151
|
Rab11 regulates JNK and Raf/MAPK-ERK signalling pathways during Drosophila wing development. Cell Biol Int 2011; 34:1113-8. [PMID: 20642455 DOI: 10.1042/cbi20100155] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Developmental signalling pathways are regulated by intracellular vesicle trafficking in multicellular organisms. In our earlier communication, we have shown that mutation in Rab11 (a subfamily of the Ypt/Rab gene family) results in the activation of JNK signalling pathways in Drosophila eye. Here, we report that Rab11 regulates JNK and Raf/MAPK-ERK signalling pathways during Drosophila wing development. Using immunofluorescence and immunohistochemical analyses, we show that overexpression of Rab11 in mutant wing imaginal disc cells triggers the induction of apoptosis and activation of JNK and ERK. Further, using a genetic approach it has been shown that Rab11 interacts with the components of these pathways during Drosophila wing development. In addition to this, in Rab11 mutant wing imaginal discs JNK activity was monitored using puc(E)⁶⁹, a P-lacZ enhancer-trap line inserted in puckered (puc). A strong induction of puc in Rab11 mutant wing imaginal disc cells provided a strong support that Rab11 regulates the JNK signalling pathway during Drosophila wing development.
Collapse
|
152
|
Uno T, Hata K, Hiragaki S, Isoyama Y, Trang LTD, Uno Y, Kanamaru K, Yamagata H, Nakamura M, Takagi M, Takeda M. Small GTPases of the Rab family in the brain of Bombyx mori. Histochem Cell Biol 2010; 134:615-22. [DOI: 10.1007/s00418-010-0755-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2010] [Indexed: 11/24/2022]
Affiliation(s)
- Tomohide Uno
- Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, Nada-ku, Kobe, Hyogo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Recycling endosomes in apical plasma membrane domain formation and epithelial cell polarity. Trends Cell Biol 2010; 20:618-26. [PMID: 20833047 DOI: 10.1016/j.tcb.2010.08.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/05/2010] [Accepted: 08/06/2010] [Indexed: 01/24/2023]
Abstract
Recycling endosomes have taken central stage in the intracellular sorting and polarized trafficking of apical and basolateral plasma membrane components. Molecular players in the underlying mechanisms are now emerging, including small GTPases, class V myosins and adaptor proteins. In particular, defects in the expression or function of these recycling endosome-associated and endosome-regulating proteins have been implicated in cell surface polarity defects and diseases, including microvillus inclusion disease, arthrogryposis-renal dysfunction-cholestasis syndrome, and virus susceptibility. Key findings are that recycling endosomes recruit and deliver core polarity proteins to lateral cell surfaces and initiate the biogenesis of apical plasma membrane domains and epithelial cell polarity. Here, we review recent data that implicate recycling endosomes in the establishment and maintenance of epithelial cell polarity.
Collapse
|
154
|
Yogev S, Schejter ED, Shilo BZ. Polarized secretion of Drosophila EGFR ligand from photoreceptor neurons is controlled by ER localization of the ligand-processing machinery. PLoS Biol 2010; 8. [PMID: 20957186 PMCID: PMC2950126 DOI: 10.1371/journal.pbio.1000505] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 08/23/2010] [Indexed: 11/18/2022] Open
Abstract
The release of signaling molecules from neurons must be regulated, to accommodate their highly polarized structure. In the developing Drosophila visual system, photoreceptor neurons secrete the epidermal growth factor receptor ligand Spitz (Spi) from their cell bodies, as well as from their axonal termini. Here we show that subcellular localization of Rhomboid proteases, which process Spi, determines the site of Spi release from neurons. Endoplasmic reticulum (ER) localization of Rhomboid 3 is essential for its ability to promote Spi secretion from axons, but not from cell bodies. We demonstrate that the ER extends throughout photoreceptor axons, and show that this feature facilitates the trafficking of the Spi precursor, the ligand chaperone Star, and Rhomboid 3 to axonal termini. Following this trafficking step, secretion from the axons is regulated in a manner similar to secretion from cell bodies. These findings uncover a role for the ER in trafficking proteins from the neuronal cell body to axon terminus.
Collapse
Affiliation(s)
- Shaul Yogev
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal D. Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
155
|
Tong J, Yan X, Yu L. The late stage of autophagy: cellular events and molecular regulation. Protein Cell 2010; 1:907-15. [PMID: 21204017 PMCID: PMC4875124 DOI: 10.1007/s13238-010-0121-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 10/18/2010] [Indexed: 12/28/2022] Open
Abstract
Autophagy is an intracellular degradation system that delivers cytoplasmic contents to the lysosome for degradation. It is a "self-eating" process and plays a "house-cleaner" role in cells. The complex process consists of several sequential steps-induction, autophagosome formation, fusion of lysosome and autophagosome, degradation, efflux transportation of degradation products, and autophagic lysosome reformation. In this review, the cellular and molecular regulations of late stage of autophagy, including cellular events after fusion step, are summarized.
Collapse
Affiliation(s)
- Jingjing Tong
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Science, Tsinghua University, Beijing, 100084 China
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xianghua Yan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Li Yu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Science, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
156
|
Shivas JM, Morrison HA, Bilder D, Skop AR. Polarity and endocytosis: reciprocal regulation. Trends Cell Biol 2010; 20:445-52. [PMID: 20493706 PMCID: PMC2917511 DOI: 10.1016/j.tcb.2010.04.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
Abstract
The establishment and maintenance of polarized plasma membrane domains is essential for cellular function and proper development of organisms. The molecules and pathways involved in determining cell polarity are remarkably well conserved between animal species. Historically, exocytic mechanisms have received primary emphasis among trafficking routes responsible for cell polarization. Accumulating evidence now reveals that endocytosis plays an equally important role in the proper localization of key polarity proteins. Intriguingly, some polarity proteins can also regulate the endocytic machinery. Here, we review emerging evidence for the reciprocal regulation between polarity proteins and endocytic pathways, and discuss possible models for how these distinct processes could interact to create separate cellular domains.
Collapse
Affiliation(s)
- Jessica M. Shivas
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Holly A. Morrison
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - David Bilder
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Ahna R. Skop
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
157
|
Murthy M, Teodoro RO, Miller TP, Schwarz TL. Sec5, a member of the exocyst complex, mediates Drosophila embryo cellularization. Development 2010; 137:2773-83. [PMID: 20630948 DOI: 10.1242/dev.048330] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cellularization of the Drosophila embryo is the process by which a syncytium of approximately 6000 nuclei is subdivided into discrete cells. In order to individualize the cells, massive membrane addition needs to occur by a process that is not fully understood. The exocyst complex is required for some, but not all, forms of exocytosis and plays a role in directing vesicles to appropriate domains of the plasma membrane. Sec5 is a central component of this complex and we here report the isolation of a new allele of sec5 that has a temperature-sensitive phenotype. Using this allele, we investigated whether the exocyst complex is required for cellularization. Embryos from germline clones of the sec5(ts1) allele progress normally through cycle 13. At cellularization, however, cleavage furrows do not invaginate between nuclei and consequently cells do not form. A zygotically translated membrane protein, Neurotactin, is not inserted into the plasma membrane and instead accumulates in cytoplasmic puncta. During cellularization, Sec5 becomes concentrated at the apical end of the lateral membranes, which is likely to be the major site of membrane addition. Subsequently, Sec5 concentrates at the sub-apical complex, indicating a role for Sec5 in the polarized epithelium. Thus, the exocyst is necessary for, and is likely to direct, the polarized addition of new membrane during this form of cytokinesis.
