151
|
Riberdy JM, Zhou S, Zheng F, Kim YI, Moore J, Vaidya A, Throm RE, Sykes A, Sahr N, Bonifant CL, Ryu B, Gottschalk S, Velasquez MP. The Art and Science of Selecting a CD123-Specific Chimeric Antigen Receptor for Clinical Testing. Mol Ther Methods Clin Dev 2020; 18:571-581. [PMID: 32775492 PMCID: PMC7393323 DOI: 10.1016/j.omtm.2020.06.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
Chimeric antigen receptor (CAR) T cells targeting CD123, an acute myeloid leukemia (AML) antigen, hold the promise of improving outcomes for patients with refractory/recurrent disease. We generated five lentiviral vectors encoding CD20, which may serve as a target for CAR T cell depletion, and 2nd or 3rd generation CD123-CARs since the benefit of two costimulatory domains is model dependent. Four CARs were based on the CD123-specific single-chain variable fragment (scFv) 26292 (292) and one CAR on the CD123-specific scFv 26716 (716), respectively. We designed CARs with different hinge/transmembrane (H/TM) domains and costimulatory domains, in combination with the zeta (z) signaling domain: 292.CD8aH/TM.41BBz (8.41BBz), 292.CD8aH/TM.CD28z (8.28z), 716.CD8aH/TM.CD28z (716.8.28z), 292.CD28H/TM. CD28z (28.28z), and 292.CD28H/TM.CD28.41BBz (28.28.41BBz). Transduction efficiency, expansion, phenotype, and target cell recognition of the generated CD123-CAR T cells did not significantly differ. CAR constructs were eliminated for the following reasons: (1) 8.41BBz CARs induced significant baseline signaling, (2) 716.8.28z CAR T cells had decreased anti-AML activity, and (3) CD28.41BBz CAR T cells had no improved effector function in comparison to CD28z CAR T cells. We selected the 28.28z CAR since CAR expression on the cell surface of transduced T cells was higher in comparison to 8.28z CARs. The clinical study (NCT04318678) evaluating 28.28z CAR T cells is now open for patient accrual.
Collapse
Affiliation(s)
- Janice M. Riberdy
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sheng Zhou
- Experimental Cellular Therapeutics Laboratory, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Fei Zheng
- Experimental Cellular Therapeutics Laboratory, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Young-In Kim
- Experimental Cellular Therapeutics Laboratory, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jennifer Moore
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Abishek Vaidya
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Robert E. Throm
- Vector Development and Production Laboratory, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - April Sykes
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Natasha Sahr
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | | - Byoung Ryu
- Vector Development and Production Laboratory, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mireya Paulina Velasquez
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
152
|
Ernst MPT, Broeders M, Herrero-Hernandez P, Oussoren E, van der Ploeg AT, Pijnappel WWMP. Ready for Repair? Gene Editing Enters the Clinic for the Treatment of Human Disease. Mol Ther Methods Clin Dev 2020; 18:532-557. [PMID: 32775490 PMCID: PMC7393410 DOI: 10.1016/j.omtm.2020.06.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present an overview of clinical trials involving gene editing using clustered interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9), transcription activator-like effector nucleases (TALENs), or zinc finger nucleases (ZFNs) and discuss the underlying mechanisms. In cancer immunotherapy, gene editing is applied ex vivo in T cells, transgenic T cell receptor (tTCR)-T cells, or chimeric antigen receptor (CAR)-T cells to improve adoptive cell therapy for multiple cancer types. This involves knockouts of immune checkpoint regulators such as PD-1, components of the endogenous TCR and histocompatibility leukocyte antigen (HLA) complex to generate universal allogeneic CAR-T cells, and CD7 to prevent self-destruction in adoptive cell therapy. In cervix carcinoma caused by human papillomavirus (HPV), E6 and E7 genes are disrupted using topically applied gene editing machinery. In HIV infection, the CCR5 co-receptor is disrupted ex vivo to generate HIV-resistant T cells, CAR-T cells, or hematopoietic stem cells. In β-thalassemia and sickle cell disease, hematopoietic stem cells are engineered ex vivo to induce the production of fetal hemoglobin. AAV-mediated in vivo gene editing is applied to exploit the liver for systemic production of therapeutic proteins in hemophilia and mucopolysaccharidoses, and in the eye to restore splicing of the CEP920 gene in Leber's congenital amaurosis. Close consideration of safety aspects and education of stakeholders will be essential for a successful implementation of gene editing technology in the clinic.
Collapse
Affiliation(s)
- Martijn P T Ernst
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Mike Broeders
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Pablo Herrero-Hernandez
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Esmee Oussoren
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| |
Collapse
|
153
|
Shrestha B, Walton K, Reff J, Sagatys EM, Tu N, Boucher J, Li G, Ghafoor T, Felices M, Miller JS, Pidala J, Blazar BR, Anasetti C, Betts BC, Davila ML. Human CD83-targeted chimeric antigen receptor T cells prevent and treat graft-versus-host disease. J Clin Invest 2020; 130:4652-4662. [PMID: 32437331 PMCID: PMC7456225 DOI: 10.1172/jci135754] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Graft-versus-host disease (GVHD) remains an important cause of morbidity and mortality after allogeneic hematopoietic cell transplantation (allo-HCT). For decades, GVHD prophylaxis has included calcineurin inhibitors, despite their incomplete efficacy and impairment of graft-versus-leukemia (GVL). Distinct from pharmacologic immune suppression, we have developed what we believe is a novel, human CD83-targeted chimeric antigen receptor (CAR) T cell for GVHD prevention. CD83 is expressed on allo-activated conventional CD4+ T cells (Tconvs) and proinflammatory dendritic cells (DCs), which are both implicated in GVHD pathogenesis. Human CD83 CAR T cells eradicate pathogenic CD83+ target cells, substantially increase the ratio of regulatory T cells (Tregs) to allo-activated Tconvs, and provide durable prevention of xenogeneic GVHD. CD83 CAR T cells are also capable of treating xenogeneic GVHD. We show that human acute myeloid leukemia (AML) expresses CD83 and that myeloid leukemia cell lines are readily killed by CD83 CAR T cells. Human CD83 CAR T cells are a promising cell-based approach to preventing 2 critical complications of allo-HCT - GVHD and relapse. Thus, the use of human CD83 CAR T cells for GVHD prevention and treatment, as well as for targeting CD83+ AML, warrants clinical investigation.
Collapse
Affiliation(s)
- Bishwas Shrestha
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Kelly Walton
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jordan Reff
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Elizabeth M. Sagatys
- Department of Hematopathology and Laboratory Medicine, Moffitt Cancer Center, Tampa, Florida, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
| | - Nhan Tu
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
| | - Justin Boucher
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
| | - Gongbo Li
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
| | - Tayyebb Ghafoor
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
| | - Martin Felices
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey S. Miller
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joseph Pidala
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida, USA
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Claudio Anasetti
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida, USA
| | - Brian C. Betts
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Marco L. Davila
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
154
|
Franks SE, Wolfson B, Hodge JW. Natural Born Killers: NK Cells in Cancer Therapy. Cancers (Basel) 2020; 12:E2131. [PMID: 32751977 PMCID: PMC7465121 DOI: 10.3390/cancers12082131] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 01/08/2023] Open
Abstract
Cellular therapy has emerged as an attractive option for the treatment of cancer, and adoptive transfer of chimeric antigen receptor (CAR) expressing T cells has gained FDA approval in hematologic malignancy. However, limited efficacy was observed using CAR-T therapy in solid tumors. Natural killer (NK) cells are crucial for tumor surveillance and exhibit potent killing capacity of aberrant cells in an antigen-independent manner. Adoptive transfer of unmodified allogeneic or autologous NK cells has shown limited clinical benefit due to factors including low cell number, low cytotoxicity and failure to migrate to tumor sites. To address these problems, immortalized and autologous NK cells have been genetically engineered to express high affinity receptors (CD16), CARs directed against surface proteins (PD-L1, CD19, Her2, etc.) and endogenous cytokines (IL-2 and IL-15) that are crucial for NK cell survival and cytotoxicity, with positive outcomes reported by several groups both preclinically and clinically. With a multitude of NK cell-based therapies currently in clinic trials, it is likely they will play a crucial role in next-generation cell therapy-based treatment. In this review, we will highlight the recent advances and limitations of allogeneic, autologous and genetically enhanced NK cells used in adoptive cell therapy.
Collapse
Affiliation(s)
- S Elizabeth Franks
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Benjamin Wolfson
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
155
|
Ball B, Stein EM. Which are the most promising targets for minimal residual disease-directed therapy in acute myeloid leukemia prior to allogeneic stem cell transplant? Haematologica 2020; 104:1521-1531. [PMID: 31366466 PMCID: PMC6669154 DOI: 10.3324/haematol.2018.208587] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/01/2019] [Indexed: 12/19/2022] Open
Abstract
Minimal residual disease has emerged as an important prognostic factor for relapse and survival in acute myeloid leukemia. Eradication of minimal residual disease may increase the number of patients with long-term survival; however, to date, strategies that specifically target minimal residual disease are limited. Consensus guidelines on minimal residual disease detection by immunophenotypic and molecular methods are an essential initial step for clinical trials evaluating minimal residual disease. Here, we review promising targets of minimal residual disease prior to allogeneic stem cell transplantation. Specifically, the focus of this review is on the rationale and clinical development of therapies targeting: oncogenic driver mutations, apoptosis, methylation, and leukemic immune targets. We review the progress made in the clinical development of therapies against each target and the challenges that lie ahead.
Collapse
Affiliation(s)
- Brian Ball
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eytan M Stein
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
156
|
Aldoss I, Clark M, Song JY, Pullarkat V. Targeting the alpha subunit of IL-3 receptor (CD123) in patients with acute leukemia. Hum Vaccin Immunother 2020; 16:2341-2348. [PMID: 32692611 DOI: 10.1080/21645515.2020.1788299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The IL-3 alpha chain receptor (CD123) is a cell surface protein that is widely expressed by various subtypes of acute leukemia, including acute myeloid leukemia (AML), acute lymphoblastic leukemia and blastic plasmacytoid dendritic cell neoplasm. Notably, CD123 is preferentially overexpressed in leukemia stem cells (LSC) in contrast to normal hematopoietic stem cells, and this differential expression allows for the selective eradication of LSC and leukemic blasts through therapeutic targeting of CD123, with less impact on hematopoietic cells. The level of CD123 expression in AML correlates with both treatment response and outcomes. Therefore, targeting CD123 represents a promising universal therapeutic target in advanced acute leukemias irrespective of the individual leukemia phenotype. There are currently 31 ongoing clinical trials examining the utility of CD123-based targeted therapies. Here we focus our review on current efforts to target CD123 in acute leukemia through various therapeutic constructs.
Collapse
Affiliation(s)
- Ibrahim Aldoss
- Gehr Family Center for Leukemia Research, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center , Duarte, CA, USA
| | - Mary Clark
- Department of Clinical and Translational Project Development, City of Hope National Medical Center , Duarte, CA, USA
| | - Joo Y Song
- Department of Pathology, City of Hope National Medical Center , Duarte, CA, USA
| | - Vinod Pullarkat
- Gehr Family Center for Leukemia Research, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center , Duarte, CA, USA
| |
Collapse
|
157
|
Oliai C, Schiller G. How to address second and therapy-related acute myelogenous leukaemia. Br J Haematol 2020; 188:116-128. [PMID: 31863469 DOI: 10.1111/bjh.16354] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Secondary acute myelogenous leukaemia (AML), as compared to de novo AML, occurs in the more elderly population, is independently more resistant to cytotoxic chemotherapy, has a higher relapse rate, and a worse prognosis. Secondary AML (sAML) is a heterogeneous disease, both biologically and clinically, even within the World Health Organization subgroups of sAML. Outcomes are the poorest in subgroups with sAML arising from an antecedent haematologic disorder which has been previously treated (ts-AML), and sAML in patients <55 years of age. This review describes the suboptimal outcomes of contemporary therapy, to support the notion of an unmet need for innovative treatment strategies in sAML. Despite the recent approval of CPX-351, long-term outcomes for this high-risk disease remain dismal. Resistance mechanisms to intensive chemotherapy contribute to relapse. Targeted immune therapy may avoid multidrug resistance mechanisms, but are unlikely to provide long-term remission due to a complex and rapidly evolving clonal disease profile. Advances for sAML will likely be accomplished by CAR T cell therapy or bispecific antibodies providing a bridge to allogeneic stem cell transplantation. Therefore, focus should be placed on novel strategies that can augment the untargeted effector function of allogeneic grafts.
