151
|
Herrmann N, Chau SA, Kircanski I, Lanctôt KL. Current and Emerging Drug Treatment Options for Alzheimerʼs Disease. Drugs 2011; 71:2031-65. [DOI: 10.2165/11595870-000000000-00000] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
152
|
Kyrkanides S, Tallents RH, Miller JNH, Olschowka ME, Johnson R, Yang M, Olschowka JA, Brouxhon SM, O'Banion MK. Osteoarthritis accelerates and exacerbates Alzheimer's disease pathology in mice. J Neuroinflammation 2011; 8:112. [PMID: 21899735 PMCID: PMC3179730 DOI: 10.1186/1742-2094-8-112] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 09/07/2011] [Indexed: 11/16/2022] Open
Abstract
Background The purpose of this study was to investigate whether localized peripheral inflammation, such as osteoarthritis, contributes to neuroinflammation and neurodegenerative disease in vivo. Methods We employed the inducible Col1-IL1βXAT mouse model of osteoarthritis, in which induction of osteoarthritis in the knees and temporomandibular joints resulted in astrocyte and microglial activation in the brain, accompanied by upregulation of inflammation-related gene expression. The biological significance of the link between peripheral and brain inflammation was explored in the APP/PS1 mouse model of Alzheimer's disease (AD) whereby osteoarthritis resulted in neuroinflammation as well as exacerbation and acceleration of AD pathology. Results Induction of osteoarthritis exacerbated and accelerated the development of neuroinflammation, as assessed by glial cell activation and quantification of inflammation-related mRNAs, as well as Aβ pathology, assessed by the number and size of amyloid plaques, in the APP/PS1; Col1-IL1βXAT compound transgenic mouse. Conclusion This work supports a model by which peripheral inflammation triggers the development of neuroinflammation and subsequently the induction of AD pathology. Better understanding of the link between peripheral localized inflammation, whether in the form of osteoarthritis, atherosclerosis or other conditions, and brain inflammation, may prove critical to our understanding of the pathophysiology of disorders such as Alzheimer's, Parkinson's and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Stephanos Kyrkanides
- Department of Children's Dentistry, Stony Brook University Health Science Center, Stony Brook, NY 11794, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
León R, Garcia AG, Marco-Contelles J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer's disease. Med Res Rev 2011; 33:139-89. [PMID: 21793014 DOI: 10.1002/med.20248] [Citation(s) in RCA: 363] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
With 27 million cases worldwide documented in 2006, Alzheimer's disease (AD) constitutes an overwhelming health, social, economic, and political problem to nations. Unless a new medicine capable to delay disease progression is found, the number of cases will reach 107 million in 2050. So far, the therapeutic paradigm one-compound-one-target has failed. This could be due to the multiple pathogenic mechanisms involved in AD including amyloid β (Aβ) aggregation to form plaques, τ hyperphosphorylation to disrupt microtubule to form neurofibrillary tangles, calcium imbalance, enhanced oxidative stress, impaired mitochondrial function, apoptotic neuronal death, and deterioration of synaptic transmission, particularly at cholinergic neurons. Approximately 100 compounds are presently been investigated directed to single targets, namely inhibitors of β and γ secretase, vaccines or antibodies that clear Aβ, metal chelators to inhibit Aβ aggregation, blockers of glycogen synthase kinase 3β, enhancers of mitochondrial function, antioxidants, modulators of calcium-permeable channels such as voltage-dependent calcium channels, N-methyl-D-aspartate receptors for glutamate, or enhancers of cholinergic neurotransmission such as inhibitors of acetylcholinesterase or butyrylcholinesterase. In view of this complex pathogenic mechanisms, and the successful treatment of chronic diseases such as HIV or cancer, with multiple drugs having complementary mechanisms of action, the concern is growing that AD could better be treated with a single compound targeting two or more of the pathogenic mechanisms leading to neuronal death. This review summarizes the current therapeutic strategies based on the paradigm one-compound-various targets to treat AD. A treatment that delays disease onset and/or progression by 5 years could halve the number of people requiring institutionalization and/or dying from AD.
Collapse
Affiliation(s)
- Rafael León
- Department of Chemistry, University of Cambridge, Cambridge, Lensfield road, Cambridge CB2 1EW, United Kingdom.
| | | | | |
Collapse
|
154
|
Complement activation as a biomarker for Alzheimer's disease. Immunobiology 2011; 217:204-15. [PMID: 21856034 DOI: 10.1016/j.imbio.2011.07.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 06/22/2011] [Accepted: 07/18/2011] [Indexed: 01/31/2023]
Abstract
There is increasing evidence from genetic, immunohistochemical, proteomic and epidemiological studies as well as in model systems that complement activation has an important role in the pathogenesis of Alzheimer's disease (AD). The complement cascade is an essential element of the innate immune response. In the brain complement proteins are integral components of amyloid plaques and complement activation occurs at the earliest stage of the disease. The complement cascade has been implicated as a protective mechanism in the clearance of amyloid, and in a causal role through chronic activation of the inflammatory response. In this review we discuss the potential for complement activation to act as a biomarker for AD at several stages in the disease process. An accurate biomarker that has sufficient predictive, diagnostic and prognostic value would provide a significant opportunity to develop and test for effective novel therapies in the treatment of AD.
Collapse
|
155
|
Sokolowski JD, Mandell JW. Phagocytic clearance in neurodegeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1416-28. [PMID: 21435432 DOI: 10.1016/j.ajpath.2010.12.051] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 12/15/2010] [Accepted: 12/22/2010] [Indexed: 12/14/2022]
Abstract
The cellular and molecular mechanisms of phagocytic clearance of apoptotic cells and debris have been intensely studied in invertebrate model organisms and in the mammalian immune system. This evolutionarily conserved process serves multiple purposes. Uncleared debris from dying cells or aggregated proteins can be toxic and may trigger exaggerated inflammatory responses. Even though apoptotic cell death and debris accumulation are key features of neurodegenerative diseases, relatively little attention has been paid to this important homeostatic function in the central nervous system (CNS). This review attempts to summarize our knowledge of phagocytic clearance in the CNS, with a focus on retinal degeneration, forms of which are caused by mutations in genes within known phagocytic pathways, and on Alzheimer's disease (AD). Interest in phagocytic clearance mechanisms in AD was stimulated by the discovery that immunization could promote phagocytic clearance of amyloid-β; however, much less is known about clearance of neuronal and synaptic corpses in AD and other neurodegenerative diseases. Because the regulation of phagocytic activity is intertwined with cytokine signaling, this review also addresses the relationships among CNS inflammation, glial responses, and phagocytic clearance.
Collapse
Affiliation(s)
- Jennifer D Sokolowski
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
156
|
Lleó A. Current therapeutic options for Alzheimer's disease. Curr Genomics 2011; 8:550-8. [PMID: 19415128 PMCID: PMC2647161 DOI: 10.2174/138920207783769549] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 12/27/2007] [Accepted: 12/27/2007] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the developed world. The increasing life expectancy in the last years has led to an increase in the prevalence of this age-related condition and has posed an important medical and social challenge for developed societies. The mainstays of current therapy for AD rely on the cholinergic hypothesis developed more than 20 years ago. These compounds, known as acetylcholinesterase inhibitors (AChEIs), inhibit the cholinesterases and aim at improving the brain synaptic availability of acetylcholine. These drugs have been approved for the treatment of AD based on pivotal clinical trials showing modest symptomatic benefit on cognitive, behavioral, and global measures. Memantine, an NMDA antagonist, has been recently included as a therapeutic option for AD. Memantine can be combined safely with AChEIs for an additional symptomatic benefit. During the last years our understanding of the mechanisms underlying the pathogenesis of AD has markedly expanded. Several putative neuroprotective drugs are thoroughly investigated and many of them have reached the clinical arena. It can be anticipated that some of these drugs will be able to slow/prevent the progression of this condition in the near future.
Collapse
Affiliation(s)
- Alberto Lleó
- Department of Neurology, Hospital Santa Creu i Sant Pau, Avda. San Antoni M feminine Claret 167, Barcelona 08025, Spain
| |
Collapse
|
157
|
Galimberti D, Scarpini E. Progress in Alzheimer's disease. J Neurol 2011; 259:201-11. [PMID: 21706152 DOI: 10.1007/s00415-011-6145-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 12/16/2022]
Abstract
After more than one century from Alois Alzheimer and Gaetano Perusini's first report, progress has been made in understanding the pathogenic steps of Alzheimer's disease (AD), as well as in its early diagnosis. This review discusses recent findings leading to the formulation of novel criteria for diagnosis of the disease even in a preclinical phase, by using biological markers. In addition, treatment options will be discussed, with emphasis on new disease-modifying compounds and future trial design suitable to test these drugs in an early phase of the disease.