Collapse
Affiliation(s)
- Mala Murthy
- The F.M. Kirby Neurobiology Center, Children's Hospital, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
158
|
Cayouette S, Bousquet SM, Francoeur N, Dupré É, Monet M, Gagnon H, Guedri YB, Lavoie C, Boulay G. Involvement of Rab9 and Rab11 in the intracellular trafficking of TRPC6. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:805-12. [DOI: 10.1016/j.bbamcr.2010.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 03/10/2010] [Accepted: 03/16/2010] [Indexed: 01/30/2023]
|
159
|
Houalla T, Shi L, van Meyel DJ, Rao Y. Rab-mediated vesicular transport is required for neuronal positioning in the developing Drosophila visual system. Mol Brain 2010; 3:19. [PMID: 20540751 PMCID: PMC2891732 DOI: 10.1186/1756-6606-3-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 06/11/2010] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The establishment of tissue architecture in the nervous system requires the proper migration and positioning of newly born neurons during embryonic development. Defects in nuclear translocation, a key process in neuronal positioning, are associated with brain diseases such as lissencephaly in humans. Accumulated evidence suggests that the molecular mechanisms controlling neuronal movement are conserved throughout evolution. While the initial events of neuronal migration have been extensively studied, less is known about the molecular details underlying the establishment of neuronal architecture after initial migration. RESULTS In a search for novel players in the control of photoreceptor (R cell) positioning in the developing fly visual system, we found that misexpression of the RabGAP RN-Tre disrupted the apical localization of R-cell nuclei. RN-Tre interacts with Rab5 and Rab11 in the fly eye. Genetic analysis shows that Rab5, Shi and Rab11 are required for maintaining apical localization of R-cell nuclei. CONCLUSIONS We propose that Rab5, Shi and Rab11 function together in a vesicular transport pathway for regulating R-cell positioning in the developing eye.
Collapse
Affiliation(s)
- Tarek Houalla
- McGill Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada
| | | | | | | |
Collapse
|
160
|
Windler SL, Bilder D. Endocytic internalization routes required for delta/notch signaling. Curr Biol 2010; 20:538-43. [PMID: 20226669 PMCID: PMC2845733 DOI: 10.1016/j.cub.2010.01.049] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 01/25/2010] [Accepted: 01/25/2010] [Indexed: 12/15/2022]
Abstract
The internalization of transmembrane receptors from the cell surface plays a central role in signal regulation. Receptor internalization can occur through different routes; however, because of the difficulty in selectively blocking these routes in vivo, their roles in signaling are poorly understood. Here we use null mutations in Drosophila dynamin, clathrin, and AP-2 adaptor subunits to analyze internalization requirements for the Delta ligand and its receptor, Notch. Bulk Notch is internalized via AP-2-dependent endocytosis, but signaling by Notch requires AP-2-independent clathrin-dependent endocytosis, highlighting a distinction between Notch endocytic routes required for degradation versus signaling activation. Signaling by Delta requires dynamin, but whether this generates a pulling force of Delta on Notch or allows for Delta entry into a recycling pathway to gain signaling competence is widely debated. Surprisingly, we show that signaling by Delta in germline cells can occur by clathrin-independent endocytosis, when endosomal entry is blocked, and when activity of Rab11 or its effectors is reduced, suggesting that Delta need not pass through a recognized recycling pathway to achieve signaling competence. The absolute requirement for dynamin-dependent endocytosis but not endosomal entry or Rab11 activity supports "pulling force" rather than "recycling" models for Delta activation.
Collapse
Affiliation(s)
- Sarah L. Windler
- University of California, Berkeley, Department of Molecular and Cell Biology, 142 Life Sciences Addition #3200, Berkeley, CA 94720-3200
| | - David Bilder
- University of California, Berkeley, Department of Molecular and Cell Biology, 142 Life Sciences Addition #3200, Berkeley, CA 94720-3200
| |
Collapse
|
161
|
Abstract
Primary cilia are microtubule-based membrane projections located at the surface of many cells. Defects in primary cilia formation have been implicated in a number of genetic disorders, such as Bardet-Biedl Syndrome and Polycystic Kidney Disease. Recent studies have demonstrated that polarized vesicular transport involving Rab8 and its guanine nucleotide-exchange factor Rabin8 is essential for primary ciliogenesis. Here we report that Rabin8 is a direct downstream effector of Rab11, which functions in membrane trafficking from the trans-Golgi network and recycling endosomes. Rab11, in its GTP-bound form, interacts with Rabin8 and kinetically stimulates the guanine nucleotide-exchange activity of Rabin8 toward Rab8. Rab11 is enriched at the base of the primary cilia and inhibition of Rab11 function by a dominant-negative mutant or RNA interference blocks primary ciliogenesis. Our results suggest that Rab GTPases coordinate with each other in the regulation of vesicular trafficking during primary ciliogenesis.
Collapse
|
162
|
Saja S, Buff H, Smith AC, Williams TS, Korey CA. Identifying cellular pathways modulated by Drosophila palmitoyl-protein thioesterase 1 function. Neurobiol Dis 2010; 40:135-45. [PMID: 20206262 DOI: 10.1016/j.nbd.2010.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 02/03/2010] [Accepted: 02/22/2010] [Indexed: 01/23/2023] Open
Abstract
Infantile-onset Neuronal Ceroid Lipofuscinosis (INCL) is a severe pediatric neurodegenerative disorder produced by mutations in the gene encoding palmitoyl-protein thioesterase 1 (Ppt1). This enzyme is responsible for the removal of a palmitate post-translational modification from an unknown set of substrate proteins. To better understand the function of Ppt1 in neurons, we performed an unbiased dominant loss-of-function genetic modifier screen in Drosophila using a previously characterized Ppt1 gain-of-function system. The enhancers and suppressors identified in our screen make novel connections between Ppt1 and genes involved in cellular trafficking and the modulation of synaptic growth. We further support the relevance of our screen by demonstrating that Garland cells from Ppt1 loss-of-function mutants have defects in endocytic trafficking. Endocytic tracer uptake and ultrastructural analysis of these non-neuronal cells points to Ppt1 playing a role in modulating the early stages of vesicle formation. This work lays the groundwork for further experimental exploration of these processes to better understand their contributions to the INCL disease process.
Collapse
Affiliation(s)
- Stephanie Saja
- Department of Biology, The College of Charleston, 66 George Street, Charleston, SC 29424, USA
| | | | | | | | | |
Collapse
|
163
|
Polevoy G, Wei HC, Wong R, Szentpetery Z, Kim YJ, Goldbach P, Steinbach SK, Balla T, Brill JA. Dual roles for the Drosophila PI 4-kinase four wheel drive in localizing Rab11 during cytokinesis. ACTA ACUST UNITED AC 2010; 187:847-58. [PMID: 19995935 PMCID: PMC2806325 DOI: 10.1083/jcb.200908107] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Successful completion of cytokinesis relies on addition of new membrane, and requires the recycling endosome regulator Rab11, which localizes to the midzone. Despite the critical role of Rab11 in this process, little is known about the formation and composition of Rab11-containing organelles. Here, we identify the phosphatidylinositol (PI) 4-kinase III beta four wheel drive (Fwd) as a key regulator of Rab11 during cytokinesis in Drosophila melanogaster spermatocytes. We show Fwd is required for synthesis of PI 4-phosphate (PI4P) on Golgi membranes and for formation of PI4P-containing secretory organelles that localize to the midzone. Fwd binds and colocalizes with Rab11 on Golgi membranes, and is required for localization of Rab11 in dividing cells. A kinase-dead version of Fwd also binds Rab11 and partially restores cytokinesis to fwd mutant flies. Moreover, activated Rab11 partially suppresses loss of fwd. Our data suggest Fwd plays catalytic and noncatalytic roles in regulating Rab11 during cytokinesis.
Collapse
Affiliation(s)
- Gordon Polevoy
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Charlton-Perkins M, Cook TA. Building a fly eye: terminal differentiation events of the retina, corneal lens, and pigmented epithelia. Curr Top Dev Biol 2010; 93:129-73. [PMID: 20959165 DOI: 10.1016/b978-0-12-385044-7.00005-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the past, vast differences in ocular structure, development, and physiology throughout the animal kingdom led to the widely accepted notion that eyes are polyphyletic, that is, they have independently arisen multiple times during evolution. Despite the dissimilarity between vertebrate and invertebrate eyes, it is becoming increasingly evident that the development of the eye in both groups shares more similarity at the genetic level than was previously assumed, forcing a reexamination of eye evolution. Understanding the molecular underpinnings of cell type specification during Drosophila eye development has been a focus of research for many labs over the past 25 years, and many of these findings are nicely reviewed in Chapters 1 and 4. A somewhat less explored area of research, however, considers how these cells, once specified, develop into functional ocular structures. This review aims to summarize the current knowledge related to the terminal differentiation events of the retina, corneal lens, and pigmented epithelia in the fly eye. In addition, we discuss emerging evidence that the different functional components of the fly eye share developmental pathways and functions with the vertebrate eye.
