151
|
Tateishi Y, Ozeki Y, Nishiyama A, Miki M, Maekura R, Fukushima Y, Nakajima C, Suzuki Y, Matsumoto S. Comparative genomic analysis of Mycobacterium intracellulare: implications for clinical taxonomic classification in pulmonary Mycobacterium avium-intracellulare complex disease. BMC Microbiol 2021; 21:103. [PMID: 33823816 PMCID: PMC8025370 DOI: 10.1186/s12866-021-02163-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/18/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Mycobacterium intracellulare is a representative etiological agent of emerging pulmonary M. avium-intracellulare complex disease in the industrialized countries worldwide. The recent genome sequencing of clinical strains isolated from pulmonary M. avium-intracellulare complex disease has provided insight into the genomic characteristics of pathogenic mycobacteria, especially for M. avium; however, the genomic characteristics of M. intracellulare remain to be elucidated. RESULTS In this study, we performed comparative genomic analysis of 55 M. intracellulare and related strains such as M. paraintracellulare (MP), M. indicus pranii (MIP) and M. yonogonense. Based on the average nucleotide identity, the clinical M. intracellulare strains were phylogenetically grouped in two clusters: (1) the typical M. intracellulare (TMI) group, including ATCC13950 and virulent M.i.27 and M.i.198 that we previously reported, and (2) the MP-MIP group. The alignment of the genomic regions was mostly preserved between groups. Plasmids were identified between groups and subgroups, including a plasmid common among some strains of the M.i.27 subgroup. Several genomic regions including those encoding factors involved in lipid metabolism (e.g., fadE3, fadE33), transporters (e.g., mce3), and type VII secretion system (genes of ESX-2 system) were shown to be hypermutated in the clinical strains. M. intracellulare was shown to be pan-genomic at the species and subspecies levels. The mce genes were specific to particular subspecies, suggesting that these genes may be helpful in discriminating virulence phenotypes between subspecies. CONCLUSIONS Our data suggest that genomic diversity among M. intracellulare, M. paraintracellulare, M. indicus pranii and M. yonogonense remains at the subspecies or genovar levels and does not reach the species level. Genetic components such as mce genes revealed by the comparative genomic analysis could be the novel focus for further insight into the mechanism of human pathogenesis for M. intracellulare and related strains.
Collapse
Affiliation(s)
- Yoshitaka Tateishi
- Department of Bacteriology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| | - Yuriko Ozeki
- Department of Bacteriology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Akihito Nishiyama
- Department of Bacteriology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Mari Miki
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Ryoji Maekura
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
- Graduate School of Health Care Sciences, Jikei Institute, Osaka, Japan
| | - Yukari Fukushima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Laboratory of Tuberculosis, Institute of Tropical Disease, Universitas Airlangga, Kampus C Jl. Mulyorejo, Surabaya, Indonesia
| |
Collapse
|
152
|
Non tuberculous mycobacteria pulmonary disease: patients and clinicians working together to improve the evidence base for care. Int J Infect Dis 2021; 113 Suppl 1:S73-S77. [PMID: 33781905 DOI: 10.1016/j.ijid.2021.03.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/24/2022] Open
Abstract
Non-tuberculous mycobacterial pulmonary disease is on the rise globally. It is often missed, and causes significant morbidity and even mortality. Here, members of a clinical research network and a patient support group discuss some of the current key issues in NTM management. In addition to the need for research into epidemiology, immunology and treatment, we recommend greater use of patient and clinician networks to: (i) educate primary and secondary care clinicians to develop a high index of suspicion when investigating and treating at risk populations. (ii) promote a multidisciplinary team. (iii) promote shared patient-clinician decision making throughout care. (iv) incorporate use of patient self-report measures to assess progress and outcomes. (v) increase education of patients on their illness and its management. (vi) recruit patients into research projects and registries to improve the clinical evidence base. (vii) increase co-production of research with key stakeholders such as patients and their families, using expert patients and patient groups. (viii) understand more about the psychological, social and economic consequences of the disease.
Collapse
|
153
|
Chen S, Teng T, Zhang Z, Shang Y, Xiao H, Jiang G, Wang F, Jia J, Dong L, Zhao L, Chu N, Huang H. Carbonyl Cyanide 3-Chlorophenylhydrazone (CCCP) Exhibits Direct Antibacterial Activity Against Mycobacterium abscessus. Infect Drug Resist 2021; 14:1199-1208. [PMID: 33790590 PMCID: PMC8001050 DOI: 10.2147/idr.s303113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/03/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Treatment choices for Mycobacterium abscessus (M. abscessus) infections are very limited, and the prognosis is generally poor. Effective new antibiotics or repurposing existing antibiotics against M. abscessus infection are urgently needed. Carbonyl cyanide 3-chlorophenylhydrazone (CCCP), a member of the lipophilic weak acid class, is known as an efflux pump inhibitor for Mycobacterium tuberculosis. The aim of this study was to determine the inhibitory activity of CCCP as a potential novel antibiotic against M. abscessus. Methods A total of 47 reference strains of different mycobacterial species and 60 clinical isolates of M. abscessus were enrolled. In vitro inhibitory activity of CCCP was accessed using microplates alamar blue method with the reference and clinical isolates. The activity of CCCP against intracellular M. abscessus residing within macrophage was also evaluated by intracellular colony numerating assay. Results CCCP exhibited good activity against M. abscessus clinical isolates in vitro, the minimum inhibitory concentration (MIC) ranged from 0.47 μg/mL to 3.75 μg/mL, with a MIC50 of 1.875 μg/mL and MIC90 of 3.75 μg/mL. At concentrations safe for the cells, CCCP exhibited highly intracellular bactericidal activities against M. abscessus and M. massiliense reference strains, with inhibitory rates of 84.8%±8.8% and 72.5%±13.7%, respectively. CCCP demonstrated bactericidal activity against intracellular M. abscessus that was comparable to clarithromycin, and concentration-dependent antimicrobial activity against M. abscessus in macrophages was observed. In addition, CCCP also exhibited good activities against most reference strains of rapidly growing mycobacterial species. Conclusion CCCP could be a potential candidate of novel antimicrobiological agent to treat M. abscessus infection.
