151
|
Li A, Xia X, Yeh J, Kua H, Liu H, Mishina Y, Hao A, Li B. PDGF-AA promotes osteogenic differentiation and migration of mesenchymal stem cell by down-regulating PDGFRα and derepressing BMP-Smad1/5/8 signaling. PLoS One 2014; 9:e113785. [PMID: 25470749 PMCID: PMC4254917 DOI: 10.1371/journal.pone.0113785] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/29/2014] [Indexed: 12/21/2022] Open
Abstract
Platelet-derived growth factors (PDGFs) play important roles in skeletal development and bone fracture healing, yet how PDGFs execute their functions remains incompletely understood. Here we show that PDGF-AA, but not -AB or -BB, could activate the BMP-Smad1/5/8 pathway in mesenchymal stem cells (MSCs), which requires BMPRIA as well as PDGFRα. PDGF-AA promotes MSC osteogenic differentiation through the BMP-Smad1/5/8-Runx2/Osx axis and MSC migration via the BMP-Smad1/5/8-Twist1/Atf4 axis. Mechanistic studies show that PDGF-AA activates BMP-Smad1/5/8 signaling by feedback down-regulating PDGFRα, which frees BMPRI and allows for BMPRI-BMPRII complex formation to activate smad1/5/8, using BMP molecules in the microenvironment. This study unravels a physical and functional interaction between PDGFRα and BMPRI, which plays an important role in MSC differentiation and migration, and establishes a link between PDGF-AA and BMPs pathways, two essential regulators of embryonic development and tissue homeostasis.
Collapse
Affiliation(s)
- Anna Li
- Department of Histology and Embryology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong, 250012 P.R. China
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xuechun Xia
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - James Yeh
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Huiyi Kua
- The Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore 138632, Singapore
| | - Huijuan Liu
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Aijun Hao
- Department of Histology and Embryology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong, 250012 P.R. China
- * E-mail: (BL); (AH)
| | - Baojie Li
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
- * E-mail: (BL); (AH)
| |
Collapse
|
152
|
Krueger KC, Costa MJ, Du H, Feldman BJ. Characterization of Cre recombinase activity for in vivo targeting of adipocyte precursor cells. Stem Cell Reports 2014; 3:1147-58. [PMID: 25458893 PMCID: PMC4264060 DOI: 10.1016/j.stemcr.2014.10.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 01/03/2023] Open
Abstract
The increased incidence of obesity and metabolic disease underscores the importance of elucidating the biology of adipose tissue development. The recent discovery of cell surface markers for prospective identification of adipose precursor cells (APCs) in vivo will greatly facilitate these studies, yet tools for specifically targeting these cells in vivo have not been identified. Here, we survey three transgenic mouse lines, Fabp4-Cre, PdgfRα-Cre, and Prx1-Cre, precisely assessing Cre-mediated recombination in adipose stromal populations and mature tissues. Our data provide key insights into the utility of these tools to modulate gene expression in adipose tissues. In particular, Fabp4-Cre is not effective to target APCs, nor is its activity restricted to these cells. PdgfRα-Cre directs recombination in the vast majority of APCs, but also targets other populations. In contrast, adipose expression of Prx1-Cre is chiefly limited to subcutaneous inguinal APCs, which will be valuable for dissection of APC functions among adipose depots.
