151
|
Abstract
Inflammasomes are responsible for the maturation of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-18, and IL-33 and activation of inflammatory cell death, pyroptosis. They assemble in response to cellular infection and stress or to tissue damage, promote inflammatory reactions, and are important in regulating innate immunity particularly by acting as platforms for activation of caspase proteases. They appear to be involved in several pathological processes activated by microbes including Alzheimer's disease (AD). Best characterized in microbial pathogenesis is the nucleotide-binding domain and leucine-rich repeat (NLR)-protein 3 (NLRP3) inflammasome. AD is a neurodegenerative condition in which the neuropathological hallmarks are the deposition of amyloid-β (Aβ) and hyperphosphorylated tau protein coated neurofibrillary tangles. For decades, the role of the innate immune system in the etiology of AD was considered less important, but the recently discovered inflammatory genes by genome-wide association studies driving inflammation in this disease has changed this view. Innate immune inflammatory activity in the AD brain can result from the pathological hallmark protein Aβ as well as from specific bacterial infections that tend to possess weak immunostimulatory responses for peripheral blood myeloid cell recruitment to the brain. The weak immunostimulatory activity is a consequence of their immune evasion strategies and survival. In this review we discuss the possibility that inflammasomes, particularly via the NLR family of proteins NLRP3 are involved in the pathogenesis of AD. In addition, we discuss the plausible contribution of specific bacteria playing a role in influencing the activity of the NLRP3 inflammasome to AD progression.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Sim K Singhrao
- Oral & Dental Sciences Research Group, College of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|
152
|
Qiao Y, Wu M, Feng Y, Zhou Z, Chen L, Chen F. Alterations of oral microbiota distinguish children with autism spectrum disorders from healthy controls. Sci Rep 2018; 8:1597. [PMID: 29371629 PMCID: PMC5785483 DOI: 10.1038/s41598-018-19982-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 01/10/2018] [Indexed: 02/06/2023] Open
Abstract
Altered gut microbiota is associated with autism spectrum disorders (ASD), a group of complex, fast growing but difficult-to-diagnose neurodevelopmental disorders worldwide. However, the role of the oral microbiota in ASD remains unexplored. Via high-throughput sequencing of 111 oral samples in 32 children with ASD and 27 healthy controls, we demonstrated that the salivary and dental microbiota of ASD patients were highly distinct from those of healthy individuals. Lower bacterial diversity was observed in ASD children compared to controls, especially in dental samples. Also, principal coordinate analysis revealed divergences between ASD patients and controls. Moreover, pathogens such as Haemophilus in saliva and Streptococcus in plaques showed significantly higher abundance in ASD patients, whereas commensals such as Prevotella, Selenomonas, Actinomyces, Porphyromonas, and Fusobacterium were reduced. Specifically, an overt depletion of Prevotellaceae co-occurrence network in ASD patients was obtained in dental plaques. The distinguishable bacteria were also correlated with clinical indices, reflecting disease severity and the oral health status (i.e. dental caries). Finally, diagnostic models based on key microbes were constructed, with 96.3% accuracy in saliva. Taken together, this study characterized the habitat-specific profile of the oral microbiota in ASD patients, which might help develop novel strategies for the diagnosis of ASD.
Collapse
Affiliation(s)
- Yanan Qiao
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Mingtao Wu
- Department of Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Yanhuizhi Feng
- Department of Periodontics School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Zhichong Zhou
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Lei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Fengshan Chen
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China.
| |
Collapse
|
153
|
Scannapieco FA, Cantos A. Oral inflammation and infection, and chronic medical diseases: implications for the elderly. Periodontol 2000 2018; 72:153-75. [PMID: 27501498 DOI: 10.1111/prd.12129] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2015] [Indexed: 12/12/2022]
Abstract
Oral diseases, such as caries and periodontitis, not only have local effects on the dentition and on tooth-supporting tissues but also may impact a number of systemic conditions. Emerging evidence suggests that poor oral health influences the initiation and/or progression of diseases such as atherosclerosis (with sequelae including myocardial infarction and stoke), diabetes mellitus and neurodegenerative diseases (such as Alzheimer's disease, rheumatoid arthritis and others). Aspiration of oropharyngeal (including periodontal) bacteria causes pneumonia, especially in hospitalized patients and the elderly, and may influence the course of chronic obstructive pulmonary disease. This article addresses several pertinent aspects related to the medical implications of periodontal disease in the elderly. There is moderate evidence that improved oral hygiene may help prevent aspiration pneumonia in high-risk patients. For other medical conditions, because of the absence of well-designed randomized clinical trials in elderly patients, no specific guidance can be provided regarding oral hygiene or periodontal interventions that enhance the medical management of older adults.
Collapse
|
154
|
Feres M, Teles F, Teles R, Figueiredo LC, Faveri M. The subgingival periodontal microbiota of the aging mouth. Periodontol 2000 2018; 72:30-53. [PMID: 27501490 DOI: 10.1111/prd.12136] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2015] [Indexed: 12/18/2022]
Abstract
Different mechanisms have been hypothesized to explain the increase in prevalence and severity of periodontitis in older adults, including shifts in the periodontal microbiota. However, the actual impact of aging on the composition of subgingival biofilms remains unclear. In the present article, we provide an overview of the composition of the subgingival biofilm in older adults and the potential effects of age on the oral microbiome. In particular, this review covers the following topics: (i) the oral microbiota of an aging mouth; (ii) the effects of age and time on the human oral microbiome; (iii) the potential impact of inflammaging and immunosenescence in the host-oral microbiota interactions; and (iv) the relationship of the aging oral microbiota and Alzheimer's disease. Finally, we present analyses of data compiled from large clinical studies that evaluated the subgingival microbiota of periodontally healthy subjects and patients with periodontitis from a wide age spectrum (20-83 years of age).
Collapse
|
155
|
Harding A, Gonder U, Robinson SJ, Crean S, Singhrao SK. Exploring the Association between Alzheimer's Disease, Oral Health, Microbial Endocrinology and Nutrition. Front Aging Neurosci 2017; 9:398. [PMID: 29249963 PMCID: PMC5717030 DOI: 10.3389/fnagi.2017.00398] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022] Open
Abstract
Longitudinal monitoring of patients suggests a causal link between chronic periodontitis and the development of Alzheimer’s disease (AD). However, the explanation of how periodontitis can lead to dementia remains unclear. A working hypothesis links extrinsic inflammation as a secondary cause of AD. This hypothesis suggests a compromised oral hygiene leads to a dysbiotic oral microbiome whereby Porphyromonas gingivalis, a keystone periodontal pathogen, with its companion species, orchestrates immune subversion in the host. Brushing and chewing on teeth supported by already injured soft tissues leads to bacteremias. As a result, a persistent systemic inflammatory response develops to periodontal pathogens. The pathogens, and the host’s inflammatory response, subsequently lead to the initiation and progression of multiple metabolic and inflammatory co-morbidities, including AD. Insufficient levels of essential micronutrients can lead to microbial dysbiosis through the growth of periodontal pathogens such as demonstrated for P. gingivalis under low hemin bioavailability. An individual’s diet also defines the consortium of microbial communities that take up residency in the oral and gastrointestinal (GI) tract microbiomes. Their imbalance can lead to behavioral changes. For example, probiotics enriched in Lactobacillus genus of bacteria, when ingested, exert some anti-inflammatory influence through common host/bacterial neurochemicals, both locally, and through sensory signaling back to the brain. Early life dietary behaviors may cause an imbalance in the host/microbial endocrinology through a dietary intake incompatible with a healthy GI tract microbiome later in life. This imbalance in host/microbial endocrinology may have a lasting impact on mental health. This observation opens up an opportunity to explore the mechanisms, which may underlie the previously detected relationship between diet, oral/GI microbial communities, to anxiety, cognition and sleep patterns. This review suggests healthy diet based interventions that together with improved life style/behavioral changes may reduce and/or delay the incidence of AD.
Collapse
Affiliation(s)
- Alice Harding
- Dementia & Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| | - Ulrike Gonder
- Nutritionist, Freelance Science Writer, Hünstetten, Germany
| | - Sarita J Robinson
- Faculty of Science and Technology, School of Psychology, University of Central Lancashire, Preston, United Kingdom
| | - StJohn Crean
- Dementia & Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| | - Sim K Singhrao
- Dementia & Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|
156
|
Pritchard AB, Crean S, Olsen I, Singhrao SK. Periodontitis, Microbiomes and their Role in Alzheimer's Disease. Front Aging Neurosci 2017; 9:336. [PMID: 29114218 PMCID: PMC5660720 DOI: 10.3389/fnagi.2017.00336] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022] Open
Abstract
As far back as the eighteenth and early nineteenth centuries, microbial infections were responsible for vast numbers of deaths. The trend reversed with the introduction of antibiotics coinciding with longer life. Increased life expectancy however, accompanied the emergence of age related chronic inflammatory states including the sporadic form of Alzheimer's disease (AD). Taken together, the true challenge of retaining health into later years of life now appears to lie in delaying and/or preventing the progression of chronic inflammatory diseases, through identifying and influencing modifiable risk factors. Diverse pathogens, including periodontal bacteria have been associated with AD brains. Amyloid-beta (Aβ) hallmark protein of AD may be a consequence of infection, called upon due to its antimicrobial properties. Up to this moment in time, a lack of understanding and knowledge of a microbiome associated with AD brain has ensured that the role pathogens may play in this neurodegenerative disease remains unresolved. The oral microbiome embraces a range of diverse bacterial phylotypes, which especially in vulnerable individuals, will excite and perpetuate a range of inflammatory conditions, to a wide range of extra-oral body tissues and organs specific to their developing pathophysiology, including the brain. This offers the tantalizing opportunity that by controlling the oral-specific microbiome; clinicians may treat or prevent a range of chronic inflammatory diseases orally. Evolution has equipped the human host to combat infection/disease by providing an immune system, but Porphyromonas gingivalis and selective spirochetes, have developed immune avoidance strategies threatening the host-microbe homeostasis. It is clear from longitudinal monitoring of patients that chronic periodontitis contributes to declining cognition. The aim here is to discuss the contribution from opportunistic pathogens of the periodontal microbiome, and highlight the challenges, the host faces, when dealing with unresolvable oral infections that may lead to clinical manifestations that are characteristic for AD.
