151
|
Verstrepen L, Verhelst K, Carpentier I, Beyaert R. TAX1BP1, a ubiquitin-binding adaptor protein in innate immunity and beyond. Trends Biochem Sci 2011; 36:347-54. [DOI: 10.1016/j.tibs.2011.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 03/19/2011] [Accepted: 03/22/2011] [Indexed: 12/18/2022]
|
152
|
Ubiquitin-specific peptidase 20 targets TRAF6 and human T cell leukemia virus type 1 tax to negatively regulate NF-kappaB signaling. J Virol 2011; 85:6212-9. [PMID: 21525354 DOI: 10.1128/jvi.00079-11] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
NF-κB plays a key role in innate and acquired immunity. Its activity is regulated through intricate signaling networks. Persistent or excessive activation of NF-κB induces diseases, such as autoimmune disorders and malignant neoplasms. Infection by human T cell leukemia virus type 1 (HTLV-1) causes a fatal hematopoietic malignancy termed adult T cell leukemia (ATL). The HTLV-1 viral oncoprotein Tax functions pivotally in leukemogenesis through its potent activation of NF-κB. Recent findings suggest that protein ubiquitination is crucial for proper regulation of NF-κB signaling and for Tax activity. Here, we report that ubiquitin-specific peptidase USP20 deubiquitinates TRAF6 and Tax and suppresses interleukin 1β (IL-1β)- and Tax-induced NF-κB activation. Our results point to USP20 as a key negative regulator of Tax-induced NF-κB signaling.
Collapse
|
153
|
Abstract
A determinant of human T-lymphotropic virus-1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) development is the HTLV-1-infected cell burden. Viral proteins Tax and HBZ, encoded by the sense and antisense strands of the pX region, respectively, play key roles in HTLV-1 persistence. Tax drives CD4(+)-T cell clonal expansion and is the immunodominant viral antigen recognized by the immune response. Valproate (2-n-propylpentanoic acid, VPA), a histone deacetylase inhibitor, was thought to trigger Tax expression, thereby exposing the latent HTLV-1 reservoir to immune destruction. We evaluated the impact of VPA on Tax, Gag, and HBZ expressions in cultured lymphocytes from HTLV-1 asymptomatic carriers and HAM/TSP patients. Approximately one-fifth of provirus-positive CD4(+) T cells spontaneously became Tax-positive, but this fraction rose to two-thirds of Tax-positive-infected cells when cultured with VPA. Valproate enhanced Gag-p19 release. Tax- and Gag-mRNA levels peaked spontaneously, before declining concomitantly to HBZ-mRNA increase. VPA enhanced and prolonged Tax-mRNA expression, whereas it blocked HBZ expression. Our findings suggest that, in addition to modulating Tax expression, another mechanism involving HBZ repression might determine the outcome of VPA treatment on HTLV-1-infected-cell proliferation and survival.
Collapse
|
154
|
The tumor marker Fascin is strongly induced by the Tax oncoprotein of HTLV-1 through NF-κB signals. Blood 2011; 117:3609-12. [DOI: 10.1182/blood-2010-09-305805] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractOncogenic transformation of CD4+ T cells by human T-cell lymphotropic virus type 1 (HTLV-1) is understood as the initial step to adult T-cell leukemia/lymphoma, a process that is mainly initiated by perturbation of cellular signaling by the viral Tax oncoprotein, a potent transcriptional regulator. In search of novel biomarkers with relevance to oncogenesis, we identified the tumor marker and actin-bundling protein Fascin (FSCN1) to be specifically and strongly up-regulated in both HTLV-1–transformed and adult T-cell leukemia/lymphoma patient-derived CD4+ T cells. Fascin is important for migration and metastasis in various types of cancer. Here we report that a direct link can exist between a single viral oncoprotein and Fascin expression, as the viral oncoprotein Tax was sufficient to induce high levels of Fascin. Nuclear factor-κB signals were important for Tax-mediated transcriptional regulation of Fascin in T cells. This suggests that Fascin up-regulation by Tax contributes to the development of HTLV-1–associated pathogenesis.
Collapse
|
155
|
Post-formulation peptide drug loading of nanostructures for metered control of NF-κB signaling. Biomaterials 2011; 32:231-8. [PMID: 20864161 DOI: 10.1016/j.biomaterials.2010.08.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 08/27/2010] [Indexed: 11/20/2022]
Abstract
The NF-κB signaling pathway is an attractive therapeutic target for cancer and chronic inflammatory diseases. In this study, we report the first strategy to achieve NF-κB inhibition with a peptide inhibitor loaded into perfluorocarbon nanoparticles with the use of a simple post-formulation mixing approach that utilizes an amphipathic cationic fusion peptide linker strategy for cargo insertion. A stable peptide-nanoparticle complex is formed (dissociation constant ∼ 0.14 μM) and metered inhibition of both NF-κB signaling and downstream gene expression (ICAM-1) is demonstrated in leukemia/lymphoma cells. This post-formulation cargo loading strategy enables the use of a generic synthetic or biologic lipidic nanostructure for drug conjugation that permits flexible specification of types and doses of peptides and/or other materials as diagnostic or therapeutic agents for metered incorporation and cellular delivery.
Collapse
|
156
|
Zheng ZM. Viral oncogenes, noncoding RNAs, and RNA splicing in human tumor viruses. Int J Biol Sci 2010; 6:730-55. [PMID: 21152115 PMCID: PMC2999850 DOI: 10.7150/ijbs.6.730] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 11/27/2010] [Indexed: 12/13/2022] Open
Abstract
Viral oncogenes are responsible for oncogenesis resulting from persistent virus infection. Although different human tumor viruses express different viral oncogenes and induce different tumors, their oncoproteins often target similar sets of cellular tumor suppressors or signal pathways to immortalize and/or transform infected cells. Expression of the viral E6 and E7 oncogenes in papillomavirus, E1A and E1B oncogenes in adenovirus, large T and small t antigen in polyomavirus, and Tax oncogene in HTLV-1 are regulated by alternative RNA splicing. However, this regulation is only partially understood. DNA tumor viruses also encode noncoding RNAs, including viral microRNAs, that disturb normal cell functions. Among the determined viral microRNA precursors, EBV encodes 25 from two major clusters (BART and BHRF1), KSHV encodes 12 from a latent region, human polyomavirus MCV produce only one microRNA from the late region antisense to early transcripts, but HPVs appears to produce no viral microRNAs.
Collapse
Affiliation(s)
- Zhi-Ming Zheng
- Tumor Virus RNA Biology Laboratory, HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
157
|
The tumor suppressor gene WWOX links the canonical and noncanonical NF-κB pathways in HTLV-I Tax-mediated tumorigenesis. Blood 2010; 117:1652-61. [PMID: 21115974 DOI: 10.1182/blood-2010-08-303073] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Both the canonical and noncanonical nuclear factor κB (NF-κB) pathways have been linked to tumorigenesis. However, it remains unknown whether and how the 2 signaling pathways cooperate during tumorigenesis. We report that inhibition of the noncanonical NF-κB pathway significantly delays tumorigenesis mediated by the viral oncoprotein Tax. One function of noncanonical NF-κB activation was to repress expression of the WWOX tumor suppressor gene. Notably, WWOX specifically inhibited Tax-induced activation of the canonical, but not the noncanonical NF-κB pathway. Mechanistic studies indicated that WWOX blocked Tax-induced inhibitors of κB kinaseα (IKKα) recruitment to RelA and subsequent RelA phosphorylation at S536. In contrast, WWOX Y33R, a mutant unable to block the IKKα recruitment and RelA phosphorylation, lost the ability to inhibit Tax-mediated tumorigenesis. These data provide one important mechanism by which Tax coordinates the 2 NF-κB pathways for tumorigenesis. These data also suggest a novel role of WWOX in NF-κB regulation and viral tumorigenesis.
Collapse
|
158
|
Human T-cell leukemia virus type 1 (HTLV-1) and leukemic transformation: viral infectivity, Tax, HBZ and therapy. Oncogene 2010; 30:1379-89. [PMID: 21119600 DOI: 10.1038/onc.2010.537] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) was the first retrovirus discovered to be causative of a human cancer, adult T-cell leukemia. The transforming entity of HTLV-1 has been attributed to the virally-encoded oncoprotein, Tax. Unlike the v-onc proteins encoded by other oncogenic animal retroviruses that transform cells, Tax does not originate from a c-onc counterpart. In this article, we review progress in our understanding of HTLV-1 infectivity, cellular transformation, anti-sense transcription and therapy, 30 years after the original discovery of this virus.
Collapse
|
159
|
Jeang KT. HTLV-1 and adult T-cell leukemia: insights into viral transformation of cells 30 years after virus discovery. J Formos Med Assoc 2010; 109:688-93. [PMID: 20970064 DOI: 10.1016/s0929-6646(10)60112-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 08/02/2010] [Accepted: 08/02/2010] [Indexed: 12/22/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), the etiological agent of adult T-cell leukemia, was the first human retrovirus to be isolated. It is now the 30(th) anniversary of the initial discovery of HTLV-1. This review discusses recent insights into the role of the HTLV-1 Tax oncoprotein in cellular proliferation and the abrogation of cellular checkpoints that lead to disease progression.