Collapse
Affiliation(s)
- Katherine C Krueger
- Department of Pediatrics/Endocrinology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Maria José Costa
- Department of Pediatrics/Endocrinology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Hongqing Du
- Department of Pediatrics/Endocrinology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Brian J Feldman
- Department of Pediatrics/Endocrinology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA; Program in Regenerative Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
153
|
Vasudevan HN, Soriano P. SRF regulates craniofacial development through selective recruitment of MRTF cofactors by PDGF signaling. Dev Cell 2014; 31:332-344. [PMID: 25453829 DOI: 10.1016/j.devcel.2014.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/02/2014] [Accepted: 10/03/2014] [Indexed: 02/07/2023]
Abstract
Receptor tyrosine kinase signaling is critical for mammalian craniofacial development, but the key downstream transcriptional effectors remain unknown. We demonstrate that serum response factor (SRF) is induced by both platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) signaling in mouse embryonic palatal mesenchyme cells and that Srf neural crest conditional mutants exhibit facial clefting accompanied by proliferation and migration defects. Srf and Pdgfra mutants interact genetically in craniofacial development, but Srf and Fgfr1 mutants do not. This signal specificity is recapitulated at the level of cofactor activation: while both PDGF and FGF target gene promoters show enriched genome-wide overlap with SRF ChIP-seq peaks, PDGF selectively activates a network of MRTF-dependent cytoskeletal genes. Collectively, our results identify a role for SRF in proliferation and migration during craniofacial development and delineate a mechanism of receptor tyrosine kinase specificity mediated through differential cofactor usage, leading to a PDGF-responsive SRF-driven transcriptional program in the midface.
Collapse
Affiliation(s)
- Harish N Vasudevan
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Philippe Soriano
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
154
|
Ball SG, Worthington JJ, Canfield AE, Merry CLR, Kielty CM. Mesenchymal stromal cells: inhibiting PDGF receptors or depleting fibronectin induces mesodermal progenitors with endothelial potential. Stem Cells 2014; 32:694-705. [PMID: 24022915 PMCID: PMC4377076 DOI: 10.1002/stem.1538] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 03/10/2013] [Accepted: 08/16/2013] [Indexed: 02/06/2023]
Abstract
Realizing the full therapeutic potential of mesenchymal stromal/stem cells (MSCs) awaits improved understanding of mechanisms controlling their fate. Using MSCs cultured as spheroids to recapitulate a three-dimensional cellular environment, we show that perturbing the mesenchymal regulators, platelet-derived growth factor (PDGF) receptors or fibronectin, reverts MSCs toward mesodermal progenitors with endothelial potential that can potently induce neovascularization in vivo. MSCs within untreated spheroids retain their mesenchymal spindle shape with abundant smooth muscle α-actin filaments and fibronectin-rich matrix. Inhibiting PDGF receptors or depleting fibronectin induces rounding and depletes smooth muscle α-actin expression; these cells have characteristics of mesenchymoangioblasts, with enhanced expression of mesendoderm and endoderm transcription factors, prominent upregulation of E-cadherin, and Janus kinase signaling-dependent expression of Oct4A and Nanog. PDGF receptor-inhibited spheroids also upregulate endothelial markers platelet endothelial cell adhesion molecule 1 and vascular endothelial-cadherin and secrete many angiogenic factors, and in vivo they potently stimulate neovascularization, and their MSCs integrate within functional blood vessels that are perfused by the circulation. Thus, MSC potency and vascular induction are regulated by perturbing mesenchymal fate.