Collapse
Affiliation(s)
- Mark Charlton-Perkins
- Department of Pediatric Ophthalmology, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | | |
Collapse
|
165
|
Abstract
Neuronal synapses are important microstructures that underlie complex cognitive capacities. Recent studies, primarily in Caenorhabditis elegans and Drosophila melanogaster, have revealed surprising parallels between these synapses and the 'chemosensory synapses' that reside at the tips of chemosensory cells that respond to environmental stimuli. Similarities in the structures, mechanisms of action and specific molecules found at these sites extend to the presynaptic, postsynaptic and glial entities composing both synapse types. In this article I propose that chemosensory synapses may serve as useful models of neuronal synapses, and consider the possibility that the two synapse types derive from a common ancestral structure.
Collapse
Affiliation(s)
- Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
166
|
Massignan T, Biasini E, Lauranzano E, Veglianese P, Pignataro M, Fioriti L, Harris DA, Salmona M, Chiesa R, Bonetto V. Mutant prion protein expression is associated with an alteration of the Rab GDP dissociation inhibitor alpha (GDI)/Rab11 pathway. Mol Cell Proteomics 2009; 9:611-22. [PMID: 19996123 DOI: 10.1074/mcp.m900271-mcp200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The prion protein (PrP) is a glycosylphosphatidylinositol-anchored membrane glycoprotein that plays a vital role in prion diseases, a class of fatal neurodegenerative disorders of humans and animals. Approximately 20% of human prion diseases display autosomal dominant inheritance and are linked to mutations in the PrP gene on chromosome 20. PrP mutations are thought to favor the conformational conversion of PrP into a misfolded isoform that causes disease by an unknown mechanism. The PrP mutation D178N/Met-129 is linked to fatal familial insomnia, which causes severe sleep abnormalities and autonomic dysfunction. We showed by immunoelectron microscopy that this mutant PrP accumulates abnormally in the endoplasmic reticulum and Golgi of transfected neuroblastoma N2a cells. To investigate the impact of intracellular PrP accumulation on cellular homeostasis, we did a two-dimensional gel-based differential proteomics analysis. We used wide range immobilized pH gradient strips, pH 4-7 and 6-11, to analyze a large number of proteins. We found changes in proteins involved in energy metabolism, redox regulation, and vesicular transport. Rab GDP dissociation inhibitor alpha (GDI) was one of the proteins that changed most. GDI regulates vesicular protein trafficking by acting on the activity of several Rab proteins. We found a specific reduction in the level of functional Rab11 in mutant PrP-expressing cells associated with impaired post-Golgi trafficking. Our data are consistent with a model by which mutant PrP induces overexpression of GDI, activating a cytotoxic feedback loop that leads to protein accumulation in the secretory pathway.
Collapse
Affiliation(s)
- Tania Massignan
- Dulbecco Telethon Institute (DTI) c/o Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Robinett CC, Giansanti MG, Gatti M, Fuller MT. TRAPPII is required for cleavage furrow ingression and localization of Rab11 in dividing male meiotic cells of Drosophila. J Cell Sci 2009; 122:4526-34. [PMID: 19934220 DOI: 10.1242/jcs.054536] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Although membrane addition is crucial for cytokinesis in many animal cell types, the specific mechanisms supporting cleavage furrow ingression are not yet understood. Mutations in the gene brunelleschi (bru), which encodes the Drosophila ortholog of the yeast Trs120p subunit of TRAPPII, cause failure of furrow ingression in male meiotic cells. In non-dividing cells, Brunelleschi protein fused to GFP is dispersed throughout the cytoplasm and enriched at Golgi organelles, similarly to another Drosophila TRAPPII subunit, dBet3. Localization of the membrane-trafficking GTPase Rab11 to the cleavage furrow requires wild-type function of bru, and genetic interactions between bru and Rab11 increase the failure of meiotic cytokinesis and cause synthetic lethality. bru also genetically interacts with four wheel drive (fwd), which encodes a PI4Kbeta, such that double mutants exhibit enhanced failure of male meiotic cytokinesis. These results suggest that Bru cooperates with Rab11 and PI4Kbeta to regulate the efficiency of membrane addition to the cleavage furrow, thus promoting cytokinesis in Drosophila male meiotic cells.
Collapse
Affiliation(s)
- Carmen C Robinett
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
168
|
Roeth JF, Sawyer JK, Wilner DA, Peifer M. Rab11 helps maintain apical crumbs and adherens junctions in the Drosophila embryonic ectoderm. PLoS One 2009; 4:e7634. [PMID: 19862327 PMCID: PMC2763285 DOI: 10.1371/journal.pone.0007634] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 10/07/2009] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Tissue morphogenesis and organogenesis require that cells retain stable cell-cell adhesion while changing shape and moving. One mechanism to accommodate this plasticity in cell adhesion involves regulated trafficking of junctional proteins. METHODOLOGY/PRINCIPAL FINDINGS Here we explored trafficking of junctional proteins in two well-characterized model epithelia, the Drosophila embryonic ectoderm and amnioserosa. We find that DE-cadherin, the transmembrane protein of adherens junctions, is actively trafficked through putative vesicles, and appears to travel through both Rab5-positive and Rab11-positive structures. We manipulated the functions of Rab11 and Rab5 to examine the effects on junctional stability and morphogenesis. Reducing Rab11 function, either using a dominant negative construct or loss of function alleles, disrupts integrity of the ectoderm and leads to loss of adherens junctions. Strikingly, the apical junctional regulator Crumbs is lost before AJs are destabilized, while the basolateral protein Dlg remains cortical. Altering Rab5 function had less dramatic effects, not disrupting adherens junction integrity but affecting dorsal closure. CONCLUSIONS/SIGNIFICANCE We contrast our results with what others saw when disrupting other trafficking regulators, and when disrupting Rab function in other tissues; together these data suggest distinct mechanisms regulate junctional stability and plasticity in different tissues.
Collapse
Affiliation(s)
- Jeremiah F. Roeth
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jessica K. Sawyer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel A. Wilner
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
169
|
Bringing together components of the fly renal system. Curr Opin Genet Dev 2009; 19:526-32. [PMID: 19783135 PMCID: PMC2789252 DOI: 10.1016/j.gde.2009.08.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/31/2009] [Accepted: 08/28/2009] [Indexed: 12/02/2022]
Abstract
The function of all animal excretory systems is to rid the body of toxins and to maintain homeostatic balance. Although excretory organs in diverse animal species appear superficially different they are often built on two common principals: filtration and tubular secretion/reabsorbtion. The Drosophila excretory system is composed of filtration nephrocytes and Malpighian (renal) tubules. Here we review recent molecular genetic data on the development and differentiation of nephrocytes and renal tubules. We focus in particular on the molecular mechanisms that underpin key cell and tissue behaviours during morphogenesis, drawing parallels with other species where they exist. Finally we assess the implications of patterned tissue differentiation for the subsequent regulation of renal function. These studies highlight the continuing usefulness of the fly to provide fundamental insights into the complexities of organ formation.
Collapse
|
170
|
Fader CM, Sánchez DG, Mestre MB, Colombo MI. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1901-16. [PMID: 19781582 DOI: 10.1016/j.bbamcr.2009.09.011] [Citation(s) in RCA: 371] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 09/14/2009] [Indexed: 12/19/2022]
Abstract
During reticulocyte maturation, some membrane proteins and organelles that are not required in the mature red cell are lost. Several of these proteins are released into the extracellular medium associated with the internal vesicles present in multivesicular bodies (MVBs). Likewise, organelles such as mitochondria and endoplasmic reticulum are wrapped into double membrane vacuoles (i.e., autophagosomes) and degraded via autophagy. Morphological, molecular, and biochemical studies have shown that autophagosomes fuse with MVBs forming the so-called amphisomes, a prelysosomal hybrid organelle. SNAREs are key molecules of the vesicle fusion machinery. TI-VAMP/VAMP7 and VAMP3/cellubrevin are two v-SNARE proteins involved in the endocytic and exocytic pathways. We have previously shown that in the human leukemic K562 cells, Rab11 decorates MVBs and it is necessary for fusion between autophagosomes with MVBs. In the present report, we present evidence indicating that VAMP3 is required for the fusion between MVBs with autophagosomes to generate the amphisome, allowing the maturation of the autophagosome, but it does not seem to be involved in the next step, i. e., fusion with the lysosome. On the other hand, we demonstrate that VAMP7 is necessary for this latter event, allowing the completion of the autophagic pathway. Furthermore, VAMP7 and ATPase NSF, a protein required for SNAREs disassembly, participate in the fusion between MVBs with the plasma membrane to release the internal vesicles (i.e., exosomes) into the extracellular medium.