Collapse
Affiliation(s)
- Suting Chen
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People's Republic of China
| | - Tianlu Teng
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People's Republic of China.,Department of Tuberculosis; Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People's Republic of China
| | - Zhuman Zhang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People's Republic of China
| | - Yuanyuan Shang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People's Republic of China.,Department of Tuberculosis; Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People's Republic of China
| | - Hua Xiao
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People's Republic of China
| | - Guanglu Jiang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People's Republic of China
| | - Fen Wang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People's Republic of China
| | - Junnan Jia
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People's Republic of China
| | - Lingling Dong
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People's Republic of China
| | - Liping Zhao
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People's Republic of China
| | - Naihui Chu
- Department of Tuberculosis; Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People's Republic of China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People's Republic of China
| |
Collapse
|
154
|
The Benzimidazole SPR719 Shows Promising Concentration-Dependent Activity and Synergy against Nontuberculous Mycobacteria. Antimicrob Agents Chemother 2021; 65:AAC.02469-20. [PMID: 33468478 DOI: 10.1128/aac.02469-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/12/2021] [Indexed: 01/05/2023] Open
Abstract
Nontuberculous mycobacterial pulmonary disease (NTM-PD) is emerging worldwide. Currently recommended multidrug treatment regimens yield poor outcomes, and new drugs and regimens are direly needed. SPR719, the active moiety of SPR720, is a new benzimidazole antibiotic with limited data on antimycobacterial activity. We determined MICs and MBCs against 138 clinical and reference strains of M. avium complex (MAC), M. kansasii, M. abscessus, M. xenopi, M. malmoense, and M. simiae and determined synergy with antimycobacterial drugs by checkerboard titrations. To study pharmacodynamics, we performed time-kill kinetics assays of SPR719 alone and in combinations against M. avium, M. kansasii, and M. abscessus and assessed synergy by response surface analysis according to Bliss independence. SPR719 showed potent activity against MAC (MIC90, 2 mg/liter) and M. kansasii (MIC90, 0.125 mg/liter) and modest activity against M. abscessus (MIC90, 8 mg/liter); its activity is bacteriostatic and concentration-dependent. We recorded a potential for combination therapy with ethambutol against M. kansasii and M. avium and synergy with clarithromycin against M. abscessus Ethambutol increased the SPR719 kill rate against M. kansasii but only prevented SPR719 resistance in M. avium SPR719 is active in vitro against NTM; its activity is strongest against M. kansasii, followed by MAC and M. abscessus SPR719 shows promise for combination therapy with ethambutol against MAC and M. kansasii and synergy with clarithromycin against M. abscessus The parent drug SPR720 could have a role especially in MAC pulmonary disease treatment. Further studies in dynamic models and trials are ongoing to advance clinical development.
Collapse
|
155
|
Alffenaar JW, Märtson AG, Heysell SK, Cho JG, Patanwala A, Burch G, Kim HY, Sturkenboom MGG, Byrne A, Marriott D, Sandaradura I, Tiberi S, Sintchencko V, Srivastava S, Peloquin CA. Therapeutic Drug Monitoring in Non-Tuberculosis Mycobacteria Infections. Clin Pharmacokinet 2021; 60:711-725. [PMID: 33751415 PMCID: PMC8195771 DOI: 10.1007/s40262-021-01000-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2021] [Indexed: 12/19/2022]
Abstract
Nontuberculous mycobacteria can cause minimally symptomatic self-limiting infections to progressive and life-threatening disease of multiple organs. Several factors such as increased testing and prevalence have made this an emerging infectious disease. Multiple guidelines have been published to guide therapy, which remains difficult owing to the complexity of therapy, the potential for acquired resistance, the toxicity of treatment, and a high treatment failure rate. Given the long duration of therapy, complex multi-drug treatment regimens, and the risk of drug toxicity, therapeutic drug monitoring is an excellent method to optimize treatment. However, currently, there is little available guidance on therapeutic drug monitoring for this condition. The aim of this review is to provide information on the pharmacokinetic/pharmacodynamic targets for individual drugs used in the treatment of nontuberculous mycobacteria disease. Lacking data from randomized controlled trials, in vitro, in vivo, and clinical data were aggregated to facilitate recommendations for therapeutic drug monitoring to improve efficacy and reduce toxicity.
Collapse
Affiliation(s)
- Jan-Willem Alffenaar
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia. .,Westmead Hospital, Westmead, NSW, Australia. .,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia. .,Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Jin-Gun Cho
- Westmead Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Respiratory and Sleep Medicine, Westmead Hospital, Westmead, NSW, Australia.,Parramatta Chest Clinic, Parramatta, NSW, Australia
| | - Asad Patanwala
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia.,Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Gina Burch
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Hannah Y Kim
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia.,Westmead Hospital, Westmead, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Marieke G G Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anthony Byrne
- St. Vincent's Hospital Sydney, Heart Lung Clinic, Sydney, NSW, Australia
| | - Debbie Marriott
- Department of Microbiology and Infectious Diseases, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Indy Sandaradura
- Westmead Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Westmead Hospital, Sydney, NSW, Australia
| | - Simon Tiberi
- Division of Infection, Barts Health NHS Trust, Royal London Hospital, London, UK.,Centre for Primary Care and Public Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - Vitali Sintchencko
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia.,NSW Mycobacterium Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Westmead Hospital, Wentworthville, NSW, Australia.,Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW, Australia.,Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Westmead, NSW, Australia
| | - Shashikant Srivastava
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Pulmonary Immunology, UT Health Science Center at Tyler, Tyler, TX, USA
| | - Charles A Peloquin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
156
|
Suzuki T, Saitou M, Igarashi Y, Mitarai S, Niitsuma K. Isolation of Mycobacterium talmoniae from a patient with diffuse panbronchiolitis: a case report. BMC Infect Dis 2021; 21:251. [PMID: 33691626 PMCID: PMC7945688 DOI: 10.1186/s12879-021-05944-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 03/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycobacterium (M) talmoniae isolated from a patient with cystic fibrosis was first described in 2017, and cases of M. talmoniae remain exceedingly rare. CASE PRESENTATION A 51-year-old woman had respiratory symptoms for 10 years. Diffuse panbronchiolitis (DPB) was detected at the first visit at our hospital. A cavity lesion in the apex of the left lung was found, and sputum and bronchoalveolar lavage fluid were acid-fast bacillus (AFB) smear- and culture-positive besides Pseudomonas aeruginosa. M. talmoniae was finally identified, and the standard combination therapy for non-tuberculous mycobacteria (NTM) was administered for 2 y referring to the drug-susceptibility test. Thereafter, the AFB culture was negative, the wall thickness of the lung cavity was ameliorated, and oxygen saturation improved. CONCLUSIONS We encountered a rare case of M. talmoniae with DPB, for which standard combination therapy was effective. M. talmoniae may be considered a potential pathogen of lung disease, especially in patients with bronchiectatic lesions.
