151
|
Álvarez-Sánchez L, Peña-Bautista C, Baquero M, Cháfer-Pericás C. Novel Ultrasensitive Detection Technologies for the Identification of Early and Minimally Invasive Alzheimer's Disease Blood Biomarkers. J Alzheimers Dis 2022; 86:1337-1369. [PMID: 35213367 DOI: 10.3233/jad-215093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Single molecule array (SIMOA) and other ultrasensitive detection technologies have allowed the determination of blood-based biomarkers of Alzheimer's disease (AD) for diagnosis and monitoring, thereby opening up a promising field of research. OBJECTIVE To review the published bibliography on plasma biomarkers in AD using new ultrasensitive techniques. METHODS A systematic review of the PubMed database was carried out to identify reports on the use of blood-based ultrasensitive technology to identify biomarkers for AD. RESULTS Based on this search, 86 works were included and classified according to the biomarker determined. First, plasma amyloid-β showed satisfactory accuracy as an AD biomarker in patients with a high risk of developing dementia. Second, plasma t-Tau displayed good sensitivity in detecting different neurodegenerative diseases. Third, plasma p-Tau was highly specific for AD. Fourth, plasma NfL was highly sensitive for distinguishing between patients with neurodegenerative diseases and healthy controls. In general, the simultaneous determination of several biomarkers facilitated greater accuracy in diagnosing AD (Aβ42/Aβ40, p-Tau181/217). CONCLUSION The recent development of ultrasensitive technology allows the determination of blood-based biomarkers with high sensitivity, thus facilitating the early detection of AD through the analysis of easily obtained biological samples. In short, as a result of this knowledge, pre-symptomatic and early AD diagnosis may be possible, and the recruitment process for future clinical trials could be more precise. However, further studies are necessary to standardize levels of blood-based biomarkers in the general population and thus achieve reproducible results among different laboratories.
Collapse
Affiliation(s)
| | - Carmen Peña-Bautista
- Alzheimer Disease Research Group, Health Research Institute La Fe, Valencia, Spain
| | - Miguel Baquero
- Division of Neurology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | |
Collapse
|
152
|
Tau proteins in blood as biomarkers of Alzheimer's disease and other proteinopathies. J Neural Transm (Vienna) 2022; 129:239-259. [PMID: 35175385 DOI: 10.1007/s00702-022-02471-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), the most common age-dependent neurodegenerative disorder, is characterized neuropathologically by extracellular Aβ plaques and intracellular tau neurofibrillary tangles. While in AD tau pathology probably follows early alterations in Aβ metabolism, it develops independently in the so-called primary tauopathies, the main form being frontotemporal lobar degeneration with tau pathology. Tau pathology in AD brain is reflected in the cerebrospinal fluid (CSF) by elevated levels of the two AD tau biomarkers total and phosphorylated tau, which are now used for routine diagnostic purposes. On the contrary, no established neurochemical biomarkers exist for tau pathology in primary tauopathies. Thanks to recent technological advances, total and phosphorylated tau can now be quantified also on peripheral blood, and accumulating evidence shows that measurement of plasma phosphorylated tau species (P-tau181, P-tau217, and P-tau231) has high performances in discriminating AD patients from cognitively unimpaired subjects but also from patients with other dementias. Moreover, plasma P-tau levels are associated with tracer uptake on tau- and amyloid-PET as well as with brain atrophy, cognitive measures and longitudinal changes of these parameters. These features, together with the low invasiveness, scalability, and ease of longitudinal sampling, which differentiate plasma P-tau species from their CSF counterparts, make these proteins promising peripheral biomarkers for AD in both research and clinical setting. This review discusses the recent developments in the field of plasma tau proteins as diagnostic, pathophysiological and prognostic biomarkers of Alzheimer's disease; additional findings from the fields of genetic forms of AD and of non-AD proteinopathies are also summarized.
Collapse
|
153
|
Clouston SAP, Hall CB, Kritikos M, Bennett DA, DeKosky S, Edwards J, Finch C, Kreisl WC, Mielke M, Peskind ER, Raskind M, Richards M, Sloan RP, Spiro A, Vasdev N, Brackbill R, Farfel M, Horton M, Lowe S, Lucchini RG, Prezant D, Reibman J, Rosen R, Seil K, Zeig-Owens R, Deri Y, Diminich ED, Fausto BA, Gandy S, Sano M, Bromet EJ, Luft BJ. Cognitive impairment and World Trade Centre-related exposures. Nat Rev Neurol 2022; 18:103-116. [PMID: 34795448 PMCID: PMC8938977 DOI: 10.1038/s41582-021-00576-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 02/03/2023]
Abstract
On 11 September 2001 the World Trade Center (WTC) in New York was attacked by terrorists, causing the collapse of multiple buildings including the iconic 110-story 'Twin Towers'. Thousands of people died that day from the collapse of the buildings, fires, falling from the buildings, falling debris, or other related accidents. Survivors of the attacks, those who worked in search and rescue during and after the buildings collapsed, and those working in recovery and clean-up operations were exposed to severe psychological stressors. Concurrently, these 'WTC-affected' individuals breathed and ingested a mixture of organic and particulate neurotoxins and pro-inflammogens generated as a result of the attack and building collapse. Twenty years later, researchers have documented neurocognitive and motor dysfunctions that resemble the typical features of neurodegenerative disease in some WTC responders at midlife. Cortical atrophy, which usually manifests later in life, has also been observed in this population. Evidence indicates that neurocognitive symptoms and corresponding brain atrophy are associated with both physical exposures at the WTC and chronic post-traumatic stress disorder, including regularly re-experiencing traumatic memories of the events while awake or during sleep. Despite these findings, little is understood about the long-term effects of these physical and mental exposures on the brain health of WTC-affected individuals, and the potential for neurocognitive disorders. Here, we review the existing evidence concerning neurological outcomes in WTC-affected individuals, with the aim of contextualizing this research for policymakers, researchers and clinicians and educating WTC-affected individuals and their friends and families. We conclude by providing a rationale and recommendations for monitoring the neurological health of WTC-affected individuals.
Collapse
Affiliation(s)
- Sean A P Clouston
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
| | - Charles B Hall
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Minos Kritikos
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Department of Neurological Sciences, Rush Medical College, Rush University, Chicago, IL, USA
| | - Steven DeKosky
- Evelyn F. and William L. McKnight Brain Institute and Florida Alzheimer's Disease Research Center, Department of Neurology and Neuroscience, University of Florida, Gainesville, FL, USA
| | - Jerri Edwards
- Department of Psychiatry and Behavioral Neuroscience, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Caleb Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - William C Kreisl
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY, USA
| | - Michelle Mielke
- Specialized Center of Research Excellence on Sex Differences, Department of Neurology, Department of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Elaine R Peskind
- Veteran's Association VISN 20 Northwest Mental Illness Research, Education, and Clinical Center, Veteran's Affairs Puget Sound Health Care System, Seattle, WA, USA
- Alzheimer's Disease Research Center, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Murray Raskind
- Veteran's Association VISN 20 Northwest Mental Illness Research, Education, and Clinical Center, Veteran's Affairs Puget Sound Health Care System, Seattle, WA, USA
- Alzheimer's Disease Research Center, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Marcus Richards
- Medical Research Council Unit for Lifelong Health and Ageing, Population Health Sciences, University College London, London, UK
| | - Richard P Sloan
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Avron Spiro
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), Department of Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Center, Center for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robert Brackbill
- World Trade Center Health Registry, New York Department of Health and Mental Hygiene, New York, NY, USA
| | - Mark Farfel
- World Trade Center Health Registry, New York Department of Health and Mental Hygiene, New York, NY, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandra Lowe
- The World Trade Center Mental Health Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roberto G Lucchini
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - David Prezant
- World Trade Center Health Program, Fire Department of the City of New York, Brooklyn, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joan Reibman
- Department of Environmental Medicine, New York University Langone Health, New York, NY, USA
| | - Rebecca Rosen
- World Trade Center Environmental Health Center, Department of Psychiatry, New York University, New York, NY, USA
| | - Kacie Seil
- World Trade Center Health Registry, New York Department of Health and Mental Hygiene, New York, NY, USA
| | - Rachel Zeig-Owens
- World Trade Center Health Program, Fire Department of the City of New York, Brooklyn, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yael Deri
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Psychiatry, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Erica D Diminich
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Bernadette A Fausto
- Center for Molecular & Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Sam Gandy
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Department of Psychiatry, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Mary Sano
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Department of Psychiatry, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Evelyn J Bromet
- Department of Psychiatry, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Benjamin J Luft
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
154
|
Mahaman YAR, Embaye KS, Huang F, Li L, Zhu F, Wang JZ, Liu R, Feng J, Wang X. Biomarkers used in Alzheimer's disease diagnosis, treatment, and prevention. Ageing Res Rev 2022; 74:101544. [PMID: 34933129 DOI: 10.1016/j.arr.2021.101544] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), being the number one in terms of dementia burden, is an insidious age-related neurodegenerative disease and is presently considered a global public health threat. Its main histological hallmarks are the Aβ senile plaques and the P-tau neurofibrillary tangles, while clinically it is marked by a progressive cognitive decline that reflects the underlying synaptic loss and neurodegeneration. Many of the drug therapies targeting the two pathological hallmarks namely Aβ and P-tau have been proven futile. This is probably attributed to the initiation of therapy at a stage where cognitive alterations are already obvious. In other words, the underlying neuropathological changes are at a stage where these drugs lack any therapeutic value in reversing the damage. Therefore, there is an urgent need to start treatment in the very early stage where these changes can be reversed, and hence, early diagnosis is of primordial importance. To this aim, the use of robust and informative biomarkers that could provide accurate diagnosis preferably at an earlier phase of the disease is of the essence. To date, several biomarkers have been established that, to a different extent, allow researchers and clinicians to evaluate, diagnose, and more specially exclude other related pathologies. In this study, we extensively reviewed data on the currently explored biomarkers in terms of AD pathology-specific and non-specific biomarkers and highlighted the recent developments in the diagnostic and theragnostic domains. In the end, we have presented a separate elaboration on aspects of future perspectives and concluding remarks.
Collapse
|
155
|
Ogonowski N, Salcidua S, Leon T, Chamorro-Veloso N, Valls C, Avalos C, Bisquertt A, Rentería ME, Orellana P, Duran-Aniotz C. Systematic Review: microRNAs as Potential Biomarkers in Mild Cognitive Impairment Diagnosis. Front Aging Neurosci 2022; 13:807764. [PMID: 35095478 PMCID: PMC8790149 DOI: 10.3389/fnagi.2021.807764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
The rate of progression from Mild Cognitive Impairment (MCI) to Alzheimer's disease (AD) is estimated at >10% per year, reaching up to 80-90% after 6 years. MCI is considered an indicator of early-stage AD. In this context, the diagnostic screening of MCI is crucial for detecting individuals at high risk of AD before they progress and manifest further severe symptoms. Typically, MCI has been determined using neuropsychological assessment tools such as the Montreal Cognitive Assessment (MoCA) or Mini-Mental Status Examination (MMSE). Unfortunately, other diagnostic methods are not available or are unable to identify MCI in its early stages. Therefore, identifying new biomarkers for MCI diagnosis and prognosis is a significant challenge. In this framework, miRNAs in serum, plasma, and other body fluids have emerged as a promising source of biomarkers for MCI and AD-related cognitive impairments. Interestingly, miRNAs can regulate several signaling pathways via multiple and diverse targets in response to pathophysiological stimuli. This systematic review aims to describe the current state of the art regarding AD-related target genes modulated by differentially expressed miRNAs in peripheral fluids samples in MCI subjects to identify potential miRNA biomarkers in the early stages of AD. We found 30 articles that described five miRNA expression profiles from peripheral fluid in MCI subjects, showing possible candidates for miRNA biomarkers that may be followed up as fluid biomarkers or therapeutic targets of early-stage AD. However, additional research is needed to validate these miRNAs and characterize the precise neuropathological mechanisms.
Collapse
Affiliation(s)
- Natalia Ogonowski
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Cognitive Neuroscience Center (CNC), National Scientific and Technical Research Council (CONICET), Universidad de San Andrés, Buenos Aires, Argentina
| | - Stefanny Salcidua
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Faculty of Engineering and Sciences, Universidad Adolfo Ibanez, Santiago, Chile
| | - Tomas Leon
- Global Brain Health Institute, Trinity College, Dublin, Ireland
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | - Constanza Avalos
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
| | | | - Miguel E. Rentería
- Department of Genetics and Computational Biology, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Paulina Orellana
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Claudia Duran-Aniotz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| |
Collapse
|
156
|
Forgrave LM, Wang M, Yang D, DeMarco ML. Proteoforms and their expanding role in laboratory medicine. Pract Lab Med 2022; 28:e00260. [PMID: 34950758 PMCID: PMC8672040 DOI: 10.1016/j.plabm.2021.e00260] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/31/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
The term “proteoforms” describes the range of different structures of a protein product of a single gene, including variations in amino acid sequence and post-translational modifications. This diversity in protein structure contributes to the biological complexity observed in living organisms. As the concentration of a particular proteoform may increase or decrease in abnormal physiological states, proteoforms have long been used in medicine as biomarkers of health and disease. Notably, the analytical approaches used to analyze proteoforms have evolved considerably over the years. While ligand binding methods continue to play a large role in proteoform measurement in the clinical laboratory, unanticipated or unknown post-translational modifications and sequence variants can upend even extensively tested and vetted assays that have successfully made it through the medical regulatory process. As an alternate approach, mass spectrometry—with its high molecular selectivity—has become an essential tool in detection, characterization, and quantification of proteoforms in biological fluids and tissues. This review explores the analytical techniques used for proteoform detection and quantification, with an emphasis on mass spectrometry and its various applications in clinical research and patient care including, revealing new biomarker targets, helping improve the design of contemporary ligand binding in vitro diagnostics, and as mass spectrometric laboratory developed tests used in routine patient care.
