151
|
García-Rodríguez J, Saro C, Mateos I, González JS, Carro MD, Ranilla MJ. Effects of Replacing Extruded Maize by Dried Citrus Pulp in a Mixed Diet on Ruminal Fermentation, Methane Production, and Microbial Populations in Rusitec Fermenters. Animals (Basel) 2020; 10:E1316. [PMID: 32751690 PMCID: PMC7460359 DOI: 10.3390/ani10081316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 11/16/2022] Open
Abstract
Citrus pulp is a highly abundant by-product of the citrus industry. The aim of this study was to assess the effects of replacing extruded maize (EM; 20% of total diet) by dried citrus pulp (DCP; 20%) in a mixed diet on rumen fermentation and microbial populations in Rusitec fermenters. The two diets contained 50% alfalfa hay and 50% concentrate, and the same protein level. Four Rusitec fermenters were used in a cross-over design with two 13-d incubation runs. After 7-d of diet adaptation, diet disappearance, fermentation parameters, microbial growth, and microbial populations were assessed. Fermenters receiving the DCP showed greater pH values and fiber disappearance (p < 0.001) and lower methane production (p = 0.03) than those fed EM. Replacing EM by DCP caused an increase in the proportions of propionate and butyrate (p < 0.001) and a decrease in acetate (p = 0.04). Microbial growth, bacterial diversity, and the quantity of bacteria and protozoa DNA were not affected by the diet, but the relative abundances of fungi and archaea were greater (p < 0.03) in solid and liquid phases of DCP fermenters, respectively. Results indicate that DCP can substitute EM, promoting a more efficient ruminal fermentation.
Collapse
Affiliation(s)
- Jairo García-Rodríguez
- Departamento de Producción Animal, Universidad de León, 24007 León, Spain; (J.G.-R.); (C.S.); (I.M.); (J.S.G.)
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas s/n, 24346 Grulleros, Spain
| | - Cristina Saro
- Departamento de Producción Animal, Universidad de León, 24007 León, Spain; (J.G.-R.); (C.S.); (I.M.); (J.S.G.)
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas s/n, 24346 Grulleros, Spain
| | - Iván Mateos
- Departamento de Producción Animal, Universidad de León, 24007 León, Spain; (J.G.-R.); (C.S.); (I.M.); (J.S.G.)
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas s/n, 24346 Grulleros, Spain
| | - Jesús S. González
- Departamento de Producción Animal, Universidad de León, 24007 León, Spain; (J.G.-R.); (C.S.); (I.M.); (J.S.G.)
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas s/n, 24346 Grulleros, Spain
| | - María Dolores Carro
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Agroalimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain;
| | - María José Ranilla
- Departamento de Producción Animal, Universidad de León, 24007 León, Spain; (J.G.-R.); (C.S.); (I.M.); (J.S.G.)
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas s/n, 24346 Grulleros, Spain
| |
Collapse
|
152
|
O'Hara E, Neves ALA, Song Y, Guan LL. The Role of the Gut Microbiome in Cattle Production and Health: Driver or Passenger? Annu Rev Anim Biosci 2020; 8:199-220. [PMID: 32069435 DOI: 10.1146/annurev-animal-021419-083952] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ruminant production systems face significant challenges currently, driven by heightened awareness of their negative environmental impact and the rapidly rising global population. Recent findings have underscored how the composition and function of the rumen microbiome are associated with economically valuable traits, including feed efficiency and methane emission. Although omics-based technological advances in the last decade have revolutionized our understanding of host-associated microbial communities, there remains incongruence over the correct approach for analysis of large omic data sets. A global approach that examines host/microbiome interactions in both the rumen and the lower digestive tract is required to harness the full potential of the gastrointestinal microbiome for sustainable ruminant production. This review highlights how the ruminant animal production community may identify and exploit the causal relationships between the gut microbiome and host traits of interest for a practical application of omic data to animal health and production.
Collapse
Affiliation(s)
- Eóin O'Hara
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada; , ,
| | - André L A Neves
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada; , ,
| | - Yang Song
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada; , , .,College of Animal Science and Technology, Inner Mongolia University for the Nationalities, Tongliao, China 028000;
| | - Le Luo Guan
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada; , ,
| |
Collapse
|
153
|
Wenner BA, Wagner BK, St-Pierre NR, Yu ZT, Firkins JL. Inhibition of methanogenesis by nitrate, with or without defaunation, in continuous culture. J Dairy Sci 2020; 103:7124-7140. [PMID: 32600762 DOI: 10.3168/jds.2020-18325] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/29/2020] [Indexed: 02/02/2023]
Abstract
Within the rumen, nitrate can serve as an alternative sink for aqueous hydrogen [H2(aq)] accumulating during fermentation, producing nitrite, which ideally is further reduced to ammonium but can accumulate under conditions not yet explained. Defaunation has also been associated with decreased methanogenesis in meta-analyses because protozoa contribute significantly to H2 production. In the present study, we applied a 2 × 2 factorial treatment arrangement in a 4 × 4 Latin square design to dual-flow continuous culture fermentors (n = 4). Treatments were control without nitrate (-NO3-) versus with nitrate (+NO3-; 1.5% of diet dry matter), factorialized with normal protozoa (faunated, FAUN) versus defaunation (DEF) by decreasing the temperature moderately and changing filters over the first 4 d of incubation. We detected no main effects of DEF or interaction of faunation status with +NO3-. The main effect of +NO3- increased H2(aq) by 11.0 µM (+117%) compared with -NO3-. The main effect of +NO3- also decreased daily CH4 production by 8.17 mmol CH4/d (31%) compared with -NO3-. Because there were no treatment effects on neutral detergent fiber digestibility, the main effect of +NO3- also decreased CH4 production by 1.43 mmol of CH4/g of neutral detergent fiber degraded compared with -NO3-. There were no effects of treatment on other nutrient digestibilities, N flow, or microbial N flow per gram of nutrient digested. The spike in H2(aq) after feeding NO3- provides evidence that methanogenesis is inhibited by substrate access rather than concentration, regardless of defaunation, or by direct inhibition of NO2-. Methanogens were not decreased by defaunation, suggesting a compensatory increase in non-protozoa-associated methanogens or an insignificant contribution of protozoa-associated methanogens. Despite adaptive reduction of NO3- to NH4+ and methane inhibition in continuous culture, practical considerations such as potential to depress dry matter intake and on-farm ration variability should be addressed before considering NO3- as an avenue for greater sustainability of greenhouse gas emissions in US dairy production.
Collapse
Affiliation(s)
- B A Wenner
- Department of Animal Sciences, The Ohio State University, Columbus 43210.
| | - B K Wagner
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - N R St-Pierre
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - Z T Yu
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - J L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| |
Collapse
|
154
|
Sward type alters the relative abundance of members of the rumen microbial ecosystem in dairy cows. Sci Rep 2020; 10:9317. [PMID: 32518306 PMCID: PMC7283238 DOI: 10.1038/s41598-020-66028-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/06/2020] [Indexed: 11/09/2022] Open
Abstract
The performance of ruminant livestock has been shown to benefit from the enhanced nutritive value and herbage yield associated with clover incorporation in the grazing sward. However, little research to date has been conducted investigating the effects of mixed swards containing white clover on the composition of the rumen microbiome. In this study, the rumen microbial composition of late lactation dairy cows grazing perennial ryegrass only (PRG; n = 20) or perennial ryegrass and white clover (WCPRG; n = 19) swards, was characterised using 16S rRNA amplicon sequencing. PERMANOVA analysis indicated diet significantly altered the composition of the rumen microbiome (P = 0.024). Subtle shifts in the relative abundance of 14 bacterial genera were apparent between diets, including an increased relative abundance of Lachnospira (0.04 vs. 0.23%) and Pseudobutyrivibrio (1.38 vs. 0.81%) in the WCPRG and PRG groups, respectively. The composition of the archaeal community was altered between dietary groups, with a minor increase in the relative abundance of Methanosphaera in the WCPRG observed. Results from this study highlight the potential for sward type to influence the composition of the rumen microbial community.
Collapse
|
155
|
Bayesian modeling reveals host genetics associated with rumen microbiota jointly influence methane emission in dairy cows. ISME JOURNAL 2020; 14:2019-2033. [PMID: 32366970 PMCID: PMC7368015 DOI: 10.1038/s41396-020-0663-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 03/25/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Reducing methane emissions from livestock production is of great importance for the sustainable management of the Earth’s environment. Rumen microbiota play an important role in producing biogenic methane. However, knowledge of how host genetics influences variation in ruminal microbiota and their joint effects on methane emission is limited. We analyzed data from 750 dairy cows, using a Bayesian model to simultaneously assess the impact of host genetics and microbiota on host methane emission. We estimated that host genetics and microbiota explained 24% and 7%, respectively, of variation in host methane levels. In this Bayesian model, one bacterial genus explained up to 1.6% of the total microbiota variance. Further analysis was performed by a mixed linear model to estimate variance explained by host genomics in abundances of microbial genera and operational taxonomic units (OTU). Highest estimates were observed for a bacterial OTU with 33%, for an archaeal OTU with 26%, and for a microbial genus with 41% heritability. However, after multiple testing correction for the number of genera and OTUs modeled, none of the effects remained significant. We also used a mixed linear model to test effects of individual host genetic markers on microbial genera and OTUs. In this analysis, genetic markers inside host genes ABS4 and DNAJC10 were found associated with microbiota composition. We show that a Bayesian model can be utilized to model complex structure and relationship between microbiota simultaneously and their interaction with host genetics on methane emission. The host genome explains a significant fraction of between-individual variation in microbial abundance. Individual microbial taxonomic groups each only explain a small amount of variation in methane emissions. The identification of genes and genetic markers suggests that it is possible to design strategies for breeding cows with desired microbiota composition associated with phenotypes.
Collapse
|
156
|
Li Y, Hou Z, Shi Q, Cheng Y, Zhu W. Methane Production From Different Parts of Corn Stover via a Simple Co-culture of an Anaerobic Fungus and Methanogen. Front Bioeng Biotechnol 2020; 8:314. [PMID: 32426337 PMCID: PMC7204275 DOI: 10.3389/fbioe.2020.00314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 03/23/2020] [Indexed: 12/27/2022] Open
Abstract
To determine ways to improve the utilization of corn stover, this study investigated methane production from different parts of corn stover using a simple co-culture of an anaerobic fungus (Pecoramyces species) and methanogen (Methanobrevibacter species). The simple co-culture was incubated with the stem pith, leaf blade, or stem bark of corn stover (as substrates) at 39°C for 72 h. The results showed that the stem bark had the lowest (P < 0.05) digestibility (38.0 ± 1.36%) and neutral detergent solubles, that is, cell solubles (31.6 ± 0.45%), and the highest (P < 0.05) lignin content (4.8 ± 0.56%). The leaf blade had a significantly higher methane conversion rate (56.6 ± 0.76 mL/g digested substrate) than the stem pith (49.2 ± 1.60 mL/g digested substrate), even though they showed similar levels of methane production (42.4 ± 1.0 mL and 40.9 ± 1.35 mL, respectively). Both the leaf blade and stem pith of corn stover have the potential to produce methane in a simple co-culture of an anaerobic fungus and methanogen.
Collapse
Affiliation(s)
- Yuqi Li
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agriculture University, Nanjing, China
| | - Zhesheng Hou
- College of Mechanical and Electrical Engineering, Jilin Institute of Chemical Technology, Jilin, China
| | - Qicheng Shi
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agriculture University, Nanjing, China
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agriculture University, Nanjing, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agriculture University, Nanjing, China
| |
Collapse
|
157
|
Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal 2020; 14:s2-s16. [PMID: 32024560 DOI: 10.1017/s1751731119003100] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Meat and milk from ruminants provide an important source of protein and other nutrients for human consumption. Although ruminants have a unique advantage of being able to consume forages and graze lands not suitable for arable cropping, 2% to 12% of the gross energy consumed is converted to enteric CH4 during ruminal digestion, which contributes approximately 6% of global anthropogenic greenhouse gas emissions. Thus, ruminant producers need to find cost-effective ways to reduce emissions while meeting consumer demand for food. This paper provides a critical review of the substantial amount of ruminant CH4-related research published in past decades, highlighting hydrogen flow in the rumen, the microbiome associated with methanogenesis, current and future prospects for CH4 mitigation and insights into future challenges for science, governments, farmers and associated industries. Methane emission intensity, measured as emissions per unit of meat and milk, has continuously declined over the past decades due to improvements in production efficiency and animal performance, and this trend is expected to continue. However, continued decline in emission intensity will likely be insufficient to offset the rising emissions from increasing demand for animal protein. Thus, decreases in both emission intensity (g CH4/animal product) and absolute emissions (g CH4/day) are needed if the ruminant industries continue to grow. Providing producers with cost-effective options for decreasing CH4 emissions is therefore imperative, yet few cost-effective approaches are currently available. Future abatement may be achieved through animal genetics, vaccine development, early life programming, diet formulation, use of alternative hydrogen sinks, chemical inhibitors and fermentation modifiers. Individually, these strategies are expected to have moderate effects (<20% decrease), with the exception of the experimental inhibitor 3-nitrooxypropanol for which decreases in CH4 have consistently been greater (20% to 40% decrease). Therefore, it will be necessary to combine strategies to attain the sizable reduction in CH4 needed, but further research is required to determine whether combining anti-methanogenic strategies will have consistent additive effects. It is also not clear whether a decrease in CH4 production leads to consistent improved animal performance, information that will be necessary for adoption by producers. Major constraints for decreasing global enteric CH4 emissions from ruminants are continued expansion of the industry, the cost of mitigation, the difficulty of applying mitigation strategies to grazing ruminants, the inconsistent effects on animal performance and the paucity of information on animal health, reproduction, product quality, cost-benefit, safety and consumer acceptance.
