151
|
Requirement for Dlgh-1 in planar cell polarity and skeletogenesis during vertebrate development. PLoS One 2013; 8:e54410. [PMID: 23349879 PMCID: PMC3551758 DOI: 10.1371/journal.pone.0054410] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 12/13/2012] [Indexed: 01/20/2023] Open
Abstract
The development of specialized organs is tightly linked to the regulation of cell growth, orientation, migration and adhesion during embryogenesis. In addition, the directed movements of cells and their orientation within the plane of a tissue, termed planar cell polarity (PCP), appear to be crucial for the proper formation of the body plan. In Drosophila embryogenesis, Discs large (dlg) plays a critical role in apical-basal cell polarity, cell adhesion and cell proliferation. Craniofacial defects in mice carrying an insertional mutation in Dlgh-1 suggest that Dlgh-1 is required for vertebrate development. To determine what roles Dlgh-1 plays in vertebrate development, we generated mice carrying a null mutation in Dlgh-1. We found that deletion of Dlgh-1 caused open eyelids, open neural tube, and misorientation of cochlear hair cell stereociliary bundles, indicative of defects in planar cell polarity (PCP). Deletion of Dlgh-1 also caused skeletal defects throughout the embryo. These findings identify novel roles for Dlgh-1 in vertebrates that differ from its well-characterized roles in invertebrates and suggest that the Dlgh-1 null mouse may be a useful animal model to study certain human congenital birth defects.
Collapse
|
152
|
Di Zazzo E, De Rosa C, Abbondanza C, Moncharmont B. PRDM Proteins: Molecular Mechanisms in Signal Transduction and Transcriptional Regulation. BIOLOGY 2013; 2:107-41. [PMID: 24832654 PMCID: PMC4009873 DOI: 10.3390/biology2010107] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/27/2012] [Accepted: 01/05/2013] [Indexed: 01/03/2023]
Abstract
PRDM (PRDI-BF1 and RIZ homology domain containing) protein family members are characterized by the presence of a PR domain and a variable number of Zn-finger repeats. Experimental evidence has shown that the PRDM proteins play an important role in gene expression regulation, modifying the chromatin structure either directly, through the intrinsic methyltransferase activity, or indirectly through the recruitment of chromatin remodeling complexes. PRDM proteins have a dual action: they mediate the effect induced by different cell signals like steroid hormones and control the expression of growth factors. PRDM proteins therefore have a pivotal role in the transduction of signals that control cell proliferation and differentiation and consequently neoplastic transformation. In this review, we describe pathways in which PRDM proteins are involved and the molecular mechanism of their transcriptional regulation.
Collapse
Affiliation(s)
- Erika Di Zazzo
- Department of Medicine and health sciences, University of Molise, via De Sanctis snc, Campobasso 86100, Italy.
| | - Caterina De Rosa
- Department of Biochemistry, Biophysics and general Pathology, Second University of Naples, via L. De Crecchio 7, Napoli 80138, Italy.
| | - Ciro Abbondanza
- Department of Biochemistry, Biophysics and general Pathology, Second University of Naples, via L. De Crecchio 7, Napoli 80138, Italy.
| | - Bruno Moncharmont
- Department of Medicine and health sciences, University of Molise, via De Sanctis snc, Campobasso 86100, Italy.
| |
Collapse
|
153
|
Baek WY, Kim YJ, de Crombrugghe B, Kim JE. Osterix is required for cranial neural crest-derived craniofacial bone formation. Biochem Biophys Res Commun 2013; 432:188-92. [PMID: 23313488 DOI: 10.1016/j.bbrc.2012.12.138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 12/31/2012] [Indexed: 10/27/2022]
Abstract
Osx plays essential roles in regulating osteoblast and chondrocyte differentiation, and bone formation during mouse skeletal development. However, many questions remain regarding the requirement for Osx in different cell lineages. In this study, we asked whether Osx is required for craniofacial bone formation derived from cranial neural crest (CNC) cells. The Osx gene was conditionally inactivated in CNC-derived cells using a Wnt1-Cre recombination system. Neural crest-specific inactivation of Osx resulted in the complete absence of intramembranous skeletal elements derived from the CNC, and CNC-derived endochondral skeletal elements were also affected by Osx inactivation. Interestingly, Osx inactivated CNC-derived cells, which were recapitulated by lacZ expression, occupied the same regions of craniofacial skeletal elements as observed for controls. However, cells lost their osteogenic ability to differentiate into functional osteoblasts by Osx inactivation. These results suggest that Osx is important for craniofacial bone formation by CNC-derived cells. This finding provides novel insights of the regulation of craniofacial development by the gene network and transcription factors, and the understanding of human diseases caused by neural crest developmental abnormalities.
Collapse
Affiliation(s)
- Wook-Young Baek
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Medical Education Program for Human Resources, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | | | | | | |
Collapse
|
154
|
Smith TM, Lozanoff S, Iyyanar PP, Nazarali AJ. Molecular signaling along the anterior-posterior axis of early palate development. Front Physiol 2013; 3:488. [PMID: 23316168 PMCID: PMC3539680 DOI: 10.3389/fphys.2012.00488] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 12/14/2012] [Indexed: 01/11/2023] Open
Abstract
Cleft palate is a common congenital birth defect in humans. In mammals, the palatal tissue can be distinguished into anterior bony hard palate and posterior muscular soft palate that have specialized functions in occlusion, speech or swallowing. Regulation of palate development appears to be the result of distinct signaling and genetic networks in the anterior and posterior regions of the palate. Development and maintenance of expression of these region-specific genes is crucial for normal palate development. Numerous transcription factors and signaling pathways are now recognized as either anterior- (e.g., Msx1, Bmp4, Bmp2, Shh, Spry2, Fgf10, Fgf7, and Shox2) or posterior-specific (e.g., Meox2, Tbx22, and Barx1). Localized expression and function clearly highlight the importance of regional patterning and differentiation within the palate at the molecular level. Here, we review how these molecular pathways and networks regulate the anterior-posterior patterning and development of secondary palate. We hypothesize that the anterior palate acts as a signaling center in setting up development of the secondary palate.
Collapse
Affiliation(s)
- Tara M Smith
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan Saskatoon, SK, Canada
| | | | | | | |
Collapse
|
155
|
Zhu X, Ozturk F, Liu C, Oakley GG, Nawshad A. Transforming growth factor-β activates c-Myc to promote palatal growth. J Cell Biochem 2013; 113:3069-85. [PMID: 22573578 DOI: 10.1002/jcb.24184] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During palatogenesis, the palatal mesenchyme undergoes increased cell proliferation resulting in palatal growth, elevation and fusion of the two palatal shelves. Interestingly, the palatal mesenchyme expresses all three transforming growth factor (TGF) β isoforms (1, 2, and 3) throughout these steps of palatogenesis. However, the role of TGFβ in promoting proliferation of palatal mesenchymal cells has never been explored. The purpose of this study was to identify the effect of TGFβ on human embryonic palatal mesenchymal (HEPM) cell proliferation. Our results showed that all isoforms of TGFβ, especially TGFβ3, increased HEPM cell proliferation by up-regulating the expression of cyclins and cyclin-dependent kinases as well as c-Myc oncogene. TGFβ activated both Smad-dependent and Smad-independent pathways to induce c-Myc gene expression. Furthermore, TBE1 is the only functional Smad binding element (SBE) in the c-Myc promoter and Smad4, activated by TGFβ, binds to the TBE1 to induce c-Myc gene activity. We conclude that HEPM proliferation is manifested by the induction of c-Myc in response to TGFβ signaling, which is essential for complete palatal confluency. Our data highlights the potential role of TGFβ as a therapeutic molecule to correct cleft palate by promoting growth.
Collapse
Affiliation(s)
- Xiujuan Zhu
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68512, USA
| | | | | | | | | |
Collapse
|
156
|
Garzón-Alvarado DA. A hypothesis on the formation of the primary ossification centers in the membranous neurocranium: A mathematical and computational model. J Theor Biol 2013; 317:366-76. [DOI: 10.1016/j.jtbi.2012.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Diego A Garzón-Alvarado
- Research Group on Numerical Methods for Engineering (GNUM), Departament of Mechanical and Mechatronical Engineering, Universidad Nacional de Colombia, Colombia.
| |
Collapse
|
157
|
Otsuka-Tanaka Y, Oommen S, Kawasaki M, Kawasaki K, Imam N, Jalani-Ghazani F, Hindges R, Sharpe PT, Ohazama A. Oral lining mucosa development depends on mesenchymal microRNAs. J Dent Res 2012; 92:229-34. [PMID: 23242232 DOI: 10.1177/0022034512470830] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The oral mucosa plays critical roles in protection, sensation, and secretion and can be classified into masticatory, lining, and specialized mucosa that are known to be functionally, histologically, and clinically distinct. Each type of oral mucosa is believed to develop through discrete molecular mechanisms, which remain unclear. MicroRNAs (miRNAs) are 19 to 25nt non-coding small single-stranded RNAs that negatively regulate gene expression by binding target mRNAs. miRNAs are crucial for fine-tuning of molecular mechanisms. To investigate the role of miRNAs in oral mucosa development, we examined mice with mesenchymal (Wnt1Cre;Dicer(fl/fl)) conditional deletion of Dicer. Wnt1Cre;Dicer(fl/fl) mice showed trans-differentiation of lining mucosa into an epithelium with masticatory mucosa/ skin-specific characteristics. Up-regulation of Fgf signaling was found in mutant lining mucosal epithelium that was accompanied by an increase in Fgf7 expression in mutant mesenchyme. Mesenchyme miRNAs thus have an indirect effect on lining mucosal epithelial cell growth/differentiation.
