151
|
Cook B, Rafiq R, Lee H, Banks KM, El-Debs M, Chiaravalli J, Glickman JF, Das BC, Chen S, Evans T. Discovery of a Small Molecule Promoting Mouse and Human Osteoblast Differentiation via Activation of p38 MAPK-β. Cell Chem Biol 2019; 26:926-935.e6. [PMID: 31031140 DOI: 10.1016/j.chembiol.2019.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/07/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022]
Abstract
Disorders of bone healing and remodeling are indications with an unmet need for effective pharmacological modulators. We used a high-throughput screen to identify activators of the bone marker alkaline phosphatase (ALP), and discovered 6,8-dimethyl-3-(4-phenyl-1H-imidazol-5-yl)quinolin-2(1H)-one (DIPQUO). DIPQUO markedly promotes osteoblast differentiation, including expression of Runx2, Osterix, and Osteocalcin. Treatment of human mesenchymal stem cells with DIPQUO results in osteogenic differentiation including a significant increase in calcium matrix deposition. DIPQUO stimulates ossification of emerging vertebral primordia in developing zebrafish larvae, and increases caudal fin osteogenic differentiation during adult zebrafish fin regeneration. The stimulatory effect of DIPQUO on osteoblast differentiation and maturation was shown to be dependent on the p38 MAPK pathway. Inhibition of p38 MAPK signaling or specific knockdown of the p38-β isoform attenuates DIPQUO induction of ALP, suggesting that DIPQUO mediates osteogenesis through activation of p38-β, and is a promising lead candidate for development of bone therapeutics.
Collapse
Affiliation(s)
- Brandoch Cook
- Department of Surgery, 1300 York Avenue, New York, NY 10065, USA.
| | - Ruhina Rafiq
- Department of Surgery, 1300 York Avenue, New York, NY 10065, USA; Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Heejin Lee
- Department of Surgery, 1300 York Avenue, New York, NY 10065, USA; Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kelly M Banks
- Department of Surgery, 1300 York Avenue, New York, NY 10065, USA; Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Jeanne Chiaravalli
- Rockefeller University High Throughput and Spectroscopy Resource Center, New York, NY 10065, USA
| | - J Fraser Glickman
- Rockefeller University High Throughput and Spectroscopy Resource Center, New York, NY 10065, USA
| | - Bhaskar C Das
- Departments of Medicine and Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shuibing Chen
- Department of Surgery, 1300 York Avenue, New York, NY 10065, USA.
| | - Todd Evans
- Department of Surgery, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
152
|
Dawodu D, Patecki M, Dumler I, Haller H, Kiyan Y. oxLDL inhibits differentiation of mesenchymal stem cells into osteoblasts via the CD36 mediated suppression of Wnt signaling pathway. Mol Biol Rep 2019; 46:3487-3496. [PMID: 30847850 DOI: 10.1007/s11033-019-04735-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
Abstract
Bone abnormalities as a consequence of osteoblast deregulation are associated with several diseases such as diabetes and chronic kidney disease. Important role for oxidized low density lipoproteins (oxLDL) in the pathophysiology of bone disorders has been reported. However, little is known about the effects and mechanisms of oxLDL on the process of osteoblastogenesis in human mesenchymal stem cells (MSCs). We show that oxLDL concentrations of ~ 10-25 µg protein (0.43-1.0 µM MDA/mg protein) inhibited the differentiation of MSCs to osteoblasts. We demonstrate that the underlying mechanism entails the suppression of the Wnt signaling through the down-regulation of β-catenin. Further, we show the association of scavenger receptor CD36 with the receptors LRP5/6 and Frizzled in mediating the oxLDL effects on the differentiation of MSCs to pre-osteoblasts. Inhibiting CD36 restored osteoblasts differentiation in the presence of oxLDL. Our findings suggest that oxLDL interferes with the canonical Wnt signaling pathway in a CD36 dependent manner leading to an inhibition of osteoblastogenesis.
Collapse
Affiliation(s)
- Damilola Dawodu
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Margret Patecki
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Inna Dumler
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Yulia Kiyan
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
153
|
Zhao C, Qazvini NT, Sadati M, Zeng Z, Huang S, De La Lastra AL, Zhang L, Feng Y, Liu W, Huang B, Zhang B, Dai Z, Shen Y, Wang X, Luo W, Liu B, Lei Y, Ye Z, Zhao L, Cao D, Yang L, Chen X, Athiviraham A, Lee MJ, Wolf JM, Reid RR, Tirrell M, Huang W, de Pablo JJ, He TC. A pH-Triggered, Self-Assembled, and Bioprintable Hybrid Hydrogel Scaffold for Mesenchymal Stem Cell Based Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8749-8762. [PMID: 30734555 PMCID: PMC6407040 DOI: 10.1021/acsami.8b19094] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Effective bone tissue engineering can restore bone and skeletal functions that are impaired by traumas and/or certain medical conditions. Bone is a complex tissue and functions through orchestrated interactions between cells, biomechanical forces, and biofactors. To identify ideal scaffold materials for effective mesenchymal stem cell (MSC)-based bone tissue regeneration, here we develop and characterize a composite nanoparticle hydrogel by combining carboxymethyl chitosan (CMCh) and amorphous calcium phosphate (ACP) (designated as CMCh-ACP hydrogel). We demonstrate that the CMCh-ACP hydrogel is readily prepared by incorporating glucono δ-lactone (GDL) into an aqueous dispersion or rehydrating the acidic freeze-dried nanoparticles in a pH-triggered controlled-assembly fashion. The CMCh-ACP hydrogel exhibits excellent biocompatibility and effectively supports MSC proliferation and cell adhesion. Moreover, while augmenting BMP9-induced osteogenic differentiation, the CMCh-ACP hydrogel itself is osteoinductive and induces the expression of osteoblastic regulators and bone markers in MSCs in vitro. The CMCh-ACP scaffold markedly enhances the efficiency and maturity of BMP9-induced bone formation in vivo, while suppressing bone resorption occurred in long-term ectopic osteogenesis. Thus, these results suggest that the pH-responsive self-assembled CMCh-ACP injectable and bioprintable hydrogel may be further exploited as a novel scaffold for osteoprogenitor-cell-based bone tissue regeneration.
Collapse
Affiliation(s)
- Chen Zhao
- Departments of Orthopedic
Surgery, Clinical Laboratory Medicine, Breast Surgery, Burn and Plastic
Surgery, Otolaryngology-Head and Neck Surgery, and Obstetrics and
Gynecology, the First Affiliated Hospital
of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Nader Taheri Qazvini
- Institute for Molecular Engineering, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Monirosadat Sadati
- Institute for Molecular Engineering, The
University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine and School
of Laboratory Medicine, the Affiliated Hospitals
of Chongqing Medical University, Chongqing 400016, China
| | - Shifeng Huang
- Departments of Orthopedic
Surgery, Clinical Laboratory Medicine, Breast Surgery, Burn and Plastic
Surgery, Otolaryngology-Head and Neck Surgery, and Obstetrics and
Gynecology, the First Affiliated Hospital
of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | | | - Linghuan Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine and School
of Laboratory Medicine, the Affiliated Hospitals
of Chongqing Medical University, Chongqing 400016, China
| | - Yixiao Feng
- Departments of Orthopedic
Surgery, Clinical Laboratory Medicine, Breast Surgery, Burn and Plastic
Surgery, Otolaryngology-Head and Neck Surgery, and Obstetrics and
Gynecology, the First Affiliated Hospital
of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Wei Liu
- Departments of Orthopedic
Surgery, Clinical Laboratory Medicine, Breast Surgery, Burn and Plastic
Surgery, Otolaryngology-Head and Neck Surgery, and Obstetrics and
Gynecology, the First Affiliated Hospital
of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Bo Huang
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine and School
of Laboratory Medicine, the Affiliated Hospitals
of Chongqing Medical University, Chongqing 400016, China
- Department of Clinical
Laboratory Medicine, the Second Affiliated
Hospital of Nanchang University, Nanchang 330031, China
| | - Bo Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Key Laboratory of Orthopaedic Surgery of Gansu Province and the Department
of Orthopaedic Surgery, the Second Hospital
of Lanzhou University, Lanzhou 730030, China
| | - Zhengyu Dai
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Department
of Orthopaedic Surgery, Chongqing Hospital
of Traditional Chinese Medicine, Chongqing 400021, China
| | - Yi Shen
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Department of Orthopaedic Surgery, Xiangya
Second Hospital of Central South University, Changsha 410011, China
| | - Xi Wang
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine and School
of Laboratory Medicine, the Affiliated Hospitals
of Chongqing Medical University, Chongqing 400016, China
| | - Wenping Luo
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine and School
of Laboratory Medicine, the Affiliated Hospitals
of Chongqing Medical University, Chongqing 400016, China
| | - Bo Liu
- Departments of Orthopedic
Surgery, Clinical Laboratory Medicine, Breast Surgery, Burn and Plastic
Surgery, Otolaryngology-Head and Neck Surgery, and Obstetrics and
Gynecology, the First Affiliated Hospital
of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Yan Lei
- Departments of Orthopedic
Surgery, Clinical Laboratory Medicine, Breast Surgery, Burn and Plastic
Surgery, Otolaryngology-Head and Neck Surgery, and Obstetrics and
Gynecology, the First Affiliated Hospital
of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Zhenyu Ye
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Department of General Surgery, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ling Zhao
- Departments of Orthopedic
Surgery, Clinical Laboratory Medicine, Breast Surgery, Burn and Plastic
Surgery, Otolaryngology-Head and Neck Surgery, and Obstetrics and
Gynecology, the First Affiliated Hospital
of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Daigui Cao
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine and School
of Laboratory Medicine, the Affiliated Hospitals
of Chongqing Medical University, Chongqing 400016, China
- Department of Orthopaedic Surgery, Chongqing General Hospital, Chongqing 400021, China
| | - Lijuan Yang
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Key Laboratory of Orthopaedic Surgery of Gansu Province and the Department
of Orthopaedic Surgery, the Second Hospital
of Lanzhou University, Lanzhou 730030, China
| | - Xian Chen
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- Department of Clinical Laboratory Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266061, China
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Matthew Tirrell
- Institute for Molecular Engineering, The
University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Wei Huang
- Departments of Orthopedic
Surgery, Clinical Laboratory Medicine, Breast Surgery, Burn and Plastic
Surgery, Otolaryngology-Head and Neck Surgery, and Obstetrics and
Gynecology, the First Affiliated Hospital
of Chongqing Medical University, Chongqing 400016, China
- E-mail: . Tel/Fax: (86) 23-89011212 (W.H.)
| | - Juan J. de Pablo
- Institute for Molecular Engineering, The
University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Argonne, Illinois 60439, United States
- E-mail: (J.J.d.P)
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic
Surgery and Rehabilitation Medicine and Department of Surgery, Laboratory
of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, United States
- E-mail: . Tel: (773) 702-7169. Fax: (773) 834-4598 (T.-C.H.)
| |
Collapse
|
154
|
Silicate-based bioceramic scaffolds for dual-lineage regeneration of osteochondral defect. Biomaterials 2019; 192:323-333. [DOI: 10.1016/j.biomaterials.2018.11.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 01/26/2023]
|
155
|
Yang X, Wang G, Wang Y, Zhou J, Yuan H, Li X, Liu Y, Wang B. Histone demethylase KDM7A reciprocally regulates adipogenic and osteogenic differentiation via regulation of C/EBPα and canonical Wnt signalling. J Cell Mol Med 2019; 23:2149-2162. [PMID: 30614617 PMCID: PMC6378189 DOI: 10.1111/jcmm.14126] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/20/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023] Open
Abstract
Recent emerging evidences revealed that epigenetic methylation of histone and DNA regulates the lineage commitment of mesenchymal progenitor cells. This study was undertaken to delineate the actions of histone lysine demethylase 7A (KDM7A) on osteogenic and adipogenic differentiation. Kdm7a expression was up‐regulated in primary marrow stromal cells and established stromal ST2 line after adipogenic and osteogenic treatment. Silencing of endogenous Kdm7a in the cells blocked adipogenic differentiation whereas promoted osteogenic differentiation. Conversely, overexpression of wild‐type Kdm7a in the progenitor cells enhanced adipogenic differentiation whereas inhibited osteogenic differentiation. However, the effect of KDM7A on cell differentiation was largely attenuated when the point mutation was made that abolishes enzymatic activity of KDM7A. Mechanism investigations revealed that silencing of Kdm7a down‐regulated the expression of the CCAAT/enhancer binding protein α (C/EBPα) and secreted frizzled‐related protein 1 (Sfrp1). Chromatin immunoprecipitation (ChIP) assay revealed that KDM7A directly binds to the promoters of C/EBPα and Sfrp1 and removes the histone methylation marks H3K9me2 and H3K27me2. Furthermore, silencing of Kdm7a activated canonical Wnt signalling. Thereafter, activation of canonical Wnt signalling through silencing of Sfrp1 in ST2 attenuated the stimulation of adipogenic differentiation and inhibition of osteogenic differentiation by KDM7A. Our study suggests that KDM7A balances adipogenic and osteogenic differentiation from progenitor cells through epigenetic control of C/EBPα and canonical Wnt signalling and implicates that control of KDM7A action has an epigenetic perspective of curtailing metabolic disorders like osteoporosis.
Collapse
Affiliation(s)
- Xiaoyue Yang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Stomatological Hospital, Tianjin Medical University, Tianjin, China
| | - Guannan Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yi Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Hairui Yuan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xiaoxia Li
- College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Liu
- Stomatological Hospital, Tianjin Medical University, Tianjin, China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
156
|
Houschyar KS, Tapking C, Borrelli MR, Popp D, Duscher D, Maan ZN, Chelliah MP, Li J, Harati K, Wallner C, Rein S, Pförringer D, Reumuth G, Grieb G, Mouraret S, Dadras M, Wagner JM, Cha JY, Siemers F, Lehnhardt M, Behr B. Wnt Pathway in Bone Repair and Regeneration - What Do We Know So Far. Front Cell Dev Biol 2019; 6:170. [PMID: 30666305 PMCID: PMC6330281 DOI: 10.3389/fcell.2018.00170] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/30/2018] [Indexed: 02/05/2023] Open
Abstract
Wnt signaling plays a central regulatory role across a remarkably diverse range of functions during embryonic development, including those involved in the formation of bone and cartilage. Wnt signaling continues to play a critical role in adult osteogenic differentiation of mesenchymal stem cells. Disruptions in this highly-conserved and complex system leads to various pathological conditions, including impaired bone healing, autoimmune diseases and malignant degeneration. For reconstructive surgeons, critically sized skeletal defects represent a major challenge. These are frequently associated with significant morbidity in both the recipient and donor sites. The Wnt pathway is an attractive therapeutic target with the potential to directly modulate stem cells responsible for skeletal tissue regeneration and promote bone growth, suggesting that Wnt factors could be used to promote bone healing after trauma. This review summarizes our current understanding of the essential role of the Wnt pathway in bone regeneration and repair.