Collapse
Affiliation(s)
- Caspian Oliai
- David Geffen School of Medicine at University of California, Los Angeles, CA, USA.,Division of Hematology & Oncology, Hematological Malignancies and Stem Cell Transplantation Program, Los Angeles, CA, USA
| | - Gary Schiller
- David Geffen School of Medicine at University of California, Los Angeles, CA, USA.,Division of Hematology & Oncology, Hematological Malignancies and Stem Cell Transplantation Program, Los Angeles, CA, USA
| |
Collapse
|
158
|
Sommer C, Cheng HY, Nguyen D, Dettling D, Yeung YA, Sutton J, Hamze M, Valton J, Smith J, Djuretic I, Chaparro-Riggers J, Sasu BJ. Allogeneic FLT3 CAR T Cells with an Off-Switch Exhibit Potent Activity against AML and Can Be Depleted to Expedite Bone Marrow Recovery. Mol Ther 2020; 28:2237-2251. [PMID: 32592688 DOI: 10.1016/j.ymthe.2020.06.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/13/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
Patients with relapsed or refractory acute myeloid leukemia (AML) have a dismal prognosis and limited treatment options. Chimeric antigen receptor (CAR) T cells have achieved unprecedented clinical responses in patients with B cell leukemias and lymphomas and could prove highly efficacious in AML. However, a significant number of patients with AML may not receive treatment with an autologous product due to manufacturing failures associated with low lymphocyte counts or rapid disease progression while the therapeutic is being produced. We report the preclinical evaluation of an off-the-shelf CAR T cell therapy targeting Fms-related tyrosine kinase 3 (FLT3) for the treatment of AML. Single-chain variable fragments (scFvs) targeting various epitopes in the extracellular region of FLT3 were inserted into CAR constructs and tested for their ability to redirect T cell specificity and effector function to FLT3+ AML cells. A lead CAR, exhibiting minimal tonic signaling and robust activity in vitro and in vivo, was selected and then modified to incorporate a rituximab-responsive off-switch in cis. We found that allogeneic FLT3 CAR T cells, generated from healthy-donor T cells, eliminate primary AML blasts but are also active against mouse and human hematopoietic stem and progenitor cells, indicating risk of myelotoxicity. By employing a surrogate CAR with affinity to murine FLT3, we show that rituximab-mediated depletion of FLT3 CAR T cells after AML eradication enables bone marrow recovery without compromising leukemia remission. These results support clinical investigation of allogeneic FLT3 CAR T cells in AML and other FLT3+ hematologic malignancies.
Collapse
MESH Headings
- Animals
- Bone Marrow/immunology
- Bone Marrow/metabolism
- Disease Models, Animal
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Mice
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- T-Cell Antigen Receptor Specificity
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Treatment Outcome
- Xenograft Model Antitumor Assays
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/immunology
Collapse
Affiliation(s)
- Cesar Sommer
- Allogene Therapeutics, Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA.
| | - Hsin-Yuan Cheng
- Allogene Therapeutics, Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Duy Nguyen
- Allogene Therapeutics, Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Danielle Dettling
- Pfizer Cancer Immunology Discovery, Pfizer Worldwide Research and Development, 230 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Yik Andy Yeung
- Pfizer Cancer Immunology Discovery, Pfizer Worldwide Research and Development, 230 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Janette Sutton
- Allogene Therapeutics, Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Moustafa Hamze
- Formerly Cellectis SA, 8 rue de la Croix Jarry, 75013 Paris, France
| | - Julien Valton
- Cellectis, Inc., 430 East 29th Street, New York, NY 10016, USA
| | - Julianne Smith
- Cellectis, Inc., 430 East 29th Street, New York, NY 10016, USA
| | - Ivana Djuretic
- Pfizer Cancer Immunology Discovery, Pfizer Worldwide Research and Development, 230 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Javier Chaparro-Riggers
- Pfizer Cancer Immunology Discovery, Pfizer Worldwide Research and Development, 230 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Barbra J Sasu
- Allogene Therapeutics, Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA.
| |
Collapse
|
159
|
Abstract
The introduction of chimeric antigen receptor T-cell (CAR T) therapy has resulted in a paradigm shift in the management of relapsed/refractory B-cell malignancies. Patients with acute lymphoblastic leukemia and non-Hodgkin's lymphoma who had exhausted all meaningful treatment options now have an opportunity for long-term remission and possibly cure. CAR T is rapidly expanding into the treatment paradigm for multiple myeloma with approvals expected in the near future. CAR T for chronic lymphocytic leukemia may not be far behind, while CAR T studies in Hodgkin lymphoma and acute myeloid leukemia are ongoing. Such therapeutic success brings challenges in toxicity management related to cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. Our understanding of these unique syndromes is evolving, with predictive models and additional treatment strategies on the horizon. This review aims to summarize the progress of CAR T therapeutics within malignant hematology thus far and highlight ongoing advances in the field.
Collapse
Affiliation(s)
- Craig W Freyer
- Department of Pharmacy, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David L Porter
- Division of Hematology/Oncology, Cell Therapy and Transplant, Perelman School of Medicine and the Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
160
|
Sugita M, Guzman ML. CD123 as a Therapeutic Target Against Malignant Stem Cells. Hematol Oncol Clin North Am 2020; 34:553-564. [DOI: 10.1016/j.hoc.2020.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
161
|
Xue T, Budde LE. Immunotherapies Targeting CD123 for Blastic Plasmacytoid Dendritic Cell Neoplasm. Hematol Oncol Clin North Am 2020; 34:575-587. [DOI: 10.1016/j.hoc.2020.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
162
|
Baroni ML, Sanchez Martinez D, Gutierrez Aguera F, Roca Ho H, Castella M, Zanetti SR, Velasco Hernandez T, Diaz de la Guardia R, Castaño J, Anguita E, Vives S, Nomdedeu J, Lapillone H, Bras AE, van der Velden VHJ, Junca J, Marin P, Bataller A, Esteve J, Vick B, Jeremias I, Lopez A, Sorigue M, Bueno C, Menendez P. 41BB-based and CD28-based CD123-redirected T-cells ablate human normal hematopoiesis in vivo. J Immunother Cancer 2020; 8:e000845. [PMID: 32527933 PMCID: PMC7292050 DOI: 10.1136/jitc-2020-000845] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a hematopoietic malignancy which is biologically, phenotypically and genetically very heterogeneous. Outcome of patients with AML remains dismal, highlighting the need for improved, less toxic therapies. Chimeric antigen receptor T-cell (CART) immunotherapies for patients with refractory or relapse (R/R) AML are challenging because of the absence of a universal pan-AML target antigen and the shared expression of target antigens with normal hematopoietic stem/progenitor cells (HSPCs), which may lead to life-threating on-target/off-tumor cytotoxicity. CD33-redirected and CD123-redirected CARTs for AML are in advanced preclinical and clinical development, and they exhibit robust antileukemic activity. However, preclinical and clinical controversy exists on whether such CARTs are myeloablative. METHODS We set out to comparatively characterize in vitro and in vivo the efficacy and safety of 41BB-based and CD28-based CARCD123. We analyzed 97 diagnostic and relapse AML primary samples to investigate whether CD123 is a suitable immunotherapeutic target, and we used several xenograft models and in vitro assays to assess the myeloablative potential of our second-generation CD123 CARTs. RESULTS Here, we show that CD123 represents a bona fide target for AML and show that both 41BB-based and CD28-based CD123 CARTs are very efficient in eliminating both AML cell lines and primary cells in vitro and in vivo. However, both 41BB-based and CD28-based CD123 CARTs ablate normal human hematopoiesis and prevent the establishment of de novo hematopoietic reconstitution by targeting both immature and myeloid HSPCs. CONCLUSIONS This study calls for caution when clinically implementing CD123 CARTs, encouraging its preferential use as a bridge to allo-HSCT in patients with R/R AML.
Collapse
Affiliation(s)
- Matteo Libero Baroni
- Biomedicine, Research Institute Against Leukemia Josep Carreras, Barcelona, Catalunya, Spain
| | - Diego Sanchez Martinez
- Biomedicine, Research Institute Against Leukemia Josep Carreras, Barcelona, Catalunya, Spain
| | | | - Heleia Roca Ho
- Biomedicine, Research Institute Against Leukemia Josep Carreras, Barcelona, Catalunya, Spain
| | - Maria Castella
- Biomedicine, Research Institute Against Leukemia Josep Carreras, Barcelona, Catalunya, Spain
| | - Samanta Romina Zanetti
- Biomedicine, Research Institute Against Leukemia Josep Carreras, Barcelona, Catalunya, Spain
| | - Talia Velasco Hernandez
- Biomedicine, Research Institute Against Leukemia Josep Carreras, Barcelona, Catalunya, Spain
| | | | - Julio Castaño
- Biomedicine, Research Institute Against Leukemia Josep Carreras, Barcelona, Catalunya, Spain
| | - Eduardo Anguita
- Hematology and Hemotherapy Department, Hospital Clinico Universitario San Carlos Instituto Cardiovascular, Madrid, Comunidad de Madrid, Spain
| | - Susana Vives
- Hematology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Catalunya, Spain
| | - Josep Nomdedeu
- Hematology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalunya, Spain
| | - Helene Lapillone
- Centre de Recherce Saint-Antoine, Armand-Trousseau Childrens Hospital, Paris, Île-de-France, France
| | - Anne E Bras
- Immunology Department, Erasmus Medical Center, Rotterdam, Zuid-Holland, Netherlands
| | | | - Jordi Junca
- Biomedicine, Research Institute Against Leukemia Josep Carreras, Barcelona, Catalunya, Spain
- Hematology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Catalunya, Spain
| | - Pedro Marin
- Hematology Department, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Alex Bataller
- Hematology Department, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Jordi Esteve
- Hematology Department, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Binje Vick
- Helmholtz Center, Munich German Research Center for Environmental Health, Neuherberg, Bayern, Germany
| | - Irmela Jeremias
- Helmholtz Center, Munich German Research Center for Environmental Health, Neuherberg, Bayern, Germany
- Pediatrics Department, Munich University Hospital Dr von Hauner Children's Hospital, Munchen, Bayern, Germany
| | - Angel Lopez
- Human Immunology Department, Centre for Cancer Biology, Adelaide, South Australia, Australia
| | - Marc Sorigue
- Biomedicine, Research Institute Against Leukemia Josep Carreras, Barcelona, Catalunya, Spain
- Hematology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Catalunya, Spain
| | - Clara Bueno
- Biomedicine, Research Institute Against Leukemia Josep Carreras, Barcelona, Catalunya, Spain
- Centro de investigación en Red-Oncología, CIBERONC, Comunidad de Madrid, Madrid, Spain
| | - Pablo Menendez
- Biomedicine, Research Institute Against Leukemia Josep Carreras, Barcelona, Catalunya, Spain
- Centro de investigación en Red-Oncología, CIBERONC, Comunidad de Madrid, Madrid, Spain
- Instituciò Catalana de Recerca i Estudis Avançats, ICREA, Barcelona, Catalunya, Spain
| |
Collapse
|
163
|
Mardiana S, Gill S. CAR T Cells for Acute Myeloid Leukemia: State of the Art and Future Directions. Front Oncol 2020; 10:697. [PMID: 32435621 PMCID: PMC7218049 DOI: 10.3389/fonc.2020.00697] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/14/2020] [Indexed: 12/27/2022] Open
Abstract
Relapse after conventional chemotherapy remains a major problem in patients with myeloid malignancies such as acute myeloid leukemia (AML), and the major cause of death after diagnosis of AML is from relapsed disease. The only potentially curative treatment option currently available is allogeneic hematopoietic stem cell transplantation (allo-HSCT), which through its graft-vs.-leukemia effects has the ability to eliminate residual leukemia cells. Despite its long history of success however, relapse following allo-HSCT is still a major challenge and is associated with poor prognosis. In the field of adoptive therapy, CD19-targeted chimeric antigen receptor (CAR) T cells have yielded remarkable clinical success in certain types of B-cell malignancies, and substantial efforts aimed at translating this success to myeloid malignancies are currently underway. While complete ablation of CD19-expressing B cells, both cancerous and healthy, is clinically tolerated, the primary challenge limiting the use of CAR T cells in myeloid malignancies is the absence of a dispensable antigen, as myeloid antigens are often co-expressed on normal hematopoietic stem/progenitor cells (HSPCs), depletion of which would lead to intolerable myeloablation. This review provides a discussion on the current state of CAR T cell therapy in myeloid malignancies, limitations for clinical translation, as well as the most recent approaches to overcome these barriers, through various genetic modification and combinatorial strategies in an attempt to make CAR T cell therapy a safe and viable option for patients with myeloid malignancies.