Collapse
Affiliation(s)
- Y Otsuka-Tanaka
- Craniofacial Development and Stem Cell Biology, and Biomedical Research Centre, Dental Institute, King's College London, Guy's Hospital, London Bridge, London SE1 9RT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Tokita M, Nakayama T, Schneider RA, Agata K. Molecular and cellular changes associated with the evolution of novel jaw muscles in parrots. Proc Biol Sci 2012; 280:20122319. [PMID: 23235703 DOI: 10.1098/rspb.2012.2319] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vertebrates have achieved great evolutionary success due in large part to the anatomical diversification of their jaw complex, which allows them to inhabit almost every ecological niche. While many studies have focused on mechanisms that pattern the jaw skeleton, much remains to be understood about the origins of novelty and diversity in the closely associated musculature. To address this issue, we focused on parrots, which have acquired two anatomically unique jaw muscles: the ethmomandibular and the pseudomasseter. In parrot embryos, we observe distinct and highly derived expression patterns for Scx, Bmp4, Tgfβ2 and Six2 in neural crest-derived mesenchyme destined to form jaw muscle connective tissues. Furthermore, immunohistochemical analysis reveals that cell proliferation is more active in the cells within the jaw muscle than in surrounding connective tissue cells. This biased and differentially regulated mode of cell proliferation in cranial musculoskeletal tissues may allow these unusual jaw muscles to extend towards their new attachment sites. We conclude that the alteration of neural crest-derived connective tissue distribution during development may underlie the spatial changes in jaw musculoskeletal architecture found only in parrots. Thus, parrots provide valuable insights into molecular and cellular mechanisms that may generate evolutionary novelties with functionally adaptive significance.
Collapse
Affiliation(s)
- Masayoshi Tokita
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tenno-dai 1-1-1, Ibaraki, Tsukuba 305-8572, Japan.
| | | | | | | |
Collapse
|
159
|
Lambi AG, Pankratz TL, Mundy C, Gannon M, Barbe MF, Richtsmeier JT, Popoff SN. The skeletal site-specific role of connective tissue growth factor in prenatal osteogenesis. Dev Dyn 2012; 241:1944-59. [PMID: 23073844 PMCID: PMC3752831 DOI: 10.1002/dvdy.23888] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2012] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Connective tissue growth factor (CTGF/CCN2) is a matricellular protein that is highly expressed during bone development. Mice with global CTGF ablation (knockout, KO) have multiple skeletal dysmorphisms and perinatal lethality. A quantitative analysis of the bone phenotype has not been conducted. RESULTS We demonstrated skeletal site-specific changes in growth plate organization, bone microarchitecture, and shape and gene expression levels in CTGF KO compared with wild-type mice. Growth plate malformations included reduced proliferation zone and increased hypertrophic zone lengths. Appendicular skeletal sites demonstrated decreased metaphyseal trabecular bone, while having increased mid-diaphyseal bone and osteogenic expression markers. Axial skeletal analysis showed decreased bone in caudal vertebral bodies, mandibles, and parietal bones in CTGF KO mice, with decreased expression of osteogenic markers. Analysis of skull phenotypes demonstrated global and regional differences in CTGF KO skull shape resulting from allometric (size-based) and nonallometric shape changes. Localized differences in skull morphology included increased skull width and decreased skull length. Dysregulation of the transforming growth factor-β-CTGF axis coupled with unique morphologic traits provides a potential mechanistic explanation for the skull phenotype. CONCLUSIONS We present novel data on a skeletal phenotype in CTGF KO mice, in which ablation of CTGF causes site-specific aberrations in bone formation.
Collapse
Affiliation(s)
- Alex G. Lambi
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Talia L. Pankratz
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Christina Mundy
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Division of Diabetes, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mary F. Barbe
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Joan T. Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Steven N. Popoff
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
- Department of Orthopaedic Surgery, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
160
|
Dougherty M, Kamel G, Grimaldi M, Gfrerer L, Shubinets V, Ethier R, Hickey G, Cornell RA, Liao EC. Distinct requirements for wnt9a and irf6 in extension and integration mechanisms during zebrafish palate morphogenesis. Development 2012; 140:76-81. [PMID: 23154410 DOI: 10.1242/dev.080473] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Development of the palate in vertebrates involves cranial neural crest migration, convergence of facial prominences and extension of the cartilaginous framework. Dysregulation of palatogenesis results in orofacial clefts, which represent the most common structural birth defects. Detailed analysis of zebrafish palatogenesis revealed distinct mechanisms of palatal morphogenesis: extension, proliferation and integration. We show that wnt9a is required for palatal extension, wherein the chondrocytes form a proliferative front, undergo morphological change and intercalate to form the ethmoid plate. Meanwhile, irf6 is required specifically for integration of facial prominences along a V-shaped seam. This work presents a mechanistic analysis of palate morphogenesis in a clinically relevant context.
Collapse
Affiliation(s)
- Max Dougherty
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Wang W, Olson D, Liang G, Franceschi RT, Li C, Wang B, Wang SS, Yang S. Collagen XXIV (Col24α1) promotes osteoblastic differentiation and mineralization through TGF-β/Smads signaling pathway. Int J Biol Sci 2012; 8:1310-22. [PMID: 23139630 PMCID: PMC3492790 DOI: 10.7150/ijbs.5136] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/01/2012] [Indexed: 12/19/2022] Open
Abstract
Collagen XXIV (Col24α1) is a recently discovered fibrillar collagen. It is known that mouse Col24α1 is predominantly expressed in the forming skeleton of the mouse embryo, as well as in the trabecular bone and periosteum of the newborn mouse. However, the role and mechanism of Col24α1 in osteoblast differentiation and mineralization remains unclear. By analyzing the expression pattern of Col24α1, we confirmed that it is primarily expressed in bone tissues, and this expression gradually increased concomitant with the progression of osteoblast differentiation. Through the use of a lentivirus vector-mediated interference system, silencing Col24α1 expression in MC3T3-E1 murine preosteoblastic cells resulted in significant inhibition of alkaline phosphatase (ALP) activity, cell mineralization, and the expression of osteoblast marker genes such as runt-related transcription factor 2 (Runx2), osteocalcin (OCN), ALP, and type I collagen (Col I). Subsequent overexpression not only rescued the deficiency in osteoblast differentiation from Col24α1 silenced cells, but also enhanced osteoblastic differentiation in control cells. We further revealed that Col24α1 interacts with integrin β3, and silencing Col24α1 up-regulated the expression of Smad7 during osteoblast differentiation while at the same time inhibiting the phosphorylation of the Smad2/3 complex. These results suggest that Col24α1 imparts some of its regulatory control on osteoblast differentiation and mineralization at least partially through interaction with integrin β3 and the transforming growth factor beta (TGF-β) /Smads signaling pathway.
Collapse
Affiliation(s)
- Weizhuo Wang
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, State University of New York, Buffalo, NY 14214, USA
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Jayasena CS, Bronner ME. Rbms3 functions in craniofacial development by posttranscriptionally modulating TGF-β signaling. ACTA ACUST UNITED AC 2012; 199:453-66. [PMID: 23091072 PMCID: PMC3483135 DOI: 10.1083/jcb.201204138] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rbms3 regulates TGF-βr signaling, a critical pathway for chondrogenesis, by binding and stabilizing Smad2 transcripts. Cranial neural crest cells form much of the facial skeleton, and abnormalities in their development lead to severe birth defects. In a novel zebrafish protein trap screen, we identified an RNA-binding protein, Rbms3, that is transiently expressed in the cytoplasm of condensing neural crest cells within the pharyngeal arches. Morphants for rbms3 displayed reduced proliferation of prechondrogenic crest and significantly altered expression for chondrogenic/osteogenic lineage markers. This phenotype strongly resembles cartilage/crest defects observed in Tgf-βr2:Wnt1-Cre mutants, which suggests a possible link with TGF-β signaling. Consistent with this are the findings that: (a) Rbms3 stabilized a reporter transcript with smad2 3′ untranslated region, (b) RNA immunoprecipitation with full-length Rbms3 showed enrichment for smad2/3, and (c) pSmad2 levels were reduced in rbms3 morphants. Overall, these results suggest that Rbms3 posttranscriptionally regulates one of the major pathways that promotes chondrogenesis, the transforming growth factor β receptor (TGF-βr) pathway.
Collapse
|
163
|
Site-specific expression of gelatinolytic activity during morphogenesis of the secondary palate in the mouse embryo. PLoS One 2012; 7:e47762. [PMID: 23091646 PMCID: PMC3472992 DOI: 10.1371/journal.pone.0047762] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/20/2012] [Indexed: 12/18/2022] Open
Abstract
Morphogenesis of the secondary palate in mammalian embryos involves two major events: first, reorientation of the two vertically oriented palatal shelves into a horizontal position above the tongue, and second, fusion of the two shelves at the midline. Genetic evidence in humans and mice indicates the involvement of matrix metalloproteinases (MMPs). As MMP expression patterns might differ from sites of activity, we used a recently developed highly sensitive in situ zymography technique to map gelatinolytic MMP activity in the developing mouse palate. At embryonic day 14.5 (E14.5), we detected strong gelatinolytic activity around the lateral epithelial folds of the nasopharyngeal cavity, which is generated as a consequence of palatal shelf elevation. Activity was concentrated in the basement membrane of the epithelial fold but extended into the adjacent mesenchyme, and increased in intensity with lateral outgrowth of the cavity at E15.5. Gelatinolytic activity at this site was not the consequence of epithelial fold formation, as it was also observed in Bmp7-deficient embryos where shelf elevation is delayed. In this case, gelatinolytic activity appeared in vertical shelves at the exact position where the epithelial fold will form during elevation. Mmp2 and Mmp14 (MT1-MMP), but not Mmp9 and Mmp13, mRNAs were expressed in the mesenchyme around the epithelial folds of the elevated palatal shelves; this was confirmed by immunostaining for MMP-2 and MT1-MMP. Weak gelatinolytic activity was also found at the midline of E14.5 palatal shelves, which increased during fusion at E15.5. Whereas MMPs have been implicated in palatal fusion before, this is the first report showing that gelatinases might contribute to tissue remodeling during early stages of palatal shelf elevation and formation of the nasopharynx.