Collapse
Affiliation(s)
- Khosrow S Houschyar
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Christian Tapking
- Department of Surgery, Shriners Hospital for Children-Galveston, University of Texas Medical Branch, Galveston, TX, United States.,Department of Hand, Plastic and Reconstructive Surgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Heidelberg, Germany
| | - Mimi R Borrelli
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, United States
| | - Daniel Popp
- Department of Surgery, Shriners Hospital for Children-Galveston, University of Texas Medical Branch, Galveston, TX, United States.,Division of Hand, Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Dominik Duscher
- Department of Plastic Surgery and Hand Surgery, Technical University Munich, Munich, Germany
| | - Zeshaan N Maan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, United States
| | - Malcolm P Chelliah
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, United States
| | - Jingtao Li
- State Key Laboratory of Oral Diseases and Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kamran Harati
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Christoph Wallner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Susanne Rein
- Department of Plastic and Hand Surgery-Burn Center-Clinic St. Georg, Leipzig, Germany
| | - Dominik Pförringer
- Clinic and Policlinic of Trauma Surgery, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Georg Reumuth
- Department of Plastic and Hand Surgery, Burn Unit, Trauma Center Bergmannstrost Halle, Halle, Germany
| | - Gerrit Grieb
- Department of Plastic Surgery and Hand Surgery, Gemeinschaftskrankenhaus Havelhoehe, Teaching Hospital of the Charité Berlin, Berlin, Germany
| | - Sylvain Mouraret
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, United States.,Department of Periodontology, Service of Odontology, Rothschild Hospital, AP-HP, Paris 7 - Denis, Diderot University, U.F.R. of Odontology, Paris, France
| | - Mehran Dadras
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Johannes M Wagner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Jungul Y Cha
- Orthodontic Department, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Frank Siemers
- Department of Plastic and Hand Surgery, Burn Unit, Trauma Center Bergmannstrost Halle, Halle, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
157
|
Toshimitsu T, Kajiya H, Yasunaga M, Maeshiba M, Fujisaki S, Miyaguchi N, Yamaguchi M, Maeda H, Kojima H, Ohno J. Susceptibility of the Wnt/β-catenin Pathway Accelerates Osteogenic Differentiation of Human Periodontal Ligament Stem Cell Spheroids. J HARD TISSUE BIOL 2019. [DOI: 10.2485/jhtb.28.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Takuya Toshimitsu
- Dentistry for the Disabled, Department of Oral Growth and Development, Fukuoka Dental College
- Research Center for Regenerative Medicine, Fukuoka Dental College
| | - Hiroshi Kajiya
- Research Center for Regenerative Medicine, Fukuoka Dental College
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College
| | - Madoka Yasunaga
- Research Center for Regenerative Medicine, Fukuoka Dental College
- Section of Orthodontics, Department of Oral Growth and Development, Fukuoka Dental College
| | - Munehisa Maeshiba
- Research Center for Regenerative Medicine, Fukuoka Dental College
- Division of Removable Prosthodontics, Department of Oral Rehabilitation, Fukuoka Dental College
| | - Seiichi Fujisaki
- Research Center for Regenerative Medicine, Fukuoka Dental College
- Division of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College
| | - Naoyuki Miyaguchi
- Research Center for Regenerative Medicine, Fukuoka Dental College
- Division of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College
| | - Masahiro Yamaguchi
- Research Center for Regenerative Medicine, Fukuoka Dental College
- Section of Geriatric Dentistry, Department of General Dentistry, Fukuoka Dental College
| | - Hidefumi Maeda
- Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University
| | - Hiroshi Kojima
- Dentistry for the Disabled, Department of Oral Growth and Development, Fukuoka Dental College
| | - Jun Ohno
- Research Center for Regenerative Medicine, Fukuoka Dental College
| |
Collapse
|
158
|
Nutritional and Pharmacological Effects on Oxidative Stress in Soft Tissue and Bone Remodeling. J Nutr Metab 2018; 2018:4183407. [PMID: 30687551 PMCID: PMC6327261 DOI: 10.1155/2018/4183407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/05/2018] [Accepted: 12/09/2018] [Indexed: 12/16/2022] Open
Abstract
Oxidative damage is the causal link to a multitude of pathologies, such as diabetes, arthritis, neuropathy, heart disease, and asthma. These conditions affect hundreds of millions of people nationwide, and billions worldwide. Even in otherwise healthy individuals, oxidative stress is a natural byproduct of metabolism that is augmented in "healthy" activities such as athletics. In many disease states, the pharmacological agents used to treat these conditions can induce oxidative damage and vitamin depletion. It is underappreciated by many that many of the most common medications prescribed result in oxidative stress. Therefore, physicians need to carefully scrutinize which medications their patients are on before surgery and treatment and during the recovery stage to obtain optimal healing results. We provide a review of the current literature of how oxidative damage and inflammation are linked to bone damage, Charcot neuroarthropathy, delayed wound healing, diabetic complications, and delayed flap consolidation. Where available, antioxidant intervention literature is offered to offset these conditions.
Collapse
|
159
|
Zhan Y, Li X, Gou X, Yuan G, Fan M, Yang G. DLX3 Inhibits the Proliferation of Human Dental Pulp Cells Through Inactivation of Canonical Wnt/β-Catenin Signaling Pathway. Front Physiol 2018; 9:1637. [PMID: 30524303 PMCID: PMC6256238 DOI: 10.3389/fphys.2018.01637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/30/2018] [Indexed: 01/17/2023] Open
Abstract
Homeodomain gene Distal-less-3 (Dlx3) plays an important role during tooth development. Our previous studies indicate that DLX3 inhibits proliferation of human dental pulp cells (hDPCs). However, the mechanism of DLX3 regulating proliferation of hDPCs and maintaining the quiescence of the cells remain unknown. Given the importance of canonical Wnt signaling in the proliferation of dental pulp cell and tooth development, we hypothesized that DLX3 inhibited proliferation of hDPCs through inactivation of canonical Wnt signaling. With overexpression or knock-down of DLX3 in primary hDPCs, we found DLX3 down regulated canonical Wnt signaling and its downstream target genes. And when the DLX3 overexpressed-cells were treated with lithium chloride, the proliferation inhibition by DLX3 was reversed. We also found that DLX3 enhanced the expression of DKK1 and the reduced proliferation of hDPCs by DLX3 was reversed with knock-down of DKK1. Furthermore, luciferase reporter assay and chromatin immunoprecipitation assay showed DLX3 was able to bind to Dkk1 promoter region from nucleotides (nt) -1656 to -1245, and stimulated Dkk1 promoter activity. Mutagenesis studies further revealed two DLX3 responsive elements in Dkk1 promoter. Taken together, our data indicate that DLX3 inhibits proliferation of hDPCs via inactivation of Wnt/β-catenin signaling pathway by directly binding to Dkk1 promoter and increasing its expression.
Collapse
Affiliation(s)
- Yunyan Zhan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoyan Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Shandong Provincial Key Laboratory of Oral Biomedicine, Department of Endodontics, School of Stomatology, Shandong University, Jinan, China
| | - Xiaohui Gou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guohua Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Shandong Provincial Key Laboratory of Oral Biomedicine, Department of Endodontics, School of Stomatology, Shandong University, Jinan, China
| | - Mingwen Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guobin Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
160
|
Protective Effect of PACAP on Ischemia/Reperfusion-Induced Kidney Injury of Male and Female Rats: Gender Differences. J Mol Neurosci 2018; 68:408-419. [PMID: 30443839 DOI: 10.1007/s12031-018-1207-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that exerts general cytoprotective effects, including protection in different kidney disorders. The aim of our study was to investigate the ischemia/reperfusion-induced kidney injury of male and female rats to confirm the protective effects of PACAP in the kidney and to reveal possible gender differences.Male and female Wistar rats underwent unilateral renal artery clamping followed by 24-h, 48-h, or 14-day reperfusion. PACAP was administered intravenously before arterial clamping in half of the rats. Tubular damage, cytokine expression pattern, oxidative stress marker, antioxidative status and signaling pathways were evaluated using histology, immunohistology, cytokine array, PCR, and Western blot. Tubular damage was significantly less severe in the PACAP-treated male and female rats compared to controls. Results of female animals were significantly better in both treated and untreated groups. Cytokine expression, oxidative stress marker and antioxidative status confirmed the histological results. We also revealed that PACAP counteracted the decreased PKA phosphorylation, influenced the expression of BMP2 and BMP4, and increased the expression of the protein Smad1.We conclude that PACAP is protective in ischemia/reperfusion-induced kidney injury in both sexes, but females had markedly less pronounced injury after ischemia/reperfusion, possibly also involving further protective factors, the investigation of which could have future therapeutic value in treating ischemic kidney injuries.
Collapse
|
161
|
Rolph DN, Deb M, Kanji S, Greene CJ, Das M, Joseph M, Aggarwal R, Leblebicioglu B, Das H. Ferutinin directs dental pulp-derived stem cells towards the osteogenic lineage by epigenetically regulating canonical Wnt signaling. Biochim Biophys Acta Mol Basis Dis 2018; 1866:165314. [PMID: 30412793 DOI: 10.1016/j.bbadis.2018.10.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/15/2018] [Accepted: 10/26/2018] [Indexed: 01/02/2023]
Abstract
Osteoporosis is a silent systemic disease that causes bone deterioration, and affects over 10 million people in the US alone. This study was undertaken to develop a potential stem cell therapy for osteoporosis. We have isolated and expanded human dental pulp-derived stem cells (DPSCs), characterized them, and confirmed their multipotential differentiation abilities. Stem cells often remain quiescent and require activation to differentiate and function. Herein, we show that ferutinin activates DPSCs by modulating the Wnt/β-catenin signaling pathway and key osteoblast-secreted proteins osteocalcin and collagen 1A1 both mRNA and protein levels. To confirm that ferutinin modulates the Wnt pathway, we inhibited glycogen synthase kinase 3 (GSK3) and found that protein expression patterns were similar to those found in ferutinin-treated DPSCs. To evaluate the role of ferutinin in epigenetic regulation of canonical Wnt signaling, the pathway molecules Wnt3a and Dvl3 were analyzed using chromatin immunoprecipitation (ChIP)-quantitative PCR approaches. We confirmed that active marks of both H3K9 acetylation and H3K4 trimethylation were significantly enhanced in the promoter sites of the WNT3A and DVL3 genes in DPSCs after addition of ferutinin. These data provide evidence that ferutinin activates and promotes osteogenic differentiation of DPSCs, and could be used as an inducer as a potentially effective stem cell therapy for osteoporosis.
Collapse
Affiliation(s)
- Daniela N Rolph
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Moonmoon Deb
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Suman Kanji
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Carl J Greene
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Manjusri Das
- Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Matthew Joseph
- Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Reeva Aggarwal
- Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Binnaz Leblebicioglu
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Hiranmoy Das
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
162
|
Chen D, Gong Y, Xu L, Zhou M, Li J, Song J. Bidirectional regulation of osteogenic differentiation by the FOXO subfamily of Forkhead transcription factors in mammalian MSCs. Cell Prolif 2018; 52:e12540. [PMID: 30397974 PMCID: PMC6496202 DOI: 10.1111/cpr.12540] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/09/2018] [Accepted: 09/02/2018] [Indexed: 12/23/2022] Open
Abstract
Through loss‐ and gain‐of‐function experiments in knockout and transgenic mice, Forkhead box O (FOXO) family transcription factors have been demonstrated to play essential roles in many biological processes, including cellular proliferation, apoptosis and differentiation. Osteogenic differentiation from mesenchymal stem cells (MSCs) into osteoblasts is a well‐organized process that is carefully guided and characterized by various factors, such as runt‐related transcription factor 2 (Runx2), β‐catenin, osteocalcin (OCN), alkaline phosphatase (ALP) and activating transcription factor 4 (ATF4). Accumulating evidence suggests multiple interactions among FOXO members and the differentiation regulatory factors listed above, resulting in an enhancement or inhibition of osteogenesis in different stages of osteogenic differentiation. To systematically and integrally understand the role of FOXOs in osteogenic differentiation and explain the contrary phenomena observed in vitro and in vivo, we herein summarized FOXO‐interacting differentiation regulatory genes/factors and following alterations in differentiation. The underlying mechanism was further discussed on the basis of binding types, sites, phases and the consequent downstream transcriptional alterations of interactions among FOXOs and differentiation regulatory factors. Interestingly, a bidirectional effect of FOXOs on balancing osteogenic differentiation was discovered in MSCs. Moreover, FOXO factors are reported to be activated or suppressed by several context‐dependent signalling inputs during differentiation, and the underlying molecular basis may offer new drug development targets for treatments of bone formation defect diseases.
Collapse
Affiliation(s)
- Duanjing Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuanyuan Gong
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ling Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Mengjiao Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
163
|
Choi JY, Lai JK, Xiong ZM, Ren M, Moorer MC, Stains JP, Cao K. Diminished Canonical β-Catenin Signaling During Osteoblast Differentiation Contributes to Osteopenia in Progeria. J Bone Miner Res 2018; 33:2059-2070. [PMID: 30001457 PMCID: PMC7739562 DOI: 10.1002/jbmr.3549] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/25/2018] [Accepted: 06/30/2018] [Indexed: 12/31/2022]
Abstract
Patients with Hutchinson-Gilford progeria syndrome (HGPS) have low bone mass and an atypical skeletal geometry that manifests in a high risk of fractures. Using both in vitro and in vivo models of HGPS, we demonstrate that defects in the canonical WNT/β-catenin pathway, seemingly at the level of the efficiency of nuclear import of β-catenin, impair osteoblast differentiation and that restoring β-catenin activity rescues osteoblast differentiation and significantly improves bone mass. Specifically, we show that HGPS patient-derived iPSCs display defects in osteoblast differentiation, characterized by a decreased alkaline phosphatase activity and mineralizing capacity. We demonstrate that the canonical WNT/β-catenin pathway, a major signaling cascade involved in skeletal homeostasis, is impaired by progerin, causing a reduction in the active β-catenin in the nucleus and thus decreased transcriptional activity, and its reciprocal cytoplasmic accumulation. Blocking farnesylation of progerin restores active β-catenin accumulation in the nucleus, increasing signaling, and ameliorates the defective osteogenesis. Moreover, in vivo analysis of the Zmpste24-/- HGPS mouse model demonstrates that treatment with a sclerostin-neutralizing antibody (SclAb), which targets an antagonist of canonical WNT/β-catenin signaling pathway, fully rescues the low bone mass phenotype to wild-type levels. Together, this study reveals that the β-catenin signaling cascade is a therapeutic target for restoring defective skeletal microarchitecture in HGPS. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ji Young Choi
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD 20742
| | - Jim K Lai
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Zheng-Mei Xiong
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD 20742
| | - Margaret Ren
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD 20742
| | - Megan C Moorer
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Joseph P Stains
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD 20742
| |
Collapse
|
164
|
Wnt Signaling-Related Osteokines at Rest and Following Plyometric Exercise in Prepubertal and Early Pubertal Boys and Girls. Pediatr Exerc Sci 2018; 30:457-465. [PMID: 29683771 DOI: 10.1123/pes.2017-0259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE This study examined osteokines related to Wnt signaling at rest and in response to plyometric exercise in 12 boys [10.2 (0.4) y] and 12 girls [10.5 (0.4) y]. METHODS One resting (preexercise) and 3 postexercise (5 min, 1 h, and 24 h) blood samples were analyzed for sclerostin, dickkopf-related protein 1 (DKK-1), osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-β ligand (RANKL). RESULTS Girls had higher resting sclerostin than boys [187.1 (40.1) vs 150.4 (36.4) pg·mL-1, respectively; P = .02]. However, boys had higher DKK-1 [427.7 (142.3) vs 292.8 (48.0) pg·mL-1, respectively; P = .02] and RANKL [3.9 (3.8) vs 1.0 (0.4) pg·mL-1, respectively; P < .01] than girls. In girls, sclerostin significantly decreased 5-minute and 1-hour postexercise (χ2 = 12.7, P = .01), and RANKL significantly decreased 5-minute postexercise (χ2 = 19.1, P < .01) and continued to decrease up to 24-hour postexercise, with large effect sizes. In boys, DKK-1 significantly decreased 1-hour postexercise and remained lower than preexercise 24-hour postexercise (χ2 = 13.0, P = .01). OPG increased in both boys (χ2 = 13.7, P < .01) and girls (χ2 = 11.4, P = .01), with boys having significantly higher OPG at 5-minute and 1-hour postexercise, whereas in girls, this increase was only seen 24-hour postexercise. CONCLUSION Plyometric exercise induces an overall anabolic osteokine response favoring osteoblastogenesis over osteoclastogenesis in both boys and girls although the timeline and mechanism(s) may be different.