Collapse
Affiliation(s)
- Sherly Mardiana
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
- Division of Hematology-Oncology and Center for Cellular Immunotherapies, University of Pennsylvania, PA, United States
| | - Saar Gill
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
- Division of Hematology-Oncology and Center for Cellular Immunotherapies, University of Pennsylvania, PA, United States
| |
Collapse
|
164
|
Loff S, Dietrich J, Meyer JE, Riewaldt J, Spehr J, von Bonin M, Gründer C, Swayampakula M, Franke K, Feldmann A, Bachmann M, Ehninger G, Ehninger A, Cartellieri M. Rapidly Switchable Universal CAR-T Cells for Treatment of CD123-Positive Leukemia. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:408-420. [PMID: 32462078 PMCID: PMC7240059 DOI: 10.1016/j.omto.2020.04.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022]
Abstract
Chimeric antigen receptor T cells (CAR-T) targeting CD19 or B cell maturation antigen (BCMA) are highly effective against B cell malignancies. However, application of CAR-T to less differentially expressed targets remains a challenge due to lack of tumor-specific antigens and CAR-T controllability. CD123, a highly promising leukemia target, is expressed not only by leukemic and leukemia-initiating cells, but also by myeloid, hematopoietic progenitor, and certain endothelial cells. Thus, CAR-T lacking fine-tuned control mechanisms pose a high toxicity risk. To extend the CAR-T target landscape and widen the therapeutic window, we adapted our rapidly switchable universal CAR-T platform (UniCAR) to target CD123. UniCAR-T efficiently eradicated CD123+ leukemia in vitro and in vivo. Activation, cytolytic response, and cytokine release were strictly dependent on the presence of the CD123-specific targeting module (TM123) with comparable efficacy to CD123-specific CAR-T in vitro. We further demonstrated a pre-clinical proof of concept for the safety-switch mechanism using a hematotoxicity mouse model wherein TM123-redirected UniCAR-T showed reversible toxicity toward hematopoietic cells compared to CD123 CAR-T. In conclusion, UniCAR-T maintain full anti-leukemic efficacy, while ensuring rapid controllability to improve safety and versatility of CD123-directed immunotherapy. The safety and efficacy of UniCAR-T in combination with TM123 will now be assessed in a phase I clinical trial (ClinicalTrials.gov: NCT04230265).
Collapse
Affiliation(s)
- Simon Loff
- GEMoaB Monoclonals GmbH, 01307 Dresden, Germany
| | | | | | | | | | - Malte von Bonin
- Medical Clinic and Policlinic I, University Hospital "Carl Gustav Carus," TU Dresden, 01307 Dresden, Germany.,German Cancer Consortium "Carl Gustav Carus," TU Dresden, 01307 Dresden, Germany
| | | | | | | | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany
| | - Michael Bachmann
- University Cancer Center "Carl Gustav Carus," TU Dresden, Tumor Immunology, 01307 Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany.,German Cancer Consortium "Carl Gustav Carus," TU Dresden, 01307 Dresden, Germany.,National Center for Tumor Diseases, "Carl Gustav Carus," TU Dresden, 01307 Dresden, Germany
| | - Gerhard Ehninger
- GEMoaB Monoclonals GmbH, 01307 Dresden, Germany.,Cellex Patient Treatment GmbH, 01307 Dresden, Germany
| | - Armin Ehninger
- GEMoaB Monoclonals GmbH, 01307 Dresden, Germany.,Cellex Patient Treatment GmbH, 01307 Dresden, Germany
| | - Marc Cartellieri
- GEMoaB Monoclonals GmbH, 01307 Dresden, Germany.,Cellex Patient Treatment GmbH, 01307 Dresden, Germany
| |
Collapse
|
165
|
Pratap S, Zhao ZJ. Finding new lanes: Chimeric antigen receptor (CAR) T-cells for myeloid leukemia. Cancer Rep (Hoboken) 2020; 3:e1222. [PMID: 32671999 PMCID: PMC7941581 DOI: 10.1002/cnr2.1222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Myeloid leukemia represents a heterogeneous group of cancers of blood and bone marrow which arise from clonal expansion of hematopoietic myeloid lineage cells. Acute myeloid leukemia (AML) has traditionally been treated with multi-agent chemotherapy, but conventional therapies have not improved the long-term survival for decades. Chronic myeloid leukemia (CML) is an indolent disease which requires lifelong treatment, is associated with significant side effects, and carries a risk of progression to potentially lethal blast crises. RECENT FINDINGS Recent advances in molecular biology, virology, and immunology have enabled researchers to grow and modify T lymphocytes ex-vivo. Chimeric antigen receptor (CAR) T-cell therapy has been shown to specifically target cells of lymphoid lineage and induce remission in acute lymphoblastic leukemia (ALL) patients. While the success of CAR T-cells against ALL is considered a defining moment in modern oncology, similar efficacy against myeloid leukemia cells remains elusive. Over the past 10 years, numerous CAR T-cells have been developed that can target novel myeloid antigens, and many clinical trials are finally starting to yield encouraging results. In this review, we present the recent advances in this field and discuss strategies for future development of myeloid targeting CAR T-cell therapy. CONCLUSIONS The field of CAR T-cell therapy has rapidly evolved over the past few years. It represents a radically new approach towards cancers, and with continued refinement it may become a viable therapeutic option for patients of acute and chronic myeloid leukemia.
Collapse
Affiliation(s)
- Suraj Pratap
- University of Oklahoma Health Sciences CenterDepartment of Pediatric Hematology‐OncologyOklahoma CityOklahomaUSA
| | - Zhizhuang J. Zhao
- University of Oklahoma Health Sciences CenterDepartment of PathologyOklahoma CityOklahomaUSA
| |
Collapse
|
166
|
Abstract
In spite of the recent approval of new promising targeted therapies, the clinical outcome of patients with acute myeloid leukemia (AML) remains suboptimal, prompting the search for additional and synergistic therapeutic rationales. It is increasingly evident that the bone marrow immune environment of AML patients is profoundly altered, contributing to the severity of the disease but also providing several windows of opportunity to prompt or rewire a proficient antitumor immune surveillance. In this Review, we present current evidence on immune defects in AML, discuss the challenges with selective targeting of AML cells, and summarize the clinical results and immunologic insights from studies that are testing the latest immunotherapy approaches to specifically target AML cells (antibodies, cellular therapies) or more broadly reactivate antileukemia immunity (vaccines, checkpoint blockade). Given the complex interactions between AML cells and the many components of their environment, it is reasonable to surmise that the future of immunotherapy in AML lies in the rational combination of complementary immunotherapeutic strategies with chemotherapeutics or other oncogenic pathway inhibitors. Identifying reliable biomarkers of response to improve patient selection and avoid toxicities will be critical in this process.
Collapse
Affiliation(s)
- Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, and
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Ivana Gojo
- Division of Hematologic Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| |
Collapse
|
167
|
Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M, Schmierer M, Gabrusiewicz K, Anderson NR, Petty NE, Cummins KD, Shen F, Shan X, Veliz K, Blouch K, Yashiro-Ohtani Y, Kenderian SS, Kim MY, O'Connor RS, Wallace SR, Kozlowski MS, Marchione DM, Shestov M, Garcia BA, June CH, Gill S. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol 2020; 38:947-953. [PMID: 32361713 DOI: 10.1038/s41587-020-0462-y] [Citation(s) in RCA: 877] [Impact Index Per Article: 175.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/10/2020] [Accepted: 02/21/2020] [Indexed: 11/09/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has shown promise in hematologic malignancies, but its application to solid tumors has been challenging1-4. Given the unique effector functions of macrophages and their capacity to penetrate tumors5, we genetically engineered human macrophages with CARs to direct their phagocytic activity against tumors. We found that a chimeric adenoviral vector overcame the inherent resistance of primary human macrophages to genetic manipulation and imparted a sustained pro-inflammatory (M1) phenotype. CAR macrophages (CAR-Ms) demonstrated antigen-specific phagocytosis and tumor clearance in vitro. In two solid tumor xenograft mouse models, a single infusion of human CAR-Ms decreased tumor burden and prolonged overall survival. Characterization of CAR-M activity showed that CAR-Ms expressed pro-inflammatory cytokines and chemokines, converted bystander M2 macrophages to M1, upregulated antigen presentation machinery, recruited and presented antigen to T cells and resisted the effects of immunosuppressive cytokines. In humanized mouse models, CAR-Ms were further shown to induce a pro-inflammatory tumor microenvironment and boost anti-tumor T cell activity.
Collapse
Affiliation(s)
- Michael Klichinsky
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Carisma Therapeutics, Philadelphia, PA, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Olga Shestova
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Xueqing Maggie Lu
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Best
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Carisma Therapeutics, Philadelphia, PA, USA
| | | | | | | | | | - Nicholas E Petty
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Katherine D Cummins
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Feng Shen
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Xinhe Shan
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Kimberly Veliz
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Kristin Blouch
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | - Saad S Kenderian
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Miriam Y Kim
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Department of Medicine, Oncology Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Roddy S O'Connor
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Stephen R Wallace
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Miroslaw S Kozlowski
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Dylan M Marchione
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Maksim Shestov
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Saar Gill
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA, USA. .,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA. .,Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
168
|
Wang ZZ, Lu Y, Xu YX, Xing HY, Tang KJ, Tian Z, Rao Q, Wang M, Xiong DS, Wang JX. [Construction of a new anti-CD123 chimeric antigen receptor T cells and effect of anti-acute myeloid leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:192-197. [PMID: 32311887 PMCID: PMC7357918 DOI: 10.3760/cma.j.issn.0253-2727.2020.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Indexed: 12/03/2022]
Abstract
Objective: To construct a new CD123- specific chimeric antigen receptor in order to provide a foundation for immunotherapy of CD123 positive leukemia. Methods: A hybridoma strain (6E11) capable of stably secreting CD123 antibody was obtained by a monoclonal screening technique, and the hybridoma cells were expanded and injected intraperitoneally to the pretreated Balb/c mice. Ascites was collected and purified to obtain the monoclonal antibody (mAb) . The affinity and specificity of 6E11 mAb were measured. The variable regions of the heavy and light chains of the 6E11 mAb were cloned by RT-PCR from the 6E11 mouse hybridoma. We generated a new CD123 specific chimeric antigen receptor with a scFv fragment derived from 6E11 antibody, designated as 6E11 CAR. T cells were transduced with lentiviral supernatant from 293T cells transfected with 6E11 CAR plasmid to generate 6E11 CAR-T cells. The specific cytotoxicity of 6E11 CAR-T against CD123(+) acute myeloid leukemia (AML) cell lines and primary AML cells in vitro were evaluated by co-culture experiments, degranulation experiments and cytokine releasing assay. Results: ① A hybridoma cell line 6E11 stably secreting anti-human CD123 antibody was developed and its variable region sequences were obtained. ② The 6E11 mAb has high affinity for CD123 protein (Kd value: 2.1 nmol/L) . The 6E11 mAb specifically recognizes CD123(+) cell line THP-1 cells and does not respond to CD123(-) cell line Jurkat cells. ③ 6E11 CAR-T cells were successfully generated with a CAR expression rate higher than 60%. ④ 6E11 CAR-T cells could specifically kill CD123(+) MV4-11 cell line but had no killing effect on the CD123(-) K562 cell line. Compared with vector-T cells, 6E11 CAR-T cells have higher killing rate to MV4-11 cells[ (98.60±1.20) %vs (20.28±6.74) %, P<0.001]. ⑤ MV4-11 cells activated 6E11 CAR-T cells significantly but not Vector-T cells[ (26.33±3.30) %vs (1.17±0.06) %, P<0.001]. ⑥ 6E11 CAR-T cells released more cytokines than vector-T cells when co-cultured with MV4-11[IL-2: (92.90±1.51) pg/ml vs (6.05±3.41) pg/ml, P<0.001; TNF-α: (1 407.20±91.95) pg/ml vs (7.86±0.85) pg/ml, P<0.001; IFN-γ: (5 614.60±170.17) pg/ml vs (8.42±2.70) pg/ml, P<0.001]. The IFN-γ, IL-2 and TNF-α in the 6E11 CAR-T group were similar to those in the Vector-T group when co-cultured with K562. ⑦ 6E11 CAR-T cells could be activated by bone marrow mononuclear cells (BMMNC) derived from CD123(+) AML patients and effectively kill these BMMNC cells from CD123(+) AML patients. Conclusion: 6E11 hybridoma cell line can stably secrete highly specific monoclonal antibodies against human CD123, which can be used to detect the expression of human CD123. It can also be used to target human CD123 protein in tumor immunotherapy. CD123 CAR-T cells with 6E11 Ig variable region sequence have specific anti-leukemic activity in vitro, which may provide a new option for further clinical research of AML.