Collapse
|
164
|
Li L, Shi JY, Zhu GQ, Shi B. MiR-17-92 cluster regulates cell proliferation and collagen synthesis by targeting TGFB pathway in mouse palatal mesenchymal cells. J Cell Biochem 2012; 113:1235-44. [PMID: 22095742 DOI: 10.1002/jcb.23457] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Elongation and elevation of palatal shelves, mainly caused by proliferation and extra-cellular matrix synthesis of palatal mesenchymal cells (PMCs), are essential for normal palatal development. Transforming growth factor beta (TGFB) pathway could induce proliferation inhibition and collagen synthesis in PMCs. Recent studies found that miRNA-17-92 (miR-17-92) cluster, including miR-17, miR-18a, miR-19a, miR-20a, miR-19b, and miR-92a, expressed in the 1st bronchial arch of mouse embryos during the period of palatal shelf elongation and elevation, and directly targeted TGFB pathway in cancer cell lines. Whether miR-17-92 cluster expresses and targets TGFB pathway in PMCs has not yet been studied. Using quantitative real-time RT-PCR, we found that miR-17-92 expressed in PMCs and decreased from embryonic day (E) 12 to E14 in palatal shelves. MTT assay and Western blot showed that miR-17-92 inhibited TGFB1 induced proliferation inhibition and collagen synthesis in PMCs by decreasing TGFBR2, SMAD2, and SMAD4 protein level. Further luciferase assay showed that miR-17 and miR-20a directly targeted 3′UTR of TGFBR2, and that miR-18a directly targeted 3′UTR of SMAD2 and SMAD4. We thus conclude that miR-17-92 cluster could inhibit TGFB pathway induced proliferation inhibition and collagen synthesis in PMCs by directly targeting TGFBR2, SMAD2, and SMAD4.
Collapse
Affiliation(s)
- Ling Li
- State Key Laboratory of Oral Disease, West China College of Stomatology, Sichuan University, Chengdu, PR China
| | | | | | | |
Collapse
|
165
|
Longobardi L, Li T, Myers TJ, O'Rear L, Ozkan H, Li Y, Contaldo C, Spagnoli A. TGF-β type II receptor/MCP-5 axis: at the crossroad between joint and growth plate development. Dev Cell 2012; 23:71-81. [PMID: 22814601 DOI: 10.1016/j.devcel.2012.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 02/16/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
Abstract
Despite its clinical significance, the mechanisms of joint morphogenesis are elusive. By combining laser-capture microdissection for RNA sampling with microarrays, we show that the setting in which joint-forming interzone cells develop is distinct from adjacent growth plate chondrocytes and is characterized by downregulation of chemokines, such as monocyte-chemoattractant protein-5 (MCP-5). Using in vivo, ex vivo, and in vitro approaches, we show that low levels of interzone-MCP-5 are essential for joint formation and contribute to proper growth plate organization. Mice lacking the TGF-β-type-II-receptor (TβRII) in their limbs (Tgfbr2(Prx1KO)), which lack joint development and fail chondrocyte hypertrophy, show upregulation of interzone-MCP-5. In vivo and ex vivo blockade of the sole MCP-5 receptor, CCR2, led to the rescue of joint formation and growth plate maturation in Tgfbr2(Prx1KO) but an acceleration of growth plate mineralization in control mice. Our study characterized the TβRII/MCP-5 axis as an essential crossroad for joint development and endochondral growth.
Collapse
Affiliation(s)
- Lara Longobardi
- Department of Pediatrics, University of North Carolina at Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Jeong J, Cesario J, Zhao Y, Burns L, Westphal H, Rubenstein JLR. Cleft palate defect of Dlx1/2-/- mutant mice is caused by lack of vertical outgrowth in the posterior palate. Dev Dyn 2012; 241:1757-69. [PMID: 22972697 DOI: 10.1002/dvdy.23867] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mice lacking the activities of Dlx1 and Dlx2 (Dlx1/2-/-) exhibit cleft palate, one of the most common human congenital defects, but the etiology behind this phenotype has been unknown. Therefore, we analyzed the morphological, cellular, and molecular changes caused by inactivation of Dlx1 and Dlx2 as related to palate development. RESULTS Dlx1/2-/- mutants exhibited lack of vertical growth in the posterior palate during the earliest stage of palatogenesis. We attributed this growth deficiency to reduced cell proliferation. Expression of a cell cycle regulator Ccnd1 was specifically down-regulated in the same region. Previous studies established that the epithelial-mesenchymal signaling loop involving Shh, Bmp4, and Fgf10 is important for cell proliferation and tissue growth during palate development. This signaling loop was disrupted in Dlx1/2-/- palate. Interestingly, however, the decreases in Ccnd1 expression and mitosis in Dlx1/2-/- mutants were independent of this signaling loop. Finally, Dlx1/2 activity was required for normal expression of several transcription factor genes whose mutation results in palate defects. CONCLUSIONS The functions of Dlx1 and Dlx2 are crucial for the initial formation of the posterior palatal shelves, and that the Dlx genes lie upstream of multiple signaling molecules and transcription factors important for later stages of palatogenesis.
Collapse
Affiliation(s)
- Juhee Jeong
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA.
| | | | | | | | | | | |
Collapse
|
167
|
The role of vertebrate models in understanding craniosynostosis. Childs Nerv Syst 2012; 28:1471-81. [PMID: 22872264 DOI: 10.1007/s00381-012-1844-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 01/10/2023]
Abstract
BACKGROUND Craniosynostosis (CS), the premature fusion of cranial sutures, is a relatively common pediatric anomaly, occurring in isolation or as part of a syndrome. A growing number of genes with pathologic mutations have been identified for syndromic and nonsyndromic CS. The study of human sutural material obtained post-operatively is not sufficient to understand the etiology of CS, for which animal models are indispensable. DISCUSSION The similarity of the human and murine calvarial structure, our knowledge of mouse genetics and biology, and ability to manipulate the mouse genome make the mouse the most valuable model organism for CS research. A variety of mouse mutants are available that model specific human CS mutations or have CS phenotypes. These allow characterization of the biochemical and morphological events, often embryonic, which precede suture fusion. Other vertebrate organisms have less functional genetic utility than mice, but the rat, rabbit, chick, zebrafish, and frog provide alternative systems in which to validate or contrast molecular functions relevant to CS.
Collapse
|
168
|
van Amerongen R, Fuerer C, Mizutani M, Nusse R. Wnt5a can both activate and repress Wnt/β-catenin signaling during mouse embryonic development. Dev Biol 2012; 369:101-14. [PMID: 22771246 PMCID: PMC3435145 DOI: 10.1016/j.ydbio.2012.06.020] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/20/2012] [Accepted: 06/27/2012] [Indexed: 01/04/2023]
Abstract
Embryonic development is controlled by a small set of signal transduction pathways, with vastly different phenotypic outcomes depending on the time and place of their recruitment. How the same molecular machinery can elicit such specific and distinct responses, remains one of the outstanding questions in developmental biology. Part of the answer may lie in the high inherent genetic complexity of these signaling cascades, as observed for the Wnt-pathway. The mammalian genome encodes multiple Wnt proteins and receptors, each of which show dynamic and tightly controlled expression patterns in the embryo. Yet how these components interact in the context of the whole organism remains unknown. Here we report the generation of a novel, inducible transgenic mouse model that allows spatiotemporal control over the expression of Wnt5a, a protein implicated in many developmental processes and multiple Wnt-signaling responses. We show that ectopic Wnt5a expression from E10.5 onwards results in a variety of developmental defects, including loss of hair follicles and reduced bone formation in the skull. Moreover, we find that Wnt5a can have dual signaling activities during mouse embryonic development. Specifically, Wnt5a is capable of both inducing and repressing β-catenin/TCF signaling in vivo, depending on the time and site of expression and the receptors expressed by receiving cells. These experiments show for the first time that a single mammalian Wnt protein can have multiple signaling activities in vivo, thereby furthering our understanding of how signaling specificity is achieved in a complex developmental context.
Collapse
Affiliation(s)
- Renée van Amerongen
- Department of Developmental Biology and Howard Hughes Medical Institute, Lorry I. Lokey Stem Cell Research Building, Stanford University, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
169
|
Vukojevic K, Kero D, Novakovic J, Kalibovic Govorko D, Saraga-Babic M. Cell proliferation and apoptosis in the fusion of human primary and secondary palates. Eur J Oral Sci 2012; 120:283-91. [PMID: 22813218 DOI: 10.1111/j.1600-0722.2012.00967.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2012] [Indexed: 11/30/2022]
Abstract
The markers of cell proliferation (Ki-67) and apoptosis [caspase-3, TdT-mediated biotin-dUTP nick-end labelling (TUNEL)] and the expression of syndecan-1 and heat shock protein 70 (Hsp70) were analyzed immunohistochemically in 11 developing human palates, from developmental weeks 6 to 10. During fusion of the primary palate, the proportion of proliferating cells decreased from 42 to 32% and the proportion of apoptotic cells decreased from 11 to 7% in the medial-edge epithelium. At later stages, the proportions of both types of cells decreased in the ectomesenchyme, except for proliferating cells in its non-condensing part. At developmental weeks 9-10, the epithelial seam in the secondary palate comprised 28% proliferative cells and 5% apoptotic cells. While condensing ectomesenchyme contained more apoptotic cells than proliferating cells, the opposite was observed for the non-condensing ectomesenchyme. Co-expression of syndecan-1 and Hsp70 was detected in cells budding from the epithelial seam. Our study indicates similar principles for human primary palate and secondary palate fusion, and parallel persistence of proliferation and apoptotic activity. While proliferation enables growth and fusion of different palatal primordia, apoptosis results in the removal of of large numbers epithelial cells at the fusion point. The disintegration of seam remnants seems to be executed through the processes of change in protein content and cell migration, probably leading to cell death as their final outcome.