Collapse
Affiliation(s)
- Anna B. Pritchard
- Dementia & Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| | - StJohn Crean
- Dementia & Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| | - Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Sim K. Singhrao
- Dementia & Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|
157
|
McCully KS. Hyperhomocysteinemia, Suppressed Immunity, and Altered Oxidative Metabolism Caused by Pathogenic Microbes in Atherosclerosis and Dementia. Front Aging Neurosci 2017; 9:324. [PMID: 29056905 PMCID: PMC5635055 DOI: 10.3389/fnagi.2017.00324] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022] Open
Abstract
Many pathogenic microorganisms have been demonstrated in atherosclerotic plaques and in cerebral plaques in dementia. Hyperhomocysteinemia, which is a risk factor for atherosclerosis and dementia, is caused by dysregulation of methionine metabolism secondary to deficiency of the allosteric regulator, adenosyl methionine. Deficiency of adenosyl methionine results from increased polyamine biosynthesis by infected host cells, causing increased activity of ornithine decarboxylase, decreased nitric oxide and peroxynitrate formation and impaired immune reactions. The down-regulation of oxidative phosphorylation that is observed in aging and dementia is attributed to deficiency of thioretinaco ozonide oxygen complexed with nicotinamide adenine dinucleotide and phosphate, which catalyzes oxidative phosphorylation. Adenosyl methionine biosynthesis is dependent upon thioretinaco ozonide and adenosine triphosphate (ATP), and the deficiency of adenosyl methionine and impaired immune function in aging are attributed to depletion of thioretinaco ozonide from mitochondrial membranes. Allyl sulfides and furanonaphthoquinones protect against oxidative stress and apoptosis by increasing the endogenous production of hydrogen sulfide and by inhibiting electron transfer to the active site of oxidative phosphorylation. Diallyl trisulfide and napabucasin inhibit the signaling by the signal transducer and activator of transcription 3 (Stat3), potentially enhancing immune function by effects on T helper lymphocytes and promotion of apoptosis. Homocysteine promotes endothelial dysfunction and apoptosis by the unfolded protein response and endoplasmic reticulum stress through activation of the N-methyl D-aspartate (NMDA) receptor, causing oxidative stress, calcium influx, apoptosis and endothelial dysfunction. The prevention of atherosclerosis and dementia may be accomplished by a proposed nutritional metabolic homocysteine-lowering protocol which enhances immunity and corrects the altered oxidative metabolism in atherosclerosis and dementia.
Collapse
Affiliation(s)
- Kilmer S. McCully
- Pathology, VA Boston Healthcare System (VHA), Boston, MA, United States
- Pathology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
158
|
Liu Y, Wu Z, Nakanishi Y, Ni J, Hayashi Y, Takayama F, Zhou Y, Kadowaki T, Nakanishi H. Infection of microglia with Porphyromonas gingivalis promotes cell migration and an inflammatory response through the gingipain-mediated activation of protease-activated receptor-2 in mice. Sci Rep 2017; 7:11759. [PMID: 28924232 PMCID: PMC5603557 DOI: 10.1038/s41598-017-12173-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 09/05/2017] [Indexed: 12/14/2022] Open
Abstract
Despite a clear correlation between periodontitis and cognitive decline in Alzheimer's disease, the precise mechanism underlying the relationship remains unclear. The periodontal pathogen Porphyromonas gingivalis produces a unique class of cysteine proteinases termed gingipains that comprises Arg-gingipain (Rgp) and Lys-gingipain (Kgp). Rgp and Kgp are important in the bacterial mediated host cell responses and the subsequent intracellular signaling in infected cells. In the present study, we attempted to clarify the potential effects of Rgp and Kgp on the cellular activation of brain-resident microglia. We provide the first evidence that Rgp and Kgp cooperatively contribute to the P. gingivalis-induced cell migration and expression of proinflammatory mediators through the activation of protease-activated receptor 2. The subsequent activation of phosphoinositide 3-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase/ERK pathways contributes to cell migration and inflammatory response of microglia.
Collapse
Affiliation(s)
- Yicong Liu
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka, 812-8582, Japan.,OBT Research Center, Faculty of Dental Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yurika Nakanishi
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Junjun Ni
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshinori Hayashi
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Fumiko Takayama
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yanmin Zhou
- Department of Implantology, School of Stomatology, Jilin University, Changchun, 130021, China
| | - Tomoko Kadowaki
- Division of Frontier Life Science, Department of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Hiroshi Nakanishi
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
159
|
Septicemia is associated with increased risk for dementia: a population-based longitudinal study. Oncotarget 2017; 8:84300-84308. [PMID: 29137424 PMCID: PMC5663596 DOI: 10.18632/oncotarget.20899] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/04/2017] [Indexed: 12/21/2022] Open
Abstract
Background Systemic infection has been linked to cognitive impairment. We hypothesized that patients with septicemia are predisposed to increased risks for developing dementia in a long-term setting. Methods This observational, retrospective, longitudinal, nation-wide population-based study was conducted using the data deduced from Longitudinal Health Insurance Database (LHID) in Taiwan. All patients with septicemia hospitalized for the first time from 2001 to 2011 without prior dementia were included. The development of Alzheimer's disease (AD) or non-Alzheimer dementias (NAD) in relation to the development of septicemia for each patient was recorded. An age- and sex-matched cohort without septicemia and without prior dementia served as the control. Septicemia, dementia, and other confounding factors were defined according to International Classification of Diseases Clinical Modification Codes. Cox proportional-hazards regressions were utilized to analyze adjusted hazard ratios. Results Patients with septicemia had a higher risk for developing dementia based on hazard ratios (HRs) (p<0.001). Patients with septicemia in the younger age groups had a greater dementia risk (p<0.01). Septicemia was associated with subsequent NAD (p<0.001), whereas the increased risk of AD was statistically insignificant (p>0.05). Furthermore, higher severity of septicemia was associated with increased risk of developing dementia. Conclusions Our findings suggest that septicemia is associated with an increased risk in developing NAD but not AD. A likely causal role of septicemia in increasing the risk of NAD is suggested, according to the findings that patients with higher severity of septicemia carried greater risk of sustaining dementia.
Collapse
|
160
|
Polymicrobial Infections In Brain Tissue From Alzheimer's Disease Patients. Sci Rep 2017; 7:5559. [PMID: 28717130 PMCID: PMC5514053 DOI: 10.1038/s41598-017-05903-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/05/2017] [Indexed: 01/10/2023] Open
Abstract
Several studies have advanced the idea that the etiology of Alzheimer’s disease (AD) could be microbial in origin. In the present study, we tested the possibility that polymicrobial infections exist in tissue from the entorhinal cortex/hippocampus region of patients with AD using immunohistochemistry (confocal laser scanning microscopy) and highly sensitive (nested) PCR. We found no evidence for expression of early (ICP0) or late (ICP5) proteins of herpes simplex virus type 1 (HSV-1) in brain sections. A polyclonal antibody against Borrelia detected structures that appeared not related to spirochetes, but rather to fungi. These structures were not found with a monoclonal antibody. Also, Borrelia DNA was undetectable by nested PCR in the ten patients analyzed. By contrast, two independent Chlamydophila antibodies revealed several structures that resembled fungal cells and hyphae, and prokaryotic cells, but most probably were unrelated to Chlamydophila spp. Finally, several structures that could belong to fungi or prokaryotes were detected using peptidoglycan and Clostridium antibodies, and PCR analysis revealed the presence of several bacteria in frozen brain tissue from AD patients. Thus, our results show that polymicrobial infections consisting of fungi and bacteria can be revealed in brain tissue from AD patients.
Collapse
|
161
|
Fereshtehnejad SM, Garcia-Ptacek S, Religa D, Holmer J, Buhlin K, Eriksdotter M, Sandborgh-Englund G. Dental care utilization in patients with different types of dementia: A longitudinal nationwide study of 58,037 individuals. Alzheimers Dement 2017; 14:10-19. [DOI: 10.1016/j.jalz.2017.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/10/2017] [Accepted: 05/14/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Seyed-Mohammad Fereshtehnejad
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society (NVS); Karolinska Institutet; Stockholm Sweden
- Department of Neurology and Neurosurgery; McGill University; Montreal QC Canada
| | - Sara Garcia-Ptacek
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society (NVS); Karolinska Institutet; Stockholm Sweden
- Department of Internal Medicine; Section for Neurology; Södersjukhuset Stockholm Sweden
| | - Dorota Religa
- Department of Geriatric Medicine; Karolinska University Hospital; Stockholm Sweden
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS); Karolinska Institutet; Stockholm Sweden
| | - Jacob Holmer
- Division of Periodontology, Department of Dental Medicine; Karolinska Institutet; Stockholm Sweden
| | - Kåre Buhlin
- Division of Periodontology, Department of Dental Medicine; Karolinska Institutet; Stockholm Sweden
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society (NVS); Karolinska Institutet; Stockholm Sweden
- Department of Geriatric Medicine; Karolinska University Hospital; Stockholm Sweden
| | - Gunilla Sandborgh-Englund
- Department of Dental Medicine; Karolinska Institutet; Stockholm Sweden
- Academic Center for Geriatric Dentistry; Stockholm Sweden
| |
Collapse
|
162
|
Tohidpour A, Morgun AV, Boitsova EB, Malinovskaya NA, Martynova GP, Khilazheva ED, Kopylevich NV, Gertsog GE, Salmina AB. Neuroinflammation and Infection: Molecular Mechanisms Associated with Dysfunction of Neurovascular Unit. Front Cell Infect Microbiol 2017; 7:276. [PMID: 28676848 PMCID: PMC5476750 DOI: 10.3389/fcimb.2017.00276] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is a complex inflammatory process in the central nervous system, which is sought to play an important defensive role against various pathogens, toxins or factors that induce neurodegeneration. The onset of neurodegenerative diseases and various microbial infections are counted as stimuli that can challenge the host immune system and trigger the development of neuroinflammation. The homeostatic nature of neuroinflammation is essential to maintain the neuroplasticity. Neuroinflammation is regulated by the activity of neuronal, glial, and endothelial cells within the neurovascular unit, which serves as a “platform” for the coordinated action of pro- and anti-inflammatory mechanisms. Production of inflammatory mediators (cytokines, chemokines, reactive oxygen species) by brain resident cells or cells migrating from the peripheral blood, results in the impairment of blood-brain barrier integrity, thereby further affecting the course of local inflammation. In this review, we analyzed the most recent data on the central nervous system inflammation and focused on major mechanisms of neurovascular unit dysfunction caused by neuroinflammation and infections.