Collapse
Affiliation(s)
- Kuan-Teh Jeang
- National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
160
|
Olière S, Hernandez E, Lézin A, Arguello M, Douville R, Nguyen TLA, Olindo S, Panelatti G, Kazanji M, Wilkinson P, Sékaly RP, Césaire R, Hiscott J. HTLV-1 evades type I interferon antiviral signaling by inducing the suppressor of cytokine signaling 1 (SOCS1). PLoS Pathog 2010; 6:e1001177. [PMID: 21079688 PMCID: PMC2973829 DOI: 10.1371/journal.ppat.1001177] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 10/01/2010] [Indexed: 12/25/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is the etiologic agent of Adult T cell Leukemia (ATL) and the neurological disorder HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Although the majority of HTLV-1–infected individuals remain asymptomatic carriers (AC) during their lifetime, 2–5% will develop either ATL or HAM/TSP, but never both. To better understand the gene expression changes in HTLV-1-associated diseases, we examined the mRNA profiles of CD4+ T cells isolated from 7 ATL, 12 HAM/TSP, 11 AC and 8 non-infected controls. Using genomic approaches followed by bioinformatic analysis, we identified gene expression pattern characteristic of HTLV-1 infected individuals and particular disease states. Of particular interest, the suppressor of cytokine signaling 1—SOCS1—was upregulated in HAM/TSP and AC patients but not in ATL. Moreover, SOCS1 was positively correlated with the expression of HTLV-1 mRNA in HAM/TSP patient samples. In primary PBMCs transfected with a HTLV-1 proviral clone and in HTLV-1-transformed MT-2 cells, HTLV-1 replication correlated with induction of SOCS1 and inhibition of IFN-α/β and IFN-stimulated gene expression. Targeting SOCS1 with siRNA restored type I IFN production and reduced HTLV-1 replication in MT-2 cells. Conversely, exogenous expression of SOCS1 resulted in enhanced HTLV-1 mRNA synthesis. In addition to inhibiting signaling downstream of the IFN receptor, SOCS1 inhibited IFN-β production by targeting IRF3 for ubiquitination and proteasomal degradation. These observations identify a novel SOCS1 driven mechanism of evasion of the type I IFN antiviral response against HTLV-1. Infection with HTLV-1 leads to the development of Adult T cell Leukemia (ATL) or the neurological disorder HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Although the majority of HTLV-1–infected individuals remain asymptomatic carriers (AC) during their lifetime, 2–5% will develop either ATL or HAM/TSP. Using gene expression profiling of CD4+ T lymphocytes from HTLV-1 infected patients, we identified Suppressor of cytokine signaling 1 (SOCS1) as being highly expressed in HAM/TSP and AC patients. SOCS1 expression positively correlated with the high HTLV-1 mRNA load that is characteristic of HAM/TSP patients. SOCS1 inhibited cellular antiviral signaling during HTLV-1 infection by degrading IRF3, an essential transcription factor in the interferon pathway. Our study reveals a novel evasion mechanism utilized by HTLV-1 that leads to increased retroviral replication, without triggering the innate immune response.
Collapse
Affiliation(s)
- Stéphanie Olière
- Molecular Oncology Group, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Zane L, Sibon D, Legras C, Lachuer J, Wierinckx A, Mehlen P, Delfau-Larue MH, Gessain A, Gout O, Pinatel C, Lançon A, Mortreux F, Wattel E. Clonal expansion of HTLV-1 positive CD8+ cells relies on cIAP-2 but not on c-FLIP expression. Virology 2010; 407:341-51. [DOI: 10.1016/j.virol.2010.07.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/11/2010] [Accepted: 07/16/2010] [Indexed: 10/19/2022]
|
162
|
Tareen SU, Emerman M. Human Trim5α has additional activities that are uncoupled from retroviral capsid recognition. Virology 2010; 409:113-20. [PMID: 21035162 DOI: 10.1016/j.virol.2010.09.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 07/05/2010] [Accepted: 09/17/2010] [Indexed: 12/31/2022]
Abstract
Trim5α is a host antiviral protein that recognizes incoming retroviral capsids in the cytoplasm and prevents productive infections. Although present in most mammals, the state of the Trim5 gene is dynamic in that primates have one copy with several splice variants, while rodents and cows have multiple copies. Mouse Trim30 (one of the mouse Trim5α homologs) has been shown to negatively regulate NF-kappaB activation by targeting upstream signaling intermediates TAB2 and TAB3 for degradation. We show that human Trim5α also affects levels of TAB2, resulting in abrogation of TAB2-dependent NF-kappaB activation. Surprisingly, unlike mouse Trim30, human and rhesus Trim5α are able to activate NF-kappaB-driven reporter gene expression in a dose-dependent manner. We show that Trim5α uses distinct domains for the distinct abilities of affecting TAB2 levels, regulating NF-kappaB, and recognizing retroviral capsids. Our results demonstrate functions of Trim5α that are not dependent on recognizing the retroviral capsid.
Collapse
Affiliation(s)
- Semih U Tareen
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
163
|
de Souza JG, da Fonseca FG, Martins ML, Martins CPS, de Carvalho LD, Coelho-dos-Reis JGA, Carneiro-Proietti ABF, Martins-Filho OA, Barbosa-Stancioli EF. Anti-Tax antibody levels in asymptomatic carriers, oligosymptomatic carriers, patients with rheumatologic disease or with HAM/TSP do not correlate with HTLV-1 proviral load. J Clin Virol 2010; 50:13-8. [PMID: 20951636 DOI: 10.1016/j.jcv.2010.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 09/08/2010] [Accepted: 09/14/2010] [Indexed: 11/16/2022]
Abstract
BACKGROUND HTLV-1 infects millions of people around the world and induces myelopathy (HAM/TSP), adult T-cell leukemia (ATL) or other inflammatory or rheumatologic diseases. The host-virus interaction causes asymptomatic carriers to develop HAM/TSP. Biomarkers are needed to predict patients who are at risk for HAM/TSP. Tax is highly immunogenic and is a major target protein recognized by cytotoxic T lymphocytes. Anti-Tax antibodies are involved in HAM/TSP pathogenesis. OBJECTIVES To assess anti-Tax IgG reactivity with a flow cytometry assay (FCA) using an infection/transfection system with Vaccinia virus and pLW44/Tax-expressing Tax and to correlate the anti-Tax response and the HTLV-1 proviral load. STUDY DESIGN : We enrolled 81 individuals: 9 HTLV-1 seronegative (NP) and 72 HTLV-1 positive (23 HTLV-1 asymptomatic carriers (AC), 12 oligosymptomatic patients (OL), 7 with rheumatologic diseases (DR) and 30 with HAM/TSP (HT)). Anti-Tax reactivity was assessed by FCA, and HTLV-1 proviral load was measured with real time PCR. RESULTS The HT and DR groups showed greater anti-Tax IgG reactivity (p<0.001 and p<0.05 comparing HT to the OL and AC group, respectively; p<0.05 comparing DR to the OL group), and the reactivity in the DR+HT group was significantly different when compared to the AC group (p<0.05) and to the OL group (p<0.001). The proviral load was higher in the HT group compared to the OL (p<0.001) and in the HT+DR group compared to OL (p<0.001). There was no correlation between anti-Tax IgG reactivity and proviral load in any of the HTLV-1-infected groups. CONCLUSION These findings suggest that although anti-Tax IgG reactivity and the HTLV-1 proviral load are important markers of the development of HTLV-1-associated diseases, their levels are not correlated.
Collapse
Affiliation(s)
- Jaqueline Gontijo de Souza
- Laboratório de Biologia de Microrganismos Intracelulares, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Du QS, Wang CH, Liao SM, Huang RB. Correlation analysis for protein evolutionary family based on amino acid position mutations and application in PDZ domain. PLoS One 2010; 5:e13207. [PMID: 20949088 PMCID: PMC2950854 DOI: 10.1371/journal.pone.0013207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 09/10/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND It has been widely recognized that the mutations at specific directions are caused by the functional constraints in protein family and the directional mutations at certain positions control the evolutionary direction of the protein family. The mutations at different positions, even distantly separated, are mutually coupled and form an evolutionary network. Finding the controlling mutative positions and the mutative network among residues are firstly important for protein rational design and enzyme engineering. METHODOLOGY A computational approach, namely amino acid position conservation-mutation correlation analysis (CMCA), is developed to predict mutually mutative positions and find the evolutionary network in protein family. The amino acid position mutative function, which is the foundational equation of CMCA measuring the mutation of a residue at a position, is derived from the MSA (multiple structure alignment) database of protein evolutionary family. Then the position conservation correlation matrix and position mutation correlation matrix is constructed from the amino acid position mutative equation. Unlike traditional SCA (statistical coupling analysis) approach, which is based on the statistical analysis of position conservations, the CMCA focuses on the correlation analysis of position mutations. CONCLUSIONS As an example the CMCA approach is used to study the PDZ domain of protein family, and the results well illustrate the distantly allosteric mechanism in PDZ protein family, and find the functional mutative network among residues. We expect that the CMCA approach may find applications in protein engineering study, and suggest new strategy to improve bioactivities and physicochemical properties of enzymes.
Collapse
Affiliation(s)
- Qi-Shi Du
- State Key Laboratory of Bioenergy Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China.
| | | | | | | |
Collapse
|
165
|
Association of HTLV Tax proteins with TAK1-binding protein 2 and RelA in calreticulin-containing cytoplasmic structures participates in Tax-mediated NF-κB activation. Virology 2010; 408:39-48. [PMID: 20875659 DOI: 10.1016/j.virol.2010.08.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/22/2010] [Accepted: 08/21/2010] [Indexed: 12/20/2022]
Abstract
HTLV-1 is more pathogenic than HTLV-2 despite having a similar genome and closely related transactivating oncoproteins. Both Tax-1 protein from HTLV-1 and Tax-2 from HTLV-2 activate the NF-κB pathway. The mechanisms involved in Tax-1 deregulation of this signalling pathway have been thoroughly investigated, but little is known about regulation by Tax-2. We have compared the interaction of Tax-1 and Tax-2 with two key NF-κB signalling factors: TAK1-binding protein 2 (TAB2), an adaptor involved in the activation of TAK1 kinase, and RelA, the active subunit of the canonical RelA/p50 NF-κB transcription factor. Tax-2 formed stable complexes with both RelA and TAB2. These two NF-κB factors colocalized with Tax proteins in dotted cytoplasmic structures targeted by calreticulin, a multi-process calcium-buffering chaperone. Co-expression of RelA and/or TAB2 markedly increased Tax-mediated NF-κB activation. These findings provide new insights into the role of RelA, TAB2 and Tax in the deregulation of the NF-κB pathway.