Collapse
Affiliation(s)
- Katarina Vukojevic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia.
| | | | | | | | | |
Collapse
|
170
|
Thamamongood TA, Furuya R, Fukuba S, Nakamura M, Suzuki N, Hattori A. Expression of osteoblastic and osteoclastic genes during spontaneous regeneration and autotransplantation of goldfish scale: a new tool to study intramembranous bone regeneration. Bone 2012; 50:1240-9. [PMID: 22484181 DOI: 10.1016/j.bone.2012.03.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/06/2012] [Accepted: 03/18/2012] [Indexed: 10/28/2022]
Abstract
Complementary DNA of osteoblast-specific genes (dlx5, runx2a, runx2b, osterix, RANKL, type I collagen, ALP, and osteocalcin) was cloned from goldfish (Carassius auratus) scale. Messenger RNA expressions were analyzed during spontaneous scale regeneration. Dlx5 had an early peak of expression on day 7, whereas osterix was constantly expressed during days 7-21. Runx2, a major osteoblastic transcription factor in mammalian bone, did not show any significant expression. The expressions of two functional genes, type I collagen and ALP, continually increased after day 7, while that of osteocalcin increased on day 14. As for osteoclastic markers, in addition to the cloning of two functional genes, TRAP and cathepsin K, in our previous study, we here cloned the transcription factor NFATc1 to use as an early osteoclastic marker. Using these bone markers, we investigate the signal key that controls the onset of scale resorption and regeneration by performing intra-scale-pocket autotransplantation of five groups of modified scales, namely, 1) methanol-fixed scale, 2) proteinase K-treated cell-free scale, 3) polarity reversal (upside-down) scale, 4) U-shape trimmed scale, and 5) circular-hole perforated scale. In this autotransplantation, each ontogenic scale was pulled out, modified, and then re-inserted into the same scale pocket. At post-transplant, inside the pockets of all modified transplant groups, new regenerating scales formed, attaching to the ongoing resorbed transplants. Autotransplantation of methanol-fixed scale, proteinase K-treated cell-free scale, and polarity reversal (upside-down) scale triggered scale resorption and scale regeneration. These two processes of scale resorption and regeneration occurred in accordance with osteoclastic and osteoblastic marker gene expressions. These results were microscopically confirmed using TRAP and ALP staining. Regarding the autotransplantation of U-shape trimmed and circular-hole perforated scales, new scales regenerated and grew at the trimmed/perforated part of each transplant, while scale resorption occurred apparently only around the trimmed/perforated area. In contrast, no scale resorption or regeneration was detected in sham transplantations. Our finding suggests that loss of correct cell-to-cell contact between the scale-pocket lining cells and the scale cortex cells is the key to switch on the onset of scale resorption and regeneration. Overall, the present study shows that goldfish scale regeneration shares similarities in gene expression with intramembranous bone regeneration. Improved understanding of goldfish scale regeneration will help elucidate the process of intramembranous bone regeneration and make goldfish scale a possible new tool to study bone regeneration.
Collapse
|
171
|
Yoshida M, Shimono Y, Togashi H, Matsuzaki K, Miyoshi J, Mizoguchi A, Komori T, Takai Y. Periderm cells covering palatal shelves have tight junctions and their desquamation reduces the polarity of palatal shelf epithelial cells in palatogenesis. Genes Cells 2012; 17:455-72. [PMID: 22571182 DOI: 10.1111/j.1365-2443.2012.01601.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In palatogenesis, bilateral palatal shelves grow and fuse with each other to establish mesenchyme continuity across the horizontal palate. The palatal shelves are covered with the medial edge epithelium (MEE) in which most apical cells are periderm cells. We investigated localization and roles of tight junction (TJ) and adherens junction (AJ) components and an apical membrane marker in the MEE in palatogenesis. Immunofluorescence and immunoelectron microscopy analyses revealed that TJs were located at the boundary between neighboring periderm cells, whereas AJ components were localized at the boundary between all epithelial cells in the MEE. Specifically, typical AJs were observed at the boundaries between neighboring periderm cells and between periderm cells and underlying epithelial cells where the signal for nectin-1 was observed. The TGF-β-induced desquamation of periderm cells reduced the polarity of remaining epithelial cells as estimated by changes of epithelial cell morphology and the staining of the polarity marker and the AJ components. These less polarized epithelial cells then intermingled and finally disappeared at least partly by apoptosis. These results indicate that periderm cells covering growing palatal shelves have bona fide TJs and their desquamation reduces the polarity of palatal shelf epithelial cells in palatogenesis.
Collapse
Affiliation(s)
- Midori Yoshida
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Stuhlmiller TJ, García-Castro MI. Current perspectives of the signaling pathways directing neural crest induction. Cell Mol Life Sci 2012; 69:3715-37. [PMID: 22547091 PMCID: PMC3478512 DOI: 10.1007/s00018-012-0991-8] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/12/2012] [Accepted: 04/02/2012] [Indexed: 01/05/2023]
Abstract
The neural crest is a migratory population of embryonic cells with a tremendous potential to differentiate and contribute to nearly every organ system in the adult body. Over the past two decades, an incredible amount of research has given us a reasonable understanding of how these cells are generated. Neural crest induction involves the combinatorial input of multiple signaling pathways and transcription factors, and is thought to occur in two phases from gastrulation to neurulation. In the first phase, FGF and Wnt signaling induce NC progenitors at the border of the neural plate, activating the expression of members of the Msx, Pax, and Zic families, among others. In the second phase, BMP, Wnt, and Notch signaling maintain these progenitors and bring about the expression of definitive NC markers including Snail2, FoxD3, and Sox9/10. In recent years, additional signaling molecules and modulators of these pathways have been uncovered, creating an increasingly complex regulatory network. In this work, we provide a comprehensive review of the major signaling pathways that participate in neural crest induction, with a focus on recent developments and current perspectives. We provide a simplified model of early neural crest development and stress similarities and differences between four major model organisms: Xenopus, chick, zebrafish, and mouse.
Collapse
Affiliation(s)
- Timothy J Stuhlmiller
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | |
Collapse
|
173
|
Warner DR, Mukhopadhyay P, Webb CL, Greene RM, Pisano MM. Chromatin immunoprecipitation-promoter microarray identification of genes regulated by PRDM16 in murine embryonic palate mesenchymal cells. Exp Biol Med (Maywood) 2012; 237:387-94. [PMID: 22522345 DOI: 10.1258/ebm.2012.011258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transcription factor PRDM16 regulates differentiation of brown adipocyte tissue in mice. Recently, however, it has been demonstrated that genetic knockout of Prdm16 in mice leads to a complete cleft of the secondary palate in offspring. To identify genes whose promoters bind PRDM16 in mouse embryonic palate/maxillary mesenchymal cells, we have conducted a chromatin immunoprecipitation-promoter microarray analysis (ChIP-Chip). One hundred and twenty-two gene promoters were identified as capable of binding PRDM16. These could be functionally grouped to include those on genes linked to muscle development, chondrogenesis and osteogenesis, in addition to many transcription factors. These results suggest that PRDM16 may play a role in differentiation of mesenchymal cells in the embryonic secondary palate that contribute to the anterior, bony palate and posterior, muscular palate.
Collapse
Affiliation(s)
- Dennis R Warner
- Department of Molecular, Cellular, and Craniofacial Biology, University of Louisville Birth Defects Center, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | |
Collapse
|
174
|
Zhu X, Ozturk F, Pandey S, Guda CB, Nawshad A. Implications of TGFβ on Transcriptome and Cellular Biofunctions of Palatal Mesenchyme. Front Physiol 2012; 3:85. [PMID: 22514539 PMCID: PMC3322527 DOI: 10.3389/fphys.2012.00085] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/21/2012] [Indexed: 11/13/2022] Open
Abstract
Development of the palate comprises sequential stages of growth, elevation, and fusion of the palatal shelves. The mesenchymal component of palates plays a major role in early phases of palatogenesis, such as growth and elevation. Failure in these steps may result in cleft palate, the second most common birth defect in the world. These early stages of palatogenesis require precise and chronological orchestration of key physiological processes, such as growth, proliferation, differentiation, migration, and apoptosis. There is compelling evidence for the vital role of TGFβ-mediated regulation of palate development. We hypothesized that the isoforms of TGFβ regulate different cellular biofunctions of the palatal mesenchyme to various extents. Human embryonic palatal mesenchyme (HEPM) cells were treated with TGFβ1, β2, and β3 for microarray-based gene expression studies in order to identify the roles of TGFβ in the transcriptome of the palatal mesenchyme. Following normalization and modeling of 28,869 human genes, 566 transcripts were detected as differentially expressed in TGFβ-treated HEPM cells. Out of these altered transcripts, 234 of them were clustered in cellular biofunctions, including growth and proliferation, development, morphology, movement, cell cycle, and apoptosis. Biological interpretation and network analysis of the genes active in cellular biofunctions were performed using IPA. Among the differentially expressed genes, 11 of them are known to be crucial for palatogenesis (EDN1, INHBA, LHX8, PDGFC, PIGA, RUNX1, SNAI1, SMAD3, TGFβ1, TGFβ2, and TGFβR1). These genes were used for a merged interaction network with cellular behaviors. Overall, we have determined that more than 2% of human transcripts were differentially expressed in response to TGFβ treatment in HEPM cells. Our results suggest that both TGFβ1 and TGFβ2 orchestrate major cellular biofunctions within the palatal mesenchyme in vitro by regulating expression of 234 genes.