Collapse
Affiliation(s)
- Abolghasem Tohidpour
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Andrey V Morgun
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia.,Department of Paediatrics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Elizaveta B Boitsova
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia.,Department of Children Infectious Diseases, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Natalia A Malinovskaya
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Galina P Martynova
- Department of Children Infectious Diseases, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Elena D Khilazheva
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Natalia V Kopylevich
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Galina E Gertsog
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Alla B Salmina
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| |
Collapse
|
163
|
Holmstrup P, Damgaard C, Olsen I, Klinge B, Flyvbjerg A, Nielsen CH, Hansen PR. Comorbidity of periodontal disease: two sides of the same coin? An introduction for the clinician. J Oral Microbiol 2017; 9:1332710. [PMID: 28748036 PMCID: PMC5508374 DOI: 10.1080/20002297.2017.1332710] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/07/2017] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence has suggested an independent association between periodontitis and a range of comorbidities, for example cardiovascular disease, type 2 diabetes, rheumatoid arthritis, osteoporosis, Parkinson’s disease, Alzheimer’s disease, psoriasis, and respiratory infections. Shared inflammatory pathways are likely to contribute to this association, but distinct causal mechanisms remain to be defined. Some of these comorbid conditions may improve by periodontal treatment, and a bidirectional relationship may exist, where, for example, treatment of diabetes can improve periodontal status. The present article presents an overview of the evidence linking periodontitis with selected systemic diseases and calls for increased cooperation between dentists and medical doctors to provide optimal screening, treatment, and prevention of both periodontitis and its comorbidities.
Collapse
Affiliation(s)
- Palle Holmstrup
- Section for Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Damgaard
- Section for Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Björn Klinge
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden.,Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Claus Henrik Nielsen
- Section for Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Riis Hansen
- Section for Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Cardiology Department, Herlev and Gentofte Hospital, Hellerup, Denmark
| |
Collapse
|
164
|
Parkinson's disease; the hibernating spore hypothesis. Med Hypotheses 2017; 104:48-53. [PMID: 28673590 DOI: 10.1016/j.mehy.2017.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/16/2017] [Accepted: 05/25/2017] [Indexed: 12/19/2022]
Abstract
The authors support the hypothesis that a causative agent in Parkinson's disease (PD) might be either fungus or bacteria with fungus-like properties - Actinobacteria, and that their spores may serve as 'infectious agents'. Updated research and the epidemiology of PD suggest that the disease might be induced by environmental factor(s), possibly with genetic susceptibility, and that α-synuclein probably should be regarded as part of the body's own defense mechanism. To explain the dual-hit theory with stage 1 involvement of the olfactory structures and the 'gut-brain'-axis, the environmental factor is probably airborne and quite 'robust' entering the body via the nose/mouth, then to be swallowed reaching the enteric nervous system with retained pathogenicity. Similar to the essence of smoking food, which is to eradicate microorganisms, a viable agent may be defused by tobacco smoke. Hence, the agent is likely to be a 'living' and not an inert agent. Furthermore, and accordant with the age-dependent incidence of LPD, this implies that a dormant viable agent have been escorted by α-synuclein via retrograde axonal transport from the nose and/or GI tract to hibernate in the associated cerebral nuclei. In the brain, PD spreads like a low-grade infection, and that patients develop symptoms in later life, indicate a relatively long incubation time. Importantly, Actinomyces species may form endospores, the hardiest known form of life on Earth. The authors hypothesize that certain spores may not be subject to degradation by macroautophagy, and that these spores become reactivated due to the age-dependent or genetic reduced macroautophagic function. Hence, the hibernating spore hypothesis explains both early-onset and late-onset PD. Evaluation of updated available information are all consistent with the hypothesis that PD may be induced by spores from fungi or Actinobacteria and thus supports Broxmeyer's hypothesis put forward 15years ago.
Collapse
|
165
|
Esteve C, Jones EA, Kell DB, Boutin H, McDonnell LA. Mass spectrometry imaging shows major derangements in neurogranin and in purine metabolism in the triple-knockout 3×Tg Alzheimer mouse model. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:747-754. [PMID: 28411106 DOI: 10.1016/j.bbapap.2017.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 01/06/2023]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) can simultaneously measure hundreds of biomolecules directly from tissue. Using different sample preparation strategies, proteins and metabolites have been profiled to study the molecular changes in a 3×Tg mouse model of Alzheimer's disease. In comparison with wild-type (WT) control mice MALDI-MSI revealed Alzheimer's disease-specific protein profiles, highlighting dramatic reductions of a protein with m/z 7560, which was assigned to neurogranin and validated by immunohistochemistry. The analysis also revealed substantial metabolite changes, especially in metabolites related to the purine metabolic pathway, with a shift towards an increase in hypoxanthine/xanthine/uric acid in the 3×Tg AD mice accompanied by a decrease in AMP and adenine. Interestingly these changes were also associated with a decrease in ascorbic acid, consistent with oxidative stress. Furthermore, the metabolite N-arachidonyl taurine was increased in the diseased mouse brain sections, being highly abundant in the hippocampus. Overall, we describe an interesting shift towards pro-inflammatory molecules (uric acid) in the purinergic pathway associated with a decrease in anti-oxidant level (ascorbic acid). Together, these observations fit well with the increased oxidative stress and neuroinflammation commonly observed in AD. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Clara Esteve
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Emrys A Jones
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Douglas B Kell
- School of Chemistry, The University of Manchester, Manchester, Lancs M13 9PL, UK; Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, Lancs, UK
| | - Hervé Boutin
- Faculty of Medicine and Human Sciences, The University of Manchester, Manchester, UK; Wolfson Molecular Imaging Center, The University of Manchester, Manchester, UK
| | - Liam A McDonnell
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands; Fondazione Pisana per la Scienza ONLUS, Pisa, Italy.
| |
Collapse
|
166
|
Cook MJ, Puri BK. Application of Bayesian decision-making to laboratory testing for Lyme disease and comparison with testing for HIV. Int J Gen Med 2017; 10:113-123. [PMID: 28435311 PMCID: PMC5391870 DOI: 10.2147/ijgm.s131909] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this study, Bayes' theorem was used to determine the probability of a patient having Lyme disease (LD), given a positive test result obtained using commercial test kits in clinically diagnosed patients. In addition, an algorithm was developed to extend the theorem to the two-tier test methodology. Using a disease prevalence of 5%-75% in samples sent for testing by clinicians, evaluated with a C6 peptide enzyme-linked immunosorbent assay (ELISA), the probability of infection given a positive test ranged from 26.4% when the disease was present in 5% of referrals to 95.3% when disease was present in 75%. When applied in the case of a C6 ELISA followed by a Western blot, the algorithm developed for the two-tier test demonstrated an improvement with the probability of disease given a positive test ranging between 67.2% and 96.6%. Using an algorithm to determine false-positive results, the C6 ELISA generated 73.6% false positives with 5% prevalence and 4.7% false positives with 75% prevalence. Corresponding data for a group of test kits used to diagnose HIV generated false-positive rates from 5.4% down to 0.1% indicating that the LD tests produce up to 46 times more false positives. False-negative test results can also influence patient treatment and outcomes. The probability of a false-negative test for LD with a single test for early-stage disease was high at 66.8%, increasing to 74.9% for two-tier testing. With the least sensitive HIV test used in the two-stage test, the false-negative rate was 1.3%, indicating that the LD test generates ~60 times as many false-negative results. For late-stage LD, the two-tier test generated 16.7% false negatives compared with 0.095% false negatives generated by a two-step HIV test, which is over a 170-fold difference. Using clinically representative LD test sensitivities, the two-tier test generated over 500 times more false-negative results than two-stage HIV testing.