Collapse
Affiliation(s)
- Z Z Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - Y Lu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - Y X Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - H Y Xing
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - K J Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - Z Tian
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - Q Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - M Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - D S Xiong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - J X Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| |
Collapse
|
169
|
He X, Feng Z, Ma J, Ling S, Cao Y, Gurung B, Wu Y, Katona BW, O'Dwyer KP, Siegel DL, June CH, Hua X. Bispecific and split CAR T cells targeting CD13 and TIM3 eradicate acute myeloid leukemia. Blood 2020; 135:713-723. [PMID: 31951650 PMCID: PMC7059518 DOI: 10.1182/blood.2019002779] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/13/2019] [Indexed: 02/05/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells have radically improved the treatment of B cell-derived malignancies by targeting CD19. The success has not yet expanded to treat acute myeloid leukemia (AML). We developed a Sequentially Tumor-Selected Antibody and Antigen Retrieval (STAR) system to rapidly isolate multiple nanobodies (Nbs) that preferentially bind AML cells and empower CAR T cells with anti-AML efficacy. STAR-isolated Nb157 specifically bound CD13, which is highly expressed in AML cells, and CD13 CAR T cells potently eliminated AML in vitro and in vivo. CAR T cells bispecific for CD13 and TIM3, which are upregulated in AML leukemia stem cells, eradicated patient-derived AML, with much reduced toxicity to human bone marrow stem cells and peripheral myeloid cells in mouse models, highlighting a promising approach for developing effective AML CAR T cell therapy.
Collapse
Affiliation(s)
- Xin He
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Zijie Feng
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jian Ma
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sunbin Ling
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; and
| | - Yan Cao
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Buddha Gurung
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Yuan Wu
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bryson W Katona
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kienan P O'Dwyer
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Don L Siegel
- Center for Cellular Immunotherapies and
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Carl H June
- Center for Cellular Immunotherapies and
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Xianxin Hua
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
170
|
CD28/4-1BB CD123 CAR T cells in blastic plasmacytoid dendritic cell neoplasm. Leukemia 2020; 34:3228-3241. [PMID: 32111969 DOI: 10.1038/s41375-020-0777-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/17/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is associated with a remarkably poor prognosis and with no treatment consensus. The identification of relevant therapeutic targets is challenging. Here, we investigated the immune functions, antileukemia efficacy and safety of CD28/4-1BB CAR T cells targeting CD123 the interleukin (IL)-3 receptor alpha chain which is overexpressed on BPDCN. We demonstrated that both retroviral and lentiviral engineering CD28/4-1BB CD123 CAR T cells exhibit effector functions against BPDCN cells through CD123 antigen recognition and that they efficiently kill BPDCN cell lines and BPDCN-derived PDX cells. In vivo, CD28/4-1BB CD123 CAR T-cell therapy displayed strong efficacy by promoting a decrease of BPDCN blast burden. Furthermore we showed that T cells from BPDCN patient transduced with CD28/4-1BB CD123 CAR successfully eliminate autologous BPDCN blasts in vitro. Finally, we demonstrated in humanized mouse models that these effector CAR T cells exert low or no cytotoxicity against various subsets of normal cells with low CD123 expression, indicating a potentially low on-target/off-tumor toxicity effect. Collectively, our data support the further evaluation for clinical assessment of CD28/4-1BB CD123 CAR T cells in BPDCN neoplasm.
Collapse
|
171
|
Abadir E, Gasiorowski RE, Silveira PA, Larsen S, Clark GJ. Is Hematopoietic Stem Cell Transplantation Required to Unleash the Full Potential of Immunotherapy in Acute Myeloid Leukemia? J Clin Med 2020; 9:E554. [PMID: 32085578 PMCID: PMC7073661 DOI: 10.3390/jcm9020554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/22/2022] Open
Abstract
From monoclonal antibodies (mAbs) to Chimeric Antigen Receptor (CAR) T cells, immunotherapies have enhanced the efficacy of treatments against B cell malignancies. The same has not been true for Acute Myeloid Leukemia (AML). Hematologic toxicity has limited the potential of modern immunotherapies for AML at preclinical and clinical levels. Gemtuzumab Ozogamicin has demonstrated hematologic toxicity, but the challenge of preserving normal hematopoiesis has become more apparent with the development of increasingly potent immunotherapies. To date, no single surface molecule has been identified that is able to differentiate AML from Hematopoietic Stem and Progenitor Cells (HSPC). Attempts have been made to spare hematopoiesis by targeting molecules expressed only on later myeloid progenitors as well as AML or using toxins that selectively kill AML over HSPC. Other strategies include targeting aberrantly expressed lymphoid molecules or only targeting monocyte-associated proteins in AML with monocytic differentiation. Recently, some groups have accepted that stem cell transplantation is required to access potent AML immunotherapy and envision it as a rescue to avoid severe hematologic toxicity. Whether it will ever be possible to differentiate AML from HSPC using surface molecules is unclear. Unless true specific AML surface targets are discovered, stem cell transplantation could be required to harness the true potential of immunotherapy in AML.
Collapse
Affiliation(s)
- Edward Abadir
- Dendritic Cell Research, ANZAC Research Institute, Concord 2139, NSW, Australia;
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown 2050, NSW, Australia;
- The University of Sydney, Camperdown 2039, NSW, Australia;
| | - Robin E. Gasiorowski
- The University of Sydney, Camperdown 2039, NSW, Australia;
- Department of Haematology, Concord Repatriation and General Hospital, Concord 2039, NSW, Australia
| | - Pablo A. Silveira
- Dendritic Cell Research, ANZAC Research Institute, Concord 2139, NSW, Australia;
- The University of Sydney, Camperdown 2039, NSW, Australia;
| | - Stephen Larsen
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown 2050, NSW, Australia;
- The University of Sydney, Camperdown 2039, NSW, Australia;
| | - Georgina J. Clark
- Dendritic Cell Research, ANZAC Research Institute, Concord 2139, NSW, Australia;
- The University of Sydney, Camperdown 2039, NSW, Australia;
| |
Collapse
|
172
|
Epperly R, Gottschalk S, Velasquez MP. Harnessing T Cells to Target Pediatric Acute Myeloid Leukemia: CARs, BiTEs, and Beyond. CHILDREN (BASEL, SWITZERLAND) 2020; 7:E14. [PMID: 32079207 PMCID: PMC7072334 DOI: 10.3390/children7020014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
Outcomes for pediatric patients with acute myeloid leukemia (AML) remain poor, highlighting the need for improved targeted therapies. Building on the success of CD19-directed immune therapy for acute lymphocytic leukemia (ALL), efforts are ongoing to develop similar strategies for AML. Identifying target antigens for AML is challenging because of the high expression overlap in hematopoietic cells and normal tissues. Despite this, CD123 and CD33 antigen targeted therapies, among others, have emerged as promising candidates. In this review we focus on AML-specific T cell engaging bispecific antibodies and chimeric antigen receptor (CAR) T cells. We review antigens being explored for T cell-based immunotherapy in AML, describe the landscape of clinical trials upcoming for bispecific antibodies and CAR T cells, and highlight strategies to overcome additional challenges facing translation of T cell-based immunotherapy for AML.
Collapse
Affiliation(s)
- Rebecca Epperly
- Department of Oncology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 77030, USA;
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 77030, USA;
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 77030, USA;
| | - Mireya Paulina Velasquez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 77030, USA;
| |
Collapse
|
173
|
Ruella M, Barrett DM, Shestova O, Perazzelli J, Posey AD, Hong SJ, Kozlowski M, Lacey SF, Melenhorst JJ, June CH, Gill SI. A cellular antidote to specifically deplete anti-CD19 chimeric antigen receptor-positive cells. Blood 2020; 135:505-509. [PMID: 31703119 PMCID: PMC7019191 DOI: 10.1182/blood.2019001859] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022] Open
Abstract
Unintentional transduction of B-cell acute lymphoblastic leukemia blasts during CART19 manufacturing can lead to CAR19+ leukemic cells (CARB19) that are resistant to CART19 killing. We developed an anti-CAR19 idiotype chimeric antigen receptor (αCAR19) to specifically recognize CAR19+ cells. αCAR19 CAR T cells efficiently lysed CARB19 cells in vitro and in a primary leukemia-derived xenograft model. We further showed that αCAR19-CART cells could be used as an "antidote" to deplete CART19 cells to reduce long-term side effects, such as B-cell aplasia.
Collapse
Affiliation(s)
- Marco Ruella
- Center for Cellular Immunotherapies and
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - David M Barrett
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Jessica Perazzelli
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Avery D Posey
- Center for Cellular Immunotherapies and
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA; and
| | | | | | - Simon F Lacey
- Center for Cellular Immunotherapies and
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - J Joseph Melenhorst
- Center for Cellular Immunotherapies and
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Carl H June
- Center for Cellular Immunotherapies and
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Saar I Gill
- Center for Cellular Immunotherapies and
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
174
|
Chulanetra M, Morchang A, Sayour E, Eldjerou L, Milner R, Lagmay J, Cascio M, Stover B, Slayton W, Chaicumpa W, Yenchitsomanus PT, Chang LJ. GD2 chimeric antigen receptor modified T cells in synergy with sub-toxic level of doxorubicin targeting osteosarcomas. Am J Cancer Res 2020; 10:674-687. [PMID: 32195035 PMCID: PMC7061749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023] Open
Abstract
Since the prognosis for children with high-risk osteosarcoma (OS) remains suboptimal despite intensive multi-modality therapies, there is a clear and urgent need for the development of targeted therapeutics against these refractory malignancies. Chimeric antigen receptor (CAR) modified T cells can meet this need by utilizing the immune system's potent cytotoxic mechanisms against tumor specific antigen targets with exquisite specificity. Since OS highly expresses the GD2 antigen, a viable immunotherapeutic target, we sought to assess if CAR modified T cells targeting GD2 could induce cytotoxicity against OS tumor cells. We demonstrated that the GD2 CAR modified T cells were highly efficacious for inducing OS tumor cell death. Interestingly, the OS cells were induced to up-regulate expression of PD-L1 upon interaction with GD2 CAR modified T cells, and the specific interaction induced CAR T cells to overexpress the exhaustion marker PD-1 along with increased CAR T cell apoptosis. To further potentiate CAR T cell killing activity against OS, we demonstrated that suboptimal chemotherapeutic treatment with doxorubicin can synergize with CAR T cells to effectively kill OS tumor cells.