Collapse
Affiliation(s)
- Daniela Galimberti
- Department of Neurological Sciences, Dino Ferrari Center, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, University of Milan, Via F. Sforza 35, 20122, Milan, Italy.
| | | |
Collapse
|
158
|
Simmons CR, Zou F, Younkin SG, Estus S. Rheumatoid arthritis-associated polymorphisms are not protective against Alzheimer's disease. Mol Neurodegener 2011; 6:33. [PMID: 21595938 PMCID: PMC3120711 DOI: 10.1186/1750-1326-6-33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 05/19/2011] [Indexed: 01/29/2023] Open
Abstract
Background Rheumatoid arthritis (RA) and Alzheimer's disease (AD) are inversely associated. To test the hypothesis that genetic elements associated with increased RA risk are associated with decreased AD risk, we evaluated RA genetic risk factors recently identified in genome-wide association studies (GWAS) for their association with AD in a two-stage, case-control analysis. Results In our Stage 1 analysis of ~800 AD and ~1,200 non-AD individuals, three of seventeen RA-associated SNPs were nominally associated with AD (p < 0.05) with one SNP, rs2837960, retaining significance after correction for multiple testing (p = 0.03). The rs2837960_G (minor) allele, which is associated with increased RA risk, was associated with increased AD risk. Analysis of these three SNPs in a Stage 2 population, consisting of ~1,100 AD and ~2,600 non-AD individuals, did not confirm their association with AD. Analysis of Stage 1 and 2 combined suggested that rs2837960 shows a trend for association with AD. When the Stage 2 population was age-matched for the Stage 1 population, rs2837960 exhibited a non-significant trend with AD. Combined analysis of Stage 1 and the age-matched Stage 2 subset showed a significant association of rs2837960 with AD (p = 0.002, OR 1.24) that retained significance following correction for age, sex and APOE (p = 0.02, OR = 1.20). Rs2837960 is near BACE2, which encodes an aspartic protease capable of processing the AD-associated amyloid precursor protein. Testing for an association between rs2837960 and the expression of BACE2 isoforms in human brain, we observed a trend between rs2837960 and the total expression of BACE2 and the expression of a BACE2 transcript lacking exon 7 (p = 0.07 and 0.10, respectively). Conclusions RA-associated SNPs are generally not associated with AD. Moreover, rs2837960_G is associated with increased risk of both RA and, in individuals less than 80 years of age, with AD. Overall, these results contest the hypothesis that genetic variants associated with RA confer protection against AD. Further investigation of rs2837960 is necessary to elucidate the mechanism by which rs2837960 contributes to both AD and RA risk, likely via modulation of BACE2 expression.
Collapse
Affiliation(s)
- Christopher R Simmons
- Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| | | | | | | |
Collapse
|
159
|
Syapin PJ. Brain Damage and Alcohol Dependence: How One May Influence the Other. ALCOHOLISM TREATMENT QUARTERLY 2011. [DOI: 10.1080/07347324.2011.557985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Peter J. Syapin
- a Department of Pharmacology and Neuroscience , Texas Tech University Health Sciences Center , Lubbock, Texas, USA
| |
Collapse
|
160
|
Leduc V, Domenger D, De Beaumont L, Lalonde D, Bélanger-Jasmin S, Poirier J. Function and comorbidities of apolipoprotein e in Alzheimer's disease. Int J Alzheimers Dis 2011; 2011:974361. [PMID: 21559182 PMCID: PMC3089878 DOI: 10.4061/2011/974361] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/09/2011] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease (AD)—the most common type of dementia among the elderly—represents one of the most challenging and urgent medical mysteries affecting our aging population. Although dominant inherited mutation in genes involved in the amyloid metabolism can elicit familial AD, the overwhelming majority of AD cases, dubbed sporadic AD, do not display this Mendelian inheritance pattern. Apolipoprotein E (APOE), the main lipid carrier protein in the central nervous system, is the only gene that has been robustly and consistently associated with AD risk. The purpose of the current paper is thus to highlight the pleiotropic roles and the structure-function relationship of APOE to stimulate both the functional characterization and the identification of novel lipid homeostasis-related molecular targets involved in AD.
Collapse
Affiliation(s)
- Valérie Leduc
- Department of Psychiatry, Douglas Mental Health University Institute, Perry Pavilion, E-3207.1, 6875 Lasalle Boulevard, Verdun, QC, Canada H4H1R3
| | | | | | | | | | | |
Collapse
|
161
|
Butchart J, Holmes C. Systemic and central immunity in Alzheimer's disease: therapeutic implications. CNS Neurosci Ther 2011; 18:64-76. [PMID: 22070806 DOI: 10.1111/j.1755-5949.2011.00245.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clinical pharmaceutical trials aimed at modulating the immune system in Alzheimer's Disease have largely focused on either dampening down central proinflammatory innate immunity or have manipulated adaptive immunity to facilitate the removal of centrally deposited beta amyloid. To date, these trials have had mixed clinical therapeutic effects. However, a number of clinical studies have demonstrated disturbances of both systemic and central innate immunity in Alzheimer's Disease and attention has been drawn to the close communication pathways between central and systemic immunity. This paper highlights the need to take into account the potential systemic effects of drugs aimed at modulating central immunity and the possibility of developing novel therapeutic approaches based on the manipulation of systemic immunity and its communication with the central nervous system.
Collapse
Affiliation(s)
- Joseph Butchart
- Clinical Neurosciences Division, University of Southampton, Moorgreen Hospital, UK
| | | |
Collapse
|
162
|
Jeng W, Ramkissoon A, Wells PG. Reduced DNA oxidation in aged prostaglandin H synthase-1 knockout mice. Free Radic Biol Med 2011; 50:550-6. [PMID: 21094252 DOI: 10.1016/j.freeradbiomed.2010.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 11/01/2010] [Accepted: 11/11/2010] [Indexed: 11/30/2022]
Abstract
Prostaglandin H synthase (PHS)-2 (COX-2) is implicated in the neurodegeneration of Alzheimer and Parkinson diseases. Multiple mechanisms may be involved, including PHS-catalyzed bioactivation of neurotransmitters, precursors, and metabolites to neurotoxic free radical intermediates. Herein, in vitro studies with the purified PHS-1 (COX-1) isoform and in vivo studies of aging PHS-1 knockout mice were used to evaluate the potential neurodegenerative role of PHS-1-catalyzed bioactivation of endogenous neurotransmitters to free radical intermediates that enhance reactive oxygen species formation and oxidative DNA damage. The brains of 2-year-old wild-type (+/+) PHS-1 normal and heterozygous (+/-) and homozygous (-/-) PHS-1 knockout mice were analyzed for 8-oxo-2'-deoxyguanosine formation, characterized by high-performance liquid chromatography with electrochemical detection and by immunohistochemistry. Compared to aging PHS-1(+/+) normal mice, aging PHS-1(-/-) knockout mice had less oxidative DNA damage in the cortex, hippocampus, cerebellum, and brain stem. This PHS-1-dependent oxidative damage was not observed in young mice. In vitro incubation of purified PHS-1 and 2'-deoxyguanosine with dopamine, L-DOPA, and epinephrine, but not glutamate or norepinephrine, enhanced oxidative DNA damage. These results suggest that PHS-1-dependent accumulation of oxidatively damaged macromolecules including DNA may contribute to the mechanisms and risk factors of aging-related neurodegeneration.
Collapse
Affiliation(s)
- Winnie Jeng
- Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada M5S 3M2
| | | | | |
Collapse
|
163
|
Palmer AM. Neuroprotective therapeutics for Alzheimer's disease: progress and prospects. Trends Pharmacol Sci 2011; 32:141-7. [PMID: 21256602 DOI: 10.1016/j.tips.2010.12.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 12/31/2022]
Abstract
The number of people with Alzheimer's disease (AD) has never been greater and is set to increase substantially in the decades ahead as the proportion of the population aged 65 years or more rises sharply. There is therefore an urgent need for safe and effective pharmacotherapy to help combat the corresponding and substantial increase in disease burden. Increased understanding of disease aetiology and pathophysiology, particularly in relation to the loss of vulnerable neurons and the formation of plaques and tangles, has increased hope for medications that can slow (or perhaps even halt) the course of the disease. In this article I review the neurobiological basis of AD, current progress towards neuroprotective therapeutics, and prospects for the future.
Collapse
Affiliation(s)
- Alan M Palmer
- MS Therapeutics Ltd, Beechey House, 87 Church Street, Crowthorne, Berkshire RG45 7AW, UK.
| |
Collapse
|
164
|
Aïd S, Bosetti F. Targeting cyclooxygenases-1 and -2 in neuroinflammation: Therapeutic implications. Biochimie 2011; 93:46-51. [PMID: 20868723 PMCID: PMC3008299 DOI: 10.1016/j.biochi.2010.09.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/14/2010] [Indexed: 12/21/2022]
Abstract
Neuroinflammation has been implicated in the pathogenesis or the progression of a variety of acute and chronic neurological and neurodegenerative disorders, including Alzheimer's disease. Prostaglandin H synthases or cyclooxygenases (COX -1 and COX-2) play a central role in the inflammatory cascade by converting arachidonic acid into bioactive prostanoids. In this review, we highlighted recent experimental data that challenge the classical view that the inducible isoform COX-2 is the most appropriate target to treat neuroinflammation. First, we discuss data showing that COX-2 activity is linked to anti-inflammatory and neuroprotective actions and is involved in the generation of novel lipid mediators with pro-resolution properties. Then, we review recent data demonstrating that COX-1, classically viewed as the homeostatic isoform, is actively involved in brain injury induced by pro-inflammatory stimuli including Aβ, lipopolysaccharide, IL-1β, and TNF-α. Overall, we suggest revisiting the traditional views on the roles of each COX during neuroinflammation and we propose COX-1 inhibition as a viable therapeutic approach to treat CNS diseases with a marked inflammatory component.