Collapse
Affiliation(s)
- Claudio Marcelo Fader
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, (5500) Mendoza, Argentina
| | | | | | | |
Collapse
|
171
|
Abstract
Vision mediating photoreceptor cells are specialized light-sensitive neurons in the outer layer of the vertebrate retina. The human retina contains approximately 130 million of such photoreceptors, which enable images of the external environment to be captured at high resolution and high sensitivity. Rod and cone photoreceptor subtypes are further specialized for sensing light in low and high illumination, respectively. To enable visual function, these photoreceptors have developed elaborate morphological domains for the detection of light (outer segments), for changing cell shape (inner segments), and for communication with neighboring retinal neurons (synaptic terminals). Furthermore, rod and cone subtypes feature unique morphological variations of these specialized characteristics. Here, we review the major aspects of vertebrate photoreceptor morphology and key genetic mechanisms that drive their formation. These mechanisms are necessary for cell differentiation as well as function. Their defects lead to cell death.
Collapse
Affiliation(s)
- Breandán Kennedy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland.
| | | |
Collapse
|
172
|
Tiwari AK, Roy JK. Mutation in Rab11 results in abnormal organization of ommatidial cells and activation of JNK signaling in the Drosophila eye. Eur J Cell Biol 2009; 88:445-460. [PMID: 19473727 DOI: 10.1016/j.ejcb.2009.02.188] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 02/16/2009] [Accepted: 02/23/2009] [Indexed: 02/01/2023] Open
Abstract
Rab11(mo), a P insertion line of Rab11 showed degenerated ommatidia and excess cell death in larval/pupal eyes. Here, we demonstrate that Rab11 is essential for normal organization of ommatidial cells and their survival in Drosophila, and a mutation in this gene results in cytoskeleton disruption and activation of JNK signaling in the eye. The spatial organization of various cell types in compound eye, viz., cone, photoreceptor, pigment and bristle cells, were disrupted in Rab11 mutants as revealed by immunostaining of F-actin and adherens and septate junction proteins. Genetic interaction studies indicated that mutation in Rab11 upregulates Drosophila apoptotic genes, rpr, hid and grim. In order to study the pathway that causes excessive cell death in Rab11 mutants, the JNK pathway was chosen and genetic interaction analyses were carried out between Rab11 and candidates of the JNK signaling pathway. A downregulation of JNK signaling rescued the phenotype in Rab11 mutant eyes significantly while overexpression of JNK in the eyes using UAS-eiger, UAS-dtak1 or EP(2)0578, resulted in enhancement of the eye phenotype indicating a link between Rab11 and the JNK signaling pathway.
Collapse
Affiliation(s)
- Anand K Tiwari
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
173
|
Bulgakova NA, Knust E. The Crumbs complex: from epithelial-cell polarity to retinal degeneration. J Cell Sci 2009; 122:2587-96. [DOI: 10.1242/jcs.023648] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The evolutionarily conserved Crumbs protein complex is a key regulator of cell polarity and cell shape in both invertebrates and vertebrates. The important role of this complex in normal cell function is illustrated by the finding that mutations in one of its components, Crumbs, are associated with retinal degeneration in humans, mice and flies. Recent results suggest that the Crumbs complex plays a role in the development of other disease processes that are based on epithelial dysfunction, such as tumorigenesis or the formation of cystic kidneys. Localisation of the complex is restricted to a distinct region of the apical plasma membrane that abuts the zonula adherens in epithelia and photoreceptor cells of invertebrates and vertebrates, including humans. In addition to the core components, a variety of other proteins can be recruited to the complex, depending on the cell type and/or developmental stage. Together with diverse post-transcriptional and post-translational mechanisms that regulate the individual components, this provides an enormous functional diversity and flexibility of the complex. In this Commentary, we summarise findings concerning the organisation and modification of the Crumbs complex, and the conservation of its constituents from flies to mammals. In addition, we discuss recent results that suggest its participation in various human diseases, including blindness and tumour formation.
Collapse
Affiliation(s)
- Natalia A. Bulgakova
- Max-Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, Germany
| | - Elisabeth Knust
- Max-Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, Germany
| |
Collapse
|
174
|
Gorska MM, Liang Q, Karim Z, Alam R. Uncoordinated 119 protein controls trafficking of Lck via the Rab11 endosome and is critical for immunological synapse formation. THE JOURNAL OF IMMUNOLOGY 2009; 183:1675-84. [PMID: 19592652 DOI: 10.4049/jimmunol.0900792] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The activation of T cells through the TCR is essential for development of the adaptive immune response. TCR does not have any enzymatic activity and relies on the plasma membrane-associated lymphocyte-specific protein tyrosine kinase (Lck) for initiation of signaling. Here we uncover a mechanism that is responsible for plasma membrane targeting of Lck. We show that Lck is transported to the membrane via a specific endosomal compartment. The transport depends on the adaptor protein Uncoordinated 119 (Unc119), on the GTPase rat brain 11 (Rab11), and on the actin cytoskeleton. Unc119 regulates the activation of Rab11. Consequently, Unc119 orchestrates the recruitment of the actin-based motor protein, myosin 5B, and the organization of multiprotein complexes on endosomes. The Unc119-regulated pathway is essential for immunological synapse formation and T cell activation.
Collapse
Affiliation(s)
- Magdalena M Gorska
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | | | | | | |
Collapse
|
175
|
Sann S, Wang Z, Brown H, Jin Y. Roles of endosomal trafficking in neurite outgrowth and guidance. Trends Cell Biol 2009; 19:317-24. [PMID: 19540123 DOI: 10.1016/j.tcb.2009.05.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/04/2009] [Accepted: 05/07/2009] [Indexed: 02/06/2023]
Abstract
Membrane trafficking and cargo delivery are essential for axonal and dendritic growth and guidance. Neurons have numerous diverse post-Golgi vesicles and recent advances have clarified their identity and regulation. Combinatorial approaches using in vivo imaging of 'intracellular cargo address labels' and functional perturbation have provided insight into these processes. In particular, the UNC-51 kinase regulates the trafficking of early endosomes and their axon guidance molecular cargos in several types of neurons in multiple organisms. Vesicular compartments bearing features of recycling endosomes, late endosomes or lysosomes also contribute to membrane addition and protein trafficking during neurite outgrowth and extension. New work shows that ubiquitylation of cargos and Rab effectors further specifies the trafficking routes of post-Golgi vesicles. These findings have begun to provide a more detailed view of the molecular mechanisms involved in neurite outgrowth and guidance. Additionally, high-resolution light microscopy imaging promises greater temporal and spatial understanding of vesicular exchange and maturation in neurons in the near future.
Collapse
Affiliation(s)
- Sharon Sann
- Division of Biological Sciences, University of California, San Diego, CA 92093, USA.
| | | | | | | |
Collapse
|
176
|
Thomas C, Rousset R, Noselli S. JNK signalling influences intracellular trafficking during Drosophila morphogenesis through regulation of the novel target gene Rab30. Dev Biol 2009; 331:250-60. [PMID: 19427848 DOI: 10.1016/j.ydbio.2009.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 04/30/2009] [Accepted: 05/03/2009] [Indexed: 10/20/2022]
Abstract
JNK-mediated closure of the Drosophila dorsal epidermis during embryogenesis is a well-characterised model for morphogenesis. However, little is known about how JNK signalling modifies particular cellular behaviours such as intracellular transport. Here we demonstrate that the gene encoding the small GTPase Rab30 is a new JNK transcriptional target whose function is required during embryonic and adult morphogenesis including JNK-dependent dorsal closure, embryonic head involution and thorax closure. Using immuno-fluorescence and live imaging, we show that EGFP-Rab30 localises to trans-Golgi in addition to small unidentified vesicles, and moves in a microtubule-dependent, polarised dorso-ventral manner in the leading edge during dorsal closure. We propose that JNK activity upregulates genes involved in intracellular transport in order to provide an increased level of trafficking activity in cells undergoing complex morphogenetic arrangements such as dorsal closure.