Collapse
Affiliation(s)
- Monrat Chulanetra
- Department of Molecular Genetics and Microbiology, University of FloridaGainesville, FL 32610, USA
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine, Siriraj Hospital, Mahidol UniversityBangkok, Thailand
| | - Atthapan Morchang
- Department of Molecular Genetics and Microbiology, University of FloridaGainesville, FL 32610, USA
- Siriraj Center of Research Excellence for Cancer Immunotherapy, Siriraj Medical Research Center, Faculty of Medicine, Siriraj Hospital, Mahidol UniversityBangkok, Thailand
| | - Elias Sayour
- Division of Pediatric Hematology-Oncology, Department of PediatricsSichuan, China
- Brain Tumor Immunotherapy Program, Department of NeurosurgerySichuan, China
| | - Lamis Eldjerou
- Division of Pediatric Hematology-Oncology, Department of PediatricsSichuan, China
| | - Rowan Milner
- Department of Small Animal Clinical Sciences, University of FloridaSichuan, China
| | - Joanne Lagmay
- Division of Pediatric Hematology-Oncology, Department of PediatricsSichuan, China
| | - Matt Cascio
- Division of Pediatric Hematology-Oncology, Department of PediatricsSichuan, China
| | - Brian Stover
- Division of Pediatric Hematology-Oncology, Department of PediatricsSichuan, China
| | - William Slayton
- Division of Pediatric Hematology-Oncology, Department of PediatricsSichuan, China
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine, Siriraj Hospital, Mahidol UniversityBangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy, Siriraj Medical Research Center, Faculty of Medicine, Siriraj Hospital, Mahidol UniversityBangkok, Thailand
| | - Lung-Ji Chang
- Department of Molecular Genetics and Microbiology, University of FloridaGainesville, FL 32610, USA
- University of Electronic Science and Technology of ChinaSichuan, China
- Shenzhen Geno-Immune Medical InstituteShenzhen, China
| |
Collapse
|
175
|
Abstract
PURPOSE OF REVIEW Exciting translational discoveries in recent years have brought realized promise of immunotherapy for children with high-risk leukemias. This review summarizes the current immunotherapeutic landscape with a focus on key clinical trials for patients with acute lymphoblastic leukemia or acute myeloid leukemia. RECENT FINDINGS Chemotherapy resistance remains a major barrier to cure in children with high-risk leukemias. Immunotherapy approaches have potential to overcome this resistance given alternative mechanisms of action. Based upon preclinical activity and/or success in adult patients, recent clinical trials have demonstrated safety and efficacy of various mAb, antibody-drug conjugate, bispecific T-cell-engaging antibody, natural killer cell, and chimeric antigen receptor-redirected T-cell immunotherapies for children with acute lymphoblastic leukemia or acute myeloid leukemia. Food and Drug Administration approval of several of these immunotherapies has increased the pediatric leukemia therapeutic portfolio and improved clinical outcomes for previously incurable patients. SUMMARY Several antibody-based or cellular immunotherapy modalities have demonstrated appreciable efficacy in children with relapsed or chemotherapy-refractory leukemia via early-phase clinical trials. Some studies have also identified critical biomarkers of treatment response and resistance that merit further investigation. Continued preclinical and clinical evaluation of novel immunotherapies is imperative to improve cure rates for children with high-risk leukemias.
Collapse
|
176
|
Summers C, Sheth VS, Bleakley M. Minor Histocompatibility Antigen-Specific T Cells. Front Pediatr 2020; 8:284. [PMID: 32582592 PMCID: PMC7283489 DOI: 10.3389/fped.2020.00284] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/06/2020] [Indexed: 01/05/2023] Open
Abstract
Minor Histocompatibility (H) antigens are major histocompatibility complex (MHC)/Human Leukocyte Antigen (HLA)-bound peptides that differ between allogeneic hematopoietic stem cell transplantation (HCT) recipients and their donors as a result of genetic polymorphisms. Some minor H antigens can be used as therapeutic T cell targets to augment the graft-vs.-leukemia (GVL) effect in order to prevent or manage leukemia relapse after HCT. Graft engineering and post-HCT immunotherapies are being developed to optimize delivery of T cells specific for selected minor H antigens. These strategies have the potential to reduce relapse risk and thereby permit implementation of HCT approaches that are associated with less toxicity and fewer late effects, which is particularly important in the growing and developing pediatric patient. Most minor H antigens are expressed ubiquitously, including on epithelial tissues, and can be recognized by donor T cells following HCT, leading to graft-vs.-host disease (GVHD) as well as GVL. However, those minor H antigens that are expressed predominantly on hematopoietic cells can be targeted for selective GVL. Once full donor hematopoietic chimerism is achieved after HCT, hematopoietic-restricted minor H antigens are present only on residual recipient malignant hematopoietic cells, and these minor H antigens serve as tumor-specific antigens for donor T cells. Minor H antigen-specific T cells that are delivered as part of the donor hematopoietic stem cell graft at the time of HCT contribute to relapse prevention. However, in some cases the minor H antigen-specific T cells delivered with the graft may be quantitatively insufficient or become functionally impaired over time, leading to leukemia relapse. Following HCT, adoptive T cell immunotherapy can be used to treat or prevent relapse by delivering large numbers of donor T cells targeting hematopoietic-restricted minor H antigens. In this review, we discuss minor H antigens as T cell targets for augmenting the GVL effect in engineered HCT grafts and for post-HCT immunotherapy. We will highlight the importance of these developments for pediatric HCT.
Collapse
Affiliation(s)
- Corinne Summers
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Vipul S Sheth
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
177
|
Yao S, Jianlin C, Yarong L, Botao L, Qinghan W, Hongliang F, Lu Z, Hongmei N, Pin W, Hu C, Liangding H, Bin Z. Donor-Derived CD123-Targeted CAR T Cell Serves as a RIC Regimen for Haploidentical Transplantation in a Patient With FUS-ERG+ AML. Front Oncol 2019; 9:1358. [PMID: 31850234 PMCID: PMC6901822 DOI: 10.3389/fonc.2019.01358] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/18/2019] [Indexed: 01/16/2023] Open
Abstract
Background: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) following chemotherapy is part of standard treatment protocol for patients with acute myeloid leukemia (AML). FUS-ERG+ AML is rare but has an extremely poor prognosis even with allo-HSCT in remission, possibly due to its a leukemia stem cell (LSC)-driven disease resulting in chemotherapy resistance and a novel therapy is urgently required. It has been reported that FUS-ERG-positive AML expresses CD123, a marker of LSC, in some cases. CD123-targeted CAR T cell (CART123) is promising immunotherapy, but how to improve the complete remission (CR) rate and rescue potential hematopoietic toxicity still need to explore. Case Presentation: We used donor-derived CART123 as part of conditioning regimen for haploidentical HSCT (haplo-HSCT) in a patient with FUS-ERG+ AML who relapsed after allogeneic transplantation within 3 months, resists to multi-agent chemotherapy and donor lymphocyte infusion (DLI) and remained non-remission, aiming to reduce these chemotherapy-resistant blasts and rescue potential hematopoietic toxicity. The blasts in BM were reduced within 2 weeks and coincided with CAR copies expansion after CART123 infusion. The patient achieved full donor chimerism, CR with incomplete blood count recovery, and myeloid implantation. Conclusion: Our results hints that CART123 reduces the chemotherapy-resistant AML blasts for FUS-ERG+ AML without affecting the full donor chimerism and myeloid implantation.
Collapse
Affiliation(s)
- Sun Yao
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Chen Jianlin
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Liu Yarong
- R&D Department, HRAIN Biotechnology Co., Ltd., Shanghai, China
| | - Li Botao
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Wang Qinghan
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Fang Hongliang
- R&D Department, HRAIN Biotechnology Co., Ltd., Shanghai, China
| | - Zhang Lu
- R&D Department, HRAIN Biotechnology Co., Ltd., Shanghai, China
| | - Ning Hongmei
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Wang Pin
- R&D Department, HRAIN Biotechnology Co., Ltd., Shanghai, China.,Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States.,Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, United States.,Department of Pharmaceutical Sciences and Pharmacology, University of Southern California, Los Angeles, CA, United States
| | - Chen Hu
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Therapy and Transformation Research, Department of Hematopoietic Stem Cell Transplantation, The Cell and Gene Therapy Center, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Hu Liangding
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Zhang Bin
- Beijing Key Laboratory of Hematopoietic Stem Cell Therapy and Transformation Research, Department of Hematopoietic Stem Cell Transplantation, The Cell and Gene Therapy Center, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| |
Collapse
|
178
|
Harrer DC, Dörrie J, Schaft N. CSPG4 as Target for CAR-T-Cell Therapy of Various Tumor Entities-Merits and Challenges. Int J Mol Sci 2019; 20:ijms20235942. [PMID: 31779130 PMCID: PMC6928974 DOI: 10.3390/ijms20235942] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 12/18/2022] Open
Abstract
Targeting cancer cells using chimeric-antigen-receptor (CAR-)T cells has propelled adoptive T-cell therapy (ATT) to the next level. A plentitude of durable complete responses using CD19-specific CAR-T cells in patients suffering from various lymphoid malignancies resulted in the approval by the food and drug administration (FDA) of CD19-directed CAR-T cells for the treatment of acute lymphoblastic leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL). A substantial portion of this success in hematological malignancies can be traced back to the beneficial properties of the target antigen CD19, which combines a universal presence on target cells with no detectable expression on indispensable host cells. Hence, to replicate response rates achieved in ALL and DLBCL in the realm of solid tumors, where ideal target antigens are scant and CAR-T cells are still lagging behind expectations, the quest for appropriate target antigens represents a crucial task to expedite the next steps in the evolution of CAR-T-cell therapy. In this review, we want to highlight the potential of chondroitin sulfate proteoglycan 4 (CSPG4) as a CAR-target antigen for a variety of different cancer entities. In particular, we discuss merits and challenges associated with CSPG4-CAR-T cells for the ATT of melanoma, leukemia, glioblastoma, and triple-negative breast cancer.
Collapse
|
179
|
Liu J, Zhang X, Zhong JF, Zhang C. Use of chimeric antigen receptor T cells in allogeneic hematopoietic stem cell transplantation. Immunotherapy 2019; 11:37-44. [PMID: 30702011 DOI: 10.2217/imt-2018-0089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The chimeric antigen receptor T (CAR-T) cells play an antileukemia role, and can be used to treat or prevent relapse by targeting minimal residual disease for patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, the infusion of allogeneic CAR-T cells may also cause graft-versus-host disease, which limited their applications during and after allo-HSCT. In this review, we discuss the clinical trials that applying CAR-T cells before allo-HSCT and the use of donor-derived CAR-T cells as conditioning regimen during allo-HSCT. At last, we analyzed the effect of donor-derived CAR-T cells on preventive infusion after allo-HSCT.
Collapse
Affiliation(s)
- Jun Liu
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Jiang F Zhong
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, & Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Cheng Zhang
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
180
|
Abstract
Chimeric antigen receptor (CAR) T-cell therapy for acute myeloid leukemia (AML) has thus far been elusive, in part owing to the absence of truly AML-specific surface antigens, making AML difficult to target. However, progress has been made toward the use of CAR T-cell therapy in this disease, prompting the topic of this paper. Discussion and clinical examples of potential solutions to creating a safe and effective CAR T cell for AML include: (1) Decreasing the potency or activity of CAR T cells to enhance the therapeutic window; (2) Using transient or depletable CAR T cells as part of pre-transplant conditioning; and (3) Using a gene-edited allogeneic donor hematopoietic stem cell transplant in order to allow safe and protracted anti-AML CAR T-cell function.
Collapse
Affiliation(s)
- Saar I Gill
- University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
181
|
Aranda F, Barajas M, Huarte E. Transgenic Tumor Models for Evaluating CAR T-Cell Immunotherapies. ACTA ACUST UNITED AC 2019; 86:e66. [PMID: 31539924 DOI: 10.1002/cpph.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy against tumor antigens involves a recombinant immunoreceptor that combines an antibody-derived targeting fragment with signaling domains capable of activating T cells and fusion of this receptor domain to a costimulatory domain (typically CD28 or 4-1BB). Clinical trials of CAR T-cell therapeutics targeting CD19 antigens for relapsed or refractory B-cell malignancies have shown unparalleled results and consequently have recently been approved by the U.S. Food and Drug Administration. However, the lack of efficacy beyond B-cell malignancies, the emergence of resistance to CAR T-cell therapy due to loss of the antigenic epitope, and severe cases of cytokine release syndrome and neurotoxicity necessitate further preclinical studies. As it is very complicated to develop a single animal model that would replicate the complexity of the clinical scenario, this article focuses on transgenic models used to study human tumor-associated antigens in an immunocompetent model. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Fernando Aranda
- Group of Immunoreceptors of the Innate and Adaptive System, Institute d'Investigacions Biomédiques August pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Miguel Barajas
- Biochemistry Area, Health Science Department, Faculty of Health Sciences, Public University of Navarra, Pamplona, Spain
| | | |
Collapse
|
182
|
Li D, Li X, Zhou WL, Huang Y, Liang X, Jiang L, Yang X, Sun J, Li Z, Han WD, Wang W. Genetically engineered T cells for cancer immunotherapy. Signal Transduct Target Ther 2019; 4:35. [PMID: 31637014 PMCID: PMC6799837 DOI: 10.1038/s41392-019-0070-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
T cells in the immune system protect the human body from infection by pathogens and clear mutant cells through specific recognition by T cell receptors (TCRs). Cancer immunotherapy, by relying on this basic recognition method, boosts the antitumor efficacy of T cells by unleashing the inhibition of immune checkpoints and expands adaptive immunity by facilitating the adoptive transfer of genetically engineered T cells. T cells genetically equipped with chimeric antigen receptors (CARs) or TCRs have shown remarkable effectiveness in treating some hematological malignancies, although the efficacy of engineered T cells in treating solid tumors is far from satisfactory. In this review, we summarize the development of genetically engineered T cells, outline the most recent studies investigating genetically engineered T cells for cancer immunotherapy, and discuss strategies for improving the performance of these T cells in fighting cancers.