Collapse
Affiliation(s)
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| |
Collapse
|
167
|
Berman MH, Halper JP, Nichols TW, Jarrett H, Lundy A, Huang JH. Photobiomodulation with Near Infrared Light Helmet in a Pilot, Placebo Controlled Clinical Trial in Dementia Patients Testing Memory and Cognition. JOURNAL OF NEUROLOGY AND NEUROSCIENCE 2017; 8:176. [PMID: 28593105 PMCID: PMC5459322 DOI: 10.21767/2171-6625.1000176] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is a common, chronic expensive debilitating neurodegenerative disease with no current treatments to prevent the physical deterioration of the brain and the consequent cognitive deficits. The current pathophysiology of Alzheimer's disease is the accumulation of neurofibrillary tangles (NFTs) of hyperphosphorylated tau protein and amyloid-beta (Aβ) plaques. Antibody therapy of Tau and Amyloid beta, vaccines and other methods to decrease Tau and or Amyloid have not been successful after considerable pharmaceutical and biotech efforts. For example, Eli Lilly announced a major change to its closely watched clinical trial for the Alzheimer's drug solanezumab which failed to reach statistical significance. Recently, a report on animal models using photomodulation with near infrared light to treat AD pathology in K369I tau transgenic model (K3) l engineered to develop neurofibrillary tangles, and the APPs/PSEN1dE9 transgenic model (APP/PS1) to develop amyloid plaques. Mice were treated with NIR 20 times over a four-week period and NIR treatment (600-1000 nm) was associated with a reduction in the size and number of amyloid-β plaques in the neocortex and hippocampus. We now report a small pilot double blind, placebo-controlled trial (n=11) 6 active, 3 controls and 2 dropouts assessing the effect of 28 consecutive, sixminute transcranial sessions of near infrared (NIR) stimulation using 1060-1080 nm light emitting diodes. Subjects were independently diagnosed with dementia conducted in an outpatient behavioral healthcare clinic. IRB approval was obtained through the Quietmind Foundation's institutional review Board (IRB). Results showed changes in executive functioning; clock drawing, immediate recall, praxis memory, visual attention and task switching (Trails A&B) as well as a trend of improved EEG amplitude and connectivity measures. Neuroplasticity has also been reported with NIR light stimulation and mitochondrial enhancement.
Collapse
Affiliation(s)
- Marvin H Berman
- P.I. Quietmind Foundation, 1016 Greenwood Ave, Wyncote PA 19095, USA
| | - James P Halper
- P.I. Quietmind Foundation, 1016 Greenwood Ave, Wyncote PA 19095, USA
| | | | - H Jarrett
- Board, Quietmind Foundation, CNDD Hanover PA 17331, USA
| | - Alan Lundy
- Board, Quietmind Foundation, CNDD Hanover PA 17331, USA
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott and White, Temple, Texas 76502, USA
| |
Collapse
|
168
|
Improved cognitive and memory abilities in a patient with Alzheimer's disease treated with activated immune cells: Immune cell therapy may benefit more AD patients. Med Hypotheses 2017; 99:19-22. [PMID: 28110690 DOI: 10.1016/j.mehy.2016.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/02/2016] [Indexed: 11/22/2022]
Abstract
So far, the pathogenesis of Alzheimer's disease (AD) has not been clarified, nor has patient therapy been satisfactory. Although inheritance dominates the less frequent early-onset AD in young and middle-aged individuals, environmental and immunogenetic factors have been identified in the most frequently occurring late-onset AD of higher-aged individuals, comprising 90% of AD patients. Thorough investigations have detected a prevalence of certain microbes which are known to affect brain activities in the brains of AD patients. This microbial prevalence suggests failing immune responses by immune gene variants against specific microbes. In fact, some immune gene variants have been detected significantly more often in AD patients. Failing immune responses can be corrected by activating immune cells outside the body ("in vitro") for the subsequent therapeutical injections. Activated immune cells digest and present microbial peptides better and differentiate naïve/resting immune cells to powerful effector cells, which can be used for therapy. The patient's activated immune cells can pass the blood-brain barrier and overcome chronic infections in the brain. Furthermore, activated immune cells can secrete a series of neurotrophins for the restoration of neuronal circuits. Based on the encouraging results of immunotherapy in a patient with late-onset AD, we hypothesize that therapy with the patient's activated immune cells would safely benefit many AD patients.
Collapse
|
169
|
|
170
|
Scott JD, Foley JE, Anderson JF, Clark KL, Durden LA. Detection of Lyme Disease Bacterium, Borrelia burgdorferi sensu lato, in Blacklegged Ticks Collected in the Grand River Valley, Ontario, Canada. Int J Med Sci 2017; 14:150-158. [PMID: 28260991 PMCID: PMC5332844 DOI: 10.7150/ijms.17763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/28/2016] [Indexed: 01/08/2023] Open
Abstract
We document the presence of blacklegged ticks, Ixodes scapularis, in the Grand River valley, Centre Wellington, Ontario. Overall, 15 (36%) of 42 I. scapularis adults collected from 41 mammalian hosts (dogs, cats, humans) were positive for the Lyme disease bacterium, Borrelia burgdorferi sensu lato (s.l.). Using real-time PCR testing and DNA sequencing of the flagellin (fla) gene, we determined that Borrelia amplicons extracted from I. scapularis adults belonged to B. burgdorferi sensu stricto (s.s.), which is pathogenic to humans and certain domestic animals. Based on the distribution of I. scapularis adults within the river basin, it appears likely that migratory birds provide an annual influx of I. scapularis immatures during northward spring migration. Health-care providers need to be aware that local residents can present with Lyme disease symptoms anytime during the year.
Collapse
Affiliation(s)
- John D Scott
- Research Division, Lyme Ontario, Fergus, Ontario Canada N1M 2L7
| | - Janet E Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, USA 95616
| | - John F Anderson
- Department of Entomology and Center for Vector Ecology and Zoonotic Diseases. The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA 06504
| | - Kerry L Clark
- Epidemiology & Environmental Health, Department of Public Health, University of North Florida, Jacksonville, USA 32224
| | - Lance A Durden
- Department of Biology, Georgia Southern University, Statesboro, Georgia 30458, USA
| |
Collapse
|
171
|
Proteins behaving badly. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 123:16-41. [DOI: 10.1016/j.pbiomolbio.2016.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/14/2016] [Accepted: 08/19/2016] [Indexed: 02/08/2023]
|
172
|
Sochocka M, Zwolińska K, Leszek J. The Infectious Etiology of Alzheimer's Disease. Curr Neuropharmacol 2017; 15:996-1009. [PMID: 28294067 PMCID: PMC5652018 DOI: 10.2174/1570159x15666170313122937] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Inflammation is a part of the first line of defense of the body against invasive pathogens, and plays a crucial role in tissue regeneration and repair. A proper inflammatory response ensures the suitable resolution of inflammation and elimination of harmful stimuli, but when the inflammatory reactions are inappropriate it can lead to damage of the surrounding normal cells. The relationship between infections and Alzheimer's Disease (AD) etiology, especially lateonset AD (LOAD) has been continuously debated over the past three decades. METHODS This review discusses whether infections could be a causative factor that promotes the progression of AD and summarizes recent investigations associating infectious agents and chronic inflammation with AD. Preventive and therapeutic approaches to AD in the context of an infectious etiology of the disease are also discussed. RESULTS Emerging evidence supports the hypothesis of the role of neurotropic viruses from the Herpesviridae family, especially Human herpesvirus 1 (HHV-1), Cytomegalovirus (CMV), and Human herpesvirus 2 (HHV-2), in AD neuropathology. Recent investigations also indicate the association between Hepatitis C virus (HCV) infection and dementia. Among bacteria special attention is focused on spirochetes family and on periodontal pathogens such as Porphyromonas gingivalis or Treponema denticola that could cause chronic periodontitis and possibly contribute to the clinical onset of AD. CONCLUSION Chronic viral, bacterial and fungal infections might be causative factors for the inflammatory pathway in AD.
Collapse
Affiliation(s)
- Marta Sochocka
- Laboratory of Virology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Katarzyna Zwolińska
- Laboratory of Virology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
173
|
Pisa D, Alonso R, Rábano A, Horst MN, Carrasco L. Fungal Enolase, β-Tubulin, and Chitin Are Detected in Brain Tissue from Alzheimer's Disease Patients. Front Microbiol 2016; 7:1772. [PMID: 27872620 PMCID: PMC5097921 DOI: 10.3389/fmicb.2016.01772] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/21/2016] [Indexed: 12/17/2022] Open
Abstract
Recent findings provide evidence that fungal structures can be detected in brain tissue from Alzheimer’s disease (AD) patients using rabbit polyclonal antibodies raised against whole fungal cells. In the present work, we have developed and tested specific antibodies that recognize the fungal proteins, enolase and β-tubulin, and an antibody that recognizes the fungal polysaccharide chitin. Consistent with our previous studies, a number of rounded yeast-like and hyphal structures were detected using these antibodies in brain sections from AD patients. Some of these structures were intracellular and, strikingly, some were found to be located inside nuclei from neurons, whereas other fungal structures were detected extracellularly. Corporya amylacea from AD patients also contained enolase and β-tubulin as revealed by these selective antibodies, but were devoid of fungal chitin. Importantly, brain sections from control subjects were usually negative for staining with the three antibodies. However, a few fungal structures can be observed in some control individuals. Collectively, these findings indicate the presence of two fungal proteins, enolase and β-tubulin, and the polysaccharide chitin, in CNS tissue from AD patients. These findings are consistent with our hypothesis that AD is caused by disseminated fungal infection.
Collapse
Affiliation(s)
- Diana Pisa
- Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid Madrid, Spain
| | - Ruth Alonso
- Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid Madrid, Spain
| | - Alberto Rábano
- Department of Neuropathology and Tissue Bank, Unidad de Investigación Proyecto Alzheimer, Fundación CIEN, Instituto de Salud Carlos III Madrid, Spain
| | - Michael N Horst
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon GA, USA
| | - Luis Carrasco
- Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
174
|
Cerajewska TL, Davies M, West NX. Periodontitis: a potential risk factor for Alzheimer's disease. Br Dent J 2016; 218:29-34. [PMID: 25571822 DOI: 10.1038/sj.bdj.2014.1137] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2014] [Indexed: 01/12/2023]
Abstract
The role of periodontitis as a risk factor for multiple systemic diseases is widely accepted and there is growing evidence of an association between periodontitis and sporadic late onset Alzheimer's disease (SLOAD). Recent epidemiologic, microbiologic and inflammatory findings strengthen this association, indicating that periodontal pathogens are possible contributors to neural inflammation and SLOAD. The aim of this article is to present contemporary evidence of this association.