Collapse
Affiliation(s)
- Xiujuan Zhu
- Department of Oral Biology, University of Nebraska Medical Center Lincoln, NE, USA
| | | | | | | | | |
Collapse
|
175
|
Iwata JI, Hacia JG, Suzuki A, Sanchez-Lara PA, Urata M, Chai Y. Modulation of noncanonical TGF-β signaling prevents cleft palate in Tgfbr2 mutant mice. J Clin Invest 2012; 122:873-85. [PMID: 22326956 DOI: 10.1172/jci61498] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/04/2012] [Indexed: 11/17/2022] Open
Abstract
Patients with mutations in either TGF-β receptor type I (TGFBR1) or TGF-β receptor type II (TGFBR2), such as those with Loeys-Dietz syndrome, have craniofacial defects and signs of elevated TGF-β signaling. Similarly, mutations in TGF-β receptor gene family members cause craniofacial deformities, such as cleft palate, in mice. However, it is unknown whether TGF-β ligands are able to elicit signals in Tgfbr2 mutant mice. Here, we show that loss of Tgfbr2 in mouse cranial neural crest cells results in elevated expression of TGF-β2 and TGF-β receptor type III (TβRIII); activation of a TβRI/TβRIII-mediated, SMAD-independent, TRAF6/TAK1/p38 signaling pathway; and defective cell proliferation in the palatal mesenchyme. Strikingly, Tgfb2, Tgfbr1 (also known as Alk5), or Tak1 haploinsufficiency disrupted TβRI/TβRIII-mediated signaling and rescued craniofacial deformities in Tgfbr2 mutant mice, indicating that activation of this noncanonical TGF-β signaling pathway was responsible for craniofacial malformations in Tgfbr2 mutant mice. Thus, modulation of TGF-β signaling may be beneficial for the prevention of congenital craniofacial birth defects.
Collapse
Affiliation(s)
- Jun-ichi Iwata
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | |
Collapse
|
176
|
Oka K, Honda MJ, Tsuruga E, Hatakeyama Y, Isokawa K, Sawa Y. Roles of collagen and periostin expression by cranial neural crest cells during soft palate development. J Histochem Cytochem 2012; 60:57-68. [PMID: 22205681 DOI: 10.1369/0022155411427059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The tissue in the palatal region can be divided into the hard and the soft palates, each having a specialized function such as occlusion, speech, or swallowing. Therefore, an understanding of the mechanism of palatogenesis in relation to the function of each region is important. However, in comparison with the hard palate, there is still a lack of information about the mechanisms of soft palate development. In this study, the authors investigated the contribution of cranial neural crest (CNC) cells to development of both hard and soft palates. They also demonstrated a unique pattern of periostin expression during soft palate development, which was closely related to that of collagen type I (Col I) in palatine aponeurosis. Furthermore, organ culture analysis showed that exogenous transforming growth factor-β (TGF-β) induced the expression of both periostin and Col I. These novel patterns of expression in the extracellular matrix (ECM) induced by CNC cells suggest that these cells may help to determine the character of both the hard and soft palates through ECM induction. TGF-β signaling appears to be one of the mediators of Col I and periostin expression in the formation of functional structures during soft palate development.
Collapse
Affiliation(s)
- Kyoko Oka
- Section of Functional Structure, Division of Biomedical Sciences, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
177
|
Bush JO, Jiang R. Palatogenesis: morphogenetic and molecular mechanisms of secondary palate development. Development 2012; 139:231-43. [PMID: 22186724 DOI: 10.1242/dev.067082] [Citation(s) in RCA: 388] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mammalian palatogenesis is a highly regulated morphogenetic process during which the embryonic primary and secondary palatal shelves develop as outgrowths from the medial nasal and maxillary prominences, respectively, remodel and fuse to form the intact roof of the oral cavity. The complexity of control of palatogenesis is reflected by the common occurrence of cleft palate in humans. Although the embryology of the palate has long been studied, the past decade has brought substantial new knowledge of the genetic control of secondary palate development. Here, we review major advances in the understanding of the morphogenetic and molecular mechanisms controlling palatal shelf growth, elevation, adhesion and fusion, and palatal bone formation.
Collapse
Affiliation(s)
- Jeffrey O Bush
- Department of Cell and Tissue Biology and Program in Craniofacial and Mesenchymal Biology, University of California at San Francisco, San Francisco, CA 94143, USA.
| | | |
Collapse
|
178
|
Iwata JI, Tung L, Urata M, Hacia JG, Pelikan R, Suzuki A, Ramenzoni L, Chaudhry O, Parada C, Sanchez-Lara PA, Chai Y. Fibroblast growth factor 9 (FGF9)-pituitary homeobox 2 (PITX2) pathway mediates transforming growth factor β (TGFβ) signaling to regulate cell proliferation in palatal mesenchyme during mouse palatogenesis. J Biol Chem 2012; 287:2353-63. [PMID: 22123828 PMCID: PMC3268397 DOI: 10.1074/jbc.m111.280974] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/25/2011] [Indexed: 12/29/2022] Open
Abstract
Cleft palate represents one of the most common congenital birth defects. Transforming growth factor β (TGFβ) signaling plays crucial functions in regulating craniofacial development, and loss of TGFβ receptor type II in cranial neural crest cells leads to craniofacial malformations, including cleft palate in mice (Tgfbr2(fl/fl);Wnt1-Cre mice). Here we have identified candidate target genes of TGFβ signaling during palatal formation. These target genes were selected based on combining results from gene expression profiles of embryonic day 14.5 palates from Tgfbr2(fl/fl);Wnt1-Cre mice and previously identified cleft palate phenotypes in genetically engineered mouse models. We found that fibroblast growth factor 9 (Fgf9) and transcription factor pituitary homeobox 2 (Pitx2) expressions are significantly down-regulated in the palate of Tgfbr2(fl/fl);Wnt1-Cre mice, and Fgf9 and Pitx2 loss of function mutations result in cleft palate in mice. Pitx2 expression is down-regulated by siRNA knockdown of Fgf9, suggesting that Fgf9 is upstream of Pitx2. We detected decreased expression of both cyclins D1 and D3 in the palates of Tgfbr2(fl/fl);Wnt1-Cre mice, consistent with the defect in cell proliferation. Significantly, exogenous FGF9 restores expression of cyclins D1 and D3 in a Pitx2-dependent manner and rescues the cell proliferation defect in the palatal mesenchyme of Tgfbr2(fl/fl);Wnt1-Cre mice. Our study indicates that a TGFβ-FGF9-PITX2 signaling cascade regulates cranial neural crest cell proliferation during palate formation.
Collapse
Affiliation(s)
- Jun-ichi Iwata
- From the Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, and
| | - Lily Tung
- From the Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, and
- Division of Plastic and Reconstruction Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, and
| | - Mark Urata
- From the Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, and
- Division of Plastic and Reconstruction Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, and
| | - Joseph G. Hacia
- Department of Biochemistry and Molecular Biology, Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, California 90033
| | - Richard Pelikan
- From the Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, and
| | - Akiko Suzuki
- From the Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, and
| | - Liza Ramenzoni
- From the Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, and
| | - Obaid Chaudhry
- From the Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, and
- Division of Plastic and Reconstruction Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, and
| | - Carolina Parada
- From the Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, and
| | - Pedro A. Sanchez-Lara
- the Department of Pediatrics and
- the Division of Medical Genetics, Children's Hospital Los Angeles, Los Angeles, California 90027
| | - Yang Chai
- From the Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, and
| |
Collapse
|
179
|
Ramachandran A, Ravindran S, George A. Localization of transforming growth factor beta receptor II interacting protein-1 in bone and teeth: implications in matrix mineralization. J Histochem Cytochem 2012; 60:323-37. [PMID: 22260994 DOI: 10.1369/0022155412436879] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor beta receptor II (TGFβR-II) interacting protein 1 (TRIP-1) is a WD-40 protein that binds to the cytoplasmic domain of the TGF-β type II receptor in a kinase-dependent manner. To investigate the role of TRIP-1 in mineralized tissues, we examined its pattern of expression in cartilage, bone, and teeth and analyzed the relationship between TRIP-1 overexpression and mineralized matrix formation. Results demonstrate that TRIP-1 was predominantly expressed by osteoblasts, odontoblasts, and chondrocytes in these tissues. Interestingly, TRIP-1 was also localized in the extracellular matrix of bone and at the mineralization front in dentin, suggesting that TRIP-1 is secreted by nonclassical secretory mechanisms, as it is devoid of a signal peptide. In vitro nucleation studies demonstrate a role for TRIP-1 in nucleating calcium phosphate polymorphs. Overexpression of TRIP-1 favored osteoblast differentiation of undifferentiated mesenchymal cells with an increase in mineralized matrix formation. These data indicate an unexpected role for TRIP-1 during development of bone, teeth, and cartilage.
Collapse
Affiliation(s)
- Amsaveni Ramachandran
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
180
|
Tubbs RS, Bosmia AN, Cohen-Gadol AA. The human calvaria: a review of embryology, anatomy, pathology, and molecular development. Childs Nerv Syst 2012; 28:23-31. [PMID: 22120469 DOI: 10.1007/s00381-011-1637-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/17/2011] [Indexed: 10/15/2022]
Abstract
INTRODUCTION The human skull is a complex structure that deserves continued study. Few studies have directed their attention to the development, pathology, and molecular formation of the human calvaria. MATERIALS AND METHODS A review of the medical literature using standard search engines was performed to locate studies regarding the human calvaria. RESULTS The formation of the human calvaria is a complex interaction between bony and meningeal elements. Derailment of these interactions may result in deformation of this part of the skull. CONCLUSIONS Knowledge of the anatomy, formation, and pathology of the human calvaria will be of use to the clinician that treats skull diseases. With an increased understanding of genetic and molecular biology, treatment paradigms for calvarial issues may change.