Collapse
Affiliation(s)
- Tomoko Suzuki
- Department of Infectious Disease and Pulmonary Medicine, Aizu Medical Center, Fukushima Medical University, 21-2 Maeda, Tanisawa, Kawahigashimachi, Aizuwakamatsu, Fukushima, 969-3492, Japan.
| | - Miwako Saitou
- Department of Infectious Disease and Pulmonary Medicine, Aizu Medical Center, Fukushima Medical University, 21-2 Maeda, Tanisawa, Kawahigashimachi, Aizuwakamatsu, Fukushima, 969-3492, Japan
| | - Yuriko Igarashi
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-tuberculosis Association, Tokyo, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-tuberculosis Association, Tokyo, Japan
| | - Katsunao Niitsuma
- Department of Infectious Disease and Pulmonary Medicine, Aizu Medical Center, Fukushima Medical University, 21-2 Maeda, Tanisawa, Kawahigashimachi, Aizuwakamatsu, Fukushima, 969-3492, Japan
| |
Collapse
|
157
|
Guo Q, Wei J, Zou W, Li Q, Qian X, Zhu Z. Antimicrobial susceptibility profiles of Mycobacterium abscessus complex isolates from respiratory specimens in Shanghai, China. J Glob Antimicrob Resist 2021; 25:72-76. [PMID: 33689828 DOI: 10.1016/j.jgar.2021.02.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/27/2021] [Accepted: 02/21/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES The aim of this study was to compare the antibiotic susceptibility profiles of Mycobacterium abscessus complex (MABC) isolates and to investigate the relationship between susceptibility profiles and genetic mechanisms of macrolide resistance. METHODS More than 200 isolates collected from respiratory specimens between 2014 and 2018 were randomly analysed in this study. Minimum inhibitory concentrations (Mics) of ten potential antimicrobial agents were determined by the microplate alamarBlue assay. RESULTS We identified 43 MABC isolates, including 32 M. abscessus subsp. abscessus (M. abscessus) (6 from immunocompromised patients) and 11 M. abscessus subsp. massiliense (M. massiliense). The majority of MABC isolates were susceptible to amikacin (96.9% and 100.0% for M. abscessus and M. massiliense, respectively), linezolid (96.9% and 100.0%, respectively), cefoxitin (100.0% and 100.0%, respectively), imipenem (90.6% and 72.7%, respectively) and tobramycin (90.6% and 72.7%, respectively). The resistance rates to clarithromycin and doxycycline in isolates of M. abscessus (68.8% and 100.0%) were significantly higher than those in isolates of M. massiliense (18.2% and 63.6%) (P < 0.05), whereas the percentage of tobramycin-resistant isolates among M. abscessus (9.4%) was significantly lower than among M. massiliense (27.3%) (P = 0.007). Sequencing analyses showed significant differences between erm(41) of M. abscessus and M. massiliense. CONCLUSION Mycobacterium abscessus is the dominant pathogen of pulmonary MABC infections in our hospital. Aminoglycosides (amikacin and tobramycin), β-lactams (cefoxitin and imipenem) and linezolid exhibited potent inhibitory activity against MABC in vitro. The erm(41) gene may be a promising marker to predict macrolide susceptibility for M. abscessus.
Collapse
Affiliation(s)
- Qian Guo
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, People's Republic of China; Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Jianhao Wei
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, People's Republic of China
| | - Wenda Zou
- Department of Reproductive Medicine Center, The Affiliated Zhuzhou Hospital, Xiang Ya Medical College, Central South University (CSU), Zhuzhou 412007, People's Republic of China
| | - Qiongxian Li
- Department of Clinical Laboratory, Nanhua County Center for Disease Control and Prevention, Chuxiong, Yunnan 675200, People's Republic of China
| | - Xueqin Qian
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, People's Republic of China
| | - Zhaoqin Zhu
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, People's Republic of China.
| |
Collapse
|
158
|
Fernandes AL, Ferro A, dos Santos J, Seabra B. A rare cause of secondary organising pneumonia. BMJ Case Rep 2021; 14:14/3/e241737. [PMID: 33674302 PMCID: PMC7938981 DOI: 10.1136/bcr-2021-241737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Non-tuberculous mycobacterial pulmonary disease may have different clinical manifestations. We report a case of a 64-year-old woman presenting with persistent respiratory complaints, fever and radiological findings. Initially, she was diagnosed with community-acquired pneumonia, but after being submitted to an extensive investigation, including CT-guided transthoracic lung biopsy, a diagnosis of organising pneumonia (OP) was established. The patient was treated with corticosteroids with no favourable response. Subsequently, Mycobacterium avium complex (MAC) was identified in bronchoalveolar lavage culture. The patient was diagnosed with OP secondary to MAC infection and specific antibiotic treatment was initiated. This case represents an infrequent association and illustrates how important it is to investigate primary causes of OP to obtain a satisfactory treatment response.