Collapse
|
166
|
Human T Lymphotropic Virus Type 1 (HTLV-1): Molecular Biology and Oncogenesis. Viruses 2010; 2:2037-2077. [PMID: 21994719 PMCID: PMC3185741 DOI: 10.3390/v2092037] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/25/2010] [Accepted: 09/15/2010] [Indexed: 12/13/2022] Open
Abstract
Human T lymphotropic viruses (HTLVs) are complex deltaretroviruses that do not contain a proto-oncogene in their genome, yet are capable of transforming primary T lymphocytes both in vitro and in vivo. There are four known strains of HTLV including HTLV type 1 (HTLV-1), HTLV-2, HTLV-3 and HTLV-4. HTLV-1 is primarily associated with adult T cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-2 is rarely pathogenic and is sporadically associated with neurological disorders. There have been no diseases associated with HTLV-3 or HTLV-4 to date. Due to the difference in the disease manifestation between HTLV-1 and HTLV-2, a clear understanding of their individual pathobiologies and the role of various viral proteins in transformation should provide insights into better prognosis and prevention strategies. In this review, we aim to summarize the data accumulated so far in the transformation and pathogenesis of HTLV-1, focusing on the viral Tax and HBZ and citing appropriate comparisons to HTLV-2.
Collapse
|
167
|
Abe M, Suzuki H, Nishitsuji H, Shida H, Takaku H. Interaction of human T-cell lymphotropic virus type I Rex protein with Dicer suppresses RNAi silencing. FEBS Lett 2010; 584:4313-8. [PMID: 20869963 DOI: 10.1016/j.febslet.2010.09.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/13/2010] [Accepted: 09/16/2010] [Indexed: 01/23/2023]
Abstract
Double-stranded RNAs suppress the expression of homologous genes through an evolutionarily conserved process called RNA interference (RNAi) or post-transcriptional gene silencing. A bidentate nuclease called Dicer has been implicated as the protein responsible for the production of short interfering RNAs (siRNAs). In our experiments, Rex overexpression reduced the efficiency of short hairpin RNA (shRNA)-mediated RNAi. The interaction of Dicer with Rex inhibited the conversion of shRNA to siRNA. These results suggest that the interaction of Dicer with HTLV-I Rex inhibits Dicer activity and thereby reduces the efficiency of the conversion of shRNA to siRNA.
Collapse
Affiliation(s)
- Makoto Abe
- Department of Life and Environmental Sciences, Chiba Institute of Technology, Narashino, Chiba, Japan
| | | | | | | | | |
Collapse
|
168
|
Abstract
Human T-cell leukemia virus type I (HTLV-I) encodes a Tax oncoprotein that has crucial roles in both virus replication and cell transformation. Our recent studies suggest that the counterbalance between HTLV-I/Tax and PDZ-LIM domain-containing protein PDLIM2 may determine the outcome of HTLV-I infection. Although HTLV-I represses PDLIM2 epigenetically and specifically in transformed cells, PDLIM2 shuttles Tax into the nuclear matrix for ubiquitination-mediated proteasomal degradation, thereby suppressing the transforming ability of HTLV-I. Here, we have further shown that PDLIM2 binds to Tax directly, which was mediated by a putative α-helix motif of PDLIM2 at amino acids 236-254. Consistently, selective disruption of this short-helix crippled PDLIM2 in shutting Tax to the nuclear matrix for ubiquitination-mediated degradation, therefore, PDLIM2 lost the ability in tumor suppression. Although the C-terminal LIM domain of PDLIM2 was not required for Tax binding, it was important for PDLIM2 to interact with the nuclear matrix. Accordingly, the LIM domain was essential for PDLIM2-mediated Tax repression. On the contrary, the N-terminal PDZ domain of PDLIM2 was dispensable for all these events, although the PDZ domain was involved in PDLIM2 binding to cytoskeleton. These studies dissect functional sequences within PDLIM2 and their distinct roles in Tax regulation.
Collapse
|
169
|
Niller HH, Wolf H, Minarovits J. Viral hit and run-oncogenesis: genetic and epigenetic scenarios. Cancer Lett 2010; 305:200-17. [PMID: 20813452 DOI: 10.1016/j.canlet.2010.08.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 07/29/2010] [Accepted: 08/09/2010] [Indexed: 12/31/2022]
Abstract
It is well documented that viral genomes either inserted into the cellular DNA or co-replicating with it in episomal form can be lost from neoplastic cells. Therefore, "hit and run"-mechanisms have been a topic of longstanding interest in tumor virology. The basic idea is that the transient acquisition of a complete or incomplete viral genome may be sufficient to induce malignant conversion of host cells in vivo, resulting in neoplastic development. After eliciting a heritable change in the gene expression pattern of the host cell (initiation), the genomes of tumor viruses may be completely lost, i.e. in a hit and run-scenario they are not necessary for the maintenance of the malignant state. The expression of viral oncoproteins and RNAs may interfere not only with regulators of cell proliferation, but also with DNA repair mechanisms. DNA recombinogenic activities induced by tumor viruses or activated by other mechanisms may contribute to the secondary loss of viral genomes from neoplastic cells. Viral oncoproteins can also cause epigenetic dysregulation, thereby reprogramming cellular gene expression in a heritable manner. Thus, we expect that epigenetic scenarios of viral hit and run-tumorigenesis may facilitate new, innovative experiments and clinical studies in spite of the fact that the regular presence of a suspected human tumor virus in an early phase of neoplastic development and its subsequent regular loss have not been demonstrated yet. We propose that virus-specific "epigenetic signatures", i.e. alterations of the host cell epigenome, especially altered DNA methylation patterns, may help to identify viral hit and run-oncogenic events, even after the complete loss of tumor viruses from neoplastic cells.
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institute for Medical Microbiology and Hygiene of the University of Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, Germany.
| | | | | |
Collapse
|
170
|
Elevated cyclic AMP levels in T lymphocytes transformed by human T-cell lymphotropic virus type 1. J Virol 2010; 84:8732-42. [PMID: 20573814 DOI: 10.1128/jvi.00487-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1), the cause of adult T-cell leukemia/lymphoma (ATLL), transforms CD4(+) T cells to permanent growth through its transactivator Tax. HTLV-1-transformed cells share phenotypic properties with memory and regulatory T cells (T-reg). Murine T-reg-mediated suppression employs elevated cyclic AMP (cAMP) levels as a key regulator. This led us to determine cAMP levels in HTLV-1-transformed cells. We found elevated cAMP concentrations as a consistent feature of all HTLV-1-transformed cell lines, including in vitro-HTLV-1-transformed, Tax-transformed, and patient-derived cells. In transformed cells with conditional Tax expression, high cAMP levels coincided with the presence of Tax but were lost without it. However, transient ectopic expression of Tax alone was not sufficient to induce cAMP. We found specific downregulation of the cAMP-degrading phosphodiesterase 3B (PDE3B) in HTLV-1-transformed cells, which was independent of Tax in transient expression experiments. This is in line with the notion that PDE3B transcripts and cAMP levels are inversely correlated. Overexpression of PDE3B led to a decrease of cAMP in HTLV-1-transformed cells. Decreased expression of PDE3B was associated with inhibitory histone modifications at the PDE3B promoter and the PDE3B locus. In summary, Tax transformation and its continuous expression contribute to elevated cAMP levels, which may be regulated through PDE3B suppression. This shows that HTLV-1-transformed cells assume biological features of long-lived T-cell populations that potentially contribute to viral persistence.
Collapse
|
171
|
Correlation of HTLV-1 Tax genetic diversity with HTLV-1 associated myelopathy/tropical spastic paraparesis progression and HTLV-1a genotypes in an HTLV-1 endemic region in Argentina. J Med Virol 2010; 82:1438-41. [DOI: 10.1002/jmv.21833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
172
|
Pierard V, Guiguen A, Colin L, Wijmeersch G, Vanhulle C, Van Driessche B, Dekoninck A, Blazkova J, Cardona C, Merimi M, Vierendeel V, Calomme C, Nguyên TLA, Nuttinck M, Twizere JC, Kettmann R, Portetelle D, Burny A, Hirsch I, Rohr O, Van Lint C. DNA cytosine methylation in the bovine leukemia virus promoter is associated with latency in a lymphoma-derived B-cell line: potential involvement of direct inhibition of cAMP-responsive element (CRE)-binding protein/CRE modulator/activation transcription factor binding. J Biol Chem 2010; 285:19434-49. [PMID: 20413592 PMCID: PMC2885223 DOI: 10.1074/jbc.m110.107607] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/31/2010] [Indexed: 02/02/2023] Open
Abstract
Bovine leukemia virus (BLV) proviral latency represents a viral strategy to escape the host immune system and allow tumor development. Besides the previously demonstrated role of histone deacetylation in the epigenetic repression of BLV expression, we showed here that BLV promoter activity was induced by several DNA methylation inhibitors (such as 5-aza-2'-deoxycytidine) and that overexpressed DNMT1 and DNMT3A, but not DNMT3B, down-regulated BLV promoter activity. Importantly, cytosine hypermethylation in the 5'-long terminal repeat (LTR) U3 and R regions was associated with true latency in the lymphoma-derived B-cell line L267 but not with defective latency in YR2 cells. Moreover, the virus-encoded transactivator Tax(BLV) decreased DNA methyltransferase expression levels, which could explain the lower level of cytosine methylation observed in the L267(LTaxSN) 5'-LTR compared with the L267 5'-LTR. Interestingly, DNA methylation inhibitors and Tax(BLV) synergistically activated BLV promoter transcriptional activity in a cAMP-responsive element (CRE)-dependent manner. Mechanistically, methylation at the -154 or -129 CpG position (relative to the transcription start site) impaired in vitro binding of CRE-binding protein (CREB) transcription factors to their respective CRE sites. Methylation at -129 CpG alone was sufficient to decrease BLV promoter-driven reporter gene expression by 2-fold. We demonstrated in vivo the recruitment of CREB/CRE modulator (CREM) and to a lesser extent activating transcription factor-1 (ATF-1) to the hypomethylated CRE region of the YR2 5'-LTR, whereas we detected no CREB/CREM/ATF recruitment to the hypermethylated corresponding region in the L267 cells. Altogether, these findings suggest that site-specific DNA methylation of the BLV promoter represses viral transcription by directly inhibiting transcription factor binding, thereby contributing to true proviral latency.