Collapse
Affiliation(s)
- Chloe Thomas
- Institute of Developmental Biology and Cancer, University of Nice, UMR CNRS, France
| | | | | |
Collapse
|
177
|
Bhuin T, Roy JK. Rab11 is required for myoblast fusion in Drosophila. Cell Tissue Res 2009; 336:489-99. [PMID: 19370361 DOI: 10.1007/s00441-009-0782-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 02/11/2009] [Indexed: 01/06/2023]
Abstract
Rab11, an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In order to gain an insight into the role of this gene in myogenesis during embryonic development, we have studied the expression pattern of Rab11 in mesoderm during muscle differentiation in Drosophila embryo. When dominant-negative or constitutively active Drosophila Rab11 proteins are expressed or Rab11 is reduced via double-stranded RNA in muscle precursors, they cause partial failure of myoblast fusion and show anomalies in the shape of the muscle fibres. Our results suggest that Rab11 plays no role in cell fate specification in muscle precursors but is required late in the process of myoblast fusion.
Collapse
Affiliation(s)
- Tanmay Bhuin
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221 005, India
| | | |
Collapse
|
178
|
Raghu P, Coessens E, Manifava M, Georgiev P, Pettitt T, Wood E, Garcia-Murillas I, Okkenhaug H, Trivedi D, Zhang Q, Razzaq A, Zaid O, Wakelam M, O'Kane CJ, Ktistakis N. Rhabdomere biogenesis in Drosophila photoreceptors is acutely sensitive to phosphatidic acid levels. J Cell Biol 2009; 185:129-45. [PMID: 19349583 PMCID: PMC2700502 DOI: 10.1083/jcb.200807027] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 02/26/2009] [Indexed: 11/28/2022] Open
Abstract
Phosphatidic acid (PA) is postulated to have both structural and signaling functions during membrane dynamics in animal cells. In this study, we show that before a critical time period during rhabdomere biogenesis in Drosophila melanogaster photoreceptors, elevated levels of PA disrupt membrane transport to the apical domain. Lipidomic analysis shows that this effect is associated with an increase in the abundance of a single, relatively minor molecular species of PA. These transport defects are dependent on the activation state of Arf1. Transport defects via PA generated by phospholipase D require the activity of type I phosphatidylinositol (PI) 4 phosphate 5 kinase, are phenocopied by knockdown of PI 4 kinase, and are associated with normal endoplasmic reticulum to Golgi transport. We propose that PA levels are critical for apical membrane transport events required for rhabdomere biogenesis.
Collapse
Affiliation(s)
- Padinjat Raghu
- Inositide Laboratory, Babraham Institute, Babraham Research Campus, Cambridge, England, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Accumulation of rhodopsin in late endosomes triggers photoreceptor cell degeneration. PLoS Genet 2009; 5:e1000377. [PMID: 19214218 PMCID: PMC2633617 DOI: 10.1371/journal.pgen.1000377] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 01/09/2009] [Indexed: 12/23/2022] Open
Abstract
Progressive retinal degeneration is the underlying feature of many human retinal dystrophies. Previous work using Drosophila as a model system and analysis of specific mutations in human rhodopsin have uncovered a connection between rhodopsin endocytosis and retinal degeneration. In these mutants, rhodopsin and its regulatory protein arrestin form stable complexes, and endocytosis of these complexes causes photoreceptor cell death. In this study we show that the internalized rhodopsin is not degraded in the lysosome but instead accumulates in the late endosomes. Using mutants that are defective in late endosome to lysosome trafficking, we were able to show that rhodopsin accumulates in endosomal compartments in these mutants and leads to light-dependent retinal degeneration. Moreover, we also show that in dying photoreceptors the internalized rhodopsin is not degraded but instead shows characteristics of insoluble proteins. Together these data implicate buildup of rhodopsin in the late endosomal system as a novel trigger of death of photoreceptor neurons.
Collapse
|
180
|
Uno T, Moriwaki T, Nakamura M, Matsubara M, Yamagata H, Kanamaru K, Takagi M. Biochemical characterization of rab proteins from Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2009; 70:77-89. [PMID: 18949803 DOI: 10.1002/arch.20273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The small GTPases known as Rab proteins are key regulators of membrane trafficking. We used RT-PCR to isolate cDNA clones of insect-specific Rab proteins (BRabN1 and BRabN2) showing low homology with known Rab proteins from other animals, from mRNA of Bombyx mori. These 2 Rabs were produced in Escherichia coli and purified. BRabN1 bound [(3)H]-GDP and [(35)S]-GTPgammaS with dissociation constants of 0.087 x 10(-6) M and 1.02 x 10(-6) M, respectively, whereas those of BRabN2 were 0.546 x 10(-6) M and 1.02 x 10(-6) M, respectively. Binding of [(35)S]-GTPgammaS to BRabN1 and N2 was inhibited by GDP and GTP. The GTP-hydrolysis activities of BRabN1 and N2 were 154 and 35.5 mmol/min/mole, respectively, and bound [(35)S]-GTPgammaS was exchanged efficiently with GTP. BRabN1 also showed ATPase activity and exchange of [(35)S]-GTPgammaS with ATP. Monoclonal antibodies against BRabN1 and N2 did not recognize any other Rab proteins, and Western blotting using the anti-BRabN1 antibody revealed a single band in the testis of B. mori. These results suggest that BRabN1 and N2 of B. mori bind GTP, convert from the GTP-bound state to the GDP-bound state by intrinsic GTP hydrolysis activity, and return to the GTP-bound state with the exchange, and that BRabN1 is specifically expressed in testis. Arch. Insect Biochem. Physiol. 2008. (c) 2008 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Tomohide Uno
- Agrobioscience, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan.
| | | | | | | | | | | | | |
Collapse
|
181
|
Nagaraj R, Banerjee U. Regulation of Notch and Wingless signalling by phyllopod, a transcriptional target of the EGFR pathway. EMBO J 2009; 28:337-46. [PMID: 19153610 DOI: 10.1038/emboj.2008.286] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 12/09/2008] [Indexed: 11/09/2022] Open
Abstract
Spatial and temporal control of Notch and Wingless (Wg) pathways during development is regulated at multiple levels. Here, we present an analysis of Phyllopod as a coordinated regulator of these two critical signal transduction pathways. Phyl specifically helps traffic Notch and Wg pathway components within early endocytic vesicles, thereby controlling the amount of processed signal available for causing a transcriptional response within the nucleus. In Drosophila, the EGFR pathway transcriptionally activates phyl whose product then blocks Notch and Wg signalling pathways. This provides a mechanistic basis for an antagonistic relationship between receptor tyrosine kinase and Notch/Wg pathways during development. Furthermore, this study identifies a Phyl-regulated class of endosomal vesicles that specifically include components of Notch and Wg signalling.
Collapse
Affiliation(s)
- Raghavendra Nagaraj
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
182
|
Mazelova J, Astuto-Gribble L, Inoue H, Tam BM, Schonteich E, Prekeris R, Moritz OL, Randazzo PA, Deretic D. Ciliary targeting motif VxPx directs assembly of a trafficking module through Arf4. EMBO J 2009; 28:183-92. [PMID: 19153612 DOI: 10.1038/emboj.2008.267] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 11/26/2008] [Indexed: 11/09/2022] Open
Abstract
Dysfunctions of primary cilia and cilia-derived sensory organelles underlie a multitude of human disorders, including retinal degeneration, yet membrane targeting to the cilium remains poorly understood. Here, we show that the newly identified ciliary targeting VxPx motif present in rhodopsin binds the small GTPase Arf4 and regulates its association with the trans-Golgi network (TGN), which is the site of assembly and function of a ciliary targeting complex. This complex is comprised of two small GTPases, Arf4 and Rab11, the Rab11/Arf effector FIP3, and the Arf GTPase-activating protein ASAP1. ASAP1 mediates GTP hydrolysis on Arf4 and functions as an Arf4 effector that regulates budding of post-TGN carriers, along with FIP3 and Rab11. The Arf4 mutant I46D, impaired in ASAP1-mediated GTP hydrolysis, causes aberrant rhodopsin trafficking and cytoskeletal and morphological defects resulting in retinal degeneration in transgenic animals. As the VxPx motif is present in other ciliary membrane proteins, the Arf4-based targeting complex is most likely a part of conserved machinery involved in the selection and packaging of the cargo destined for delivery to the cilium.