Collapse
Affiliation(s)
- T L Cerajewska
- Clinical Trials Group, School of Oral and Dental Science, Lower Maudlin Street, University of Bristol, Bristol, BS1 2LY
| | - M Davies
- Clinical Trials Group, School of Oral and Dental Science, Lower Maudlin Street, University of Bristol, Bristol, BS1 2LY
| | - N X West
- Clinical Trials Group, School of Oral and Dental Science, Lower Maudlin Street, University of Bristol, Bristol, BS1 2LY
| |
Collapse
|
175
|
Bester J, Soma P, Kell DB, Pretorius E. Viscoelastic and ultrastructural characteristics of whole blood and plasma in Alzheimer-type dementia, and the possible role of bacterial lipopolysaccharides (LPS). Oncotarget 2016; 6:35284-303. [PMID: 26462180 PMCID: PMC4742105 DOI: 10.18632/oncotarget.6074] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022] Open
Abstract
Alzheimer-type dementia (AD) is a neurodegenerative disorder and the most common form of dementia. Patients typically present with neuro- and systemic inflammation and iron dysregulation, associated with oxidative damage that reflects in hypercoagulability. Hypercoagulability is closely associated with increased fibrin(ogen) and in AD patients fibrin(ogen) has been implicated in the development of neuroinflammation and memory deficits. There is still no clear reason precisely why (a) this hypercoagulable state, (b) iron dysregulation and (c) increased fibrin(ogen) could together lead to the loss of neuronal structure and cognitive function. Here we suggest an alternative hypothesis based on previous ultrastructural evidence of the presence of a (dormant) blood microbiome in AD. Furthermore, we argue that bacterial cell wall components, such as the endotoxin lipopolysaccharide (LPS) of Gram-negative strains, might be the cause of the continuing and low-grade inflammation, characteristic of AD. Here, we follow an integrated approach, by studying the viscoelastic and ultrastructural properties of AD plasma and whole blood by using scanning electron microscopy, Thromboelastography (TEG®) and the Global Thrombosis Test (GTT®). Ultrastructural analysis confirmed the presence and close proximity of microbes to erythrocytes. TEG® analysis showed a hypercoagulable state in AD. TEG® results where LPS was added to naive blood showed the same trends as were found with the AD patients, while the GTT® results (where only platelet activity is measured), were not affected by the added LPS, suggesting that LPS does not directly impact platelet function. Our findings reinforce the importance of further investigating the role of LPS in AD.
Collapse
Affiliation(s)
- Janette Bester
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Prashilla Soma
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| |
Collapse
|
176
|
Kell DB, Pretorius E. On the translocation of bacteria and their lipopolysaccharides between blood and peripheral locations in chronic, inflammatory diseases: the central roles of LPS and LPS-induced cell death. Integr Biol (Camb) 2016; 7:1339-77. [PMID: 26345428 DOI: 10.1039/c5ib00158g] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have recently highlighted (and added to) the considerable evidence that blood can contain dormant bacteria. By definition, such bacteria may be resuscitated (and thus proliferate). This may occur under conditions that lead to or exacerbate chronic, inflammatory diseases that are normally considered to lack a microbial component. Bacterial cell wall components, such as the endotoxin lipopolysaccharide (LPS) of Gram-negative strains, are well known as potent inflammatory agents, but should normally be cleared. Thus, their continuing production and replenishment from dormant bacterial reservoirs provides an easy explanation for the continuing, low-grade inflammation (and inflammatory cytokine production) that is characteristic of many such diseases. Although experimental conditions and determinants have varied considerably between investigators, we summarise the evidence that in a great many circumstances LPS can play a central role in all of these processes, including in particular cell death processes that permit translocation between the gut, blood and other tissues. Such localised cell death processes might also contribute strongly to the specific diseases of interest. The bacterial requirement for free iron explains the strong co-existence in these diseases of iron dysregulation, LPS production, and inflammation. Overall this analysis provides an integrative picture, with significant predictive power, that is able to link these processes via the centrality of a dormant blood microbiome that can resuscitate and shed cell wall components.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, Manchester M1 7DN, Lancs, UK.
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa.
| |
Collapse
|
177
|
Wang J, Ye F, Cheng X, Zhang X, Liu F, Liu G, Ni M, Qiao S, Zhou W, Zhang Y. The Effects of LW-AFC on Intestinal Microbiome in Senescence-Accelerated Mouse Prone 8 Strain, a Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2016; 53:907-19. [DOI: 10.3233/jad-160138] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jianhui Wang
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Fuqiang Ye
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaorui Cheng
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Xiaorui Zhang
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Feng Liu
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Gang Liu
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Ming Ni
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shanyi Qiao
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wenxia Zhou
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Yongxiang Zhang
- Department of TCM and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| |
Collapse
|
178
|
|
179
|
Diurnal dynamic behavior of microglia in response to infected bacteria through the UDP-P2Y6 receptor system. Sci Rep 2016; 6:30006. [PMID: 27445174 PMCID: PMC4956748 DOI: 10.1038/srep30006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/28/2016] [Indexed: 12/14/2022] Open
Abstract
It has long been believed that microglia morphologically transform into the activated state by retracting their long processes and consuming pathogens when bacteria infect into the brain parenchyma. In the present study, however, we showed for the first time that murine cortical microglia extend their processes towards focally injected Porphyromonas gingivalis. This P. gingivalis-induced microglial process extension was significantly increased during the light (sleeping) phase than the dark (waking) phase. In contrast, focally injected ATP-induced microglial process extension was significantly increased during the dark phase than the light phase. Furthermore, in contrast to the P2Y12 receptor-mediated mechanism of ATP-induced microglial process extension, the P. gingivalis-mediated microglial process extension was mediated by P2Y6 receptors. The infection of bacteria such as P. gingivalis to the brain parenchyma may induce the secretion of UDP from microglia at the site of infection, which in turn induces the process extension of the neighboring microglia.
Collapse
|
180
|
Nehls M. Unified theory of Alzheimer's disease (UTAD): implications for prevention and curative therapy. J Mol Psychiatry 2016; 4:3. [PMID: 27429752 PMCID: PMC4947325 DOI: 10.1186/s40303-016-0018-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/03/2016] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to propose a Unified Theory of Alzheimer's disease (UTAD) that integrates all key behavioural, genetic and environmental risk factors in a causal chain of etiological and pathogenetic events. It is based on three concepts that emanate from human's evolutionary history: (1) The grandmother-hypothesis (GMH), which explains human longevity due to an evolutionary advantage in reproduction by trans-generational transfer of acquired knowledge. Consequently it is argued that mental health at old-age must be the default pathway of humans' genetic program and not development of AD. (2) Therefore, mechanism like neuronal rejuvenation (NRJ) and adult hippocampal neurogenesis (AHN) that still function efficiently even at old age provide the required lifelong ability to memorize personal experiences important for survival. Cumulative evidence from a multitude of experimental and epidemiological studies indicate that behavioural and environmental risk factors, which impair productive AHN, result in reduced episodic memory performance and in reduced psychological resilience. This leads to avoidance of novelty, dysregulation of the hypothalamic-pituitary-adrenal (HPA)-axis and cortisol hypersecretion, which drives key pathogenic mechanisms of AD like the accumulation and oligomerization of synaptotoxic amyloid beta, chronic neuroinflammation and neuronal insulin resistance. (3) By applying to AHN the law of the minimum (LOM), which defines the basic requirements of biological growth processes, the UTAD explains why and how different lifestyle deficiencies initiate the AD process by impairing AHN and causing dysregulation of the HPA-axis, and how environmental and genetic risk factors such as toxins or ApoE4, respectively, turn into disease accelerators under these unnatural conditions. Consequently, the UTAD provides a rational strategy for the prevention of mental decline and a system-biological approach for the causal treatment of AD, which might even be curative if the systemic intervention is initiated early enough in the disease process. Hence an individualized system-biological treatment of patients with early AD is proposed as a test for the validity of UTAD and outlined in this review.
Collapse
Affiliation(s)
- Michael Nehls
- Independent Researcher, Allmendweg 1, 79279 Vörstetten, Germany
| |
Collapse
|
181
|
Jiang Y, Zhang YF, Liu M, Ma LL, Peng FH, Huang QL, Ma XM, Chen XH. Syphilitic dementia and lipid metabolism. Eur J Neurol 2016; 23:1541-7. [PMID: 27415600 DOI: 10.1111/ene.13074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 06/08/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE Chronic syphilitic infection may lead to dementia. It is in general paresis (GP), which is the major late form of neurosyphilis, that cognitive impairment frequently occurs. The association between lipid metabolism and GP is unclear. METHODS In this study, serum lipids were studied in 188 GP patients, in 241 syphilitic patients without neurosyphilis and in 539 healthy controls. The Mini-Mental State Examination (MMSE) was tested in all GP patients. Thirty-five GP patients had a follow-up evaluation 3 months after penicillin treatment. RESULTS Significantly lower apolipoprotein A-I (apoA-I) levels were found in GP and in syphilitic patients without neurosyphilis compared to controls. In the 25-44-year-old groups, the male syphilitic patients without neurosyphilis had lower serum apoA-I levels and higher apolipoprotein B (apoB)/apoA-I ratios compared with female patients. A follow-up evaluation of 35 GP patients 3 months after penicillin treatment showed a significant positive correlation between increased apoA-I levels and MMSE scores. CONCLUSION Abnormal apoA-I metabolism may be associated with the decline of cognitive performance. Long-term decrease of apoA-I level and higher apoB/apoA-I ratio may be contributing factors in syphilitic dementia. These results suggest a similar overlap between syphilitic dementia and lipid metabolism to that occurring in Alzheimer's disease.