Collapse
|
158
|
Martínez-Álvaro M, Auffret MD, Stewart RD, Dewhurst RJ, Duthie CA, Rooke JA, Wallace RJ, Shih B, Freeman TC, Watson M, Roehe R. Identification of Complex Rumen Microbiome Interaction Within Diverse Functional Niches as Mechanisms Affecting the Variation of Methane Emissions in Bovine. Front Microbiol 2020; 11:659. [PMID: 32362882 PMCID: PMC7181398 DOI: 10.3389/fmicb.2020.00659] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/23/2020] [Indexed: 11/13/2022] Open
Abstract
A network analysis including relative abundances of all ruminal microbial genera (archaea, bacteria, fungi, and protists) and their genes was performed to improve our understanding of how the interactions within the ruminal microbiome affects methane emissions (CH4). Metagenomics and CH4 data were available from 63 bovines of a two-breed rotational cross, offered two basal diets. Co-abundance network analysis revealed 10 clusters of functional niches. The most abundant hydrogenotrophic Methanobacteriales with key microbial genes involved in methanogenesis occupied a different functional niche (i.e., "methanogenesis" cluster) than methylotrophic Methanomassiliicoccales (Candidatus Methanomethylophylus) and acetogens (Blautia). Fungi and protists clustered together and other plant fiber degraders like Fibrobacter occupied a seperate cluster. A Partial Least Squares analysis approach to predict CH4 variation in each cluster showed the methanogenesis cluster had the best prediction ability (57.3%). However, the most important explanatory variables in this cluster were genes involved in complex carbohydrate degradation, metabolism of sugars and amino acids and Candidatus Azobacteroides carrying nitrogen fixation genes, but not methanogenic archaea and their genes. The cluster containing Fibrobacter, isolated from other microorganisms, was positively associated with CH4 and explained 49.8% of its variability, showing fermentative advantages compared to other bacteria and fungi in providing substrates (e.g., formate) for methanogenesis. In other clusters, genes with enhancing effect on CH4 were related to lactate and butyrate (Butyrivibrio and Pseudobutyrivibrio) production and simple amino acids metabolism. In comparison, ruminal genes negatively related to CH4 were involved in carbohydrate degradation via lactate and succinate and synthesis of more complex amino acids by γ-Proteobacteria. When analyzing low- and high-methane emitters data in separate networks, competition between methanogens in the methanogenesis cluster was uncovered by a broader diversity of methanogens involved in the three methanogenesis pathways and larger interactions within and between communities in low compared to high emitters. Generally, our results suggest that differences in CH4 are mainly explained by other microbial communities and their activities rather than being only methanogens-driven. Our study provides insight into the interactions of the rumen microbial communities and their genes by uncovering functional niches affecting CH4, which will benefit the development of efficient CH4 mitigation strategies.
Collapse
Affiliation(s)
- Marina Martínez-Álvaro
- Scotland’s Rural College, Edinburgh, United Kingdom
- Institute for Animal Science and Technology, Polytechnic University of Valencia, Valencia, Spain
| | | | - Robert D. Stewart
- Edinburgh Genomics, The Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | - R. John Wallace
- The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | - Barbara Shih
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tom C. Freeman
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, United Kingdom
| | - Mick Watson
- Edinburgh Genomics, The Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, United Kingdom
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, United Kingdom
| | - Rainer Roehe
- Scotland’s Rural College, Edinburgh, United Kingdom
| |
Collapse
|
159
|
Ghanbari Maman L, Palizban F, Fallah Atanaki F, Elmi Ghiasi N, Ariaeenejad S, Ghaffari MR, Hosseini Salekdeh G, Kavousi K. Co-abundance analysis reveals hidden players associated with high methane yield phenotype in sheep rumen microbiome. Sci Rep 2020; 10:4995. [PMID: 32193482 PMCID: PMC7081230 DOI: 10.1038/s41598-020-61942-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/05/2020] [Indexed: 12/28/2022] Open
Abstract
Rumen microbial environment hosts a variety of microorganisms that interact with each other to carry out the feed digestion and generation of several by-products especially methane, which plays an essential role in global warming as a greenhouse gas. However, due to its multi-factorial nature, the exact cause of methane production in the rumen has not yet been fully determined. The current study is an attempt to use system modeling to analyze the relationship between interacting components of rumen microbiome and its role in methane production. Metagenomic data of sheep rumen, with equal numbers of high methane yield (HMY) and low methane yield (LMY) samples, were used. As a well-known approach for the systematic comparative study of complex traits, the co-abundance networks were constructed in both operational taxonomic unit (OTU) and gene levels. A gene-catalog of 1,444 different rumen microbial strains was developed as a reference to measure gene abundances. The results from both types of co-abundance networks showed that methanogens, which are the main ruminal source for methanogenesis, need other microbial species to accomplish the task of methane production through producing the main precursor molecules like H2 and acetate for methanogenesis pathway as their byproducts. KEGG Orthology(KO) analysis of the current study shows that the metabolism and growth rate of methanogens will be increased due to the higher rate of the metabolism and carbohydrate/fiber digestion pathways in the hidden elements. This finding proposes that any ruminant methane yield alteration strategy should consider complex interactions of rumen microbiome components as one tightly integrated unit rather than several separate parts.
Collapse
Affiliation(s)
- Leila Ghanbari Maman
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Fahimeh Palizban
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Fereshteh Fallah Atanaki
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Naser Elmi Ghiasi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
160
|
Vaidya JD, van Gastelen S, Smidt H, Plugge CM, Edwards JE. Characterization of dairy cow rumen bacterial and archaeal communities associated with grass silage and maize silage based diets. PLoS One 2020; 15:e0229887. [PMID: 32119709 PMCID: PMC7051090 DOI: 10.1371/journal.pone.0229887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
The objective of the present study was to characterize the rumen bacterial and archaeal communities in dairy cows fed different ratios of maize silage (MS) and grass silage (GS), and place the findings in the context of ruminal fermentation as well as previously reported methane (CH4) emissions. Rumen fluid from 12 rumen cannulated dairy cows was collected after 10 and 17 days of feeding one of four diets, all of which had the same roughage to concentrate ratio of 80:20 based on dry matter (DM). Roughage in the four diets (GS100, GS0, GS67, GS33) consisted of either 1000 g/kg DM GS (GS100), 1000 g/kg DM MS (GS0), or a mixture of both silages in different proportions [667 g/kg DM GS and 333 g/kg DM MS (GS67); 333 g/kg DM GS and 677 g/kg DM MS (GS33)]. Total volatile fatty acid (VFA) concentrations and the molar proportions of the ruminal VFA were not affected by diet. Only the molar proportion of isovalerate was affected by time, being lower on day 17 than on day 10. Bacterial and archaeal concentrations were not affected by diet but increased from day 10 to day 17. The bacterial community composition was affected by diet, time and diet × time, whereas the archaeal community composition was only affected by diet. Several bacterial and archaeal genus level groups were associated with diet, but not with time. Analysis indicated the increased use of hydrogen by succinate and lactate producing bacteria is likely to at least partially explain the previously reported lower CH4 emissions from MS fed dairy cows. Furthermore, time had a significant effect on both bacterial and archaeal concentrations, and also bacterial community composition. This indicates that the rumen microbiota had not stabilized after 10 days of feeding the experimental diets.
Collapse
Affiliation(s)
- Jueeli D. Vaidya
- Top Institute Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Sanne van Gastelen
- Top Institute Food and Nutrition, Wageningen, The Netherlands
- Animal Nutrition Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- * E-mail:
| | - Caroline M. Plugge
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Joan E. Edwards
- Top Institute Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
161
|
Costa H, Saliba E, Bomfim M, Lana ÂM, Borges AL, Landim A, Mota C, Tonucci R, Faciola AP. Sheep Methane Emission on Semiarid Native Pasture-Potential Impacts of Either Zinc Sulfate or Propylene Glycol as Mitigation Strategies. Animals (Basel) 2020; 10:ani10030395. [PMID: 32121119 PMCID: PMC7143273 DOI: 10.3390/ani10030395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to evaluate the effects of Zinc sulfate and propylene glycol (PG) on methane (CH4) emission, nutrient intake, digestibility, and production in sheep grazing on a native Caatinga (Brazilian semi-arid savannah) pasture during the rainy season (from March to June 2014). Fifteen mixed Santa Inês sheep, all non-castrated males, with initial body weight of 19.8 ± 1.64 kg, and 4 ± 0.35 months of age, were distributed in a complete randomized design into three treatments: control (CT)-concentrate supplemented at 0.7% of body weight; CT + 300 mg of Zn/day; and CT + 2.5 mL of propylene glycol/kg LW0.75/day. Measurements were done in four periods during the rainy season, with 28 days of interval between each measurement. CH4 emission was measured using the SF6 tracer gas technique. CH4 emission per day was greater in PG than in CT and Zn (p < 0.05). However, no additive effect was observed on the intakes of organic matter (OM) and neutral detergent fiber (NDF), or on CH4 emission expressed as a function of OM and NDF intakes (p > 0.05). Across the months of the trial, OM and NDF intakes were greater in March, while the greatest emission of CH4 (g/day and g by g/OM intake) was observed in May (p < 0.05). Total CH4 emission (kg) from March to June (112 days of evaluation) was greater in PG compared with CT and Zn (p < 0.05). Zinc and PG had no effect on total CH4 emission when it was expressed per unit of body weight gain or carcass production (p > 0.05). The results of this study indicate that Zinc sulfate and propylene glycol have no beneficial effects in mitigating sheep CH4 emission. The CH4 emissions originated from sheep grazing native Caatinga pasture change throughout the rainy season due to fluctuations in availability and quality of pasture biomass. Moreover, the inclusion of zinc sulfate or propylene glycol did not improve animal feed intake, nutrient digestibility, and animal performance.
Collapse
Affiliation(s)
- Hélio Costa
- Department of Animal Science, Vale do Acaraú State University, Sobral 62.040-370, Brazil; (A.L.); (C.M.)
- Department of Animal Science, Federal University of Minas, Belo Horizonte 30.123-970, Brazil; (E.S.); (Â.M.L.)
- Regional Scientific Development Scholarship of National Scientific and Technological Development Council (Conselho Nacional de Desenvolvimento Cientifico e Tecnológico—CNPq)—Level C (DCR-FUNCAP/CNPq), Brasilia 38706-400, Brazil
- Correspondence: ; Tel.: +55-88-99999-3143
| | - Eloisa Saliba
- Department of Animal Science, Federal University of Minas, Belo Horizonte 30.123-970, Brazil; (E.S.); (Â.M.L.)
| | - Marco Bomfim
- Embrapa Goats and Sheep, Estrada Sobral-Groaíras, Km 04, Caixa Postal 145, Sobral 62010-970, Brazil; (M.B.); (R.T.)
| | - Ângela Maria Lana
- Department of Animal Science, Federal University of Minas, Belo Horizonte 30.123-970, Brazil; (E.S.); (Â.M.L.)
| | - Ana Luiza Borges
- Department of Animal Science, Federal University of Minas, Belo Horizonte 30.123-970, Brazil; (E.S.); (Â.M.L.)
| | - Aline Landim
- Department of Animal Science, Vale do Acaraú State University, Sobral 62.040-370, Brazil; (A.L.); (C.M.)
| | - Carlos Mota
- Department of Animal Science, Vale do Acaraú State University, Sobral 62.040-370, Brazil; (A.L.); (C.M.)
| | - Rafael Tonucci
- Embrapa Goats and Sheep, Estrada Sobral-Groaíras, Km 04, Caixa Postal 145, Sobral 62010-970, Brazil; (M.B.); (R.T.)
| | - Antonio P. Faciola
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
162
|
Andrade BGN, Bressani FA, Cuadrat RRC, Tizioto PC, de Oliveira PSN, Mourão GB, Coutinho LL, Reecy JM, Koltes JE, Walsh P, Berndt A, Palhares JCP, Regitano LCA. The structure of microbial populations in Nelore GIT reveals inter-dependency of methanogens in feces and rumen. J Anim Sci Biotechnol 2020; 11:6. [PMID: 32123563 PMCID: PMC7038601 DOI: 10.1186/s40104-019-0422-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022] Open
Abstract
Background The success of different species of ruminants in the colonization of a diverse range of environments is due to their ability to digest and absorb nutrients from cellulose, a complex polysaccharide found in leaves and grass. Ruminants rely on a complex and diverse microbial community, or microbiota, in a unique compartment known as the rumen to break down this polysaccharide. Changes in microbial populations of the rumen can affect the host’s development, health, and productivity. However, accessing the rumen is stressful for the animal. Therefore, the development and use of alternative sampling methods are needed if this technique is to be routinely used in cattle breeding. To this end, we tested if the fecal microbiome could be used as a proxy for the rumen microbiome due to its accessibility. We investigated the taxonomic composition, diversity and inter-relations of two different GIT compartments, rumen and feces, of 26 Nelore (Bos indicus) bulls, using Next Generation Sequencing (NGS) metabarcoding of bacteria, archaea and ciliate protozoa. Results We identified 4265 Amplicon Sequence Variants (ASVs) from bacteria, 571 from archaea, and 107 from protozoa, of which 143 (96 bacteria and 47 archaea) were found common between both microbiomes. The most prominent bacterial phyla identified were Bacteroidetes (41.48%) and Firmicutes (56.86%) in the ruminal and fecal microbiomes, respectively, with Prevotella and Ruminococcaceae UCG-005 the most relatively abundant genera identified in each microbiome. The most abundant archaeal phylum identified was Euryarchaeota, of which Methanobrevibacter gottschalkii, a methanogen, was the prevalent archaeal species identified in both microbiomes. Protozoa were found exclusively identified in the rumen with Bozasella/Triplumaria being the most frequent genus identified. Co-occurrence among ruminal and fecal ASVs reinforces the relationship of microorganisms within a biological niche. Furthermore, the co-occurrence of shared archaeal ASVs between microbiomes indicates a dependency of the predominant fecal methanogen population on the rumen population. Conclusions Co-occurring microorganisms were identified within the rumen and fecal microbiomes, which revealed a strong association and inter-dependency between bacterial, archaeal and protozoan populations of the same microbiome. The archaeal ASVs identified as co-occurring between GIT compartments corresponded to the methanogenic genera Methanobrevibacter and Methanosphaera and represented 26.34% of the overall archaeal sequencesdiversity in the rumen and 42.73% in feces. Considering that these archaeal ASVs corresponded to a significant part of the overall diversity of both microbiomes, which is much higher if one includes the interactions of these co-occurring with other rumen archaea ASVs, we suggest that fecal methanogens could be used as a proxy of ruminal methanogens.