Collapse
Affiliation(s)
- Jana Mazelova
- Division of Ophthalmology, Department of Surgery, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Hunter WB, Smith MT, Hunnicutt LE. Analysis and functional annotation of expressed sequence tags from the Asian longhorned beetle, Anoplophora glabripennis. JOURNAL OF INSECT SCIENCE (ONLINE) 2009; 9:21. [PMID: 19619025 PMCID: PMC3011843 DOI: 10.1673/031.009.2101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 03/08/2008] [Indexed: 05/28/2023]
Abstract
The Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), is one of the most economically and ecologically devastating forest insects to invade North America in recent years. Despite its substantial impact, limited effort has been expended to define the genetic and molecular make-up of this species. Considering the significant role played by late-stadia larvae in host tree decimation, a small-scale EST sequencing project was done using a cDNA library constructed from 5(th) -instar A. glabripennis. The resultant dataset consisted of 599 high quality ESTs that, upon assembly, yielded 381 potentially unique transcripts. Each of these transcripts was catalogued as to putative molecular function, biological process, and associated cellular component according to the Gene Ontology classification system. Using this annotated dataset, a subset of assembled sequences was identified that are putatively associated with A. glabnpennis development and metamorphosis. This work will contribute to understanding of the diverse molecular mechanisms that underlie coleopteran morphogenesis and enable the future development of novel control strategies for management of this insect pest.
Collapse
Affiliation(s)
- Wayne B. Hunter
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Horticultural Research Laboratory, Ft. Pierce, Florida 34945
| | - Michael T. Smith
- U.S. Department of Agriculture, Agricultural Research Service, Beneficial Insects Introduction Research Unit, Newark, Delaware 19713
| | - Laura E. Hunnicutt
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Horticultural Research Laboratory, Ft. Pierce, Florida 34945
- Current address: North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
184
|
Sasikumar S, Roy JK. Developmental expression of Rab11, a small GTP-binding protein inDrosophilaepithelia. Genesis 2009; 47:32-9. [DOI: 10.1002/dvg.20441] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
185
|
Harris KP, Tepass U. Cdc42 and Par proteins stabilize dynamic adherens junctions in the Drosophila neuroectoderm through regulation of apical endocytosis. ACTA ACUST UNITED AC 2008; 183:1129-43. [PMID: 19064670 PMCID: PMC2600741 DOI: 10.1083/jcb.200807020] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cell rearrangements require dynamic changes in cell-cell contacts to maintain tissue integrity. We investigated the function of Cdc42 in maintaining adherens junctions (AJs) and apical polarity in the Drosophila melanogaster neuroectodermal epithelium. About one third of cells exit the epithelium through ingression and become neuroblasts. Cdc42-compromised embryos lost AJs in the neuroectoderm during neuroblast ingression. In contrast, when neuroblast formation was suppressed, AJs were maintained despite the loss of Cdc42 function. Loss of Cdc42 function caused an increase in the endocytotic uptake of apical proteins, including apical polarity factors such as Crumbs, which are required for AJ stability. In addition, Cdc42 has a second function in regulating endocytotic trafficking, as it is required for the progression of apical cargo from the early to the late endosome. The Par complex acts as an effector for Cdc42 in controlling the endocytosis of apical proteins. This study reveals functional interactions between apical polarity proteins and endocytosis that are critical for stabilizing dynamic basolateral AJs.
Collapse
Affiliation(s)
- Kathryn P Harris
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | | |
Collapse
|
186
|
Bhuin T, Roy JK. Rab11 is required for embryonic nervous system development in Drosophila. Cell Tissue Res 2008; 335:349-56. [PMID: 19015884 DOI: 10.1007/s00441-008-0711-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 09/24/2008] [Indexed: 11/26/2022]
Affiliation(s)
- Tanmay Bhuin
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India
| | | |
Collapse
|
187
|
Cramm-Behrens CI, Dienst M, Jacob R. Apical cargo traverses endosomal compartments on the passage to the cell surface. Traffic 2008; 9:2206-20. [PMID: 18785995 DOI: 10.1111/j.1600-0854.2008.00829.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epithelial polarity is based on intracellular sorting machinery that maintains the asymmetric distribution of lipids and proteins to the cell surface. Dependent on their lipid raft affinity, newly synthesized apical polypeptides are segregated into distinct vesicle populations subsequent to the passage through the Golgi apparatus. Using a combined fluorescence microscopic and biochemical approach, we found that lipid raft-associated sucrase-isomaltase (SI) as well as non-raft-associated lactase-phlorizin hydrolase (LPH) traverse endosomal compartments before entering the apical membrane. Fluorescent fusion proteins of both hydrolases were co-stained with Rab4-, Rab8- and Rab11-positive endosomes in polarized Madin-Darby canine kidney and non-polarized COS-1 cells. Immunoisolation of post-Golgi vesicles subsequent to different times of TGN release revealed that LPH and SI navigate in chronological order through Rab4-, Rab8- and Rab11-positive endosomes. Thereafter, the two hydrolases are segregated into distinct vesicle populations. In addition, apical membrane traffic could be significantly inhibited by RNA interference-mediated depletion of these guanosine triphosphatases. These results suggest that in epithelial cells, lipid raft-dependent and -independent apical cargo follow a transendosomal route.
Collapse
|
188
|
Rab11a-dependent exocytosis of discoidal/fusiform vesicles in bladder umbrella cells. Proc Natl Acad Sci U S A 2008; 105:15773-8. [PMID: 18843107 DOI: 10.1073/pnas.0805636105] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The discoidal/fusiform vesicles (DFV) of bladder umbrella cells undergo regulated exocytosis in response to stretch, but little is known about their biogenesis or the molecular machinery that modulates this process. We observed that Rab11a was expressed in umbrella cells (but not Rab11b or Rab25) and was associated with DFV. Using adenovirus-mediated delivery we transduced umbrella cells in situ with either dominant active (DA) or dominant negative (DN) mutants of Rab11a. DA-Rab11a stimulated an increase in apical surface area in the absence of stretch, whereas DN-Rab11a inhibited stretch-induced changes. Endocytosed fluid and membrane markers had little access to Rab11a-positive DFV, but virally expressed human growth hormone (hGH), a secretory protein, was packaged into DFV. Whereas expression of DA-Rab11a stimulated release of hGH into the bladder lumen, expression of DN-Rab11a had the opposite effect. Our results indicate that DFV may be biosynthetic in nature and that their exocytosis depends on the activity of the Rab11a GTPase.
Collapse
|
189
|
Sato M, Grant BD, Harada A, Sato K. Rab11 is required for synchronous secretion of chondroitin proteoglycans after fertilization in Caenorhabditis elegans. J Cell Sci 2008; 121:3177-86. [PMID: 18765566 DOI: 10.1242/jcs.034678] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We previously identified a novel type of caveolin-enriched secretory vesicle in Caenorhabditis elegans oocytes. These vesicles undergo synchronous fusion with the plasma membrane immediately after fertilization, suggesting that they could be cortical granules that have been described in diverse animal species. Here, we report that these vesicles are indeed cortical granules, delivering essential chondroitin proteoglycans and mucin-like glycoproteins to the early embryonic extracellular matrices (ECMs). Furthermore, we have found that the small GTPase RAB-11 and the target-SNARE SYN-4 are required for cortical granule excoytosis after fertilization. In oocytes, SYN-4 localizes mainly to the plasma membrane, whereas GFP::RAB-11 accumulates transiently on the cortical granules during ovulation, immediately prior to fertilization. Importantly, cytokinesis defects in early embryos are commonly observed after depletion of either rab-11 or syn-4, producing a phenotype very similar to that observed after blockade of chondroitin synthesis. Taken together, our results indicate that at least part of the essential role for RAB-11 and SYN-4 in early embryogenesis is in the targeting of cortical granules to the plasma membrane during the precisely regulated secretion of ECM components.