Collapse
|
165
|
Chen F, Bi D, Cheng C, Ma S, Liu Y, Cheng K. Bone morphogenetic protein 7 enhances the osteogenic differentiation of human dermal-derived CD105+ fibroblast cells through the Smad and MAPK pathways. Int J Mol Med 2018; 43:37-46. [PMID: 30365093 PMCID: PMC6257832 DOI: 10.3892/ijmm.2018.3938] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 08/17/2018] [Indexed: 01/20/2023] Open
Abstract
The skin, as the largest organ of the human body, is an important source of stromal stem cells with multipotent differentiation potential. CD105+ mesenchymal stem cells exhibit a higher level of stemness than CD105− cells. In the present study, human dermal-derived CD105+ fibroblast cells (CD105+ hDDFCs) were isolated from human foreskin specimens using immunomagnetic isolation methods to examine the role of bone morphogenetic protein (BMP)-7 in osteogenic differentiation. Adenovirus-mediated recombinant BMP7 expression enhanced osteogenesis-associated gene expression, calcium deposition, and alkaline phosphatase activity. Investigation of the underlying mechanisms showed that BMP7 activated small mothers against decapentaplegic (Smad) and p38/mitogen-activated protein kinase signaling in CD105+ hDDFCs. The small interfering RNA-mediated knockdown of Smad4 or inhibition of p38 attenuated the BMP7-induced enhancement of osteogenic differentiation. In an in vivo ectopic bone formation model, the adenovirus-mediated overexpression of BMP7 enhanced bone formation from CD105+ hDDFCs. Taken together, these data indicated that adenoviral BMP7 gene transfer in CD105+ hDDFCs may be developed as an effective tool for bone tissue engineering.
Collapse
Affiliation(s)
- Fuguo Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Dan Bi
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Chen Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Sunxiang Ma
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yang Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Kaixiang Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
166
|
Picke AK, Campbell GM, Schmidt FN, Busse B, Rauner M, Simon JC, Anderegg U, Hofbauer LC, Saalbach A. Thy-1 Deficiency Augments Bone Loss in Obesity by Affecting Bone Formation and Resorption. Front Cell Dev Biol 2018; 6:127. [PMID: 30333974 PMCID: PMC6176687 DOI: 10.3389/fcell.2018.00127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/13/2018] [Indexed: 12/30/2022] Open
Abstract
Healthy bone remodeling results from a balanced bone formation and bone resorption realized by bone-forming osteoblasts and bone-resorbing osteoclasts, respectively. Recently, Thy-1 (CD90) was identified as positive regulator of osteoblast differentiation and activation, thus, promoting bone formation while concurrently inhibiting adipogenesis and obesity in mice. Additionally, Thy-1 did not affect bone resorption. An obesity-related co-morbidity that is increasing in prevalence is a disturbed bone formation resulting in an increased fracture risk. The underlying mechanisms of obesity-induced bone alterations are not yet fully elucidated and therefore therapy options for efficient bone-anabolic treatments are limited. Therefore, we investigated the impact of Thy-1 on bone metabolism under obese conditions. Indeed, high fat diet (HFD) induced obese mice lacking Thy-1 (Thy-1−/−) showed increased body fat mass compared to wildtype (WT) mice while bone mass (−38%) and formation (−57%) were decreased as shown by micro-computed tomography (μCT) measurement, histological analysis, and fourier-transform infrared spectroscopy (FTIR). Interestingly, under obese conditions, lack of Thy-1 affected both osteoblast and osteoclast function. Number (−30%) and activity of osteoblasts were decreased in obese Thy-1−/− mice while osteoclast number (+39%) and activity were increased. Facilitated bone marrow fat accumulation (+56%) in obese Thy-1−/− mice compared to obese WT mice was associated with upregulated tumor necrosis factor α (Tnfα, +46%) and colony stimulating factor 1 receptor (Csf1r) expression, strong promoters of osteoclast differentiation. Moreover, lack of Thy-1 was accompanied by a reduction of osteoprotegerin (Tnfrsf11b) expression (−36%), an inhibitor of osteoclast differentiation. Altered Tnfα, Csf1r, and Tnfrsf11b expression might be responsible for elevated osteoclast activity in obese Thy-1-deficient mice. In summary, our findings show that lack of Thy-1 promotes obesity under HFD conditions while concurrently decreasing bone mass and formation. Mechanistic studies revealed that under obese conditions lack of Thy-1 impairs both bone formation and bone resorption.
Collapse
Affiliation(s)
- Ann-Kristin Picke
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany.,Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Graeme M Campbell
- Institute of Biomechanics, TUHH Hamburg University of Technology, Hamburg, Germany
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center, Hamburg, Germany
| | - Martina Rauner
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Jan C Simon
- Department of Dermatology, Venerology, and Allergology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Ulf Anderegg
- Department of Dermatology, Venerology, and Allergology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Anja Saalbach
- Department of Dermatology, Venerology, and Allergology, Medical Faculty, Leipzig University, Leipzig, Germany
| |
Collapse
|
167
|
Ang K, Sanchez Rangel E, Yuan Q, Wu D, Carpenter TO, Insogna K. Skeletal disease in a father and daughter with a novel monoallelic WNT1 mutation. Bone Rep 2018; 9:154-158. [PMID: 30364642 PMCID: PMC6197702 DOI: 10.1016/j.bonr.2018.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022] Open
Abstract
Context Most heritable causes of low bone mass in children occur due to mutations affecting type 1 collagen. We describe two related patients with low bone mass and fracture without mutations in the type 1 collagen genes. Case description We describe the index case of a 10-year-old girl with low-impact fractures in childhood and her 59-year-old father with traumatic fractures in adulthood, both with low bone mineral density. They were found to have the same heterozygous missense mutation in the WNT1 gene (p.Gly222Arg), occurring in a highly conserved WNT motif in close proximity to the Frizzled binding site. Conclusions The WNT-ligand WNT1, signaling through the canonical WNT-βcatenin pathway, plays a critical role in skeletal development, adult skeletal homeostasis, and bone remodeling. Biallelic mutations have been described and are associated with moderate to severe osteogenesis imperfecta, in some cases with extra-skeletal manifestations. Patients with monoallelic mutations, as in our case, seem to present with low bone mineral density and less severe disease. The phenotypic difference between biallelic and monoallelic mutations highlights that the aberrant protein in monoallelic mutations may exert a dominant negative effect on the wild type protein as heterozygous carriers in families with biallelic disease are usually asymptomatic. With better understanding of disorders associated with WNT1 mutations, therapies targeting this signaling pathway may offer therapeutic benefit.
Collapse
Affiliation(s)
- Kathleen Ang
- Yale University School of Medicine, New Haven, CT, United States of America
| | | | - Qianying Yuan
- Yale University School of Medicine, New Haven, CT, United States of America
| | - Dianqing Wu
- Yale University School of Medicine, New Haven, CT, United States of America
| | - Thomas O Carpenter
- Yale University School of Medicine, New Haven, CT, United States of America
| | - Karl Insogna
- Yale University School of Medicine, New Haven, CT, United States of America
| |
Collapse
|
168
|
Zhao C, Zeng Z, Qazvini NT, Yu X, Zhang R, Yan S, Shu Y, Zhu Y, Duan C, Bishop E, Lei J, Zhang W, Yang C, Wu K, Wu Y, An L, Huang S, Ji X, Gong C, Yuan C, Zhang L, Liu W, Huang B, Feng Y, Zhang B, Dai Z, Shen Y, Wang X, Luo W, Oliveira L, Athiviraham A, Lee MJ, Wolf JM, Ameer GA, Reid RR, He TC, Huang W. Thermoresponsive Citrate-Based Graphene Oxide Scaffold Enhances Bone Regeneration from BMP9-Stimulated Adipose-Derived Mesenchymal Stem Cells. ACS Biomater Sci Eng 2018; 4:2943-2955. [PMID: 30906855 PMCID: PMC6425978 DOI: 10.1021/acsbiomaterials.8b00179] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/07/2018] [Indexed: 02/06/2023]
Abstract
Effective bone tissue engineering is important to overcome the unmet clinical challenges as more than 1.6 million bone grafts are done annually in the United States. Successful bone tissue engineering needs minimally three critical constituents: osteoprogenitor cells, osteogenic factors, and osteoinductive/osteoconductive scaffolds. Osteogenic progenitors are derived from multipotent mesenchymal stem cells (MSCs), which can be prepared from numerous tissue sources, including adipose tissue. We previously showed that BMP9 is the most osteogenic BMP and induces robust bone formation of immortalized mouse adipose-derived MSCs entrapped in a citrate-based thermoresponsive hydrogel referred to as PPCNg. As graphene and its derivatives emerge as promising biomaterials, here we develop a novel thermosensitive and injectable hybrid material by combining graphene oxide (GO) with PPCNg (designated as GO-P) and characterize its ability to promote bone formation. We demonstrate that the thermoresponsive behavior of the hybrid material is maintained while effectively supporting MSC survival and proliferation. Furthermore, GO-P induces early bone-forming marker alkaline phosphatase (ALP) and potentiates BMP9-induced expression of osteogenic regulators and bone markers as well as angiogenic factor VEGF in MSCs. In vivo studies show BMP9-transduced MSCs entrapped in the GO-P scaffold form well-mineralized and highly vascularized trabecular bone. Thus, these results indicate that GO-P hybrid material may function as a new biocompatible, injectable scaffold with osteoinductive and osteoconductive activities for bone regeneration.