Collapse
Affiliation(s)
| | | | - Rafael R C Cuadrat
- 2Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | | | | | - Gerson B Mourão
- 4Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, Brazil
| | - Luiz L Coutinho
- 4Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, Brazil
| | - James M Reecy
- 5Department of Animal Science, Iowa State University, Ames, IA USA
| | - James E Koltes
- 5Department of Animal Science, Iowa State University, Ames, IA USA
| | | | | | | | | |
Collapse
|
163
|
Vargas JE, Andrés S, López-Ferreras L, Snelling TJ, Yáñez-Ruíz DR, García-Estrada C, López S. Dietary supplemental plant oils reduce methanogenesis from anaerobic microbial fermentation in the rumen. Sci Rep 2020; 10:1613. [PMID: 32005859 PMCID: PMC6994681 DOI: 10.1038/s41598-020-58401-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/14/2020] [Indexed: 11/08/2022] Open
Abstract
Ruminants contribute to the emissions of greenhouse gases, in particular methane, due to the microbial anaerobic fermentation of feed in the rumen. The rumen simulation technique was used to investigate the effects of the addition of different supplemental plant oils to a high concentrate diet on ruminal fermentation and microbial community composition. The control (CTR) diet was a high-concentrate total mixed ration with no supplemental oil. The other experimental diets were supplemented with olive (OLV), sunflower (SFL) or linseed (LNS) oils at 6%. Rumen digesta was used to inoculate the fermenters, and four fermentation units were used per treatment. Fermentation end-products, extent of feed degradation and composition of the microbial community (qPCR) in digesta were determined. Compared with the CTR diet, the addition of plant oils had no significant (P > 0.05) effect on ruminal pH, substrate degradation, total volatile fatty acids or microbial protein synthesis. Gas production from the fermentation of starch or cellulose were decreased by oil supplementation. Methane production was reduced by 21-28% (P < 0.001), propionate production was increased (P < 0.01), and butyrate and ammonia outputs and the acetate to propionate ratio were decreased (P < 0.001) with oil-supplemented diets. Addition of 6% OLV and LNS reduced (P < 0.05) copy numbers of total bacteria relative to the control. In conclusion, the supplementation of ruminant diets with plant oils, in particular from sunflower or linseed, causes some favorable effects on the fermentation processes. The addition of vegetable oils to ruminant mixed rations will reduce methane production increasing the formation of propionic acid without affecting the digestion of feed in the rumen. Adding vegetable fats to ruminant diets seems to be a suitable approach to decrease methane emissions, a relevant cleaner effect that may contribute to alleviate the environmental impact of ruminant production.
Collapse
Affiliation(s)
- Julio Ernesto Vargas
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Producción Animal, Universidad de León, E-24007, León, Spain
- Universidad de Caldas, Facultad de Ciencias Agropecuarias, Grupo CIENVET, Manizales, Colombia
| | - Sonia Andrés
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Producción Animal, Universidad de León, E-24007, León, Spain
| | - Lorena López-Ferreras
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Producción Animal, Universidad de León, E-24007, León, Spain
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, PO Box 434, SE-405 30, Gothenburg, Sweden
| | - Timothy J Snelling
- Animal Production, Welfare and Veterinary Sciences, Harper Adams University, Edgmond, Shropshire, TF10 8NB, UK
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | | | - Carlos García-Estrada
- INBIOTEC, Instituto de Biotecnología de León, Avda. Real no. 1, Parque Científico de León, 24006, León, Spain
| | - Secundino López
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Producción Animal, Universidad de León, E-24007, León, Spain.
| |
Collapse
|
164
|
Guo J, Li P, Liu S, Miao B, Zeng B, Jiang Y, Li L, Wang L, Chen Y, Zhang H. Characterization of the Rumen Microbiota and Volatile Fatty Acid Profiles of Weaned Goat Kids under Shrub-Grassland Grazing and Indoor Feeding. Animals (Basel) 2020; 10:E176. [PMID: 31972989 PMCID: PMC7070841 DOI: 10.3390/ani10020176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/20/2022] Open
Abstract
In this study, we conducted comparative analyses to characterize the rumen microbiota and volatile fatty acid (VFA) profiles of weaned Nanjiang Yellow goat kids under shrub-grassland grazing (GR), shrub-grassland grazing and supplementary feeding (SF), and indoor feeding (IF) systems. We observed significant differences (p < 0.05) in the concentrations of total VFA and the proportions of acetate and butyrate in the rumen fluid among the three groups, whereas the proportions of propionate and the acetate/propionate ratio did not differ substantially. Alpha diversity of the rumen bacterial and archaeal populations in the GR and SF kids was significantly higher (p < 0.05) than that in the IF goat kids, and significant differences (p < 0.05) in similarity were observed in the comparisons of GR vs. IF and SF vs. IF. The most predominant bacterial phyla were Bacteroidetes and Firmicutes across the three groups, and the archaeal community was mainly composed of Euryarchaeota. At the genus and species levels, the cellulose-degrading bacteria, including Lachnospiraceae, Ruminococcaceae and Butyrivibrio fibrisolvens, were abundant in the GR and SF groups. Furthermore, 27 bacterial and 11 unique archaeal taxa, such as Lachnospiraceae, Butyrivibrio fibrisolvens, and Methanobrevibacter ruminantium, were identified as biomarkers, and showed significantly different (p < 0.05) abundances among the three groups. Significant Spearman correlations (p < 0.05), between the abundances of several microbial biomarkers and the concentrations of VFAs, were further observed. In summary, our results demonstrated that the adaptation to grazing required more rumen bacterial populations due to complex forage types in shrub-grassland, although the rumen fermentation pattern did not change substantially among the three feeding systems. Some microbial taxa could be used as biomarkers for different feeding systems, particularly cellulose-degrading bacteria associated with grazing.
Collapse
Affiliation(s)
- Jiazhong Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.G.); (P.L.); (S.L.); (B.Z.); (Y.J.); (L.L.); (L.W.)
| | - Pengfei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.G.); (P.L.); (S.L.); (B.Z.); (Y.J.); (L.L.); (L.W.)
| | - Shuai Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.G.); (P.L.); (S.L.); (B.Z.); (Y.J.); (L.L.); (L.W.)
| | - Bin Miao
- Nanjiang Yellow Goat Scientific Research Institute, Nanjiang 635600, China; (B.M.); (Y.C.)
| | - Bo Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.G.); (P.L.); (S.L.); (B.Z.); (Y.J.); (L.L.); (L.W.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yahui Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.G.); (P.L.); (S.L.); (B.Z.); (Y.J.); (L.L.); (L.W.)
| | - Li Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.G.); (P.L.); (S.L.); (B.Z.); (Y.J.); (L.L.); (L.W.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.G.); (P.L.); (S.L.); (B.Z.); (Y.J.); (L.L.); (L.W.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Chen
- Nanjiang Yellow Goat Scientific Research Institute, Nanjiang 635600, China; (B.M.); (Y.C.)
| | - Hongping Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.G.); (P.L.); (S.L.); (B.Z.); (Y.J.); (L.L.); (L.W.)
| |
Collapse
|
165
|
Ramayo‐Caldas Y, Zingaretti L, Popova M, Estellé J, Bernard A, Pons N, Bellot P, Mach N, Rau A, Roume H, Perez‐Enciso M, Faverdin P, Edouard N, Ehrlich D, Morgavi DP, Renand G. Identification of rumen microbial biomarkers linked to methane emission in Holstein dairy cows. J Anim Breed Genet 2020; 137:49-59. [PMID: 31418488 PMCID: PMC6972549 DOI: 10.1111/jbg.12427] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/29/2022]
Abstract
Mitigation of greenhouse gas emissions is relevant for reducing the environmental impact of ruminant production. In this study, the rumen microbiome from Holstein cows was characterized through a combination of 16S rRNA gene and shotgun metagenomic sequencing. Methane production (CH4 ) and dry matter intake (DMI) were individually measured over 4-6 weeks to calculate the CH4 yield (CH4 y = CH4 /DMI) per cow. We implemented a combination of clustering, multivariate and mixed model analyses to identify a set of operational taxonomic unit (OTU) jointly associated with CH4 y and the structure of ruminal microbial communities. Three ruminotype clusters (R1, R2 and R3) were identified, and R2 was associated with higher CH4 y. The taxonomic composition on R2 had lower abundance of Succinivibrionaceae and Methanosphaera, and higher abundance of Ruminococcaceae, Christensenellaceae and Lachnospiraceae. Metagenomic data confirmed the lower abundance of Succinivibrionaceae and Methanosphaera in R2 and identified genera (Fibrobacter and unclassified Bacteroidales) not highlighted by metataxonomic analysis. In addition, the functional metagenomic analysis revealed that samples classified in cluster R2 were overrepresented by genes coding for KEGG modules associated with methanogenesis, including a significant relative abundance of the methyl-coenzyme M reductase enzyme. Based on the cluster assignment, we applied a sparse partial least-squares discriminant analysis at the taxonomic and functional levels. In addition, we implemented a sPLS regression model using the phenotypic variation of CH4 y. By combining these two approaches, we identified 86 discriminant bacterial OTUs, notably including families linked to CH4 emission such as Succinivibrionaceae, Ruminococcaceae, Christensenellaceae, Lachnospiraceae and Rikenellaceae. These selected OTUs explained 24% of the CH4 y phenotypic variance, whereas the host genome contribution was ~14%. In summary, we identified rumen microbial biomarkers associated with the methane production of dairy cows; these biomarkers could be used for targeted methane-reduction selection programmes in the dairy cattle industry provided they are heritable.
Collapse
Affiliation(s)
- Yuliaxis Ramayo‐Caldas
- UMR 1313 GABIINRA, AgroParisTech, Université Paris‐SaclayJouy‐en‐JosasFrance
- Animal Breeding and Genetics ProgramIRTA Torre MarimonCaldes de MontbuiSpain
| | | | - Milka Popova
- VetAgro Sup, UMR 1213 HerbivoresINRA, Université Clermont AuvergneSaint‐Genès‐ChampanelleFrance
| | - Jordi Estellé
- UMR 1313 GABIINRA, AgroParisTech, Université Paris‐SaclayJouy‐en‐JosasFrance
| | - Aurelien Bernard
- VetAgro Sup, UMR 1213 HerbivoresINRA, Université Clermont AuvergneSaint‐Genès‐ChampanelleFrance
| | | | - Pau Bellot
- Department of Animal Genetics, CRAGUABBellaterraSpain
| | - Núria Mach
- UMR 1313 GABIINRA, AgroParisTech, Université Paris‐SaclayJouy‐en‐JosasFrance
| | - Andrea Rau
- UMR 1313 GABIINRA, AgroParisTech, Université Paris‐SaclayJouy‐en‐JosasFrance
| | - Hugo Roume
- INRA METAGENOPOLIS UnitJouy‐en‐JosasFrance
| | | | | | | | | | - Diego P. Morgavi
- VetAgro Sup, UMR 1213 HerbivoresINRA, Université Clermont AuvergneSaint‐Genès‐ChampanelleFrance
| | - Gilles Renand
- UMR 1313 GABIINRA, AgroParisTech, Université Paris‐SaclayJouy‐en‐JosasFrance
| |
Collapse
|
166
|
Wainaina S, Lukitawesa, Kumar Awasthi M, Taherzadeh MJ. Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review. Bioengineered 2019; 10:437-458. [PMID: 31570035 PMCID: PMC6802927 DOI: 10.1080/21655979.2019.1673937] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 11/07/2022] Open
Abstract
Anaerobic digestion (AD) is a well-established technology used for producing biogas or biomethane alongside the slurry used as biofertilizer. However, using a variety of wastes and residuals as substrate and mixed cultures in the bioreactor makes AD as one of the most complicated biochemical processes employing hydrolytic, acidogenic, hydrogen-producing, acetate-forming bacteria as well as acetoclastic and hydrogenoclastic methanogens. Hydrogen and volatile fatty acids (VFAs) including acetic, propionic, isobutyric, butyric, isovaleric, valeric and caproic acid and other carboxylic acids such as succinic and lactic acids are formed as intermediate products. As these acids are important precursors for various industries as mixed or purified chemicals, the AD process can be bioengineered to produce VFAs alongside hydrogen and therefore biogas plants can become biorefineries. The current review paper provides the theory and means to produce and accumulate VFAs and hydrogen, inhibit their conversion to methane and to extract them as the final products. The effects of pretreatment, pH, temperature, hydraulic retention time (HRT), organic loading rate (OLR), chemical methane inhibitions, and heat shocking of the inoculum on VFAs accumulation, hydrogen production, VFAs composition, and the microbial community were discussed. Furthermore, this paper highlights the possible techniques for recovery of VFAs from the fermentation media in order to minimize product inhibition as well as to supply the carboxylates for downstream procedures.
Collapse
Affiliation(s)
- Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Lukitawesa
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Mukesh Kumar Awasthi
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, PR China
| | | |
Collapse
|
167
|
Snelling TJ, Auffret MD, Duthie CA, Stewart RD, Watson M, Dewhurst RJ, Roehe R, Walker AW. Temporal stability of the rumen microbiota in beef cattle, and response to diet and supplements. Anim Microbiome 2019; 1:16. [PMID: 33499961 PMCID: PMC7807515 DOI: 10.1186/s42523-019-0018-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/28/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Dietary intake is known to be a driver of microbial community dynamics in ruminants. Beef cattle go through a finishing phase that typically includes very high concentrate ratios in their feed, with consequent effects on rumen metabolism including methane production. This longitudinal study was designed to measure dynamics of the rumen microbial community in response to the introduction of high concentrate diets fed to beef cattle during the finishing period. A cohort of 50 beef steers were fed either of two basal diet formulations consisting of approximately 10:90 or 50:50 forage:concentrate ratios respectively. Nitrate and oil rich supplements were also added either individually or in combination. Digesta samples were taken at time points over ~ 200 days during the finishing period of the cattle to measure the adaptation to the basal diet and long-term stability of the rumen microbiota. RESULTS 16S rRNA gene amplicon libraries were prepared from 313 rumen digesta samples and analysed at a depth of 20,000 sequences per library. Bray Curtis dissimilarity with analysis of molecular variance (AMOVA) revealed highly significant (p < 0.001) differences in microbiota composition between cattle fed different basal diets, largely driven by reduction of fibre degrading microbial groups and increased relative abundance of an unclassified Gammaproteobacteria OTU in the high concentrate fed animals. Conversely, the forage-based diet was significantly associated with methanogenic archaea. Within basal diet groups, addition of the nitrate and combined supplements had lesser, although still significant, impacts on microbiota dissimilarity compared to pre-treatment time points and controls. Measurements of the response and stability of the microbial community over the time course of the experiment showed continuing adaptation up to 25 days in the high concentrate groups. After this time point, however, no significant variability was detected. CONCLUSIONS High concentrate diets that are typically fed to finishing beef cattle can have a significant effect on the microbial community in the rumen. Inferred metabolic activity of the different microbial communities associated with each of the respective basal diets explained differences in methane and short chain fatty acid production between cattle. Longitudinal sampling revealed that once adapted to a change in diet, the rumen microbial community remains in a relatively stable alternate state.