Collapse
Affiliation(s)
- Dan Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Xue Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Wei-Lin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Xiao Liang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
- Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Lin Jiang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Xiao Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Jie Sun
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058 Zhejiang, China
- Institute of Hematology, Zhejiang University & Laboratory of Stem cell and Immunotherapy Engineering, 310058 Zhejing, China
| | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 200032 Shanghai, China
- CARsgen Therapeutics, 200032 Shanghai, China
| | - Wei-Dong Han
- Molecular & Immunological Department, Biotherapeutic Department, Chinese PLA General Hospital, No. 28 Fuxing Road, 100853 Beijing, China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| |
Collapse
|
183
|
CD123 as a Therapeutic Target in the Treatment of Hematological Malignancies. Cancers (Basel) 2019; 11:cancers11091358. [PMID: 31547472 PMCID: PMC6769702 DOI: 10.3390/cancers11091358] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
The interleukin-3 receptor alpha chain (IL-3Rα), more commonly referred to as CD123, is widely overexpressed in various hematological malignancies, including acute myeloid leukemia (AML), B-cell acute lymphoblastic leukemia, hairy cell leukemia, Hodgkin lymphoma and particularly, blastic plasmacytoid dendritic neoplasm (BPDCN). Importantly, CD123 is expressed at both the level of leukemic stem cells (LSCs) and more differentiated leukemic blasts, which makes CD123 an attractive therapeutic target. Various agents have been developed as drugs able to target CD123 on malignant leukemic cells and on the normal counterpart. Tagraxofusp (SL401, Stemline Therapeutics), a recombinant protein composed of a truncated diphtheria toxin payload fused to IL-3, was approved for use in patients with BPDCN in December of 2018 and showed some clinical activity in AML. Different monoclonal antibodies directed against CD123 are under evaluation as antileukemic drugs, showing promising results either for the treatment of AML minimal residual disease or of relapsing/refractory AML or BPDCN. Finally, recent studies are exploring T cell expressing CD123 chimeric antigen receptor-modified T-cells (CAR T) as a new immunotherapy for the treatment of refractory/relapsing AML and BPDCN. In December of 2018, MB-102 CD123 CAR T developed by Mustang Bio Inc. received the Orphan Drug Designation for the treatment of BPDCN. In conclusion, these recent studies strongly support CD123 as an important therapeutic target for the treatment of BPDCN, while a possible in the treatment of AML and other hematological malignancies will have to be evaluated by in the ongoing clinical studies.
Collapse
|
184
|
Donor-derived CAR-T Cells Serve as a Reduced-intensity Conditioning Regimen for Haploidentical Stem Cell Transplantation in Treatment of Relapsed/Refractory Acute Lymphoblastic Leukemia: Case Report and Review of the Literature. J Immunother 2019; 41:306-311. [PMID: 29864079 DOI: 10.1097/cji.0000000000000233] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Reduced-intensity conditioning (RIC) regimens with low tolerable toxicities have been used for allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, the relapse rate by this treatment is high. Treatment of CD19 B-cell relapsed/refractory acute lymphoblastic leukemia (r/r ALL) with allogeneic chimeric antigen receptor-modified T (CAR-T) cells is safe and effective. Use of allogeneic CD19-CAR-T cells as a part of RIC regimens for treatment of r/r ALL patients with haploidentical HSCT has not been investigated yet. CASE PRESENTATION A 12-year-old girl with CD19 r/r ALL underwent haploidentical HSCT. The patient received fludarabine, busulfan, and cyclophosphamide combined with haploidentical donor-derived CD19-CAR-T cells as the conditioning regimen. Granulocyte colony-stimulating factor-mobilized peripheral blood stem cells and granulocyte colony-stimulating factor-mobilized bone marrow were infused on days 1 and 2, respectively. Mycophenolate mofetil and tacrolimus were administered on day 1, antithymocyte globulin was administered on days +14 and +15, and a short course of methotrexate was administered to prevent graft-versus-host disease. The time of peak CAR-T cell proliferation was detected after the first infusion of CAR-T cells on day 7. The patient's engraftment and full-donor cell engraftment were established. The disease was in complete remission with minimal residual disease, which was undetectable by flow cytometry. No graft-versus-host disease or serious cytokine-release syndrome was found. CONCLUSIONS Treatment of r/r ALL with RIC including CD19-CAR-T cells followed by allo-HSCT was safe and effective, which suggest that CAR-T cells can be used as a part of RIC regimens in the treatment of r/r ALL in haploidentical HSCT.
Collapse
|
185
|
Sun S, Zou H, Li L, Liu Q, Ding N, Zeng L, Li H, Mao S. CD123/CD33 dual-antibody modified liposomes effectively target acute myeloid leukemia cells and reduce antigen-negative escape. Int J Pharm 2019; 568:118518. [DOI: 10.1016/j.ijpharm.2019.118518] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/30/2019] [Accepted: 07/11/2019] [Indexed: 12/29/2022]
|
186
|
Hansrivijit P, Gale RP, Barrett J, Ciurea SO. Cellular therapy for acute myeloid Leukemia – Current status and future prospects. Blood Rev 2019; 37:100578. [DOI: 10.1016/j.blre.2019.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/23/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022]
|
187
|
Abadir E, Gasiorowski RE, Lai K, Kupresanin F, Romano A, Silveira PA, Lo TH, Fromm PD, Kennerson ML, Iland HJ, Ho PJ, Hogarth PM, Bradstock K, Hart DNJ, Clark GJ. CD300f epitopes are specific targets for acute myeloid leukemia with monocytic differentiation. Mol Oncol 2019; 13:2107-2120. [PMID: 31338922 PMCID: PMC6763785 DOI: 10.1002/1878-0261.12549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/09/2019] [Accepted: 07/23/2019] [Indexed: 12/03/2022] Open
Abstract
Antibody‐based therapy in acute myeloid leukemia (AML) has been marred by significant hematologic toxicity due to targeting of both hematopoietic stem and progenitor cells (HSPCs). Achieving greater success with therapeutic antibodies requires careful characterization of the potential target molecules on AML. One potential target is CD300f, which is an immunoregulatory molecule expressed predominantly on myeloid lineage cells. To confirm the value of CD300f as a leukemic target, we showed that CD300f antibodies bind to AML from 85% of patient samples. While one CD300f monoclonal antibody (mAb) reportedly did not bind healthy hematopoietic stem cells, transcriptomic analysis found that CD300f transcripts are expressed by healthy HSPC. Several CD300f protein isoforms exist as a result of alternative splicing. Importantly for antibody targeting, the extracellular region of CD300f can be present with or without the exon 4‐encoded sequence. This results in CD300f isoforms that are differentially bound by CD300f‐specific antibodies. Furthermore, binding of one mAb, DCR‐2, to CD300f exposes a structural epitope recognized by a second CD300f mAb, UP‐D2. Detailed analysis of publicly available transcriptomic data indicated that CD34+HSPC expressed fewer CD300f transcripts that lacked exon 4 compared to AML with monocytic differentiation. Analysis of a small cohort of AML cells revealed that the UP‐D2 conformational binding site could be induced in cells from AML patients with monocytic differentiation but not those from other AML or HSPC. This provides the opportunity to develop an antibody‐based strategy to target AMLs with monocytic differentiation but not healthy CD34+HSPCs. This would be a major step forward in developing effective anti‐AML therapeutic antibodies with reduced hematologic toxicity.
Collapse
Affiliation(s)
- Edward Abadir
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia.,Sydney Medical School, University of Sydney, Australia
| | - Robin E Gasiorowski
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia.,Sydney Medical School, University of Sydney, Australia.,Department of Haematology, Concord Repatriation General Hospital, Sydney, Australia
| | - Kaitao Lai
- Sydney Medical School, University of Sydney, Australia.,ANZAC Research Institute, Sydney, Australia.,Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, Australia
| | - Fiona Kupresanin
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia
| | - Adelina Romano
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia
| | - Pablo A Silveira
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia.,Sydney Medical School, University of Sydney, Australia
| | - Tsun-Ho Lo
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia.,Sydney Medical School, University of Sydney, Australia
| | - Phillip D Fromm
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia.,Sydney Medical School, University of Sydney, Australia
| | - Marina L Kennerson
- Sydney Medical School, University of Sydney, Australia.,Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, Australia.,Molecular Medicine Laboratory, Concord Repatriation General Hospital, Sydney, Australia
| | - Harry J Iland
- Sydney Medical School, University of Sydney, Australia.,Institute of Haematology, Royal Prince Alfred Hospital, Sydney, Australia
| | - P Joy Ho
- Sydney Medical School, University of Sydney, Australia.,Institute of Haematology, Royal Prince Alfred Hospital, Sydney, Australia
| | - P Mark Hogarth
- Immune Therapies, Burnet Institute, Melbourne, Australia
| | | | - Derek N J Hart
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia.,Sydney Medical School, University of Sydney, Australia.,Institute of Haematology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Georgina J Clark
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia.,Sydney Medical School, University of Sydney, Australia
| |
Collapse
|
188
|
Han C, Kwon BS. Chimeric antigen receptor T-cell therapy for cancer: a basic research-oriented perspective. Immunotherapy 2019; 10:221-234. [PMID: 29370727 DOI: 10.2217/imt-2017-0133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells have outstanding therapeutic potential for treating blood cancers. The prospects for this technology have accelerated basic research, clinical translation and Big Pharma's investment in the field of T-cell therapeutics. This interest has led to the discovery of key factors that affect CAR T-cell efficacy and play pivotal roles in T-cell immunology. Herein, we introduce advances in adoptive immunotherapy and the birth of CAR T cells, and review CAR T-cell studies that focus on three important features: CAR constructs, target antigens and T-cell phenotypes. At last, we highlight novel strategies that overcome the tumor microenvironment and circumvent CAR T-cell side effects, and consider the future direction of CAR T-cell development.