Collapse
Affiliation(s)
- S G Ball
- Wellcome Trust Centre for Cell-Matrix Research, School of Materials, Faculty of Engineering and Physical Sciences, University of Manchester, Manchester, Lancashire, United Kingdom; Faculty of Life Sciences, School of Materials, Faculty of Engineering and Physical Sciences, University of Manchester, Manchester, Lancashire, United Kingdom
| | | | | | | | | |
Collapse
|
155
|
Role of angiogenesis-related genes in cleft lip/palate: review of the literature. Int J Pediatr Otorhinolaryngol 2014; 78:1579-85. [PMID: 25176321 DOI: 10.1016/j.ijporl.2014.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Cleft lip and cleft palate (CLP) are the most common congenital craniofacial anomalies. They have a multifactorial etiology and result from an incomplete fusion of the facial buds. Two main mechanisms, acting alone or interacting with each other, were evidenced in this fusion defect responsible for CLP: defective tissue development and/or defective apoptosis in normal or defective tissues. The objective of this work was to study the implication and role of angiogenesis-related genes in the etiology of CL/P. METHODS Our methodological approach included a systematic and thorough analysis of the genes involved in CL/P (syndromic and non-syndromic forms) including previously identified genes but also genes that could potentially be angiogenesis-related (OMIM, Pub Med).We studied the interactions of these different genes and their relationships with potential environmental factors. RESULTS TGFβ, FGA, PDGFc, PDGFRa, FGF, FGFR1, FGFR2 growth factors as well as MMP and TIMP2 proteolytic enzymes are involved in the genesis of CLP (P>L). Furthermore, 18 genes involved in CLP also interact with angiogenesis-related genes. DISCUSSION Even if the main angiogenesis-related genes involved in CLP formation are genes participating in several biological activities and their implication might not be always related to angiogenesis defects, they nevertheless remain an undeniably important research pathway. Furthermore, their interactions with environmental factors make them good candidates in the field of CLP prevention.
Collapse
|
156
|
Isern J, García-García A, Martín AM, Arranz L, Martín-Pérez D, Torroja C, Sánchez-Cabo F, Méndez-Ferrer S. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. eLife 2014; 3:e03696. [PMID: 25255216 PMCID: PMC4381911 DOI: 10.7554/elife.03696] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/24/2014] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) and osteolineage cells contribute to the hematopoietic stem cell (HSC) niche in the bone marrow of long bones. However, their developmental relationships remain unclear. In this study, we demonstrate that different MSC populations in the developing marrow of long bones have distinct functions. Proliferative mesoderm-derived nestin− MSCs participate in fetal skeletogenesis and lose MSC activity soon after birth. In contrast, quiescent neural crest-derived nestin+ cells preserve MSC activity, but do not generate fetal chondrocytes. Instead, they differentiate into HSC niche-forming MSCs, helping to establish the HSC niche by secreting Cxcl12. Perineural migration of these cells to the bone marrow requires the ErbB3 receptor. The neonatal Nestin-GFP+ Pdgfrα− cell population also contains Schwann cell precursors, but does not comprise mature Schwann cells. Thus, in the developing bone marrow HSC niche-forming MSCs share a common origin with sympathetic peripheral neurons and glial cells, and ontogenically distinct MSCs have non-overlapping functions in endochondrogenesis and HSC niche formation. DOI:http://dx.doi.org/10.7554/eLife.03696.001 During the earliest phases of development, the embryo is formed by groups of stem cells that can develop into all the different types of tissue in the body—from bones to brain tissue. Later in life, small stockpiles of adult stem cells are found in various tissues and provide a reservoir of new cells available for replacing old or damaged cells. The most important source of blood stem cells is the bone marrow, which produces and stores cells that are capable of developing into blood and immune system cells. These processes are assisted by different bone marrow cells called stromal cells, which create a specialized local environment or ‘niche’. But are the stromal stem cells that form the skeleton the same ones that form this niche during development? Or do the various types of stromal stem cells develop from distinct groups of cells in the embryo? Furthermore, it is unclear which cells guide blood stem cells towards the forming bones. Other types of cells, including some of the cells of the nervous system, can communicate with the stem cells in the adult marrow and influence their behavior. This led scientists to wonder whether the stem cells in the bone marrow niche and the cells that communicate with them developed from the same type of embryonic stem cell. Isern et al. tracked down the developmental origins of different types of bone marrow stromal stem cells by examining