Collapse
Affiliation(s)
| | | | | | - Robert D. Stewart
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, EH25 9RG UK
| | - Mick Watson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, EH25 9RG UK
| | | | | | - Alan W. Walker
- Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD UK
| |
Collapse
|
168
|
Belanche A, Yáñez‐Ruiz DR, Detheridge AP, Griffith GW, Kingston‐Smith AH, Newbold CJ. Maternal versus artificial rearing shapes the rumen microbiome having minor long-term physiological implications. Environ Microbiol 2019; 21:4360-4377. [PMID: 31518039 PMCID: PMC6899609 DOI: 10.1111/1462-2920.14801] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022]
Abstract
Increasing productivity is a key target in ruminant science which requires better understanding of the rumen microbiota. This study investigated how maternal versus artificial rearing shapes the rumen microbiota using 24 sets of triplet lambs. Lambs within each sibling set were randomly assigned to natural rearing on the ewe (NN); ewe colostrum for 24 h followed by artificial milk feeding (NA); and colostrum alternative and artificial milk feeding (AA). Maternal colostrum feeding enhanced VFA production at weaning but not thereafter. At weaning, lambs reared on milk replacer had no rumen protozoa and lower microbial diversity, whereas natural rearing accelerated the rumen microbial development and facilitated the transition to solid diet. Differences in the rumen prokaryotic communities disappear later in life when all lambs were grouped on the same pasture up to 23 weeks of age. However, NN animals retained higher fungal diversity and abundances of Piromyces, Feramyces and Diplodiniinae protozoa as well as higher feed digestibility (+4%) and animal growth (+6.5%) during the grazing period. Nevertheless, no correlations were found between rumen microbiota and productive outcomes. These findings suggest that the early life nutritional intervention determine the initial rumen microbial community, but the persistence of these effects later in life is weak.
Collapse
Affiliation(s)
- Alejandro Belanche
- Estacion Experimental del Zaidín (CSIC)Profesor Albareda, 1, 18008GranadaSpain
- IBERSAberystwyth UniversitySY23 3DAAberystwythUK
| | - David R. Yáñez‐Ruiz
- Estacion Experimental del Zaidín (CSIC)Profesor Albareda, 1, 18008GranadaSpain
| | | | | | | | - Charles J. Newbold
- IBERSAberystwyth UniversitySY23 3DAAberystwythUK
- SRUC, Peter Wilson Building, King's BuildingsEH9 3JGEdinburghUK
| |
Collapse
|
169
|
Saborío-Montero A, Gutiérrez-Rivas M, García-Rodríguez A, Atxaerandio R, Goiri I, López de Maturana E, Jiménez-Montero JA, Alenda R, González-Recio O. Structural equation models to disentangle the biological relationship between microbiota and complex traits: Methane production in dairy cattle as a case of study. J Anim Breed Genet 2019; 137:36-48. [PMID: 31617268 DOI: 10.1111/jbg.12444] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 01/21/2023]
Abstract
The advent of metagenomics in animal breeding poses the challenge of statistically modelling the relationship between the microbiome, the host genetics and relevant complex traits. A set of structural equation models (SEMs) of a recursive type within a Markov chain Monte Carlo (MCMC) framework was proposed here to jointly analyse the host-metagenome-phenotype relationship. A non-recursive bivariate model was set as benchmark to compare the recursive model. The relative abundance of rumen microbes (RA), methane concentration (CH4 ) and the host genetics was used as a case of study. Data were from 337 Holstein cows from 12 herds in the north and north-west of Spain. Microbial composition from each cow was obtained from whole metagenome sequencing of ruminal content samples using a MinION device from Oxford Nanopore Technologies. Methane concentration was measured with Guardian® NG infrared gas monitor from Edinburgh Sensors during cow's visits to the milking automated system. A quarterly average from the methane eructation peaks for each cow was computed and used as phenotype for CH4 . Heritability of CH4 was estimated at 0.12 ± 0.01 in both the recursive and bivariate models. Likewise, heritability estimates for the relative abundance of the taxa overlapped between models and ranged between 0.08 and 0.48. Genetic correlations between the microbial composition and CH4 ranged from -0.76 to 0.65 in the non-recursive bivariate model and from -0.68 to 0.69 in the recursive model. Regardless of the statistical model used, positive genetic correlations with methane were estimated consistently for the seven genera pertaining to the Ciliophora phylum, as well as for those genera belonging to the Euryarchaeota (Methanobrevibacter sp.), Chytridiomycota (Neocallimastix sp.) and Fibrobacteres (Fibrobacter sp.) phyla. These results suggest that rumen's whole metagenome recursively regulates methane emissions in dairy cows and that both CH4 and the microbiota compositions are partially controlled by the host genotype.
Collapse
Affiliation(s)
- Alejandro Saborío-Montero
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain.,Universitat Politècnica de València, Valencia, Spain
| | - Mónica Gutiérrez-Rivas
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | | | - Raquel Atxaerandio
- Departamento de Producción Animal, NEIKER-Tecnalia, Vitoria-Gasteiz, Spain
| | - Idoia Goiri
- Departamento de Producción Animal, NEIKER-Tecnalia, Vitoria-Gasteiz, Spain
| | - Evangelina López de Maturana
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), and CIBERONC, Madrid, Spain
| | | | - Rafael Alenda
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Oscar González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain.,Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
170
|
Temporal Dynamics in Rumen Bacterial Community Composition of Finishing Steers during an Adaptation Period of Three Months. Microorganisms 2019; 7:microorganisms7100410. [PMID: 31581417 PMCID: PMC6843415 DOI: 10.3390/microorganisms7100410] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/18/2019] [Accepted: 09/29/2019] [Indexed: 01/20/2023] Open
Abstract
The objective of this study was to explore whether collecting rumen samples of finishing steers at monthly intervals differed, and whether this difference or similarity varied with diets. For these purposes, 12 Chinese Holstein steers were equally divided into two groups. The dietary treatments were either standard energy and standard protein (C) or low energy and low protein (L). Rumen samples were obtained on day 30, day 60 and day 90 from both dietary treatments and were analyzed by using 16S rRNA gene sequencing. The results showed that monthly intervals had no effect on the richness and evenness of the rumen bacterial community in the two diets. However, taxonomic difference analysis (relative abundance >0.5%) revealed that the relative abundance of three phyla (Proteobacteria, Fibrobacteres and Cyanobacteria) and six genera (Rikenellaceae_RC9_gut_group, Ruminococcaceae_NK4A214_group, Fibrobacter, Eubacterium_coprostanoligenes_group, Ruminococcaceae_UCG-010 and Ruminobacter) were significantly different between monthly sampling intervals, and the difference was prominent between sampling in the first month and the subsequent two months. Moreover, the differences in abundances of phyla and genera between monthly sampling intervals were affected by diets. Analysis of similarity (ANOSIM) showed no significant differences between monthly sampling intervals in the C diet. However, ANOSIM results revealed that significant differences between the first month and second month and between the first month and third month were present in the L diet. These results indicated that temporal dynamics in rumen bacterial community composition did occur even after an adaptation period of three months. This study tracked the changes in rumen bacterial populations of finishing cattle after a shift in diet with the passage of time. This study may provide insight into bacterial adaptation time to dietary transition in finishing steers.
Collapse
|
171
|
Rabee AE, Forster RJ, Elekwachi CO, Kewan KZ, Sabra E, Mahrous HA, Khamiss OA, Shawket SM. Composition of bacterial and archaeal communities in the rumen of dromedary camel using cDNA-amplicon sequencing. Int Microbiol 2019; 23:137-148. [PMID: 31432356 DOI: 10.1007/s10123-019-00093-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/30/2019] [Accepted: 07/21/2019] [Indexed: 11/25/2022]
Abstract
The camel is known to survive in harsh environmental conditions, due to its higher digestive efficiency of high-fiber diets compared with other ruminants. However, limited data are available on the microbial community in the rumen of a camel. In this study, the Illumina sequencing of V4 region of 16S rRNA genes based on RNA isolation was employed to get insight into the bacterial and archaeal communities associated with liquid and solid rumen fractions in eight camels under different feeding systems. Camels in group C1 were fed Egyptian clover hay plus concentrates mixture and camels of group C2 were fed fresh Egyptian clover. The results showed that liquid fraction has higher operational taxonomic units (OTUs) than solid fraction, and camel group C1 showed a higher microbial diversity than C2. The UniFrac analysis indicated that the microbial communities in camel groups are distinct. Moreover, phylum Firmicutes and Bacteroidetes dominated the bacterial community and Candidatus Methanomethylophilus dominated the archaeal community with a significant difference in the relative abundance between camel groups. Dominant bacterial genera were Prevotella, Fibrobacteres, Ruminococcus, and Butyrivibrio. There were many negative and positive correlations between and within bacterial and archaeal genera. The composition of microbial community in the rumen of a camel is similar to other ruminants with differences in the abundance.
Collapse
Affiliation(s)
- Alaa E Rabee
- Animal and Poultry Nutrition Department, Desert Research Center, Cairo, Egypt.
| | | | | | - Khaled Z Kewan
- Animal and Poultry Nutrition Department, Desert Research Center, Cairo, Egypt
| | - Ebrahim Sabra
- Genetic Engineering and Biotechnology Research Institute, Sadat City University, Sadat City, Egypt
| | - Hoda A Mahrous
- Genetic Engineering and Biotechnology Research Institute, Sadat City University, Sadat City, Egypt
| | - Omaima A Khamiss
- Genetic Engineering and Biotechnology Research Institute, Sadat City University, Sadat City, Egypt
| | - Safinaze M Shawket
- Animal and Poultry Nutrition Department, Desert Research Center, Cairo, Egypt
| |
Collapse
|
172
|
Schmidt HP, Hagemann N, Draper K, Kammann C. The use of biochar in animal feeding. PeerJ 2019; 7:e7373. [PMID: 31396445 PMCID: PMC6679646 DOI: 10.7717/peerj.7373] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/28/2019] [Indexed: 12/24/2022] Open
Abstract
Biochar, that is, carbonized biomass similar to charcoal, has been used in acute medical treatment of animals for many centuries. Since 2010, livestock farmers increasingly use biochar as a regular feed supplement to improve animal health, increase nutrient intake efficiency and thus productivity. As biochar gets enriched with nitrogen-rich organic compounds during the digestion process, the excreted biochar-manure becomes a more valuable organic fertilizer causing lower nutrient losses and greenhouse gas emissions during storage and soil application. Scientists only recently started to investigate the mechanisms of biochar in the different stages of animal digestion and thus most published results on biochar feeding are based so far on empirical studies. This review summarizes the state of knowledge up to the year 2019 by evaluating 112 relevant scientific publications on the topic to derive initial insights, discuss potential mechanisms behind observations and identify important knowledge gaps and future research needs. The literature analysis shows that in most studies and for all investigated farm animal species, positive effects on different parameters such as toxin adsorption, digestion, blood values, feed efficiency, meat quality and/or greenhouse gas emissions could be found when biochar was added to feed. A considerable number of studies provided statistically non-significant results, though tendencies were mostly positive. Rare negative effects were identified in regard to the immobilization of liposoluble feed ingredients (e.g., vitamin E or Carotenoids) which may limit long-term biochar feeding. We found that most of the studies did not systematically investigate biochar properties (which may vastly differ) and dosage, which is a major drawback for generalizing results. Our review demonstrates that the use of biochar as a feed additive has the potential to improve animal health, feed efficiency and livestock housing climate, to reduce nutrient losses and greenhouse gas emissions, and to increase the soil organic matter content and thus soil fertility when eventually applied to soil. In combination with other good practices, co-feeding of biochar may thus have the potential to improve the sustainability of animal husbandry. However, more systematic multi-disciplinary research is definitely needed to arrive at generalizable recommendations.
Collapse
Affiliation(s)
| | - Nikolas Hagemann
- Ithaka Institute for Carbon Strategies, Arbaz, Valais, Switzerland
- Environmental Analytics, Agroscope, Zurich, Switzerland
| | | | - Claudia Kammann
- Department of Applied Ecology, Hochschule Geisenheim University, Geisenheim, Germany
| |
Collapse
|
173
|
Wallace RJ, Sasson G, Garnsworthy PC, Tapio I, Gregson E, Bani P, Huhtanen P, Bayat AR, Strozzi F, Biscarini F, Snelling TJ, Saunders N, Potterton SL, Craigon J, Minuti A, Trevisi E, Callegari ML, Cappelli FP, Cabezas-Garcia EH, Vilkki J, Pinares-Patino C, Fliegerová KO, Mrázek J, Sechovcová H, Kopečný J, Bonin A, Boyer F, Taberlet P, Kokou F, Halperin E, Williams JL, Shingfield KJ, Mizrahi I. A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions. SCIENCE ADVANCES 2019; 5:eaav8391. [PMID: 31281883 PMCID: PMC6609165 DOI: 10.1126/sciadv.aav8391] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/30/2019] [Indexed: 05/19/2023]
Abstract
A 1000-cow study across four European countries was undertaken to understand to what extent ruminant microbiomes can be controlled by the host animal and to identify characteristics of the host rumen microbiome axis that determine productivity and methane emissions. A core rumen microbiome, phylogenetically linked and with a preserved hierarchical structure, was identified. A 39-member subset of the core formed hubs in co-occurrence networks linking microbiome structure to host genetics and phenotype (methane emissions, rumen and blood metabolites, and milk production efficiency). These phenotypes can be predicted from the core microbiome using machine learning algorithms. The heritable core microbes, therefore, present primary targets for rumen manipulation toward sustainable and environmentally friendly agriculture.