Collapse
Affiliation(s)
- Chungyong Han
- Immunotherapeutics Branch, Division of Convergence Technology Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Byoung S Kwon
- Immunotherapeutics Branch, Division of Convergence Technology Research Institute, National Cancer Center, Goyang 10408, Korea.,Eutilex Co., Ltd, Suite #1401, Daeryung Technotown 17, Gasan digital 1-ro 25, Geumcheon-gu, Seoul 08594, Korea.,Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70118, USA
| |
Collapse
|
189
|
Marei HE, Althani A, Caceci T, Arriga R, Sconocchia T, Ottaviani A, Lanzilli G, Roselli M, Caratelli S, Cenciarelli C, Sconocchia G. Recent perspective on CAR and Fcγ-CR T cell immunotherapy for cancers: Preclinical evidence versus clinical outcomes. Biochem Pharmacol 2019; 166:335-346. [PMID: 31176617 DOI: 10.1016/j.bcp.2019.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
Abstract
The chimeric antigen receptor T cell (CAR-T cell) immunotherapy currently represents a hot research trend and it is expected to revolutionize the field of cancer therapy. Promising outcomes have been achieved using CAR-T cell therapy for haematological malignancies. Despite encouraging results, several challenges still pose eminent hurdles before being fully recognized. Directing CAR-T cells to target a single tumour associated antigen (TAA) as the case in haematological malignancies might be much simpler than targeting the extensive inhibitory microenvironments associated with solid tumours. This review focuses on the basic principles involved in development of CAR-T cells, emphasizing the differences between humoral IgG, T-cell receptors, CAR and Fcγ-CR constructs. It also highlights the complex inhibitory network that is usually associated with solid tumours, and tackles recent advances in the clinical studies that have provided great hope for the future use of CAR-T cell immunotherapy. While current Fcγ-CR T cell immunotherapy is in pre-clinical stage, is expected to provide a sound therapeutic approach to add to existing classical chemo- and radio-therapeutic modalities.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35116, Egypt.
| | - Asma Althani
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Thomas Caceci
- Biomedical Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Roberto Arriga
- Department of Systems Medicine, Endocrinology and Medical Oncology, University of Rome "Tor Vergata", Rome, Italy
| | - Tommaso Sconocchia
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | | | | | - Mario Roselli
- Department of Systems Medicine, Endocrinology and Medical Oncology, University of Rome "Tor Vergata", Rome, Italy
| | - Sara Caratelli
- Institute of Translational Pharmacology-CNR, Rome, Italy
| | | | | |
Collapse
|
190
|
Salman H, Pinz KG, Wada M, Shuai X, Yan LE, Petrov JC, Ma Y. Preclinical Targeting of Human Acute Myeloid Leukemia Using CD4-specific Chimeric Antigen Receptor (CAR) T Cells and NK Cells. J Cancer 2019; 10:4408-4419. [PMID: 31413761 PMCID: PMC6691696 DOI: 10.7150/jca.28952] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 05/12/2019] [Indexed: 02/05/2023] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy lacking targeted therapy due to shared molecular and transcriptional circuits as well as phenotypic markers with normal hematopoietic stem cells (HSCs). Identifying leukemia specific markers expressed on AML or AML subtypes for therapeutic targeting is of exquisite clinical value. Here we show that CD4, a T lymphocytes membrane glycoprotein that interacts with major histocompatibility complex class II antigens and is also expressed in certain AML subsets but not on HSCs is a proper target for genetically engineered chimeric antigen receptor T cells (CAR-T cells). Treatment with CD4 redirected CAR-T cell (CD4CAR) specifically eliminated CD4-expressing AML cell lines in vitro and exhibited a potent anti-leukemic effect in a systemic AML murine model in vivo. We also utilized natural killers as another vehicle for CAR engineered cells and this strategy similarly and robustly eliminated CD4- expressing AML cells in vitro and had a potent in vivo anti-leukemic effect and was noted to have shorter in vivo persistence. Our data offer a proof of concept for immunotherapeutic targeting of CD4 as a strategy to treat CD4 expressing refractory AML as a bridge to stem cell transplant (SCT) in a first in human clinical trial.
Collapse
Affiliation(s)
- Huda Salman
- Department of Internal Medicine, Stony Brook Medicine, Stony Brook University Medical Center, Stony Brook, NY 11794, USA
| | - Kevin G Pinz
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY 11790, USA
| | - Masayuki Wada
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY 11790, USA
| | - Xiao Shuai
- Department of Hematology, West China hospital of Sichuan University, Chengdu, P.R. China
| | - Lulu E Yan
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY 11790, USA
| | - Jessica C Petrov
- Department of Internal Medicine, Stony Brook Medicine, Stony Brook University Medical Center, Stony Brook, NY 11794, USA
| | - Yupo Ma
- Department of Internal Medicine, Stony Brook Medicine, Stony Brook University Medical Center, Stony Brook, NY 11794, USA.,iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY 11790, USA
| |
Collapse
|
191
|
High throughput development of TCR-mimic antibody that targets survivin-2B 80-88/HLA-A*A24 and its application in a bispecific T-cell engager. Sci Rep 2019; 9:9827. [PMID: 31285464 PMCID: PMC6614450 DOI: 10.1038/s41598-019-46198-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/21/2019] [Indexed: 12/31/2022] Open
Abstract
Intracellular tumor-associated antigens are targeted by antibodies known as T-cell receptor mimic antibodies (TCRm-Abs), which recognize T-cell epitopes with better stabilities and higher affinities than T-cell receptors. However, TCRm-Abs have been proven difficult to produce using conventional techniques. Here, we developed TCRm-Abs that recognize the survivin-2B-derived nonamer peptide, AYACNTSTL (SV2B80-88), presented on HLA-A*24 (SV2B80-88/HLA-A*24) from immunized mice by using a fluorescence-activated cell sorting-based antigen-specific plasma cells isolation method combined with a high-throughput single-cell-based immunoglobulin-gene-cloning technology. This approach yielded a remarkable efficiency in generating candidate antibody clones that recognize SV2B80-88/HLA-A*24. The screening of the antibody clones for their affinity and ability to bind key amino-acid residues within the target peptide revealed that one clone, #21-3, specifically recognized SV2B80-88/HLA-A*24 on T2 cells. The specificity of #21-3 was further established through survivin-2B-positive tumor cell lines that exogenously or endogenously express HLA-A*24. A bispecific T-cell engager comprised of #21-3 and anti-CD3 showed specific cytotoxicity towards cells bearing SV2B80-88/HLA-A*24 by recruiting and activating T-cells in vitro. The efficient development of TCRm-Ab overcomes the limitations that hamper antibody-based immunotherapeutic approaches and enables the targeting of intracellular tumor-associated antigens.
Collapse
|
192
|
Cummins KD, Gill S. Chimeric antigen receptor T-cell therapy for acute myeloid leukemia: how close to reality? Haematologica 2019; 104:1302-1308. [PMID: 31221785 PMCID: PMC6601074 DOI: 10.3324/haematol.2018.208751] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 03/26/2019] [Indexed: 12/04/2022] Open
Affiliation(s)
- Katherine D Cummins
- Division of Hematology-Oncology and Center for Cellular Immunotherapies, University of Pennsylvania, PA, USA
| | - Saar Gill
- Division of Hematology-Oncology and Center for Cellular Immunotherapies, University of Pennsylvania, PA, USA
| |
Collapse
|
193
|
Sun Y, Wang S, Zhao L, Zhang B, Chen H. IFN-γ and TNF-α aggravate endothelial damage caused by CD123-targeted CAR T cell. Onco Targets Ther 2019; 12:4907-4925. [PMID: 31417286 PMCID: PMC6600319 DOI: 10.2147/ott.s205678] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/13/2019] [Indexed: 01/08/2023] Open
Abstract
Background: CD123-targeted chimeric antigen receptor (CAR) T cell (CART123) for the treatment of acute myeloid leukemia (AML) and blastic plasmacytoid dendritic cell neoplasm has exhibited potential in clinical trials. However, capillary leakage syndrome, which is associated with endothelial cells damage, is under intensive focus in CART123 therapy. Purpose: The present study aimed to explore the change in CD123 in endothelial cells and the injury to endothelial cells caused by CART123. Methods: The expression of CD123 and cytotoxicity were assessed by flow cytometry. Cytokine release was assessed by ELISA. An in vitro co-culture model was designed to mimic the status, wherein CART123 was stimulated and cytokines were released. Results: In the current study, CART123 exhibited cytotoxicity and the effects of cytokine production on endothelium, and the upregulation of CD123 enhanced the cytotoxicity. The addition of interferon (IFN)-γ and tumor necrosis factor (TNF)-α neutralizing antibodies can effectively reverse the upregulation of CD123 on the endothelial cells caused by CART123, while the cytotoxicity of CART123 in AML cell lines was not affected in vitro. Second, we proved that CD123 expresses in CART123 and would be upregulated after activation, putatively causing an overactivated and fratricide effect. Conclusion: In summary, this study identified that the expression of CD123 on endothelial cells could be upregulated when co-cultured with CART123. Furthermore, IFN-γ and TNF-α could aggravate endothelial damage caused by CART123 in vitro.
Collapse
Affiliation(s)
- Yao Sun
- Academy of Military Medical Sciences , Beijing 100071, People's Republic of China.,Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), the Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing 100071, People's Republic of China.,Beijing Key Laboratory of Hematopoietic Stem Cell Therapy and Transformation Research , Beijing 100071, People's Republic of China
| | - Shenyu Wang
- Academy of Military Medical Sciences , Beijing 100071, People's Republic of China.,Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), the Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing 100071, People's Republic of China.,Beijing Key Laboratory of Hematopoietic Stem Cell Therapy and Transformation Research , Beijing 100071, People's Republic of China
| | - Long Zhao
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), the Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing 100071, People's Republic of China.,Beijing Key Laboratory of Hematopoietic Stem Cell Therapy and Transformation Research , Beijing 100071, People's Republic of China
| | - Bin Zhang
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), the Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing 100071, People's Republic of China.,Beijing Key Laboratory of Hematopoietic Stem Cell Therapy and Transformation Research , Beijing 100071, People's Republic of China
| | - Hu Chen
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), the Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing 100071, People's Republic of China.,Beijing Key Laboratory of Hematopoietic Stem Cell Therapy and Transformation Research , Beijing 100071, People's Republic of China
| |
Collapse
|
194
|
Wang H, Kaur G, Sankin AI, Chen F, Guan F, Zang X. Immune checkpoint blockade and CAR-T cell therapy in hematologic malignancies. J Hematol Oncol 2019; 12:59. [PMID: 31186046 PMCID: PMC6558778 DOI: 10.1186/s13045-019-0746-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/27/2019] [Indexed: 12/27/2022] Open
Abstract
Harnessing the power of the immune system to recognize and eliminate cancer cells is a longtime exploration. In the past decade, monoclonal antibody (mAb)-based immune checkpoint blockade (ICB) and chimeric antigen receptor T (CAR-T) cell therapy have proven to be safe and effective in hematologic malignancies. Despite the unprecedented success of ICB and CAR-T therapy, only a subset of patients can benefit partially due to immune dysfunction and lack of appropriate targets. Here, we review the preclinical and clinical advances of CTLA-4 and PD-L1/PD-1-based ICB and CD19-specific CAR-T cell therapy in hematologic malignancies. We also discuss the basic research and ongoing clinical trials on emerging immune checkpoints (Galectin-9/Tim-3, CD70/CD27, LAG-3, and LILRBs) and on new targets for CAR-T cell therapy (CD22, CD33, CD123, BCMA, CD38, and CD138) for the treatment of hematologic malignancies.
Collapse
Affiliation(s)
- Hao Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Gurbakhash Kaur
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Alexander I Sankin
- Department of Urology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Fuxiang Chen
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Urology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
195
|
Abstract
PURPOSE OF REVIEW Bispecific antibodies combine antigen recognition sites from two or more antibodies into a single construct allowing simultaneous binding to multiple targets. Bispecific antibodies exist which can redirect immune effector cells against acute myeloid leukemia (AML) targets. This review will highlight the progress to date and the challenges in developing bispecific antibodies for the treatment of AML. RECENT FINDINGS Currently, a number of bispecific antibody formats including bispecific T cell engagers, dual affinity retargeting proteins, and tandem diabodies are in clinical development for AML. These antibodies target antigens present on AML blasts, including CD33, and the low affinity IL3 receptor, CD123. T cell redirecting bispecific antibodies in early phase clinical trials for AML include AG330, flotetuzumab, JNJ-63709178, and AMV564. Bispecific antibodies represent a promising immunotherapeutic approach for the treatment of cancer. The results of ongoing studies in AML will elucidate the potential for these agents in AML.