Collapse
Affiliation(s)
| | - Ana Ferro
- Internal Medicine Department, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Joana dos Santos
- Pathology Department, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Bárbara Seabra
- Pulmonology Department, Hospital Pedro Hispano, Matosinhos, Portugal,Outpatient Clinic for Tuberculosis and Nontuberculous Mycobacteria, Matosinhos, Portugal
| |
Collapse
|
159
|
Kim HJ, Kim IS, Lee SG, Kim YJ, Silwal P, Kim JY, Kim JK, Seo W, Chung C, Cho HK, Huh HJ, Shim SC, Park C, Jhun BW, Jo EK. MiR-144-3p is associated with pathological inflammation in patients infected with Mycobacteroides abscessus. Exp Mol Med 2021; 53:136-149. [PMID: 33473145 PMCID: PMC8080579 DOI: 10.1038/s12276-020-00552-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 01/29/2023] Open
Abstract
Infection with rapidly growing nontuberculous mycobacteria is emerging as a global health issue; however, key host factors remain elusive. Here, we investigated the characteristic immune profiles of peripheral blood mononuclear cells (PBMCs) from patients infected with Mycobacteroides abscessus subsp. abscessus (Mabc) and M. abscessus subsp. massiliense (Mmass). Using an integrated analysis of global mRNA and microRNA expression profiles, we found that several inflammatory cytokines/chemokines [interleukin (IL)-1β, IL-6, C-X-C motif chemokine ligand 2, and C-C motif chemokine ligand 2] and miR-144-3p were significantly upregulated in PBMCs from patients compared with those from healthy controls (HCs). Notably, there was a strong correlation between the expression levels of miR-144-3p and proinflammatory cytokines/chemokines. Similarly, upregulated expression of miR-144-3p and proinflammatory cytokines/chemokines was found in macrophages and lungs from mice after infection with Mabc and Mmass. We showed that the expression of negative regulators of inflammation (SARM1 and TNIP3) was significantly downregulated in PBMCs from the patients, although they were not putative targets of miR-144-3p. Furthermore, overexpression of miR-144-3p led to a marked increase in proinflammatory cytokines/chemokines and promoted bacterial growth in macrophages. Together, our results highlight the importance of miR-144-3p linking to pathological inflammation during M. abscessus infection.
Collapse
Affiliation(s)
- Hyeon Ji Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - In Soo Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Sung-Gwon Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Ji Young Kim
- Division of Rheumatology, Regional Rheumatoid & Degenerative Arthritis Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Wonhyoung Seo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Chaeuk Chung
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Hyun Kyu Cho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Seung Cheol Shim
- Division of Rheumatology, Regional Rheumatoid & Degenerative Arthritis Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Korea.
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Korea.
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Korea.
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea.
| |
Collapse
|
160
|
Mortality in rheumatoid arthritis patients with pulmonary nontuberculous mycobacterial disease: A retrospective cohort study. PLoS One 2020; 15:e0243110. [PMID: 33264361 PMCID: PMC7710034 DOI: 10.1371/journal.pone.0243110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/15/2020] [Indexed: 11/19/2022] Open
Abstract
Objective The aim of this study was to compare long-term mortality following diagnosis of pulmonary nontuberculous mycobacterial (NTM) disease between patients with and without rheumatoid arthritis (RA) and to evaluate predictive factors for death outcomes. Methods We reviewed the electronic medical records of all patients who were newly diagnosed with pulmonary NTM disease at participating institutions between August 2009 and December 2018. Patients were followed until death, loss to follow-up, or the end of the study. Taking into consideration the presence of competing risks, we used the cumulative incidence function with Gray’s test and Fine-Gray regression analysis for survival analysis. Results A total of 225 patients (34 RA patients and 191 non-RA controls) were followed, with a mean time of 47.5 months. Death occurred in 35.3% of RA patients and 25.7% of non-RA patients. An exacerbation of pulmonary NTM disease represented the major cause of death. The estimated cumulative incidence of all-cause death at 5 years was 24% for RA patients and 23% for non-RA patients. For NTM-related death, the 5-year cumulative incidence rate was estimated to be 11% for RA patients and 18% for non-RA patients. Gray’s test revealed that long-term mortality estimates were not significantly different between patient groups. Fine-Gray regression analysis showed that the predictive factors for NTM-related death were advanced age (adjusted hazards ratio 7.28 [95% confidence interval 2.91–18.20] for ≥80 years and 3.68 [1.46–9.26] for 70–80 years vs. <70 years), male sex (2.40 [1.29–4.45]), Mycobacterium abscessus complex (4.30 [1.46–12.69] vs. M. avium), and cavitary disease (4.08 [1.70–9.80]). Conclusions RA patients with pulmonary NTM disease were not at greater risk of long-term mortality compared with non-RA patients. Rather, advanced age, male sex, causative NTM species, and cavitary NTM disease should be considered when predicting the outcomes of RA patients with pulmonary NTM disease.
Collapse
|
161
|
Schuurbiers MMF, Bruno M, Zweijpfenning SMH, Magis-Escurra C, Boeree M, Netea MG, van Ingen J, van de Veerdonk F, Hoefsloot W. Immune defects in patients with pulmonary Mycobacterium abscessus disease without cystic fibrosis. ERJ Open Res 2020; 6:00590-2020. [PMID: 33263065 PMCID: PMC7682720 DOI: 10.1183/23120541.00590-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
The prevalence of Mycobacterium abscessus infections in non-cystic fibrosis (CF) patients has increased in recent years. In this study, we investigate whether immune defects explain the apparent susceptibility to this opportunistic infection in non-CF patients. We performed stimulations of peripheral blood mononuclear cells and whole blood from 13 patients with M. abscessus pulmonary disease and 13 healthy controls to investigate their cytokine production after 24 h and 7 days. Patients were predominantly women (54%) with a mean age of 59 years; 62% had nodular bronchiectatic disease. Many patients had predisposing pulmonary diseases, such as COPD (46%), and asthma (23%). Patients with COPD showed an impaired interleukin (IL)-6 response to M. abscessus and a reduced IL-17 response to Candida, together with a M. abscessus-specific enhanced IL-22 production. Patients without COPD showed higher levels of interleukin-1 receptor antagonist (IL-1Ra), an anti-inflammatory molecule. Within the non-COPD patients, those with bronchiectasis showed defective interferon (IFN)-γ production in response to Candida albicans. In conclusion, susceptibility to M. abscessus is likely determined by a combination of immunological defects and predisposing pulmonary disease. The main defect in the innate immune response was a shift of the ratio of IL-1β to IL-1Ra, which decreased the bioactivity of this pathway in the adaptive immune response. In the adaptive immune response there was defective IL-17 and IFN-γ production. Patients with COPD and bronchiectasis showed different cytokine defects. It is therefore crucial to interpret the immunological results within the clinical background of the patients tested. Measurement of defects in both the innate and adaptive immune responses in patients with M. abscessus pulmonary disease show that susceptibility to M. abscessus is determined by a combination of immunological defects and predisposing pulmonary diseasehttps://bit.ly/2DtbycY