Collapse
Affiliation(s)
- R Shane Tubbs
- Department of Neurosurgery, Children's Hospital, Ambulatory Care Center, 1600 7th Avenue South, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|
181
|
Rezzoug F, Seelan RS, Bhattacherjee V, Greene RM, Pisano MM. Chemokine-mediated migration of mesencephalic neural crest cells. Cytokine 2011; 56:760-8. [PMID: 22015108 DOI: 10.1016/j.cyto.2011.09.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 09/13/2011] [Accepted: 09/19/2011] [Indexed: 11/27/2022]
Abstract
Clefts of the lip and/or palate are among the most prevalent birth defects affecting approximately 7000 newborns in the United States annually. Disruption of the developmentally programmed migration of neural crest cells (NCCs) into the orofacial region is thought to be one of the major causes of orofacial clefting. Signaling of the chemokine SDF-1 (Stromal Derived Factor-1) through its specific receptor, CXCR4, is required for the migration of many stem cell and progenitor cell populations from their respective sites of emergence to the regions where they differentiate into complex cell types, tissues and organs. In the present study, "transwell" assays of chick embryo mesencephalic (cranial) NCC migration and ex ovo whole embryo "bead implantation" assays were utilized to determine whether SDF-1/CXCR4 signaling mediates mesencephalic NCC migration. Results from this study demonstrate that attenuation of SDF-1 signaling, through the use of specific CXCR4 antagonists (AMD3100 and TN14003), disrupts the migration of mesencephalic NCCs into the orofacial region, suggesting a novel role for SDF-1/CXCR4 signaling in the directed migration of mesencephalic NCCs in the early stage embryo.
Collapse
Affiliation(s)
- Francine Rezzoug
- University of Louisville, Birth Defects Center, Department of Molecular, Cellular and Craniofacial Biology, ULSD, 501 S. Preston St., Suite 350, Louisville, KY 40202, USA.
| | | | | | | | | |
Collapse
|
182
|
Zhong WJ, Zhang WB, Ma JQ, Wang H, Pan YC, Wang L. Periostin-like-factor-induced bone formation within orthopedic maxillary expansion. Orthod Craniofac Res 2011; 14:198-205. [DOI: 10.1111/j.1601-6343.2011.01524.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
183
|
Novakovic J, Mardesic-Brakus S, Vukojevic K, Saraga-Babic M. Developmental patterns of Ki-67, bcl-2 and caspase-3 proteins expression in the human upper jaw. Acta Histochem 2011; 113:519-26. [PMID: 20598358 DOI: 10.1016/j.acthis.2010.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/12/2010] [Accepted: 05/13/2010] [Indexed: 12/22/2022]
Abstract
The distribution of the Ki-67, bcl-2 and caspase-3 proteins was immunohistochemically analyzed in the developing human upper jaw (5th-10th gestational weeks). During this period, proliferative activity gradually decreased from higher levels at the earliest stages (50-52%) to lower levels, both in the jaw ectomesenchyme and in the epithelium. The highest expression of bcl-2 protein was found in the epithelium and ectomesenchyme of areas displaying lower rates of cell proliferation. High levels of caspase-3 protein were detected during the earliest stages of jaw development, indicating an important role for apoptosis in morphogenesis of early derivatives of the maxillary prominences. The number of Ki-67, bcl-2 and caspase-3 positive cells changed in a temporally and spatially restricted manner, coincidently with upper jaw differentiation. While apoptosis might control cell number, bcl-2 could act in suppression of apoptosis and enhancement of cell differentiation. A fine balance between cell proliferation (Ki-67), death (caspase-3) and cell survival (bcl-2) characterized early human upper jaw development. A rise in the number of apoptotic cells always temporally coincided with the decrease in number of surviving bcl-2 positive cells within the palatal region. Therefore, the upper jaw development seems to be controlled by the precisely defined expression of genes for proliferation, apoptosis and cell survival.
Collapse
Affiliation(s)
- Josip Novakovic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Mostar, Bosnia and Herzegovina
| | | | | | | |
Collapse
|
184
|
Iseki S. Disintegration of the medial epithelial seam: is cell death important in palatogenesis? Dev Growth Differ 2011; 53:259-68. [PMID: 21338351 DOI: 10.1111/j.1440-169x.2010.01245.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
During palatogenesis, the palatal medial edge epithelium (MEE) forms the medial epithelial seam (MES) on adhesion of the opposing palatal shelves. The MES eventually disappears, leading to mesenchymal confluence of the palate and completion of palatogenesis. Failure of these processes results in cleft palate, one of the most common congenital anomalies in human affecting around one case in 500-2500 live births. The cell fate of MEE has been controversial for more than 20 years. Recent studies suggest that the disappearance of MES is a complex process involving cell death, epithelial-mesenchymal transition (EMT) and epithelial migration. Interestingly, transforming growth factor-β3 (Tgf β3) expression in MEE and the tip epithelium of the nasal septum begins just before palatal shelf reorientation and lasts until MES disruption, and several works including targeted disruption of the gene have indicated that the process appears to be regulated mainly by the TGFβ3-TGFβR signaling. However, how MEE cells choose their fate and how the cell fate is altered in response to cellular environment remains to be elucidated.
Collapse
Affiliation(s)
- Sachiko Iseki
- Molecular Craniofacial Embryology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| |
Collapse
|
185
|
Abstract
The neural crest cell (NCC) lineage is often referred to as the fourth germ layer in embryos, as its wide range of migration and early colonization of multiple tissues and organ systems throughout the developing body is astounding. Many human birth defects are thought to have their origins within the NCC lineage. Exciting recent conditional mouse targeting and transgenic combinatorial suppression approaches have revealed that the Tgf-b superfamily is a key signaling pathway within the cardiac and cranial NCC subpopulations. Given the complexity of Tgf-b superfamily signaling and that multiple ligand and receptor combinations have already been shown to be expressed within the NCC subpopulations, and the difficulty in transgenically targeting entire signaling cascades, we review several up-to-date transgenic approaches that are revealing unexpected consequences.
Collapse
Affiliation(s)
- Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | |
Collapse
|
186
|
Lin M, Li L, Liu C, Liu H, He F, Yan F, Zhang Y, Chen Y. Wnt5a regulates growth, patterning, and odontoblast differentiation of developing mouse tooth. Dev Dyn 2011; 240:432-40. [PMID: 21246660 DOI: 10.1002/dvdy.22550] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Wnt/β-catenin signaling is essential for tooth development beyond the bud stage, but little is known about the role of non-canonical Wnt signaling in odontogenesis. Here we compared the expression of Wnt5a, a representative of noncanonical Wnts, with that of Ror2, the Wnt5a receptor for non-canonical signaling, in the developing tooth, and analyzed tooth phenotype in Wnt5a mutants. Wnt5a-deficient mice exhibit retarded tooth development beginning from E16.5, leading to the formation of smaller and abnormally patterned teeth with a delayed odontoblast differentiation at birth. These defects are associated with upregulated Axin2 and Shh expression in the dental epithelium and reduced levels of cell proliferation in the dental epithelium and mesenchyme. Retarded tooth development and defective odontoblast differentiation were also observed in Ror2 mutant mice. Our results suggest that Wnt5a regulates growth, patterning, and odontoblast differentiation during odontogenesis, at least partially by modulating Wnt/β-catenin canonical signaling.
Collapse
Affiliation(s)
- Minkui Lin
- Department of Periodontology, Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Hochheiser H, Aronow BJ, Artinger K, Beaty TH, Brinkley JF, Chai Y, Clouthier D, Cunningham ML, Dixon M, Donahue LR, Fraser SE, Hallgrimsson B, Iwata J, Klein O, Marazita ML, Murray JC, Murray S, de Villena FPM, Postlethwait J, Potter S, Shapiro L, Spritz R, Visel A, Weinberg SM, Trainor PA. The FaceBase Consortium: a comprehensive program to facilitate craniofacial research. Dev Biol 2011; 355:175-82. [PMID: 21458441 DOI: 10.1016/j.ydbio.2011.02.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 02/23/2011] [Accepted: 02/24/2011] [Indexed: 12/21/2022]
Abstract
The FaceBase Consortium consists of ten interlinked research and technology projects whose goal is to generate craniofacial research data and technology for use by the research community through a central data management and integrated bioinformatics hub. Funded by the National Institute of Dental and Craniofacial Research (NIDCR) and currently focused on studying the development of the middle region of the face, the Consortium will produce comprehensive datasets of global gene expression patterns, regulatory elements and sequencing; will generate anatomical and molecular atlases; will provide human normative facial data and other phenotypes; conduct follow up studies of a completed genome-wide association study; generate independent data on the genetics of craniofacial development, build repositories of animal models and of human samples and data for community access and analysis; and will develop software tools and animal models for analyzing and functionally testing and integrating these data. The FaceBase website (http://www.facebase.org) will serve as a web home for these efforts, providing interactive tools for exploring these datasets, together with discussion forums and other services to support and foster collaboration within the craniofacial research community.