Collapse
Affiliation(s)
- R. John Wallace
- The Rowett Institute, University of Aberdeen, Ashgrove Road West, Aberdeen AB25 2ZD, UK
- Corresponding author. (R.J.W.); (I.M.)
| | - Goor Sasson
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Philip C. Garnsworthy
- University of Nottingham, School of Biosciences, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Ilma Tapio
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - Emma Gregson
- University of Nottingham, School of Biosciences, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Paolo Bani
- Department of Animal Science, Food and Nutrition-DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Pekka Huhtanen
- Swedish University of Agricultural Sciences, Department of Agriculture for Northern Sweden, S-90 183 Umeå, Sweden
| | - Ali R. Bayat
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | | | | | - Timothy J. Snelling
- The Rowett Institute, University of Aberdeen, Ashgrove Road West, Aberdeen AB25 2ZD, UK
| | - Neil Saunders
- University of Nottingham, School of Biosciences, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Sarah L. Potterton
- University of Nottingham, School of Biosciences, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - James Craigon
- University of Nottingham, School of Biosciences, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Andrea Minuti
- Department of Animal Science, Food and Nutrition-DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Erminio Trevisi
- Department of Animal Science, Food and Nutrition-DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Maria L. Callegari
- Institute of Microbiology, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Fiorenzo Piccioli Cappelli
- Department of Animal Science, Food and Nutrition-DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Edward H. Cabezas-Garcia
- Swedish University of Agricultural Sciences, Department of Agriculture for Northern Sweden, S-90 183 Umeå, Sweden
| | - Johanna Vilkki
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - Cesar Pinares-Patino
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - Kateřina O. Fliegerová
- Institute of Animal Physiology and Genetics, CAS, v.v.i., Vídeňská 1083, Prague 14220, Czech Republic
| | - Jakub Mrázek
- Institute of Animal Physiology and Genetics, CAS, v.v.i., Vídeňská 1083, Prague 14220, Czech Republic
| | - Hana Sechovcová
- Institute of Animal Physiology and Genetics, CAS, v.v.i., Vídeňská 1083, Prague 14220, Czech Republic
| | - Jan Kopečný
- Institute of Animal Physiology and Genetics, CAS, v.v.i., Vídeňská 1083, Prague 14220, Czech Republic
| | - Aurélie Bonin
- Laboratoire d'Ecologie Alpine, Domaine Universitaire de St Martin d'Hères CNRS, 38041 Grenoble, France
| | - Frédéric Boyer
- Laboratoire d'Ecologie Alpine, Domaine Universitaire de St Martin d'Hères CNRS, 38041 Grenoble, France
| | - Pierre Taberlet
- Laboratoire d'Ecologie Alpine, Domaine Universitaire de St Martin d'Hères CNRS, 38041 Grenoble, France
| | - Fotini Kokou
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Eran Halperin
- Departments of Computer Science, Computational Medicine, Human Genetics, and Anesthesiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Kevin J. Shingfield
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - Itzhak Mizrahi
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- Corresponding author. (R.J.W.); (I.M.)
| |
Collapse
|
174
|
Teixeira IAMA, Almeida AK, Fernandes MHMR, Resende KT. Applying the California net energy system to growing goats. Transl Anim Sci 2019; 3:999-1010. [PMID: 32704864 PMCID: PMC6994055 DOI: 10.1093/tas/txz021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/17/2019] [Indexed: 12/23/2022] Open
Abstract
The aim of this review is to describe the main findings of studies carried out during the last decades applying the California net energy system (CNES) in goats. This review also highlights the strengths and pitfalls while using CNES in studies with goats, as well as provides future perspectives on energy requirements of goats. The nonlinear relationship between heat production and metabolizable energy intake was used to estimate net energy requirements for maintenance (NEm). Our studies showed that NEm of intact and castrated male Saanen goats were approximately 15% greater than female Saanen goats. Similarly, NEm of meat goats (i.e., >50% Boer) was 8.5% greater than NEm of dairy and indigenous goats. The first partial derivative of allometric equations using empty body weight (EBW) as independent variable and body energy as dependent variable was used to estimate net energy requirements for gain (NEg). In this matter, female Saanen goats had greater NEg than males; also, castrated males had greater NEg than intact males. This means that females have more body fat than males when evaluated at a given EBW or that degree of maturity affects NEg. Our preliminary results showed that indigenous goats had NEg 14% and 27.5% greater than meat and dairy goats, respectively. Sex and genotype also affect the efficiency of energy use for growth. The present study suggests that losses in urine and methane in goats are lower than previously reported for bovine and sheep, resulting in greater metabolizable energy:digestible energy ratio (i.e., 0.87 to 0.90). It was demonstrated that the CNES successfully works for goats and that the use of comparative slaughter technique enhances the understanding of energy partition in this species, allowing the development of models applied specifically to goat. However, these models require their evaluation in real-world conditions, permitting continuous adjustments.
Collapse
Affiliation(s)
- Izabelle A M A Teixeira
- Department of Animal Science, Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brazil
| | - Amélia K Almeida
- Department of Animal Science, Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brazil
| | - Márcia H M R Fernandes
- Department of Animal Science, Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brazil
| | - Kleber T Resende
- Department of Animal Science, Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brazil
| |
Collapse
|
175
|
Heterogeneous development of methanogens and the correlation with bacteria in the rumen and cecum of sika deer (Cervus nippon) during early life suggest different ecology relevance. BMC Microbiol 2019; 19:129. [PMID: 31185894 PMCID: PMC6560721 DOI: 10.1186/s12866-019-1504-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 05/31/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Enteric methane from the ruminant livestock is a significant source in global greenhouse gas emissions, which is mainly generated by the methanogens inhabiting the rumen and cecum. Sika deer (Cervus nippon) not only produces less methane than bovine, but they also harbor a distinct methanogen community. Whereas, knowledge of methanogens colonization in the rumen and cecum of sika deer is relatively still unknown, which could provide more insights to the manipulation of gut microbiota during early life. RESULTS Here, we examined the development of bacteria and methanogens in the rumen and cecum of juvenile sika deer from birth to post-weaning (1 day, 42 days and 70 days, respectively) based on next generation sequencing. The results showed that the facultative anaerobic bacteria were decreased and the cellulolytic bacteria were increased. However, methanogens established soon after birth thrived through the whole developmental period, indicating a different succession process than bacteria in the GIT, and the limited role of age and dietary change on GIT methanogens. We also found Methanobrevibacter spp. (Mean relative abundance = 44.2%) and Methanocorpusculum spp. (Mean relative abundance = 57.5%) were dominated in the rumen and cecum, respectively. The methanogens also formed specific correlations with bacteria under different niches, suggesting a role of ecology niche on methanogen community. CONCLUSIONS This study contributes to our knowledge about the microbial succession in GIT of sika deer, that may facilitate the development of targeted strategies to improve GIT function of sika deer.
Collapse
|
176
|
Islam M, Lee SS. Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2019; 61:122-137. [PMID: 31333869 PMCID: PMC6582924 DOI: 10.5187/jast.2019.61.3.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/09/2019] [Accepted: 05/13/2019] [Indexed: 11/20/2022]
Abstract
Methane, one of the important greenhouse gas, has a higher global warming
potential than that of carbon dioxide. Agriculture, especially livestock, is
considered as the biggest sector in producing anthropogenic methane. Among
livestock, ruminants are the highest emitters of enteric methane.
Methanogenesis, a continuous process in the rumen, carried out by archaea either
with a hydrogenotrophic pathway that converts hydrogen and carbon dioxide to
methane or with methylotrophic pathway, which the substrate for methanogenesis
is methyl groups. For accurate estimation of methane from ruminants, three
methods have been successfully used in various experiments under different
environmental conditions such as respiration chamber, sulfur hexafluoride tracer
technique, and the automated head-chamber or GreenFeed system. Methane
production and emission from ruminants are increasing day by day with an
increase of ruminants which help to meet up the nutrient demands of the
increasing human population throughout the world. Several mitigation strategies
have been taken separately for methane abatement from ruminant productions such
as animal intervention, diet selection, dietary feed additives, probiotics,
defaunation, supplementation of fats, oils, organic acids, plant secondary
metabolites, etc. However, sustainable mitigation strategies are not established
yet. A cumulative approach of accurate enteric methane measurement and existing
mitigation strategies with more focusing on the biological reduction of methane
emission by direct-fed microbials could be the sustainable methane mitigation
approaches.
Collapse
Affiliation(s)
- Mahfuzul Islam
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Sang-Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| |
Collapse
|
177
|
Meller RA, Wenner BA, Ashworth J, Gehman AM, Lakritz J, Firkins JL. Potential roles of nitrate and live yeast culture in suppressing methane emission and influencing ruminal fermentation, digestibility, and milk production in lactating Jersey cows. J Dairy Sci 2019; 102:6144-6156. [PMID: 31030922 DOI: 10.3168/jds.2018-16008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/05/2019] [Indexed: 12/11/2022]
Abstract
Concern over the carbon footprint of the dairy industry has led to various dietary approaches to mitigate enteric CH4 production. One approach is feeding the electron acceptor NO3-, thus outcompeting methanogens for aqueous H2. We hypothesized that a live yeast culture (LYC; Saccharomyces cerevisiae from Yea-Sacc 1026, Alltech Inc., Nicholasville, KY) would stimulate the complete reduction of NO3- to NH3 by selenomonads, thus decreasing the quantity of CH4 emissions per unit of energy-corrected milk production while decreasing blood methemoglobin concentration resulting from the absorbed intermediate, NO2-. Twelve lactating Jersey cows (8 multiparous and noncannulated; 4 primiparous and ruminally cannulated) were used in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Cattle were fed diets containing 1.5% NO3- (from calcium ammonium nitrate) or an isonitrogenous control diet (containing additional urea) and given a top-dress of ground corn without or with LYC, with the fourth week used for data collection. Noncannulated cows were spot measured for CH4 emission by mouth using GreenFeed (C-Lock Inc., Rapid City, SD). The main effect of NO3- decreased CH4 by 17% but decreased dry matter intake by 10% (from 19.8 to 17.8 kg/d) such that CH4:dry matter intake numerically decreased by 8% and CH4:milk net energy for lactation production was unaffected by treatment. Milk and milk fat production were not affected, but NO3- decreased milk protein from 758 to 689 g/d. Ruminal pH decreased more sharply after feeding for cows fed diets without NO3-. Acetate:propionate was greater for cows fed NO3-, particularly when combined with LYC (interaction effect). Blood methemoglobin was higher for cattle fed NO3- than for those fed the control diet but was low for both treatments (1.5 vs. 0.5%, respectively; only one measurement exceeded 5%), indicating minimal risk for NO2- accumulation at our feeding level of NO3-. Although neither apparent organic matter nor neutral detergent fiber digestibilities were affected, apparent N digestibility had an interaction for NO3- × LYC such that apparent N digestibility was numerically lowest for diets containing both NO3- and LYC compared with the other 3 diets. Under the conditions of this study, NO3- mitigated ruminal methanogenesis but also depressed dry matter intake and milk protein yield. Based on the fact that few interactions were detected, LYC had a minimal role in attenuating negative cow responses to NO3- supplementation.
Collapse
Affiliation(s)
- R A Meller
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - B A Wenner
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - J Ashworth
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - A M Gehman
- Alltech, 3031 Catnip Hill Pike, Nicholasville, KY 40356
| | - J Lakritz
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus 43210
| | - J L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus 43210.
| |
Collapse
|
178
|
Hassan A, Gado H, Anele UY, Berasain MAM, Salem AZM. Influence of dietary probiotic inclusion on growth performance, nutrient utilization, ruminal fermentation activities and methane production in growing lambs. Anim Biotechnol 2019; 31:365-372. [PMID: 31006376 DOI: 10.1080/10495398.2019.1604380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The use of two probiotic products as a means of improving in vitro and ruminal dry matter digestibility, fermentation characteristics and growth performance of Barki lambs were evaluated. The probiotic products in powder (PP) or liquid (PL) forms were produced from Ruminococcus flavefaciens, through an anaerobic fermentation process. Barki lambs (n = 30; 24.5 ± 0.5 kg body weight) were used in a completely randomized block design and randomly assigned among three experimental groups and fed for 75 days. Lambs were fed an equal amount of concentrate feed mixture with either no probiotic product (control), or with 20 g of PP, or 10 ml of PL per animal/d, with rice straw ad libitum. Both PP and PL treatments resulted in an increase (p < 0.05) in nearly all of the digestibility coefficients, nitrogen utilization, cell wall constituents, total volatile fatty acids, rumen volume, microbial nitrogen synthesis, gas production and average daily gain compared to the control group. Ruminal ammonia nitrogen, acetic acid and in vitro methane concentrations and protozoa count decreased (p < 0.03) in the treatment groups. Overall, the probiotic in a powder or liquid form increased in vitro dry matter digestibility, improved lambs daily gain and nutrient digestibility.
Collapse
Affiliation(s)
- Ayman Hassan
- Animal Production Research Institute, Agriculture Research Center, Cairo, Egypt
| | - Hany Gado
- Department of Animal Productions, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Uchenna Y Anele
- North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Maria A M Berasain
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
| | - Abdelfattah Z M Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
| |
Collapse
|
179
|
Molina-Botero IC, Montoya-Flores MD, Zavala-Escalante LM, Barahona-Rosales R, Arango J, Ku-Vera JC. Effects of long-term diet supplementation with Gliricidia sepium foliage mixed with Enterolobium cyclocarpum pods on enteric methane, apparent digestibility, and rumen microbial population in crossbred heifers1. J Anim Sci 2019; 97:1619-1633. [PMID: 30785622 PMCID: PMC6447243 DOI: 10.1093/jas/skz067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/15/2019] [Indexed: 02/04/2023] Open
Abstract
In the last decades, strategies have been evaluated to reduce rumen methane (CH4) production by supplementing tropical forages rich in secondary compounds; however, most of these beneficial effects need to be validated in terms of their persistence over time. The aim of this study was to assess CH4 emissions over time in heifers fed with and without Gliricidia sepium foliage (G) mixed with ground pods of Enterolobium cyclocarpum(E). Two groups of 4 crossbred (Bos taurus x Bos indicus) heifers (284 ±17 kg initial weight) were fed with 2 diets (0% and 15% of a mixture of the pods and foliage [E + G:0 and E + G:15, respectively]) over 80 d, plus 2 wk before the experiment, in which every animal was fed a legume and pod-free diet. Every 14 d, CH4 production, apparent digestibility, volatile fatty acids (VFA), and microbial population were quantified for each animal. The experiment was conducted with a repeated measurements design over time. Diets fed differed in terms of their crude protein (CP), condensed tannins, and saponins content supplied by E. cyclocarpum and G. sepium. For most of the experiment, dry matter intake (DMI) and digestible dry-matter intake (DDMI) were 6.3 kg DMI/d and 512 g DDMI/kg, respectively, for both diets (diet: P > 0.05). Apparent digestible crude protein (DCP) was reduced by 21 g DCP/kg DM when the diet was supplemented with E + G:15 (P = 0.040). Molar proportions of VFA's in the rumen did not differ between diets or in time (P > 0.05). Daily methane production, expressed in relation to DMI, was 23.95 vs. 23.32 g CH4/kg DMI for the diet E + G:0 and E + G:15, respectively (diet: P = 0.016; Time: P > 0.05). Percent gross energy loss as CH4 (Ym) with grass-only diets was above 8.1%, whereas when feeding heifers with the alternate supplementation, Ym values of 7.59% (P = 0.016) were observed. The relative abundance of total bacterial, protozoa, and methanogenic archaeal replicates was not affected by time nor by the incorporation of legume and pods into the diet (P > 0.05). Results suggest that addition of G. sepium mixed with E. cyclocarpum pods can reduce CH4 production in heifers and this response remains over time, without effect on microbial population and VFA concentration and a slight reduction in CPD digestibility.