Collapse
Affiliation(s)
- Saba Aïd
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, NIH, 9 Memorial Drive, Bldg 9 Room 1S126, Bethesda, MD 20892, USA
| | | |
Collapse
|
165
|
Discovery of fused 5,6-bicyclic heterocycles as γ-secretase modulators. Bioorg Med Chem Lett 2011; 21:664-9. [DOI: 10.1016/j.bmcl.2010.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 01/09/2023]
|
166
|
Piau A, Nourhashémi F, Hein C, Caillaud C, Vellas B. Progress in the development of new drugs in Alzheimer's disease. J Nutr Health Aging 2011; 15:45-57. [PMID: 21267520 DOI: 10.1007/s12603-011-0012-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease with a global prevalence estimated at 26.55 million in 2006. During the past decades, several agents have been approved that enhance cognition of AD patients. However, the effectiveness of these treatments are limited or controversial and they do not modify disease progression. Recent advances in understanding AD pathogenesis have led to the development of numerous compounds that might modify the disease process. AD is mainly characterized neuropathologically by the presence of two kinds of protein aggregates: extracellular plaques of Abeta-peptide and intracellular neurofibrillary tangles. Abeta and tau could interfere in an original way contributing to a cascade of events leading to neuronal death and transmitter deficits. Investigation for novel therapeutic approaches targeting the presumed underlying pathogenic mechanisms is major focus of research. Antiamyloid agents targeting production, accumulation, clearance, or toxicity associated with Abeta peptide, are some approaches under investigation to limit extracellular plaques of Abeta-peptide accumulation. We can state as an example: Abeta passive and active immunization, secretases modulation, Abeta degradation enhancement, or antiaggregation and antifibrillization agents. Tau-related therapies are also under clinical investigation but few compounds are available. Another alternative approach under development is neuroprotective agents such as antioxidants, anti-inflammatory drugs, compounds acting against glutamate mediated neurotoxicity. Neurorestorative approaches through neurotrophin or cell therapy also represent a minor avenue in AD research. Finally, statins, receptor for advanced glycation end products inhibitors, thiazolidinediones, insulin, and hormonal therapies are some other ways of research for a therapeutic approach of Alzheimer's disease. Taking into account AD complexity, it becomes clear that polypharmacology with drugs targeting different sites could be the future treatment approach and a majority of the recent drugs under evaluation seems to act on multiple targets. This article exposes general classes of disease-modifying therapies under investigation.
Collapse
|
167
|
Oehlrich D, Berthelot DJC, Gijsen HJM. γ-Secretase modulators as potential disease modifying anti-Alzheimer's drugs. J Med Chem 2010; 54:669-98. [PMID: 21141968 DOI: 10.1021/jm101168r] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Daniel Oehlrich
- Medicinal Chemistry, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | | | | |
Collapse
|
168
|
Sahni JK, Doggui S, Ali J, Baboota S, Dao L, Ramassamy C. Neurotherapeutic applications of nanoparticles in Alzheimer's disease. J Control Release 2010; 152:208-31. [PMID: 21134407 DOI: 10.1016/j.jconrel.2010.11.033] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/29/2010] [Indexed: 12/15/2022]
Abstract
A rapid increase in incidence of neurodegenerative disorders has been observed with the aging of the population. Alzheimer's disease (AD) is the most common neurodegenerative disorder among the elderly. It is characterized by memory dysfunction, loss of lexical access, spatial and temporal disorientation and impairment of judgement clinically. Unfortunately, clinical development of drugs for the symptomatic and disease-modifying treatment of AD has resulted in both promise and disappointment. Indeed, a large number of drugs with differing targets and mechanisms of action were investigated with only a few of them being clinically available. The targeted drug delivery to the central nervous system (CNS), for the diagnosis and treatment of neurodegenerative disorders such as AD, is restricted due to the limitations posed by the blood-brain barrier (BBB) as well as due to opsonization by plasma proteins in the systemic circulation and peripheral side-effects. Over the last decade, nanoparticle-mediated drug delivery represents one promising strategy to successfully increase the CNS penetration of several therapeutic moieties. Different nanocarriers are being investigated to treat and diagnose AD by delivering at a constant rate a host of therapeutics over times extending up to days, weeks or even months. This review provides a concise incursion on the current pharmacotherapies for AD besides reviewing and discussing the literature on the different drug molecules that have been successfully encapsulated in nanoparticles (NPs). Some of them have been shown to cross the BBB and have been tested either for diagnosis or treatment of AD. Finally, the route of NPs administration and the future prospects will be discussed.
Collapse
Affiliation(s)
- Jasjeet Kaur Sahni
- INRS-Institut Armand-Frappier, 531, boul. des Prairies, H7V 1B7 Laval, Québec, Canada
| | | | | | | | | | | |
Collapse
|
169
|
Abstract
Interleukin-1β (IL-1β) is one of the first cytokines ever described. It has long been recognized to play an important role in mediating inflammation and orchestrating the physiological and behavioral adjustments that occur during sickness. Recently, accumulating evidence has indicated that IL-1β also adversely affects cognitive function. Nevertheless, there are also some reports showing no effects or even beneficial effects of IL-1β on learning and memory. The relationship between IL-1β and cognitive impairment has not been clearly elucidated. Here we reviewed the evidence of both negative and positive effects of IL-1β on learning and memory, and the key factors that may affect the effects of IL-1β on learning and memory were discussed.
Collapse
Affiliation(s)
- Zhen-Bo Huang
- CAS Key Laboratory of Regenerative Biology, South China Institute of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Guo-Qing Sheng
- CAS Key Laboratory of Regenerative Biology, South China Institute of Stem Cell and Regenerative Medicine, Guangzhou, China
| |
Collapse
|
170
|
Abstract
RésuméL'eorganisation anatomique et chimique du cerveau humain subit de nombreux changements au cours du vieillissement. Certains neurons meurent, d'autres s'atrophient et ily a une réduction marquée du nombre de synapses dans des régions spécifiques du cerveau. Des diminutions du métabolisme du glucose et des effets pré- et post-synaptiques des neurotransmetteurs ont aussi été rapportées. À l'exception de certaines structures sous-corticales, il existe cependant une controverse quant à la sévérité des changements dans l'ensemble du cerveau. De plus, les effets du vieillissement sont très variables d'une région du cerveau à l'autre ainsi que d'un individu à l'autre. Certains phénomènes observès dans le vieillissement normal, tels la perte des neurones dopaminergique de la substance noire et celle des neurones cholinergiques du prosencé;phale basal, apparaissent sous une forme grandement exacerbées dans diverses pathologies neurodégénératives comme les maladies de Parkinson et d'Alzeimer. Les faibles altérations qui surviennent au niveau de ces systémes lors du vieillissement normal pourraient étre responsables des troubles d'équilibre, de la pauvreté de mouvement et des pertes de mémoires que l'on observent chez les gens âgés. Cependant, l'inflammation chronique du cerveau semble être une caractéristique typique des individus atteints de maladies neurodégénératives. L'hypothèse voulant que cette inflammation puisse être ralentie par un traitement avec des agents anti-inflammatoires a été supportée par les résultats de 19 études épidémiologiques ainsi que par un essai clinique de moindre envergure. Cependant, d'Autres études cliniques devront ètre réalisées et une attention particulière devra être portée aux effets secondaires de la thérapie anti-inflammatoire conventionnelle afin d'en arriver à une conclusion définitive.
Collapse
|
171
|
Hensley K. Neuroinflammation in Alzheimer's disease: mechanisms, pathologic consequences, and potential for therapeutic manipulation. J Alzheimers Dis 2010; 21:1-14. [PMID: 20182045 DOI: 10.3233/jad-2010-1414] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The concept of neuroinflammation has evolved over the past two decades from an initially controversial viewpoint to its present status as a generally accepted idea whose mechanisms and consequences are still actively under research and debate, particularly with regard to Alzheimer's disease (AD). This review summarizes the current status of neuroinflammation research as it specifically relates to AD. Neuroinflammation is discussed mechanistically with emphasis on the role of redox signal transduction linked to the activation of central nervous system-relevant innate immune pathways. Redox signaling is presented both as a causal factor and a consequence of sustained neuroinflammation. Functional relationships are discussed that connect distinct neuroinflammatory components such as cytokines, eicosanoids, classic AD pathology (amyloid plaques and neurofibrillary tangles), and the recently emergent notion of "damage-associated molecular patterns". The interaction of these paracrine factors likely can produce positive as well as negative effects on the AD brain, ranging from plaque clearance by microglia in the short term to glial dysfunction and neuronal compromise if the neuroinflammation is chronically sustained and unmitigated. Recent disappointments in AD clinical trials of anti-inflammatory drugs are discussed with reference to possible explanations and potential avenues for future pharmacological approaches to the disease.