Collapse
Affiliation(s)
- Milou M F Schuurbiers
- Radboud University Medical Centre, University Centre of Chronic Diseases Dekkerswald, Dept of Pulmonary Diseases, Nijmegen, The Netherlands.,These authors contributed equally
| | - Mariolina Bruno
- Dept of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,These authors contributed equally
| | - Sanne M H Zweijpfenning
- Radboud University Medical Centre, University Centre of Chronic Diseases Dekkerswald, Dept of Pulmonary Diseases, Nijmegen, The Netherlands.,These authors contributed equally
| | - Cecile Magis-Escurra
- Radboud University Medical Centre, University Centre of Chronic Diseases Dekkerswald, Dept of Pulmonary Diseases, Nijmegen, The Netherlands
| | - Martin Boeree
- Radboud University Medical Centre, University Centre of Chronic Diseases Dekkerswald, Dept of Pulmonary Diseases, Nijmegen, The Netherlands
| | - Mihai G Netea
- Dept of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Dept for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Jakko van Ingen
- Radboud University Medical Centre, Dept of Medical Microbiology, Nijmegen, The Netherlands
| | - Frank van de Veerdonk
- Dept of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wouter Hoefsloot
- Radboud University Medical Centre, University Centre of Chronic Diseases Dekkerswald, Dept of Pulmonary Diseases, Nijmegen, The Netherlands
| |
Collapse
|
162
|
Rifabutin Is Bactericidal against Intracellular and Extracellular Forms of Mycobacterium abscessus. Antimicrob Agents Chemother 2020; 64:AAC.00363-20. [PMID: 32816730 DOI: 10.1128/aac.00363-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/03/2020] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium abscessus is increasingly recognized as an emerging opportunistic pathogen causing severe lung diseases. As it is intrinsically resistant to most conventional antibiotics, there is an unmet medical need for effective treatments. Repurposing of clinically validated pharmaceuticals represents an attractive option for the development of chemotherapeutic alternatives against M. abscessus infections. In this context, rifabutin (RFB) has been shown to be active against M. abscessus and has raised renewed interest in using rifamycins for the treatment of M. abscessus pulmonary diseases. Here, we compared the in vitro and in vivo activity of RFB against the smooth and rough variants of M. abscessus, differing in their susceptibility profiles to several drugs and physiopathologial characteristics. While the activity of RFB is greater against rough strains than in smooth strains in vitro, suggesting a role of the glycopeptidolipid layer in susceptibility to RFB, both variants were equally susceptible to RFB inside human macrophages. RFB treatment also led to a reduction in the number and size of intracellular and extracellular mycobacterial cords. Furthermore, RFB was highly effective in a zebrafish model of infection and protected the infected larvae from M. abscessus-induced killing. This was corroborated by a significant reduction in the overall bacterial burden, as well as decreased numbers of abscesses and cords, two major pathophysiological traits in infected zebrafish. This study indicates that RFB is active against M. abscessus both in vitro and in vivo, further supporting its potential usefulness as part of combination regimens targeting this difficult-to-treat mycobacterium.
Collapse
|
163
|
Bruno M, Zweijpfenning SMH, Verhoeven J, Boeree MJ, Netea MG, van de Veerdonk FL, van Ingen J, Hoefsloot W. Subtle immunodeficiencies in nodular-bronchiectatic Mycobacterium avium complex lung disease. ERJ Open Res 2020; 6:00548-2020. [PMID: 33123562 PMCID: PMC7569207 DOI: 10.1183/23120541.00548-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 11/05/2022] Open
Abstract
Patients with nodular-bronchiectatic MAC lung disease have dysregulated adaptive immunity with defective IL-17 and IFN-γ production, and IL-10 overproduction. This suggests a role for adjunctive immunomodulatory treatments. https://bit.ly/33AALwx.
Collapse
Affiliation(s)
- Mariolina Bruno
- Dept of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sanne M H Zweijpfenning
- Radboudumc Center for Infectious Diseases, Dept of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeske Verhoeven
- Radboudumc Center for Infectious Diseases, Dept of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin J Boeree
- Radboudumc Center for Infectious Diseases, Dept of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Dept of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Dept for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Frank L van de Veerdonk
- Dept of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jakko van Ingen
- Radboudumc Center for Infectious Diseases, Dept of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wouter Hoefsloot
- Radboudumc Center for Infectious Diseases, Dept of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
164
|
Zhou L, Xu D, Liu H, Wan K, Wang R, Yang Z. Trends in the Prevalence and Antibiotic Resistance of Non-tuberculous Mycobacteria in Mainland China, 2000-2019: Systematic Review and Meta-Analysis. Front Public Health 2020; 8:295. [PMID: 32850570 PMCID: PMC7399041 DOI: 10.3389/fpubh.2020.00295] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Background: China is a high-burden country of tuberculosis. The proportion of diseases caused by non-tuberculous mycobacteria (NTM) has increased, seriously affecting the prevention, control, and management of tuberculosis (TB) and posing a significant threat to human health. However, there is a lack of an organized monitoring system for NTM such as that used for tuberculosis. Comprehensive data on patient susceptibility, dominant species, and drug resistance profiles are needed to improve the treatment protocols and the management of NTM. Methods: Primary research reports of NTM clinical specimens from mainland China published between January 1, 2000 and May 31, 2019 were retrieved from four online resources (BIOSIS, Embase, PubMed, and Web of Science) and three Chinese medical literature databases (CNKI, Wanfang, and Vip) as the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Results: In total, 339 publications were included in the systematic review, 129 were used in the drug susceptibility analysis, and 95 were used in the meta-analysis. Traditional culture using Lowenstein-Jensen slants combined with P-nitrobenzene acid and thiophene-2-carboxylic acid hydrazine differential medium and proportional method was most commonly used for the isolation, identification, and drug susceptibility testing of NTM in China. The crude isolation rate for NTM among TB suspected cases was 4.66-5.78%, while the proportion of NTM among Mycobacterium isolates was 11.57%. Mycobacterium abscessus and Mycobacterium avium complex were the most common clinical NTM species. NTM only showed general sensitivity to ethambutol, linezolid, clofazimine, amikacin, tobramycin, and clarithromycin. Conclusions: The prevalence of NTM in China has shown a decreasing trend. M. abscessus was replaced as the dominant species by Mycobacterium intracellulare over the course of the study. The geographic diversity of different species showed the effects of environmental and economic factors on the distribution of NTM and indicated that there were important factors still not identified. While there were only a limited number of antibiotics to which NTM showed any sensitivity, the drug resistance profiles of the isolates were highly variable and thus more caution should be taken when empirically treating NTM infection.