Collapse
Affiliation(s)
- Lauren M. Forgrave
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Meng Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - David Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Mari L. DeMarco
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, St. Paul's Hospital, Providence Health Care, 1081 Burrard St, Vancouver, V6Z 1Y6, Canada
- Corresponding author. Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
157
|
Pathak N, Vimal SK, Tandon I, Agrawal L, Hongyi C, Bhattacharyya S. Neurodegenerative Disorders of Alzheimer, Parkinsonism, Amyotrophic Lateral Sclerosis and Multiple Sclerosis: An Early Diagnostic Approach for Precision Treatment. Metab Brain Dis 2022; 37:67-104. [PMID: 34719771 DOI: 10.1007/s11011-021-00800-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/11/2021] [Indexed: 12/21/2022]
Abstract
Neurodegenerative diseases (NDs) are characterised by progressive dysfunction of synapses, neurons, glial cells and their networks. Neurodegenerative diseases can be classified according to primary clinical features (e.g., dementia, parkinsonism, or motor neuron disease), anatomic distribution of neurodegeneration (e.g., frontotemporal degenerations, extrapyramidal disorders, or spinocerebellar degenerations), or principal molecular abnormalities. The most common neurodegenerative disorders are amyloidosis, tauopathies, a-synucleinopathy, and TAR DNA-binding protein 43 (TDP-43) proteopathy. The protein abnormalities in these disorders have abnormal conformational properties along with altered cellular mechanisms, and they exhibit motor deficit, mitochondrial malfunction, dysfunctions in autophagic-lysosomal pathways, synaptic toxicity, and more emerging mechanisms such as the roles of stress granule pathways and liquid-phase transitions. Finally, for each ND, microglial cells have been reported to be implicated in neurodegeneration, in particular, because the microglial responses can shift from neuroprotective to a deleterious role. Growing experimental evidence suggests that abnormal protein conformers act as seed material for oligomerization, spreading from cell to cell through anatomically connected neuronal pathways, which may in part explain the specific anatomical patterns observed in brain autopsy sample. In this review, we mention the human pathology of select neurodegenerative disorders, focusing on how neurodegenerative disorders (i.e., Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis) represent a great healthcare problem worldwide and are becoming prevalent because of the increasing aged population. Despite many studies have focused on their etiopathology, the exact cause of these diseases is still largely unknown and until now with the only available option of symptomatic treatments. In this review, we aim to report the systematic and clinically correlated potential biomarker candidates. Although future studies are necessary for their use in early detection and progression in humans affected by NDs, the promising results obtained by several groups leads us to this idea that biomarkers could be used to design a potential therapeutic approach and preclinical clinical trials for the treatments of NDs.
Collapse
Affiliation(s)
- Nishit Pathak
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, Chongqing, 400715, People's Republic of China
| | - Sunil Kumar Vimal
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, Chongqing, 400715, People's Republic of China
| | - Ishi Tandon
- Amity University Jaipur, Rajasthan, Jaipur, Rajasthan, India
| | - Lokesh Agrawal
- Graduate School of Comprehensive Human Sciences, Kansei Behavioural and Brain Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Cao Hongyi
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, Chongqing, 400715, People's Republic of China
| | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
158
|
Marks JD, Syrjanen JA, Graff-Radford J, Petersen RC, Machulda MM, Campbell MR, Algeciras-Schimnich A, Lowe V, Knopman DS, Jack CR, Vemuri P, Mielke MM. Comparison of plasma neurofilament light and total tau as neurodegeneration markers: associations with cognitive and neuroimaging outcomes. Alzheimers Res Ther 2021; 13:199. [PMID: 34906229 PMCID: PMC8672619 DOI: 10.1186/s13195-021-00944-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/06/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Total tau protein (T-Tau) and neurofilament light chain (NfL) have emerged as candidate plasma biomarkers of neurodegeneration, but studies have not compared how these biomarkers cross-sectionally or longitudinally associate with cognitive and neuroimaging measures. We therefore compared plasma T-Tau and NfL as cross-sectional and longitudinal markers of (1) global and domain-specific cognitive decline and (2) neuroimaging markers of cortical thickness, hippocampal volume, white matter integrity, and white matter hyperintensity volume. METHODS We included 995 participants without dementia who were enrolled in the Mayo Clinic Study of Aging cohort. All had concurrent plasma NfL and T-tau, cognitive status, and neuroimaging data. Follow-up was repeated approximately every 15 months for a median of 6.2 years. Plasma NfL and T-tau were measured on the Simoa-HD1 Platform. Linear mixed effects models adjusted for age, sex, and education examined associations between baseline z-scored plasma NfL or T-tau and cognitive or neuroimaging outcomes. Analyses were replicated in Alzheimer's Disease Neuroimaging Initiative (ADNI) among 387 participants without dementia followed for a median of 3.0 years. RESULTS At baseline, plasma NfL was more strongly associated with all cognitive and neuroimaging outcomes. The combination of having both elevated NfL and T-tau at baseline, compared to elevated levels of either alone, was more strongly associated at cross-section with worse global cognition and memory, and with neuroimaging measures including temporal cortex thickness and increased number of infarcts. In longitudinal analyses, baseline plasma T-tau did not add to the prognostic value of baseline plasma NfL. Results using ADNI data were similar. CONCLUSIONS Our results indicate plasma NfL had better utility as a prognostic marker of cognitive decline and neuroimaging changes. Plasma T-tau added cross-sectional value to NfL in specific contexts. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Jordan D Marks
- Medical Scientist Training Program, Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Jeremy A Syrjanen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Ronald C Petersen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Michelle R Campbell
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Val Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Michelle M Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
159
|
Rauchmann BS, Schneider-Axmann T, Perneczky R. Associations of longitudinal plasma p-tau181 and NfL with tau-PET, Aβ-PET and cognition. J Neurol Neurosurg Psychiatry 2021; 92:1289-1295. [PMID: 34187867 PMCID: PMC8606440 DOI: 10.1136/jnnp-2020-325537] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 06/12/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To explore if changes over time of plasma phosphorylated tau (p-tau)181 and neurofilament light chain (NfL) predict future tau and amyloid β (Aβ) PET load and cognitive performance, we studied a subsample of the Alzheimer's disease (AD) neuroimaging cohort with longitudinal blood peptide assessments. METHODS Eight hundred and sixty-five AD Neuroimaging Initiative participants were included. Using established AD cut-points for the cerebrospinal fluid concentrations of Aβ42, total-tau and p-tau181, subjects were classified according to the National Institute on Aging-Alzheimer's Association research framework, grouping markers into those of Aβ deposition (A), tau pathology (T) and neurodegeneration (N). Analysis of variance was used to compare the plasma biomarker data between the ATN groups. The rate of change over time of p-tau181 and NfL was obtained from linear mixed effects models and compared between the ATN groups. Linear regression analysis was used to investigate the association of baseline plasma biomarker concentrations and rates of change with future PET tau and Aβ load and cognitive performance. RESULTS P-tau181 and NfL plasma concentrations increased along the AD spectrum, but only NfL showed greater rates of change in AD patients versus controls. Cognitive performance was associated cross-sectionally with NfL in all subgroups, and with p-tau181 only in AD spectrum individuals. The baseline concentrations of both plasma markers predicted PET Aβ and tau load and cognitive performance. The rate of change of NfL predicted future PET tau and cognitive performance. CONCLUSIONS P-tau and NfL behave differently within the same individuals over time and may therefore offer complementary diagnostic information. TRIAL REGISTRATION NUMBER NCT02854033, NCT01231971.
Collapse
Affiliation(s)
- Boris Stephan Rauchmann
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Schneider-Axmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany .,German Center for Neurodegenerative Disorders (DZNE) Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,School of Public Health, Ageing Epidemiology (AGE) Research Unit, Imperial College London, London, Germany
| | | |
Collapse
|
160
|
Feng L, Li J, Zhang R. Current research status of blood biomarkers in Alzheimer's disease: Diagnosis and prognosis. Ageing Res Rev 2021; 72:101492. [PMID: 34673262 DOI: 10.1016/j.arr.2021.101492] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD), which mainly occurs in the elderly, is a neurodegenerative disease with a hidden onset, which leads to progressive cognitive and behavioral changes. The annually increasing prevalence rate and number of patients with AD exert great pressure on the society. No effective disease-modifying drug treatments are available; thus, there is no cure yet. The disease progression can only be delayed through early detection and drug assistance. Therefore, the importance of exploring associated biomarkers for the early diagnosis and prediction of the disease progress is highlighted. The National Institute on Aging- Alzheimer's Association (NIA-AA) proposed A/T/N diagnostic criteria in 2018, including Aβ42, p-tau, t-tau in cerebrospinal fluid (CSF), and positron emission tomography (PET). However, the invasiveness of lumbar puncture for CSF assessment and non-popularity of PET have prompted researchers to look for minimally invasive, easy to collect, and cost-effective biomarkers. Therefore, studies have largely focused on some novel molecules in the peripheral blood. This is an emerging research field, facing many obstacles and challenges while achieving some promising results.
Collapse
|
161
|
Andreou D, Jørgensen KN, Nerland S, Smelror RE, Wedervang-Resell K, Johannessen CH, Myhre AM, Andreassen OA, Blennow K, Zetterberg H, Agartz I. Lower plasma total tau in adolescent psychosis: Involvement of the orbitofrontal cortex. J Psychiatr Res 2021; 144:255-261. [PMID: 34700214 DOI: 10.1016/j.jpsychires.2021.10.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Schizophrenia is thought to be a neurodevelopmental disorder with neuronal migration, differentiation and maturation disturbances. Tau is a microtubule-associated protein with a crucial role in these processes. Lower circulating tau levels have been reported in adults with schizophrenia, but this association has not been investigated in adolescent psychosis. We aimed to test the hypotheses that a) adolescents with early-onset psychosis (EOP; age of onset <18 years) display lower plasma tau concentrations compared to healthy controls, and b) among patients with psychosis, tau levels are linked to structural brain measures associated with the microtubule-associated tau (MAPT) gene and psychosis. We included 37 adolescent patients with EOP (mean age 16.4 years) and 59 adolescent healthy controls (mean age 16.2 years). We investigated putative patient-control differences in plasma total tau concentrations measured by a Single molecule array (Simoa) immunoassay. We explored the correlations between tau and selected structural brain measures based on T1-weighted MRI scans processed in FreeSurfer v6.0. We found significantly lower plasma tau concentrations in patients compared to healthy controls (p = 0.017, partial eta-squared = 0.061). Tau was not associated with antipsychotic use or the antipsychotic dosage. Among patients but not healthy controls, tau levels were positively correlated with the cortical orbitofrontal surface area (p = 0.013, R-squared = 0.24). The results are suggestive of a tau-related neurodevelopmental disturbance in adolescent psychosis.
Collapse
Affiliation(s)
- Dimitrios Andreou
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden.
| | - Kjetil Nordbø Jørgensen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Stener Nerland
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Runar Elle Smelror
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Kirsten Wedervang-Resell
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Child and Adolescent Mental Health Research Unit, Department of Research and Innovation, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Cecilie Haggag Johannessen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne Margrethe Myhre
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Research and Innovation, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
162
|
Teunissen CE, Verberk IMW, Thijssen EH, Vermunt L, Hansson O, Zetterberg H, van der Flier WM, Mielke MM, Del Campo M. Blood-based biomarkers for Alzheimer's disease: towards clinical implementation. Lancet Neurol 2021; 21:66-77. [PMID: 34838239 DOI: 10.1016/s1474-4422(21)00361-6] [Citation(s) in RCA: 492] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022]
Abstract
For many years, blood-based biomarkers for Alzheimer's disease seemed unattainable, but recent results have shown that they could become a reality. Convincing data generated with new high-sensitivity assays have emerged with remarkable consistency across different cohorts, but also independent of the precise analytical method used. Concentrations in blood of amyloid and phosphorylated tau proteins associate with the corresponding concentrations in CSF and with amyloid-PET or tau-PET scans. Moreover, other blood-based biomarkers of neurodegeneration, such as neurofilament light chain and glial fibrillary acidic protein, appear to provide information on disease progression and potential for monitoring treatment effects. Now the question emerges of when and how we can bring these biomarkers to clinical practice. This step would pave the way for blood-based biomarkers to support the diagnosis of, and development of treatments for, Alzheimer's disease and other dementias.
Collapse
Affiliation(s)
- Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands.
| | - Inge M W Verberk
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Elisabeth H Thijssen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Sölvegatan, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, UK; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong Special Administrative Region, China
| | - Wiesje M van der Flier
- Alzheimer Center, Department of Neurology, and Department of Epidemiology and Data Science, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Michelle M Mielke
- Department of Quantitative Health Sciences, and Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Marta Del Campo
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands; Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
163
|
Verberk IMW, Misdorp EO, Koelewijn J, Ball AJ, Blennow K, Dage JL, Fandos N, Hansson O, Hirtz C, Janelidze S, Kang S, Kirmess K, Kindermans J, Lee R, Meyer MR, Shan D, Shaw LM, Waligorska T, West T, Zetterberg H, Edelmayer RM, Teunissen CE. Characterization of pre-analytical sample handling effects on a panel of Alzheimer's disease-related blood-based biomarkers: Results from the Standardization of Alzheimer's Blood Biomarkers (SABB) working group. Alzheimers Dement 2021; 18:1484-1497. [PMID: 34845818 PMCID: PMC9148379 DOI: 10.1002/alz.12510] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
Introduction Pre‐analytical sample handling might affect the results of Alzheimer's disease blood‐based biomarkers. We empirically tested variations of common blood collection and handling procedures. Methods We created sample sets that address the effect of blood collection tube type, and of ethylene diamine tetraacetic acid plasma delayed centrifugation, centrifugation temperature, aliquot volume, delayed storage, and freeze–thawing. We measured amyloid beta (Aβ)42 and 40 peptides with six assays, and Aβ oligomerization‐tendency (OAβ), amyloid precursor protein (APP)699‐711, glial fibrillary acidic protein (GFAP), neurofilament light (NfL), total tau (t‐tau), and phosphorylated tau181. Results Collection tube type resulted in different values of all assessed markers. Delayed plasma centrifugation and storage affected Aβ and t‐tau; t‐tau was additionally affected by centrifugation temperature. The other markers were resistant to handling variations. Discussion We constructed a standardized operating procedure for plasma handling, to facilitate introduction of blood‐based biomarkers into the research and clinical settings.