Collapse
Affiliation(s)
- Kenneth Hensley
- Department of Pathology, University of Toledo Health Sciences Center, Toledo, OH 43614-2598, USA.
| |
Collapse
|
172
|
Lee YJ, Han SB, Nam SY, Oh KW, Hong JT. Inflammation and Alzheimer’s disease. Arch Pharm Res 2010; 33:1539-56. [DOI: 10.1007/s12272-010-1006-7] [Citation(s) in RCA: 295] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 08/25/2010] [Accepted: 08/27/2010] [Indexed: 12/12/2022]
|
173
|
Hung CHL, Ho YS, Chang RCC. Modulation of mitochondrial calcium as a pharmacological target for Alzheimer's disease. Ageing Res Rev 2010; 9:447-56. [PMID: 20553970 DOI: 10.1016/j.arr.2010.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 05/14/2010] [Accepted: 05/19/2010] [Indexed: 12/20/2022]
Abstract
Perturbed neuronal calcium homeostasis is a prominent feature in Alzheimer's disease (AD). Mitochondria accumulate calcium ions (Ca(2+)) for cellular bioenergetic metabolism and suppression of mitochondrial motility within the cell. Excessive Ca(2+) uptake into mitochondria often leads to mitochondrial membrane permeabilization and induction of apoptosis. Ca(2+) is an interesting second messenger which can initiate both cellular life and death pathways in mitochondria. This review critically discusses the potential of manipulating mitochondrial Ca(2+) concentrations as a novel therapeutic opportunity for treating AD. This review also highlights the neuroprotective role of a number of currently available agents that modulate different mitochondrial Ca(2+) transport pathways. It is reasoned that these mitochondrial Ca(2+) modulators are most effective in combination with agents that increase the Ca(2+) buffering capacity of mitochondria. Modulation of mitochondrial Ca(2+) handling is a potential pharmacological target for future development of AD treatments.
Collapse
Affiliation(s)
- Clara Hiu-Ling Hung
- Laboratory of Neurodegenerative Diseases, Department of Anatomy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | |
Collapse
|
174
|
Matysiak W, Jodłowska-Jędrych B. Does administration of non-steroidal anti-inflammatory drug determine morphological changes in adrenal cortex: ultrastructural studies. PROTOPLASMA 2010; 246:109-18. [PMID: 20721677 PMCID: PMC2947012 DOI: 10.1007/s00709-010-0194-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 07/28/2010] [Indexed: 05/09/2023]
Abstract
Rofecoxib (Vioxx© made by Merck Sharp & Dohme, the USA) is a non-steroidal anti-inflammatory drug which belongs to the group of selective inhibitors of cyclooxygenasis-2, i.e., coxibs. Rofecoxib was first registered in the USA, in May 1999. Since then the drug was received by millions of patients. Drugs of this group were expected to exhibit increased therapeutic action. Additionally, there were expectations concerning possibilities of their application, at least as auxiliary drugs, in neoplastic therapy due to intensifying of apoptosis. In connection with the withdrawal of Vioxx© (rofecoxib) from pharmaceutical market, attempts were made to conduct electron-microscopic evaluation of cortical part of the adrenal gland in preparations obtained from animals under influence of the drug. Every morning animals from the experimental group (15 rats) received rofecoxib (suspension in physiological saline)--non-steroidal anti-inflammatory drug (Vioxx©, Merck Sharp and Dohme, the USA), through an intragastric tube in the dose of 1.25 mg during 8 weeks. In the evaluated material, there was found a greater number of secretory vacuoles and large, containing cholesterol and other lipids as well as generated glucocorticoids, lipid drops in cytoplasm containing prominent endoplasmic reticulum. There were also found cells with cytoplasm of smaller density--especially in apical and basal parts of cells. Mitochondria occasionally demonstrated features of delicate swelling. The observed changes, which occurred on cellular level with application of large doses of the drug, result from mobilization of adaptation mechanisms of the organism.
Collapse
Affiliation(s)
- Włodzimierz Matysiak
- Department of Histology and Embryology, Medical University of Lublin, 11 Street Radziwiłłowska, 20-080 Lublin, Poland
| | - Barbara Jodłowska-Jędrych
- Department of Histology and Embryology, Medical University of Lublin, 11 Street Radziwiłłowska, 20-080 Lublin, Poland
| |
Collapse
|
175
|
Affiliation(s)
- Rudy J. Castellani
- Department of Pathology, University of Maryland, Baltimore, Maryland, USA
| | | | - Mark A. Smith
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
176
|
Heneka MT, O'Banion MK, Terwel D, Kummer MP. Neuroinflammatory processes in Alzheimer's disease. J Neural Transm (Vienna) 2010; 117:919-47. [PMID: 20632195 DOI: 10.1007/s00702-010-0438-z] [Citation(s) in RCA: 330] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 06/16/2010] [Indexed: 12/12/2022]
Abstract
Generation of neurotoxic amyloid beta peptides and their deposition along with neurofibrillary tangle formation represent key pathological hallmarks in Alzheimer's disease (AD). Recent evidence suggests that inflammation may be a third important component which, once initiated in response to neurodegeneration or dysfunction, may actively contribute to disease progression and chronicity. Various neuroinflammatory mediators including complement activators and inhibitors, chemokines, cytokines, radical oxygen species and inflammatory enzyme systems are expressed and released by microglia, astrocytes and neurons in the AD brain. Degeneration of aminergic brain stem nuclei including the locus ceruleus and the nucleus basalis of Meynert may facilitate the occurrence of inflammation in their projection areas given the antiinflammatory and neuroprotective action of their key transmitters norepinephrine and acetylcholine. While inflammation has been thought to arise secondary to degeneration, recent experiments demonstrated that inflammatory mediators may stimulate amyloid precursor protein processing by various means and therefore can establish a vicious cycle. Despite the fact that some aspects of inflammation may even be protective for bystander neurons, antiinflammatory treatment strategies should therefore be considered. Non-steroidal anti-inflammatory drugs have been shown to reduce the risk and delay the onset to develop AD. While, the precise molecular mechanism underlying this effect is still unknown, a number of possible mechanisms including cyclooxygenase 2 or gamma-secretase inhibition and activation of the peroxisome proliferator activated receptor gamma may alone or, more likely, in concert account for the epidemiologically observed protection.
Collapse
Affiliation(s)
- Michael T Heneka
- Department of Neurology, Clinical Neurosciences, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.
| | | | | | | |
Collapse
|
177
|
Aid S, Parikh N, Palumbo S, Bosetti F. Neuronal overexpression of cyclooxygenase-2 does not alter the neuroinflammatory response during brain innate immune activation. Neurosci Lett 2010; 478:113-8. [PMID: 20451580 PMCID: PMC2891071 DOI: 10.1016/j.neulet.2010.04.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 04/05/2010] [Accepted: 04/30/2010] [Indexed: 11/29/2022]
Abstract
Neuroinflammation is a critical component in the progression of several neurological and neurodegenerative diseases and cyclooxygenases (COX)-1 and -2 are key regulators of innate immune responses. We recently demonstrated that COX-1 deletion attenuates, whereas COX-2 deletion enhances, the neuroinflammatory response, blood-brain barrier permeability and leukocyte recruitment during lipopolysaccharide (LPS)-induced innate immune activation. Here, we used transgenic mice, which overexpressed human COX-2 via neuron-specific Thy-1 promoter (TgCOX-2), causing elevated prostaglandins (PGs) levels. We tested whether neuronal COX-2 overexpression affects the glial response to a single intracerebroventricular injection of LPS, which produces a robust neuroinflammatory reaction. Relative to non-transgenic controls (NTg), 7 month-old TgCOX-2 did not show any basal neuroinflammation, as assessed by gene expression of markers of inflammation and oxidative stress, neuronal damage, as assessed by Fluoro-JadeB staining, or systemic inflammation, as assessed by plasma levels of IL-1beta and corticosterone. Twenty-four hours after LPS injection, all mice showed increased microglial activation, as indicated by Iba1 immunostaining, neuronal damage, mRNA expression of cytokines (TNF-alpha, IL-6), reactive oxygen expressing enzymes (iNOS and NADPH oxidase subunits), endogenous COX-2, cPLA(2) and mPGES-1, and hippocampal and cortical IL-1beta levels. However, the increases were similar in TgCOX-2 and NTg. In NTg, LPS increased brain PGE(2) to the levels observed in TgCOX-2. These results suggest that PGs derived from neuronal COX-2 do not play a role in the neuroinflammatory response to acute activation of brain innate immunity. This is likely due to the direct effect of LPS on glial rather than neuronal cells.