Collapse
Affiliation(s)
- Lei Zhou
- College of Pharmacy, Guizhou University, Guiyang, China.,State Key Laboratory for Infectious Disease Prevention and Control, Chinese Centre for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Da Xu
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Centre for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China.,Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Hancan Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Centre for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China.,Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Kanglin Wan
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Centre for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China.,Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Ruibai Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Centre for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China.,Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Zaichang Yang
- College of Pharmacy, Guizhou University, Guiyang, China
| |
Collapse
|
165
|
AR-12 Exhibits Direct and Host-Targeted Antibacterial Activity toward Mycobacterium abscessus. Antimicrob Agents Chemother 2020; 64:AAC.00236-20. [PMID: 32482678 PMCID: PMC7526805 DOI: 10.1128/aac.00236-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
Therapeutic options for Mycobacterium abscessus infections are extremely limited. New or repurposed drugs are needed. The anti-M. abscessus activity of AR-12 (OSU-03012), reported to express broad-spectrum antimicrobial effects, was investigated in vitro and in vivo Antimicrobial susceptibility testing was performed on 194 clinical isolates. Minimum bactericidal concentration and time-kill kinetics assays were conducted to distinguish the bactericidal versus bacteriostatic activity of AR-12. Synergy between AR-12 and five clinically important antibiotics was determined using a checkerboard synergy assay. The activity of AR-12 against intracellular M. abscessus residing within macrophage was also evaluated. Finally, the potency of AR-12 in vivo was determined in a neutropenic mouse model that mimics pulmonary M. abscessus infection. AR-12 exhibited high anti-M. abscessus activity in vitro, with an MIC50 of 4 mg/liter (8.7 μM) and an MIC90 of 8 mg/liter (17.4 μM) for both subsp. abscessus and subsp. massiliense AR-12 and amikacin exhibited comparable bactericidal activity against extracellular M. abscessus in culture. AR-12, however, exhibited significantly greater intracellular antibacterial activity than amikacin and caused a significant reduction in the bacterial load in the lungs of neutropenic mice infected with M. abscessus No antagonism between AR-12 and clarithromycin, amikacin, imipenem, cefoxitin, or tigecycline was evident. In conclusion, AR-12 is active against M. abscessus in vitro and in vivo and does not antagonize the most frequently used anti-M. abscessus drugs. As such, AR-12 is a potential candidate to include in novel strategies to treat M. abscessus infections.
Collapse
|
166
|
Non-Tuberculous Mycobacteria in Respiratory Specimens of Patients with Obstructive Lung Diseases-Colonization or Disease? Antibiotics (Basel) 2020; 9:antibiotics9070424. [PMID: 32698511 PMCID: PMC7399882 DOI: 10.3390/antibiotics9070424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/23/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) are increasingly a cause of human respiratory tract colonization and mycobacterial lung disease (NTM-LD), especially in patients with chronic lung diseases. The aim of the present study was to find the factors predictive of NTM-LD in patients with obstructive lung diseases and NTM respiratory isolates. A total of 839 isolates of NTM, obtained from 161 patients between 2010 and 2020 in a single pulmonary unit, have been retrospectively reviewed. Of these isolates, 73 concerned 36 patients with obstructive lung diseases (COPD-26, asthma-3, COPD/asthma overlap syndrome-7). NTM-LD was recognized according to the American Thoracic Society (ATS) and the Infectious Diseases Society of America (IDSA) criteria in 17 patients, colonization in 19. Lower BMI, elevated body temperature on admission, infiltrative/cavitary lesions on chest CT, and NTM species other than Mycobacterium gordonae were the significant predictors of NTM-LD recognition. Based on the above-mentioned predictive factors, an original scoring system was implemented. The diagnostic utility of the scoring system was higher than that of single parameters. We conclude that NTM-LD prediction in patients with obstructive lung diseases and positive respiratory isolates is difficult. A scoring system based on clinical, radiological and microbiological characteristics was capable of facilitating the differential diagnosis, but it needs further validation in a larger study group.
Collapse
|
167
|
Chalmers JD, Laska IF, Franssen FME, Janssens W, Pavord I, Rigau D, McDonnell MJ, Roche N, Sin DD, Stolz D, Suissa S, Wedzicha J, Miravitlles M. Withdrawal of inhaled corticosteroids in COPD: a European Respiratory Society guideline. Eur Respir J 2020; 55:13993003.00351-2020. [PMID: 32366483 DOI: 10.1183/13993003.00351-2020] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
Inhaled corticosteroids (ICS) combined with bronchodilators can reduce the frequency of exacerbations in some patients with chronic obstructive pulmonary disease (COPD). There is evidence, however, that ICS are frequently used in patients where their benefit has not been established. Therefore, there is a need for a personalised approach to the use of ICS in COPD and to consider withdrawal of ICS in patients without a clear indication. This document reports European Respiratory Society recommendations regarding ICS withdrawal in patients with COPD.Comprehensive evidence synthesis was performed to summarise all available evidence relevant to the question: should ICS be withdrawn in patients with COPD? The evidence was appraised using the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) approach and the results were summarised in evidence profiles. The evidence synthesis was discussed and recommendations formulated by a committee with expertise in COPD and guideline methodology.After considering the balance of desirable and undesirable consequences, quality of evidence, and feasibility and acceptability of interventions, the guideline panel made: 1) conditional recommendation for the withdrawal of ICS in patients with COPD without a history of frequent exacerbations, 2) strong recommendation not to withdraw ICS in patients with blood eosinophil counts ≥300 eosinophils·µL-1 and 3) strong recommendation to treat with one or two long-acting bronchodilators if ICS are withdrawn.A conditional recommendation indicates that there was uncertainty about the balance of desirable and undesirable consequences of the intervention, and that well-informed patients may make different choices regarding whether to have or not have the specific intervention.