Collapse
Affiliation(s)
- Chen Zhao
- Departments
of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory
Medicine, and Breast Surgery, The First
Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
| | - Zongyue Zeng
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
- Ministry
of Education Key Laboratory of Diagnostic Medicine and School of Laboratory
Medicine, The Affiliated Hospitals of Chongqing
Medical University, 1
Medical College Road, Chongqing 400016, China
| | - Nader Taheri Qazvini
- Institute
for Molecular Engineering, The University
of Chicago, 5640 South
Ellis Avenue, Chicago, Illinois 60637, United States
| | - Xinyi Yu
- Departments
of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory
Medicine, and Breast Surgery, The First
Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
| | - Ruyi Zhang
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
- Ministry
of Education Key Laboratory of Diagnostic Medicine and School of Laboratory
Medicine, The Affiliated Hospitals of Chongqing
Medical University, 1
Medical College Road, Chongqing 400016, China
| | - Shujuan Yan
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
- Ministry
of Education Key Laboratory of Diagnostic Medicine and School of Laboratory
Medicine, The Affiliated Hospitals of Chongqing
Medical University, 1
Medical College Road, Chongqing 400016, China
| | - Yi Shu
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
- Ministry
of Education Key Laboratory of Diagnostic Medicine and School of Laboratory
Medicine, The Affiliated Hospitals of Chongqing
Medical University, 1
Medical College Road, Chongqing 400016, China
| | - Yunxiao Zhu
- Department
of Biomedical Engineering, Northwestern
University, 2145 Sheridan
Road, Evanston, Illinois 60208, United States
- Center for Advanced Regenerative Engineering (CARE), 2145 Sheridan Road, Evanston, IL 60208, United
States
| | - Chongwen Duan
- Department
of Biomedical Engineering, Northwestern
University, 2145 Sheridan
Road, Evanston, Illinois 60208, United States
| | - Elliot Bishop
- Department
of Surgery, Laboratory of Craniofacial Biology and Development, Section
of Plastic Surgery, The University of Chicago
Medical Center, 5841
South Maryland Avenue MC6035, Chicago, Illinois 60637, United States
| | - Jiayan Lei
- Departments
of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory
Medicine, and Breast Surgery, The First
Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
| | - Wenwen Zhang
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
- Department
of Laboratory Medicine and Clinical Diagnostics, The Affiliated University-Town Hospital of Chongqing Medical University, 55 Daxuecheng Zhonglu, Chongqing 401331, China
| | - Chao Yang
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
- Ministry
of Education Key Laboratory of Diagnostic Medicine and School of Laboratory
Medicine, The Affiliated Hospitals of Chongqing
Medical University, 1
Medical College Road, Chongqing 400016, China
| | - Ke Wu
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
- Ministry
of Education Key Laboratory of Diagnostic Medicine and School of Laboratory
Medicine, The Affiliated Hospitals of Chongqing
Medical University, 1
Medical College Road, Chongqing 400016, China
| | - Ying Wu
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
- Department
of Immunology and Microbiology, Beijing
University of Chinese Medicine, 11 N. Third Ring Road E., Beijing 100029, China
| | - Liping An
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
- Key
Laboratory of Orthopaedic Surgery of Gansu Province and the Department
of Orthopaedic Surgery, The Second Hospital
of Lanzhou University, 82 Cuiyingmen, Lanzhou 730030, China
| | - Shifeng Huang
- Departments
of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory
Medicine, and Breast Surgery, The First
Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
| | - Xiaojuan Ji
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
- Ministry
of Education Key Laboratory of Diagnostic Medicine and School of Laboratory
Medicine, The Affiliated Hospitals of Chongqing
Medical University, 1
Medical College Road, Chongqing 400016, China
| | - Cheng Gong
- Department of General Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Chengfu Yuan
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
- Department
of Biochemistry and Molecular Biology, China
Three Gorges University School of Medicine, 8 Daxue Road, Yichang 443002, China
| | - Linghuan Zhang
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
- Ministry
of Education Key Laboratory of Diagnostic Medicine and School of Laboratory
Medicine, The Affiliated Hospitals of Chongqing
Medical University, 1
Medical College Road, Chongqing 400016, China
| | - Wei Liu
- Departments
of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory
Medicine, and Breast Surgery, The First
Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
| | - Bo Huang
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
- Ministry
of Education Key Laboratory of Diagnostic Medicine and School of Laboratory
Medicine, The Affiliated Hospitals of Chongqing
Medical University, 1
Medical College Road, Chongqing 400016, China
| | - Yixiao Feng
- Departments
of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory
Medicine, and Breast Surgery, The First
Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
| | - Bo Zhang
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
- Key
Laboratory of Orthopaedic Surgery of Gansu Province and the Department
of Orthopaedic Surgery, The Second Hospital
of Lanzhou University, 82 Cuiyingmen, Lanzhou 730030, China
| | - Zhengyu Dai
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
- Department
of Orthopaedic Surgery, Chongqing Hospital
of Traditional Chinese Medicine, 35 Jianxin East Road, Chongqing 400021, China
| | - Yi Shen
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
- Department
of Orthopaedic Surgery, Xiangya Second Hospital
of Central South University, 139 Renmin Road, Changsha 410011, China
| | - Xi Wang
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
- Ministry
of Education Key Laboratory of Diagnostic Medicine and School of Laboratory
Medicine, The Affiliated Hospitals of Chongqing
Medical University, 1
Medical College Road, Chongqing 400016, China
| | - Wenping Luo
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
- Ministry
of Education Key Laboratory of Diagnostic Medicine and School of Laboratory
Medicine, The Affiliated Hospitals of Chongqing
Medical University, 1
Medical College Road, Chongqing 400016, China
| | - Leonardo Oliveira
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
| | - Aravind Athiviraham
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
| | - Michael J. Lee
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
| | - Jennifer Moriatis Wolf
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
| | - Guillermo A. Ameer
- Department
of Biomedical Engineering, Northwestern
University, 2145 Sheridan
Road, Evanston, Illinois 60208, United States
- Department
of Surgery, Feinberg School of Medicine, Northwestern University, 420 East Superior Street, Chicago, Illinois 60616, United
States
- Center for Advanced Regenerative Engineering (CARE), 2145 Sheridan Road, Evanston, IL 60208, United
States
| | - Russell R. Reid
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
- Department
of Surgery, Laboratory of Craniofacial Biology and Development, Section
of Plastic Surgery, The University of Chicago
Medical Center, 5841
South Maryland Avenue MC6035, Chicago, Illinois 60637, United States
- Center for Advanced Regenerative Engineering (CARE), 2145 Sheridan Road, Evanston, IL 60208, United
States
| | - Tong-Chuan He
- Molecular
Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center, 5841 South Maryland
Avenue MC 3079, Chicago, Illinois 60637, United
States
- Ministry
of Education Key Laboratory of Diagnostic Medicine and School of Laboratory
Medicine, The Affiliated Hospitals of Chongqing
Medical University, 1
Medical College Road, Chongqing 400016, China
- Center for Advanced Regenerative Engineering (CARE), 2145 Sheridan Road, Evanston, IL 60208, United
States
| | - Wei Huang
- Departments
of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory
Medicine, and Breast Surgery, The First
Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China
| |
Collapse
|
169
|
Zhao X, Liang M, Li X, Qiu X, Cui L. Identification of key genes and pathways associated with osteogenic differentiation of adipose stem cells. J Cell Physiol 2018; 233:9777-9785. [PMID: 30078218 DOI: 10.1002/jcp.26943] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Abstract
Adipose stem cells (ASCs) are considered a great alternative source of mesenchymal stem cells (MSCs) and have shown great promise on tissue engineering and regenerative medicine applications, including bone repair. However, the underlying mechanisms regulating the osteogenic differentiation of ASCs remain poorly known. Gene expression profiles of GSE63754 and GSE37329 were downloaded from gene expression omnibus database. R software and Bioconductor packages were used to compare and identify the differentially expressed genes (DEGs) before and after ASC osteogenic differentiation. The common significant DEGs between GSE63754 and GSE37329 were then subjected to gene ontology (GO) enrichment analysis, ingenuity pathway analysis (IPA), and protein-protein interactions (PPIs) networks analysis. One of the central node genes FOXO1 was selected for further investigation. A total of 142 up- and 69 downregulated genes were aberrantly expressed in both GSE63754 and GSE37329. GO analysis revealed that these DEGs were associated with extracellular matrix organization, proteinaceous extracellular matrix, and Wnt-protein binding. IPA analysis showed that canonical pathways, such as FXR/RXR activation, adipogenesis pathway, and LXR/RXR activation, were involved in regulating osteogenic differentiation of ASCs. A total of three subnetworks and 39 nodes were identified with PPI network and MCODE plugin. Moreover, suppression of one central node gene FOXO1 inhibited the osteogenic differentiation of ASCs. Our study provides a registry of genes and pathways that play important roles in regulating osteogenic differentiation of ASCs, which might have potential therapeutic applications in bone regeneration and bone tissue engineering.
Collapse
Affiliation(s)
- Xinyuan Zhao
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Minlu Liang
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xiaona Li
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoling Qiu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Li Cui
- Division of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, California
| |
Collapse
|
170
|
Xiao X, Roohani D, Wu Q. Genetic profiling of decreased bone mineral density in an independent sample of Caucasian women. Osteoporos Int 2018; 29:1807-1814. [PMID: 29713799 PMCID: PMC6093295 DOI: 10.1007/s00198-018-4546-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/23/2018] [Indexed: 12/23/2022]
Abstract
UNLABELLED Genetic risk of low bone mineral density in women remains unclear. This study found that a large percentage of Caucasian women have a high genetic risk of osteoporosis, and genetic risk scores are significantly associated with BMD variation in a bone healthy sample of Caucasian women. INTRODUCTION We aimed to examine the distribution of risk alleles in an independent sample and to determine if such genetic components are associated with bone mineral density (BMD) variation in the sample. METHODS Existing genotype data of 1205 women in the cross-sectional Genomic Wide Scans for Female Osteoporosis Gene Study (GWSFO) were analyzed. Multi-loci genetic risk scores (GRSs) based on 62 BMD-associated single nucleotide polymorphisms (SNPs) were calculated. Regression analysis was employed to assess the association between GRSs and BMD. To examine the effect of SNPs clustered within key pathways associated with the development of osteoporosis, subtype weighted GRS specific to WNT signaling (6 SNPs), RANK-RANKL-OPG (3 SNPs), and mesenchymal stem differentiation (3 SNPs) were generated for analysis. RESULTS The unweighted GRS ranged from 48 to 80. One third of the women carried 66% risk alleles. After adjusting for age, height, and body weight, each unit increase of weighted GRS was associated with a decrease in BMD of 0.097 at femur (p < 0.0001) and 0.110 (p < 0.0001) at lumbar spine. The weighted GRS accounted for only 3.17-4.52% of BMD variance. The WNT signaling pathway GRS (6 SNPs) and the RANK-RANKL-OPG signaling pathway GRS (3 SNPs) both were significantly associated with decreased BMD at femur neck (p = 0.0004 and p = 0.0063, respectively) and lumbar spine (p < 0.0001 and p = 0.0001, respectively), while the mesenchymal stem cell differentiation pathway (3 SNPs) GRSs were associated only with the lumbar spine BMD (p = 0.045). CONCLUSIONS A substantially large percentage of healthy Caucasian women have a high genetic risk of osteoporosis. Weighted GRS was significantly associated with decreased BMD. The contribution of subtype GRS to the BMD variation differs by specific biological pathway and skeletal regions.
Collapse
Affiliation(s)
- X Xiao
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV, 89154-4009, USA
- Department of Environmental and Occupational Health, School of Community Health Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV, 89154-4009, USA
| | - D Roohani
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV, 89154-4009, USA
| | - Q Wu
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV, 89154-4009, USA.
- Department of Environmental and Occupational Health, School of Community Health Sciences, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV, 89154-4009, USA.
| |
Collapse
|
171
|
Kwon J, Kim YH, Rhee SM, Kim TI, Lee J, Jeon S, Oh JH. Effects of Allogenic Dermal Fibroblasts on Rotator Cuff Healing in a Rabbit Model of Chronic Tear. Am J Sports Med 2018; 46:1901-1908. [PMID: 29746144 DOI: 10.1177/0363546518770428] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The failure of rotator cuffs to heal after repair is an unresolved surgical issue. There have been substantial efforts, including the use of biological supplements, to enhance tendon healing. Dermal fibroblasts are a good candidate for tendon tissue engineering because they are similar to the tenocytes used for collagen synthesis. In addition, they are easily accessible because autologous dermal fibroblasts can be obtained from individual skin without major skin defects and allogenic dermal fibroblasts (ADFs) have already been commercialized in the field of skin engineering. PURPOSE To determine the effects of dermal fibroblasts on tendon-to-bone healing in a rabbit model of a chronic rotator cuff tear. STUDY DESIGN Controlled laboratory study. METHODS A total of 33 rabbits were randomly allocated into 3 groups (n = 11 each). Supraspinatus tendons were detached and left for 6 weeks to establish a chronic rotator tear model. Torn tendons were repaired in a transosseous manner with the injection of 5 × 106 ADFs with fibrin in group A, fibrin only in group B, and saline only in group C. At 12 weeks after repair, the mechanical test and histological evaluation were performed. RESULTS Seven rabbits died before the evaluation (1 in group A, 2 in group B, 4 in group C). In the final evaluation, the mean ± SD load to failure was 48.1 ± 13.3 N/kg for group A, 34.5 ± 8.9 N/kg for group B, and 31.1 ± 8.3 N/kg for group C, and group A showed significantly higher load-to-failure values than the other groups ( P = .011). The midsubstance tear rate, which presented stronger tendon-to-bone healing than insertional tear, was 50.0% in group A, 22.2% in group B, 28.6% in group C, but the differences were not statistically significant ( P = .413). In the histological evaluation, group A showed greater collagen fiber continuity and better orientation than the other groups. CONCLUSION This controlled laboratory study verified, on the basis of biomechanics and histology, the potential for the use of ADFs in rotator cuff healing. The current results suggest a new biological supplement to increase the rate of rotator cuff healing. CLINICAL RELEVANCE The most important finding of this study was the potential for a new biological supplement to enhance rotator cuff healing-a continuing challenge.
Collapse
Affiliation(s)
- Jieun Kwon
- Department of Orthopaedic Surgery, National Police Hospital, Seoul, Republic of Korea
| | - Yun Hee Kim
- Cutigen Research Institute, Tego Science Inc, Seoul, Republic of Korea
| | - Sung-Min Rhee
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Tae In Kim
- Department of Orthopaedic Surgery, Seoul JS Hospital, Suwon, Republic of Korea
| | - Jimin Lee
- Cutigen Research Institute, Tego Science Inc, Seoul, Republic of Korea
| | - Saewha Jeon
- Cutigen Research Institute, Tego Science Inc, Seoul, Republic of Korea
| | - Joo Han Oh
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
172
|
Gomes KDN, Alves APNN, Dutra PGP, Viana GSDB. Doxycycline induces bone repair and changes in Wnt signalling. Int J Oral Sci 2018; 9:158-166. [PMID: 28960195 PMCID: PMC5709545 DOI: 10.1038/ijos.2017.28] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2017] [Indexed: 12/31/2022] Open
Abstract
Doxycycline (DOX) exhibits anti-inflammatory and MMP inhibitory properties. The objectives of this study were to evaluate the effects of DOX on alveolar bone repair. Controls (CTL) and DOX-treated (10 and 25 mg·kg-1) molars were extracted, and rats were killed 7 or 14 days later. The maxillae were processed and subjected to histological and immunohistochemical assays. Hematoxylin-eosin staining (7th day) revealed inflammation in the CTL group that was partly reversed after DOX treatment. On the 14th day, the CTL group exhibited bone neoformation, conjunctive tissue, re-epithelization and the absence of inflammatory infiltrate. DOX-treated groups exhibited complete re-epithelization, tissue remodelling and almost no inflammation. Picrosirius red staining in the DOX10 group (7th and 14th days) revealed an increased percentage of type I and III collagen fibres compared with the CTL and DOX25 groups. The DOX10 and DOX25 groups exhibited increases in osteoblasts on the 7th and 14th days. However, there were fewer osteoclasts in the DOX10 and DOX25 groups on the 7th and 14th days. Wnt-10b-immunopositive cells increased by 130% and 150% on the 7th and 14th days, respectively, in DOX-treated groups compared with the CTL group. On the 7th day, Dickkopf (Dkk)-1 immunostaining was decreased by 63% and 46% in the DOX10 and DOX25 groups, respectively. On the 14th day, 69% and 42% decreases in immunopositive cells were observed in the DOX10 and DOX25 groups, respectively, compared with the CTL group. By increasing osteoblasts, decreasing osteoclasts, activating Wnt 10b and neutralising Dkk, DOX is a potential candidate for bone repair in periodontal diseases.
Collapse
|
173
|
Fitri AR, Pavasant P, Chamni S, Sumrejkanchanakij P. Asiaticoside induces osteogenic differentiation of human periodontal ligament cells through the Wnt pathway. J Periodontol 2018. [DOI: 10.1002/jper.17-0471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Atika Resti Fitri
- Mineralized Tissue Research Unit; Faculty of Dentistry; Chulalongkorn University; Bangkok Thailand
| | - Prasit Pavasant
- Mineralized Tissue Research Unit; Faculty of Dentistry; Chulalongkorn University; Bangkok Thailand
- Department of Anatomy; Faculty of Dentistry; Chulalongkorn University; Bangkok Thailand
| | - Supakarn Chamni
- Department of Pharmacognosy and Pharmaceutical Botany; Faculty of Pharmaceutical Sciences; Chulalongkorn University; Bangkok Thailand
| | - Piyamas Sumrejkanchanakij
- Mineralized Tissue Research Unit; Faculty of Dentistry; Chulalongkorn University; Bangkok Thailand
- Department of Anatomy; Faculty of Dentistry; Chulalongkorn University; Bangkok Thailand
| |
Collapse
|
174
|
Bertacchini J, Magarò MS, Potì F, Palumbo C. Osteocytes Specific GSK3 Inhibition Affects In Vitro Osteogenic Differentiation. Biomedicines 2018; 6:biomedicines6020061. [PMID: 29883388 PMCID: PMC6027076 DOI: 10.3390/biomedicines6020061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/24/2018] [Accepted: 05/13/2018] [Indexed: 01/01/2023] Open
Abstract
Osteocytes, the most important regulators of bone processes, are producers of molecules (usually proteins) that act as signals in order to communicate with nearby cells. These factors control cell division (proliferation), differentiation, and survival. Substantial evidence showed different signaling pathways activated by osteocytes and involved in osteoblast differentiation, in particular in the last decade, when the Wingless-related integration site (WNT) pathway assumed a critical large importance. WNT activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism, making GSK3 a potential therapeutic target for bone diseases. In our study, we hypothesized an important role of the osteocyte MLO-Y4 conditioned medium in controlling the differentiation process of osteoblast cell line 2T3. We found an effect of diminished differentiation capability of 2T3 upon conditioning with medium from murine long bone osteocyte-Y4 cells (MLO-Y4) pre-treated with GSK3 inhibitor CHIR2201. The novel observations of this study provide knowledge about the inhibition of GSK3 in MLO-Y4 cells. This strategy could be used as a plausible target in osteocytes in order to regulate bone resorption mediated by a loss of osteoblasts activity through a paracrine loop.