Collapse
Affiliation(s)
- Y Jiang
- Department of Neurology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Y F Zhang
- Department of Neurology, Guangzhou Brain Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - M Liu
- Department of Neurology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - L L Ma
- Department of Neurology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - F H Peng
- Department of Neurology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Q L Huang
- Department of Neurology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - X M Ma
- Department of Neurology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - X H Chen
- Department of Neurology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
182
|
Harris SA, Harris EA. Herpes Simplex Virus Type 1 and Other Pathogens are Key Causative Factors in Sporadic Alzheimer's Disease. J Alzheimers Dis 2016; 48:319-53. [PMID: 26401998 PMCID: PMC4923765 DOI: 10.3233/jad-142853] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review focuses on research in epidemiology, neuropathology, molecular biology, and genetics regarding the hypothesis that pathogens interact with susceptibility genes and are causative in sporadic Alzheimer's disease (AD). Sporadic AD is a complex multifactorial neurodegenerative disease with evidence indicating coexisting multi-pathogen and inflammatory etiologies. There are significant associations between AD and various pathogens, including Herpes simplex virus type 1 (HSV-1), Cytomegalovirus, and other Herpesviridae, Chlamydophila pneumoniae, spirochetes, Helicobacter pylori, and various periodontal pathogens. These pathogens are able to evade destruction by the host immune system, leading to persistent infection. Bacterial and viral DNA and RNA and bacterial ligands increase the expression of pro-inflammatory molecules and activate the innate and adaptive immune systems. Evidence demonstrates that pathogens directly and indirectly induce AD pathology, including amyloid-β (Aβ) accumulation, phosphorylation of tau protein, neuronal injury, and apoptosis. Chronic brain infection with HSV-1, Chlamydophila pneumoniae, and spirochetes results in complex processes that interact to cause a vicious cycle of uncontrolled neuroinflammation and neurodegeneration. Infections such as Cytomegalovirus, Helicobacter pylori, and periodontal pathogens induce production of systemic pro-inflammatory cytokines that may cross the blood-brain barrier to promote neurodegeneration. Pathogen-induced inflammation and central nervous system accumulation of Aβ damages the blood-brain barrier, which contributes to the pathophysiology of AD. Apolipoprotein E4 (ApoE4) enhances brain infiltration by pathogens including HSV-1 and Chlamydophila pneumoniae. ApoE4 is also associated with an increased pro-inflammatory response by the immune system. Potential antimicrobial treatments for AD are discussed, including the rationale for antiviral and antibiotic clinical trials.
Collapse
Affiliation(s)
- Steven A Harris
- St. Vincent Medical Group, Northside Internal Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
183
|
Allen HB. Alzheimer's Disease: Assessing the Role of Spirochetes, Biofilms, the Immune System, and Amyloid-β with Regard to Potential Treatment and Prevention. J Alzheimers Dis 2016; 53:1271-6. [PMID: 27372648 PMCID: PMC5008232 DOI: 10.3233/jad-160388] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2016] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an infectious disease caused by spirochetes, and these spirochetes form biofilms, which attract the innate immune system. The innate immune system first responder, Toll-like receptor 2, generates both NF-κB and TNF-α which try to kill the spirochetes in the biofilm, but cannot penetrate the "slime". NF-κB is also responsible for the generation of amyloid-β (Aβ) which itself is anti-microbial. Aβ cannot penetrate the biofilm either, and its accumulation leads to destruction of the cerebral neurocircuitry. Treatment with penicillin (as in tertiary syphilis, the comparator to AD) is outlined; a biofilm dispersing agent may need to be added to the protocol.
Collapse
Affiliation(s)
- Herbert B. Allen
- Department of Dermatology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
184
|
Szekeres M, Ivitz E, Datki Z, Kálmán J, Pákáski M, Várhelyi ZP, Klivényi P, Zadori D, Somogyvári F, Szolnoki Z, Vécsei L, Mándi Y. Relevance of defensin β-2 and α defensins (HNP1-3) in Alzheimer's disease. Psychiatry Res 2016; 239:342-5. [PMID: 27082275 DOI: 10.1016/j.psychres.2016.03.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/25/2016] [Indexed: 01/29/2023]
Abstract
The DEFB4 gene copy numbers were investigated in 206 AD patients and in 250 controls. The levels of the human defensin β-2 (hBD2) and α-defensins (HNP 1-3) in the sera and in the cerebrospinal fluid (CSF) of the patients and the controls were determined. Higher copy numbers of the DEFB4 gene was observed in AD patients as compared with the controls. The levels of hBD-2 and HNP 1-3 were significantly elevated in the sera and in the CSF of the AD patients These data suggest that both defensin β-2 and α-defensins have potential role in the development of AD.
Collapse
Affiliation(s)
- Martha Szekeres
- Department of Medical Microbiology and Immunobiology University of Szeged, Dom ter 10, Szeged 6725, Hungary
| | - Eszter Ivitz
- Department of Psychiatry Faculty of Medicine Albert Szent-Györgyi Clinical Centre University of Szeged, Kálvária Ave 57, Szeged 6724, Hungary
| | - Zsolt Datki
- Department of Psychiatry Faculty of Medicine Albert Szent-Györgyi Clinical Centre University of Szeged, Kálvária Ave 57, Szeged 6724, Hungary
| | - János Kálmán
- Department of Psychiatry Faculty of Medicine Albert Szent-Györgyi Clinical Centre University of Szeged, Kálvária Ave 57, Szeged 6724, Hungary
| | - Magdolna Pákáski
- Department of Psychiatry Faculty of Medicine Albert Szent-Györgyi Clinical Centre University of Szeged, Kálvária Ave 57, Szeged 6724, Hungary
| | - Zoltán P Várhelyi
- Department of Psychiatry Faculty of Medicine Albert Szent-Györgyi Clinical Centre University of Szeged, Kálvária Ave 57, Szeged 6724, Hungary
| | - Péter Klivényi
- Department of Neurology Faculty of Medicine Albert Szent-Györgyi Clinical Centre University of Szeged, Semmelweis u. 6, Szeged 6725 Hungary
| | - Dénes Zadori
- Department of Neurology Faculty of Medicine Albert Szent-Györgyi Clinical Centre University of Szeged, Semmelweis u. 6, Szeged 6725 Hungary
| | - Ferenc Somogyvári
- Department of Medical Microbiology and Immunobiology University of Szeged, Dom ter 10, Szeged 6725, Hungary
| | - Zoltán Szolnoki
- Department of Neurology and Cerebrovascular Diseases Pándy Kálmán County Hospital, Semmelweis u. 5, Gyula 5700 Hungary
| | - László Vécsei
- Department of Neurology Faculty of Medicine Albert Szent-Györgyi Clinical Centre University of Szeged, Semmelweis u. 6, Szeged 6725 Hungary
| | - Yvette Mándi
- Department of Medical Microbiology and Immunobiology University of Szeged, Dom ter 10, Szeged 6725, Hungary.
| |
Collapse
|
185
|
Forrester JD, Kugeler KJ, Perea AE, Pastula DM, Mead PS. No Geographic Correlation between Lyme Disease and Death Due to 4 Neurodegenerative Disorders, United States, 2001-2010. Emerg Infect Dis 2016; 21:2036-9. [PMID: 26488307 PMCID: PMC4622257 DOI: 10.3201/eid2111.150778] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Death rates for these disorders were not associated with incidence of confirmed Lyme disease cases. Associations between Lyme disease and certain neurodegenerative diseases have been proposed, but supportive evidence for an association is lacking. Similar geographic distributions would be expected if 2 conditions were etiologically linked. Thus, we compared the distribution of Lyme disease cases in the United States with the distributions of deaths due to Alzheimer disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and Parkinson disease; no geographic correlations were identified. Lyme disease incidence per US state was not correlated with rates of death due to ALS, MS, or Parkinson disease; however, an inverse correlation was detected between Lyme disease and Alzheimer disease. The absence of a positive correlation between the geographic distribution of Lyme disease and the distribution of deaths due to Alzheimer disease, ALS, MS, and Parkinson disease provides further evidence that Lyme disease is not associated with the development of these neurodegenerative conditions.
Collapse
|
186
|
Miklossy J, McGeer PL. Common mechanisms involved in Alzheimer's disease and type 2 diabetes: a key role of chronic bacterial infection and inflammation. Aging (Albany NY) 2016; 8:575-88. [PMID: 26961231 PMCID: PMC4925815 DOI: 10.18632/aging.100921] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/20/2016] [Indexed: 12/30/2022]
Abstract
Strong epidemiologic evidence and common molecular mechanisms support an association between Alzheimer's disease (AD) and type 2-diabetes. Local inflammation and amyloidosis occur in both diseases and are associated with periodontitis and various infectious agents. This article reviews the evidence for the presence of local inflammation and bacteria in type 2 diabetes and discusses host pathogen interactions in chronic inflammatory disorders. Chlamydophyla pneumoniae, Helicobacter pylori and spirochetes are demonstrated in association with dementia and brain lesions in AD and islet lesions in type 2 diabetes. The presence of pathogens in host tissues activates immune responses through Toll-like receptor signaling pathways. Evasion of pathogens from complement-mediated attack results in persistent infection, inflammation and amyloidosis. Amyloid beta and the pancreatic amyloid called amylin bind to lipid bilayers and produce Ca(2+) influx and bacteriolysis. Similarly to AD, accumulation of amylin deposits in type 2 diabetes may result from an innate immune response to chronic bacterial infections, which are known to be associated with amyloidosis. Further research based on an infectious origin of both AD and type 2 diabetes may lead to novel treatment strategies.