Collapse
Affiliation(s)
- Harry Hochheiser
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Alk5-mediated transforming growth factor β signaling acts upstream of fibroblast growth factor 10 to regulate the proliferation and maintenance of dental epithelial stem cells. Mol Cell Biol 2011; 31:2079-89. [PMID: 21402782 DOI: 10.1128/mcb.01439-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse incisors grow continuously throughout life. This growth is supported by the division of dental epithelial stem cells that reside in the cervical loop region. Little is known about the maintenance and regulatory mechanisms of dental epithelial stem cells. In the present study, we investigated how transforming growth factor β (TGF-β) signaling-mediated mesenchymal-epithelial cell interactions control dental epithelial stem cells. We designed two approaches using incisor organ culture and bromodeoxyuridine (BrdU) pulse-chase experiments to identify and evaluate stem cell functions. We show that the loss of the TGF-β type I receptor (Alk5) in the cranial neural crest-derived dental mesenchyme severely affects the proliferation of TA (transit-amplifying) cells and the maintenance of dental epithelial stem cells. Incisors of Wnt1-Cre; Alk5(fl/fl) mice lost their ability to continue to grow in vitro. The number of BrdU label-retaining cells (LRCs) was dramatically reduced in Alk5 mutant mice. Fgf10, Fgf3, and Fgf9 signals in the dental mesenchyme were downregulated in Wnt1-Cre; Alk5(fl/fl) incisors. Strikingly, the addition of exogenous fibroblast growth factor 10 (FGF10) into cultured incisors rescued dental epithelial stem cells in Wnt1-Cre; Alk5(fl/fl) mice. Therefore, we propose that Alk5 functions upstream of Fgf10 to regulate TA cell proliferation and stem cell maintenance and that this signaling mechanism is crucial for stem cell-mediated tooth regeneration.
Collapse
|
189
|
Abstract
Cleft palate, a malformation of the secondary palate development, is one of the most common human congenital birth defects. Palate formation is a complex process resulting in the separation of the oral and nasal cavities that involves multiple events, including palatal growth, elevation, and fusion. Recent findings show that transforming growth factor beta (TGF-β) signaling plays crucial roles in regulating palate development in both the palatal epithelium and mesenchyme. Here, we highlight recent advances in our understanding of TGF-β signaling during palate development.
Collapse
Affiliation(s)
- J Iwata
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
190
|
Two developmental modules establish 3D beak-shape variation in Darwin's finches. Proc Natl Acad Sci U S A 2011; 108:4057-62. [PMID: 21368127 DOI: 10.1073/pnas.1011480108] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bird beaks display tremendous variation in shape and size, which is closely associated with the exploitation of multiple ecological niches and likely played a key role in the diversification of thousands of avian species. Previous studies have demonstrated some of the molecular mechanisms that regulate morphogenesis of the prenasal cartilage, which forms the initial beak skeleton. However, much of the beak diversity in birds depends on variation in the premaxillary bone. It forms later in development and becomes the most prominent functional and structural component of the adult upper beak/jaw, yet its regulation is unknown. Here, we studied a group of Darwin's finch species with different beak shapes. We found that TGFβIIr, β-catenin, and Dickkopf-3, the top candidate genes from a cDNA microarray screen, are differentially expressed in the developing premaxillary bone of embryos of species with different beak shapes. Furthermore, our functional experiments demonstrate that these molecules form a regulatory network governing the morphology of the premaxillary bone, which differs from the network controlling the prenasal cartilage, but has the same species-specific domains of expression. These results offer potential mechanisms that may explain how the tightly coupled depth and width dimensions can evolve independently. The two-module program of development involving independent regulating molecules offers unique insights into how different developmental pathways may be modified and combined to induce multidimensional shifts in beak morphology. Similar modularity in development may characterize complex traits in other organisms to a greater extent than is currently appreciated.
Collapse
|
191
|
Hes1 is required for the development of craniofacial structures derived from ectomesenchymal neural crest cells. J Craniofac Surg 2011; 21:1443-9. [PMID: 20818256 DOI: 10.1097/scs.0b013e3181ebd1a0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The cranial neural crest cells contribute extensively to the formation of skeletogenic mesenchyme in the head and neck. Hes1 functions as a repressor of basic helix-loop-helix transcription factors and is implicated in controlling the maintenance of undifferentiated cells and the timing of cell differentiation. We show here that Hes1 homozygous null mutant mice exhibit multiple craniofacial malformations including calvaria agenesis, defective anterior cranial base, shortened maxilla and mandible, and abnormal palate and tongue. In the null mutant cranium, the calvarial bones, meninges including the dura mater and skin were not formed, and the brain was therefore exposed without the outer cover. The defective anterior cranial base in the mutants was attributable to the lack of presphenoid bone and the flexed cranial base angle, which was in contrast with the flat cranial base of wild-type mice. Furthermore, in the null mutants, palatal shelf growth was impaired because of the early elevation of the palatal shelves, resulting in a narrow palate and oral cavity, which were consistently associated with a small size of the tongue. These craniofacial anomalies could be the result of the defective development of neural crest cells. Taken together, it is supposed that Hes1 signaling plays an essential role in regulating the development of various craniofacial structures derived from the cranial neural crest cells.
Collapse
|
192
|
Warner DR, Mukhopadhyay P, Brock GN, Pihur V, Pisano MM, Greene RM. TGFβ-1 and Wnt-3a interact to induce unique gene expression profiles in murine embryonic palate mesenchymal cells. Reprod Toxicol 2011; 31:128-33. [PMID: 20955781 PMCID: PMC3138487 DOI: 10.1016/j.reprotox.2010.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/14/2010] [Accepted: 10/06/2010] [Indexed: 11/18/2022]
Abstract
Development of the secondary palate in mammals is a complex process under the control of numerous growth and differentiation factors that regulate key processes such as cell proliferation, synthesis of extracellular matrix molecules, and epithelial-mesenchymal transdifferentiation. Alterations in any one of these processes either through genetic mutation or environmental insult have the potential to lead to clefts of the secondary palate. Members of the TGFβ family of cytokines are crucial mediators of these processes and emerging evidence supports a pivotal role for members of the Wnt family of secreted growth and differentiation factors. Previous work in this laboratory demonstrated cross-talk between the Wnt and TGFβ signaling pathways in cultured mouse embryonic palate mesenchymal cells. In the current study we tested the hypothesis that unique gene expression profiles are induced in murine embryonic palate mesenchymal cells as a result of this cross-talk between the TGFβ and Wnt signal transduction pathways.
Collapse
Affiliation(s)
- Dennis R. Warner
- University of Louisville Birth Defects Center Department of Molecular, Cellular and Craniofacial Biology University of Louisville, ULSD Louisville, Kentucky 40292
| | - Partha Mukhopadhyay
- University of Louisville Birth Defects Center Department of Molecular, Cellular and Craniofacial Biology University of Louisville, ULSD Louisville, Kentucky 40292
| | - Guy N. Brock
- Department of Bioinformatics and Biostatistics School of Public Health and Informational Sciences University of Louisville Louisville, Kentucky 40292
| | | | - M. Michele Pisano
- University of Louisville Birth Defects Center Department of Molecular, Cellular and Craniofacial Biology University of Louisville, ULSD Louisville, Kentucky 40292
| | - Robert M. Greene
- University of Louisville Birth Defects Center Department of Molecular, Cellular and Craniofacial Biology University of Louisville, ULSD Louisville, Kentucky 40292
| |
Collapse
|
193
|
Ho JHC, Ma WH, Tseng TC, Chen YF, Chen MH, Lee OKS. Isolation and Characterization of Multi-Potent Stem Cells from Human Orbital Fat Tissues. Tissue Eng Part A 2011; 17:255-66. [DOI: 10.1089/ten.tea.2010.0106] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jennifer Hui-Chun Ho
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Stem Cell Research, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
- Department of Ophthalmology, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Wei-Hsien Ma
- Center for Stem Cell Research, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Tzu-Ching Tseng
- Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Fan Chen
- Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Hsiang Chen
- Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Oscar Kuang-Sheng Lee
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
194
|
Hecht JH, Siegenthaler JA, Patterson KP, Pleasure SJ. Primary cellular meningeal defects cause neocortical dysplasia and dyslamination. Ann Neurol 2010; 68:454-64. [PMID: 20976766 DOI: 10.1002/ana.22103] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Cortical malformations are important causes of neurological morbidity, but in many cases their etiology is poorly understood. Mice with Foxc1 mutations have cellular defects in meningeal development. We use hypomorphic and null alleles of Foxc1 to study the effect of meningeal defects on neocortical organization. METHODS Embryos with loss of Foxc1 activity were generated using the hypomorphic Foxc1(hith) allele and the null Foxc1(lacZ) allele. Immunohistologic analysis was used to assess cerebral basement membrane integrity, marginal zone heterotopia formation, neuronal overmigration, meningeal defects, and changes in basement membrane composition. Dysplasia severity was quantified using 2 measures. RESULTS Cortical dysplasia resembling cobblestone cortex, with basement membrane breakdown and lamination defects, is seen in Foxc1 mutants. As Foxc1 activity was reduced, abnormalities in basement membrane integrity, heterotopia formation, neuronal overmigration, and meningeal development appeared earlier in gestation and were more severe. Surprisingly, the basement membrane appeared intact at early stages of development in the face of severe deficits in meningeal development. Prominent defects in basement membrane integrity appeared as development proceeded. Molecular analysis of basement membrane laminin subunits demonstrated that loss of the meninges led to changes in basement membrane composition. INTERPRETATION Cortical dysplasia can be caused by cellular defects in the meninges. The meninges are not required for basement membrane establishment but are needed for remodeling as the brain expands. Specific changes in basement membrane composition may contribute to subsequent breakdown. Our study raises the possibility that primary meningeal defects may cortical dysplasia in some cases.