Collapse
Affiliation(s)
- Inge M W Verberk
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Els O Misdorp
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jannet Koelewijn
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Andrew J Ball
- Quanterix Corporation, Billerica, Massachusetts, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, The Salhgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | | | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Christophe Hirtz
- IRMB-LBPC/PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | | | | | | | - Jana Kindermans
- IRMB-LBPC/PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Ryan Lee
- PeopleBio, Seongnam, South Korea
| | | | - Dandan Shan
- Quanterix Corporation, Billerica, Massachusetts, USA
| | - Leslie M Shaw
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Teresa Waligorska
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tim West
- C2N Diagnostics, St. Louis, Missouri, USA
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, The Salhgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | | | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
164
|
Hall JR, Petersen M, Johnson L, O'Bryant SE. Plasma Total Tau and Neurobehavioral Symptoms of Cognitive Decline in Cognitively Normal Older Adults. Front Psychol 2021; 12:774049. [PMID: 34803857 PMCID: PMC8603823 DOI: 10.3389/fpsyg.2021.774049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Depression and related neurobehavioral symptoms are common features of Alzheimer’s disease and other dementias. The presence of these potentially modifiable neurobehavioral symptoms in cognitively intact older adults may represent an early indication of pathophysiological processes in the brain. Tau pathology is a key feature of a number of dementias. A number of studies have found an association between tau and neurobehavioral symptoms. The current study investigated the relationship of a blood-based biomarker of tau and symptoms of depression, anxiety, worry, and sleep disturbances in 538 community based, cognitively normal older adults. Logistic regression revealed no significant relationship between plasma total tau and any measures of neurobehavioral symptoms. To assess the impact of level of tau on these relationships, participants were divided into those in the highest quintile of tau and those in the lower four quintiles. Regression analyses showed a significant relationship between level of plasma total tau and measures of depression, apathy, anxiety, worry and sleep. The presence of higher levels of plasma tau and elevated neurobehavioral symptoms may be an early indicator of cognitive decline and prodromal Alzheimer’s disease. Longitudinal research is needed to evaluate the impact of these factors on the development of dementia and may suggest areas for early intervention.
Collapse
Affiliation(s)
- James R Hall
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, United States.,Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Melissa Petersen
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, United States.,Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Leigh Johnson
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, United States.,Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Sid E O'Bryant
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, United States.,Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
165
|
Brod SA. Anti-Inflammatory Agents: An Approach to Prevent Cognitive Decline in Alzheimer's Disease. J Alzheimers Dis 2021; 85:457-472. [PMID: 34842189 DOI: 10.3233/jad-215125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Systemic inflammation is an organism's response to an assault by the non-self. However, that inflammation may predispose humans to illnesses targeted to organs, including Alzheimer's disease (AD). Lesions in AD have pro-inflammatory cytokines and activated microglial/monocyte/macrophage cells. Up to this point, clinical trials using anti-amyloid monoclonal antibodies have not shown success. Maybe it is time to look elsewhere by combating inflammation. Neuroinflammation with CNS cellular activation and excessive expression of immune cytokines is suspected as the "principal culprit" in the higher risk for sporadic AD. Microglia, the resident immune cell of the CNS, perivascular myeloid cells, and activated macrophages produce IL-1, IL-6 at higher levels in patients with AD. Anti-inflammatory measures that target cellular/cytokine-mediated damage provide a rational therapeutic strategy. We propose a clinical trial using oral type 1 IFNs to act as such an agent; one that decreases IL-1 and IL-6 secretion by activating lamina propria lymphocytes in the gut associated lymphoid tissue with subsequent migration to the brain undergoing inflammatory responses. A clinical trial would be double-blind, parallel 1-year clinical trial randomized 1 : 1 oral active type 1 IFN versus best medical therapy to determine whether ingested type I IFN would decrease the rate of cognitive decline in mild cognitive impairment or mild AD. Using cognitive psychometrics, imaging, and fluid biomarkers (MxA for effective type I IFN activity beyond the gut), we can determine if oral type I IFN can prevent cognitive decline in AD.
Collapse
Affiliation(s)
- Staley A Brod
- Department of Neurology, Medical College of Wisconsin, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
166
|
Jiao B, Liu H, Guo L, Liao X, Zhou Y, Weng L, Xiao X, Zhou L, Wang X, Jiang Y, Yang Q, Zhu Y, Zhou L, Zhang W, Wang J, Yan X, Tang B, Shen L. Performance of Plasma Amyloid β, Total Tau, and Neurofilament Light Chain in the Identification of Probable Alzheimer's Disease in South China. Front Aging Neurosci 2021; 13:749649. [PMID: 34776933 PMCID: PMC8579066 DOI: 10.3389/fnagi.2021.749649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Alzheimer's disease (AD) is the most common type of dementia and has no effective treatment to date. It is essential to develop a minimally invasive blood-based biomarker as a tool for screening the general population, but the efficacy remains controversial. This cross-sectional study aimed to evaluate the ability of plasma biomarkers, including amyloid β (Aβ), total tau (t-tau), and neurofilament light chain (NfL), to detect probable AD in the South Chinese population. Methods: A total of 277 patients with a clinical diagnosis of probable AD and 153 healthy controls with normal cognitive function (CN) were enrolled in this study. The levels of plasma Aβ42, Aβ40, t-tau, and NfL were detected using ultra-sensitive immune-based assays (SIMOA). Lumbar puncture was conducted in 89 patients with AD to detect Aβ42, Aβ40, t-tau, and phosphorylated (p)-tau levels in the cerebrospinal fluid (CSF) and to evaluate the consistency between plasma and CSF biomarkers through correlation analysis. Finally, the diagnostic value of plasma biomarkers was further assessed by constructing a receiver operating characteristic (ROC) curve. Results: After adjusting for age, sex, and the apolipoprotein E (APOE) alleles, compared to the CN group, the plasma t-tau, and NfL were significantly increased in the AD group (p < 0.01, Bonferroni correction). Correlation analysis showed that only the plasma t-tau level was positively correlated with the CSF t-tau levels (r = 0.319, p = 0.003). The diagnostic model combining plasma t-tau and NfL levels, and age, sex, and APOE alleles, showed the best performance for the identification of probable AD [area under the curve (AUC) = 0.89, sensitivity = 82.31%, specificity = 83.66%]. Conclusion: Blood biomarkers can effectively distinguish patients with probable AD from controls and may be a non-invasive and efficient method for AD pre-screening.
Collapse
Affiliation(s)
- Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lina Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Liao
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yafang Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Weng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yaling Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qijie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Weiwei Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| |
Collapse
|
167
|
Singh K, Cheung BM, Xu A. Ultrasensitive detection of blood biomarkers of Alzheimer's and Parkinson's diseases: a systematic review. Biomark Med 2021; 15:1693-1708. [PMID: 34743546 DOI: 10.2217/bmm-2021-0219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose: Neurodegenerative disorders are a global health burden with costly and invasive diagnoses relying on brain imaging technology or CSF-based biomarkers. Therefore, considerable efforts to identify blood-biomarkers for Alzheimer's (AD) and Parkinson's diseases (PD) are ongoing. Objectives: This review evaluates the blood biomarkers for AD and PD for their diagnostic value. Methods: This study systematically reviewed articles published between July 1984 and February 2021. Among 1266 papers, we selected 42 studies for a systematic review and 23 studies for meta-analysis. Results & conclusion: Our analysis highlights P-tau181, T-tau and Nfl as promising blood biomarkers for AD diagnosis. Nfl levels were consistently raised in 16 AD and three PD cohorts. P-tau181 and T-tau were also significantly increased in 12 and eight AD cohorts, respectively.
Collapse
Affiliation(s)
- Kailash Singh
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Bernard My Cheung
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China.,Department of Pharmacy & Pharmacology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
168
|
Ullah R, Park TJ, Huang X, Kim MO. Abnormal amyloid beta metabolism in systemic abnormalities and Alzheimer's pathology: Insights and therapeutic approaches from periphery. Ageing Res Rev 2021; 71:101451. [PMID: 34450351 DOI: 10.1016/j.arr.2021.101451] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an age-associated, multifactorial neurodegenerative disorder that is incurable. Despite recent success in treatments that partially improve symptomatic relief, they have failed in most clinical trials. Re-holding AD for accurate diagnosis and treatment is widely known as a challenging task. Lack of knowledge of basic molecular pathogenesis might be a possible reason for ineffective AD treatment. Historically, a majority of therapy-based studies have investigated the role of amyloid-β (Aβ peptide) in the central nervous system (CNS), whereas less is known about Aβ peptide in the periphery in AD. In this review, we provide a comprehensive summary of the current understanding of Aβ peptide metabolism (anabolism and catabolism) in the brain and periphery. We show that the abnormal metabolism of Aβ peptide is significantly linked with central-brain and peripheral abnormalities; the interaction between peripheral Aβ peptide metabolism and peripheral abnormalities affects central-brain Aβ peptide metabolism, suggesting the existence of significant communication between these two pathways of Aβ peptide metabolism. This close interaction between the central brain and periphery in abnormal Aβ peptide metabolism plays a key role in the development and progression of AD. In conclusion, we need to obtain a full understanding of the dynamic roles of Aβ peptide at the molecular level in both the brain and periphery in relation to the pathology of AD. This will not only provide new information regarding the complex disease pathology, but also offer potential new clues to improve therapeutic strategies and diagnostic biomarkers for the successful treatment of AD.
Collapse
|
169
|
Chen TB, Lin KJ, Lin SY, Lee YJ, Lin YC, Wang CY, Chen JP, Wang PN. Prediction of Cerebral Amyloid Pathology Based on Plasma Amyloid and Tau Related Markers. Front Neurol 2021; 12:619388. [PMID: 34671305 PMCID: PMC8520900 DOI: 10.3389/fneur.2021.619388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 09/07/2021] [Indexed: 11/26/2022] Open
Abstract
Background and Purpose: Pyroglutamate-modified β-amyloid peptide (AβpE) is crucial for AD pathophysiological process. The potential associations of plasma AβpE and total tau (t-tau) with brain Aβ burden and cognitive performance remain to be clarified. Methods: Forty-six subjects with unimpaired cognition, mild cognitive impairment, or very mild dementia were enrolled. Plasma levels of AβpE3−40, t-tau, and Aβ42 were quantified by immunomagnetic reduction (IMR) assays. We analyzed individual and combined biomarker correlations with neuropsychological scores and Aβ positivity determined by 18F-florbetapir positron emission tomography (PET). Results: Both plasma AβpE3−40 levels and AβpE3−40/t-tau ratios correlated negatively with short-term memory and global cognition scores, while correlating positively with PET standardized uptake value ratios (SUVRs). Among the biomarkers analyzed, the combination of AβpE3−40 in a ratio with t-tau had the best discriminatory ability for Aβ PET positivity. Likewise, logistic regression analysis showed that AβpE3−40/t-tau was a highly robust predictor of Aβ PET positivity after controlling for relevant demographic covariates. Conclusion: Plasma AβpE3−40/t-tau ratios correlate with cognitive function and cerebral Aβ burden. The suitability of AβpE3−40/t-tau as a candidate clinical biomarker of AD pathology in the brain should be examined further in larger studies.
Collapse
Affiliation(s)
- Ting-Bin Chen
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,Dementia Center, Taichung Veterans General Hospital, Taichung, Taiwan.,Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Szu-Ying Lin
- Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan
| | - Yi-Jung Lee
- Division of Neurology, Department of Medicine, Taipei City Hospital Renai Branch, Taipei, Taiwan
| | - Yi-Cheng Lin
- Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan.,School of Life Sciences, Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Chen-Yu Wang
- Division of General Neurology, Department of Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jun-Peng Chen
- Biostatistics Task Force of Taichung Veterans General Hospital, Taichung, Taiwan
| | - Pei-Ning Wang
- Division of General Neurology, Department of Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
170
|
Wu X, Xiao Z, Yi J, Ding S, Gu H, Wu W, Luo J, Liang X, Zheng L, Xu H, Zhao Q, Ding D. Development of a Plasma Biomarker Diagnostic Model Incorporating Ultrasensitive Digital Immunoassay as a Screening Strategy for Alzheimer Disease in a Chinese Population. Clin Chem 2021; 67:1628-1639. [PMID: 34662373 DOI: 10.1093/clinchem/hvab192] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/17/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND The ultrasensitive detection of blood-based biomarkers such as amyloid β (Aβ), tau, and neurofilament light (NFL) has drawn much attention in Alzheimer disease (AD) diagnosis. However, few studies have been conducted in the Chinese population. This study aimed to evaluate the ability of plasma biomarker diagnostic models for AD in the Chinese population based on a novel digital immunoassay technology. METHODS 159 patients with AD, 148 patients with amnestic mild cognitive impairment (aMCI), and 121 cognitively normal control participants were recruited from 2 cohorts. The concentrations of plasma Aβ42, Aβ40, Aβ42/Aβ40, total tau (t-tau), phosphorylated tau 181 (p-tau 181), and NFL were quantified using an ultrasensitive single molecule array (Simoa) platform. Comprehensive and simplified diagnostic models were established based on the plasma biomarker profile and clinical characteristics. RESULTS Among all blood biomarkers, p-tau181 had the greatest potential for identifying patients with cognitive impairment. The simplified diagnostic model, which combined plasma p-tau181, Aβ42, and clinical features, achieved 93.3% area under the curve (AUC), 78.6% sensitivity, and 94.2% specificity for distinguishing AD from control participants, indicating a diagnostic ability approaching that of the comprehensive diagnostic model including 5 plasma biomarkers and clinical characteristics (95.1% AUC, 85.5% sensitivity, 94.2% specificity). Moreover, the simplified model reached 95.9% AUC and 94.0% AUC for early- and late-onset AD/control participants, respectively. CONCLUSIONS We established AD diagnostic models using plasma biomarkers for Chinese participants. These findings suggest the simplified diagnostic model provides an accessible and practical way for large-scale screening in the clinic and community, especially in developing countries.