Collapse
Affiliation(s)
- Valérie Pierard
- From the Laboratoire de Virologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, Rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Allan Guiguen
- From the Laboratoire de Virologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, Rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Laurence Colin
- From the Laboratoire de Virologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, Rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Gaëlle Wijmeersch
- From the Laboratoire de Virologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, Rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Caroline Vanhulle
- From the Laboratoire de Virologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, Rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Benoît Van Driessche
- From the Laboratoire de Virologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, Rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Ann Dekoninck
- From the Laboratoire de Virologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, Rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Jana Blazkova
- the Institut de Cancérologie de Marseille, UMR 599 INSERM, Institut Paoli-Calmettes, Université de la Méditerranée, Boulevard Lei Roure 27, 13009 Marseille, France
| | - Christelle Cardona
- From the Laboratoire de Virologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, Rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Makram Merimi
- the Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Boulevard de Waterloo 121, 1000 Bruxelles, Belgium
| | - Valérie Vierendeel
- From the Laboratoire de Virologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, Rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Claire Calomme
- From the Laboratoire de Virologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, Rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Thi Liên-Anh Nguyên
- From the Laboratoire de Virologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, Rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Michèle Nuttinck
- the Département de Biologie Moléculaire, Faculté Universitaire des Sciences Agronomiques de Gembloux, Avenue du Maréchal Juin 6, 5030 Gembloux, Belgium, and
| | - Jean-Claude Twizere
- the Département de Biologie Moléculaire, Faculté Universitaire des Sciences Agronomiques de Gembloux, Avenue du Maréchal Juin 6, 5030 Gembloux, Belgium, and
| | - Richard Kettmann
- the Département de Biologie Moléculaire, Faculté Universitaire des Sciences Agronomiques de Gembloux, Avenue du Maréchal Juin 6, 5030 Gembloux, Belgium, and
| | - Daniel Portetelle
- the Département de Biologie Moléculaire, Faculté Universitaire des Sciences Agronomiques de Gembloux, Avenue du Maréchal Juin 6, 5030 Gembloux, Belgium, and
| | - Arsène Burny
- the Département de Biologie Moléculaire, Faculté Universitaire des Sciences Agronomiques de Gembloux, Avenue du Maréchal Juin 6, 5030 Gembloux, Belgium, and
| | - Ivan Hirsch
- the Institut de Cancérologie de Marseille, UMR 599 INSERM, Institut Paoli-Calmettes, Université de la Méditerranée, Boulevard Lei Roure 27, 13009 Marseille, France
| | - Olivier Rohr
- the Institut Universitaire de Technologie Louis Pasteur de Schiltigheim, University of Strasbourg, 1 Allée d'Athènes, 67300 Schiltigheim, France
| | - Carine Van Lint
- From the Laboratoire de Virologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, Rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| |
Collapse
|
173
|
Ruggero K, Corradin A, Zanovello P, Amadori A, Bronte V, Ciminale V, D'Agostino DM. Role of microRNAs in HTLV-1 infection and transformation. Mol Aspects Med 2010; 31:367-82. [PMID: 20600265 DOI: 10.1016/j.mam.2010.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 05/26/2010] [Indexed: 12/20/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), a retrovirus that infects more than 20 million people worldwide, is the etiological agent of ATLL (adult T-cell leukemia/lymphoma), an aggressive leukemia of CD4+ T lymphocytes which arises in a small percentage of infected individuals after a long clinical latency. Tumor emergence is attributed primarily to the oncogenic activity of the viral protein Tax, which drives the expression of viral transcripts and controls the expression and function of a broad variety of host-cell genes involved in proliferation, genetic stability and apoptosis. Nevertheless, many aspects of HTLV-1 replication, persistence and pathogenesis remain to be understood. The emerging role of microRNAs in tumor development and viral infection has prompted investigations on the interactions between HTLV-1 and the microRNA regulatory network. In the present review we discuss recent data demonstrating changes in cellular microRNA expression in HTLV-1-infected cell lines and ATLL cells, and the functional impact of a subset microRNAs deregulated by HTLV-1 on cellular gene expression and signal transduction pathways. Mechanisms through which the viral proteins may influence microRNA expression are discussed. Results of searches for potential cellular microRNAs that target viral transcripts and for microRNAs produced by HTLV-1 are described. Observations along with regarding the expression of tRNA-derived small regulatory RNAs in HTLV-1-infected cells are presented.
Collapse
Affiliation(s)
- Katia Ruggero
- Department of Oncology and Surgical Sciences, University of Padova, Via Gattamelata 64, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
174
|
Watters KM, Dean J, Hasegawa H, Sawa H, Hall W, Sheehy N. Cytokine and growth factor expression by HTLV-1 Lck-tax transgenic cells in SCID mice. AIDS Res Hum Retroviruses 2010; 26:593-603. [PMID: 20438380 DOI: 10.1089/aid.2009.0212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Tax protein encoded by HTLV-1 plays a key role in the development of ATL in infected individuals. Our previous studies showed that tax transgenic mice develop disease that is almost identical to human ATL, with widespread organ invasion by lymphomatous cells and the development of leukemia. The same pathology develops rapidly in SCID mice engrafted with cells from the transgenic animals. In the present study, we used this SCID model to analyze the expression levels of several cytokines, growth factors, and adhesion molecules to determine their possible involvement in the development of disease. We showed that Tax expression was undetectable at the protein level in the tax-transformed cells used to inoculate the SCID mice and that these cells displayed constitutive NF-kappaB and Akt activity. We demonstrated significant differences in the levels of circulating PDGF-BB, TNF-alpha, sICAM-1, and sVCAM-1 in inoculated animals. Cell-surface staining of the tax transgenic cells showed that they do not express receptors for any of the upregulated growth factors. Significant differences were not found in the secreted levels of bFGF, MMP9, VEGF, or E-selectin, whereas IL-2, IL-15, IL-6, IL-1beta, and IFN-gamma expression was undetectable. Even though the number of factors analyzed is limited, our study identified TNF-alpha, PDGF-BB, and the adhesion molecules sICAM-1 and sVCAM-1 as factors that may contribute to the high levels of organ infiltration by leukemic cells in this tax transgenic SCID model.
Collapse
Affiliation(s)
- Karen M. Watters
- UCD Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Jonathan Dean
- UCD Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Gakuen, Musashimurayama-shi, Tokyo, Japan
| | - Hirofumi Sawa
- Department of Molecular Pathobiology, Research Center for Zoonosis Control, and Global COE Program, Hokkaido University, Sapporo, Japan
| | - William Hall
- UCD Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Noreen Sheehy
- UCD Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
175
|
Kinjo T, Ham-Terhune J, Peloponese JM, Jeang KT. Induction of reactive oxygen species by human T-cell leukemia virus type 1 tax correlates with DNA damage and expression of cellular senescence marker. J Virol 2010; 84:5431-7. [PMID: 20219913 PMCID: PMC2863840 DOI: 10.1128/jvi.02460-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 02/27/2010] [Indexed: 01/29/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) Tax affects cellular genomic stability and senescence. As yet, the mechanism(s) for these events caused by Tax is incompletely understood. Here, we show that Tax expression in primary human cells induces reactive oxygen species (ROS), which elicits DNA damage and the expression of senescence marker. Treatment with a ROS scavenger or knockdown of Tax expression by small interfering RNA (siRNA) abrogated Tax-induced DNA damage and the expression of senescence marker. Our data suggest that ROS induction explains Tax-induced cellular DNA damage and cellular senescence.