Collapse
Affiliation(s)
- Saba Aid
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, NIH, Bethesda, MD 20892
| | - Nishant Parikh
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, NIH, Bethesda, MD 20892
| | - Sara Palumbo
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, NIH, Bethesda, MD 20892
| | - Francesca Bosetti
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, NIH, Bethesda, MD 20892
| |
Collapse
|
178
|
Dargahi L, Nasiraei-Moghadam S, Abdi A, Khalaj L, Moradi F, Ahmadiani A. Cyclooxygenase (COX)-1 activity precedes the COX-2 induction in Aβ-induced neuroinflammation. J Mol Neurosci 2010; 45:10-21. [PMID: 20549385 DOI: 10.1007/s12031-010-9401-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 05/26/2010] [Indexed: 12/31/2022]
Abstract
Two different isoforms of cyclooxygenases, COX-1 and COX-2, are constitutively expressed under normal physiological conditions of the central nervous system, and accumulating data indicate that both isoforms may be involved in different pathological conditions. However, the distinct role of COX-1 and COX-2 and the probable interaction between them in neuroinflammatory conditions associated with Alzheimer's disease are conflicting issues. The aim of this study was to elucidate the comparable role of each COX isoform in neuroinflammatory response induced by β-amyloid peptide (Aβ). Using histological and biochemical methods, 13 days after stereotaxic injection of Aβ into the rat prefrontal cortex, hippocampal neuroinflammation and neuronal injury were confirmed by increased expression of tumor necrosis factor-alpha (TNF-α) and COX-2, elevated levels of prostaglandin E2 (PGE2), astrogliosis, activation of caspase-3, and neuronal cell loss. Selective COX-1 or COX-2 inhibitors, SC560 and NS398, respectively, were chronically used to explore the role of COX-1 and COX-2. Treatment with either COX-1 or COX-2 selective inhibitor or their combination equally decreased the level of TNF-α, PGE2, and cleaved caspase-3 and attenuated astrogliosis and neuronal cell loss. Interestingly, treatment with COX-1 selective inhibitor or the combined COX inhibitors prevented the induction of COX-2. These results indicate that the activity of both isoforms is detrimental in neuroinflammatory conditions associated with Aβ, but COX-1 activity is necessary for COX-2 induction and COX-2 activity seems to be the main source of PGE2 increment.
Collapse
Affiliation(s)
- Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
179
|
Yagami T. Cerebral arachidonate cascade in dementia: Alzheimer's disease and vascular dementia. Curr Neuropharmacol 2010; 4:87-100. [PMID: 18615138 DOI: 10.2174/157015906775203011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 08/17/2005] [Accepted: 09/30/2005] [Indexed: 11/22/2022] Open
Abstract
Phospholipase A(2) (PLA(2)), cyclooxygenase (COX) and prostaglandin (PG) synthase are enzymes involved in arachidonate cascade. PLA(2) liberates arachidonic acid (AA) from cell membrane lipids. COX oxidizes AA to PGG(2) followed by an endoperoxidase reaction that converts PGG(2) into PGH(2). PGs are generated from astrocytes, microglial cells and neurons in the central nervous system, and are altered in the brain of demented patients. Dementia is principally diagnosed into Alzheimer's disease (AD) and vascular dementia (VaD). In older patients, the brain lesions associated with each pathological process often occur together. Regional brain microvascular abnormalities appear before cognitive decline and neurodegeneration. The coexistence of AD and VaD pathology is often termed mixed dementia. AD and VaD brain lesions interact in important ways to decline cognition, suggesting common pathways of the two neurological diseases. Arachidonate cascade is one of the converged intracellular signal transductions between AD and VaD. PLA(2) from mammalian sources are classified as secreted (sPLA(2)), Ca(2+)-dependent, cytosolic (cPLA(2)) and Ca(2+)-independent cytosolic PLA(2) (iPLA(2)). PLA(2) activity can be regulated by calcium, by phosphorylation, and by agonists binding to G-protein-coupled receptors. cPLA(2) is upregulalted in AD, but iPLA(2) is downregulated. On the other hand, sPLA(2) is increased in animal models for VaD. COX-2 is induced and PGD(2) are elevated in both AD and VaD. This review presents evidences for central roles of PLA(2)s, COXs and PGs in the dementia.
Collapse
Affiliation(s)
- Tatsurou Yagami
- Faculty of Health Care Sciences, Himeji Dokkyo University, 2-1, Kami-ohno 7-Chome, Himeji, Hyogo, 670-8524, Japan.
| |
Collapse
|
180
|
Moore AH, Bigbee MJ, Boynton GE, Wakeham CM, Rosenheim HM, Staral CJ, Morrissey JL, Hund AK. Non-Steroidal Anti-Inflammatory Drugs in Alzheimer's Disease and Parkinson's Disease: Reconsidering the Role of Neuroinflammation. Pharmaceuticals (Basel) 2010; 3:1812-1841. [PMID: 27713331 PMCID: PMC4033954 DOI: 10.3390/ph3061812] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/10/2010] [Accepted: 06/02/2010] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases with age as the greatest risk factor. As the general population experiences extended life span, preparation for the prevention and treatment of these and other age-associated neurological diseases are warranted. Since epidemiological studies suggested that non-steroidal anti-inflammatory drug (NSAID) use decreased risk for AD and PD, increasing attention has been devoted to understanding the costs and benefits of the innate neuroinflammatory response to functional recovery following pathology onset. This review will provide a general overview on the role of neuroinflammation in these neurodegenerative diseases and an update on NSAID treatment in recent experimental animal models, epidemiological analyses, and clinical trials.
Collapse
Affiliation(s)
- Amy H Moore
- Department of Biology, Carleton College, one north college street, Northfield, MN 55057, USA.
| | - Matthew J Bigbee
- Department of Biology, Carleton College, one north college street, Northfield, MN 55057, USA
| | - Grace E Boynton
- Department of Biology, Carleton College, one north college street, Northfield, MN 55057, USA
| | - Colin M Wakeham
- Department of Biology, Carleton College, one north college street, Northfield, MN 55057, USA
| | - Hilary M Rosenheim
- Department of Biology, Carleton College, one north college street, Northfield, MN 55057, USA
| | - Christopher J Staral
- Department of Biology, Carleton College, one north college street, Northfield, MN 55057, USA
| | - James L Morrissey
- Department of Biology, Carleton College, one north college street, Northfield, MN 55057, USA
| | - Amanda K Hund
- Department of Biology, Carleton College, one north college street, Northfield, MN 55057, USA
| |
Collapse
|
181
|
Imbimbo BP, Solfrizzi V, Panza F. Are NSAIDs useful to treat Alzheimer's disease or mild cognitive impairment? Front Aging Neurosci 2010; 2. [PMID: 20725517 PMCID: PMC2912027 DOI: 10.3389/fnagi.2010.00019] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 04/23/2010] [Indexed: 11/13/2022] Open
Abstract
Several epidemiological studies suggest that long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) may protect subjects carrying one or more ε4 allele of the apolipoprotein E (APOE ε4) against the onset of Alzheimer's disease (AD). The biological mechanism of this protection is not completely understood and may involve the anti-inflammatory properties of NSAIDs or their ability of interfering with the β-amyloid (Aβ) cascade. Unfortunately, long-term, placebo-controlled clinical trials with both non-selective and cyclooxygenase-2 (COX-2) selective inhibitors in mild-to-moderate AD patients produced negative results. A secondary prevention study with rofecoxib, a COX-2 selective inhibitor, in patients with mild cognitive impairment was also negative. A primary prevention study (ADAPT trial) of naproxen (a non-selective COX inhibitor) and celecoxib (a COX-2 selective inhibitor) in cognitively normal elderly subjects with a family history of AD was prematurely interrupted for safety reasons after a median period of treatment of 2 years. Although both drugs did not reduce the incidence of dementia after 2 years of treatment, a 4-year follow-up assessment surprisingly revealed that subjects previously exposed to naproxen were protected from the onset of AD by 67% compared to placebo. Thus, it could be hypothesized that the chronic use of NSAIDs may be beneficial only in the very early stages of the AD process in coincidence of initial Aβ deposition, microglia activation and consequent release of pro-inflammatory mediators. When the Aβ deposition process is already started, NSAIDs are no longer effective and may even be detrimental because of their inhibitory activity on chronically activated microglia that on long-term may mediate Aβ clearance. The research community should conduct long-term trials with NSAIDs in cognitively normal APOE ε4 carriers.