Collapse
Affiliation(s)
- Xue Wu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenxu Xiao
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingwei Yi
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Saineng Ding
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongchen Gu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqing Wu
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianfeng Luo
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Xiaoniu Liang
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Zheng
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hong Xu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Qianhua Zhao
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ding Ding
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
171
|
Clark AL, Weigand AJ, Bangen KJ, Thomas KR, Eglit GM, Bondi MW, Delano‐Wood L. Higher cerebrospinal fluid tau is associated with history of traumatic brain injury and reduced processing speed in Vietnam-era veterans: A Department of Defense Alzheimer's Disease Neuroimaging Initiative (DOD-ADNI) study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12239. [PMID: 34692979 PMCID: PMC8515227 DOI: 10.1002/dad2.12239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Our goal was to determine whether cognitive and cerebrospinal fluid (CSF) markers of tau and amyloid beta 1-42 (Aβ42) differ between Vietnam-era veterans with and without history of traumatic brain injury (TBI) and whether TBI moderates the association between CSF markers and neurocognitive functioning. METHODS A total of 102 male participants (52 TBI, 50 military controls [MCs]; mean age = 68) were included. Levels of CSF Aβ42, tau phosphorylated at the threonine 181 position (p-tau), and total tau (t-tau) were quantified. Group differences in CSF markers and cognition as well as the moderating effect of TBI on CSF and cognition associations were explored. RESULTS Relative to MCs, the TBI group showed significantly higher p-tau (P = .01) and t-tau (P = .02), but no differences in amyloid (P = .09). TBI history moderated the association between CSF tau and performance on a measure of processing speed (t-tau: P = .04; p-tau: P = .02). DISCUSSION Tau accumulation may represent a mechanism of dementia risk in older veterans with remote TBI.
Collapse
Affiliation(s)
- Alexandra L. Clark
- Department of PsychologyUniversity of Texas at AustinAustinTexasUSA
- Research and Psychology ServicesVA San Diego Healthcare System (VASDHS)La JollaCaliforniaUSA
- Department of Psychiatry, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Alexandra J. Weigand
- Research and Psychology ServicesVA San Diego Healthcare System (VASDHS)La JollaCaliforniaUSA
- San Diego (SDSU/UCSD) Joint Doctoral Program in Clinical PsychologySan Diego State University/University of CaliforniaSan DiegoCaliforniaUSA
| | - Katherine J. Bangen
- Research and Psychology ServicesVA San Diego Healthcare System (VASDHS)La JollaCaliforniaUSA
- Department of Psychiatry, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Kelsey R. Thomas
- Research and Psychology ServicesVA San Diego Healthcare System (VASDHS)La JollaCaliforniaUSA
- Department of Psychiatry, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Graham M.L. Eglit
- Research and Psychology ServicesVA San Diego Healthcare System (VASDHS)La JollaCaliforniaUSA
- Department of Psychiatry, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Mark W. Bondi
- Research and Psychology ServicesVA San Diego Healthcare System (VASDHS)La JollaCaliforniaUSA
- Department of Psychiatry, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Lisa Delano‐Wood
- Research and Psychology ServicesVA San Diego Healthcare System (VASDHS)La JollaCaliforniaUSA
- Department of Psychiatry, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
- Center of Excellence for Stress and Mental HealthVASDHSLa JollaCaliforniaUSA
| | | |
Collapse
|
172
|
Altomare D, Molinuevo JL, Ritchie C, Ribaldi F, Carrera E, Dubois B, Jessen F, McWhirter L, Scheltens P, van der Flier WM, Vellas B, Démonet JF, Frisoni GB. Brain Health Services: organization, structure, and challenges for implementation. A user manual for Brain Health Services-part 1 of 6. Alzheimers Res Ther 2021; 13:168. [PMID: 34635163 PMCID: PMC8507194 DOI: 10.1186/s13195-021-00827-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
Dementia has a devastating impact on the quality of life of patients and families and comes with a huge cost to society. Dementia prevention is considered a public health priority by the World Health Organization. Delaying the onset of dementia by treating associated risk factors will bring huge individual and societal benefit. Empirical evidence suggests that, in higher-income countries, dementia incidence is decreasing as a result of healthier lifestyles. This observation supports the notion that preventing dementia is possible and that a certain degree of prevention is already in action. Further reduction of dementia incidence through deliberate prevention plans is needed to counteract its growing prevalence due to increasing life expectancy.An increasing number of individuals with normal cognitive performance seek help in the current memory clinics asking an evaluation of their dementia risk, preventive interventions, or interventions to ameliorate their cognitive performance. Consistent evidence suggests that some of these individuals are indeed at increased risk of dementia. This new health demand asks for a shift of target population, from patients with cognitive impairment to worried but cognitively unimpaired individuals. However, current memory clinics do not have the programs and protocols in place to deal with this new population.We envision the development of new services, henceforth called Brain Health Services, devoted to respond to demands from cognitively unimpaired individuals concerned about their risk of dementia. The missions of Brain Health Services will be (i) dementia risk profiling, (ii) dementia risk communication, (iii) dementia risk reduction, and (iv) cognitive enhancement. In this paper, we present the organizational and structural challenges associated with the set-up of Brain Health Services.
Collapse
Affiliation(s)
- Daniele Altomare
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.
- Memory Clinic, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 6, 1205, Geneva, Switzerland.
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Craig Ritchie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 6, 1205, Geneva, Switzerland
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), Saint John of God Clinical Research Centre, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Emmanuel Carrera
- Department of Neurology, Stroke Center, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Bruno Dubois
- Institut de la Mémoire et de la Maladie d'Alzheimer, IM2A, INSERM, Institut du Cerveau et de la Moelle Épinière, UMR-S975, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
| | - Laura McWhirter
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Philip Scheltens
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Life Science Partners, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Bruno Vellas
- Gérontopole of Toulouse, University Hospital of Toulouse (CHU-Toulouse), Toulouse, France
| | - Jean-François Démonet
- Centre Leenaards de la Mémoire, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 6, 1205, Geneva, Switzerland
| |
Collapse
|
173
|
Korecka M, Shaw LM. Mass spectrometry-based methods for robust measurement of Alzheimer's disease biomarkers in biological fluids. J Neurochem 2021; 159:211-233. [PMID: 34244999 PMCID: PMC9057379 DOI: 10.1111/jnc.15465] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting 60%-70% of people afflicted with this disease. Accurate antemortem diagnosis is urgently needed for early detection of AD to enable reliable estimation of prognosis, intervention, and monitoring of the disease. The National Institute on Aging/Alzheimer's Association sponsored the 'Research Framework: towards a biological definition of AD', which recommends using different biomarkers in living persons for a biomarker-based definition of AD regardless of clinical status. Fluid biomarkers represent one of key groups of them. Since cerebrospinal fluid (CSF) is in direct contact with brain and many proteins present in the brain can be detected in CSF, this fluid has been regarded as the best biofluid in which to measure AD biomarkers. Recently, technological advancements in protein detection made possible the effective study of plasma AD biomarkers despite their significantly lower concentrations versus to that in CSF. This and other challenges that face plasma-based biomarker measurements can be overcome by using mass spectrometry. In this review, we discuss AD biomarkers which can be reliably measured in CSF and plasma using targeted mass spectrometry coupled to liquid chromatography (LC/MS/MS). We describe progress in LC/MS/MS methods' development, emphasize the challenges, and summarize major findings. We also highlight the role of mass spectrometry and progress made in the process of global standardization of the measurement of Aβ42/Aβ40. Finally, we briefly describe exploratory proteomics which seek to identify new biomarkers that can contribute to detection of co-pathological processes that are common in sporadic AD.
Collapse
Affiliation(s)
- Magdalena Korecka
- Department of Pathology and Laboratory Medicine Perlman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine Perlman School of Medicine University of Pennsylvania Philadelphia PA USA
| |
Collapse
|
174
|
Dangi A, Chatterjee K, Banwa MS, Chauhan VS, Yadav P. Alzheimer's disease: Newer biomarkers. Ind Psychiatry J 2021; 30:S315-S319. [PMID: 34908720 PMCID: PMC8611557 DOI: 10.4103/0972-6748.328840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/11/2021] [Accepted: 07/19/2021] [Indexed: 11/04/2022] Open
Abstract
Fifty million people are affected with dementia worldwide with Alzheimer's disease (AD) accounting for 70%-80% of these cases. In India alone, 4.1 million people suffered from dementia in 2015. To date, there are no definitive treatment options for AD and the overall treatment gap in India stands at 90%. Attempts have been made to define AD biologically. This has been made possible due to advances in the identification of biomarkers that indicate the neuropathological changes responsible for AD. Identification of these biomarkers has implications for disease staging, prognostication, and identifying drug targets. Here, we summarize the advances in the field of biomarkers in AD.
Collapse
Affiliation(s)
- Ankit Dangi
- Department of Psychiatry, Armed Forces Medical College, Pune, Maharashtra, India
| | - Kaushik Chatterjee
- Department of Psychiatry, Armed Forces Medical College, Pune, Maharashtra, India
| | - Manjur Shah Banwa
- Department of Psychiatry, Armed Forces Medical College, Pune, Maharashtra, India
| | - Vinay Singh Chauhan
- Department of Psychiatry, Armed Forces Medical College, Pune, Maharashtra, India
| | - Prateek Yadav
- Department of Psychiatry, Armed Forces Medical College, Pune, Maharashtra, India
| |
Collapse
|
175
|
Koychev I, Jansen K, Dette A, Shi L, Holling H. Blood-Based ATN Biomarkers of Alzheimer's Disease: A Meta-Analysis. J Alzheimers Dis 2021; 79:177-195. [PMID: 33252080 DOI: 10.3233/jad-200900] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The Amyloid Tau Neurodegeneration (ATN) framework was proposed to define the biological state underpinning Alzheimer's disease (AD). Blood-based biomarkers offer a scalable alternative to the costly and invasive currently available biomarkers. OBJECTIVE In this meta-analysis we sought to assess the diagnostic performance of plasma amyloid (Aβ40, Aβ42, Aβ42/40 ratio), tangle (p-tau181), and neurodegeneration (total tau [t-tau], neurofilament light [NfL]) biomarkers. METHODS Electronic databases were screened for studies reporting biomarker concentrations for AD and control cohorts. Biomarker performance was examined by random-effect meta-analyses based on the ratio between biomarker concentrations in patients and controls. RESULTS 83 studies published between 1996 and 2020 were included in the analyses. Aβ42/40 ratio as well as Aβ42 discriminated AD patients from controls when using novel platforms such as immunomagnetic reduction (IMR). We found significant differences in ptau-181 concentration for studies based on single molecule array (Simoa), but not for studies based on IMR or ELISA. T-tau was significantly different between AD patients and control in IMR and Simoa but not in ELISA-based studies. In contrast, NfL differentiated between groups across platforms. Exosome studies showed strong separation between patients and controls for Aβ42, t-tau, and p-tau181. CONCLUSION Currently available assays for sampling plasma ATN biomarkers appear to differentiate between AD patients and controls. Novel assay methodologies have given the field a significant boost for testing these biomarkers, such as IMR for Aβ, Simoa for p-tau181. Enriching samples through extracellular vesicles shows promise but requires further validation.
Collapse
Affiliation(s)
- Ivan Koychev
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Katrin Jansen
- Department of Psychology, University of Münster, Münster, Germany
| | - Alina Dette
- Department of Psychology, University of Münster, Münster, Germany
| | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Heinz Holling
- Department of Psychology, University of Münster, Münster, Germany
| |
Collapse
|
176
|
Cianflone A, Coppola L, Mirabelli P, Salvatore M. Predictive Accuracy of Blood-Derived Biomarkers for Amyloid-β Brain Deposition Along with the Alzheimer's Disease Continuum: A Systematic Review. J Alzheimers Dis 2021; 84:393-407. [PMID: 34542072 DOI: 10.3233/jad-210496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND An amyloid-β (Aβ) positron emission tomography (Aβ-PET) scan of the human brain could lead to an early diagnosis of Alzheimer's disease (AD) and estimate disease progression. However, Aβ-PET imaging is expensive, invasive, and rarely applicable to cognitively normal subjects at risk for dementia. The identification of blood biomarkers predictive of Aβ brain deposition could help the identification of subjects at risk for dementia and could be helpful for the prognosis of AD progression. OBJECTIVE This study aimed to analyze the prognostic accuracy of blood biomarkers in predicting Aβ-PET status along with progression toward AD. METHODS In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we searched bibliographic databases from 2010 to 2020. The quality of the included studies was assessed by the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. RESULTS A total of 8 studies were retrieved. The prognostic accuracy of Aβ-PET status was calculated by obtaining ROCs for the following biomarkers: free, total, and bound Aβ42 and Aβ40; Aβ42/40 ratio; neurofilaments (NFL); total tau (T-tau); and phosphorylated-tau181 (P-tau181). Higher and lower plasma baseline levels of P-tau181 and the Aβ42/40 ratio, respectively, showed consistently good prognostication of Aβ-PET brain accumulation. Only P-tau181 was shown to predict AD progression. CONCLUSION In conclusion, the Aβ42/40 ratio and plasma P-tau181 were shown to predict Aβ-PET status. Plasma P-tau181 could also be a preclinical biomarker for AD progression.
Collapse
|
177
|
Tsai HH, Chen YF, Yen RF, Lo YL, Yang KC, Jeng JS, Tsai LK, Chang CF. Plasma soluble TREM2 is associated with white matter lesions independent of amyloid and tau. Brain 2021; 144:3371-3380. [PMID: 34515756 DOI: 10.1093/brain/awab332] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/21/2021] [Accepted: 08/08/2021] [Indexed: 12/20/2022] Open
Abstract
Cerebral small vessel disease is one of the most common causes of cognitive decline and stroke. While several lines of evidence have established a relationship between inflammation and cerebrovascular pathology, the mechanistic link has not yet been elucidated. Recent studies suggest activation of immune mediators, including the soluble form of triggering receptor expressed on myeloid cells 2 (TREM2), may be critical regulators. In this study, we compared the plasma levels of soluble TREM2 and its correlations with neuroimaging markers and cerebral amyloid load in ten patients with Alzheimer's disease and 66 survivors of spontaneous intracerebral haemorrhage with cerebral amyloid angiopathy or hypertensive small vessel disease, two of the most common types of sporadic small vessel disease. We performed brain MRI and 11C-Pittsburgh compound B PET for all participants to evaluate radiological small vessel disease markers and cerebral amyloid burden, and 18F-T807 PET in a subgroup of patients to evaluate cortical tau pathology. Plasma soluble TREM2 levels were comparable between patients with Alzheimer's disease and small vessel disease (P=0.690). In patients with small vessel disease, plasma soluble TREM2 was significantly associated with white matter hyperintensity volume (P<0.001), but not with cerebral amyloid load. Among patients with Alzheimer's disease and cerebral amyloid angiopathy, plasma soluble TREM2 was independently associated with a tau-positive scan (P=0.001) and white matter hyperintensity volume (P=0.013), but not amyloid load (P=0.221). Our results indicate plasma soluble TREM2 is associated with white matter hyperintensity independent of amyloid and tau pathology. These findings highlight the potential utility of plasma soluble TREM2 as a strong predictive marker for small vessel disease-related white matter injury and hold clinical implications for targeting the innate immune response when treating this disease.
