - Parul Singh
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Manoj Kumar
- Research Department, Sidra Medicine, Doha, Qatar
| | | |
Collapse
|
200
|
Neyraud E, Schwartz C, Brignot H, Jouanin I, Tremblay-Franco M, Canlet C, Tournier C. Longitudinal analysis of the salivary metabolome of breast-fed and formula-fed infants over the first year of life. Metabolomics 2020; 16:37. [PMID: 32162105 DOI: 10.1007/s11306-020-01661-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The salivary metabolome has been increasingly studied over the past ten years due to the potential of saliva as a non-invasive source of biomarkers. However, although saliva has been studied in relation to various diseases, its dynamic evolution during life is not known. This is particularly true for the first months of life. Infancy is indeed a critical period during which numerous behavioural and physiological events occur, such as dietary transitions and tooth eruption, which can lead to important biological modifications in the oral cavity. OBJECTIVES The aim of this work was therefore to study the evolution of the salivary metabolome during the first months of life by 1H NMR. METHODS Saliva of 32 infants with different milk feeding histories (breast vs formula) was collected at 6 stages, including 3 months old, 15 days before the onset of complementary feeding (CF), approximately 15 days after the onset of CF, approximately 21 days after the onset of CF and at approximately 11 and 15 months, and analysed. RESULTS The longitudinal analysis showed a significant modification of the profiles of 18 metabolites over time; 14 presented an increase in abundance whereas 4 presented a decrease. These modifications seemed to be linked, for the most part, to an increase in oral microbial metabolism. Milk feeding history during the first months of life had no effect on metabolites. CONCLUSION This work shows that the salivary metabolome should be considered when studying the changes occurring during infancy.
Collapse
Affiliation(s)
- Eric Neyraud
- Centre des Sciences du Goût et de l'alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, 17 rue Sully, 21000, Dijon, France.
| | - Camille Schwartz
- Centre des Sciences du Goût et de l'alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, 17 rue Sully, 21000, Dijon, France
| | - Hélène Brignot
- Centre des Sciences du Goût et de l'alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, 17 rue Sully, 21000, Dijon, France
| | - Isabelle Jouanin
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, 31027, Toulouse, France
- Axiom Platform, MetaToul-MetaboHub, National Infrastructure for Metabolomics and Fluxomics, 31027, Toulouse, France
| | - Marie Tremblay-Franco
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, 31027, Toulouse, France
- Axiom Platform, MetaToul-MetaboHub, National Infrastructure for Metabolomics and Fluxomics, 31027, Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, 31027, Toulouse, France
- Axiom Platform, MetaToul-MetaboHub, National Infrastructure for Metabolomics and Fluxomics, 31027, Toulouse, France
| | - Carole Tournier
- Centre des Sciences du Goût et de l'alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, 17 rue Sully, 21000, Dijon, France
| |
Collapse
|