Collapse
Affiliation(s)
- Bruno P Imbimbo
- Research and Development Department, Chiesi Farmaceutici Parma, Italy
| | | | | |
Collapse
|
182
|
Guerini FR, Tinelli C, Calabrese E, Agliardi C, Zanzottera M, De Silvestri A, Franceschi M, Grimaldi LME, Nemni R, Clerici M. HLA-A*01 is associated with late onset of Alzheimer's disease in Italian patients. Int J Immunopathol Pharmacol 2010; 22:991-9. [PMID: 20074462 DOI: 10.1177/039463200902200414] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
In this study, the distribution of HLA-A alleles was analyzed in Italian Alzheimer's Disease (AD)patients. Interaction between HLA alleles, APOE genotypes, age of onset, and gender were also analyzed. The results were compared to those obtained in healthy controls (HC). One hundred-seventy-three AD patients and 258 age-and-sex-matched healthy controls were enrolled in the study. AD patients were classified according to age at the onset of disease using quartiles of the distribution. HLA-A genotyping was performed by PCR-SSP; APOE genotyping was performed by RFLP. A correlation between late disease onset and HLA-A*01 was observed. Thus, HLA-A*01, calculated as number of alleles, was significantly more present in patients with age of onset > 74.0 years than in HC (20% vs 10.5%; p=0.014); the distribution of this allele was skewed also in patients 68.1-74 years of age (16.3%), even if the difference did not reach statistical significance. The relative risk ratio (RRR) of AD onset calculated by a multinomial logistic regression adjusted for sex and presence of APOE-4 confirmed a significant association of HLA-A*01 with AD onset > 74.0 years of age (RRR=2.2; 95%CI: 1.1-4.6; p=0.033). A high RRR (2.04) was also present in patients 68.1-74 years (p=0.064). Lower age of disease onset did not correlate with HLA-A*01. Data herein suggest that the presence of HLA-A*01 results in delayed AD development, even in patients carrying APOE-4. These results could offer new insights into the etiopathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- F R Guerini
- Laboratory of Molecular Medicine and Biotechnology, Don C. Gnocchi Foundation IRCCS, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Frautschy SA. Thinking outside the box about COX-1 in Alzheimer's disease. Neurobiol Dis 2010; 38:492-4. [PMID: 20206264 DOI: 10.1016/j.nbd.2010.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 01/21/2023] Open
Abstract
This article from Coma et al. shows that a salicylic acid derivative Triflusal, a platelet aggregation inhibitor and irreversible inhibitor of COX-1, can correct defects in axonal curvature and cognition in an AD transgenic mouse model (Tg2576) (Coma et al., 2010). Here we discuss the controversy over the role of COX-1 in AD, which has not been considered carefully in part due to the presumed adverse gastrointestinal effects of COX-1 antagonism. However, recent clinical data from this group as well as other groups challenges this assumption that COX-1 antagonism will be associated with side effects. Most importantly this article raises critical questions about the role of COX-1, versus COX-2 versus both in Abeta pathogenesis. The animal model data in this article as well as the recently published trial data suggest that COX-1 may play an important role in early pathogenesis and should not be ignored as a potential target for early intervention.
Collapse
Affiliation(s)
- Sally A Frautschy
- Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, Veteran's Affairs Medical Center, North Hills, CA 91343, USA.
| |
Collapse
|
184
|
Hein AM, Stasko MR, Matousek SB, Scott-McKean JJ, Maier SF, Olschowka JA, Costa AC, O’Banion MK. Sustained hippocampal IL-1beta overexpression impairs contextual and spatial memory in transgenic mice. Brain Behav Immun 2010; 24:243-53. [PMID: 19825412 PMCID: PMC2818290 DOI: 10.1016/j.bbi.2009.10.002] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/01/2009] [Accepted: 10/02/2009] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammatory conditions such as traumatic brain injury, aging, Alzheimer's disease, and Down syndrome are often associated with cognitive dysfunction. Much research has targeted inflammation as a causative mediator of these deficits, although the diverse cellular and molecular changes that accompany these disorders obscure the link between inflammation and impaired memory. Therefore, we used a transgenic mouse model with a dormant human IL-1beta excisional activation transgene to direct overexpression of IL-1beta with temporal and regional control. Two weeks of hippocampal IL-1beta overexpression impaired long-term contextual and spatial memory in both male and female mice, while hippocampal-independent and short-term memory remained intact. Human IL-1beta overexpression activated glia, elevated murine IL-1beta protein and PGE(2) levels, and increased pro-inflammatory cytokine and chemokine mRNAs specifically within the hippocampus, while having no detectable effect on inflammatory mRNAs in the liver. Sustained neuroinflammation also reduced basal and conditioning-induced levels of the plasticity-related gene Arc.
Collapse
Affiliation(s)
- Amy M. Hein
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA,Department of Psychology & Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Melissa R. Stasko
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, and Neuroscience Training Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah B. Matousek
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Jonah J. Scott-McKean
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, and Neuroscience Training Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Steven F. Maier
- Department of Psychology & Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - John A. Olschowka
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Alberto C.S. Costa
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, and Neuroscience Training Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - M. Kerry O’Banion
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| |
Collapse
|
185
|
Imbimbo BP. An update on the efficacy of non-steroidal anti-inflammatory drugs in Alzheimer's disease. Expert Opin Investig Drugs 2010; 18:1147-68. [PMID: 19589092 DOI: 10.1517/13543780903066780] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several epidemiological studies suggest that long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) may protect against Alzheimer's disease (AD), especially for patients carrying one or more epsilon4 allele of the apolipoprotein E. The biological mechanism of this protection is not completely understood and may involve inhibition of COX activity, inhibition of beta-amyloid(1-42) (Abeta42) production and aggregation, inhibition of beta-secretase activity, activation of PPAR-gamma or stimulation of neurotrophin synthesis. Unfortunately, long-term, placebo-controlled clinical trials with both non-selective and COX-2 selective NSAIDs in AD patients produced negative results. A secondary prevention study with rofecoxib in patients with mild cognitive impairment and a primary prevention study with naproxen and celecoxib in elderly subjects with a family history of AD were also negative. All these failures have diminished the hope that NSAIDs could be beneficial in the treatment of AD. It is hypothesized that the chronic use of NSAIDs may be beneficial only in the normal brain by inhibiting the production of Abeta42. Once the Abeta deposition process has started, NSAIDs are no longer effective and may even be detrimental because of their inhibiting activity on activated microglia of the AD brain, which mediates Abeta clearance and activates compensatory hippocampal neurogenesis.
Collapse
Affiliation(s)
- Bruno P Imbimbo
- Research & Development Department, Chiesi Farmaceutici, Via Palermo 26/A, 43100 Parma, Italy.
| |
Collapse
|
186
|
Cąkała M, B. Strosznajder J. Znaczenie cyklooksygenaz w neurotoksyczności peptydów amyloidu β w chorobie Alzheimera. Neurol Neurochir Pol 2010; 44:65-79. [DOI: 10.1016/s0028-3843(14)60407-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
187
|
Kim J, Lee HJ, Lee KW. Naturally occurring phytochemicals for the prevention of Alzheimer's disease. J Neurochem 2009; 112:1415-30. [PMID: 20050972 DOI: 10.1111/j.1471-4159.2009.06562.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease increasingly recognized as one of the most important medical problems affecting the elderly. Although a number of drugs, including several cholinesterase inhibitors and an NMDA receptor antagonist, have been approved for use, they have been shown to produce diverse side effects and yield relatively modest benefits. To overcome these limitations of current therapeutics for AD, extensive research and development are underway to identify drugs that are effective and free of undesirable side effects. Certain naturally occurring dietary polyphenolic phytochemicals have received considerable recent attention as alternative candidates for AD therapy. In particular, curcumin, resveratrol, and green tea catechins have been suggested to have the potential to prevent AD because of their anti-amyloidogenic, anti-oxidative, and anti-inflammatory properties. These polyphenolic phytochemicals also activate adaptive cellular stress responses, called 'neurohormesis', and suppress disease processes. In this commentary, we describe the amyloid-beta-induced pathogenesis of AD, and summarize the intracellular and molecular targets of selected dietary phytochemicals that might slow the progression of AD.
Collapse
Affiliation(s)
- Jiyoung Kim
- Major in Biomodulation, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
188
|
Rezai-Zadeh K, Gate D, Szekely CA, Town T. Can peripheral leukocytes be used as Alzheimer's disease biomarkers? Expert Rev Neurother 2009; 9:1623-33. [PMID: 19903022 PMCID: PMC2828773 DOI: 10.1586/ern.09.118] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in elderly populations throughout the world and its incidence is on the rise. Current clinical diagnosis of AD requires intensive examination that includes neuropsychological testing and costly brain imaging techniques, and a definitive diagnosis can only be made upon postmortem neuropathological examination. Additionally, antemortem clinical AD diagnosis is typically administered following onset of cognitive and behavioral symptoms. As these symptoms emerge relatively late in disease progression, therapeutic intervention occurs after significant neurodegeneration, thereby limiting efficacy. The identification of noninvasive diagnostic biomarkers of AD is becoming increasingly important to make diagnosis more widely available to clinics with limited access to neuropsychological testing or state-of-the-art brain imaging, reduce the cost of clinical diagnosis, provide a biological measure to track the course of therapeutic intervention, and most importantly, allow for earlier diagnosis--possibly even during the prodromal phase--with hopes of therapeutic intervention prior to appreciable neurodegeneration. Circulating leukocytes are attractive candidate AD biomarkers as they can be obtained in a minimally invasive manner and are easily analyzed by widely available flow cytometry techniques. In this review, we critically analyze the potential utility of peripheral leukocytes as biological markers for AD.