Collapse
Affiliation(s)
- Hsin-Hsi Tsai
- Department of Neurology, National Taiwan University Hospital Beihu Branch, Taipei, Taiwan.,Department of Neurology, 3Medical Imaging, and 4Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ya-Fang Chen
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ruoh-Fang Yen
- Department and Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yen-Ling Lo
- Department of Neurology, National Taiwan University Hospital Beihu Branch, Taipei, Taiwan
| | - Kai-Chien Yang
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jiann-Shing Jeng
- Department of Neurology, 3Medical Imaging, and 4Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, 3Medical Imaging, and 4Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Che-Feng Chang
- Department and Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
178
|
Chatterjee P, Pedrini S, Ashton NJ, Tegg M, Goozee K, Singh AK, Karikari TK, Simrén J, Vanmechelen E, Armstrong NJ, Hone E, Asih PR, Taddei K, Doré V, Villemagne VL, Sohrabi HR, Zetterberg H, Masters CL, Blennow K, Martins RN. Diagnostic and prognostic plasma biomarkers for preclinical Alzheimer's disease. Alzheimers Dement 2021; 18:1141-1154. [PMID: 34494715 DOI: 10.1002/alz.12447] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION This study involved a parallel comparison of the diagnostic and longitudinal monitoring potential of plasma glial fibrillary acidic protein (GFAP), total tau (t-tau), phosphorylated tau (p-tau181 and p-tau231), and neurofilament light (NFL) in preclinical Alzheimer's disease (AD). METHODS Plasma proteins were measured using Simoa assays in cognitively unimpaired older adults (CU), with either absence (Aβ-) or presence (Aβ+) of brain amyloidosis. RESULTS Plasma GFAP, t-tau, p-tau181, and p-tau231 concentrations were higher in Aβ+ CU compared with Aβ- CU cross-sectionally. GFAP had the highest effect size and area under the curve (AUC) in differentiating between Aβ+ and Aβ- CU; however, no statistically significant differences were observed between the AUCs of GFAP, p-tau181, and p-tau231, but all were significantly higher than the AUC of NFL, and the AUC of GFAP was higher than the AUC of t-tau. The combination of a base model (BM), comprising the AD risk factors, age, sex, and apolipoprotein E gene (APOE) ε4 status with GFAP was observed to have a higher AUC (>90%) compared with the combination of BM with any of the other proteins investigated in the current study. Longitudinal analyses showed increased GFAP and p-tau181 in Aβ+ CU and increased NFL in Aβ- CU, over a 12-month duration. GFAP, p-tau181, p-tau231, and NFL showed significant correlations with cognition, whereas no significant correlations were observed with hippocampal volume. DISCUSSION These findings highlight the diagnostic and longitudinal monitoring potential of GFAP and p-tau for preclinical AD.
Collapse
Affiliation(s)
- Pratishtha Chatterjee
- Department of Biomedical Sciences, Macquarie University, North Ryde, New South Wales, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Steve Pedrini
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Michelle Tegg
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Kathryn Goozee
- Department of Biomedical Sciences, Macquarie University, North Ryde, New South Wales, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia.,The Cooperative Research Centre for Mental Health, Carlton South, Australia.,KaRa Institute of Neurological Disease, Macquarie Park, Australia
| | - Abhay K Singh
- Macquarie Business School, Macquarie University, North Ryde, New South Wales, Australia
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Joel Simrén
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Nicola J Armstrong
- Department of Mathematics & Statistics, Curtin University, Bentley, Western Australia, Australia
| | - Eugene Hone
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Prita R Asih
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia.,College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Kevin Taddei
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Nedlands, Western Australia, Australia
| | - Vincent Doré
- eHealth, CSIRO Health and Biosecurity, Herston, Queensland, Australia.,Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Victor L Villemagne
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia.,Department of Psychiatry, University of Pittsburgh, Pennsylvania, USA
| | - Hamid R Sohrabi
- Department of Biomedical Sciences, Macquarie University, North Ryde, New South Wales, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Nedlands, Western Australia, Australia.,Centre for Healthy Ageing, Health Future Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ralph N Martins
- Department of Biomedical Sciences, Macquarie University, North Ryde, New South Wales, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia.,The Cooperative Research Centre for Mental Health, Carlton South, Australia.,KaRa Institute of Neurological Disease, Macquarie Park, Australia.,Australian Alzheimer's Research Foundation, Nedlands, Western Australia, Australia
| |
Collapse
|
179
|
Alawode DOT, Heslegrave AJ, Ashton NJ, Karikari TK, Simrén J, Montoliu‐Gaya L, Pannee J, O´Connor A, Weston PSJ, Lantero‐Rodriguez J, Keshavan A, Snellman A, Gobom J, Paterson RW, Schott JM, Blennow K, Fox NC, Zetterberg H. Transitioning from cerebrospinal fluid to blood tests to facilitate diagnosis and disease monitoring in Alzheimer's disease. J Intern Med 2021; 290:583-601. [PMID: 34021943 PMCID: PMC8416781 DOI: 10.1111/joim.13332] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is increasingly prevalent worldwide, and disease-modifying treatments may soon be at hand; hence, now, more than ever, there is a need to develop techniques that allow earlier and more secure diagnosis. Current biomarker-based guidelines for AD diagnosis, which have replaced the historical symptom-based guidelines, rely heavily on neuroimaging and cerebrospinal fluid (CSF) sampling. While these have greatly improved the diagnostic accuracy of AD pathophysiology, they are less practical for application in primary care, population-based and epidemiological settings, or where resources are limited. In contrast, blood is a more accessible and cost-effective source of biomarkers in AD. In this review paper, using the recently proposed amyloid, tau and neurodegeneration [AT(N)] criteria as a framework towards a biological definition of AD, we discuss recent advances in biofluid-based biomarkers, with a particular emphasis on those with potential to be translated into blood-based biomarkers. We provide an overview of the research conducted both in CSF and in blood to draw conclusions on biomarkers that show promise. Given the evidence collated in this review, plasma neurofilament light chain (N) and phosphorylated tau (p-tau; T) show particular potential for translation into clinical practice. However, p-tau requires more comparisons to be conducted between its various epitopes before conclusions can be made as to which one most robustly differentiates AD from non-AD dementias. Plasma amyloid beta (A) would prove invaluable as an early screening modality, but it requires very precise tests and robust pre-analytical protocols.
Collapse
Affiliation(s)
- D. O. T. Alawode
- From theDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - A. J. Heslegrave
- From theDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - N. J. Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Department of Old Age PsychiatryInstitute of Psychiatry, Psychology & NeuroscienceKing’s College LondonLondonUK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS FoundationLondonUK
| | - T. K. Karikari
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - J. Simrén
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - L. Montoliu‐Gaya
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - J. Pannee
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - A. O´Connor
- UK Dementia Research Institute at UCLLondonUK
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - P. S. J. Weston
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - J. Lantero‐Rodriguez
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - A. Keshavan
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - A. Snellman
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Turku PET CentreUniversity of TurkuTurkuFinland
| | - J. Gobom
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - R. W. Paterson
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - J. M. Schott
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - K. Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - N. C. Fox
- UK Dementia Research Institute at UCLLondonUK
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - H. Zetterberg
- From theDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| |
Collapse
|
180
|
Moseby-Knappe M, Mattsson-Carlgren N, Stammet P, Backman S, Blennow K, Dankiewicz J, Friberg H, Hassager C, Horn J, Kjaergaard J, Lilja G, Rylander C, Ullén S, Undén J, Westhall E, Wise MP, Zetterberg H, Nielsen N, Cronberg T. Serum markers of brain injury can predict good neurological outcome after out-of-hospital cardiac arrest. Intensive Care Med 2021; 47:984-994. [PMID: 34417831 PMCID: PMC8421280 DOI: 10.1007/s00134-021-06481-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/13/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE The majority of unconscious patients after cardiac arrest (CA) do not fulfill guideline criteria for a likely poor outcome, their prognosis is considered "indeterminate". We compared brain injury markers in blood for prediction of good outcome and for identifying false positive predictions of poor outcome as recommended by guidelines. METHODS Retrospective analysis of prospectively collected serum samples at 24, 48 and 72 h post arrest within the Target Temperature Management after out-of-hospital cardiac arrest (TTM)-trial. Clinically available markers neuron-specific enolase (NSE) and S100B, and novel markers neurofilament light chain (NFL), total tau, ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) were analysed. Normal levels with a priori cutoffs specified by reference laboratories or defined from literature were used to predict good outcome (no to moderate disability, Cerebral Performance Category scale 1-2) at 6 months. RESULTS Seven hundred and seventeen patients were included. Normal NFL, tau and GFAP had the highest sensitivities (97.2-98% of poor outcome patients had abnormal serum levels) and NPV (normal levels predicted good outcome in 87-95% of patients). Normal S100B and NSE predicted good outcome with NPV 76-82.2%. Normal NSE correctly identified 67/190 (35.3%) patients with good outcome among those classified as "indeterminate outcome" by guidelines. Five patients with single pathological prognostic findings despite normal biomarkers had good outcome. CONCLUSION Low levels of brain injury markers in blood are associated with good neurological outcome after CA. Incorporating biomarkers into neuroprognostication may help prevent premature withdrawal of life-sustaining therapy.
Collapse
Affiliation(s)
- Marion Moseby-Knappe
- Department of Clinical Sciences Lund, Neurology, Skåne University Hospital, Lund University, Getingevägen 4, 222 41, Lund, Sweden.
| | - Niklas Mattsson-Carlgren
- Department of Clinical Sciences Lund, Neurology, Skåne University Hospital, Lund University, Getingevägen 4, 222 41, Lund, Sweden
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Pascal Stammet
- Medical and Health Department, National Fire and Rescue Corps, Luxembourg, Luxembourg
| | - Sofia Backman
- Department of Clinical Sciences Lund, Clinical Neurophysiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Josef Dankiewicz
- Department of Clinical Sciences Lund, Cardiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Hans Friberg
- Department of Clinical Sciences Lund, Anaesthesia and Intensive Care, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Christian Hassager
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Janneke Horn
- Department of Intensive Care, Amsterdam Neuroscience, Amsterdam UMC, Location Academic Medical Center, Amsterdam, The Netherlands
| | - Jesper Kjaergaard
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Gisela Lilja
- Department of Clinical Sciences Lund, Neurology, Skåne University Hospital, Lund University, Getingevägen 4, 222 41, Lund, Sweden
| | - Christian Rylander
- Department of Anaesthesiology and Intensive Care Medicine, Sahlgrenska Academy, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Susann Ullén
- Clinical Studies Sweden-Forum South, Skane University Hospital, Lund, Sweden
| | - Johan Undén
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Operation and Intensive Care, Lund University, Hallands Hospital Halmstad, Halland, Sweden
| | - Erik Westhall
- Department of Clinical Sciences Lund, Clinical Neurophysiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Matt P Wise
- Adult Critical Care, University Hospital of Wales, Cardiff, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Niklas Nielsen
- Department of Clinical Sciences Lund, Anaesthesia and Intensive Care, Helsingborg Hospital, Lund University, Lund, Sweden
| | - Tobias Cronberg
- Department of Clinical Sciences Lund, Neurology, Skåne University Hospital, Lund University, Getingevägen 4, 222 41, Lund, Sweden
| |
Collapse
|
181
|
Lin FV, Heffner K, Gevirtz R, Zhang Z, Tadin D, Porsteinsson A. Targeting autonomic flexibility to enhance cognitive training outcomes in older adults with mild cognitive impairment: study protocol for a randomized controlled trial. Trials 2021; 22:560. [PMID: 34425878 PMCID: PMC8381519 DOI: 10.1186/s13063-021-05530-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
Importance Cognitive training with components that can further enhance the transferred and long-term effects and slow the progress of dementia is needed for preventing dementia. Objective The goal of the study is to test whether improving autonomic nervous system (ANS) flexibility via a resonance frequency breathing (RFB) training will strengthen the effects of a visual speed of processing (VSOP) cognitive training on cognitive and brain function, and slow the progress of dementia in older adults with mild cognitive impairment (MCI). Design Stage II double-blinded randomized controlled trial. The study was prospectively registered at ClinicalTrials.gov, with registration approved on 21 August 2020 (No. NCT04522791). Setting Study-related appointments will be conducted on-site at University of Rochester Medical Center locations. Data collection will be conducted from August 2020 to February 2025. Participants Older adults with MCI (n = 114) will be randomly assigned to an 8-week combined intervention (RFB+VSOP), VSOP with guided imagery relaxation (IR) control, and a IR-only control, with periodical booster training sessions at follow-ups. Mechanistic and distal outcomes include ANS flexibility, measured by heart rate variability, and multiple markers of dementia progress. Data will be collected across a 14-month period. Discussion This will be among the first RCTs to examine in older persons with MCI a novel, combined intervention targeting ANS flexibility, an important contributor to overall environmental adaptation, with an ultimate goal for slowing neurodegeneration. Trial registration ClinicalTrials.gov NCT04522791. Registered on 21 August 2020 Protocol version: STUDY00004727; IRB protocol version 2, approved on 30 July 2020.