Collapse
Affiliation(s)
- Judith Miklossy
- International Alzheimer Research Centre, Prevention Alzheimer International Foundation, Martigny-Croix, Switzerland
| | - Patrick L. McGeer
- Kinsmen Laboratory of Neurological Research, The University of British Columbia, Vancouver, B.C, Canada
| |
Collapse
|
187
|
Underly R, Song MS, Dunbar GL, Weaver CL. Expression of Alzheimer-Type Neurofibrillary Epitopes in Primary Rat Cortical Neurons Following Infection with Enterococcus faecalis. Front Aging Neurosci 2016; 7:259. [PMID: 26834627 PMCID: PMC4720002 DOI: 10.3389/fnagi.2015.00259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/24/2015] [Indexed: 11/13/2022] Open
Abstract
The neurofibrillary tau pathology and amyloid deposits seen in Alzheimer’s disease (AD) also have been seen in bacteria-infected brains. However, few studies have examined the role of these bacteria in the generation of tau pathology. One suggested link between infection and AD is edentulism, the complete loss of teeth. Edentulism can result from chronic periodontal disease due to infection by Enterococcus faecalis. The current study assessed the ability to generate early Alzheimer-like neurofibrillary epitopes in primary rat cortical neurons through bacterial infection by E. faecalis. Seven-day old cultured neurons were infected with E. faecalis for 24 and 48 h. An upward molecular weight shift in tau by Western blotting (WB) and increased appearance of tau reactivity in cell bodies and degenerating neurites was found in the 48 h infection group for the antibody CP13 (phospho-Serine 202). A substantial increase in reactivity of Alz-50 was seen at 24 and 48 h after infection. Furthermore, extensive microtubule-associated protein 2 (MAP2) reactivity also was seen at 24 and 48 h post-infection. Our preliminary findings suggest a potential link between E. faecalis infection and intracellular changes that may help facilitate early AD-like neurofibrillary pathology.
Highlights Enterococcus faecalis used in the generation of AD neurofibrillary epitopes in rat. Infection increases Alz-50, phospho-Serine 202 tau, and MAP2 expression. Infection by Enterococcus may play a role in early Alzheimer neurofibrillary changes.
Collapse
Affiliation(s)
- Robert Underly
- Department of Psychology, Saginaw Valley State University University Center, MI, USA
| | | | - Gary L Dunbar
- Field Neurosciences InstituteSaginaw, MI, USA; Department of Psychology, Central Michigan UniversityMount Pleasant, MI, USA
| | - Charles L Weaver
- Department of Health Sciences, Saginaw Valley State University University Center, MI, USA
| |
Collapse
|
188
|
Kell DB, Kenny LC. A Dormant Microbial Component in the Development of Preeclampsia. Front Med (Lausanne) 2016; 3:60. [PMID: 27965958 PMCID: PMC5126693 DOI: 10.3389/fmed.2016.00060] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/04/2016] [Indexed: 12/12/2022] Open
Abstract
Preeclampsia (PE) is a complex, multisystem disorder that remains a leading cause of morbidity and mortality in pregnancy. Four main classes of dysregulation accompany PE and are widely considered to contribute to its severity. These are abnormal trophoblast invasion of the placenta, anti-angiogenic responses, oxidative stress, and inflammation. What is lacking, however, is an explanation of how these themselves are caused. We here develop the unifying idea, and the considerable evidence for it, that the originating cause of PE (and of the four classes of dysregulation) is, in fact, microbial infection, that most such microbes are dormant and hence resist detection by conventional (replication-dependent) microbiology, and that by occasional resuscitation and growth it is they that are responsible for all the observable sequelae, including the continuing, chronic inflammation. In particular, bacterial products such as lipopolysaccharide (LPS), also known as endotoxin, are well known as highly inflammagenic and stimulate an innate (and possibly trained) immune response that exacerbates the inflammation further. The known need of microbes for free iron can explain the iron dysregulation that accompanies PE. We describe the main routes of infection (gut, oral, and urinary tract infection) and the regularly observed presence of microbes in placental and other tissues in PE. Every known proteomic biomarker of "preeclampsia" that we assessed has, in fact, also been shown to be raised in response to infection. An infectious component to PE fulfills the Bradford Hill criteria for ascribing a disease to an environmental cause and suggests a number of treatments, some of which have, in fact, been shown to be successful. PE was classically referred to as endotoxemia or toxemia of pregnancy, and it is ironic that it seems that LPS and other microbial endotoxins really are involved. Overall, the recognition of an infectious component in the etiology of PE mirrors that for ulcers and other diseases that were previously considered to lack one.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of Chemistry, The University of Manchester, Manchester, UK
- The Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals, The University of Manchester, Manchester, UK
- *Correspondence: Douglas B. Kell,
| | - Louise C. Kenny
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland
- Department of Obstetrics and Gynecology, University College Cork, Cork, Ireland
| |
Collapse
|
189
|
Scott JD, Foley JE, Clark KL, Anderson JF, Durden LA, Manord JM, Smith ML. Established Population of Blacklegged Ticks with High Infection Prevalence for the Lyme Disease Bacterium, Borrelia burgdorferi Sensu Lato, on Corkscrew Island, Kenora District, Ontario. Int J Med Sci 2016; 13:881-891. [PMID: 27877080 PMCID: PMC5118759 DOI: 10.7150/ijms.16922] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/26/2016] [Indexed: 12/24/2022] Open
Abstract
We document an established population of blacklegged ticks, Ixodes scapularis, on Corkscrew Island, Kenora District, Ontario, Canada. Primers of the outer surface protein A (OspA) gene, the flagellin (fla) gene, and the flagellin B (flaB) gene were used in the PCR assays to detect Borrelia burgdorferi sensu lato (s.l.), the Lyme disease bacterium. In all, 60 (73%) of 82 adult I. scapularis, were infected with B. burgdorferi s.l. As well, 6 (43%) of 14 unfed I. scapularis nymphs were positive for B. burgdorferi s.l. An I. scapularis larva was also collected from a deer mouse, and several unfed larvae were gathered by flagging leaf litter. Based on DNA sequencing of randomly selected Borrelia amplicons from six nymphal and adult I. scapularis ticks, primers for the flagellin (fla) and flagellin B (flaB) genes reveal the presence of B. burgdorferi sensu stricto (s.s.), a genospecies pathogenic to humans and certain domestic animals. We collected all 3 host-feeding life stages of I. scapularis in a single year, and report the northernmost established population of I. scapularis in Ontario. Corkscrew Island is hyperendemic for Lyme disease and has the highest prevalence of B. burgdorferi s.l. for any established population in Canada. Because of this very high infection prevalence, this population of I. scapularis has likely been established for decades. Of epidemiological significance, cottage owners, island visitors, outdoors enthusiasts, and medical professionals must be vigilant that B. burgdorferi s.l.-infected I. scapularis on Corkscrew Island pose a serious public health risk.
Collapse
Affiliation(s)
- John D Scott
- Lyme Ontario, Research Division, 365 St. David St. South, Fergus, Ontario, Canada N1M 2L7
| | - Janet E Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California 95616, United States of America
| | - Kerry L Clark
- Epidemiology & Environmental Health, Department of Public Health, University of North Florida, 1 UNF Drive, Jacksonville, Florida 32224, United States of America
| | - John F Anderson
- Department of Entomology and Center for Vector Ecology and Zoonotic Diseases. The Connecticut Agricultural Experiment Station, P.O. Box 1106, New Haven, Connecticut 06504-1106, United States of America
| | - Lance A Durden
- Department of Biology, Georgia Southern University, 4324 Old Register Road, Statesboro, Georgia 30458, United States of America
| | - Jodi M Manord
- Epidemiology & Environmental Health, Department of Public Health, University of North Florida, 1 UNF Drive, Jacksonville, Florida 32224, United States of America
| | - Morgan L Smith
- Epidemiology & Environmental Health, Department of Public Health, University of North Florida, 1 UNF Drive, Jacksonville, Florida 32224, United States of America
| |
Collapse
|
190
|
Chan HL, Li H, Lui LM. Quasi-conformal statistical shape analysis of hippocampal surfaces for Alzheimer׳s disease analysis. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.10.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
191
|
Scott JD, Anderson JF, Durden LA, Smith ML, Manord JM, Clark KL. Prevalence of the Lyme Disease Spirochete, Borrelia burgdorferi, in Blacklegged Ticks, Ixodes scapularis at Hamilton-Wentworth, Ontario. Int J Med Sci 2016; 13:316-24. [PMID: 27226771 PMCID: PMC4879763 DOI: 10.7150/ijms.14552] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 03/21/2016] [Indexed: 01/24/2023] Open
Abstract
Lyme disease has emerged as a major health concern in Canada, where the etiological agent, Borrelia burgdorferi sensu lato (s.l.), a spirochetal bacterium, is typically spread by the bite of certain ticks. This study explores the presence of B. burgdorferi s.l. in blacklegged ticks, Ixodes scapularis, collected at Dundas, Ontario (a locality within the region of Hamilton-Wentworth). Using passive surveillance, veterinarians and pet groomers were asked to collect blacklegged ticks from dogs and cats with no history of travel. Additionally, I. scapularis specimens were submitted from local residents and collected by flagging. Overall, 12 (41%) of 29 blacklegged ticks were infected with B. burgdorferi s.l. Using polymerase chain reaction (PCR) and DNA sequencing, two borrelial amplicons were characterized as B. burgdorferi sensu stricto (s.s.), a genospecies pathogenic to humans and certain domestic animals. Notably, three different vertebrate hosts each had two engorged I. scapularis females removed on the same day and, likewise, one cat had three repeat occurrences of this tick species. These multiple infestations suggest that a population of I. scapularis may be established in this area. The local public health unit has been underreporting the presence of B. burgdorferi s.l.-infected I. scapularis in the area encompassing Dundas. Our findings raise concerns about the need to erect tick warning signs in parkland areas. Veterinarians, medical professionals, public health officials, and the general public must be vigilant that Lyme disease-carrying blacklegged ticks pose a public health risk in the Dundas area and the surrounding Hamilton-Wentworth region.