Collapse
Affiliation(s)
- Miyuki Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | | | | | | |
Collapse
|
190
|
Tiwari AK, Alone DP, Roy JK. Rab11 is essential for fertility in Drosophila. Cell Biol Int 2008; 32:1158-1168. [PMID: 18640060 DOI: 10.1016/j.cellbi.2008.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 03/09/2008] [Accepted: 04/02/2008] [Indexed: 11/28/2022]
Abstract
Rab11, a small GTP binding protein involved in vesicular trafficking, has emerged as a key player in regulating various cellular events during Drosophila development and differentiation. In our earlier study a P-insertion line, Rab11mo, was established as a new hypomorphic allele of Rab11 gene, showing degenerated eye phenotype, bristle abnormalities and sterility. We show here that Rab11 is expressed in the entire testis, more prominently in the secretory cells, and in ovary it is localized at the posterior pole. Rab11mo males and females are sterile. The sterility in males has been attributed to defects in the sperm individualization process, while in females, cytoskeleton disruption and reduction/loss of the posteriorly localized protein, Vasa, as a consequence of loss/mislocalization of Rab11 might be the cause of sterility. Fertility as well as the posterior localization of Rab11 and Vasa or cytoskeleton integrity was restored in pCaSpeR4-Rab11/+; Rab11mo/Rab11mo egg chambers, confirming the requirement of Rab11 in these events.
Collapse
Affiliation(s)
- Anand K Tiwari
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221 005, Uttar Pradesh, India
| | | | | |
Collapse
|
191
|
Kerman BE, Cheshire AM, Myat MM, Andrew DJ. Ribbon modulates apical membrane during tube elongation through Crumbs and Moesin. Dev Biol 2008; 320:278-88. [PMID: 18585700 PMCID: PMC2562552 DOI: 10.1016/j.ydbio.2008.05.541] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 05/13/2008] [Accepted: 05/14/2008] [Indexed: 01/23/2023]
Abstract
Although the formation and maintenance of epithelial tubes are essential for the viability of multicellular organisms, our understanding of the molecular and cellular events coordinating tubulogenesis is relatively limited. Here, we focus on the activities of Ribbon, a novel BTB-domain containing nuclear protein, in the elongation of two epithelial tubes: the Drosophila salivary gland and trachea. We show that Ribbon interacts with Lola Like, another BTB-domain containing protein required for robust nuclear localization of Ribbon, to upregulate crumbs expression and downregulate Moesin activity. Our ultrastructural analysis of ribbon null salivary glands by TEM reveals a diminished pool of subapical vesicles and an increase in microvillar structure, cellular changes consistent with the known role of Crumbs in apical membrane generation and of Moesin in the cross-linking of the apical membrane to the subapical cytoskeleton. Furthermore, the subapical localization of Rab11, a small GTPase associated with apical membrane delivery and rearrangement, is significantly diminished in ribbon mutant salivary glands and tracheae. These findings suggest that Ribbon and Lola Like function as a novel transcriptional cassette coordinating molecular changes at the apical membrane of epithelial cells to facilitate tube elongation.
Collapse
Affiliation(s)
- Bilal E. Kerman
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alan M. Cheshire
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Monn Monn Myat
- Department of Cell and Developmental Biology, Weill Medical College, Cornell University, New York, NY 10021, USA
| | - Deborah J. Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
192
|
Bulgakova NA, Kempkens O, Knust E. Multiple domains of Stardust differentially mediate localisation of the Crumbs-Stardust complex during photoreceptor development in Drosophila. J Cell Sci 2008; 121:2018-26. [DOI: 10.1242/jcs.031088] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Drosophila Stardust (Sdt), a member of the MAGUK family of scaffolding proteins, is a constituent of the evolutionarily conserved Crumbs-Stardust (Crb-Sdt) complex that controls epithelial cell polarity in the embryo and morphogenesis of photoreceptor cells. Although apical localisation is a hallmark of the complex in all cell types and in all organisms analysed, only little is known about how individual components are targeted to the apical membrane. We have performed a structure-function analysis of Sdt by constructing transgenic flies that express altered forms of Sdt to determine the roles of individual domains for localisation and function in photoreceptor cells. The results corroborate the observation that the organisation of the Crb-Sdt complex is differentially regulated in pupal and adult photoreceptors. In pupal photoreceptors, only the PDZ domain of Sdt – the binding site of Crb – is required for apical targeting. In adult photoreceptors, by contrast, targeting of Sdt to the stalk membrane, a distinct compartment of the apical membrane between the rhabdomere and the zonula adherens, depends on several domains, and seems to be a two-step process. The N-terminus, including the two ECR domains and a divergent N-terminal L27 domain that binds the multi-PDZ domain protein PATJ in vitro, is necessary for targeting the protein to the apical pole of the cell. The PDZ-, the SH3- and the GUK-domains are required to restrict the protein to the stalk membrane. Drosophila PATJ or Drosophila Lin-7 are stabilised whenever a Sdt variant that contains the respective binding site is present, independently of where the variant is localised. By contrast, only full-length Sdt, confined to the stalk membrane, stabilises and localises Crb, although only in reduced amounts. The amount of Crumbs recruited to the stalk membrane correlates with its length. Our results highlight the importance of the different Sdt domains and point to a more intricate regulation of the Crb-Sdt complex in adult photoreceptor cells.
Collapse
Affiliation(s)
- Natalia A. Bulgakova
- Max-Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, Germany
| | - Özlem Kempkens
- Institut für Genetik, Heinrich-Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Elisabeth Knust
- Max-Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, Germany
| |
Collapse
|
193
|
Miura GI, Roignant JY, Wassef M, Treisman JE. Myopic acts in the endocytic pathway to enhance signaling by the Drosophila EGF receptor. Development 2008; 135:1913-22. [PMID: 18434417 PMCID: PMC2413058 DOI: 10.1242/dev.017202] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Endocytosis of activated receptors can control signaling levels by exposing the receptors to novel downstream molecules or by instigating their degradation. Epidermal growth factor receptor (EGFR) signaling has crucial roles in development and is misregulated in many cancers. We report here that Myopic, the Drosophila homolog of the Bro1-domain tyrosine phosphatase HD-PTP, promotes EGFR signaling in vivo and in cultured cells. myopic is not required in the presence of activated Ras or in the absence of the ubiquitin ligase Cbl, indicating that it acts on internalized EGFR, and its overexpression enhances the activity of an activated form of EGFR. Myopic is localized to intracellular vesicles adjacent to Rab5-containing early endosomes, and its absence results in the enlargement of endosomal compartments. Loss of Myopic prevents cleavage of the EGFR cytoplasmic domain, a process controlled by the endocytic regulators Cbl and Sprouty. We suggest that Myopic promotes EGFR signaling by mediating its progression through the endocytic pathway.