Collapse
Affiliation(s)
- Feng V Lin
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, USA.,Wu Tsai Neuroscience Institute, Stanford University, Stanford, USA.,Elaine C. Hubbard Center for Nursing Research on Aging, School of Nursing, University of Rochester Medical Center, Rochester, USA.,Department of Brain and Cognitive Sciences, University of Rochester, Rochester, USA
| | - Kathi Heffner
- Elaine C. Hubbard Center for Nursing Research on Aging, School of Nursing, University of Rochester Medical Center, Rochester, USA. .,Department of Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, USA. .,Department of Psychiatry, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, USA.
| | | | - Zhengwu Zhang
- University of North Carolina-Chapel Hill, Chapel Hill, USA
| | - Duje Tadin
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, USA.,Department of Neuroscience, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, USA
| | - Anton Porsteinsson
- Department of Psychiatry, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, USA
| |
Collapse
|
182
|
Montoliu-Gaya L, Strydom A, Blennow K, Zetterberg H, Ashton NJ. Blood Biomarkers for Alzheimer's Disease in Down Syndrome. J Clin Med 2021; 10:3639. [PMID: 34441934 PMCID: PMC8397053 DOI: 10.3390/jcm10163639] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Epidemiological evidence suggests that by the age of 40 years, all individuals with Down syndrome (DS) have Alzheimer's disease (AD) neuropathology. Clinical diagnosis of dementia by cognitive assessment is complex in these patients due to the pre-existing and varying intellectual disability, which may mask subtle declines in cognitive functioning. Cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers, although accurate, are expensive, invasive, and particularly challenging in such a vulnerable population. The advances in ultra-sensitive detection methods have highlighted blood biomarkers as a valuable and realistic tool for AD diagnosis. Studies with DS patients have proven the potential blood-based biomarkers for sporadic AD (amyloid-β, tau, phosphorylated tau, and neurofilament light chain) to be useful in this population. In addition, biomarkers related to other pathologies that could aggravate dementia progression-such as inflammatory dysregulation, energetic imbalance, or oxidative stress-have been explored. This review serves to provide a brief overview of the main findings from the limited neuroimaging and CSF studies, outline the current state of blood biomarkers to diagnose AD in patients with DS, discuss possible past limitations of the research, and suggest considerations for developing and validating blood-based biomarkers in the future.
Collapse
Affiliation(s)
- Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, 431 41 Mölndal, Sweden; (K.B.); (H.Z.); (N.J.A.)
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London WC2R 2LS, UK;
- South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- London Down Syndrome Consortium (LonDowns), London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, 431 41 Mölndal, Sweden; (K.B.); (H.Z.); (N.J.A.)
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 45 Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, 431 41 Mölndal, Sweden; (K.B.); (H.Z.); (N.J.A.)
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 45 Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Nicholas James Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, 431 41 Mölndal, Sweden; (K.B.); (H.Z.); (N.J.A.)
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London SE5 9RT, UK
- NIHR Biomedical Research Centre for Mental Health, Biomedical Research Unit for Dementia at South London, Maudsley NHS Foundation, London SE5 8AF, UK
| |
Collapse
|
183
|
Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Sahib S, Tian ZR, Bryukhovetskiy I, Manzhulo I, Menon PK, Patnaik R, Wiklund L, Sharma A. Alzheimer's disease neuropathology is exacerbated following traumatic brain injury. Neuroprotection by co-administration of nanowired mesenchymal stem cells and cerebrolysin with monoclonal antibodies to amyloid beta peptide. PROGRESS IN BRAIN RESEARCH 2021; 265:1-97. [PMID: 34560919 DOI: 10.1016/bs.pbr.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Military personnel are prone to traumatic brain injury (TBI) that is one of the risk factors in developing Alzheimer's disease (AD) at a later stage. TBI induces breakdown of the blood-brain barrier (BBB) to serum proteins into the brain and leads to extravasation of plasma amyloid beta peptide (ΑβP) into the brain fluid compartments causing AD brain pathology. Thus, there is a need to expand our knowledge on the role of TBI in AD. In addition, exploration of the novel roles of nanomedicine in AD and TBI for neuroprotection is the need of the hour. Since stem cells and neurotrophic factors play important roles in TBI and in AD, it is likely that nanodelivery of these agents exert superior neuroprotection in TBI induced exacerbation of AD brain pathology. In this review, these aspects are examined in details based on our own investigations in the light of current scientific literature in the field. Our observations show that TBI exacerbates AD brain pathology and TiO2 nanowired delivery of mesenchymal stem cells together with cerebrolysin-a balanced composition of several neurotrophic factors and active peptide fragments, and monoclonal antibodies to amyloid beta protein thwarted the development of neuropathology following TBI in AD, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
184
|
Parker M, White M, Casey C, Kunkel D, Bo A, Blennow K, Zetterberg H, Pearce RA, Lennertz R, Sanders RD. Cohort Analysis of the Association of Delirium Severity with Cerebrospinal Fluid Amyloid-Tau-Neurodegeneration Pathologies. J Gerontol A Biol Sci Med Sci 2021; 77:494-501. [PMID: 34260706 DOI: 10.1093/gerona/glab203] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 11/14/2022] Open
Abstract
Delirium is associated with cognitive decline and subsequent dementia, and rises in plasma total Tau (tTau) and neurofilament light (NfL), providing links to Amyloid-Tau-Neurodegeneration (ATN) pathophysiology. We investigated whether changes in delirium severity after surgery correlated with changes in cerebrospinal fluid (CSF) ATN biomarkers. Thirty-two thoracic vascular surgical patients were recruited into a prospective biomarker cohort study with assessment of delirium severity and incidence (NCT02926417). CSF (n = 54) and plasma (n = 118) samples were sent for biomarker analysis for tTau, phosphorylated tau-181 (pTau) (plasma n = 53), NfL, and amyloid-β 42/40 ratio (Ab42/40-ratio). The primary outcome was the correlation of preoperative to postoperative change in ATN biomarkers with the highest postoperative Delirium Rating Scale-98 score. CSF and plasma biomarkers all increased postoperatively (all P < .05, n = 13 paired preoperative-postoperative samples). Delirium severity was associated with peak changes in CSF tTau (P = .007, r = 0.710) and pTau (P = .01, r = 0.667) but not NfL (P = .09, rho = 0.491) or Ab42/40-ratio (P = 0.18, rho = 0.394). Sensitivity analysis with exclusion of subjects with putative spinal cord ischaemia shifted the NfL result to significance (P < .001, rho = .847). Our data show that changes in tau and biomarkers of neurodegeneration in the CSF are associated with delirium severity. These data should be considered hypothesis generating and future studies should identify if these changes are robust to confounding.
Collapse
Affiliation(s)
- Margaret Parker
- Department of Anesthesiology, University of Wisconsin, Madison, USA
| | - Marissa White
- Department of Anesthesiology, University of Wisconsin, Madison, USA
| | - Cameron Casey
- Department of Anesthesiology, University of Wisconsin, Madison, USA
| | - David Kunkel
- Department of Anesthesiology, University of Wisconsin, Madison, USA
| | - Amber Bo
- Department of Anesthesiology, University of Wisconsin, Madison, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom.,UK Dementia Research Institute at UCL, London, United Kingdom
| | - Robert A Pearce
- Department of Anesthesiology, University of Wisconsin, Madison, USA.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Richard Lennertz
- Department of Anesthesiology, University of Wisconsin, Madison, USA.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Robert D Sanders
- University of Sydney, Sydney, Australia.,Department of Anaesthetics, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Institute of Academic Surgery, Royal Prince Alfred Hospital, , Camperdown, NSW, Australia
| |
Collapse
|
185
|
Talebi M, Esmaeeli H, Talebi M, Farkhondeh T, Samarghandian S. A Concise Overview of Biosensing Technologies for the Detection of Alzheimer's Disease Biomarkers. Curr Pharm Biotechnol 2021; 23:634-644. [PMID: 34250871 DOI: 10.2174/2666796702666210709122407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/30/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a brain-linked pathophysiological condition with neuronal degeneration, cognition dysfunctions, and other debilitations. Due to the growing prevalence of AD, there is a highly commended tendency to accelerate and develop analytical technologies for easy, cost-effective, and sensitive detection of AD biomarkers. In the last decade, remarkable advancements have been achieved on the gate to the progression of biosensors, predominantly optical and electrochemical, to detect AD biomarkers. Biosensors are commanding analytical devices that can conduct biological responses on transducers into measurable signals. These analytical devices can assist the case finding and management of AD. This review focuses on up-to-date developments, contests, and tendencies regarding AD biosensing principally, emphasizing the exclusive possessions of nanomaterials.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Hadi Esmaeeli
- Department of Research & Development, Niak Pharmaceutical Co., Gorgan. Iran
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, United States
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand. Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur. Iran
| |
Collapse
|
186
|
Ashton NJ, Leuzy A, Karikari TK, Mattsson-Carlgren N, Dodich A, Boccardi M, Corre J, Drzezga A, Nordberg A, Ossenkoppele R, Zetterberg H, Blennow K, Frisoni GB, Garibotto V, Hansson O. The validation status of blood biomarkers of amyloid and phospho-tau assessed with the 5-phase development framework for AD biomarkers. Eur J Nucl Med Mol Imaging 2021; 48:2140-2156. [PMID: 33677733 PMCID: PMC8175325 DOI: 10.1007/s00259-021-05253-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE The development of blood biomarkers that reflect Alzheimer's disease (AD) pathophysiology (phosphorylated tau and amyloid-β) has offered potential as scalable tests for dementia differential diagnosis and early detection. In 2019, the Geneva AD Biomarker Roadmap Initiative included blood biomarkers in the systematic validation of AD biomarkers. METHODS A panel of experts convened in November 2019 at a two-day workshop in Geneva. The level of maturity (fully achieved, partly achieved, preliminary evidence, not achieved, unsuccessful) of blood biomarkers was assessed based on the Biomarker Roadmap methodology and discussed fully during the workshop which also evaluated cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers. RESULTS Plasma p-tau has shown analytical validity (phase 2 primary aim 1) and first evidence of clinical validity (phase 3 primary aim 1), whereas the maturity level for Aβ remains to be partially achieved. Full and partial achievement has been assigned to p-tau and Aβ, respectively, in their associations to ante-mortem measures (phase 2 secondary aim 2). However, only preliminary evidence exists for the influence of covariates, assay comparison and cut-off criteria. CONCLUSIONS Despite the relative infancy of blood biomarkers, in comparison to CSF biomarkers, much has already been achieved for phases 1 through 3 - with p-tau having greater success in detecting AD and predicting disease progression. However, sufficient data about the effect of covariates on the biomarker measurement is lacking. No phase 4 (real-world performance) or phase 5 (assessment of impact/cost) aim has been tested, thus not achieved.
Collapse
Affiliation(s)
- N J Ashton
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, Sahlgrenska Academy, University of Gothenburg, House V3/SU, SE-431 80, Mölndal, Sweden.
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - A Leuzy
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - T K Karikari
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, Sahlgrenska Academy, University of Gothenburg, House V3/SU, SE-431 80, Mölndal, Sweden
| | - N Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - A Dodich
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- Center for Neurocognitive Rehabilitation (CeRiN), CIMeC, University of Trento, Trento, Italy
| | - M Boccardi
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald, Rostock, Germany
- LANVIE - Laboratory of Neuroimaging of Aging, University of Geneva, Geneva, Switzerland
| | - J Corre
- Centre National de la Recherche Scientifique, Montpellier, France
| | - A Drzezga
- Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - A Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Aging, Karolinska University Hospital Stockholm, Stockholm, Sweden
| | - R Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - H Zetterberg
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, Sahlgrenska Academy, University of Gothenburg, House V3/SU, SE-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - K Blennow
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, Sahlgrenska Academy, University of Gothenburg, House V3/SU, SE-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - G B Frisoni
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald, Rostock, Germany
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - V Garibotto
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- Diagnostic Department, University Hospitals of Geneva, Geneva, Switzerland
| | - O Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.
- UK Dementia Research Institute at UCL, London, UK.
- Memory Clinic, Skåne University Hospital, SE-205 02, Malmö, Sweden.
| |
Collapse
|
187
|
Simrén J, Leuzy A, Karikari TK, Hye A, Benedet AL, Lantero‐Rodriguez J, Mattsson‐Carlgren N, Schöll M, Mecocci P, Vellas B, Tsolaki M, Kloszewska I, Soininen H, Lovestone S, Aarsland D, Hansson O, Rosa‐Neto P, Westman E, Blennow K, Zetterberg H, Ashton NJ. The diagnostic and prognostic capabilities of plasma biomarkers in Alzheimer's disease. Alzheimers Dement 2021; 17:1145-1156. [PMID: 33491853 PMCID: PMC8359457 DOI: 10.1002/alz.12283] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION This study investigated the diagnostic and disease-monitoring potential of plasma biomarkers in mild cognitive impairment (MCI) and Alzheimer's disease (AD) dementia and cognitively unimpaired (CU) individuals. METHODS Plasma was analyzed using Simoa assays from 99 CU, 107 MCI, and 103 AD dementia participants. RESULTS Phosphorylated-tau181 (P-tau181), neurofilament light, amyloid-β (Aβ42/40), Total-tau and Glial fibrillary acidic protein were altered in AD dementia but P-tau181 significantly outperformed all biomarkers in differentiating AD dementia from CU (area under the curve [AUC] = 0.91). P-tau181 was increased in MCI converters compared to non-converters. Higher P-tau181 was associated with steeper cognitive decline and gray matter loss in temporal regions. Longitudinal change of P-tau181 was strongly associated with gray matter loss in the full sample and with Aβ measures in CU individuals. DISCUSSION P-tau181 detected AD at MCI and dementia stages and was strongly associated with cognitive decline and gray matter loss. These findings highlight the potential value of plasma P-tau181 as a non-invasive and cost-effective diagnostic and prognostic biomarker in AD.