Collapse
Affiliation(s)
- James D Chalmers
- School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK.,Task Force co-chairs.,These three authors contributed equally to the development of this guideline
| | - Irena F Laska
- School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK.,These three authors contributed equally to the development of this guideline
| | - Frits M E Franssen
- Dept of Respiratory Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,Dept of Research and Education, CIRO, Horn, The Netherlands
| | - Wim Janssens
- Clinical Dept of Respiratory Diseases, UZ Leuven and Breathe, Dept CHROMETA, KU Leuven, Leuven, Belgium
| | - Ian Pavord
- Oxford NIHR Respiratory BRC, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - David Rigau
- Iberoamerican Cochrane Center, Barcelona, Spain
| | | | - Nicolas Roche
- Respiratory Medicine, Cochin Hospital, AP-HP Centre University of Paris, Cochin Institute (UMR1016), Paris, France
| | - Don D Sin
- Centre for Heart Lung Innovation, St Paul's Hospital and Respiratory Division, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Daiana Stolz
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital, Basel, Switzerland
| | - Samy Suissa
- Centre for Clinical Epidemiology, Jewish General Hospital and Dept of Epidemiology and Biostatistics, McGill University, Montreal, QC, Canada
| | - Jadwiga Wedzicha
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Marc Miravitlles
- Pneumology Dept, Hospital Universitari Vall d'Hebron/Vall d'Hebron Research Institute, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain .,Task Force co-chairs.,These three authors contributed equally to the development of this guideline
| |
Collapse
|
168
|
|
169
|
The Peroxisome Proliferator-Activated Receptor α- Agonist Gemfibrozil Promotes Defense Against Mycobacterium abscessus Infections. Cells 2020; 9:cells9030648. [PMID: 32155958 PMCID: PMC7140404 DOI: 10.3390/cells9030648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARα) shows promising potential to enhance host defenses against Mycobacterium tuberculosis infection. Herein we evaluated the protective effect of PPARα against nontuberculous mycobacterial (NTM) infections. Using a rapidly growing NTM species, Mycobacterium abscessus (Mabc), we found that the intracellular bacterial load and histopathological damage were increased in PPARα-null mice in vivo. In addition, PPARα deficiency led to excessive production of proinflammatory cytokines and chemokines after infection of the lung and macrophages. Notably, administration of gemfibrozil (GEM), a PPARα activator, significantly reduced the in vivo Mabc load and inflammatory response in mice. Transcription factor EB was required for the antimicrobial response against Mabc infection. Collectively, these results suggest that manipulation of PPARα activation has promising potential as a therapeutic strategy for NTM disease.
Collapse
|
170
|
Assessment of Clofazimine and TB47 Combination Activity against Mycobacterium abscessus Using a Bioluminescent Approach. Antimicrob Agents Chemother 2020; 64:AAC.01881-19. [PMID: 31843996 DOI: 10.1128/aac.01881-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/10/2019] [Indexed: 01/02/2023] Open
Abstract
Mycobacterium abscessus is intrinsically resistant to most antimicrobial agents. The emerging infections caused by M. abscessus and the lack of effective treatment call for rapid attention. Here, we intended to construct a selectable marker-free autoluminescent M. abscessus strain (designated UAlMab) as a real-time reporter strain to facilitate the discovery of effective drugs and regimens for treating M. abscessus The UAlMab strain was constructed using the dif/Xer recombinase system. In vitro and in vivo activities of several drugs, including clofazimine and TB47, a recently reported cytochrome bc 1 inhibitor, were assessed using UAlMab. Furthermore, the efficacy of multiple drug combinations, including the clofazimine and TB47 combination, were tested against 20 clinical M. abscessus isolates. The UAlMab strain enabled us to evaluate drug efficacy both in vitro and in live BALB/c mice in a real-time, noninvasive fashion. Importantly, although TB47 showed marginal activity either alone or in combination with clarithromycin, amikacin, or roxithromycin, the drug markedly potentiated the activity of clofazimine, both in vitro and in vivo This study demonstrates that the use of the UAlMab strain can significantly facilitate rapid evaluation of new drugs and regimens. The clofazimine and TB47 combination is effective against M. abscessus, and dual/triple electron transport chain (ETC) targeting can be an effective therapeutic approach for treating mycobacterial infections.
Collapse
|
171
|
Guo Q, Chen J, Zhang S, Zou Y, Zhang Y, Huang D, Zhang Z, Li B, Chu H. Efflux Pumps Contribute to Intrinsic Clarithromycin Resistance in Clinical, Mycobacterium abscessus Isolates. Infect Drug Resist 2020; 13:447-454. [PMID: 32104016 PMCID: PMC7024787 DOI: 10.2147/idr.s239850] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/01/2020] [Indexed: 12/27/2022] Open
Abstract
Purpose The emergence of clarithromycin resistance is a challenge in treating Mycobacterium abscessus infections. Known mechanisms that contribute to intrinsic clarithromycin resistance focus on rrl gene-related mutations, but resistant clinical isolates often exhibit an inconsistent rrl genotype. Patients and Methods In this study, 194 clinical Mycobacterium abscessus isolates were collected from patients with lung infections and the whole genome of each isolate was sequenced. A comprehensive examination of the molecular mechanisms underlying intrinsic clarithromycin resistance was performed, combining MIC determination, comparative genome sequence analysis and qRT-PCR. Results Of the 194 isolates, 13 (6.7%) were clarithromycin resistant; only seven of these harbored a rrl 2270/2271 mutation. The remaining six resistant isolates did not exhibit a specific resistance-associated mutation in the clarithromycin target-site genes, rrl, rplC, rplD and rplV, or in the rrl modification gene erm(41). qRT-PCR analysis showed that the increased expression of the efflux pump genes, MAB_2355c, MAB_1409c and MAB_1846, as well as their positive regulatory gene whiB7, consistently correlated with increased clarithromycin resistance. The presence of efflux pump inhibitors significantly decreased the MIC of clarithromycin for nonsusceptible isolates, especially the intrinsic resistant isolates that exhibited no rrl 2270/2271 mutation. Conclusion These findings indicate that efflux pumps play a prominent role in the intrinsic resistance of M. abscessus to clarithromycin, complementing other known resistance mechanisms.