Collapse
Affiliation(s)
| | - Jean-Yves Roignant
- Kimmel Center for Biology and Medicine of the Skirball Institute, NYU School of Medicine, Department of Cell Biology, 540 First Avenue, New York, NY 10016
| | | | - Jessica E. Treisman
- Kimmel Center for Biology and Medicine of the Skirball Institute, NYU School of Medicine, Department of Cell Biology, 540 First Avenue, New York, NY 10016
| |
Collapse
|
194
|
Ng EL, Tang BL. Rab GTPases and their roles in brain neurons and glia. ACTA ACUST UNITED AC 2008; 58:236-46. [PMID: 18485483 DOI: 10.1016/j.brainresrev.2008.04.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/29/2008] [Accepted: 04/06/2008] [Indexed: 12/19/2022]
Affiliation(s)
- Ee Ling Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | |
Collapse
|
195
|
Nilsen NJ, Deininger S, Nonstad U, Skjeldal F, Husebye H, Rodionov D, von Aulock S, Hartung T, Lien E, Bakke O, Espevik T. Cellular trafficking of lipoteichoic acid and Toll-like receptor 2 in relation to signaling: role of CD14 and CD36. J Leukoc Biol 2008; 84:280-91. [PMID: 18458151 DOI: 10.1189/jlb.0907656] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lipoteichoic acid (LTA) is a central inducer of inflammatory responses caused by Gram-positive bacteria, such as Staphylococcus aureus, via activation of TLR2. Localization of TLR2 in relation to its coreceptors may be important for function. This study explores the signaling, uptake, and trafficking pattern of LTA in relation to expression of TLR2 and its coreceptors CD36 and CD14 in human monocytes. We found TLR2 expressed in early endosomes, late endosomes/lysosomes, and in Rab-11-positive compartments but not in the Golgi apparatus or endoplasmic reticulum (ER). Rapid internalization of fluorescently labeled LTA was observed in human monocytes, colocalizing with markers for early and late endosomes, lysosomes, ER, and Golgi network. Blocking CD14 and CD36 with antibodies inhibited LTA binding and LTA-induced TNF release from monocytes, emphasizing an important role for both molecules as coreceptors for TLR2. Importantly, blocking CD36 did not affect TNF release induced by N-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2R,S)-propyl]-(R)-cysteinyl-seryl-(lysyl)3-lysine or LPS. Expression of CD14 markedly enhanced LTA binding to the plasma membrane and also enhanced NF-kappaB activation. LTA internalization, but not NF-kappaB activation, was inhibited in Dynamin-I K44A dominant-negative transfectants, suggesting that LTA is internalized by receptor-mediated endocytosis but that internalization is not required for signaling. In fact, immobilizing LTA and thereby inhibiting internalization resulted in enhanced TNF release from monocytes. Our results suggest that LTA signaling preferentially occurs at the plasma membrane, is independent of internalization, and is facilitated by CD36 and CD14 as coreceptors for TLR2.
Collapse
Affiliation(s)
- Nadra J Nilsen
- Norwegian University of Science and Technology, Institute of Cancer Research and Molecular Medicine, Trondheim, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Fader CM, Sánchez D, Furlán M, Colombo MI. Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. Traffic 2007; 9:230-50. [PMID: 17999726 DOI: 10.1111/j.1600-0854.2007.00677.x] [Citation(s) in RCA: 360] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Morphological and biochemical studies have shown that autophagosomes fuse with endosomes forming the so-called amphisomes, a prelysosomal hybrid organelle. In the present report, we have analyzed this process in K562 cells, an erythroleukemic cell line that generates multivesicular bodies (MVBs) and releases the internal vesicles known as exosomes into the extracellular medium. We have previously shown that in K562 cells, Rab11 decorates MVBs. Therefore, to study at the molecular level the interaction of MVBs with the autophagic pathway, we have examined by confocal microscopy the fate of MVBs in cells overexpressing green fluorescent protein (GFP)-Rab11 and the autophagosomal protein red fluorescent protein-light chain 3 (LC3). Autophagy inducers such as starvation or rapamycin caused an enlargement of the vacuoles decorated with GFP-Rab11 and a remarkable colocalization with LC3. This convergence was abrogated by a Rab11 dominant negative mutant, indicating that a functional Rab11 is involved in the interaction between MVBs and the autophagic pathway. Interestingly, we presented evidence that autophagy induction caused calcium accumulation in autophagic compartments. Furthermore, the convergence between the endosomal and the autophagic pathways was attenuated by the Ca2+ chelator acetoxymethyl ester (AM) of the calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), indicating that fusion of MVBs with the autophagosome compartment is a calcium-dependent event. In addition, autophagy induction or overexpression of LC3 inhibited exosome release, suggesting that under conditions that stimulates autophagy, MVBs are directed to the autophagic pathway with consequent inhibition in exosome release.
Collapse
Affiliation(s)
- Claudio M Fader
- Laboratorio de Biología Celular y Molecular - Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo - CONICET, 5500 Mendoza, Argentina
| | | | | | | |
Collapse
|
197
|
Jiang L, Rogers SL, Crews ST. The Drosophila Dead end Arf-like3 GTPase controls vesicle trafficking during tracheal fusion cell morphogenesis. Dev Biol 2007; 311:487-99. [PMID: 17919535 PMCID: PMC2136417 DOI: 10.1016/j.ydbio.2007.08.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 08/24/2007] [Accepted: 08/28/2007] [Indexed: 10/22/2022]
Abstract
The Drosophila larval tracheal system consists of a highly branched tubular organ that becomes interconnected by migration-fusion events during embryonic development. Fusion cells at the tip of each branch guide migration, adhere, and then undergo extensive remodeling as the tracheal lumen extends between the two branches. The Drosophila dead end gene is expressed in fusion cells, and encodes an Arf-like3 GTPase. Analyses of dead end RNAi and mutant embryos reveal that the lumen fails to connect between the two branches. Expression of a constitutively active form of Dead end in S2 cells reveals that it influences the state of actin polymerization, and is present on particles that traffic along actin/microtubule-containing processes. Imaging experiments in vivo reveal that Dead end-containing vesicles are associated with recycling endosomes and the exocyst, and control exocyst localization in fusion cells. These results indicate that the Dead end GTPase plays an important role in trafficking membrane components involved in tracheal fusion cell morphogenesis and lumenal development.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
- Program in Molecular Biology and Biotechnology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Stephen L. Rogers
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
- Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Stephen T. Crews
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
- Program in Molecular Biology and Biotechnology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
198
|
Giansanti MG, Belloni G, Gatti M. Rab11 is required for membrane trafficking and actomyosin ring constriction in meiotic cytokinesis of Drosophila males. Mol Biol Cell 2007; 18:5034-47. [PMID: 17914057 PMCID: PMC2096611 DOI: 10.1091/mbc.e07-05-0415] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Rab11 is a small GTPase that regulates several aspects of vesicular trafficking. Here, we show that Rab11 accumulates at the cleavage furrow of Drosophila spermatocytes and that it is essential for cytokinesis. Mutant spermatocytes form regular actomyosin rings, but these rings fail to constrict to completion, leading to cytokinesis failures. rab11 spermatocytes also exhibit an abnormal accumulation of Golgi-derived vesicles at the telophase equator, suggesting a defect in membrane-vesicle fusion. These cytokinesis phenotypes are identical to those elicited by mutations in giotto (gio) and four wheel drive (fwd) that encode a phosphatidylinositol transfer protein and a phosphatidylinositol 4-kinase, respectively. Double mutant analysis and immunostaining for Gio and Rab11 indicated that gio, fwd, and rab11 function in the same cytokinetic pathway, with Gio and Fwd acting upstream of Rab11. We propose that Gio and Fwd mediate Rab11 recruitment at the cleavage furrow and that Rab11 facilitates targeted membrane delivery to the advancing furrow.
Collapse
Affiliation(s)
- Maria Grazia Giansanti
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Genetica e Biologia Molecolare, Università di Roma "La Sapienza," 00185 Rome, Italy.
| | | | | |
Collapse
|
199
|
Uno T, Nakada T, Okamaoto S, Nakamura M, Matsubara M, Imaishi H, Yamagata H, Kanamaru K, Takagi M. Determination of phosphorylated amino acid residues of Rab8 from Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2007; 66:89-97. [PMID: 17879235 DOI: 10.1002/arch.20201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The Rab family of small GTPases are key regulators of membrane trafficking. Partially purified Rab8 from Bombyx mori (BRab8) was phosphorylated by protein kinase C in mammalian cells in vitro. To determine which of the seven serines and four threonines are phosphorylated, we generated deletion and site-directed mutants of BRab8, inserted them in Escherichia coli, partially purified the encoded fusion proteins by affinity chromatography, and examined their phosphorylation by protein kinase C in vitro. We found that Ser-132 of BRab8 was specifically phosphorylated by protein kinase C. In addition, Western blotting using an antiserum against BRab8 and in-gel staining for phosphorylated proteins revealed that BRab8 is phosphorylated in vivo.
Collapse
Affiliation(s)
- Tomohide Uno
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, Kobe, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Photoreceptor morphogenesis and retinal degeneration: lessons from Drosophila. Curr Opin Neurobiol 2007; 17:541-7. [DOI: 10.1016/j.conb.2007.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/13/2007] [Accepted: 08/24/2007] [Indexed: 01/13/2023]
|