Collapse
Affiliation(s)
- Jessika Bertacchini
- Department of Biomedical, Metabolic Science and Neuroscience, University of Modena and Reggio Emilia, Via Largo del Pozzo 71, 41124 Modena, Italy.
| | - Maria Sara Magarò
- Department of Biomedical, Metabolic Science and Neuroscience, University of Modena and Reggio Emilia, Via Largo del Pozzo 71, 41124 Modena, Italy.
| | - Francesco Potì
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, via Volturno 39/F, 43125 Parma, Italy.
| | - Carla Palumbo
- Department of Biomedical, Metabolic Science and Neuroscience, University of Modena and Reggio Emilia, Via Largo del Pozzo 71, 41124 Modena, Italy.
| |
Collapse
|
175
|
Maubant S, Tahtouh T, Brisson A, Maire V, Némati F, Tesson B, Ye M, Rigaill G, Noizet M, Dumont A, Gentien D, Marty-Prouvost B, de Koning L, Mahmood SF, Decaudin D, Cruzalegui F, Tucker GC, Roman-Roman S, Dubois T. LRP5 regulates the expression of STK40, a new potential target in triple-negative breast cancers. Oncotarget 2018; 9:22586-22604. [PMID: 29854300 PMCID: PMC5978250 DOI: 10.18632/oncotarget.25187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancers (TNBCs) account for a large proportion of breast cancer deaths, due to the high rate of recurrence from residual, resistant tumor cells. New treatments are needed, to bypass chemoresistance and improve survival. The WNT pathway, which is activated in TNBCs, has been identified as an attractive pathway for treatment targeting. We analyzed expression of the WNT coreceptors LRP5 and LRP6 in human breast cancer samples. As previously described, LRP6 was overexpressed in TNBCs. However, we also showed, for the first time, that LRP5 was overexpressed in TNBCs too. The knockdown of LRP5 or LRP6 decreased tumorigenesis in vitro and in vivo, identifying both receptors as potential treatment targets in TNBC. The apoptotic effect of LRP5 knockdown was more robust than that of LRP6 depletion. We analyzed and compared the transcriptomes of cells depleted of LRP5 or LRP6, to identify genes specifically deregulated by LRP5 potentially implicated in cell death. We identified serine/threonine kinase 40 (STK40) as one of two genes specifically downregulated soon after LRP5 depletion. STK40 was found to be overexpressed in TNBCs, relative to other breast cancer subtypes, and in various other tumor types. STK40 depletion decreased cell viability and colony formation, and induced the apoptosis of TNBC cells. In addition, STK40 knockdown impaired growth in an anchorage-independent manner in vitro and slowed tumor growth in vivo. These findings identify the largely uncharacterized putative protein kinase STK40 as a novel candidate treatment target for TNBC.
Collapse
Affiliation(s)
- Sylvie Maubant
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Tania Tahtouh
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Amélie Brisson
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Virginie Maire
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Fariba Némati
- Institut Curie, PSL Research University, Translational Research Department, Preclinical Investigation Laboratory, Paris, France
| | - Bruno Tesson
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France.,Institut Curie, PSL Research University, INSERM U900, Paris, France
| | - Mengliang Ye
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Guillem Rigaill
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR 1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, France.,Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), Université d'Evry Val d'Essonne, UMR CNRS 8071, ENSIIE, USC INRA, Évry, France
| | - Maïté Noizet
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Aurélie Dumont
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - David Gentien
- Institut Curie, PSL Research University, Translational Research Department, Genomics Platform, Paris, France
| | - Bérengère Marty-Prouvost
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Leanne de Koning
- Institut Curie, PSL Research University, Translational Research Department, Reverse-Phase Protein Array Platform, Paris, France
| | - Sardar Faisal Mahmood
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Didier Decaudin
- Institut Curie, PSL Research University, Translational Research Department, Preclinical Investigation Laboratory, Paris, France
| | - Francisco Cruzalegui
- Oncology Research and Development Unit, Institut de Recherches SERVIER, Croissy-Sur-Seine, France
| | - Gordon C Tucker
- Oncology Research and Development Unit, Institut de Recherches SERVIER, Croissy-Sur-Seine, France
| | - Sergio Roman-Roman
- Institut Curie, PSL Research University, Translational Research Department, Paris, France
| | - Thierry Dubois
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| |
Collapse
|
176
|
Yan S, Zhang R, Wu K, Cui J, Huang S, Ji X, An L, Yuan C, Gong C, Zhang L, Liu W, Feng Y, Zhang B, Dai Z, Shen Y, Wang X, Luo W, Liu B, Haydon RC, Lee MJ, Reid RR, Wolf JM, Shi Q, Luu HH, He TC, Weng Y. Characterization of the essential role of bone morphogenetic protein 9 (BMP9) in osteogenic differentiation of mesenchymal stem cells (MSCs) through RNA interference. Genes Dis 2018; 5:172-184. [PMID: 30258947 PMCID: PMC6149187 DOI: 10.1016/j.gendis.2018.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/17/2018] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells and capable of differentiating into multiple cell types including osteoblastic, chondrogenic and adipogenic lineages. We previously identified BMP9 as one of the most potent BMPs that induce osteoblastic differentiation of MSCs although exact molecular mechanism through which BMP9 regulates osteogenic differentiation remains to be fully understood. Here, we seek to develop a recombinant adenovirus system to optimally silence mouse BMP9 and then characterize the important role of BMP9 in osteogenic differentiation of MSCs. Using two different siRNA bioinformatic prediction programs, we design five siRNAs targeting mouse BMP9 (or simB9), which are expressed under the control of the converging H1 and U6 promoters in recombinant adenovirus vectors. We demonstrate that two of the five siRNAs, simB9-4 and simB9-7, exhibit the highest efficiency on silencing exogenous mouse BMP9 in MSCs. Furthermore, simB9-4 and simB9-7 act synergistically in inhibiting BMP9-induced expression of osteogenic markers, matrix mineralization and ectopic bone formation from MSCs. Thus, our findings demonstrate the important role of BMP9 in osteogenic differentiation of MSCs. The characterized simB9 siRNAs may be used as an important tool to investigate the molecular mechanism behind BMP9 osteogenic signaling. Our results also indicate that recombinant adenovirus-mediated expression of siRNAs is efficient and sustained, and thus may be used as an effective delivery vehicle of siRNA therapeutics.
Collapse
Affiliation(s)
- Shujuan Yan
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ruyi Zhang
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ke Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,The School of Pharmacy and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jing Cui
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Shifeng Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,The School of Pharmacy and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Xiaojuan Ji
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,The School of Pharmacy and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Liping An
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Key Laboratory of Orthopaedic Surgery of Gansu Province and the Department of Orthopaedic Surgery, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Chengfu Yuan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Biochemistry and Molecular Biology, China Three Gorges University School of Medicine, Yichang 443002, China
| | - Cheng Gong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Surgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Linghuan Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,The School of Pharmacy and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Wei Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,The School of Pharmacy and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Yixiao Feng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,The School of Pharmacy and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Bo Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Key Laboratory of Orthopaedic Surgery of Gansu Province and the Department of Orthopaedic Surgery, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Zhengyu Dai
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Orthopaedic Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Yi Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Orthopaedic Surgery, Xiangya Second Hospital of Central South University, Changsha 410011, China
| | - Xi Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wenping Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,The School of Pharmacy and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Bo Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,The School of Pharmacy and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Surgery, Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Qiong Shi
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yaguang Weng
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
177
|
Juarez JK, Wenke JC, Rivera JC. Treatments and Preventative Measures for Trauma-Induced Heterotopic Ossification: A Review. Clin Transl Sci 2018; 11:365-370. [PMID: 29697199 PMCID: PMC6039201 DOI: 10.1111/cts.12552] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/25/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Jessica K Juarez
- Unites States Army Institute of Surgical Research, Joint Base Fort Sam Houston, Texas, USA.,University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Joseph C Wenke
- Unites States Army Institute of Surgical Research, Joint Base Fort Sam Houston, Texas, USA
| | - Jessica C Rivera
- Unites States Army Institute of Surgical Research, Joint Base Fort Sam Houston, Texas, USA
| |
Collapse
|
178
|
Nordstrand A, Bovinder Ylitalo E, Thysell E, Jernberg E, Crnalic S, Widmark A, Bergh A, Lerner UH, Wikström P. Bone Cell Activity in Clinical Prostate Cancer Bone Metastasis and Its Inverse Relation to Tumor Cell Androgen Receptor Activity. Int J Mol Sci 2018; 19:ijms19041223. [PMID: 29670000 PMCID: PMC5979457 DOI: 10.3390/ijms19041223] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/14/2018] [Accepted: 04/14/2018] [Indexed: 12/24/2022] Open
Abstract
Advanced prostate cancer frequently metastasizes to bone and induces a mixed osteoblastic/osteolytic bone response. Standard treatment for metastatic prostate cancer is androgen-deprivation therapy (ADT) that also affects bone biology. Treatment options for patients relapsing after ADT are limited, particularly in cases where castration-resistance does not depend on androgen receptor (AR) activity. Patients with non-AR driven metastases may, however, benefit from therapies targeting the tumor microenvironment. Therefore, the current study specifically investigated bone cell activity in clinical bone metastases in relation to tumor cell AR activity, in order to gain novel insight into biological heterogeneities of possible importance for patient stratification into bone-targeting therapies. Metastasis tissue obtained from treatment-naïve (n = 11) and castration-resistant (n = 28) patients was characterized using whole-genome expression analysis followed by multivariate modeling, functional enrichment analysis, and histological evaluation. Bone cell activity was analyzed by measuring expression levels of predefined marker genes representing osteoclasts (ACP5, CTSK, MMP9), osteoblasts (ALPL, BGLAP, RUNX2) and osteocytes (SOST). Principal component analysis indicated a positive correlation between osteoblast and osteoclast activity and a high variability in bone cell activity between different metastases. Immunohistochemistry verified a positive correlation between runt-related transcription factor 2 (RUNX2) positive osteoblasts and tartrate-resistant acid phosphatase (TRAP, encoded by ACP5) positive osteoclasts lining the metastatic bone surface. No difference in bone cell activity was seen between treatment-naïve and castration-resistant patients. Importantly, bone cell activity was inversely correlated to tumor cell AR activity (measured as AR, FOXA1, HOXB13, KLK2, KLK3, NKX3-1, STEAP2, and TMPRSS2 expression) and to patient serum prostate-specific antigen (PSA) levels. Functional enrichment analysis indicated high bone morphogenetic protein (BMP) signaling in metastases with high bone cell activity and low tumor cell AR activity. This was confirmed by BMP4 immunoreactivity in tumor cells of metastases with ongoing bone formation, as determined by histological evaluation of van Gieson-stained sections. In conclusion, the inverse relation observed between bone cell activity and tumor cell AR activity in prostate cancer bone metastasis may be of importance for patient response to AR and/or bone targeting therapies, but needs to be evaluated in clinical settings in relation to serum markers for bone remodeling, radiography and patient response to therapy. The importance of BMP signaling in the development of sclerotic metastasis lesions deserves further exploration.
Collapse
Affiliation(s)
- Annika Nordstrand
- Department of Medical Biosciences, Pathology, Umea University, 901 85 Umea, Sweden.
| | | | - Elin Thysell
- Department of Medical Biosciences, Pathology, Umea University, 901 85 Umea, Sweden.
| | - Emma Jernberg
- Department of Medical Biosciences, Pathology, Umea University, 901 85 Umea, Sweden.
| | - Sead Crnalic
- Department of Surgical and Perioperative Sciences, Orthopaedics, Umea University, 901 85 Umea, Sweden.
| | - Anders Widmark
- Department of Radiation Sciences, Oncology, Umea University, 901 87 Umea, Sweden.
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umea University, 901 85 Umea, Sweden.
| | - Ulf H Lerner
- Department of Molecular Periodontology, Umea University, 901 87 Umea, Sweden.
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition at Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, 413 45 Gothenburg, Sweden.
| | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umea University, 901 85 Umea, Sweden.
| |
Collapse
|
179
|
Majidinia M, Aghazadeh J, Jahanban‐Esfahlani R, Yousefi B. The roles of Wnt/β‐catenin pathway in tissue development and regenerative medicine. J Cell Physiol 2018; 233:5598-5612. [DOI: 10.1002/jcp.26265] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Maryam Majidinia
- Solid Tumor Research CenterUrmia University of Medical SciencesUrmiaIran
| | - Javad Aghazadeh
- Department of NeurosurgeryUrmia University of Medical SciencesUrmiaIran
| | - Rana Jahanban‐Esfahlani
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
| | - Bahman Yousefi
- Stem Cell and Regenerative Medicine InstituteTabriz University of Medical SciencesTabrizIran
- Molecular Targeting Therapy Research GroupFaculty of MedicineTabriz University ofMedical SciencesTabrizIran
| |
Collapse
|
180
|
Fan J, Wei Q, Liao J, Zou Y, Song D, Xiong D, Ma C, Hu X, Qu X, Chen L, Li L, Yu Y, Yu X, Zhang Z, Zhao C, Zeng Z, Zhang R, Yan S, Wu T, Wu X, Shu Y, Lei J, Li Y, Zhang W, Haydon RC, Luu HH, Huang A, He TC, Tang H. Noncanonical Wnt signaling plays an important role in modulating canonical Wnt-regulated stemness, proliferation and terminal differentiation of hepatic progenitors. Oncotarget 2018; 8:27105-27119. [PMID: 28404920 PMCID: PMC5432321 DOI: 10.18632/oncotarget.15637] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/24/2017] [Indexed: 02/07/2023] Open
Abstract
The liver provides vital metabolic, exocrine and endocrine functions in the body as such pathological conditions of the liver lead to high morbidity and mortality. The liver is highly regenerative and contains facultative stem cells that become activated during injury to replicate to fully recover mass and function. Canonical Wnt/β-catenin signaling plays an important role in regulating the proliferation and differentiation of liver progenitor cells during liver regeneration. However, possible roles of noncanonical Wnts in liver development and regeneration remain undefined. We previously established a reversibly-immortalized hepatic progenitor cell line (iHPx), which retains hepatic differentiation potential. Here, we analyze the expression pattern of the essential components of both canonical and noncanonical Wnt signaling pathways at different postnatal stages of mouse liver tissues and iHPx cells. We find that noncanonical Wnt4, Wnt5a, Wnt9b, Wnt10a and Wnt10b, are highly expressed concordantly with the high levels of canonical Wnts in late stages of liver tissues. Wnt5a, Wnt9b, Wnt10a and Wnt10b are able to antagonize Wnt3a-induced β-catenin/TCF activity, reduce the stemness of iHPx cells, and promote hepatic differentiation of liver progenitors. Stem cell implantation assay demonstrates that Wnt5a, Wnt9b, Wnt10a and Wnt10b can inhibit cell proliferation and promote hepatic differentiation of the iHPx progenitor cells. Our results strongly suggest that noncanonical Wnts may play an important role in fine-tuning Wnt/β-catenin functions during liver development and liver regeneration. Thus, understanding regulatory mechanisms governing proliferation and differentiation of liver progenitor cells may hold great promise to facilitate liver regeneration and/or progenitor cell-based therapies for liver diseases.