Collapse
Affiliation(s)
- John D Scott
- 1. Research Division, Lyme Ontario, Fergus, Ontario, Canada N1M 2L7
| | - John F Anderson
- 2. Department of Entomology and Center for Vector Ecology and Zoonotic Diseases. The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA 06511
| | - Lance A Durden
- 3. Department of Biology, Georgia Southern University, Statesboro, Georgia, USA 30458
| | - Morgan L Smith
- 4. Environmental Epidemiology Research Laboratory, Department of Public Health, University of North Florida, Jacksonville, Florida, USA 32224
| | - Jodi M Manord
- 4. Environmental Epidemiology Research Laboratory, Department of Public Health, University of North Florida, Jacksonville, Florida, USA 32224
| | - Kerry L Clark
- 4. Environmental Epidemiology Research Laboratory, Department of Public Health, University of North Florida, Jacksonville, Florida, USA 32224
| |
Collapse
|
192
|
Affiliation(s)
- Sungmi Choi
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Korea
| | - Sang-Heon Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hana Yi
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Korea
- School of Biosystem and Biomedical Science, Korea University, Seoul, Korea
| |
Collapse
|
193
|
The Lipoxygenases: Their Regulation and Implication in Alzheimer's Disease. Neurochem Res 2015; 41:243-57. [PMID: 26677076 PMCID: PMC4773476 DOI: 10.1007/s11064-015-1776-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/06/2015] [Accepted: 11/14/2015] [Indexed: 02/03/2023]
Abstract
Inflammatory processes and alterations of lipid metabolism play a crucial role in Alzheimer’s disease (AD) and other neurodegenerative disorders. Polyunsaturated fatty acids (PUFA) metabolism impaired by cyclooxygenases (COX-1, COX-2), which are responsible for formation of several eicosanoids, and by lipoxygenases (LOXs) that catalyze the addition of oxygen to linolenic, arachidonic (AA), and docosahexaenoic acids (DHA) and other PUFA leading to formation of bioactive lipids, significantly affects the course of neurodegenerative diseases. Among several isoforms, 5-LOX and 12/15-LOX are especially important in neuroinflammation/neurodegeneration. These two LOXs are regulated by substrate concentration and availability, and by phosphorylation/dephosphorylation through protein kinases PKA, PKC and MAP-kinases, including ERK1/ERK2 and p38. The protein/protein interaction also is involved in the mechanism of 5-LOX regulation through FLAP protein and coactosin-like protein. Moreover, non-heme iron and calcium ions are potent regulators of LOXs. The enzyme activity significantly depends on the cell redox state and is differently regulated by various signaling pathways. 5-LOX and 12/15-LOX convert linolenic acid, AA, and DHA into several bioactive compounds e.g. hydroperoxyeicosatetraenoic acids (5-HPETE, 12S-HPETE, 15S-HPETE), which are reduced to corresponding HETE compounds. These enzymes synthesize several bioactive lipids, e.g. leucotrienes, lipoxins, hepoxilins and docosahexaenoids. 15-LOX is responsible for DHA metabolism into neuroprotectin D1 (NPD1) with significant antiapoptotic properties which is down-regulated in AD. In this review, the regulation and impact of 5-LOX and 12/15-LOX in the pathomechanism of AD is discussed. Moreover, we describe the role of several products of LOXs, which may have significant pro- or anti-inflammatory activity in AD, and the cytoprotective effects of LOX inhibitors.
Collapse
|
194
|
Rodríguez Coyago ML, Sánchez Temiño VE. [Periodontitis determining the onset and progression of Huntington's disease: review of the literature]. Medwave 2015; 15:e6293. [PMID: 26569646 DOI: 10.5867/medwave.2015.09.6293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 10/19/2015] [Indexed: 11/27/2022] Open
Abstract
Huntington's disease is a neurodegenerative disorder caused by the expansion of a CAG triplet in the huntingtin gene. It presents with physical, cognitive and psychiatric impairment at different ages in the adult, and has a fatal prognosis. Other than the number of triplet repetitions, there seem to be other factors that explain the onset of this disease at an earlier age. It is well known that neuroinflammation has a key role in neurodegenerative disorders; Huntington's disease is not an exception to that rule. Neuroinflammation exacerbates neuronal damage produced by mutation, by initiating aberrant activation of microglia cell, as well as astrocyte and dendritic cell dysfunction; also compromising the blood-brain barrier and activating the complement cascade. The latter as a direct and indirect effect of the mutation and other stimuli such as chronic infections. In this study, periodontitis is presented as a model of chronic oral infection and a systemic inflammation source. We hypothesize the potential role of periodontitis in Huntington's disease, and the mechanisms by which it contributes to the early onset and progress of the disease. We considered experimental studies, systematic reviews, meta-analyses, published in both Spanish and English, obtained from the PubMed and SciELO databases. There are various mechanisms that generate brain inflammation in these patients; mechanisms of innate immunity being especially prominent. Chronic oral-dental infections, such as periodontal disease, may be an exacerbating factor that adds to the neuroinflammation of Huntington's disease.
Collapse
Affiliation(s)
- María Lourdes Rodríguez Coyago
- Facultad de Bioquímica y Farmacia, Universidad de Buenos Aires, Buenos Aires, Argentina; Centro de Micología IMPAM, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Facultad de Odontología, Universidad de Cuenca, Cuenca, Ecuador. Address: Avenida Callao 650, Capital Federal, Buenos Aires, Argentina.
| | - Victoria Emilia Sánchez Temiño
- Facultad de Bioquímica y Farmacia, Universidad de Buenos Aires, Buenos Aires, Argentina; Centro de Investigación en Porfirias y Porfirinas (CIPYP), Hospital de Clínicas, Buenos Aires, Argentina
| |
Collapse
|
195
|
Abstract
Neurocognitive decline and delirium, frailty, incontinence, falls, hearing and vision impairment, medication compliance and pharmacokinetics, skin breakdown, impaired sleep and rest are regarded as geriatric giants by gerontologists, geriatricians and nursing home staff. As these are all interrelated in the elderly, failure to act on one can impact on the others. However, the implications of poor oral health have for too long been ignored and deserve equal status. Mouth pain can be devastating for the elderly, compound psychosocial problems, frustrate carers and nursing home staff and disrupt family dynamics. As appearance, function and comfort suffer, so may a person's self-esteem and confidence. The contributing factors for poor oral health such as rapid dental decay, acute and chronic periodontal infections and compromised systemic health on a background of a dry mouth, coupled with xerostomia-inducing medications, reduced fine motor function, declining cognition and motivation will not only lead to an increase in both morbidity and mortality but also impact on quality of life.
Collapse
Affiliation(s)
- P Foltyn
- Dental Department, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| |
Collapse
|
196
|
Olsen I, Singhrao SK. Can oral infection be a risk factor for Alzheimer's disease? J Oral Microbiol 2015; 7:29143. [PMID: 26385886 PMCID: PMC4575419 DOI: 10.3402/jom.v7.29143] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 07/21/2015] [Accepted: 08/21/2015] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a scourge of longevity that will drain enormous resources from public health budgets in the future. Currently, there is no diagnostic biomarker and/or treatment for this most common form of dementia in humans. AD can be of early familial-onset or sporadic with a late-onset. Apart from the two main hallmarks, amyloid-beta and neurofibrillary tangles, inflammation is a characteristic feature of AD neuropathology. Inflammation may be caused by a local central nervous system insult and/or by peripheral infections. Numerous microorganisms are suspected in AD brains ranging from bacteria (mainly oral and non-oral Treponema species), viruses (herpes simplex type I), and yeasts (Candida species). A causal relationship between periodontal pathogens and non-oral Treponema species of bacteria has been proposed via the amyloid-beta and inflammatory links. Periodontitis constitutes a peripheral oral infection that can provide the brain with intact bacteria and virulence factors and inflammatory mediators due to daily, transient bacteremias. If and when genetic risk factors meet environmental risk factors in the brain, disease is expressed, in which neurocognition may be impacted, leading to the development of dementia. To achieve the goal of finding a diagnostic biomarker and possible prophylactic treatment for AD, there is an initial need to solve the etiological puzzle contributing to its pathogenesis. This review therefore addresses oral infection as the plausible etiology of late-onset AD (LOAD).
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway;
| | - Sim K Singhrao
- Oral & Dental Sciences Research Group, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, UK
| |
Collapse
|
197
|
McManus M, Cincotta A. Effects of Borrelia on host immune system: Possible consequences for diagnostics. ADVANCES IN INTEGRATIVE MEDICINE 2015. [DOI: 10.1016/j.aimed.2014.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
198
|
Nakanishi H, Wu Z. The downward spiral of periodontitis and diabetes in Alzheimer׳s disease: Extending healthy life expectancy through oral health. J Oral Biosci 2015. [DOI: 10.1016/j.job.2015.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
199
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 PMCID: PMC4642849 DOI: 10.12688/f1000research.6709.2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
200
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 DOI: 10.12688/f1000research.6709.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|