Collapse
Affiliation(s)
- Isabel Cristina Molina-Botero
- Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Merida, Yucatan, Mexico
- International Center for Tropical Agriculture (CIAT), Palmira, Valle del Cauca, Colombia
| | | | - Lucas M Zavala-Escalante
- Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Merida, Yucatan, Mexico
| | - Rolando Barahona-Rosales
- Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Merida, Yucatan, Mexico
| | - Jacobo Arango
- Department of Animal Production, Faculty of Agricultural Sciences, National University of Colombia, Medellin, Medellin, Antioquia, Colombia
| | - Juan Carlos Ku-Vera
- Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Merida, Yucatan, Mexico
| |
Collapse
|
180
|
Vasta V, Daghio M, Cappucci A, Buccioni A, Serra A, Viti C, Mele M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J Dairy Sci 2019; 102:3781-3804. [PMID: 30904293 DOI: 10.3168/jds.2018-14985] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 01/13/2019] [Indexed: 12/29/2022]
Abstract
The interest of the scientific community in the effects of plant polyphenols on animal nutrition is increasing. These compounds, in fact, are ubiquitous in the plant kingdom, especially in some spontaneous plants exploited as feeding resources alternative to cultivated crops and in several agro-industry by-products. Polyphenols interact with rumen microbiota, affecting carbohydrate fermentation, protein degradation, and lipid metabolism. Some of these aspects have been largely reviewed, especially for tannins; however, less information is available about the direct effect of polyphenols on the composition of rumen microbiota. In the present paper, we review the most recent literature about the effect of plant polyphenols on rumen microbiota responsible for unsaturated fatty acid biohydrogenation, fiber digestion, and methane production, taking into consideration the advances in microbiota analysis achieved in the last 10 yr. Key aspects, such as sample collection, sample storage, DNA extraction, and the main phylogenetic markers used in the reconstruction of microbial community structure, are examined. Furthermore, a summary of the new high-throughput methods based on next generation sequencing is reviewed. Several effects can be associated with dietary polyphenols. Polyphenols are able to depress or modulate the biohydrogenation of unsaturated fatty acids by a perturbation of ruminal microbiota composition. In particular, condensed tannins have an inhibitory effect on biohydrogenation, whereas hydrolyzable tannins seem to have a modulatory effect on biohydrogenation. With regard to fiber digestion, data from literature are quite consistent about a general depressive effect of polyphenols on gram-positive fibrolytic bacteria and ciliate protozoa, resulting in a reduction of volatile fatty acid production (mostly acetate molar production). Methane production is also usually reduced when tannins are included in the diet of ruminants, probably as a consequence of the inhibition of fiber digestion. However, some evidence suggests that hydrolyzable tannins may reduce methane emission by directly interacting with rumen microbiota without affecting fiber digestion.
Collapse
Affiliation(s)
- V Vasta
- Food Scientist, viale delle Alpi 40, 90144, Palermo, Italy
| | - M Daghio
- Dipartimento di Scienze delle Produzioni Agro-Alimentari e dell'Ambiente, University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - A Cappucci
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - A Buccioni
- Dipartimento di Scienze delle Produzioni Agro-Alimentari e dell'Ambiente, University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - A Serra
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - C Viti
- Dipartimento di Scienze delle Produzioni Agro-Alimentari e dell'Ambiente, University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - M Mele
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; Centro di Ricerche Agro-ambientali "E. Avanzi," University of Pisa, Via Vecchia di Masrina, 6, 56100 Pisa, Italy.
| |
Collapse
|
181
|
Podolsky IA, Seppälä S, Lankiewicz TS, Brown JL, Swift CL, O'Malley MA. Harnessing Nature's Anaerobes for Biotechnology and Bioprocessing. Annu Rev Chem Biomol Eng 2019; 10:105-128. [PMID: 30883214 DOI: 10.1146/annurev-chembioeng-060718-030340] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Industrial biotechnology has the potential to decrease our reliance on petroleum for fuel and bio-based chemical production and also enable valorization of waste streams. Anaerobic microorganisms thrive in resource-limited environments and offer an array of novel bioactivities in this regard that could revolutionize biomanufacturing. However, they have not been adopted for widespread industrial use owing to their strict growth requirements, limited number of available strains, difficulty in scale-up, and genetic intractability. This review provides an overview of current and future uses for anaerobes in biotechnology and bioprocessing in the postgenomic era. We focus on the recently characterized anaerobic fungi (Neocallimastigomycota) native to the digestive tract of large herbivores, which possess a trove of enzymes, pathways, transporters, and other biomolecules that can be harnessed for numerous biotechnological applications. Resolving current genetic intractability, scale-up, and cultivation challenges will unlock the potential of these lignocellulolytic fungi and other nonmodel micro-organisms to accelerate bio-based production.
Collapse
Affiliation(s)
- Igor A Podolsky
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; , , , , ,
| | - Susanna Seppälä
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; , , , , ,
| | - Thomas S Lankiewicz
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; , , , , ,
| | - Jennifer L Brown
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; , , , , ,
| | - Candice L Swift
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; , , , , ,
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; , , , , ,
| |
Collapse
|
182
|
Belanche A, Kingston-Smith AH, Griffith GW, Newbold CJ. A Multi-Kingdom Study Reveals the Plasticity of the Rumen Microbiota in Response to a Shift From Non-grazing to Grazing Diets in Sheep. Front Microbiol 2019; 10:122. [PMID: 30853943 PMCID: PMC6396721 DOI: 10.3389/fmicb.2019.00122] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/18/2019] [Indexed: 01/22/2023] Open
Abstract
Increasing feed efficiency is a key target in ruminant science which requires a better understanding of rumen microbiota. This study investigated the effect of a shift from a non-grazing to a grazing diet on the rumen bacterial, methanogenic archaea, fungal, and protozoal communities. A systems biology approach based on a description of the community structure, core microbiota, network analysis, and taxon abundance linked to the rumen fermentation was used to explore the benefits of increasing depth of the community analysis. A total of 24 sheep were fed ryegrass hay supplemented with concentrate (CON) and subsequently ryegrass pasture (PAS) following a straight through experimental design. Results showed that concentrate supplementation in CON-fed animals (mainly starch) promoted a simplified rumen microbiota in terms of network density and bacterial, methanogen and fungal species richness which favored the proliferation of amylolytic microbes and VFA production (+48%), but led to a lower (ca. 4-fold) ammonia concentration making the N availability a limiting factor certain microbes. The adaptation process from the CON to the PAS diet consisted on an increase in the microbial concentration (biomass of bacteria, methanogens, and protozoa), diversity (+221, +3, and +21 OTUs for bacteria, methanogens, and fungi, respectively), microbial network complexity (+18 nodes and +86 edges) and in the abundance of key microbes involved in cellulolysis (Ruminococcus, Butyrivibrio, and Orpinomyces), proteolysis (Prevotella and Entodiniinae), lactate production (Streptococcus and Selenomonas), as well as methylotrophic archaea (Methanomassiliicoccaceae). This microbial adaptation indicated that pasture degradation is a complex process which requires a diverse consortium of microbes working together. The correlations between the abundance of microbial taxa and rumen fermentation parameters were not consistent across diets suggesting a metabolic plasticity which allowed microbes to adapt to different substrates and to shift their fermentation products. The core microbiota was composed of 34, 9, and 13 genera for bacteria, methanogens, and fungi, respectively, which were shared by all sheep, independent of diet. This systems biology approach adds a new dimension to our understanding of the rumen microbial interactions and may provide new clues to describe the mode of action of future nutritional interventions.
Collapse
Affiliation(s)
- Alejandro Belanche
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom.,Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Alison H Kingston-Smith
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Gareth W Griffith
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Charles J Newbold
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom.,Scotland's Rural College, Edinburgh, United Kingdom
| |
Collapse
|
183
|
Biscarini F, Palazzo F, Castellani F, Masetti G, Grotta L, Cichelli A, Martino G. Rumen microbiome in dairy calves fed copper and grape-pomace dietary supplementations: Composition and predicted functional profile. PLoS One 2018; 13:e0205670. [PMID: 30496201 PMCID: PMC6264861 DOI: 10.1371/journal.pone.0205670] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/29/2018] [Indexed: 01/10/2023] Open
Abstract
The rumen microbiome is fundamental for the productivity and health of dairy cattle and diet is known to influence the rumen microbiota composition. In this study, grape-pomace, a natural source of polyphenols, and copper sulfate were provided as feed supplementation in 15 Holstein-Friesian calves, including 5 controls. After 75 days of supplementation, genomic DNA was extracted from the rumen liquor and prepared for 16S rRNA-gene sequencing to characterize the composition of the rumen microbiota. From this, the rumen metagenome was predicted to obtain the associated gene functions and metabolic pathways in a cost-effective manner. Results showed that feed supplementations did alter the rumen microbiome of calves. Copper and grape-pomace increased the diversity of the rumen microbiota: the Shannon's and Fisher's alpha indices were significantly different across groups (p-values 0.045 and 0.039), and Bray-Curtis distances could separate grape-pomace calves from the other two groups. Differentially abundant taxa were identified: in particular, an uncultured Bacteroidales UCG-001 genus and OTUs from genus Sarcina were the most differentially abundant in pomace-supplemented calves compared to controls (p-values 0.003 and 0.0002, respectively). Enriched taxonomies such as Ruminiclostridium and Eubacterium sp., whose functions are related to degradation of the grape- pomace constituents (e.g. flavonoids or xyloglucan) have been described (p-values 0.027/0.028 and 0.040/0.022 in Pomace vs Copper and Controls, respectively). The most abundant predicted metagenomic genes belonged to the arginine and proline metabolism and the two- component (sensor/responder) regulatory system, which were increased in the supplemented groups. Interestingly, the lipopolysaccharide biosynthetic pathway was decreased in the two supplemented groups, possibly as a result of antimicrobial effects. Methanogenic taxa also responded to the feed supplementation, and methane metabolism in the rumen was the second most different pathway (up-regulated by feed supplementations) between experimental groups.
Collapse
Affiliation(s)
- Filippo Biscarini
- Institute for Biology and Biotechnology in Agriculture (IBBA), CNR, Milano, Italy
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Fiorentina Palazzo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, Università di Teramo, Teramo, Italy
| | - Federica Castellani
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, Università di Teramo, Teramo, Italy
| | - Giulia Masetti
- School of Medicine, Cardiff University, Cardiff, United Kingdom
- Bioinformatics Unit, PTP Science Park, Lodi, Italy
| | - Lisa Grotta
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, Università di Teramo, Teramo, Italy
| | - Angelo Cichelli
- Department of Medical and Oral Sciences and Biotechnologies, Università degli Studi “Gabriele d’Annunzio”, Chieti, Italy
| | - Giuseppe Martino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, Università di Teramo, Teramo, Italy
- * E-mail:
| |
Collapse
|
184
|
Levy B, Jami E. Exploring the Prokaryotic Community Associated With the Rumen Ciliate Protozoa Population. Front Microbiol 2018; 9:2526. [PMID: 30420841 PMCID: PMC6217230 DOI: 10.3389/fmicb.2018.02526] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/03/2018] [Indexed: 11/13/2022] Open
Abstract
Ciliate protozoa are an integral part of the rumen microbiome and were found to exert a large effect on the rumen ecosystem itself as well as their host animal physiology. Part of these effects have been attributed to their ability to harbor a diverse ecto- and endo-symbiotic community of prokaryotic cells. Studies on the relationship between the protozoa population and their associated prokaryotic community in the rumen mainly focused on the methanogens, revealing that protozoa play a major role in enhancing methanogenesis potential. In contrast, little is known about the composition and function of the bacteria associated with rumen protozoa and the extent of this association. In this study, we characterize the prokaryotic communities associated with different protozoa populations and compare their structure to the free-living prokaryotic population residing in the cow rumen. We show that the overall protozoa associated prokaryotic community structure differs significantly compared to the free-living community in terms of richness and composition. The methanogens proportion was significantly higher in all protozoa populations compared to the free-living fraction, while the Lachnospiraceae was the most prevalent bacterial family in the protozoa associated bacterial communities. Several taxa not detected or detected in extremely low abundance in the free-living community were enriched in the protozoa associated bacterial community. These include members of the Endomicrobia class, previously identified as protozoa symbionts in the termite gut. Our results show that rumen protozoa harbor prokaryotic communities that are compositionally different from their surroundings, which may be the result of specific tropism between the prokaryotic community and protozoa.
Collapse
Affiliation(s)
- Bar Levy
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel.,The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Elie Jami
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
185
|
Difford GF, Plichta DR, Løvendahl P, Lassen J, Noel SJ, Højberg O, Wright ADG, Zhu Z, Kristensen L, Nielsen HB, Guldbrandtsen B, Sahana G. Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows. PLoS Genet 2018; 14:e1007580. [PMID: 30312316 PMCID: PMC6200390 DOI: 10.1371/journal.pgen.1007580] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/24/2018] [Accepted: 07/20/2018] [Indexed: 01/23/2023] Open
Abstract
Cattle and other ruminants produce large quantities of methane (~110 million metric tonnes per annum), which is a potent greenhouse gas affecting global climate change. Methane (CH4) is a natural by-product of gastro-enteric microbial fermentation of feedstuffs in the rumen and contributes to 6% of total CH4 emissions from anthropogenic-related sources. The extent to which the host genome and rumen microbiome influence CH4 emission is not yet well known. This study confirms individual variation in CH4 production was influenced by individual host (cow) genotype, as well as the host's rumen microbiome composition. Abundance of a small proportion of bacteria and archaea taxa were influenced to a limited extent by the host's genotype and certain taxa were associated with CH4 emissions. However, the cumulative effect of all bacteria and archaea on CH4 production was 13%, the host genetics (heritability) was 21% and the two are largely independent. This study demonstrates variation in CH4 emission is likely not modulated through cow genetic effects on the rumen microbiome. Therefore, the rumen microbiome and cow genome could be targeted independently, by breeding low methane-emitting cows and in parallel, by investigating possible strategies that target changes in the rumen microbiome to reduce CH4 emissions in the cattle industry.