Collapse
Affiliation(s)
- Jiaming Fan
- Key Laboratory of Molecular Biology for Infectious Diseases of The Ministry of Education of China, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Qiang Wei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Junyi Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Yulong Zou
- Key Laboratory of Molecular Biology for Infectious Diseases of The Ministry of Education of China, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Dongzhe Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Conservative Dentistry and Endodontics, West China Hospital and West China School of Stomatology, Sichuan University, Chengdu, China
| | - Dongmei Xiong
- Key Laboratory of Molecular Biology for Infectious Diseases of The Ministry of Education of China, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chao Ma
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Departments of Neurosurgery and Otolaryngology-Head & Neck Surgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xue Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Xiangyang Qu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Liqun Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Li Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Biomedical Engineering, School of Bioengineering, Chongqing University, Chongqing, China
| | - Yichun Yu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Emergency Medicine, Beijing Hospital, Beijing, China
| | - Xinyi Yu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Zhicai Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Chen Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Ruyi Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Shujuan Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Tingting Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Departments of Neurosurgery and Otolaryngology-Head & Neck Surgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xingye Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Yi Shu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Jiayan Lei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Yasha Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Laboratory Medicine and Clinical Diagnostics, The Affiliated Yantai Hospital, Binzhou Medical University, Yantai, China
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases of The Ministry of Education of China, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Hua Tang
- Key Laboratory of Molecular Biology for Infectious Diseases of The Ministry of Education of China, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
181
|
Mousa M, Evans ND, Oreffo RO, Dawson JI. Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity. Biomaterials 2018; 159:204-214. [DOI: 10.1016/j.biomaterials.2017.12.024] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/21/2017] [Accepted: 12/31/2017] [Indexed: 11/17/2022]
|
182
|
Kureel J, John AA, Prakash R, Singh D. MiR 376c inhibits osteoblastogenesis by targeting Wnt3 and ARF-GEF-1 -facilitated augmentation of beta-catenin transactivation. J Cell Biochem 2017; 119:3293-3303. [PMID: 29125885 DOI: 10.1002/jcb.26490] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/09/2017] [Indexed: 01/08/2023]
Abstract
Wnt signaling pathway plays important role in all aspects of skeletal development which include chondrogenesis, osteoblastogenesis, and osteoclastogenesis. Induction of the Wnt-3 signaling pathway promotes bone formation while inactivation of the pathway leads to bone related disorders like osteoporosis. Wnt signaling thus has become a desired target to treat osteogenic disorders. MicroRNAs (miRNAs) represent an important category of elements that interact with Wnt signaling molecules to regulate osteogenesis. Here, we show that miR-376c, a well-characterized tumor suppressor which inhibits cell proliferation and invasion in osteosarcoma by targeting to transforming growth factor-alpha, suppresses osteoblast proliferation, and differentiation. Over-expression of miR-376c inhibited osteoblast differentiation, whereas inhibition of miR-376c function by antimiR-376c promoted expression of osteoblast-specific genes, alkaline phosphatase (ALP) activity, and matrix mineralization. Target prediction analysis tools and experimental validation by luciferase 3' UTR reporter assay along with qRT-PCR identified Wnt-3 and ARF-GEF-1 as direct targets of miR-376c. It was seen that over-expression of miR-376c leads to repression of canonical Wnt/β-catenin signaling. Our overall results suggest that miR-376c targets Wnt-3 and ARF-GEF-1 suppresses ARF-6 activation which prevents the release of β-catenin and its transactivation thereby inhibiting osteoblast differentiation. Although miR-376c is known to be a tumor repressor; we have identified a second complementary function of miR-376c where it inhibits Wnt-3-mediated osteogenesis and promotes bone loss.
Collapse
Affiliation(s)
- Jyoti Kureel
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Aijaz A John
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Ravi Prakash
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Divya Singh
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
183
|
Hu X, Li L, Yu X, Zhang R, Yan S, Zeng Z, Shu Y, Zhao C, Wu X, Lei J, Li Y, Zhang W, Yang C, Wu K, Wu Y, An L, Huang S, Ji X, Gong C, Yuan C, Zhang L, Liu W, Huang B, Feng Y, Zhang B, Haydon RC, Luu HH, Reid RR, Lee MJ, Wolf JM, Yu Z, He TC. CRISPR/Cas9-mediated reversibly immortalized mouse bone marrow stromal stem cells (BMSCs) retain multipotent features of mesenchymal stem cells (MSCs). Oncotarget 2017; 8:111847-111865. [PMID: 29340096 PMCID: PMC5762364 DOI: 10.18632/oncotarget.22915] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells that can undergo self-renewal and differentiate into multi-lineages. Bone marrow stromal stem cells (BMSCs) represent one of the most commonly-used MSCs. In order to overcome the technical challenge of maintaining primary BMSCs in long-term culture, here we seek to establish reversibly immortalized mouse BMSCs (imBMSCs). By exploiting CRISPR/Cas9-based homology-directed-repair (HDR) mechanism, we target SV40T to mouse Rosa26 locus and efficiently immortalize mouse BMSCs (i.e., imBMSCs). We also immortalize BMSCs with retroviral vector SSR #41 and establish imBMSC41 as a control line. Both imBMSCs and imBMSC41 exhibit long-term proliferative capability although imBMSC41 cells have a higher proliferation rate. SV40T mRNA expression is 130% higher in imBMSC41 than that in imBMSCs. However, FLP expression leads to 86% reduction of SV40T expression in imBMSCs, compared with 63% in imBMSC41 cells. Quantitative genomic PCR analysis indicates that the average copy number of SV40T and hygromycin is 1.05 for imBMSCs and 2.07 for imBMSC41, respectively. Moreover, FLP expression removes 92% of SV40T in imBMSCs at the genome DNA level, compared with 58% of that in imBMSC41 cells, indicating CRISPR/Cas9 HDR-mediated immortalization of BMSCs can be more effectively reversed than that of retrovirus-mediated random integrations. Nonetheless, both imBMSCs and imBMSC41 lines express MSC markers and are highly responsive to BMP9-induced osteogenic, chondrogenic and adipogenic differentiation in vitro and in vivo. Thus, the engineered imBMSCs can be used as a promising alternative source of primary MSCs for basic and translational research in the fields of MSC biology and regenerative medicine.
Collapse
Affiliation(s)
- Xue Hu
- Departments of Blood Transfusion, Nephrology, Orthopaedic Surgery, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Li Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Biomedical Engineering, School of Biomedical Engineering, Chongqing University, Chongqing 400044, China
| | - Xinyi Yu
- Departments of Blood Transfusion, Nephrology, Orthopaedic Surgery, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ruyi Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Shujuan Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Shu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- The Children’s Hospital, Chongqing Medical University, Chongqing 400014, China
| | - Chen Zhao
- Departments of Blood Transfusion, Nephrology, Orthopaedic Surgery, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Xingye Wu
- Departments of Blood Transfusion, Nephrology, Orthopaedic Surgery, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiayan Lei
- Departments of Blood Transfusion, Nephrology, Orthopaedic Surgery, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yasha Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- The Children’s Hospital, Chongqing Medical University, Chongqing 400014, China
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Laboratory Medicine and Clinical Diagnostics, The Affiliated Yantai Hospital, Binzhou Medical University, Yantai 264100, China
| | - Chao Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- The Children’s Hospital, Chongqing Medical University, Chongqing 400014, China
| | - Ke Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ying Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Immunology and Microbiology, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Liping An
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Key Laboratory of Orthopaedic Surgery of Gansu Province and The Department of Orthopaedic Surgery, The Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Shifeng Huang
- Departments of Blood Transfusion, Nephrology, Orthopaedic Surgery, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaojuan Ji
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- The Children’s Hospital, Chongqing Medical University, Chongqing 400014, China
| | - Cheng Gong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chengfu Yuan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, China Three Gorges University School of Medicine, Yichang 443002, China
| | - Linghuan Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- The Children’s Hospital, Chongqing Medical University, Chongqing 400014, China
| | - Wei Liu
- Departments of Blood Transfusion, Nephrology, Orthopaedic Surgery, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bo Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yixiao Feng
- Departments of Blood Transfusion, Nephrology, Orthopaedic Surgery, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bo Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Key Laboratory of Orthopaedic Surgery of Gansu Province and The Department of Orthopaedic Surgery, The Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zebo Yu
- Departments of Blood Transfusion, Nephrology, Orthopaedic Surgery, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
184
|
Couto AR, Parreira B, Thomson R, Soares M, Power DM, Stankovich J, Armas JB, Brown MA. Combined approach for finding susceptibility genes in DISH/chondrocalcinosis families: whole-genome-wide linkage and IBS/IBD studies. Hum Genome Var 2017; 4:17041. [PMID: 29104755 PMCID: PMC5666909 DOI: 10.1038/hgv.2017.41] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/29/2017] [Indexed: 11/27/2022] Open
Abstract
Twelve families with exuberant and early-onset calcium pyrophosphate dehydrate chondrocalcinosis (CC) and diffuse idiopathic skeletal hyperostosis (DISH), hereafter designated DISH/CC, were identified in Terceira Island, the Azores, Portugal. Ninety-two (92) individuals from these families were selected for whole-genome-wide linkage analysis. An identity-by-descent (IBD) analysis was performed in 10 individuals from 5 of the investigated pedigrees. The chromosome area with the maximal logarithm of the odds score (1.32; P=0.007) was not identified using the IBD/identity-by-state (IBS) analysis; therefore, it was not investigated further. From the IBD/IBS analysis, two candidate genes, LEMD3 and RSPO4, were identified and sequenced. Nine genetic variants were identified in the RSPO4 gene; one regulatory variant (rs146447064) was significantly more frequent in control individuals than in DISH/CC patients (P=0.03). Four variants were identified in LEMD3, and the rs201930700 variant was further investigated using segregation analysis. None of the genetic variants in RSPO4 or LEMD3 segregated within the studied families. Therefore, although a major genetic effect was shown to determine DISH/CC occurrence within these families, the specific genetic variants involved were not identified.
Collapse
Affiliation(s)
- Ana Rita Couto
- Serviço Especializado de Epidemiologia e Biologia Molecular (SEEBMO), Hospital de Santo Espírito da Ilha Terceira (HSEIT), Angra do Heroísmo, Portugal
| | - Bruna Parreira
- Serviço Especializado de Epidemiologia e Biologia Molecular (SEEBMO), Hospital de Santo Espírito da Ilha Terceira (HSEIT), Angra do Heroísmo, Portugal
| | - Russell Thomson
- Center for Research in Mathematics, Western Sydney University, Penrith, Australia
| | - Marta Soares
- Serviço Especializado de Epidemiologia e Biologia Molecular (SEEBMO), Hospital de Santo Espírito da Ilha Terceira (HSEIT), Angra do Heroísmo, Portugal
| | - Deborah M Power
- Center of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Jim Stankovich
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Jácome Bruges Armas
- Serviço Especializado de Epidemiologia e Biologia Molecular (SEEBMO), Hospital de Santo Espírito da Ilha Terceira (HSEIT), Angra do Heroísmo, Portugal.,CEDOC-Chronic Diseases Research Center, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Matthew A Brown
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
185
|
MacFarlane EG, Haupt J, Dietz HC, Shore EM. TGF-β Family Signaling in Connective Tissue and Skeletal Diseases. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022269. [PMID: 28246187 DOI: 10.1101/cshperspect.a022269] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transforming growth factor β (TGF-β) family of signaling molecules, which includes TGF-βs, activins, inhibins, and numerous bone morphogenetic proteins (BMPs) and growth and differentiation factors (GDFs), has important functions in all cells and tissues, including soft connective tissues and the skeleton. Specific TGF-β family members play different roles in these tissues, and their activities are often balanced with those of other TGF-β family members and by interactions with other signaling pathways. Perturbations in TGF-β family pathways are associated with numerous human diseases with prominent involvement of the skeletal and cardiovascular systems. This review focuses on the role of this family of signaling molecules in the pathologies of connective tissues that manifest in rare genetic syndromes (e.g., syndromic presentations of thoracic aortic aneurysm), as well as in more common disorders (e.g., osteoarthritis and osteoporosis). Many of these diseases are caused by or result in pathological alterations of the complex relationship between the TGF-β family of signaling mediators and the extracellular matrix in connective tissues.
Collapse
Affiliation(s)
- Elena Gallo MacFarlane
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Julia Haupt
- Department of Orthopedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,Howard Hughes Medical Institute, Bethesda, Maryland 21205
| | - Eileen M Shore
- Department of Orthopedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
186
|
Zhao HM, Diao JY, Liang XJ, Zhang F, Hao DJ. Pathogenesis and potential relative risk factors of diabetic neuropathic osteoarthropathy. J Orthop Surg Res 2017; 12:142. [PMID: 28969714 PMCID: PMC5625723 DOI: 10.1186/s13018-017-0634-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/11/2017] [Indexed: 12/18/2022] Open
Abstract
Diabetic neuropathic osteoarthropathy (DNOAP) is an uncommon, but with considerable morbidity and mortality rates, complication of diabetes. The real pathogenesis is still unclear. The two popular theories are the neuro-vascular theory and neuro-traumatic theory. Most theories and pathways focused on the uncontrolled inflammations that resulted in the final common pathway, receptor activator of nuclear factor κβ ligand (RANKL)/osteoprotegerin (OPG) axis, for the decreased bone density in DNOAP with an osteoclast and osteoblast imbalance. However, the RANKL/OPG pathway does not explain all the changes, other pathways and factors also play roles. A lot of DNOAP potential relative risk factors were evaluated and reported in the literature, including age, gender, weight, duration and type of diabetes, bone mineral density, peripheral neuropathy and arterial disease, trauma history, and some others. However, most of them are still in debates. Future studies focus on the pathogenesis of DNOAP are still needed, especially for the genetic factors. And, the relationship between DNOAP and those potential relative risk factors are still need to further clarify.