Collapse
Affiliation(s)
- Qi Guo
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Tongji University School of Medicine, Shanghai 200092, People's Republic of China
| | - Jianhui Chen
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Tongji University School of Medicine, Shanghai 200092, People's Republic of China
| | - Shaoyan Zhang
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Yuzhen Zou
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Tongji University School of Medicine, Shanghai 200092, People's Republic of China
| | - Yongjie Zhang
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Tongji University School of Medicine, Shanghai 200092, People's Republic of China
| | - Dongdong Huang
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Zhemin Zhang
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Bing Li
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Haiqing Chu
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| |
Collapse
|
172
|
Dissecting erm(41)-Mediated Macrolide-Inducible Resistance in Mycobacterium abscessus. Antimicrob Agents Chemother 2020; 64:AAC.01879-19. [PMID: 31791943 DOI: 10.1128/aac.01879-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022] Open
Abstract
Macrolides are the cornerstone of Mycobacterium abscessus multidrug therapy, despite that most patients respond poorly to this class of antibiotics due to the inducible resistance phenotype that occurs during drug treatment. This mechanism is driven by the macrolide-inducible ribosomal methylase encoded by erm(41), whose expression is activated by the transcriptional regulator WhiB7. However, it has been debated whether clarithromycin and azithromycin differ in the extent to which they induce erm(41)-mediated macrolide resistance. Herein, we show that macrolide resistance is induced more rapidly in various M. abscessus isolates upon exposure to azithromycin than to clarithromycin, based on MIC determination. Macrolide-induced expression of erm(41) was assessed in vivo using a strain carrying tdTomato placed under the control of the erm(41) promoter. Visualization of fluorescent bacilli in infected zebrafish demonstrates that azithromycin and clarithromycin activate erm(41) expression in vivo That azithromycin induces a more rapid expression of erm(41) was confirmed by measuring the β-galactosidase activity of a reporter strain in which lacZ was placed under the control of the erm(41) promoter. Shortening the promoter region in the lacZ reporter plasmid identified DNA elements involved in the regulation of erm(41) expression, particularly an AT-rich motif sharing partial conservation with the WhiB7-binding site. Mutation of this motif abrogated the macrolide-induced and WhiB7-dependent expression of erm(41). This study provides new mechanistic information on the adaptive response to macrolide treatment in M. abscessus.
Collapse
|
173
|
Chalmers JD, Reeves EL, Bullen NJ, Kolb M. The evolution of the European Respiratory Journal: ready for the new decade! Eur Respir J 2020; 55:55/1/1902503. [PMID: 31974124 DOI: 10.1183/13993003.02503-2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 11/05/2022]
Affiliation(s)
- James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Elin L Reeves
- European Respiratory Society, Publications Office, Sheffield, UK
| | - Neil J Bullen
- European Respiratory Society, Publications Office, Sheffield, UK
| | - Martin Kolb
- Dept of Respiratory Medicine, Pathology and Molecular Medicine, McMaster University and St Joseph's Healthcare, Hamilton, ON, Canada
| |
Collapse
|
174
|
Loebinger MR, Birring SS. Patient reported outcomes for non-tuberculous mycobacterial disease. Eur Respir J 2020; 55:55/1/1902204. [DOI: 10.1183/13993003.02204-2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 11/05/2022]
|
175
|
Bento CM, Gomes MS, Silva T. Looking beyond Typical Treatments for Atypical Mycobacteria. Antibiotics (Basel) 2020; 9:antibiotics9010018. [PMID: 31947883 PMCID: PMC7168257 DOI: 10.3390/antibiotics9010018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022] Open
Abstract
The genus Mycobacterium comprises not only the deadliest of bacterial pathogens, Mycobacterium tuberculosis, but several other pathogenic species, including M. avium and M. abscessus. The incidence of infections caused by atypical or nontuberculous mycobacteria (NTM) has been steadily increasing, and is associated with a panoply of diseases, including pulmonary, soft-tissue, or disseminated infections. The treatment for NTM disease is particularly challenging, due to its long duration, to variability in bacterial susceptibility profiles, and to the lack of evidence-based guidelines. Treatment usually consists of a combination of at least three drugs taken from months to years, often leading to severe secondary effects and a high chance of relapse. Therefore, new treatment approaches are clearly needed. In this review, we identify the main limitations of current treatments and discuss different alternatives that have been put forward in recent years, with an emphasis on less conventional therapeutics, such as antimicrobial peptides, bacteriophages, iron chelators, or host-directed therapies. We also review new forms of the use of old drugs, including the repurposing of non-antibacterial molecules and the incorporation of antimicrobials into ionic liquids. We aim to stimulate advancements in testing these therapies in relevant models, in order to provide clinicians and patients with useful new tools with which to treat these devastating diseases.
Collapse
Affiliation(s)
- Clara M. Bento
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.M.B.); (T.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria Salomé Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.M.B.); (T.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence:
| | - Tânia Silva
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.M.B.); (T.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
176
|
Kim HY, Sintchenko V, Alffenaar JW. Nontuberculosis mycobacteria infections: would there be pharmacodynamics without pharmacokinetics? Eur Respir J 2019; 54:54/5/1901508. [PMID: 31780456 DOI: 10.1183/13993003.01508-2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Hannah Yejin Kim
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Westmead Hospital, Sydney, Australia
| | - Vitali Sintchenko
- Sydney Medical School, The University of Sydney, Sydney, Australia.,Centenary Institute, The University of Sydney, Sydney, Australia.,Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Sydney, Australia
| | - Jan-Willem Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Westmead Hospital, Sydney, Australia
| |
Collapse
|
177
|
Atti del 52° Congresso Nazionale: Società Italiana di Igiene, Medicina Preventiva e Sanità Pubblica (SItI). JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2019; 60:E1-E384. [PMID: 31777763 PMCID: PMC6865078 DOI: 10.15167/2421-4248/jpmh2019.60.3s1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|