Collapse
Affiliation(s)
- Joel Simrén
- Department of Psychiatry and NeurochemistryThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalGothenburgSweden
| | - Antoine Leuzy
- Clinical Memory Research UnitLund UniversityMalmöSweden
| | - Thomas K. Karikari
- Department of Psychiatry and NeurochemistryThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Abdul Hye
- Department of Old Age PsychiatryInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUK
| | | | - Juan Lantero‐Rodriguez
- Department of Psychiatry and NeurochemistryThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Niklas Mattsson‐Carlgren
- Clinical Memory Research UnitLund UniversityMalmöSweden
- Department of NeurologySkåne University HospitalLundSweden
- Wallenberg Centre for Molecular MedicineLund UniversityLundSweden
| | - Michael Schöll
- Department of Psychiatry and NeurochemistryThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - Patrizia Mecocci
- Department of MedicineInstitute of Gerontology and GeriatricsUniversity of PerugiaPerugiaItaly
| | | | - Magda Tsolaki
- Aristotle University of ThessalonikiThessalonikiGreece
| | | | - Hilkka Soininen
- Institute of Clinical MedicineUniversity of Eastern FinlandKuopioFinland
| | | | - Dag Aarsland
- Department of Old Age PsychiatryInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUK
- Centre for Age‐Related MedicineStavanger University HospitalStavangerNorway
| | | | - Oskar Hansson
- Clinical Memory Research UnitLund UniversityMalmöSweden
- Memory ClinicSkåne University HospitalMalmöSweden
| | - Pedro Rosa‐Neto
- Translational Neuroimaging LaboratoryMcGill UniversityMontréalCanada
| | - Eric Westman
- Division of Clinical GeriatricsDepartment of NeurobiologyCare Sciences and SocietyKarolinska InstituteStockholmSweden
- Department of NeuroimagingCentre for Neuroimaging SciencesPsychology and NeuroscienceKing's College LondonInstitute of PsychiatryLondonUK
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalGothenburgSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalGothenburgSweden
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - Nicholas J. Ashton
- Department of Psychiatry and NeurochemistryThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Department of Old Age PsychiatryInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUK
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
| |
Collapse
|
188
|
Fayazi N, Sheykhhasan M, Soleimani Asl S, Najafi R. Stem Cell-Derived Exosomes: a New Strategy of Neurodegenerative Disease Treatment. Mol Neurobiol 2021; 58:3494-3514. [PMID: 33745116 PMCID: PMC7981389 DOI: 10.1007/s12035-021-02324-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
Short-term symptomatic treatment and dose-dependent side effects of pharmacological treatment for neurodegenerative diseases have forced the medical community to seek an effective treatment for this serious global health threat. Therapeutic potential of stem cell for treatment of neurodegenerative disorders was identified in 1980 when fetal nerve tissue was used to treat Parkinson's disease (PD). Then, extensive studies have been conducted to develop this treatment strategy for neurological disease therapy. Today, stem cells and their secretion are well-known as a therapeutic environment for the treatment of neurodegenerative diseases. This new paradigm has demonstrated special characteristics related to this treatment, including neuroprotective and neurodegeneration, remyelination, reduction of neural inflammation, and recovery of function after induced injury. However, the exact mechanism of stem cells in repairing nerve damage is not yet clear; exosomes derived from them, an important part of their secretion, are introduced as responsible for an important part of such effects. Numerous studies over the past few decades have evaluated the therapeutic potential of exosomes in the treatment of various neurological diseases. In this review, after recalling the features and therapeutic history, we will discuss the latest stem cell-derived exosome-based therapies for these diseases.
Collapse
Affiliation(s)
- Nashmin Fayazi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
189
|
Werner JK, Shahim P, Pucci JU, Lai C, Raiciulescu S, Gill JM, Nakase-Richardson R, Diaz-Arrastia R, Kenney K. Poor sleep correlates with biomarkers of neurodegeneration in mild traumatic brain injury patients: a CENC study. Sleep 2021; 44:6024975. [PMID: 33280032 DOI: 10.1093/sleep/zsaa272] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/19/2020] [Indexed: 01/24/2023] Open
Abstract
STUDY OBJECTIVES Sleep disorders affect over half of mild traumatic brain injury (mTBI) patients. Despite evidence linking sleep and neurodegeneration, longitudinal TBI-related dementia studies have not considered sleep. We hypothesized that poor sleepers with mTBI would have elevated markers of neurodegeneration and lower cognitive function compared to mTBI good sleepers and controls. Our objective was to compare biomarkers of neurodegeneration and cognitive function with sleep quality in warfighters with chronic mTBI. METHODS In an observational warfighters cohort (n = 138 mTBI, 44 controls), the Pittsburgh Sleep Quality Index (PSQI) was compared with plasma biomarkers of neurodegeneration and cognitive scores collected an average of 8 years after injury. RESULTS In the mTBI cohort, poor sleepers (PSQI ≥ 10, n = 86) had elevated plasma neurofilament light (NfL, x̅ = 11.86 vs 7.91 pg/mL, p = 0.0007, d = 0.63) and lower executive function scores by the categorical fluency (x̅ = 18.0 vs 21.0, p = 0.0005, d = -0.65) and stop-go tests (x̅ = 30.1 vs 31.1, p = 0.024, d = -0.37). These findings were not observed in controls (n = 44). PSQI predicted NfL (beta = 0.22, p = 0.00002) and tau (beta = 0.14, p = 0.007), but not amyloid β42. Poor sleepers showed higher obstructive sleep apnea (OSA) risk by STOP-BANG scores (x̅ = 3.8 vs 2.7, p = 0.0005), raising the possibility that the PSQI might be partly secondary to OSA. CONCLUSIONS Poor sleep is linked to neurodegeneration and select measures of executive function in mTBI patients. This supports implementation of validated sleep measures in longitudinal studies investigating pathobiological mechanisms of TBI related neurodegeneration, which could have therapeutic implications.
Collapse
Affiliation(s)
- J Kent Werner
- Department of Neurology, Uniformed Services University of Health Sciences, Bethesda, MD.,Center for Neuroscience and Regenerative Medicine, Bethesda, MD
| | - Pashtun Shahim
- National Institutes of Health, Bethesda, MD.,Center for Neuroscience and Regenerative Medicine, Bethesda, MD
| | - Josephine U Pucci
- Department of Neurology, Uniformed Services University of Health Sciences, Bethesda, MD
| | - Chen Lai
- National Institutes of Health, Bethesda, MD
| | - Sorana Raiciulescu
- Department of Neurology, Uniformed Services University of Health Sciences, Bethesda, MD
| | | | - Risa Nakase-Richardson
- Department of Internal Medicine, Sleep and Pulmonary Division, University of South Florida, Tampa, FL.,Defense and Veterans Brain Injury Center, Tampa, FL.,James A. Haley Veterans Hospital, Tampa, FL
| | | | - Kimbra Kenney
- Department of Neurology, Uniformed Services University of Health Sciences, Bethesda, MD
| |
Collapse
|
190
|
Gallo A, Pillet LE, Verpillot R. New frontiers in Alzheimer's disease diagnostic: Monoamines and their derivatives in biological fluids. Exp Gerontol 2021; 152:111452. [PMID: 34182050 DOI: 10.1016/j.exger.2021.111452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/29/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Current diagnosis of Alzheimer's disease (AD) relies on a combination of neuropsychological evaluations, biomarker measurements and brain imaging. Nevertheless, these approaches are either expensive, invasive or lack sensitivity to early AD stages. The main challenge of ongoing research is therefore to identify early non-invasive biomarkers to diagnose AD at preclinical stage. Accumulating evidence support the hypothesis that initial degeneration of profound monoaminergic nuclei may trigger a transneuronal spread of AD pathology towards hippocampus and cortex. These studies aroused great interest on monoamines, i.e. noradrenaline (NA), dopamine (D) ad serotonin (5-HT), as early hallmarks of AD pathology. The present work reviews current literature on the potential role of monoamines and related metabolites as biomarkers of AD. First, morphological changes in the monoaminergic systems during AD are briefly described. Second, we focus on concentration changes of these molecules and their derivatives in biological fluids, including cerebrospinal fluid, obtained by lumbar puncture, and blood or urine, sampled via less invasive procedures. Starting from initial observations, we then discuss recent insights on metabolomics-based analysis, highlighting the promising clinical utility of monoamines for the identification of a molecular AD signature, aimed at improving early diagnosis and discrimination from other dementia.
Collapse
|
191
|
Castillo-Mendieta T, Arana-Lechuga Y, Campos-Peña V, Sosa AL, Orozco-Suarez S, Pinto-Almazán R, Segura-Uribe J, Javier Rodríguez-Sánchez de Tagle A, Ruiz-Sánchez E, Guerra-Araiza C. Plasma Levels of Amyloid-β Peptides and Tau Protein in Mexican Patients with Alzheimer's Disease. J Alzheimers Dis 2021; 82:S271-S281. [PMID: 34151786 DOI: 10.3233/jad-200912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) causes memory deficit and alterations in other cognitive functions, mainly in adults over 60 years of age. As the diagnosis confirmation is performed by a postmortem neuropathological examination of the brain, this disease can be confused with other types of dementia at early stages. About 860,000 Mexicans are affected by dementia, most of them with insufficient access to adequate comprehensive health care services. Plasma biomarkers could be a rapid option for early diagnosis of the disease. OBJECTIVE This study aimed to analyze some plasma biomarkers (amyloid-β, tau, and lipids) in Mexican AD patients and control subjects with no associated neurodegenerative diseases. METHODS Plasma amyloid-β peptides (Aβ40 and Aβ42), total and phosphorylated tau protein (T-tau and P-tau), and cholesterol and triglyceride levels were quantified by enzyme-linked immunosorbent assay in AD patients and control subjects. RESULTS In Mexican AD patients, we found significantly lower levels of Aβ42 (p < 0.05) compared to the control group. In contrast, significantly higher levels of P-tau (p < 0.05) and triglycerides (p < 0.05) were observed in AD patients compared to controls. Furthermore, a significant correlation was found between the severity of dementia and plasma P-tau levels, Aβ42/Aβ40 and P-tau/T-tau ratios, and triglycerides concentrations. This correlation increased gradually with cognitive decline. CONCLUSION The detection of these plasma biomarkers is an initial step in searching for a timely, less invasive, and cost-efficient diagnosis in Mexicans.
Collapse
Affiliation(s)
- Tzayaka Castillo-Mendieta
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Yoaly Arana-Lechuga
- Sleep Disorders Clinic, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Ana Luisa Sosa
- Clínica de Demencia, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Sandra Orozco-Suarez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Rodolfo Pinto-Almazán
- Laboratorio de Biología Molecular en Enfermedades Metabólicas y Neurodegenerativas, Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca, State of Mexico, Mexico
| | - Julia Segura-Uribe
- Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, Mexico
| | - Aldo Javier Rodríguez-Sánchez de Tagle
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Coordinación de QFBT, Universidad del Valle de México-Chapultepec, México City, México
| | - Elizabeth Ruiz-Sánchez
- Laboratorio de Neurotoxicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
192
|
Xia Y, Prokop S, Giasson BI. "Don't Phos Over Tau": recent developments in clinical biomarkers and therapies targeting tau phosphorylation in Alzheimer's disease and other tauopathies. Mol Neurodegener 2021; 16:37. [PMID: 34090488 PMCID: PMC8180161 DOI: 10.1186/s13024-021-00460-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Phosphorylation is one of the most prevalent post-translational modifications found in aggregated tau isolated from Alzheimer’s disease (AD) patient brains. In tauopathies like AD, increased phosphorylation or hyperphosphorylation can contribute to microtubule dysfunction and is associated with tau aggregation. In this review, we provide an overview of the structure and functions of tau protein as well as the physiologic roles of tau phosphorylation. We also extensively survey tau phosphorylation sites identified in brain tissue and cerebrospinal fluid from AD patients compared to age-matched healthy controls, which may serve as disease-specific biomarkers. Recently, new assays have been developed to measure minute amounts of specific forms of phosphorylated tau in both cerebrospinal fluid and plasma, which could potentially be useful for aiding clinical diagnosis and monitoring disease progression. Additionally, multiple therapies targeting phosphorylated tau are in various stages of clinical trials including kinase inhibitors, phosphatase activators, and tau immunotherapy. With promising early results, therapies that target phosphorylated tau could be useful at slowing tau hyperphosphorylation and aggregation in AD and other tauopathies.
Collapse
Affiliation(s)
- Yuxing Xia
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA.,Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA. .,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA. .,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA.
| |
Collapse
|
193
|
Ashton NJ, Suárez‐Calvet M, Karikari TK, Lantero‐Rodriguez J, Snellman A, Sauer M, Simrén J, Minguillon C, Fauria K, Blennow K, Zetterberg H. Effects of pre-analytical procedures on blood biomarkers for Alzheimer's pathophysiology, glial activation, and neurodegeneration. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12168. [PMID: 34124336 PMCID: PMC8171159 DOI: 10.1002/dad2.12168] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION We tested how tube types (ethylenediaminetetraacetic acid [EDTA], serum, lithium heparin [LiHep], and citrate) and freeze-thaw cycles affect levels of blood biomarkers for Alzheimer's disease (AD) pathophysiology, glial activation, and neuronal injury. METHODS Amyloid beta (Aβ)42, Aβ40, phosphorylated tau181 (p-tau181), glial fibrillary acidic protein, total tau (t-tau), neurofilament light, and phosphorylated neurofilament heavy protein were measured using single molecule arrays. RESULTS LiHep demonstrated the highest mean value for all biomarkers. Tube types were highly correlated for most biomarkers (r > 0.95) but gave significantly different absolute concentrations. Weaker correlations between tube types were found for Aβ42/40 (r = 0.63-0.86) and serum t-tau (r = 0.46-0.64). Freeze-thaw cycles highly influenced levels of serum Aβ and t-tau (P < .0001), and minor decreases in EDTA Aβ40 and EDTA p-tau181 were found after freeze-thaw cycle 4 (P < .05). DISCUSSION The same tube type should be used in research studies on blood biomarkers. Individual concentration cut-offs are needed for each tube type in all tested biomarkers despite being highly correlated. Serum should be avoided for Aβ42, Aβ40, and t-tau. Freeze-thaw cycles > 3 should be avoided for p-tau181.
Collapse
Affiliation(s)
- Nicholas J. Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Department of Old Age PsychiatryPsychology & NeuroscienceKing's College LondonInstitute of PsychiatryLondonUK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS FoundationLondonUK
| | - Marc Suárez‐Calvet
- Pasqual Maragall FoundationBarcelonaβeta Brain Research Center (BBRC)BarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
- Servei de NeurologiaHospital del MarBarcelonaSpain
| | - Thomas K. Karikari
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Juan Lantero‐Rodriguez
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Anniina Snellman
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Turku PET CentreUniversity of TurkuTurkuFinland
| | - Mathias Sauer
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Joel Simrén
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Carolina Minguillon
- Pasqual Maragall FoundationBarcelonaβeta Brain Research Center (BBRC)BarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Karine Fauria
- Pasqual Maragall FoundationBarcelonaβeta Brain Research Center (BBRC)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| |
Collapse
|
194
|
Triana‐Baltzer G, Moughadam S, Slemmon R, Van Kolen K, Theunis C, Mercken M, Kolb HC. Development and validation of a high-sensitivity assay for measuring p217+tau in plasma. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12204. [PMID: 34095436 PMCID: PMC8158165 DOI: 10.1002/dad2.12204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Diagnosis of Alzheimer's disease (AD) based on amyloid beta (A), pathologic tau (T), and neurodegeneration (N) biomarkers in peripheral fluids promises to accelerate clinical trials and intercept disease earlier. METHODS Qualification of a Simoa plasma p217+tau assay was performed, followed by clinical utility evaluation in a cohort of 227 subjects with broad A and T spectrum. RESULTS The p217+tau plasma assay was accurate, precise, dilution linear, and highly sensitive. All measured samples were within linear range of the assay, presented higher concentration in AD versus healthy controls (P < .0001), and plasma and cerebrospinal fluid levels correlated (r2 = 0.35). The plasma p217+tau results were predictive of central T and A status (area under the curve = 0.90 and 0.90, respectively) with low false +/- rates. DISCUSSION The assay described here exhibits good technical performance and shows potential as a highly accurate peripheral biomarker for A or T status in AD and cognitively normal subjects.