Collapse
Affiliation(s)
- Hong-Mou Zhao
- Foot and Ankle Surgery Department, Honghui Hospital of Xi'an Jiaotong University College of Medicine, No. 76 Nanguo Road, Xi'an, 710054, People's Republic of China
| | - Jia-Yu Diao
- Cardiovascular Medicine Department, The Second Affiliated Hospital of Xi'an Jiaotong University College of Medicine, No. 157 West Fifth Road, Xi'an, 710004, People's Republic of China
| | - Xiao-Jun Liang
- Foot and Ankle Surgery Department, Honghui Hospital of Xi'an Jiaotong University College of Medicine, No. 76 Nanguo Road, Xi'an, 710054, People's Republic of China
| | - Feng Zhang
- School of Public Health, Health Science Center Xi'an Jiaotong University, No. 76 Yan Ta West Road, Xi'an, 710061, People's Republic of China.
| | - Ding-Jun Hao
- Spine Surgery Department, Honghui Hospital of Xi'an Jiaotong University College of Medicine, No. 76 Nanguo Road, Xi'an, 710054, People's Republic of China.
| |
Collapse
|
187
|
Zhao D, Wang C, Zhao Y, Shu B, Jia Y, Liu S, Wang H, Chang J, Dai W, Lu S, Shi Q, Yang Y, Zhang Y, Wang Y. Cyclophosphamide causes osteoporosis in C57BL/6 male mice: suppressive effects of cyclophosphamide on osteoblastogenesis and osteoclastogenesis. Oncotarget 2017; 8:98163-98183. [PMID: 29228681 PMCID: PMC5716721 DOI: 10.18632/oncotarget.21000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022] Open
Abstract
The clinical evidence indicated that cyclophosphamide (CPD), one of the chemotherapy drugs, caused severe deteriorations in bones of cancer patients. However, the exact mechanisms by which CPD exerts effects on bone remodeling is not yet fully elucidated. Therefore, this study was performed to investigate the role and potential mechanism of CPD in osteoblastogenesis and osteoclastogenesis. Here it was found that CPD treatment (100mg/kg/day) for 7 days led to osteoporosis phenotype in male mice. CPD inhibited osteoblastogenesis as shown by decreasing the number and differentiation of bone mesenchymal stem cells (MSCs) and reducing the formation and activity of osteoblasts. Moreover, CPD suppressed the osteoclastogenesis mediated by receptor activator for nuclear factor-κ B ligand (RANKL) as shown by reducing the maturation and activity of osteoclasts. At the molecular level, CPD exerted inhibitory effect on the expression of components (Cyclin D1, β-catenin, Wnt 1, Wnt10b) of Wnt/β-catenin signaling pathway in MSCs and osteoblasts-specific factors (alkaline phosphatase, Runx2, and osteocalcin). CPD also down-regulated the expression of the components (tumor necrosis factor receptor-associated factor 6, nuclear factor of activated T-cells cytoplasm 1, c-Fos and NF-κB) of RANKL signaling pathway and the factors (matrix metalloproteinase 9, cathepsin K, tartrate-resistant acid phosphates and carbonic anhydrase II) for osteoclastic activity. Taken together, this study demonstrated that the short-term treatment of CPD induced osteoporosis in mice and the underlying mechanism might be attributed to its marked suppression on osteoblastogenesis and osteoclastogenesis, especially the effect of CPD on bone formation might play a dominant role in its detrimental effects on bone remodeling.
Collapse
Affiliation(s)
- Dongfeng Zhao
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Spine Disease Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Chenglong Wang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Spine Disease Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R China.,Central Laboratory of Research, Longhua Hospital, Shanghai, P.R. China
| | - Yongjian Zhao
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Spine Disease Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Bing Shu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Spine Disease Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Youji Jia
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Spine Disease Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R China
| | - Shufen Liu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Spine Disease Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Hongshen Wang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Spine Disease Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Junli Chang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Spine Disease Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Weiwei Dai
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Central Laboratory of Research, Longhua Hospital, Shanghai, P.R. China
| | - Sheng Lu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Spine Disease Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R China
| | - Qi Shi
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Spine Disease Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yanping Yang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Spine Disease Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yan Zhang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Spine Disease Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yongjun Wang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Spine Disease Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
188
|
Kato H, Han X, Yamaza H, Masuda K, Hirofuji Y, Sato H, Pham TTM, Taguchi T, Nonaka K. Direct effects of mitochondrial dysfunction on poor bone health in Leigh syndrome. Biochem Biophys Res Commun 2017; 493:207-212. [PMID: 28899781 DOI: 10.1016/j.bbrc.2017.09.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/09/2017] [Indexed: 01/17/2023]
Abstract
Mitochondrial diseases are the result of aberrant mitochondrial function caused by mutations in either nuclear or mitochondrial DNA. Poor bone health has recently been suggested as a symptom of mitochondrial diseases; however, a direct link between decreased mitochondrial function and poor bone health in mitochondrial disease has not been demonstrated. In this study, stem cells from human exfoliated deciduous teeth (SHED) were isolated from a child with Leigh syndrome (LS), a mitochondrial disease, and the effects of decreased mitochondrial function on poor bone health were analyzed. Compared with control SHED, LS SHED displayed decreased osteoblastic differentiation and calcium mineralization. The intracellular and mitochondrial calcium levels were lower in LS SHED than in control SHED. Furthermore, the mitochondrial activity of LS SHED was decreased compared with control SHED both with and without osteoblastic differentiation. Our results indicate that decreased osteoblast differentiation potential and osteoblast function contribute to poor bone health in mitochondrial diseases.
Collapse
Affiliation(s)
- Hiroki Kato
- Section of Oral Medicine for Child, Division of Oral Health, Growth & Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan.
| | - Xu Han
- Section of Oral Medicine for Child, Division of Oral Health, Growth & Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Haruyoshi Yamaza
- Section of Oral Medicine for Child, Division of Oral Health, Growth & Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Child, Division of Oral Health, Growth & Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Yuta Hirofuji
- Section of Oral Medicine for Child, Division of Oral Health, Growth & Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Hiroshi Sato
- Section of Oral Medicine for Child, Division of Oral Health, Growth & Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Thanh Thi Mai Pham
- Section of Oral Medicine for Child, Division of Oral Health, Growth & Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Tomoaki Taguchi
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Kazuaki Nonaka
- Section of Oral Medicine for Child, Division of Oral Health, Growth & Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
189
|
Liao J, Yu X, Hu X, Fan J, Wang J, Zhang Z, Zhao C, Zeng Z, Shu Y, Zhang R, Yan S, Li Y, Zhang W, Cui J, Ma C, Li L, Yu Y, Wu T, Wu X, Lei J, Wang J, Yang C, Wu K, Wu Y, Tang J, He BC, Deng ZL, Luu HH, Haydon RC, Reid RR, Lee MJ, Wolf JM, Huang W, He TC. lncRNA H19 mediates BMP9-induced osteogenic differentiation of mesenchymal stem cells (MSCs) through Notch signaling. Oncotarget 2017; 8:53581-53601. [PMID: 28881833 PMCID: PMC5581132 DOI: 10.18632/oncotarget.18655] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/23/2017] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitor cells that can undergo self-renewal and differentiate into multiple lineages. Osteogenic differentiation from MSCs is a well-orchestrated process and regulated by multiple signaling pathways. We previously demonstrated that BMP9 is one of the most potent osteogenic factors. However, molecular mechanism through which BMP9 governs osteoblastic differentiation remains to be fully understood. Increasing evidence indicates noncoding RNAs (ncRNAs) may play important regulatory roles in many physiological and/or pathologic processes. In this study, we investigate the role of lncRNA H19 in BMP9-regulated osteogenic differentiation of MSCs. We demonstrated that H19 was sharply upregulated at the early stage of BMP9 stimulation of MSCs, followed by a rapid decease and gradual return to basal level. This process was correlated with BMP9-induced expression of osteogenic markers. Interestingly, either constitutive H19 expression or silencing H19 expression in MSCs significantly impaired BMP9-induced osteogenic differentiation in vitro and in vivo, which was effectively rescued by the activation of Notch signaling. Either constitutive H19 expression or silencing H19 expression led to the increased expression of a group of miRNAs that are predicted to target Notch ligands and receptors. Thus, these results indicate that lncRNA H19 functions as an important mediator of BMP9 signaling by modulating Notch signaling-targeting miRNAs. Our findings suggest that the well-coordinated biphasic expression of lncRNA H19 may be essential in BMP9-induced osteogenic differentiation of MSCs, and that dysregulated H19 expression may impair normal osteogenesis, leading to pathogenic processes, such as bone tumor development.
Collapse
Affiliation(s)
- Junyi Liao
- Departments of Orthopaedic Surgery, Blood Transfusion, Nephrology, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Xinyi Yu
- Departments of Orthopaedic Surgery, Blood Transfusion, Nephrology, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Xue Hu
- Departments of Orthopaedic Surgery, Blood Transfusion, Nephrology, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Departments of Orthopaedic Surgery, Blood Transfusion, Nephrology, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Zhicai Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Chen Zhao
- Departments of Orthopaedic Surgery, Blood Transfusion, Nephrology, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Yi Shu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Ruyi Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Shujuan Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Yasha Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
- Department of Laboratory Medicine and Clinical Diagnostics, The Affiliated Yantai Hospital, Binzhou Medical University, Yantai, China
| | - Jing Cui
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Chao Ma
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
- Departments of Neurosurgery, and Otolaryngology-Head & Neck Surgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Li Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
- Department of Biomedical Engineering, School of Bioengineering, Chongqing University, Chongqing, China
| | - Yichun Yu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
- Department of Emergency Medicine, Beijing Hospital, Beijing, China
| | - Tingting Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
- Departments of Neurosurgery, and Otolaryngology-Head & Neck Surgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xingye Wu
- Departments of Orthopaedic Surgery, Blood Transfusion, Nephrology, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jiayan Lei
- Departments of Orthopaedic Surgery, Blood Transfusion, Nephrology, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jia Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Chao Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Ke Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Ying Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
- Department of Immunology and Microbiology, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Tang
- Cytate Institute for Precision Medicine & Innovation, Guangzhou Cytate Biomedical Technologies Inc., Guangzhou, China
| | - Bai-Cheng He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Zhong-Liang Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
- Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Wei Huang
- Departments of Orthopaedic Surgery, Blood Transfusion, Nephrology, and General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| |
Collapse
|
190
|
Theologis T, Efstathopoulos N, Nikolaou V, Charikopoulos I, Papapavlos I, Kokkoris P, Papatheodorou A, Nasiri-Ansari N, Kassi E. Association between serum and synovial fluid Dickkopf-1 levels with radiographic severity in primary knee osteoarthritis patients. Clin Rheumatol 2017; 36:1865-1872. [PMID: 28451870 DOI: 10.1007/s10067-017-3640-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/08/2017] [Accepted: 04/13/2017] [Indexed: 12/22/2022]
Abstract
Primary knee osteoarthritis (OA) contributes to disability among middle-aged and elderly people. Dickkopf-1 (Dkk-1) and sclerostin are inhibitors of Wnt/β-catenin signaling pathway implicated in regulation of cartilage homeostasis and bone formation, respectively. We aim to investigate the association between the serum(s) and synovial fluid (SF) Dkk-1 and sclerostin levels and disease severity in patients with primary knee OA. Forty patients aged 56-87 years with primary knee OA and 20 healthy individuals were recruited. Weight-bearing anteroposterior radiographs of the affected knee were used to determine the disease severity according to Kellgren and Lawrence criteria. Dkk-1 and sclerostin levels in serum and SF were measured by ELISA. SF Dkk-1 levels were significantly higher in the OA, compared to control group (180 ± 182 vs 128 ± 330 pg/ml, p < 0.001). However, OA patients did not differ significantly regarding the sDkk-1 concentrations compared to healthy controls (1289.8 pg/ml vs 1214.1, respectively, p = 0.630). SF Dkk-1 levels in Kellgren and Lawrence (KL) grade 4 were significantly elevated compared to those of KL grades 2 and 3 (1.97 vs 2.23 pg/ml, p = 0.017, log transformed because data were not normally distributed), whereas sDkk-1 levels between those groups demonstrated marginally statistically significant difference (1111.8 vs 1415.9 pg/ml, p = 0.057). SFSclerostin and sSclerostin levels did not have any significant difference between the OA and control groups. SF Dkk-1 levels are positively related to the severity of joint damage in knee OA. Sclerostin levels failed to substantiate an association to knee OA progression. Dkk-1 could play a potential role in the degenerative process of OA. Thus, DKK-1 may emerge as a promising future therapeutic manipulation of OA.
Collapse
Affiliation(s)
- Thomas Theologis
- Department of Trauma and Orthopaedics, Thriasio General Hospital-NHS, G. Gennimata Avenue, 19600, Magoula, Attica, Greece
| | - Nikolaos Efstathopoulos
- 2nd Department of Trauma and Orthopedics, National and Kapodistrian University of Athens, 2-4 Agias Olgas Str, 14233, Nea Ionia, Athens, Greece
| | - Vasileios Nikolaou
- 2nd Department of Trauma and Orthopedics, National and Kapodistrian University of Athens, 2-4 Agias Olgas Str, 14233, Nea Ionia, Athens, Greece
| | - Ioannis Charikopoulos
- Department of Trauma and Orthopaedics, Thriasio General Hospital-NHS, G. Gennimata Avenue, 19600, Magoula, Attica, Greece
| | - Ioannis Papapavlos
- Department of Trauma and Orthopaedics, Thriasio General Hospital-NHS, G. Gennimata Avenue, 19600, Magoula, Attica, Greece
| | - Panayiotis Kokkoris
- Department of Endocrinology and Diabetes, 251 Hellenic Air Force & VA General Hospital, Athens, Greece
| | - Athanasios Papatheodorou
- Department of Endocrinology and Diabetes, 251 Hellenic Air Force & VA General Hospital, Athens, Greece
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527, Goudi, Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527, Goudi, Athens, Greece.
| |
Collapse
|
191
|
Amirhosseini M, Andersson G, Aspenberg P, Fahlgren A. Mechanical instability and titanium particles induce similar transcriptomic changes in a rat model for periprosthetic osteolysis and aseptic loosening. Bone Rep 2017; 7:17-25. [PMID: 28795083 PMCID: PMC5544474 DOI: 10.1016/j.bonr.2017.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 01/30/2023] Open
Abstract
Wear debris particles released from prosthetic bearing surfaces and mechanical instability of implants are two main causes of periprosthetic osteolysis. While particle-induced loosening has been studied extensively, mechanisms through which mechanical factors lead to implant loosening have been less investigated. This study compares the transcriptional profiles associated with osteolysis in a rat model for aseptic loosening, induced by either mechanical instability or titanium particles. Rats were exposed to mechanical instability or titanium particles. After 15 min, 3, 48 or 120 h from start of the stimulation, gene expression changes in periprosthetic bone tissue was determined by microarray analysis. Microarray data were analyzed by PANTHER Gene List Analysis tool and Ingenuity Pathway Analysis (IPA). Both types of osteolytic stimulation led to gene regulation in comparison to unstimulated controls after 3, 48 or 120 h. However, when mechanical instability was compared to titanium particles, no gene showed a statistically significant difference (fold change ≥ ± 1.5 and adjusted p-value ≤ 0.05) at any time point. There was a remarkable similarity in numbers and functional classification of regulated genes. Pathway analysis showed several inflammatory pathways activated by both stimuli, including Acute Phase Response signaling, IL-6 signaling and Oncostatin M signaling. Quantitative PCR confirmed the changes in expression of key genes involved in osteolysis observed by global transcriptomics. Inflammatory mediators including interleukin (IL)-6, IL-1β, chemokine (C-C motif) ligand (CCL)2, prostaglandin-endoperoxide synthase (Ptgs)2 and leukemia inhibitory factor (LIF) showed strong upregulation, as assessed by both microarray and qPCR. By investigating genome-wide expression changes we show that, despite the different nature of mechanical implant instability and titanium particles, osteolysis seems to be induced through similar biological and signaling pathways in this rat model for aseptic loosening. Pathways associated to the innate inflammatory response appear to be a major driver for osteolysis. Our findings implicate early restriction of inflammation to be critical to prevent or mitigate osteolysis and aseptic loosening of orthopedic implants.