Collapse
Affiliation(s)
- Takao Kinjo
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Division of Pathology and Cell Biology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan, Division of Morphological Pathology, Department of Basic Laboratory Sciences, School of Health Sciences, University of the Ryukyus, Okinawa 903-0215, Japan, CNRS and Université Montpellier 1, UM5236, Centre d'Études d'Agents Pathogènes et Biotechnologies pour la Santé (CPBS), Montpellier F-34965, France, CPBS, Université Montpellier 2, Montpellier F-34095, France
| | - Julia Ham-Terhune
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Division of Pathology and Cell Biology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan, Division of Morphological Pathology, Department of Basic Laboratory Sciences, School of Health Sciences, University of the Ryukyus, Okinawa 903-0215, Japan, CNRS and Université Montpellier 1, UM5236, Centre d'Études d'Agents Pathogènes et Biotechnologies pour la Santé (CPBS), Montpellier F-34965, France, CPBS, Université Montpellier 2, Montpellier F-34095, France
| | - Jean-Marie Peloponese
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Division of Pathology and Cell Biology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan, Division of Morphological Pathology, Department of Basic Laboratory Sciences, School of Health Sciences, University of the Ryukyus, Okinawa 903-0215, Japan, CNRS and Université Montpellier 1, UM5236, Centre d'Études d'Agents Pathogènes et Biotechnologies pour la Santé (CPBS), Montpellier F-34965, France, CPBS, Université Montpellier 2, Montpellier F-34095, France
| | - Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Division of Pathology and Cell Biology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan, Division of Morphological Pathology, Department of Basic Laboratory Sciences, School of Health Sciences, University of the Ryukyus, Okinawa 903-0215, Japan, CNRS and Université Montpellier 1, UM5236, Centre d'Études d'Agents Pathogènes et Biotechnologies pour la Santé (CPBS), Montpellier F-34965, France, CPBS, Université Montpellier 2, Montpellier F-34095, France
| |
Collapse
|
176
|
de Souza JG, Fonseca FGD, Martins-Filho OA, Teixeira-Carvalho A, Martins CPS, Carvalho LD, Coelho-Dos-Reis JGA, Barbosa-Stancioli EF. Diagnostic tool based on an HTLV-1-Tax expression system in eukaryotic cells using a poxvirus vector. J Virol Methods 2010; 166:65-71. [PMID: 20219542 DOI: 10.1016/j.jviromet.2010.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 02/11/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
Abstract
Human T-lymphotropic virus 1 (HTLV-1) induces an immune-mediated inflammatory disease affecting the nervous system that eventually is accompanied by ocular, rheumatic and dermatologic manifestations (HTLV-1 associated myelopathy/tropical spastic paraparesis, or HAM/TSP). Proviral load and HTLV-1 protein expression, mainly of Tax, is correlated with disease progression and induction of host-virus equilibrium breakdown that, reportedly, involves the presence of Tax-specific cytotoxic T lymphocytes (CTL), T regulatory cells and anti-Tax antibodies. Based on knowledge of anti-Tax antibodies as markers of disease progression, the objectives of this study were both to design an infection/transfection system using the Vaccinia virus and a tax-encoding plasmid for the expression of Tax protein as well as to use this cell support to evaluate anti-Tax IgG by flow cytometry. The flow cytometry assay was standardized using pooled sera from each test group (negative, asymptomatic and HAM/TSP patients). The HAM/TSP group presented higher IgG anti-Tax reactivity (above 70%) than the asymptomatic group (nearly 40% reactivity). The data indicate that the infection/transfection system is useful for assessing Tax expression. This is a promising assay for use as a diagnostic tool to detect IgG anti-Tax and monitor HTLV-1 infected individuals.
Collapse
Affiliation(s)
- Jaqueline Gontijo de Souza
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Zane L, Sibon D, Jeannin L, Zandecki M, Delfau-Larue MH, Gessain A, Gout O, Pinatel C, Lançon A, Mortreux F, Wattel E. Tax gene expression and cell cycling but not cell death are selected during HTLV-1 infection in vivo. Retrovirology 2010; 7:17. [PMID: 20222966 PMCID: PMC2846874 DOI: 10.1186/1742-4690-7-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 03/11/2010] [Indexed: 01/18/2023] Open
Abstract
Background Adult T cell leukemia results from the malignant transformation of a CD4+ lymphoid clone carrying an integrated HTLV-1 provirus that has undergone several oncogenic events over a 30-60 year period of persistent clonal expansion. Both CD4+ and CD8+ lymphocytes are infected in vivo; their expansion relies on CD4+ cell cycling and on the prevention of CD8+ cell death. Cloned infected CD4+ but not CD8+ T cells from patients without malignancy also add up nuclear and mitotic defects typical of genetic instability related to theexpression of the virus-encoded oncogene tax. HTLV-1 expression is cancer-prone in vitro, but in vivo numerous selection forces act to maintain T cell homeostasis and are possibly involved in clonal selection. Results Here we demonstrate that the HTLV-1 associated CD4+ preleukemic phenotype and the specific patterns of CD4+ and CD8+ clonal expansion are in vivo selected processes. By comparing the effects of recent (1 month) experimental infections performed in vitro and those observed in cloned T cells from patients infected for >6-26 years, we found that in chronically HTLV-1 infected individuals, HTLV-1 positive clones are selected for tax expression. In vivo, infected CD4+ cells are positively selected for cell cycling whereas infected CD8+ cells and uninfected CD4+ cells are negatively selected for the same processes. In contrast, the known HTLV-1-dependent prevention of CD8+ T cell death pertains to both in vivo and in vitro infected cells. Conclusions Therefore, virus-cell interactions alone are not sufficient to initiate early leukemogenesis in vivo.
Collapse
Affiliation(s)
- Linda Zane
- CNRS UMR5239, Université de Lyon, Oncovirologie et Biothérapies, Centre Léon Bérard, 69008 Lyon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Masuda M, Maruyama T, Ohta T, Ito A, Hayashi T, Tsukasaki K, Kamihira S, Yamaoka S, Hoshino H, Yoshida T, Watanabe T, Stanbridge EJ, Murakami Y. CADM1 interacts with Tiam1 and promotes invasive phenotype of human T-cell leukemia virus type I-transformed cells and adult T-cell leukemia cells. J Biol Chem 2010; 285:15511-15522. [PMID: 20215110 DOI: 10.1074/jbc.m109.076653] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
CADM1 encodes a multifunctional immunoglobulin-like cell adhesion molecule whose cytoplasmic domain contains a type II PSD95/Dlg/ZO-1 (PDZ)-binding motif (BM) for associating with other intracellular proteins. Although CADM1 lacks expression in T lymphocytes of healthy individuals, it is overexpressed in adult T-cell leukemia-lymphoma (ATL) cells. It has been suggested that the expression of CADM1 protein promotes infiltration of leukemic cells into various organs and tissues, which is one of the frequent clinical manifestations of ATL. Amino acid sequence alignment revealed that Tiam1 (T-lymphoma invasion and metastasis 1), a Rac-specific guanine nucleotide exchange factor, has a type II PDZ domain similar to those of membrane-associated guanylate kinase homologs (MAGUKs) that are known to bind to the PDZ-BM of CADM1. In this study, we demonstrated that the cytoplasmic domain of CADM1 directly interacted with the PDZ domain of Tiam1 and induced formation of lamellipodia through Rac activation in HTLV-I-transformed cell lines as well as ATL cell lines. Our results indicate that Tiam1 integrates signals from CADM1 to regulate the actin cytoskeleton through Rac activation, which may lead to tissue infiltration of leukemic cells in ATL patients.
Collapse
Affiliation(s)
- Mari Masuda
- Genetics Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan; Tumor Suppression and Functional Genomics Project, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
| | - Tomoko Maruyama
- Tumor Suppression and Functional Genomics Project, National Cancer Center Research Institute, Tokyo 104-0045, Japan; Division of Molecular Pathology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Tsutomu Ohta
- Genetics Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Akihiko Ito
- Division of Molecular Pathology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Tomayoshi Hayashi
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Kunihiko Tsukasaki
- Department of Molecular Medicine and Hematology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Shimeru Kamihira
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hiroo Hoshino
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Teruhiko Yoshida
- Genetics Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Toshiki Watanabe
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Eric J Stanbridge
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, California 92697
| | - Yoshinori Murakami
- Tumor Suppression and Functional Genomics Project, National Cancer Center Research Institute, Tokyo 104-0045, Japan; Division of Molecular Pathology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
179
|
Bagossi P, Bander P, Bozóki B, Tözsér J. Discovery and significance of new human T-lymphotropic viruses: HTLV-3 and HTLV-4. Expert Rev Anti Infect Ther 2010; 7:1235-49. [PMID: 19968515 DOI: 10.1586/eri.09.97] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) and type 2 (HTLV-2) were discovered approximately 30 years ago and they are associated with various lymphoproliferative and neurological diseases. The estimated number of infected people is 10-20 million worldwide. In 2005, two new HTLV-1/HTLV-2-related viruses were detected, HTLV-3 and HTLV-4, from the same geographical area of Africa. In the last 4 years, their complete genomic sequences were determined and some of their characteristic features were studied in detail. These newly discovered retroviruses alongside their human (HTLV-1 and -2) and animal relatives (simian T-lymphotropic virus type 1-3) are reviewed. The potential risks associated with these viruses and the potential antiretroviral therapies are also discussed.
Collapse
Affiliation(s)
- Péter Bagossi
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary.
| | | | | | | |
Collapse
|
180
|
Banerjee P, Crawford L, Samuelson E, Feuer G. Hematopoietic stem cells and retroviral infection. Retrovirology 2010; 7:8. [PMID: 20132553 PMCID: PMC2826343 DOI: 10.1186/1742-4690-7-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 02/04/2010] [Indexed: 11/10/2022] Open
Abstract
Retroviral induced malignancies serve as ideal models to help us better understand the molecular mechanisms associated with the initiation and progression of leukemogenesis. Numerous retroviruses including AEV, FLV, M-MuLV and HTLV-1 have the ability to infect hematopoietic stem and progenitor cells, resulting in the deregulation of normal hematopoiesis and the development of leukemia/lymphoma. Research over the last few decades has elucidated similarities between retroviral-induced leukemogenesis, initiated by deregulation of innate hematopoietic stem cell traits, and the cancer stem cell hypothesis. Ongoing research in some of these models may provide a better understanding of the processes of normal hematopoiesis and cancer stem cells. Research on retroviral induced leukemias and lymphomas may identify the molecular events which trigger the initial cellular transformation and subsequent maintenance of hematologic malignancies, including the generation of cancer stem cells. This review focuses on the role of retroviral infection in hematopoietic stem cells and the initiation, maintenance and progression of hematological malignancies.