Collapse
Affiliation(s)
- Kavon Rezai-Zadeh
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA, Tel.: +1 310 423 7611, Fax: +1 310 423 0302
| | - David Gate
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Los Angeles, CA 90048, USA, Tel.: +1 310 423 7611, Fax: +1 310 423 0302
| | - Christine A Szekely
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA, Tel.: +1 310 423 6887, Fax: +1 310 423 8300
| | - Terrence Town
- Departments of Neurosurgery and Biomedical Sciences, Cedars-Sinai Medical Center, Department of Medicine, David Geffen School of Medicine at UCLA, 8700 Beverly Blvd, Davis Building, Room 2091, Los Angeles, CA 90048, USA, Tel.: +1 310 423 1202, Fax: +1 310 423 0302
| |
Collapse
|
189
|
Passos GF, Figueiredo CP, Prediger RDS, Pandolfo P, Duarte FS, Medeiros R, Calixto JB. Role of the macrophage inflammatory protein-1alpha/CC chemokine receptor 5 signaling pathway in the neuroinflammatory response and cognitive deficits induced by beta-amyloid peptide. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1586-97. [PMID: 19729478 DOI: 10.2353/ajpath.2009.081113] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The hallmarks of Alzheimer's disease include the deposition of beta-amyloid (Abeta), neuroinflammation, and cognitive deficits. The accumulation of activated glial cells in cognitive-related areas is critical for these alterations, although little is known about the mechanisms driving this event. Herein we used macrophage inflammatory protein-1alpha (MIP-1alpha(-/-))- or CC-chemokine receptor 5 (CCR5(-/-))-deficient mice to address the role played by chemokines in molecular and behavioral alterations induced by Abeta(1-40). Abeta(1-40) induced a time-dependent increase of MIP-1alpha mRNA followed by accumulation of activated glial cells in the hippocampus of wild-type mice. MIP-1alpha(-/-) and CCR5(-/-) mice displayed reduced astrocytosis and microgliosis in the hippocampus after Abeta(1-40) administration that was associated with decreased expression of cyclooxygenase-2 and inducible nitric oxide synthase, as well as reduced activation of nuclear factor-kappaB, activator protein-1 and cyclic AMP response element-binding protein. Furthermore, MIP-1alpha(-/-) and CCR5(-/-) macrophages showed impaired chemotaxis in vitro, although cytokine production in response to Abeta(1-40) was unaffected. Notably, the cognitive deficits and synaptic dysfunction induced by Abeta(1-40) were also attenuated in MIP-1alpha(-/-) and CCR5(-/-) mice. Collectively, these results indicate that the MIP-1alpha/CCR5 signaling pathway is critical for the accumulation of activated glial cells in the hippocampus and, therefore, for the inflammation and cognitive failure induced by Abeta(1-40). Our data suggest MIP-1alpha and CCR5 as potential therapeutic targets for Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Giselle Fazzioni Passos
- Departamento de Farmacologia, Centro de Ciéncias Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | | | | | | | | | | |
Collapse
|
190
|
Donev R, Kolev M, Millet B, Thome J. Neuronal death in Alzheimer's disease and therapeutic opportunities. J Cell Mol Med 2009; 13:4329-48. [PMID: 19725918 PMCID: PMC4515050 DOI: 10.1111/j.1582-4934.2009.00889.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disease that affects approximately 24 million people worldwide. A number of different risk factors have been implicated in AD; however, neuritic (amyloid) plaques are considered as one of the defining risk factors and pathological hallmarks of the disease. In the past decade, enormous efforts have been devoted to understand the genetics and molecular pathogenesis leading to neuronal death in AD, which has been transferred into extensive experimental approaches aimed at reversing disease progression. Modern medicine is facing an increasing number of treatments available for vascular and neurodegenerative brain diseases, but no causal or neuroprotective treatment has yet been established. Almost all neurological conditions are characterized by progressive neuronal dysfunction, which, regardless of the pathogenetic mechanism, finally leads to neuronal death. The particular emphasis of this review is on risk factors and mechanisms resulting in neuronal loss in AD and current and prospective opportunities for therapeutic interventions. This review discusses these issues with a view to inspiring the development of new agents that could be useful for the treatment of AD.
Collapse
Affiliation(s)
- Rossen Donev
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | | | | | | |
Collapse
|
191
|
Beeri MS, Ravona-Springer R, Silverman JM, Haroutunian V. The effects of cardiovascular risk factors on cognitive compromise. DIALOGUES IN CLINICAL NEUROSCIENCE 2009. [PMID: 19585955 PMCID: PMC3093131 DOI: 10.31887/dcns.2009.11.2/msbeeri] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
As life expectancy in the United States continues to increase, the projected numbers of elderly people who will develop dementia will grow rapidly. This paper reviews four well-established cardiovascular risk factors (type 2 diabetes, hypertension, cholesterol, and inflammation), for which there is longitudinal epidemiological evidence of increased risk of dementia, Alzheimer's disease, mild cognitive impairment, and cognitive decline. These risk factors are of special interest because of their potential modif lability, which may affect the course of cognitive compromise. Diabetes is the cardiovascular risk factor (CvRF) most consistently associated with cognition. Hypertension in midlife is consistently associated with cognition, but its associations with late-life hypertension are less clear. Total cholesterol is not consistently associated with cognition, interleukin-6 and C-reactive protein are inflammatory markers relatively consistently associated with cognition. Composites of the CvRFs increase the risk for dementia in a dose-dependent fashion, suggesting a cumulative effect of these factors on neuronal stress. In the relatively few studies that have reported interactions of risk factors, they potentiate each other. The effect of each of these risk factors varies according to apolipoprotein E genotype, it may be that the effect of these risk factors varies according to the presence of the others, and these complex relationships underlie the biological mechanisms of cognitive compromise. This may be crucial for understanding the effects on cognition of druqs and other approaches, such as lifestyle chanqe, for treatinq these risk factors.
Collapse
|
192
|
Hein AM, O'Banion MK. Neuroinflammation and memory: the role of prostaglandins. Mol Neurobiol 2009; 40:15-32. [PMID: 19365736 PMCID: PMC3124778 DOI: 10.1007/s12035-009-8066-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 03/26/2009] [Indexed: 12/17/2022]
Abstract
Neuroinflammation is a complex response to brain injury involving the activation of glia, release of inflammatory mediators within the brain, and recruitment of peripheral immune cells. Interestingly, memory deficits have been observed following many inflammatory states including infection, traumatic brain injury (TBI), normal aging, and Alzheimer's disease (AD). Prostaglandins (PGs), a class of lipid mediators which can have inflammatory actions, are upregulated by these inflammatory challenges and can impair memory. In this paper, we critically review the success of nonsteroidal anti-inflammatory drugs, which prevent the formation of PGs, in preventing neuroinflammation-induced memory deficits following lipopolysaccharide injection, TBI, aging, and experimental models of AD in rodents and propose a mechanism by which PGs could disrupt memory formation.
Collapse
Affiliation(s)
- Amy M Hein
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | | |
Collapse
|
193
|
Santos F, Teixeira L, Lúcio M, Ferreira H, Gaspar D, Lima JLFC, Reis S. Interactions of sulindac and its metabolites with phospholipid membranes: An explanation for the peroxidation protective effect of the bioactive metabolite. Free Radic Res 2009; 42:639-50. [DOI: 10.1080/10715760802270326] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
194
|
Breitner JCS, Haneuse SJPA, Walker R, Dublin S, Crane PK, Gray SL, Larson EB. Risk of dementia and AD with prior exposure to NSAIDs in an elderly community-based cohort. Neurology 2009; 72:1899-905. [PMID: 19386997 PMCID: PMC2690966 DOI: 10.1212/wnl.0b013e3181a18691] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs (NSAIDs) may prevent Alzheimer dementia (AD). METHODS We analyzed the association of prior NSAID exposure with incident dementia and AD in the Adult Changes in Thought population-based cohort aged > or = 65 years (median 74.8) at enrollment. Participants were members of Group Health, which provided computerized pharmacy dispensing records from 1977 onward. We studied 2,736 dementia-free enrollees with extensive prior pharmacy data, following them biennially for up to 12 years to identify dementia and AD. Cox proportional hazards regression assessed association of dementia or AD with NSAID use graded in standard daily doses (SDD) dispensed over 2 years (e.g., heavy use = 500 + SDD), with some analyses also adding consecutive biennial self-reports of NSAID use. RESULTS Pharmacy records identified 351 participants (12.8%) with history of heavy NSAID use at enrollment. Another 107 became heavy users during follow-up. Some 476 individuals developed incident dementia, 356 with AD (median onset ages 83.5 and 83.8 years). Contrary to the hypothesis that NSAIDs protect against AD, pharmacy-defined heavy NSAID users showed increased incidence of dementia and AD, with adjusted hazard ratios of 1.66 (95% confidence interval, 1.24-2.24) and 1.57 (95% confidence interval, 1.10-2.23). Addition of self-reported exposure data did not alter these results. CONCLUSIONS These findings differ from those of other studies with younger cohorts. The results observed elsewhere may reflect delayed onset of Alzheimer dementia (AD) in nonsteroidal anti-inflammatory drug (NSAID) users. Conceivably, such delay could result in increased AD incidence in late old age. The relation of NSAID use and AD pathogenesis needs further investigation.