Collapse
Affiliation(s)
- Gareth Frank Difford
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
- Wageningen University & Research, Animal Breeding & Genomics, AH Wageningen, Netherlands
| | - Damian Rafal Plichta
- Center for Biological Sequence Analysis, Dept. of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
- Clinical-Microbiomics A/S, Copenhagen, Denmark
| | - Peter Løvendahl
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Jan Lassen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
- Viking Genetics, Randers SØ, Denmark
| | | | - Ole Højberg
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - André-Denis G. Wright
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States of America
| | - Zhigang Zhu
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Lise Kristensen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Henrik Bjørn Nielsen
- Center for Biological Sequence Analysis, Dept. of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
- Clinical-Microbiomics A/S, Copenhagen, Denmark
| | - Bernt Guldbrandtsen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Goutam Sahana
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| |
Collapse
|
186
|
Abstract
Rumen microbiome profiling uses 16S rRNA (18S rRNA, internal transcribed spacer) gene sequencing, a method that usually sequences a small portion of a single gene and is often biased and varies between different laboratories. Functional information can be inferred from this data, but only for those that are closely related to known annotated species, and even then may not truly reflect the function performed within the environment being studied. Genome sequencing of isolates and metagenome-assembled genomes has now reached a stage where representation of the majority of rumen bacterial genera are covered, but this still only represents a portion of rumen microbial species. The creation of a microbial genome (bins) database with associated functional annotations will provide a consistent reference to allow mapping of RNA-Seq reads for functional gene analysis from within the rumen microbiome. The integration of multiple omic analytics is linking functional gene activity, metabolic pathways and rumen metabolites with the responsible microbiota, supporting our biological understanding of the rumen system. The application of these techniques has advanced our understanding of the major microbial populations and functional pathways that are used in relation to lower methane emissions, higher feed efficiencies and responses to different feeding regimes. Continued and more precise use of these tools will lead to a detailed and comprehensive understanding of compositional and functional capacity and design of techniques for the directed intervention and manipulation of the rumen microbiota towards a desired state.
Collapse
|
187
|
Huws SA, Creevey CJ, Oyama LB, Mizrahi I, Denman SE, Popova M, Muñoz-Tamayo R, Forano E, Waters SM, Hess M, Tapio I, Smidt H, Krizsan SJ, Yáñez-Ruiz DR, Belanche A, Guan L, Gruninger RJ, McAllister TA, Newbold CJ, Roehe R, Dewhurst RJ, Snelling TJ, Watson M, Suen G, Hart EH, Kingston-Smith AH, Scollan ND, do Prado RM, Pilau EJ, Mantovani HC, Attwood GT, Edwards JE, McEwan NR, Morrisson S, Mayorga OL, Elliott C, Morgavi DP. Addressing Global Ruminant Agricultural Challenges Through Understanding the Rumen Microbiome: Past, Present, and Future. Front Microbiol 2018; 9:2161. [PMID: 30319557 PMCID: PMC6167468 DOI: 10.3389/fmicb.2018.02161] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/23/2018] [Indexed: 12/24/2022] Open
Abstract
The rumen is a complex ecosystem composed of anaerobic bacteria, protozoa, fungi, methanogenic archaea and phages. These microbes interact closely to breakdown plant material that cannot be digested by humans, whilst providing metabolic energy to the host and, in the case of archaea, producing methane. Consequently, ruminants produce meat and milk, which are rich in high-quality protein, vitamins and minerals, and therefore contribute to food security. As the world population is predicted to reach approximately 9.7 billion by 2050, an increase in ruminant production to satisfy global protein demand is necessary, despite limited land availability, and whilst ensuring environmental impact is minimized. Although challenging, these goals can be met, but depend on our understanding of the rumen microbiome. Attempts to manipulate the rumen microbiome to benefit global agricultural challenges have been ongoing for decades with limited success, mostly due to the lack of a detailed understanding of this microbiome and our limited ability to culture most of these microbes outside the rumen. The potential to manipulate the rumen microbiome and meet global livestock challenges through animal breeding and introduction of dietary interventions during early life have recently emerged as promising new technologies. Our inability to phenotype ruminants in a high-throughput manner has also hampered progress, although the recent increase in “omic” data may allow further development of mathematical models and rumen microbial gene biomarkers as proxies. Advances in computational tools, high-throughput sequencing technologies and cultivation-independent “omics” approaches continue to revolutionize our understanding of the rumen microbiome. This will ultimately provide the knowledge framework needed to solve current and future ruminant livestock challenges.
Collapse
Affiliation(s)
- Sharon A Huws
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Christopher J Creevey
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Linda B Oyama
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Itzhak Mizrahi
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Stuart E Denman
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - Milka Popova
- Institute National de la Recherche Agronomique, UMR1213 Herbivores, Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
| | - Rafael Muñoz-Tamayo
- UMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech, Université Paris-Saclay, Paris, France
| | - Evelyne Forano
- UMR 454 MEDIS, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Sinead M Waters
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, Ireland
| | - Matthias Hess
- College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Ilma Tapio
- Natural Resources Institute Finland, Jokioinen, Finland
| | - Hauke Smidt
- Department of Agrotechnology and Food Sciences, Wageningen, Netherlands
| | - Sophie J Krizsan
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - David R Yáñez-Ruiz
- Estacion Experimental del Zaidin, Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | - Alejandro Belanche
- Estacion Experimental del Zaidin, Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | - Leluo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Robert J Gruninger
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Tim A McAllister
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | | | - Rainer Roehe
- Scotland's Rural College, Edinburgh, United Kingdom
| | | | - Tim J Snelling
- The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | - Mick Watson
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies (R(D)SVS), University of Edinburgh, Edinburgh, United Kingdom
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Elizabeth H Hart
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Alison H Kingston-Smith
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Nigel D Scollan
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Rodolpho M do Prado
- Laboratório de Biomoléculas e Espectrometria de Massas-Labiomass, Departamento de Química, Universidade Estadual de Maringá, Maringá, Brazil
| | - Eduardo J Pilau
- Laboratório de Biomoléculas e Espectrometria de Massas-Labiomass, Departamento de Química, Universidade Estadual de Maringá, Maringá, Brazil
| | | | - Graeme T Attwood
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Joan E Edwards
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Neil R McEwan
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Steven Morrisson
- Sustainable Livestock, Agri-Food and Bio-Sciences Institute, Hillsborough, United Kingdom
| | - Olga L Mayorga
- Colombian Agricultural Research Corporation, Mosquera, Colombia
| | - Christopher Elliott
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Diego P Morgavi
- Institute National de la Recherche Agronomique, UMR1213 Herbivores, Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
| |
Collapse
|
188
|
Eger M, Graz M, Riede S, Breves G. Application of Mootral TM Reduces Methane Production by Altering the Archaea Community in the Rumen Simulation Technique. Front Microbiol 2018; 9:2094. [PMID: 30233557 PMCID: PMC6132076 DOI: 10.3389/fmicb.2018.02094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/16/2018] [Indexed: 11/28/2022] Open
Abstract
The reduction of methane emissions by ruminants is a highly desirable goal to mitigate greenhouse gas emissions. Various feed additives have already been tested for their ability to decrease methane production; however, practical use is often limited due to negative effects on rumen fermentation or high costs. Organosulphur compounds from garlic (Allium sativum) and flavonoids have been identified as promising plant-derived compounds which are able to reduce methane production. Here, we evaluated the effects of a combination of garlic powder and bitter orange (Citrus aurantium) extracts, Mootral, on ruminal methane production, ruminal fermentation and the community of methanogenic Archaea by using the rumen simulation technique as ex vivo model. The experiment consisted of an equilibration period of 7 days, an experimental period of 8 days and a withdrawal period of 4 days. During the experimental period three fermenters each were either treated as controls (CON), received a low dose of Mootral (LD), a high dose of Mootral (HD), or monensin (MON) as positive control. Application of Mootral strongly reduced the proportion of methane in the fermentation gas and the production rate of methane. Moreover, the experimental mixture induced a dose-dependent increase in the production rate of short chain fatty acids and in the molar proportion of butyrate. Some effects persisted during the withdrawal period. Both, single strand conformation polymorphism and Illumina MiSeq 16S rRNA amplicon sequencing indicated an archaeal community distinct from CON and MON samples in the LD and HD samples. Among archaeal families the percentage of Methanobacteriaceae was reduced during application of both doses of Mootral. Moreover, several significant differences were observed on OTU level among treatment groups and after withdrawal of the additives for LD and HD group. At day 14, 4 OTUs were positively correlated with methane production. In conclusion this mixture of garlic and citrus compounds appears to effectively reduce methane production by alteration of the archaeal community without exhibiting negative side effects on rumen fermentation.
Collapse
Affiliation(s)
- Melanie Eger
- Institute for Physiology, University of Veterinary Medicine Hanover, Hanover, Germany
| | | | - Susanne Riede
- Institute for Physiology, University of Veterinary Medicine Hanover, Hanover, Germany
| | - Gerhard Breves
- Institute for Physiology, University of Veterinary Medicine Hanover, Hanover, Germany
| |
Collapse
|
189
|
Harnessing fungi to mitigate CH 4 in natural and engineered systems. Appl Microbiol Biotechnol 2018; 102:7365-7375. [PMID: 29982927 DOI: 10.1007/s00253-018-9203-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 12/13/2022]
Abstract
Methane (CH4) is a powerful greenhouse gas emitted from natural and anthropogenic sources, and its emission rates vary among sources as a function of environment, microbial respiration, and feedbacks. Biological CH4 flux from natural and engineered systems is typically represented simply as generation of CH4 by methanogens minus oxidation by methanotrophs. In many cases, however, CH4 flux is modulated by transport and solubility mechanisms that occur before oxidation or other chemical transformation. The ability of fungi to directly oxidize CH4 remains unclear; however, their hydrophobic growths extending above microbial biofilms can improve surface area and sorption of hydrophobic gases. This can improve overall oxidation rates in a biofilm simply by improving phase transfer dynamics and bioavailability to bacterial or archaeal associates. This indirect facilitation is not necessarily intuitive, but there has been a recent emerging interest in harnessing these fungal abilities in engineering bioreactors and filtration systems designed to capture and oxidize CH4. These dynamics may be playing a similar facilitative role in natural CH4 oxidation, where fungi may indirectly influence carbon mineralization and methanogen/methanotroph communities, and/or directly oxidize and dissolve gaseous CH4. This review highlights these unique roles for fungi in determining net CH4 oxidation rates, and it summarizes the potential to harness fungi to mitigate CH4 emissions.
Collapse
|
190
|
Ruminal fermentation, nutrient metabolism, and methane emissions of sheep in response to dietary supplementation with Bacillus licheniformis. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
191
|
Söllinger A, Tveit AT, Poulsen M, Noel SJ, Bengtsson M, Bernhardt J, Frydendahl Hellwing AL, Lund P, Riedel K, Schleper C, Højberg O, Urich T. Holistic Assessment of Rumen Microbiome Dynamics through Quantitative Metatranscriptomics Reveals Multifunctional Redundancy during Key Steps of Anaerobic Feed Degradation. mSystems 2018; 3:e00038-18. [PMID: 30116788 PMCID: PMC6081794 DOI: 10.1128/msystems.00038-18] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/20/2018] [Indexed: 12/29/2022] Open
Abstract
Ruminant livestock is a major source of the potent greenhouse gas methane. The complex rumen microbiome, consisting of bacteria, archaea, and microbial eukaryotes, facilitates anaerobic plant biomass degradation in the cow rumen, leading to methane emissions. Using an integrated approach combining multidomain quantitative metatranscriptomics with gas and volatile fatty acid (VFA) profiling, we aimed at obtaining the most comprehensive picture of the active rumen microbiome during feed degradation to date. Bacterial, archaeal, and eukaryotic biomass, but also methane emissions and VFA concentrations, increased drastically within an hour after feed intake. mRNA profiling revealed a dynamic response of carbohydrate-active enzyme transcripts, transcripts involved in VFA production and methanogenesis. While the relative abundances of functional transcripts did not mirror observed processes, such as methane emissions, transformation to mRNA abundance per gram of rumen fluid echoed ruminant processes. The microbiome composition was highly individual, with, e.g., ciliate, Neocallimastigaceae, Prevotellaceae, Succinivibrionaceae, and Fibrobacteraceae abundances differing between cows. Microbiome individuality was accompanied by inter- and intradomain multifunctional redundancy among microbiome members during feed degradation. This likely enabled the robust performance of the anaerobic degradation process in each rumen. Neocallimastigaceae and ciliates contributed an unexpectedly large share of transcripts for cellulose- and hemicellulose-degrading enzymes, respectively. Methyl-reducing but not CO2-reducing methanogens were positively correlated with methane emissions. While Methanomassiliicoccales switched from methanol to methylamines as electron acceptors, Methanosphaera became the dominating methanol-reducing methanogen. This study for the first time linked rumen meta-omics with processes and enabled holistic insights into the contribution of all microbiome members to feed degradation. IMPORTANCE Ruminant animals, such as cows, live in a tight symbiotic association with microorganisms, allowing them to feed on otherwise indigestible plant biomass as food sources. Methane is produced as an end product of the anaerobic feed degradation in ruminants and is emitted to the atmosphere, making ruminant animals among the major anthropogenic sources of the potent greenhouse gas methane. Using newly developed quantitative metatranscriptomics for holistic microbiome analysis, we here identified bacterial, archaeal, and eukaryotic key players and the short-term dynamics of the rumen microbiome during anaerobic plant biomass degradation and subsequent methane emissions. These novel insights might pave the way for novel ecologically and economically sustainable methane mitigation strategies, much needed in times of global climate change.
Collapse
Affiliation(s)
- Andrea Söllinger
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Alexander Tøsdal Tveit
- Department of Arctic and Marine Biology, the Arctic University of Norway, Tromsø, Norway
| | - Morten Poulsen
- Department of Animal Sciences, Aarhus University, Tjele, Denmark
| | | | - Mia Bengtsson
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Jörg Bernhardt
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | | | - Peter Lund
- Department of Animal Sciences, Aarhus University, Tjele, Denmark
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Christa Schleper
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Ole Højberg
- Department of Animal Sciences, Aarhus University, Tjele, Denmark
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
192
|
Saro C, Hohenester UM, Bernard M, Lagrée M, Martin C, Doreau M, Boudra H, Popova M, Morgavi DP. Effectiveness of Interventions to Modulate the Rumen Microbiota Composition and Function in Pre-ruminant and Ruminant Lambs. Front Microbiol 2018; 9:1273. [PMID: 29967596 PMCID: PMC6015893 DOI: 10.3389/fmicb.2018.01273] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/24/2018] [Indexed: 11/24/2022] Open
Abstract
Modulating the assembly of the ruminal microbiota might have practical implications in production. We tested how an early-life dietary intervention in lambs influences the diversity and function of the ruminal microbiota during and after the intervention. Microbiota resilience during a repeated dietary intervention was also tested. The treatment, aiming to mitigate enteric methane emissions, combined garlic essential oil and linseed oil. Fifty-six lambs and their dams were allocated to two groups and treatment (T1) or placebo (C1) was drenched from birth until 10 weeks of life. Lambs were weaned at 8 weeks. From 16 to 20 weeks, lambs in each group were divided in two subgroups that received (T1–T2 and C1–T2) or not (T1–C2 and C1–C2) the same treatment. Measurements were done at 8, 14, and 20 weeks. Average daily gain was similar between groups. Methane production was reduced by treatment at 8 and 20 weeks but at 14 weeks it was similar between C1 and T1. Interestingly, early-life treated lambs displayed a numerical increase (P = 0.12) in methane emissions at 20 weeks compared with non-treated lambs. Concentration of VFA was not affected by the intervention at 8 or 14 weeks but a lower concentration was observed in T2 lambs compared with C2 at week 20. Metataxonomics (rRNA gene) revealed differences in archaeal communities between groups of lambs when treatment was applied (weeks 8 and 20); whereas, in accord with methane emissions, these differences disappeared when treatment was discontinued (week 14). Protozoal community structure was not affected by treatment. In contrast, bacterial community structure differed between treated and non-treated lambs during and after the intervention. Rumen and urine LC-MS and NMR metabolomics at week 20 separated C2 from T2 lambs and correlation analysis highlighted interactions between microbes and metabolites, notably that of methylated compounds and Methanomassiliicocceae methanogens. This study demonstrates that a long-term early-life intervention induced modifications in the composition of the rumen bacterial community that persisted after the intervention ceased with little or no effect on archaeal and protozoal communities. However, there was no persistency of the early-life intervention on methanogenesis indicating resilience for this function.