Collapse
Affiliation(s)
- Prabal Banerjee
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Center for Humanized SCID Mice and Stem Cell Processing Laboratory, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Lindsey Crawford
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Elizabeth Samuelson
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Gerold Feuer
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Center for Humanized SCID Mice and Stem Cell Processing Laboratory, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
181
|
Gudo ES, Bhatt NB, Bila DR, Abreu CM, Tanuri A, Savino W, Silva-Barbosa SD, Jani IV. Co-infection by human immunodeficiency virus type 1 (HIV-1) and human T cell leukemia virus type 1 (HTLV-1): does immune activation lead to a faster progression to AIDS? BMC Infect Dis 2009; 9:211. [PMID: 20028500 PMCID: PMC2813852 DOI: 10.1186/1471-2334-9-211] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 12/22/2009] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Recent data have shown that HTLV-1 is prevalent among HIV positive patients in Mozambique, although the impact of HTLV-1 infection on HIV disease progression remains controversial. Our aim was to determine the phenotypic profile of T lymphocytes subsets among Mozambican patients co-infected by HIV and HTLV-1. METHODS We enrolled 29 patients co-infected by HTLV-1 and HIV (co-infected), 59 patients mono-infected by HIV (HIV) and 16 healthy controls (HC), respectively.For phenotypic analysis, cells were stained with the following fluorochrome-labeled anti-human monoclonal antibodies CD4-APC, CD8-PerCP, CD25-PE, CD62L-FITC, CD45RA-FITC. CD45RO-PE, CD38-PE; being analysed by four-colour flow cytometry. RESULTS We initially found that CD4+ T cell counts were significantly higher in co-infected, as compared to HIV groups. Moreover, CD4+ T Lymphocytes from co-infected patients presented significantly higher levels of CD45RO and CD25, but lower levels of CD45RA and CD62L, strongly indicating that CD4+ T cells are more activated under HTLV-1 plus HIV co-infection. CONCLUSION Our data indicate that HTLV-1/HIV co-infected patients progress with higher CD4+ T cell counts and higher levels of activation markers. In this context, it is conceivable that in co-infected individuals, these higher levels of activation may account for a faster progression to AIDS.
Collapse
Affiliation(s)
- Eduardo Samo Gudo
- Department of Immunology, National Institute of Health, Maputo, Mozambique
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Nilesh B Bhatt
- Department of Immunology, National Institute of Health, Maputo, Mozambique
| | - Dulce Ramalho Bila
- Department of Immunology, National Institute of Health, Maputo, Mozambique
| | - Celina Monteiro Abreu
- Departament of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amílcar Tanuri
- Departament of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Suse Dayse Silva-Barbosa
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Center for Bone Marrow Transplantation, National Cancer Institute, Rio de Janeiro, Brazil
| | - Ilesh V Jani
- Department of Immunology, National Institute of Health, Maputo, Mozambique
| |
Collapse
|
182
|
Distinct functions of HTLV-1 Tax1 from HTLV-2 Tax2 contribute key roles to viral pathogenesis. Retrovirology 2009; 6:117. [PMID: 20017952 PMCID: PMC2806368 DOI: 10.1186/1742-4690-6-117] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 12/17/2009] [Indexed: 12/17/2022] Open
Abstract
While the human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia/lymphoma (ATL), to date, its close relative HTLV-2 is not associated with ATL or other types of malignancies. Accumulating evidence shows that HTLV-1 Tax1 and HTLV-2 Tax2 have many shared activities, but the two proteins have a limited number of significantly distinct activities, and these distinctions appear to play key roles in HTLV-1 specific pathogenesis. In this review, we summarize the functions of Tax1 associated with cell survival, cell proliferation, persistent infection as well as pathogenesis. We emphasize special attention to distinctions between Tax1 and Tax2.
Collapse
|
183
|
Abstract
Most viral infections are self-limiting, resulting in either clearance of the pathogen or death of the host. However, a subset of viruses can establish permanent infection and persist indefinitely within the host. Even though persisting viruses are derived from various viral families with distinct replication strategies, they all utilize common mechanisms for establishment of long-lasting infections. Here, we discuss the commonalities between persistent infections with herpes-, retro-, flavi-, arena-, and polyomaviruses that distinguish them from acutely infecting viral pathogens. These shared strategies include selection of cell subsets ideal for long-term maintenance of the viral genome, modulation of viral gene expression, viral subversion of apoptotic pathways, and avoidance of clearance by the immune system.
Collapse
|
184
|
Kesic M, Doueiri R, Ward M, Semmes OJ, Green PL. Phosphorylation regulates human T-cell leukemia virus type 1 Rex function. Retrovirology 2009; 6:105. [PMID: 19919707 PMCID: PMC2780990 DOI: 10.1186/1742-4690-6-105] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 11/17/2009] [Indexed: 11/10/2022] Open
Abstract
Background Human T-cell leukemia virus type 1 (HTLV-1) is a pathogenic complex deltaretrovirus, which is the causative agent of adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis. In addition to the structural and enzymatic viral gene products, HTLV-1 encodes the positive regulatory proteins Tax and Rex along with viral accessory proteins. Tax and Rex proteins orchestrate the timely expression of viral genes important in viral replication and cellular transformation. Rex is a nucleolar-localizing shuttling protein that acts post-transcriptionally by binding and facilitating the export of the unspliced and incompletely spliced viral mRNAs from the nucleus to the cytoplasm. HTLV-1 Rex (Rex-1) is a phosphoprotein and general protein kinase inhibition correlates with reduced function. Therefore, it has been proposed that Rex-1 function may be regulated through site-specific phosphorylation. Results We conducted a phosphoryl mapping of Rex-1 over-expressed in transfected 293 T cells using a combination of affinity purification and liquid chromatography tandem mass spectrometry. We achieved 100% physical coverage of the Rex-1 polypeptide and identified five novel phosphorylation sites at Thr-22, Ser-36, Thr-37, Ser-97, and Ser-106. We also confirmed evidence of two previously identified residues, Ser-70 and Thr-174, but found no evidence of phosphorylation at Ser-177. The functional significance of these phosphorylation events was evaluated using a Rex reporter assay and site-directed mutational analysis. Our results indicate that phosphorylation at Ser-97 and Thr-174 is critical for Rex-1 function. Conclusion We have mapped completely the site-specific phosphorylation of Rex-1 identifying a total of seven residues; Thr-22, Ser-36, Thr-37, Ser-70, Ser-97, Ser-106, and Thr-174. Overall, this work is the first to completely map the phosphorylation sites in Rex-1 and provides important insight into the regulation of Rex-1 function.
Collapse
Affiliation(s)
- Matthew Kesic
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
185
|
Gómez-Lucía E, Collado VM, Miró G, Doménech A. Effect of type-I interferon on retroviruses. Viruses 2009; 1:545-73. [PMID: 21994560 PMCID: PMC3185530 DOI: 10.3390/v1030545] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 10/05/2009] [Accepted: 10/26/2009] [Indexed: 12/21/2022] Open
Abstract
Type-I interferons (IFN-I) play an important role in the innate immune response to several retroviruses. They seem to be effective in controlling the in vivo infection, though many of the clinical signs of retroviral infection may be due to their continual presence which over-stimulates the immune system and activates apoptosis. IFN-I not only affect the immune system, but also operate directly on virus replication. Most data suggest that the in vitro treatment with IFN-I of retrovirus infected cells inhibits the final stages of virogenesis, avoiding the correct assembly of viral particles and their budding, even though the mechanism is not well understood. However, in some retroviruses IFN-I may also act at a previous stage as some retroviral LTRs posses sequences homologous to the IFN-stimulated response element (ISRE). When stimulated, ISREs control viral transcription. HIV-1 displays several mechanisms for evading IFN-I, such as through Tat and Nef. Besides IFN-α and IFN-β, some other type I IFN, such as IFN-τ and IFN-ω, have potent antiviral activity and are promising treatment drugs.
Collapse
Affiliation(s)
- Esperanza Gómez-Lucía
- Departamento de Sanidad Animal, Facultad Veterinaria, Universidad Complutense, 28040 Madrid, Spain; E-mails: (V.M.C.); (G.M.); (A.D.)
| | | | | | | |
Collapse
|
186
|
Chi YH, Chen ZJ, Jeang KT. The nuclear envelopathies and human diseases. J Biomed Sci 2009; 16:96. [PMID: 19849840 PMCID: PMC2770040 DOI: 10.1186/1423-0127-16-96] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 10/22/2009] [Indexed: 12/30/2022] Open
Abstract
The nuclear envelope (NE) consists of two membrane layers that segregate the nuclear from the cytoplasmic contents. Recent progress in our understanding of nuclear-lamina associated diseases has revealed intriguing connections between the envelope components and nuclear processes. Here, we review the functions of the nuclear envelope in chromosome organization, gene expression, DNA repair and cell cycle progression, and correlate deficiencies in envelope function with human pathologies.
Collapse
Affiliation(s)
- Ya-Hui Chi
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan, Republic of China
| | - Zi-Jie Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan, Republic of China
| | - Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Building 4, Room 306, 9000 Rockville Pike, Bethesda, MD 20892-0460, USA
| |
Collapse
|
187
|
Yasunaga J, Jeang KT. Viral transformation and aneuploidy. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:733-740. [PMID: 19326462 PMCID: PMC2760603 DOI: 10.1002/em.20480] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Human tumor viruses are associated with a variety of human malignancies, and it is estimated that 15% of all human cancers have a viral etiology. An abnormality in chromosomal ploidy or aneuploidy is a hallmark of cancers. In normal cells, euploidy is governed by several factors including an intact spindle assembly checkpoint, accurate centrosome duplication, and proper cytokinesis. Viral oncoproteins are suggested to perturb the cellular machineries for chromosomal segregation creating aneuploidy which can lead to the malignant transformation of infected cells. Here, we review in brief some of the mechanisms used by viruses that can cause cellular aneuploidy.