Collapse
Affiliation(s)
- Jonathan H Hecht
- Department of Neurology, Program in Neuroscience, Institute for Regenerative Medicine, San Francisco, San Francisco, CA 94158, USA
| | | | | | | |
Collapse
|
195
|
Chung IH, Han J, Iwata J, Chai Y. Msx1 and Dlx5 function synergistically to regulate frontal bone development. Genesis 2010; 48:645-55. [PMID: 20824629 DOI: 10.1002/dvg.20671] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 11/09/2022]
Abstract
The Msx and Dlx families of homeobox proteins are important regulators for embryogenesis. Loss of Msx1 in mice results in multiple developmental defects including craniofacial malformations. Although Dlx5 is widely expressed during embryonic development, targeted null mutation of Dlx5 mainly affects the development of craniofacial bones. Msx1 and Dlx5 show overlapping expression patterns during frontal bone development. To investigate the functional significance of Msx1/Dlx5 interaction in regulating frontal bone development, we generated Msx1 and Dlx5 double null mutant mice. In Msx1(-/-) ;Dlx5(-/-) mice, the frontal bones defect was more severe than that of either Msx1(-/-) or Dlx5(-/-) mice. This aggravated frontal bone defect suggests that Msx1 and Dlx5 function synergistically to regulate osteogenesis. This synergistic effect of Msx1 and Dlx5 on the frontal bone represents a tissue specific mode of interaction of the Msx and Dlx genes. Furthermore, Dlx5 requires Msx1 for its expression in the context of frontal bone development. Our study shows that Msx1/Dlx5 interaction is crucial for osteogenic induction during frontal bone development.
Collapse
Affiliation(s)
- Il-Hyuk Chung
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | |
Collapse
|
196
|
He F, Xiong W, Wang Y, Matsui M, Yu X, Chai Y, Klingensmith J, Chen Y. Modulation of BMP signaling by Noggin is required for the maintenance of palatal epithelial integrity during palatogenesis. Dev Biol 2010; 347:109-21. [PMID: 20727875 PMCID: PMC3010875 DOI: 10.1016/j.ydbio.2010.08.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 11/29/2022]
Abstract
BMP signaling plays many important roles during organ development, including palatogenesis. Loss of BMP signaling leads to cleft palate formation. During development, BMP activities are finely tuned by a number of modulators at the extracellular and intracellular levels. Among the extracellular BMP antagonists is Noggin, which preferentialy binds to BMP2, BMP4 and BMP7, all of which are expressed in the developing palatal shelves. Here we use targeted Noggin mutant mice as a model for gain of BMP signaling function to investigate the role of BMP signaling in palate development. We find prominent Noggin expression in the palatal epithelium along the anterior-posterior axis during early palate development. Loss of Noggin function leads to overactive BMP signaling, particularly in the palatal epithelium. This results in disregulation of cell proliferation, excessive cell death, and changes in gene expression, leading to formation of complete palatal cleft. The excessive cell death in the epithelium disrupts the palatal epithelium integrity, which in turn leads to an abnormal palate-mandible fusion and prevents palatal shelf elevation. This phenotype is recapitulated by ectopic expression of a constitutively active form of BMPR-IA but not BMPR-IB in the epithelium of the developing palate; this suggests a role for BMPR-IA in mediating overactive BMP signaling in the absence of Noggin. Together with the evidence that overexpression of Noggin in the palatal epithelium does not cause a cleft palate defect, we conclude from our results that Noggin mediated modulation of BMP signaling is essential for palatal epithelium integrity and for normal palate development.
Collapse
Affiliation(s)
- Fenglei He
- Department of Cell and Molecular Biology Tulane University New Orleans, LA 70118, USA
| | - Wei Xiong
- Department of Cell and Molecular Biology Tulane University New Orleans, LA 70118, USA
| | - Ying Wang
- Department of Cell and Molecular Biology Tulane University New Orleans, LA 70118, USA
| | - Maiko Matsui
- Department of Cell Biology Duke University Medical Center, Durham, NC 27710, USA
| | - Xueyan Yu
- Department of Cell and Molecular Biology Tulane University New Orleans, LA 70118, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology University of Southern California Los Angeles, CA 90033, USA
| | - John Klingensmith
- Department of Cell Biology Duke University Medical Center, Durham, NC 27710, USA
| | - YiPing Chen
- Department of Cell and Molecular Biology Tulane University New Orleans, LA 70118, USA
| |
Collapse
|
197
|
The expression of TGF-β3 for epithelial-mesenchyme transdifferentiated MEE in palatogenesis. J Mol Histol 2010; 41:343-55. [DOI: 10.1007/s10735-010-9296-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 09/07/2010] [Indexed: 10/18/2022]
|
198
|
Tang S, Snider P, Firulli AB, Conway SJ. Trigenic neural crest-restricted Smad7 over-expression results in congenital craniofacial and cardiovascular defects. Dev Biol 2010; 344:233-47. [PMID: 20457144 PMCID: PMC2909335 DOI: 10.1016/j.ydbio.2010.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/30/2010] [Accepted: 05/03/2010] [Indexed: 01/10/2023]
Abstract
Smad7 is a negative regulator of TGFbeta superfamily signaling. Using a three-component triple transgenic system, expression of the inhibitory Smad7 was induced via doxycycline within the NCC lineages at pre- and post-migratory stages. Consistent with its role in negatively regulating both TGFbeta and BMP signaling in vitro, induction of Smad7 within the NCC significantly suppressed phosphorylation levels of both Smad1/5/8 and Smad2/3 in vivo, resulting in subsequent loss of NCC-derived craniofacial, pharyngeal and cardiac OFT cushion cells. At the cellular level, increased cell death was observed in pharyngeal arches. However, cell proliferation and NCC-derived smooth muscle differentiation were unaltered. NCC lineage mapping demonstrated that cardiac NCC emigration and initial migration were not affected, but subsequent colonization of the OFT was significantly reduced. Induction of Smad7 in post-migratory NCC resulted in interventricular septal chamber septation defects, suggesting that TGFbeta superfamily signaling is also essential for cardiac NCC at post-migratory stages to govern normal cardiac development. Taken together, the data illustrate that tightly regulated TGFbeta superfamily signaling plays an essential role during craniofacial and cardiac NCC colonization and cell survival in vivo.
Collapse
Affiliation(s)
- Sunyong Tang
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Paige Snider
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Antony B. Firulli
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Simon J. Conway
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| |
Collapse
|
199
|
Yang X, Kilgallen S, Andreeva V, Spicer DB, Pinz I, Friesel R. Conditional expression of Spry1 in neural crest causes craniofacial and cardiac defects. BMC DEVELOPMENTAL BIOLOGY 2010; 10:48. [PMID: 20459789 PMCID: PMC2874773 DOI: 10.1186/1471-213x-10-48] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 05/11/2010] [Indexed: 12/20/2022]
Abstract
Background Growth factors and their receptors are mediators of organogenesis and must be tightly regulated in a temporal and spatial manner for proper tissue morphogenesis. Intracellular regulators of growth factor signaling pathways provide an additional level of control. Members of the Sprouty family negatively regulate receptor tyrosine kinase pathways in several developmental contexts. To gain insight into the role of Spry1 in neural crest development, we analyzed the developmental effects of conditional expression of Spry1 in neural crest-derived tissues. Results Here we report that conditional expression of Spry1 in neural crest cells causes defects in craniofacial and cardiac development in mice. Spry1;Wnt1-Cre embryos die perinatally and exhibit facial clefting, cleft palate, cardiac and cranial nerve defects. These defects appear to be the result of decreased proliferation and increased apoptosis of neural crest and neural crest-derived cell populations. In addition, the domains of expression of several key transcription factors important to normal craniofacial and cardiac development including AP2, Msx2, Dlx5, and Dlx6 were reduced in Spry1;Wnt1-Cre transgenic embryos. Conclusion Collectively, these data suggest that Spry1 is an important regulator of craniofacial and cardiac morphogenesis and perturbations in Spry1 levels may contribute to congenital disorders involving tissues of neural crest origin.
Collapse
Affiliation(s)
- Xuehui Yang
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | | | | | | | | | | |
Collapse
|
200
|
Hosokawa R, Oka K, Yamaza T, Iwata J, Urata M, Xu X, Bringas P, Nonaka K, Chai Y. TGF-beta mediated FGF10 signaling in cranial neural crest cells controls development of myogenic progenitor cells through tissue-tissue interactions during tongue morphogenesis. Dev Biol 2010; 341:186-95. [PMID: 20193675 PMCID: PMC3336866 DOI: 10.1016/j.ydbio.2010.02.030] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 02/17/2010] [Accepted: 02/19/2010] [Indexed: 01/15/2023]
Abstract
Skeletal muscles are formed from two cell lineages, myogenic and fibroblastic. Mesoderm-derived myogenic progenitors form muscle cells whereas fibroblastic cells give rise to the supportive connective tissue of skeletal muscles, such as the tendons and perimysium. It remains unknown how myogenic and fibroblastic cell-cell interactions affect cell fate determination and the organization of skeletal muscle. In the present study, we investigated the functional significance of cell-cell interactions in regulating skeletal muscle development. Our study shows that cranial neural crest (CNC) cells give rise to the fibroblastic cells of the tongue skeletal muscle in mice. Loss of Tgfbr2 in CNC cells (Wnt1-Cre;Tgfbr2(flox/flox)) results in microglossia with reduced Scleraxis and Fgf10 expression as well as decreased myogenic cell proliferation, reduced cell number and disorganized tongue muscles. Furthermore, TGF-beta2 beads induced the expression of Scleraxis in tongue explant cultures. The addition of FGF10 rescued the muscle cell number in Wnt1-Cre;Tgfbr2(flox/flox) mice. Thus, TGF-beta induced FGF10 signaling has a critical function in regulating tissue-tissue interaction during tongue skeletal muscle development.
Collapse
Affiliation(s)
- Ryoichi Hosokawa
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033
| | - Kyoko Oka
- Division of Oral Health, Growth & Development, Kyushu University, School of Dentistry, Kyushu, Japan
| | - Takayoshi Yamaza
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033
| | - Junichi Iwata
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033
| | - Mark Urata
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033
| | - Xun Xu
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033
| | - Pablo Bringas
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033
| | - Kazuaki Nonaka
- Division of Oral Health, Growth & Development, Kyushu University, School of Dentistry, Kyushu, Japan
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|