Collapse
Affiliation(s)
- Mehdi Amirhosseini
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- Corresponding author.
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Per Aspenberg
- Orthopedics, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Anna Fahlgren
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
192
|
Gutner-Hoch E, Waldman Ben-Asher H, Yam R, Shemesh A, Levy O. Identifying genes and regulatory pathways associated with the scleractinian coral calcification process. PeerJ 2017; 5:e3590. [PMID: 28740755 PMCID: PMC5522607 DOI: 10.7717/peerj.3590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/27/2017] [Indexed: 01/04/2023] Open
Abstract
Reef building corals precipitate calcium carbonate as an exo-skeleton and provide substratum for prosperous marine life. Biomineralization of the coral’s skeleton is a developmental process that occurs concurrently with other proliferation processes that control the animal extension and growth. The development of the animal body is regulated by large gene regulatory networks, which control the expression of gene sets that progressively generate developmental patterns in the animal body. In this study we have explored the gene expression profile and signaling pathways followed by the calcification process of a basal metazoan, the Red Sea scleractinian (stony) coral, Stylophora pistillata. When treated by seawater with high calcium concentrations (addition of 100 gm/L, added as CaCl2.2H2O), the coral increases its calcification rates and associated genes were up-regulated as a result, which were then identified. Gene expression was compared between corals treated with elevated and normal calcium concentrations. Calcification rate measurements and gene expression analysis by microarray RNA transcriptional profiling at two time-points (midday and night-time) revealed several genes common within mammalian gene regulatory networks. This study indicates that core genes of the Wnt and TGF-β/BMP signaling pathways may also play roles in development, growth, and biomineralization in early-diverging organisms such as corals.
Collapse
Affiliation(s)
- Eldad Gutner-Hoch
- Department of Zoology, The George S. Wise Center for Life Sciences, Tel Aviv University, Tel Aviv, Israel.,The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Hiba Waldman Ben-Asher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Ruth Yam
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Aldo Shemesh
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Oren Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
193
|
Sun X, Wang H, Huang W, Yu H, Shen T, Song M, Han Y, Li Y, Zhu Y. Inhibition of bone formation in rats by aluminum exposure via Wnt/β-catenin pathway. CHEMOSPHERE 2017; 176:1-7. [PMID: 28249195 DOI: 10.1016/j.chemosphere.2017.02.086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 01/20/2017] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
The previous research found that aluminum trichloride (AlCl3) inhibited rat osteoblastic differentiation through inactivation of Wnt/β-catenin signaling pathway in vitro. On that basis, the experiment in vivo was conducted in this study. Rats were orally exposed to 0 (control group) and 0.4 g/L AlCl3 (AlCl3-treated group) for 30, 60, 90 or 120 days, respectively. We found that mRNA expressions of type I collagen and insulin-like growth factor-1, mRNA and protein expressions of Runx2 and survivin, ratio of p-GSK3β/GSK3β and protein expression of β-catenin were all decreased, whereas the mRNA and protein expressions Dkk1 and sFRP1 and the mRNA expressions and activity of Caspase-3 were increased in the AlCl3-treated group compared with the control group with time prolonged. These results suggest that AlCl3 inhibits bone formation and induces bone impairment by inhibiting the Wnt/β-catenin signaling pathway in young growing rats.
Collapse
Affiliation(s)
- Xudong Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Haoran Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Wanyue Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hongyan Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tongtong Shen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Yanzhu Zhu
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| |
Collapse
|
194
|
Chen Y, Hu Y, Yang L, Zhou J, Tang Y, Zheng L, Qin P. Runx2 alleviates high glucose-suppressed osteogenic differentiation via PI3K/AKT/GSK3β/β-catenin pathway. Cell Biol Int 2017; 41:822-832. [PMID: 28462510 DOI: 10.1002/cbin.10779] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/23/2017] [Indexed: 01/18/2023]
Abstract
Hyperglycemia is one of the most important pathogenesis of diabetic osteopathy. Several lines of studies indicate Runx2 plays a critical role in the process of osteogenic differentiation. However, little studies have analyzed the effect of Runx2 on osteoblast differentiation of rat bone mesenchymal stem cells (rBMSCs) in high-glucose condition. In this study, the effect of Runx2 on osteoblast differentiation in high-glucose condition was evaluated by the expression of osteogenesis-related maker including Runx2, ALP, OC, and OPN, as well as ALP staining, ALP activity, and Alizarin red S staining. Western blot analysis was performed to detect the protein expression levels of p-AKT, AKT, p-GSK3β, GSK3β, and β-catenin. Immunofluorescence staining analysis was performed to detect subcellular localization of β-catenin. Our results revealed that high glucose significantly inhibited osteogenic differentiation, hyperosmolarity did not cause a suppression. In addition, Runx2 could upregulate the expression of osteogenic-related genes and increase matrix mineralization, while applying 10 µM PI3K/AKT inhibitor LY294002 abolished the beneficial effect. Collectively, these results indicate that Runx2 alleviates high glucose-induced inhibition of osteoblast differentiation by modulating PI3K/AKT/GSK3β/β-catenin pathway.
Collapse
Affiliation(s)
- Yang Chen
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Yun Hu
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Lan Yang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Jie Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Yuying Tang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Leilei Zheng
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Pu Qin
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| |
Collapse
|
195
|
Park BM, Kim EJ, Nam HJ, Zhang D, Bae CH, Kang M, Kim H, Lee W, Bogen B, Lim SK. Cyclized Oligopeptide Targeting LRP5/6-DKK1 Interaction Reduces the Growth of Tumor Burden in a Multiple Myeloma Mouse Model. Yonsei Med J 2017; 58:505-513. [PMID: 28332354 PMCID: PMC5368134 DOI: 10.3349/ymj.2017.58.3.505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/20/2017] [Accepted: 01/26/2017] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Dickkopf 1 (DKK1) has been extensively investigated in mouse models of multiple myeloma, which results in osteolytic bone lesions. Elevated DKK1 levels in bone marrow plasma and serum inhibit the differentiation of osteoblast precursors. Present pharmaceutical approaches to target bone lesions are limited to antiresorptive agents. In this study, we developed a cyclized oligopeptide against DKK1-low density lipoprotein receptor-related protein (LRP) 5/6 interaction and tested the effects of the oligopeptide on tumor burden. MATERIALS AND METHODS A cyclized oligopeptide based on DKK1-LRP5/6 interactions was synthesized chemically, and its nuclear magnetic resonance structure was assessed. Luciferase reporter assay and mRNA expressions of osteoblast markers were evaluated after oligopeptide treatment. MOPC315.BM.Luc cells were injected into the tail vein of mice, after which cyclized oligopeptide was delivered subcutaneously 6 days a week for 4 weeks. RESULTS The cyclized oligopeptide containing NXI motif bound to the E1 domain of LRP5/6 effectively on surface plasmon resonance analysis. It abrogated the Wnt-β-catenin signaling inhibited by DKK1, but not by sclerostin, dose dependently. RT-PCR and alkaline phosphatase staining showed increased expressions of osteoblast markers according to the treatment concentrations. Bioluminescence images showed that the treatment of cyclized oligopeptide reduced tumor burden more in oligopeptide treated group than in the vehicle group. CONCLUSION The cyclized oligopeptide reported here may be another option for the treatment of tumor burden in multiple myeloma.
Collapse
Affiliation(s)
- Bo Mi Park
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Eun Jin Kim
- Institute of Biomedical Sciences, Yonsei University, Seoul, Korea
| | - Hee Jin Nam
- Division of Endocrinology and Endocrine Research Institute, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Dongdong Zhang
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Chu Hyun Bae
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Myeongmo Kang
- Institute of Biomedical Sciences, Yonsei University, Seoul, Korea
| | - Heeyoun Kim
- Department of Biochemistry, Yonsei University, Seoul, Korea
| | - Weontae Lee
- Department of Biochemistry, Yonsei University, Seoul, Korea
| | - Bjarne Bogen
- Centre for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Sung Kil Lim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
- Division of Endocrinology and Endocrine Research Institute, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
196
|
The Role of Bone Remodelling in Maintaining and Restoring Bone Health: an Overview. Clin Rev Bone Miner Metab 2017. [DOI: 10.1007/s12018-017-9230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
197
|
Shahi M, Peymani A, Sahmani M. Regulation of Bone Metabolism. Rep Biochem Mol Biol 2017; 5:73-82. [PMID: 28367467 PMCID: PMC5346273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/14/2016] [Indexed: 06/07/2023]
Abstract
Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation, and bone homeostasis are controlled by various markers and signaling pathways. Bone needs to be remodeled to maintain integrity with osteoblasts, which are bone-forming cells, and osteoclasts, which are bone-degrading cells.In this review we considered the major factors and signaling pathways in bone formation; these include fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs), wingless-type (Wnt) genes, runt-related transcription factor 2 (RUNX2) and osteoblast-specific transcription factor (osterix or OSX).
Collapse
Affiliation(s)
- Maryam Shahi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Amir Peymani
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Mehdi Sahmani
- Department of Clinical Biochemistry and Medical Genetics, Cellular and Molecular Research Center, Qazvin University of
Medical Sciences, Qazvin, Iran.
| |
Collapse
|
198
|
Li L, Peng X, Qin Y, Wang R, Tang J, Cui X, Wang T, Liu W, Pan H, Li B. Acceleration of bone regeneration by activating Wnt/β-catenin signalling pathway via lithium released from lithium chloride/calcium phosphate cement in osteoporosis. Sci Rep 2017; 7:45204. [PMID: 28338064 PMCID: PMC5364554 DOI: 10.1038/srep45204] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/21/2017] [Indexed: 12/23/2022] Open
Abstract
By virtue of its excellent bioactivity and osteoconductivity, calcium phosphate cement (CPC) has been applied extensively in bone engineering. Doping a trace element into CPC can change physical characteristics and enhance osteogenesis. The trace element lithium has been demonstrated to stimulate the proliferation and differentiation of osteoblasts. We investigated the fracture-healing effect of osteoporotic defects with lithium-doped calcium phosphate cement (Li/CPC) and the underlying mechanism. Li/CPC bodies immersed in simulated body fluid converted gradually to hydroxyapatite. Li/CPC extracts stimulated the proliferation and differentiation of osteoblasts upon release of lithium ions (Li+) at 25.35 ± 0.12 to 50.74 ± 0.13 mg/l through activation of the Wnt/β-catenin pathway in vitro. We also examined the effect of locally administered Li+ on defects in rat tibia between CPC and Li/CPC in vivo. Micro-computed tomography and histological staining showed that Li/CPC had better osteogenesis by increasing bone mass and promoting repair in defects compared with CPC (P < 0.05). Li/CPC also showed better osteoconductivity and osseointegration. These findings suggest that local release of Li+ from Li/CPC may accelerate bone regeneration from injury through activation of the Wnt/β-catenin pathway in osteoporosis.
Collapse
Affiliation(s)
- Li Li
- Department of Orthopedics, Fourth Affiliated Hospital of Guangxi Medical University/Liu Zhou Worker’s Hospital, Liuzhou, Guangxi 545005, China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Xiaozhong Peng
- Department of Orthopedics, Fourth Affiliated Hospital of Guangxi Medical University/Liu Zhou Worker’s Hospital, Liuzhou, Guangxi 545005, China
| | - Yongbao Qin
- Department of Orthopedics, Fourth Affiliated Hospital of Guangxi Medical University/Liu Zhou Worker’s Hospital, Liuzhou, Guangxi 545005, China
| | - Renchong Wang
- Department of Orthopedics, Fourth Affiliated Hospital of Guangxi Medical University/Liu Zhou Worker’s Hospital, Liuzhou, Guangxi 545005, China
| | - Jingli Tang
- Department of Orthopedics, Fourth Affiliated Hospital of Guangxi Medical University/Liu Zhou Worker’s Hospital, Liuzhou, Guangxi 545005, China
| | - Xu Cui
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ting Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Wenlong Liu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Bing Li
- Department of Orthopedics, Fourth Affiliated Hospital of Guangxi Medical University/Liu Zhou Worker’s Hospital, Liuzhou, Guangxi 545005, China
| |
Collapse
|
199
|
Ling Z, Wu L, Shi G, Chen L, Dong Q. Increased Runx2 expression associated with enhanced Wnt signaling in PDLLA internal fixation for fracture treatment. Exp Ther Med 2017; 13:2085-2093. [PMID: 28565812 DOI: 10.3892/etm.2017.4216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/10/2016] [Indexed: 01/19/2023] Open
Abstract
Poly-D-L lactide (PDLLA) biodegradable implants to heal fractures are widely applied in orthopedic surgeries. However, whether the process of fracture healing is regulated differently when PDLLA is used compared with traditional metal materials remains unclear. Runt-related transcription factor 2 (Runx2) and canonical Wnt signaling are essential and may interact reciprocally in the regulation of osteogenesis during bone repair. In the present study, a rat femoral open osteotomy model was used to compare the curative efficacy of a PDLLA rod and Kirschner wire under intramedullary fixation for fracture treatment. The dynamic expression of Runx2 and key components of the canonical Wnt signaling in callus tissue during fracture healing was also investigated. The results of the current study indicate that at weeks 4 and 6 following fixation, the callus bone structural parameters of microCT were significantly improved by PDLLA rod compared to that of Kirschner wire. In addition, at weeks 4 and 6 after fixation, the protein and mRNA expression of Runx2 and the positive regulators of canonical Wnt signaling, such as Wnts and β-catenin, were significantly increased. However, the protein and mRNA expression levels of the negative regulators of canonical Wnt signaling, such as glycogen synthase kinase-3β, were significantly decreased in callus tissue when treated with PDLLA rod compared with Kirschner wire. Collectively, these data indicate that compared to the traditional metal material, using PDLLA internal fixation for fracture treatment may further improve bone formation, which is associated with the increased expression of Runx2 and the enhancement of canonical Wnt signaling.
Collapse
Affiliation(s)
- Zhuoyan Ling
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Lei Wu
- Centers for Disease Control and Prevention of Suzhou Industrial Park, Suzhou, Jiangsu 215021, P.R. China.,School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Gaolong Shi
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Li Chen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qirong Dong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
200
|
Rivera-Piza A, An YJ, Kim DK, Lee SH, Kim JB, Choi JS, Lee SJ. Protocatechuic Acid Enhances Osteogenesis, but Inhibits Adipogenesis in C3H10T1/2 and 3T3-L1 Cells. J Med Food 2017; 20:309-319. [DOI: 10.1089/jmf.2016.3833] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Adriana Rivera-Piza
- Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Young Jae An
- Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Do Kyung Kim
- Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Sung-Hyen Lee
- National Academy of Agricultural Science, Rural Development Administration, Wanju Gun, Korea
| | - Jung-Bong Kim
- National Academy of Agricultural Science, Rural Development Administration, Wanju Gun, Korea
| | - Jung-Sook Choi
- National Academy of Agricultural Science, Rural Development Administration, Wanju Gun, Korea
| | - Sung-Joon Lee
- Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| |
Collapse
|