Collapse
Affiliation(s)
- Junichiro Yasunaga
- Molecular Virology Section, Laboratory of Molecular Microbiology, The National Institute of Allergy and Infectious Diseases/NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | |
Collapse
|
188
|
Abstract
Adult T-cell leukaemia (ATL) is caused by the human T-cell lymphotropic virus type 1 (HTLV-1). HTLV-1 has elaborated strategies to persist and replicate in the presence of a strong immune response. In this review, we summarise these mechanisms and their contribution to T-cell transformation and ATL development.
Collapse
Affiliation(s)
- M Boxus
- National Fund for Scientific Research, Gembloux Agro-Bio Tech, Molecular and Cellular Biology, Gembloux, Belgium
| | | |
Collapse
|
189
|
Zhang J, Yamada O, Matsushita Y, Chagan-Yasutan H, Hattori T. Transactivation of human osteopontin promoter by human T-cell leukemia virus type 1-encoded Tax protein. Leuk Res 2009; 34:763-8. [PMID: 19767100 DOI: 10.1016/j.leukres.2009.08.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 08/25/2009] [Accepted: 08/26/2009] [Indexed: 01/01/2023]
Abstract
Osteopontin (OPN) is a cytokine that contributes substantially to the growth and metastasis in a wide spectrum of malignancies. We report here that OPN gene is transactivated by Tax protein of human T-cell leukemia virus type 1 (HTLV-1). Northern blot showed enhanced OPN gene expression in cells stably expressing Tax. Co-expression of Tax increased the reporter gene expression directed by OPN promoter. Tax-induced OPN activation was abrogated by treatment with LY294002 (PI3K inhibitor) or co-transfection with AKT siRNA, suggesting PI3K/AKT pathway is involved in Tax-mediated transactivation. Reporter assay with deletion mutants showed that the 5'-partial sequence between -765 and -660 of the OPN promoter is the region responsive to Tax, and further, disrupting the AP-1 site within this region abolished the OPN induction by Tax, indicating that Tax activation of OPN promoter is likely mediated by AP-1 site. This study suggests that OPN is one of the downstream mediators of aberrantly activated PI3K/AKT signaling by Tax, which may partially contribute to HTLV-1-associated leukemogenesis.
Collapse
Affiliation(s)
- Jing Zhang
- Research and Development Center, FUSO Pharmaceutical Industries, Ltd, Joto-ku, Osaka 536-8523, Japan.
| | | | | | | | | |
Collapse
|
190
|
Shoji T, Higuchi M, Kondo R, Takahashi M, Oie M, Tanaka Y, Aoyagi Y, Fujii M. Identification of a novel motif responsible for the distinctive transforming activity of human T-cell leukemia virus (HTLV) type 1 Tax1 protein from HTLV-2 Tax2. Retrovirology 2009; 6:83. [PMID: 19761585 PMCID: PMC2754985 DOI: 10.1186/1742-4690-6-83] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 09/17/2009] [Indexed: 01/09/2023] Open
Abstract
Background Human T-cell leukemia virus type 1 (HTLV-1) is a causative agent of adult T-cell leukemia (ATL), whereas its relative HTLV-2 is not associated with any malignancies including ATL. HTLV-1 Tax1 transformed a T-cell line from interleukin (IL)-2-dependent growth to IL-2-independent growth, with an activity that was much more potent in comparison to HTLV-2 Tax2. This distinction was mediated by at least two Tax1 specific functions, an interaction with host cellular factors through the PDZ domain binding motif (PBM) and the activation of NF-kappaB2 (NF-κB2)/p100. Results Using a series of Tax1 chimeric proteins with Tax2, we found that amino acids 225-232 of Tax1, the Tax1(225-232) region, was essential for the activation of NF-κB2 as well as for the high transforming activity. The strict amino acid conservation of Tax1(225-232) among HTLV-1 and simian T-cell leukemia virus type 1 (STLV-1), but not HTLV-2 and STLV-2, indicates that function(s) through the Tax1(225-232) region are biologically significant. Interestingly, another HTLV-1 relative, HTLV-3, has a PBM, but does not conserve the Tax1(225-232) motif in Tax3, thus indicating that these two motifs classify the three HTLVs into the separate groups. Conclusion These results suggest that the combinatory functions through Tax1(225-232) and PBM play crucial roles in the distinct biological properties of the three HTLVs, perhaps also including their pathogenesis.
Collapse
Affiliation(s)
- Toshiyuki Shoji
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Niigata 951-8510, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Willems L. The 14th International Conference on Human Retrovirology: HTLV and related retroviruses (July 1-4, 2009; Salvador, Brazil). Retrovirology 2009; 6:77. [PMID: 19686596 PMCID: PMC2734551 DOI: 10.1186/1742-4690-6-77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 08/17/2009] [Indexed: 12/12/2022] Open
Abstract
The "14th International Conference on Human Retrovirology: HTLV and Related Retroviruses" was held in Salvador, Bahia, from July 1st to July 4th 2009. The aim of this biennial meeting is to promote discussion and share new findings between researchers and clinicians for the benefit of patients infected by human T-lymphotropic virus (HTLV). HTLV infects approximately 15–20 million individuals worldwide and causes a broad spectrum of diseases including neurodegeneration and leukemia. The scientific program included a breadth of HTLV research topics: epidemiology, host immune response, basic mechanisms of protein function, virology, pathogenesis, clinical aspects and treatment. Exciting new findings were presented in these different fields, and the new advances have led to novel clinical trials. Here, highlights from this conference are summarized.
Collapse
Affiliation(s)
- Luc Willems
- Cellular and Molecular Biology, Agro-Bio Tech (FUSAG), Gembloux, Belgium.
| |
Collapse
|
192
|
Involvement of TORC2, a CREB co-activator, in the in vivo-specific transcriptional control of HTLV-1. Retrovirology 2009; 6:73. [PMID: 19664292 PMCID: PMC2734550 DOI: 10.1186/1742-4690-6-73] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/11/2009] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Human T-cell leukemia virus type 1 (HTLV-1) causes adult T -cell leukemia (ATL) but the expression of HTLV-1 is strongly suppressed in the peripheral blood of infected people. However, such suppression, which may explain the long latency in the development of ATL, is readily reversible, and viral expression resumes quickly with ex vivo culture of infected T -cells. To investigate the mechanism of in vivo -specific transcriptional suppression, we established a mouse model in which mice were intraperitoneally administered syngeneic EL4 T -lymphoma cells transduced with a recombinant retrovirus expressing a GFP-Tax fusion protein, Gax, under the control of the HTLV-1 enhancer (EL4-Gax). RESULTS Gax gene transcription was silenced in vivo but quickly up-regulated in ex vivo culture. Analysis of integrated Gax reporter gene demonstrated that neither CpG methylation of the promoter DNA nor histone modification was associated with the reversible suppression. ChIP-analysis of LTR under suppression revealed reduced promoter binding of TFIIB and Pol-II, but no change in the binding of CREB or CBP/p300 to the viral enhancer sequence. However, the expression of TORC2, a co-activator of CREB, decreased substantially in the EL4-Gax cells in vivo, and this returned to normal levels in ex vivo culture. The reduced expression of TORC2 was associated with translocation from the nucleus to the cytoplasm. A knock-down experiment with siRNA confirmed that TORC2 was the major functional protein of the three TORC-family proteins (TORC1, 2, 3) in EL4-Gax cells. CONCLUSION These results suggest that the TORC2 may play an important role in the in vivo -specific transcriptional control of HTLV-1. This study provides a new model for the reversible mechanism that suppresses HTLV-1 expression in vivo without the DNA methylation or hypoacetylated histones that is observed in the primary cells of most HTLV-1 -infected carriers and a substantial number of ATL cases.
Collapse
|
193
|
Matsuoka M, Green PL. The HBZ gene, a key player in HTLV-1 pathogenesis. Retrovirology 2009; 6:71. [PMID: 19650892 PMCID: PMC2731725 DOI: 10.1186/1742-4690-6-71] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 08/03/2009] [Indexed: 12/18/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia/lymphoma (ATL) and is also associated with a variety of lymphocyte-mediated diseases. The HTLV-1 basic leucine zipper (HBZ) gene, found to be consistently expressed in ATL, has recently been the subject of intensive research efforts. In this review, we summarize recent findings about HBZ and discuss its roles and functions not only in the virus life cycle, but also in HTLV-1 disease pathogenesis.
Collapse
Affiliation(s)
- Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan.
| | | |
Collapse
|
194
|
Site-specific phosphorylation regulates human T-cell leukemia virus type 2 Rex function in vivo. J Virol 2009; 83:8859-68. [PMID: 19553333 DOI: 10.1128/jvi.00908-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 2 (HTLV-2) Rex is a transacting regulatory protein required for efficient cytoplasmic expression of the unspliced and incompletely spliced viral mRNA transcripts encoding the structural and enzymatic proteins. Previously, it was demonstrated that phosphorylation of Rex-2, predominantly on serine residues, is correlated with an altered conformation, as observed by a gel mobility shift and the detection of two related protein species (p24(Rex) and p26(Rex)). Rex-2 phosphorylation is required for specific binding to its viral-mRNA target sequence and inhibition of mRNA splicing and may be linked to subcellular compartmentalization. Thus, the phosphorylation-induced structural state of Rex in the infected cell may be a switch that determines whether HTLV exists in a latent or productive state. We conducted a phosphoryl and functional mapping of both structural forms of mammalian-cell-expressed Rex 2 using affinity purification, liquid chromatography-tandem mass spectrometry, and site-directed substitutional mutational analysis. We identified two phosphorylation sites in p24(Rex) at Ser-117 and Thr-164. We also identified six phosphorylation sites in p26(Rex) at Thr-19, Ser-117, Ser-125, Ser-151, Ser-153, and Thr-164. We evaluated the functional significance of these phosphorylation events and found that phosphorylation on Thr-164, Ser-151, and Ser-153 is critical for Rex-2 function in vivo and that phosphorylation of Ser-151 is correlated with nuclear/nucleolar subcellular localization. Overall, this work is the first to completely map the phosphorylation sites in Rex-2 and provides important insight into the phosphorylation continuum that tightly regulates Rex-2 structure, cellular localization, and function.