Collapse
Affiliation(s)
| | - Setareh Moughadam
- Neuroscience BiomarkersJanssen Research & DevelopmentLa JollaCaliforniaUSA
| | - Randy Slemmon
- Neuroscience BiomarkersJanssen Research & DevelopmentLa JollaCaliforniaUSA
| | | | - Clara Theunis
- Neuroscience DepartmentJanssen Research & DevelopmentBeerseBelgium
| | - Marc Mercken
- Neuroscience DepartmentJanssen Research & DevelopmentBeerseBelgium
| | - Hartmuth C. Kolb
- Neuroscience BiomarkersJanssen Research & DevelopmentLa JollaCaliforniaUSA
| |
Collapse
|
195
|
Hallén T, Olsson DS, Hammarstrand C, Farahmand D, Olofsson AC, Jakobsson Ung E, Jakobsson S, Bergquist H, Blennow K, Zetterberg H, Johannsson G, Skoglund T. Circulating brain injury biomarkers increase after endoscopic surgery for pituitary tumors. J Clin Neurosci 2021; 89:113-121. [PMID: 34119253 DOI: 10.1016/j.jocn.2021.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/23/2021] [Accepted: 04/25/2021] [Indexed: 11/27/2022]
Abstract
Pituitary tumors and subsequent treatment with endoscopic transsphenoidal surgery (ETSS) may cause injury to suprasellar structures, causing long-term fatigue and neurocognitive impairment. A method to quantify brain injury after ETSS is not available. In this prospective, exploratory study of patients undergoing ETSS for pituitary tumors, a novel approach to detect possible neuronal damage is presented. Plasma concentrations of brain injury biomarkers (glial fibrillary acidic protein [GFAP], tau, and neurofilament light [NFL]) were measured the day before surgery, immediately after surgery, at day 1 and 5, and at 6 and 12 months after surgery, using enzyme-linked immunosorbent assays. The association between the increase of biomarkers with preoperative tumor extension and postoperative patient-perceived fatigue was evaluated. Suprasellar tumor extension was assessed from MRI scans, and self-perceived fatigue was assessed using the Multidimensional Fatigue Inventory before and 6 months after surgery. Thirty-five patients were included in the analysis. Compared to baseline, GFAP showed a maximal increase at day 1 after surgery (p = 0.0005), tau peaked postoperatively on the day of surgery (p = 0.019), and NFL reached its maximum at day 5 after surgery (p < 0.0001). The increase in GFAP correlated with preoperative chiasmal compression (p = 0.020). The increase in tau was correlated with preoperative chiasmal (p = 0.011) and hypothalamus compression (p = 0.016), and fatigue score 6 months after surgery (p = 0.016). In conclusion, the concentrations of brain injury biomarkers in blood increased after ETSS for pituitary tumors. The results indicate that postoperative plasma GFAP and tau might reflect astroglial and neuronal damage after ETSS.
Collapse
Affiliation(s)
- Tobias Hallén
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Daniel S Olsson
- Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Casper Hammarstrand
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dan Farahmand
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Eva Jakobsson Ung
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Institute of Health and Care Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sofie Jakobsson
- Institute of Health and Care Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Bergquist
- Department of ENT/H&N Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Otorhinolaryngology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, Institute of Neurology, University College of London, London, UK; UK Dementia Research Institute, University College of London, London, UK
| | - Gudmundur Johannsson
- Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Skoglund
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
196
|
Budelier MM, Bateman RJ. Biomarkers of Alzheimer Disease. J Appl Lab Med 2021; 5:194-208. [PMID: 31843944 DOI: 10.1373/jalm.2019.030080] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/31/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Alzheimer disease (AD) was once a clinical diagnosis confirmed by postmortem autopsy. Today, with the development of AD biomarkers, laboratory assays to detect AD pathology are able to complement clinical diagnosis in symptomatic individuals with uncertain diagnosis. A variety of commercially available assays are performed as laboratory-developed tests, and many more are in development for both clinical and research purposes. CONTENT The role of laboratory medicine in diagnosing and managing AD is expanding; thus, it is important for laboratory professionals and ordering physicians to understand the strengths and limitations of both existing and emerging AD biomarker assays. In this review, we will provide an overview of the diagnosis of AD, discuss existing laboratory assays for AD and their recommended use, and examine the clinical performance of emerging AD biomarkers. SUMMARY The field of AD biomarker discovery and assay development is rapidly evolving, with recent studies promising to improve both the diagnosis of symptomatic individuals and enrollment and monitoring of asymptomatic individuals in research studies. However, care must be taken to ensure proper use and interpretation of these assays. For clinical purposes, these assays are meant to aid in diagnosis but are not themselves diagnostic. For individuals without symptoms, AD biomarker tests are still only appropriate for research purposes. Additionally, there are analytical challenges that require careful attention, especially for longitudinal use of AD tests.
Collapse
Affiliation(s)
- Melissa M Budelier
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
197
|
Mielke MM. Consideration of Sex Differences in the Measurement and Interpretation of Alzheimer Disease-Related Biofluid-Based Biomarkers. J Appl Lab Med 2021; 5:158-169. [PMID: 31811073 DOI: 10.1373/jalm.2019.030023] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/23/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND The development of cerebrospinal fluid and blood-based biomarkers for Alzheimer disease (AD) and related disorders is rapidly progressing. Such biomarkers may be used clinically to screen the population, to enhance diagnosis, or to help determine prognosis. Although the use of precision medicine methods has contributed to enhanced understanding of the AD pathophysiological changes and development of assays, one aspect not commonly considered is sex differences. CONTENT There are several ways in which sex can affect the concentration or interpretation of biofluid biomarkers. For some markers, concentrations will vary by sex. For others, the concentrations might not vary by sex, but the impact or interpretation may vary by sex depending on the context of use (e.g., diagnostic vs prognostic). Finally, for others, there will be no sex differences in concentrations or their interpretation. This review will first provide a basis for sex differences, including differences in brain structure and function, and the means by which these differences could contribute to sex differences in biomarker concentrations. Next, the current state of sex differences in AD-related biofluid markers (i.e., amyloid-β, phosphorylated τ, total τ, neurofilament light chain, and neurogranin) will be reviewed. Lastly, factors that can lead to the misinterpretation of observed sex differences in biomarkers (either providing evidence for or against) will be considered. SUMMARY This review is intended to provide an impetus to consider sex differences in the measurement and interpretation of AD-related biofluid-based biomarkers.
Collapse
Affiliation(s)
- Michelle M Mielke
- Departments of Health Sciences Research and Neurology, Mayo Clinic, Rochester, MN
| |
Collapse
|
198
|
Solje E, Benussi A, Buratti E, Remes AM, Haapasalo A, Borroni B. State-of-the-Art Methods and Emerging Fluid Biomarkers in the Diagnostics of Dementia-A Short Review and Diagnostic Algorithm. Diagnostics (Basel) 2021; 11:diagnostics11050788. [PMID: 33925655 PMCID: PMC8145467 DOI: 10.3390/diagnostics11050788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022] Open
Abstract
The most common neurodegenerative dementias include Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). The correct etiology-based diagnosis is pivotal for clinical management of these diseases as well as for the suitable timing and choosing the accurate disease-modifying therapies when these become available. Enzyme-linked immunosorbent assay (ELISA)-based methods, detecting altered levels of cerebrospinal fluid (CSF) Tau, phosphorylated Tau, and Aβ-42 in AD, allowed the wide use of this set of biomarkers in clinical practice. These analyses demonstrate a high diagnostic accuracy in AD but suffer from a relatively restricted usefulness due to invasiveness and lack of prognostic value. In recent years, the development of novel advanced techniques has offered new state-of-the-art opportunities in biomarker discovery. These include single molecule array technology (SIMOA), a tool for non-invasive analysis of ultra-low levels of central nervous system-derived molecules from biofluids, such as CSF or blood, and real-time quaking (RT-QuIC), developed to analyze misfolded proteins. In the present review, we describe the history of methods used in the fluid biomarker analyses of dementia, discuss specific emerging biomarkers with translational potential for clinical use, and suggest an algorithm for the use of new non-invasive blood biomarkers in clinical practice.
Collapse
Affiliation(s)
- Eino Solje
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, 70211 Kuopio, Finland;
- Neuro Center, Neurology, Kuopio University Hospital, 70029 Kuopio, Finland
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy;
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy;
| | - Anne M. Remes
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, 90230 Oulu, Finland;
- Medical Research Center (MRC), Oulu University Hospital, 90220 Oulu, Finland
| | - Annakaisa Haapasalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy;
- Correspondence:
| |
Collapse
|
199
|
Zerr I, Villar-Piqué A, Hermann P, Schmitz M, Varges D, Ferrer I, Riggert J, Zetterberg H, Blennow K, Llorens F. Diagnostic and prognostic value of plasma neurofilament light and total-tau in sporadic Creutzfeldt-Jakob disease. Alzheimers Res Ther 2021; 13:86. [PMID: 33883011 PMCID: PMC8059191 DOI: 10.1186/s13195-021-00815-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Blood neurofilament light (Nfl) and total-tau (t-tau) have been described to be increased in several neurological conditions, including prion diseases and other neurodegenerative dementias. Here, we aim to determine the accuracy of plasma Nfl and t-tau in the differential diagnosis of neurodegenerative dementias and their potential value as prognostic markers of disease severity. METHODS Plasma Nfl and t-tau were measured in healthy controls (HC, n = 70), non-neurodegenerative neurological disease with (NND-Dem, n = 17) and without dementia syndrome (NND, n = 26), Alzheimer's disease (AD, n = 44), Creutzfeldt-Jakob disease (CJD, n = 83), dementia with Lewy bodies/Parkinson's disease with dementia (DLB/PDD, n = 35), frontotemporal dementia (FTD, n = 12), and vascular dementia (VaD, n = 22). Biomarker diagnostic accuracies and cutoff points for the diagnosis of CJD were calculated, and associations between Nfl and t-tau concentrations with other fluid biomarkers, demographic, genetic, and clinical data in CJD cases were assessed. Additionally, the value of Nfl and t-tau predicting disease survival in CJD was evaluated. RESULTS Among diagnostic groups, highest plasma Nfl and t-tau concentrations were detected in CJD (fold changes of 38 and 18, respectively, compared to HC). Elevated t-tau was able to differentiate CJD from all other groups, whereas elevated Nfl concentrations were also detected in NND-Dem, AD, DLB/PDD, FTD, and VaD compared to HC. Both biomarkers discriminated CJD from non-CJD dementias with an AUC of 0.93. In CJD, plasma t-tau, but not Nfl, was associated with PRNP codon 129 genotype and CJD subtype. Positive correlations were observed between plasma Nfl and t-tau concentrations, as well as between plasma and CSF concentrations of both biomarkers (p < 0.001). Nfl was increased in rapidly progressive AD (rpAD) compared to slow progressive AD (spAD) and associated to Mini-Mental State Examination results. However, Nfl displayed higher accuracy than t-tau discriminating CJD from rpAD and spAD. Finally, plasma t-tau, but not plasma Nfl, was significantly associated with disease duration, offering a moderate survival prediction capacity. CONCLUSIONS Plasma Nfl and t-tau are useful complementary biomarkers for the differential diagnosis of CJD. Additionally, plasma t-tau emerges as a potential prognostic marker of disease duration.
Collapse
Affiliation(s)
- Inga Zerr
- Department of Neurology, National Reference Center for TSE Surveillance, University Medical Center, Robert-Koch Street 40, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Anna Villar-Piqué
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), L'Hospitalet de Llobregat, Feixa Llarga s/n, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Peter Hermann
- Department of Neurology, National Reference Center for TSE Surveillance, University Medical Center, Robert-Koch Street 40, Göttingen, Germany.
| | - Matthias Schmitz
- Department of Neurology, National Reference Center for TSE Surveillance, University Medical Center, Robert-Koch Street 40, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Daniela Varges
- Department of Neurology, National Reference Center for TSE Surveillance, University Medical Center, Robert-Koch Street 40, Göttingen, Germany
| | - Isidre Ferrer
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), L'Hospitalet de Llobregat, Feixa Llarga s/n, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain
| | - Joachim Riggert
- Department of Transfusion Medicine, University Medical School, Göttingen, Germany
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Franc Llorens
- Department of Neurology, National Reference Center for TSE Surveillance, University Medical Center, Robert-Koch Street 40, Göttingen, Germany.
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), L'Hospitalet de Llobregat, Feixa Llarga s/n, Barcelona, Spain.
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
200
|
Ding XL, Tuo QZ, Lei P. An Introduction to Ultrasensitive Assays for Plasma Tau Detection. J Alzheimers Dis 2021; 80:1353-1362. [PMID: 33682718 DOI: 10.3233/jad-201499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The detection of plasma tau and its phosphorylation is technically challenging due to the relatively low sensitivity. However, in Alzheimer’s disease and other tauopathies, it is hypothesized that tau in the biofluid may serve as a biomarker. In recent years, several ultrasensitive assays have been developed, which can successfully detect tau and its phosphorylation in various biofluids, and collectively demonstrated the prognostic and diagnostic value of plasma tau/phosphorylated tau. Here we have summarized the principle of four ultrasensitive assays newly developed suitable for plasma tau detection, namely single-molecule array, immunomagnetic reduction assay, enhanced immunoassay using multi-arrayed fiber optics, and meso scale discovery assay, with their advantages and applications. We have also compared these assays with traditional enzyme-linked-immunosorbent serologic assay, hoping to facilitate future tau-based biomarker discovery for Alzheimer’s disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Xu-Long Ding
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Qing-zhang Tuo
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|