Collapse
Affiliation(s)
- Daniel G Guy
- Division of Oncology, Washington University School of Medicine, 660 S. Euclid Ave, CB 8007, St. Louis, MO, 63110, USA
| | - Geoffrey L Uy
- Division of Oncology, Washington University School of Medicine, 660 S. Euclid Ave, CB 8007, St. Louis, MO, 63110, USA.
| |
Collapse
|
196
|
Abstract
Acute myeloid leukemia is a disease that lacks effective therapies, especially in postremission patients. Immunotherapies directed against a lineage-specific antigen (LSA), such as CD33 has demonstrated on-target effects on AML cells but is limited by toxicities because normal myeloid cells and hematopoietic progenitors also express CD33. Here we show that genetically ablating CD33 in human stem/progenitor cells, using Cas9/guide RNA mediated strategies, enables immunotherapy against leukemias using anti-CD33 CAR-T or antibody therapy. We model a postremission human marrow with minimal residual leukemic disease in mice and show effective clearance of acute myeloid leukemia and the reconstitution of the CD33-deleted human graft, enabling future clinical studies. This study presents an approach to treat myeloid leukemias and could be extended to other cancers and other antigens. Antigen-directed immunotherapies for acute myeloid leukemia (AML), such as chimeric antigen receptor T cells (CAR-Ts) or antibody-drug conjugates (ADCs), are associated with severe toxicities due to the lack of unique targetable antigens that can distinguish leukemic cells from normal myeloid cells or myeloid progenitors. Here, we present an approach to treat AML by targeting the lineage-specific myeloid antigen CD33. Our approach combines CD33-targeted CAR-T cells, or the ADC Gemtuzumab Ozogamicin with the transplantation of hematopoietic stem cells that have been engineered to ablate CD33 expression using genomic engineering methods. We show highly efficient genetic ablation of CD33 antigen using CRISPR/Cas9 technology in human stem/progenitor cells (HSPC) and provide evidence that the deletion of CD33 in HSPC doesn’t impair their ability to engraft and to repopulate a functional multilineage hematopoietic system in vivo. Whole-genome sequencing and RNA sequencing analysis revealed no detectable off-target mutagenesis and no loss of functional p53 pathways. Using a human AML cell line (HL-60), we modeled a postremission marrow with minimal residual disease and showed that the transplantation of CD33-ablated HSPCs with CD33-targeted immunotherapy leads to leukemia clearance, without myelosuppression, as demonstrated by the engraftment and recovery of multilineage descendants of CD33-ablated HSPCs. Our study thus contributes to the advancement of targeted immunotherapy and could be replicated in other malignancies.
Collapse
|
197
|
Stevens BM, Zhang W, Pollyea DA, Winters A, Gutman J, Smith C, Budde E, Forman SJ, Jordan CT, Purev E. CD123 CAR T cells for the treatment of myelodysplastic syndrome. Exp Hematol 2019; 74:52-63.e3. [PMID: 31136781 DOI: 10.1016/j.exphem.2019.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 01/27/2023]
Abstract
Myelodysplastic syndrome (MDS) is a group of heterogeneous disorders caused by ineffective hematopoiesis and characterized by bone marrow dysplasia and cytopenia. Current treatment options for MDS are limited to supportive care, hypomethylating agents, and stem cell transplant. Most patients eventually succumb to the disease or progress to leukemia. Previously, we found that CD123 can be used to delineate MDS stem cells in patients at high risk for MDS and that the CD123-positive population is biologically distinct from normal hematopoietic stem cells. Furthermore, selective targeting of MDS stem cells can dramatically reduce tumor burden in preclinical models. On the basis of these findings, we propose CD123 as a candidate target for chimeric antigen receptor (CAR) T-cell therapy in high-risk MDS patients. To test this concept, we employed a CAR lentiviral vector containing a CD123-specific single-chain variable fragment in combination with the CD28 costimulatory domain, CD3ζ signaling domain, and truncated estimated glomerular filtration rate. Utilizing this system, we illustrate that CD123 CAR can be expressed on both healthy donor and MDS patient-derived T lymphocytes with high efficiency, leading to the successful elimination of MDS stem cells both in vitro and in patient-derived xenografts. These results provide the concept for the use of CD123-targeted CAR T cells as a therapeutic option for patients with MDS.
Collapse
Affiliation(s)
- Brett M Stevens
- Division of Hematology, Department of Medicine, University of Colorado, Aurora, CO
| | - Wei Zhang
- Division of Hematology, Department of Medicine, University of Colorado, Aurora, CO
| | - Daniel A Pollyea
- Division of Hematology, Department of Medicine, University of Colorado, Aurora, CO
| | - Amanda Winters
- Department of Pediatrics, University of Colorado, Aurora, CO
| | - Jonathan Gutman
- Division of Hematology, Department of Medicine, University of Colorado, Aurora, CO
| | - Clayton Smith
- Division of Hematology, Department of Medicine, University of Colorado, Aurora, CO
| | - Elizabeth Budde
- Hematology and Hematopoietic Cell Transplantation, T Cell Immunotherapy Research Laboratory, Beckman Research Institute at City of Hope National Medical Center, Duarte, CA
| | - Stephen J Forman
- Hematology and Hematopoietic Cell Transplantation, T Cell Immunotherapy Research Laboratory, Beckman Research Institute at City of Hope National Medical Center, Duarte, CA
| | - Craig T Jordan
- Division of Hematology, Department of Medicine, University of Colorado, Aurora, CO
| | - Enkhtsetseg Purev
- Division of Hematology, Department of Medicine, University of Colorado, Aurora, CO.
| |
Collapse
|
198
|
Simon B, Harrer DC, Schuler-Thurner B, Schuler G, Uslu U. Arming T Cells with a gp100-Specific TCR and a CSPG4-Specific CAR Using Combined DNA- and RNA-Based Receptor Transfer. Cancers (Basel) 2019; 11:cancers11050696. [PMID: 31137488 PMCID: PMC6562862 DOI: 10.3390/cancers11050696] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/08/2019] [Accepted: 05/16/2019] [Indexed: 02/08/2023] Open
Abstract
Tumor cells can develop immune escape mechanisms to bypass T cell recognition, e.g., antigen loss or downregulation of the antigen presenting machinery, which represents a major challenge in adoptive T cell therapy. To counteract these mechanisms, we transferred not only one, but two receptors into the same T cell to generate T cells expressing two additional receptors (TETARs). We generated these TETARs by lentiviral transduction of a gp100-specific T cell receptor (TCR) and subsequent electroporation of mRNA encoding a second-generation CSPG4-specific chimeric antigen receptor (CAR). Following pilot experiments to optimize the combined DNA- and RNA-based receptor transfer, the functionality of TETARs was compared to T cells either transfected with the TCR only or the CAR only. After transfection, TETARs clearly expressed both introduced receptors on their cell surface. When stimulated with tumor cells expressing either one of the antigens or both, TETARs were able to secrete cytokines and showed cytotoxicity. The confirmation that two antigen-specific receptors can be functionally combined using two different methods to introduce each receptor into the same T cell opens new possibilities and opportunities in cancer immunotherapy. For further evaluation, the use of these TETARs in appropriate animal models will be the next step towards a potential clinical use in cancer patients.
Collapse
Affiliation(s)
- Bianca Simon
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany.
| | - Dennis C Harrer
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
| | - Beatrice Schuler-Thurner
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
| | - Gerold Schuler
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
| | - Ugur Uslu
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
| |
Collapse
|
199
|
Oberschmidt O, Morgan M, Huppert V, Kessler J, Gardlowski T, Matthies N, Aleksandrova K, Arseniev L, Schambach A, Koehl U, Kloess S. Development of Automated Separation, Expansion, and Quality Control Protocols for Clinical-Scale Manufacturing of Primary Human NK Cells and Alpharetroviral Chimeric Antigen Receptor Engineering. Hum Gene Ther Methods 2019; 30:102-120. [PMID: 30997855 PMCID: PMC6590729 DOI: 10.1089/hgtb.2019.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In cellular immunotherapies, natural killer (NK) cells often demonstrate potent antitumor effects in high-risk cancer patients. But Good Manufacturing Practice (GMP)-compliant manufacturing of clinical-grade NK cells in high numbers for patient treatment is still a challenge. Therefore, new protocols for isolation and expansion of NK cells are required. In order to attack resistant tumor entities, NK cell killing can be improved by genetic engineering using alpharetroviral vectors that encode for chimeric antigen receptors (CARs). The aim of this work was to demonstrate GMP-grade manufacturing of NK cells using the CliniMACS® Prodigy device (Prodigy) with implemented applicable quality controls. Additionally, the study aimed to define the best time point to transduce expanding NK cells with alpharetroviral CAR vectors. Manufacturing and clinical-scale expansion of primary human NK cells were performed with the Prodigy starting with 8-15.0 × 109 leukocytes (including 1.1–2.3 × 109 NK cells) collected by small-scale lymphapheresis (n = 3). Positive fraction after immunoselection, in-process controls (IPCs), and end product were quantified by flow cytometric no-wash, single-platform assessment, and gating strategy using positive (CD56/CD16/CD45), negative (CD14/CD19/CD3), and dead cell (7-aminoactinomycine [7-AAD]) discriminators. The three runs on the fully integrated manufacturing platform included immunomagnetic separation (CD3 depletion/CD56 enrichment) followed by NK cell expansion over 14 days. This process led to high NK cell purities (median 99.1%) and adequate NK cell viabilities (median 86.9%) and achieved a median CD3+ cell depletion of log −3.6 after CD3 depletion and log −3.7 after immunomagnetic CD3 depletion and consecutive CD56 selection. Subsequent cultivation of separated NK cells in the CentriCult® chamber of Prodigy resulted in approximately 4.2–8.5-fold NK cell expansion rates by adding of NK MACS® basal medium containing NK MACS® supplement, interleukin (IL)-2/IL-15 and initial IL-21. NK cells expanded for 14 days revealed higher expression of natural cytotoxicity receptors (NKp30, NKp44, NKp46, and NKG2D) and degranulation/apoptotic markers and stronger cytolytic properties against K562 compared to non-activated NK cells before automated cultivation. Moreover, expanded NK cells had robust growth and killing activities even after cryopreservation. As a crucial result, it was possible to determine the appropriate time period for optimal CAR transduction of cultivated NK cells between days 8 and 14, with the highest anti-CD123 CAR expression levels on day 14. The anti-CD123 CAR NK cells showed retargeted killing and degranulation properties against CD123-expressing KG1a target cells, while basal cytotoxicity of non-transduced NK cells was determined using the CD123-negative cell line K562. Time-lapse imaging to monitor redirected effector-to-target contacts between anti-CD123 CAR NK and KG1a showed long-term effector–target interaction. In conclusion, the integration of the clinical-scale expansion procedure in the automated and closed Prodigy system, including IPC samples and quality controls and optimal time frames for NK cell transduction with CAR vectors, was established on 48-well plates and resulted in a standardized GMP-compliant overall process.
Collapse
Affiliation(s)
- Olaf Oberschmidt
- 1 Institute for Cellular Therapeutics, ATMP-GMP Development Unit, Hannover Medical School, Hannover, Germany
| | - Michael Morgan
- 2 Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,3 REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | | | | | - Tanja Gardlowski
- 6 Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Nadine Matthies
- 1 Institute for Cellular Therapeutics, ATMP-GMP Development Unit, Hannover Medical School, Hannover, Germany
| | - Krasimira Aleksandrova
- 7 Institute for Cellular Therapeutics, Cellular Therapy Centre, Hannover Medical School, Hannover, Germany
| | - Lubomir Arseniev
- 7 Institute for Cellular Therapeutics, Cellular Therapy Centre, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- 2 Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,3 REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,8 Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ulrike Koehl
- 1 Institute for Cellular Therapeutics, ATMP-GMP Development Unit, Hannover Medical School, Hannover, Germany.,6 Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.,9 Institute of Clinical Immunology, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Stephan Kloess
- 1 Institute for Cellular Therapeutics, ATMP-GMP Development Unit, Hannover Medical School, Hannover, Germany.,6 Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
200
|
Leick MB, Maus MV. CAR-T cells beyond CD19, UnCAR-Ted territory. Am J Hematol 2019; 94:S34-S41. [PMID: 30632631 DOI: 10.1002/ajh.25398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/27/2018] [Accepted: 01/08/2019] [Indexed: 01/30/2023]
Abstract
CAR-T cells have made dramatic inroads in targeting CD19-positive B-cell malignancies. This review focuses on application of CAR-T cells in hematologic malignancies beyond targeting CD19, with specific attention to Hodgkin's lymphoma and acute myeloid leukemia.
Collapse
Affiliation(s)
- Mark B. Leick
- Cellular Immunotherapy ProgramCancer Center, Massachusetts General Hospital Boston Massachusetts
- Harvard Medical School Boston Massachusetts
| | - Marcela V. Maus
- Cellular Immunotherapy ProgramCancer Center, Massachusetts General Hospital Boston Massachusetts
- Harvard Medical School Boston Massachusetts
| |
Collapse
|