Collapse
|
195
|
Abstract
Viruses enter host cells in order to complete their life cycles and have evolved to exploit host cell structures, regulatory factors and mechanisms. The virus and host cell interactions have consequences at multiple levels, spanning from evolution through disease to models and tools for scientific discovery and treatment. Virus-induced human cancers arise after a long duration of time and are monoclonal or oligoclonal in origin. Cancer is therefore a side effect rather than an essential part of viral infections in humans. Still, 15-20% of all human cancers are caused by viruses. A review of tumour virology shows its close integration in cancer research. Viral tools and experimental models have been indispensible for the progress of molecular biology. In particular, retroviruses and DNA tumour viruses have played major roles in our present understanding of the molecular biology of both viruses and the host. Recently, additional complex relationships due to virus and host co-evolution have appeared and may lead to a further understanding of the overall regulation of gene expression programmes in cancer.
Collapse
|
196
|
Zhang L, Zhi H, Liu M, Kuo YL, Giam CZ. Induction of p21(CIP1/WAF1) expression by human T-lymphotropic virus type 1 Tax requires transcriptional activation and mRNA stabilization. Retrovirology 2009; 6:35. [PMID: 19356250 PMCID: PMC2676247 DOI: 10.1186/1742-4690-6-35] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 04/08/2009] [Indexed: 11/25/2022] Open
Abstract
HTLV-1 Tax can induce senescence by up-regulating the levels of cyclin-dependent kinase inhibitors p21CIP1/WAF1 and p27KIP1. Tax increases p27KIP1 protein stability by activating the anaphase promoting complex/cyclosome (APC/C) precociously, causing degradation of Skp2 and inactivation of SCFSkp2, the E3 ligase that targets p27KIP1. The rate of p21CIP1/WAF1 protein turnover, however, is unaffected by Tax. Rather, the mRNA of p21CIP1/WAF1 is greatly up-regulated. Here we show that Tax increases p21 mRNA expression by transcriptional activation and mRNA stabilization. Transcriptional activation of p21CIP1/WAF1 by Tax occurs in a p53-independent manner and requires two tumor growth factor-β-inducible Sp1 binding sites in the -84 to -60 region of the p21CIP1/WAF1 promoter. Tax binds Sp1 directly, and the CBP/p300-binding activity of Tax is required for p21CIP1/WAF1 trans-activation. Tax also increases the stability of p21CIP1/WAF1 transcript. Several Tax mutants trans-activated the p21 promoter, but were attenuated in stabilizing p21CIP1/WAF1 mRNA, and were less proficient in increasing p21CIP1/WAF1 expression. The possible involvement of Tax-mediated APC/C activation in p21CIP1/WAF1 mRNA stabilization is discussed.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA.
| | | | | | | | | |
Collapse
|
197
|
Peloponese JM, Yasunaga J, Kinjo T, Watashi K, Jeang KT. Peptidylproline cis-trans-isomerase Pin1 interacts with human T-cell leukemia virus type 1 tax and modulates its activation of NF-kappaB. J Virol 2009; 83:3238-48. [PMID: 19158244 PMCID: PMC2655545 DOI: 10.1128/jvi.01824-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 01/14/2009] [Indexed: 01/22/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus etiologically causal of adult T-cell leukemia (ATL). The virus encodes a Tax oncoprotein that functions in transcriptional regulation, cell cycle control, and transformation. ATL is a highly virulent cancer that is resistant to chemotherapeutic treatments. To understand this disease better, it is important to comprehend how HTLV-1 promotes cellular growth and survival. Tax activation of NF-kappaB is important for the proliferation and transformation of virus-infected cells. We show here that prolyl isomerase Pin1 is over expressed in HTLV-1 cell lines; Pin1 binds Tax and regulates Tax-induced NF-kappaB activation.
Collapse
Affiliation(s)
- Jean-Marie Peloponese
- Molecular Virology Section, Laboratory of Molecular, Microbiology, the National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, Maryland 20892-0460, USA.
| | | | | | | | | |
Collapse
|
198
|
Dimerization and a novel Tax speckled structure localization signal are required for Tax nuclear localization. J Virol 2009; 83:5339-52. [PMID: 19321601 DOI: 10.1128/jvi.00232-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human T-cell leukemia virus type 1 oncoprotein Tax has pleiotropic activities, a subset of which likely leads to immortalization of T cells. Tax is expressed and known to function in both the cell nucleus and the cytoplasm. Tax has defined nuclear localization (NLS) and nuclear export signals that enable shuttling between the two compartments. In this study, we identified a novel region in Tax that targets the protein to discrete nuclear foci that we have previously termed Tax speckled structures (TSS). We demonstrated that the identified region is both necessary and sufficient for directing proteins to TSS. This novel TSS localization signal (TSLS), spanning amino acids 50 to 75, is separable from and adjacent to the NLS of Tax. Coexpression of a Tax NLS mutant and a Tax TSLS mutant rescued the nuclear entry and subnuclear TSS targeting of both proteins, demonstrating that these signals are independent domains. Our analysis also revealed that Tax proteins deficient for dimerization fail to localize to the nucleus. Consequently, when we restored dimerization via induction of a heterologous "dimerizer" domain, nuclear localization was rescued. Thus, we defined additional domains in Tax specific for nuclear localization and subnuclear targeting. Our results reveal a more complex network for regulation of Tax subcellular localization and subsequent function.
Collapse
|
199
|
Human T-cell leukemia virus type 2 Rex carboxy terminus is an inhibitory/stability domain that regulates Rex functional activity and viral replication. J Virol 2009; 83:5232-43. [PMID: 19279097 DOI: 10.1128/jvi.02271-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus (HTLV) regulatory protein, Rex, functions to increase the expression of the viral structural and enzymatic gene products. The phosphorylation of two serine residues (S151 and S153) at the C terminus is important for the function of HTLV-2 Rex (Rex-2). The Rex-2 phosphomimetic double mutant (S151D, S153D) is locked in a functionally active conformation. Since rex and tax genes overlap, Rex S151D and S153D mutants were found to alter the Tax oncoprotein coding sequence and transactivation activities. Therefore, additional Rex-2 mutants including P152D, A157D, S151Term, and S158Term were generated and characterized ("Term" indicates termination codon). All Rex-2 mutants and wild-type (wt) Rex-2 localized predominantly to the nucleus/nucleolus, but in contrast to the detection of phosphorylated and unphosphorylated forms of wt Rex-2 (p26 and p24), mutant proteins were detected as a single phosphoprotein species. We found that Rex P152D, A157D, and S158Term mutants are more functionally active than wt Rex-2 and that the Rex-2 C terminus and its specific phosphorylation state are required for stability and optimal expression. In the context of the provirus, the more active Rex mutants (A157D or S158Term) promoted increased viral protein production, increased viral infectious spread, and enhanced HTLV-2-mediated cellular proliferation. Moreover, these Rex mutant viruses replicated and persisted in inoculated rabbits despite higher antiviral antibody responses. Thus, we identified in Rex-2 a novel C-terminal inhibitory domain that regulates functional activity and is positively regulated through phosphorylation. The ability of this domain to modulate viral replication likely plays a key role in the infectious spread of the virus and in virus-induced cellular proliferation.
Collapse
|
200
|
Kinetic analysis of human T-cell leukemia virus type 1 gene expression in cell culture and infected animals. J Virol 2009; 83:3788-97. [PMID: 19193802 DOI: 10.1128/jvi.02315-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) infection causes adult T-cell leukemia and is associated with a variety of lymphocyte-mediated disorders. It has been hypothesized that a highly regulated pattern of HTLV-1 gene expression is critical for virus survival and disease pathogenesis. In this study, real-time reverse transcriptase PCR was used to determine the kinetics of viral gene expression in cells transiently transfected with an HTLV-1 proviral plasmid, in newly infected human peripheral blood mononuclear cells (PBMCs), and in PBMCs from newly infected rabbits. The HTLV-1 gene expression profiles in transiently transfected and infected cells were similar; over time, all transcripts increased and then maintained stable levels. gag/pol, tax/rex, and env mRNA were detected first and at the highest levels, whereas the expression levels of the accessory genes, including the antisense Hbz, were significantly lower than the tax/rex levels (ranging from 1 to 4 logs depending on the specific mRNA). In infected rabbits, tax/rex and gag/pol mRNA levels peaked early after inoculation and progressively decreased, which correlated inversely with the proviral load and host antibody response against viral proteins. Interestingly, Hbz mRNA was detectable at 1 week postinfection and increased and stabilized. The expression levels of all other HTLV-1 genes in infected rabbit PBMCs were at or below our limit of detection. This analysis provides insight into viral gene expression under various in vitro and in vivo experimental conditions. Our in vivo data indicate that in infected rabbits, Hbz mRNA expression over time directly correlates with the proviral load, which provides the first evidence linking Hbz expression to proviral load and the survival of the virus-infected cell in the host.
Collapse
|