Collapse
Affiliation(s)
- Cristina Saro
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Ulli M Hohenester
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | | | - Marie Lagrée
- Université Clermont Auvergne - CNRS - SIGMA-Clermont, Institut de Chimie de Clermont-Ferrand, Clermont-Ferrand, France.,Université Clermont Auvergne - INRA, MetaboHUB/Plateforme d'Exploration du Métabolisme, Clermont-Ferrand, France
| | - Cécile Martin
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Michel Doreau
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Hamid Boudra
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Milka Popova
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Diego P Morgavi
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| |
Collapse
|
193
|
Melchior E, Hales K, Lindholm-Perry A, Freetly H, Wells J, Hemphill C, Wickersham T, Sawyer J, Myer P. The effects of feeding monensin on rumen microbial communities and methanogenesis in bred heifers fed in a drylot. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
194
|
Pitta DW, Indugu N, Baker L, Vecchiarelli B, Attwood G. Symposium review: Understanding diet-microbe interactions to enhance productivity of dairy cows. J Dairy Sci 2018; 101:7661-7679. [PMID: 29859694 DOI: 10.3168/jds.2017-13858] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 04/30/2018] [Indexed: 11/19/2022]
Abstract
Ruminants are dependent on the microbiota (bacteria, protozoa, archaea, and fungi) that inhabit the reticulo-rumen for digestion of feedstuffs. Nearly 70% of energy and 50% of protein requirements for dairy cows are met by microbial fermentation in the rumen, emphasizing the need to characterize the role of microbes in feed breakdown and nutrient utilization. Over the past 2 decades, next-generation sequencing technologies have allowed for rapid expansion of knowledge concerning microbial populations and alterations in response to forages, concentrates, supplements, and probiotics in the rumen. Advances in gene sequencing and emerging bioinformatic tools have allowed for increased throughput of data to aid in our understanding of the functional relevance of microbial genomes. In particular, metagenomics can identify specific genes involved in metabolic pathways, and metatranscriptomics can describe the transcriptional activity of microbial genes. These powerful approaches help untangle the complex interactions between microbes and dietary nutrients so that we can more fully understand the physiology of feed digestion in the rumen. Application of genomics-based approaches offers promise in unraveling microbial niches and respective gene repertoires to potentiate fiber and nonfiber carbohydrate digestion, microbial protein synthesis, and healthy biohydrogenation. New information on microbial genomics and interactions with dietary components will more clearly define pathways in the rumen to positively influence milk yield and components.
Collapse
Affiliation(s)
- Dipti W Pitta
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square 19348.
| | - Nagaraju Indugu
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square 19348
| | - Linda Baker
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square 19348
| | - Bonnie Vecchiarelli
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square 19348
| | - Graeme Attwood
- Rumen Microbial Genomics, Ag Research, Palmerston North, New Zealand 11222
| |
Collapse
|
195
|
Petri RM, Vahmani P, Yang HE, Dugan MER, McAllister TA. Changes in Rumen Microbial Profiles and Subcutaneous Fat Composition When Feeding Extruded Flaxseed Mixed With or Before Hay. Front Microbiol 2018; 9:1055. [PMID: 29887841 PMCID: PMC5981202 DOI: 10.3389/fmicb.2018.01055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/03/2018] [Indexed: 12/25/2022] Open
Abstract
Extruded flaxseed (25%) and ground hay (75%) were each fed (DM basis) either together in a total mixed ration (TMR) or as flaxseed first followed by hay (non-TMR) to three pens of eight crossbred steers (n = 24 per diet) for 240 days. Compared to TMR, feeding non-TMR enriched subcutaneous fat with α-linolenic acid (ALA, 18:3n-3) and its biohydrogenation intermediates including vaccenic acid [trans(t)11-18:1], rumenic acid [cis(c)9,t11-conjugated linoleic acid] and conjugated linolenic acid (CLnA). Rumen microbial analysis using QIIME indicated that 14 genera differed (P ≤ 0.05) between TMR and the non-TMR. Azoarcus and Streptococcus were the only genera which increased in relative abundance in the TMR fed steers, whereas Methanimicrococcus, Moryella, Prevotella, Succiniclasticum, Succinivibrio, Suttenella, and TG5 decreased as compared to steers fed the non-TMR. Among these, Moryella, Succiniclasticum, and Succinivibrio, spp. were correlated with fatty acid profiles, specifically intermediates believed to be components of the major biohydrogenation pathway for ALA (i.e., t11, c15-18:2, c9, t11, c15-18:3, and total CLnA). In addition, negative correlations were found between the less abundant Ruminoccocus-like OTU60 and major ALA biohydrogenation intermediates, as well as positive correlations with several intermediates from alternative pathways that did not involve the formation of trans 11 double bonds. The present results suggest a number of pathways for ALA biohydrogenation are operating concurrently in the rumen, with their balance being influenced by diet and driven by less abundant species rather than members of the core bacterial population.
Collapse
Affiliation(s)
- Renee M Petri
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Payam Vahmani
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Hee Eun Yang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Michael E R Dugan
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
196
|
Puchala R, LeShure S, Gipson TA, Tesfai K, Flythe MD, Goetsch AL. Effects of different levels of lespedeza and supplementation with monensin, coconut oil, or soybean oil on ruminal methane emission by mature Boer goat wethers after different lengths of feeding. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2018.1473253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ryszard Puchala
- American Institute for Goat Research, Langston University, Langston, OK, USA
| | - Shirron LeShure
- American Institute for Goat Research, Langston University, Langston, OK, USA
| | - Terry A. Gipson
- American Institute for Goat Research, Langston University, Langston, OK, USA
| | - Kesete Tesfai
- American Institute for Goat Research, Langston University, Langston, OK, USA
| | - Michael D. Flythe
- Forage Animal Production Research Unit, ARS, USDA, Lexington, KY, USA
| | - Arthur L. Goetsch
- American Institute for Goat Research, Langston University, Langston, OK, USA
| |
Collapse
|
197
|
Quantitative evaluation of ruminal methane and carbon dioxide formation from formate through C-13 stable isotope analysis in a batch culture system. Animal 2018; 13:90-97. [PMID: 29644945 DOI: 10.1017/s1751731118000691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Methane produced from formate is one of the important methanogensis pathways in the rumen. However, quantitative information of CH4 production from formate has been rarely reported. The aim of this study was to characterize the conversion rate (CR) of formic acid into CH4 and CO2 by rumen microorganisms. Ground lucerne hay was incubated with buffered ruminal fluid for 6, 12, 24 and 48 h. Before the incubation, 13C-labeled H13COOH was also supplied into the incubation bottle at a dose of 0, 1.5, 2.2 or 2.9 mg/g of DM substrate. There were no interactions (P>0.05) between dose and incubation time for all variables evaluated. When expressed as an absolute amount (ml in gas sample) or a relative CR (%), both 13CH4 and 13CO2 production quadratically increased (P<0.01) with the addition of H13COOH. The total 13C (13CH4 and 13CO2) CR was also quadratically increased (P<0.01) when H13COOH was added. Moreover, formate addition linearly decreased (P<0.031) the concentrations of NH3-N, total and individual volatile fatty acids (acetate, propionate and butyrate), and quadratically decreased (P<0.014) the populations of protozoa, total methanogens, Methanosphaera stadtmanae, Methanobrevibacter ruminantium M1, Methanobrevibacter smithii and Methanosarcina barkeri. In summary, formate affects ruminal fermentation and methanogenesis, as well as the rumen microbiome, in particular microorganisms which are directly or indirectly involved in ruminal methanogenesis. This study provides quantitative verification for the rapid dissimilation of formate into CH4 and CO2 by rumen microorganisms.
Collapse
|
198
|
Mi L, Yang B, Hu X, Luo Y, Liu J, Yu Z, Wang J. Comparative Analysis of the Microbiota Between Sheep Rumen and Rabbit Cecum Provides New Insight Into Their Differential Methane Production. Front Microbiol 2018; 9:575. [PMID: 29662480 PMCID: PMC5890152 DOI: 10.3389/fmicb.2018.00575] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/13/2018] [Indexed: 01/21/2023] Open
Abstract
The rumen and the hindgut represent two different fermentation organs in herbivorous mammals, with the former producing much more methane than the latter. The objective of this study was to elucidate the microbial underpinning of such differential methane outputs between these two digestive organs. Methane production was measured from 5 adult sheep and 15 adult rabbits, both of which were placed in open-circuit respiratory chambers and fed the same diet (alfalfa hay). The sheep produced more methane than the rabbits per unit of metabolic body weight, digestible neutral detergent fiber, and acid detergent fiber. pH in the sheep rumen was more than 1 unit higher than that in the rabbit cecum. The acetate to propionate ratio in the rabbit cecum was more than threefold greater than that in the sheep rumen. Comparative analysis of 16S rRNA gene amplicon libraries revealed distinct microbiota between the rumen of sheep and the cecum of rabbits. Hydrogen-producing fibrolytic bacteria, especially Butyrivibrio, Succiniclastium, Mogibacterium, Prevotella, and Christensenellaceae, were more predominant in the sheep rumen, whereas non-hydrogen producing fibrolytic bacteria, such as Bacteroides, were more predominant in the rabbit cecum. The rabbit cecum had a greater predominance of acetogens, such as those in the genus Blautia, order Clostridiales, and family Ruminococcaceae. The differences in the occurrence of hydrogen-metabolizing bacteria probably explain much of the differential methane outputs from the rumen and the cecum. Future research using metatranscriptomics and metabolomics shall help confirm this premise and understand the factors that shape the differential microbiota between the two digestive organs. Furthermore, our present study strongly suggests the presence of new fibrolytic bacteria in the rabbit cecum, which may explain the stronger fibrolytic activities therein.
Collapse
Affiliation(s)
- Lan Mi
- Laboratory of Ruminant Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Bin Yang
- Laboratory of Ruminant Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xialu Hu
- Laboratory of Ruminant Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yang Luo
- Laboratory of Ruminant Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jianxin Liu
- Laboratory of Ruminant Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Jiakun Wang
- Laboratory of Ruminant Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
199
|
Auffret MD, Stewart R, Dewhurst RJ, Duthie CA, Rooke JA, Wallace RJ, Freeman TC, Snelling TJ, Watson M, Roehe R. Identification, Comparison, and Validation of Robust Rumen Microbial Biomarkers for Methane Emissions Using Diverse Bos Taurus Breeds and Basal Diets. Front Microbiol 2018; 8:2642. [PMID: 29375511 PMCID: PMC5767246 DOI: 10.3389/fmicb.2017.02642] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/19/2017] [Indexed: 01/04/2023] Open
Abstract
Previous shotgun metagenomic analyses of ruminal digesta identified some microbial information that might be useful as biomarkers to select cattle that emit less methane (CH4), which is a potent greenhouse gas. It is known that methane production (g/kgDMI) and to an extent the microbial community is heritable and therefore biomarkers can offer a method of selecting cattle for low methane emitting phenotypes. In this study a wider range of Bos Taurus cattle, varying in breed and diet, was investigated to determine microbial communities and genetic markers associated with high/low CH4 emissions. Digesta samples were taken from 50 beef cattle, comprising four cattle breeds, receiving two basal diets containing different proportions of concentrate and also including feed additives (nitrate or lipid), that may influence methane emissions. A combination of partial least square analysis and network analysis enabled the identification of the most significant and robust biomarkers of CH4 emissions (VIP > 0.8) across diets and breeds when comparing all potential biomarkers together. Genes associated with the hydrogenotrophic methanogenesis pathway converting carbon dioxide to methane, provided the dominant biomarkers of CH4 emissions and methanogens were the microbial populations most closely correlated with CH4 emissions and identified by metagenomics. Moreover, these genes grouped together as confirmed by network analysis for each independent experiment and when combined. Finally, the genes involved in the methane synthesis pathway explained a higher proportion of variation in CH4 emissions by PLS analysis compared to phylogenetic parameters or functional genes. These results confirmed the reproducibility of the analysis and the advantage to use these genes as robust biomarkers of CH4 emissions. Volatile fatty acid concentrations and ratios were significantly correlated with CH4, but these factors were not identified as robust enough for predictive purposes. Moreover, the methanotrophic Methylomonas genus was found to be negatively correlated with CH4. Finally, this study confirmed the importance of using robust and applicable biomarkers from the microbiome as a proxy of CH4 emissions across diverse production systems and environments.
Collapse
Affiliation(s)
- Marc D. Auffret
- Scotland's Rural College, Future Farming System (FFS), Edinburgh, United Kingdom
| | - Robert Stewart
- Edinburgh Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard J. Dewhurst
- Scotland's Rural College, Future Farming System (FFS), Edinburgh, United Kingdom
| | - Carol-Anne Duthie
- Scotland's Rural College, Future Farming System (FFS), Edinburgh, United Kingdom
| | - John A. Rooke
- Scotland's Rural College, Future Farming System (FFS), Edinburgh, United Kingdom
| | - Robert J. Wallace
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Tom C. Freeman
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Timothy J. Snelling
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Mick Watson
- Edinburgh Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Rainer Roehe
- Scotland's Rural College, Future Farming System (FFS), Edinburgh, United Kingdom
| |
Collapse
|
200
|
Review: Selecting for improved feed efficiency and reduced methane emissions in dairy cattle. Animal 2018; 12:s336-s349. [DOI: 10.1017/s1751731118002276] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|