Collapse
Affiliation(s)
- J C S Breitner
- Geriatric Research Education and Clinical Center, Department of Veterans Affairs Medical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA.
| | | | | | | | | | | | | |
Collapse
|
195
|
Sabbagh MN. Drug development for Alzheimer's disease: where are we now and where are we headed? THE AMERICAN JOURNAL OF GERIATRIC PHARMACOTHERAPY 2009; 7:167-85. [PMID: 19616185 PMCID: PMC2948028 DOI: 10.1016/j.amjopharm.2009.06.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 06/10/2009] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The aim of this article was to provide a survey of the clinical development of pharmacotherapy for Alzheimer's disease (AD). METHODS A search of PubMed to identify pertinent English-language literature was conducted using the terms Alzheimer's disease AND clinical trials (2003-2008), dementia AND prevention AND clinical trials (2003-2008), and the chemical names of all compounds mentioned in articles on new drugs for AD published since 2005. www.ClinicalTrials.gov was searched for relevant trials. Abstracts of the 2008 International Conference on Alzheimer's Disease (ICAD) were reviewed for relevance, as were pharmaceutical company and AD advocacy Web sites. Articles selected for review were primary reports of data from preclinical studies and clinical trials. RESULTS A large number of drugs with differing targets and mechanisms of action are under development for the treatment of AD. Phase III trials of Ginkgo biloba, NSAIDs, phenserine, statins, tarenflurbil, tramiprosate, and xaliproden have been completed, none of them demonstrating adequate efficacy. Encouraging results from completed Phase II trials of dimebon, huperzine A, intravenous immunoglobulin, and methylthioninium chloride were reported at ICAD 2008. Nineteen compounds are currently in Phase II trials, and 3 compounds (AN1792, lecozotan SR, and SGS742) failed at this stage of development. CONCLUSIONS Despite disappointing results from recently completed Phase III trials of several novel compounds, the extent and breadth of activity at all phases of clinical development suggest that new pharmacotherapeutic options for the treatment of AD will become available within the next decade.
Collapse
Affiliation(s)
- Marwan N Sabbagh
- The Cleo Roberts Center for Clinical Research, Banner-Sun Health Research Institute, Sun City, AZ 85351, USA.
| |
Collapse
|
196
|
A role for cyclooxygenase-1 in beta-amyloid-induced neuroinflammation. Aging (Albany NY) 2009; 1:350-3. [PMID: 20157521 PMCID: PMC2806016 DOI: 10.18632/aging.100039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 04/13/2009] [Indexed: 12/02/2022]
|
197
|
Pasqualetti P, Bonomini C, Dal Forno G, Paulon L, Sinforiani E, Marra C, Zanetti O, Maria Rossini P. A randomized controlled study on effects of ibuprofen on cognitive progression of Alzheimer's disease. Aging Clin Exp Res 2009; 21:102-10. [PMID: 19448381 DOI: 10.1007/bf03325217] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND AIMS Epidemiological studies have examined the association between the use of non-steroidal anti-inflammatory drugs (NSAIDs) and the risk of Alzheimer's disease (AD). Recently, a variety of experimental studies indicates that a subset of NSAIDs, such as ibuprofen or flurbiprofen, also have Abeta-lowering properties in both AD transgenic mice and cell cultures of peripheral, glial and neuronal origin. In this trial, we evaluated whether the non-selective NSAID ibuprofen slows disease progression in patients with mild to moderate AD. METHODS This was a 12-month multicenter, randomized, double-blind, placebo-controlled, parallel group trial. Participants with mild-moderate AD (Mini-Mental State Examination score >15, <26; Clinical Dementia Rating= 0.5-1), 65 years or older, with reliable caregivers, were recruited between April 2003 and September 2004. Seven AD Outpatient Treatment Centers screened 530 patients, 132 of whom were enrolled. Intervention consisted of 400 mg ibuprofen twice a day or placebo, together with 20 mg once a day of esomeprazol, or placebo. The primary measure was any one-year change in the Alzheimer Disease Assessment Scale- Cognitive (ADAS-Cog) subscale score. Secondary measures included changes in MMSE, CDR, Basic and Instrumental Activities of Daily Living scales, and Neuropsychiatric Inventory (NPI). RESULTS Fifty-one patients (77%) in the ibuprofen vs 46 (70%) in the placebo group completed the protocol (p>0.20). In intention-to- treat analysis, ADAS-Cog score worsening was similar in the two groups (p=0.951, treatment difference= 0.1, CI -2.7; 2.9). No differences were found for any secondary outcomes. In a subsample of genotyped patients, ApoE epsilon4 carriers treated with ibuprofen (n=27) were the only group without significant cognitive decline. CONCLUSIONS Ibuprofen, if used for relatively short periods of time and although well tolerated thanks to gastroprotection, does not seem to be effective in tertiary prevention of mild-moderate AD. Our results suggest the need to examine whether differences in the response to NSAIDs exist, based on ApoE epsilon4 carrier status.
Collapse
|
198
|
Choi SH, Aid S, Bosetti F. The distinct roles of cyclooxygenase-1 and -2 in neuroinflammation: implications for translational research. Trends Pharmacol Sci 2009; 30:174-81. [PMID: 19269697 PMCID: PMC3379810 DOI: 10.1016/j.tips.2009.01.002] [Citation(s) in RCA: 294] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/18/2009] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
Abstract
Cyclooxygenases (COX-1 and COX-2) are key enzymes in the conversion of arachidonic acid to prostaglandins and other lipid mediators. Because it can be induced by inflammatory stimuli, COX-2 has been classically considered as the most appropriate target for anti-inflammatory drugs. However, recent data indicate that COX-2 can mediate neuroprotection and that COX-1 is a major player in the neuroinflammatory process. We discuss the specific contributions of COX-1 and COX-2 in various neurodegenerative diseases and in models of neuroinflammation. We suggest that, owing to its predominant localization in microglia, COX-1 might be the major player in neuroinflammation, whereas COX-2, which is localized in neurons, might have a major role in models in which the neurons are directly challenged. Overall, the benefit of using COX-2 inhibitors should be carefully evaluated and COX-1 preferential inhibitors should be further investigated as a potential therapeutic approach in neurodegenerative diseases with an inflammatory component.
Collapse
Affiliation(s)
- Sang-Ho Choi
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
199
|
Babiloni C, Frisoni GB, Del Percio C, Zanetti O, Bonomini C, Cassetta E, Pasqualetti P, Miniussi C, De Rosas M, Valenzano A, Cibelli G, Eusebi F, Rossini PM. Ibuprofen treatment modifies cortical sources of EEG rhythms in mild Alzheimer's disease. Clin Neurophysiol 2009; 120:709-18. [PMID: 19324592 DOI: 10.1016/j.clinph.2009.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 01/12/2009] [Accepted: 02/03/2009] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Non-steroidal anti-inflammatory drugs such as ibuprofen have a protective role on risk of Alzheimer's disease (AD). Here we evaluated the hypothesis that long-term ibuprofen treatment affects cortical sources of resting electroencephalographic (EEG) rhythms in mild AD patients. METHODS Twenty-three AD patients (13 treated AD IBUPROFEN; 10 untreated AD PLACEBO) were enrolled. Resting EEG data were recorded before and 1 year after the ibuprofen/placebo treatment. EEG rhythms were delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), and beta 2 (20-30 Hz). LORETA was used for EEG source analysis. RESULTS In the AD PLACEBO group, amplitude of delta sources was globally greater at follow-up than baseline. Instead, amplitude of delta sources remained stable or decreased in the majority of the AD IBUPROFEN patients. Clinical (CDR) but not global cognitive status (MMSE) reflected EEG results. CONCLUSIONS These results suggest that in mild AD patients, a long-term ibuprofen treatment slightly slows down the progressive increment of delta rhythms as a sign of contrast against the neurodegenerative processes. SIGNIFICANCE They motivate future investigations with larger population and extended neuropsychological testing, to study the relationships among ibuprofen treatment, delta cortical sources, and higher order functions.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Biomedical Sciences, University of Foggia, Viale Pinto 7, Foggia I-71100, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Abstract
Oxidative stress, resulting from mitochondrial dysfunction, excitotoxicity, or neuroinflammation, is implicated in numerous neurodegenerative conditions. Damage due to superoxide, hydroxyl radical, and peroxynitrite has been observed in diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as in acute conditions that lead to neuronal death, such as stroke and epilepsy. Antioxidant therapies to remove these toxic compounds have been of great interest in treating these disorders. Catalytic antioxidants mimic the activities of superoxide dismutase or catalase or both, detoxifying superoxide and hydrogen peroxide, and in some cases, peroxynitrite and other toxic species as well. Several compounds have demonstrated efficacy in in vitro and in animal models of neurodegeneration, leading to optimism that catalytic antioxidants may prove to be useful therapies in human disease.
Collapse
Affiliation(s)
- Tamara R Golden
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | |
Collapse
|