the bone marrow from the long bones (for example, the bones in the leg) of unborn and infant mice. It turns out that not all stromal stem cells in the developing bone marrow are alike. In fact, one pool of stromal stem cells forms the skeleton and loses stem cell activity in the process. In contrast, a different population of stromal stem cells develops from the same group of embryonic cells that gives rise to the cells of the nervous system. The stromal stem cells in this second group function as a niche to recruit and store the incoming blood stem cells and retain their stem cell activity throughout life. The findings of Isern et al. help to explain why the nervous system is able to communicate with stem cells in the adult marrow, and provide a model for understanding how stem cell niches in organs that contain nerve tissue are established. DOI:http://dx.doi.org/10.7554/eLife.03696.002
Collapse
Affiliation(s)
- Joan Isern
- Stem Cell Niche Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Andrés García-García
- Stem Cell Niche Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Ana M Martín
- Stem Cell Niche Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Lorena Arranz
- Stem Cell Niche Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Daniel Martín-Pérez
- Stem Cell Niche Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Carlos Torroja
- Stem Cell Niche Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Stem Cell Niche Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Simón Méndez-Ferrer
- Stem Cell Niche Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
157
|
Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Front Aging Neurosci 2014; 6:245. [PMID: 25278877 PMCID: PMC4166895 DOI: 10.3389/fnagi.2014.00245] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/29/2014] [Indexed: 12/16/2022] Open
Abstract
Pericytes are perivascular cells that envelop and make intimate connections with adjacent capillary endothelial cells. Recent studies show that they may have a profound impact in skeletal muscle regeneration, innervation, vessel formation, fibrosis, fat accumulation, and ectopic bone formation throughout life. In this review, we summarize and evaluate recent advances in our understanding of pericytes' influence on adult skeletal muscle pathophysiology. We also discuss how further elucidating their biology may offer new approaches to the treatment of conditions characterized by muscle wasting.
Collapse
Affiliation(s)
- Alexander Birbrair
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA ; Neuroscience Program, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Tan Zhang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Maria L Messi
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Akiva Mintz
- Department of Neurosurgery, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA ; Neuroscience Program, Wake Forest School of Medicine Winston-Salem, NC, USA
| |
Collapse
|
158
|
Andrae J, Gouveia L, He L, Betsholtz C. Characterization of platelet-derived growth factor-A expression in mouse tissues using a lacZ knock-in approach. PLoS One 2014; 9:e105477. [PMID: 25166724 PMCID: PMC4148317 DOI: 10.1371/journal.pone.0105477] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/24/2014] [Indexed: 12/22/2022] Open
Abstract
Expression of the platelet-derived growth factor A-chain gene (Pdgfa) occurs widely in the developing mouse, where it is mainly localized to various epithelial and neuronal structures. Until now, in situ mRNA hybridization (ISH) has been the only reliable method to identify Pdgfa expression in tissue sections or whole mount preparations. Validated protocols for in situ detection of PDGF-A protein by immunohistochemistry is lacking. In particular, this has hampered understanding of Pdgfa expression pattern in adult tissues, where ISH is technically challenging. Here, we report a gene targeted mouse Pdgfa allele, Pdgfaex4COIN, which is a combined conditional knockout and reporter allele. Cre-mediated inversion of the COIN cassette inactivates Pdgfa coding while simultaneously activating a beta-galactosidase (lacZ) reporter under endogenous Pdgfa transcription control. The generated Pdgfaex4COIN-INV-lacZ allele can next be used to identify cells carrying a Pdgfa null allele, as well as to map endogenous Pdgfa expression. We evaluated the Pdgfaex4COIN-INV-lacZ allele as a reporter for endogenous Pdgfa expression patterns in mouse embryos and adults. We conclude that the expression pattern of Pdgfaex4COIN-INV-lacZ recapitulates known expression patterns of Pdgfa. We also report on novel embryonic and adult Pdgfa expression patterns in the mouse and discuss their implications for Pdgfa physiology.
Collapse
Affiliation(s)
- Johanna Andrae
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Leonor Gouveia
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
159
|
Nishioka Y, Azuma M, Kishi M, Aono Y. Targeting platelet-derived growth factor as a therapeutic approach in pulmonary fibrosis. THE JOURNAL OF MEDICAL INVESTIGATION 2014; 60:175-83. [PMID: 24190033 DOI: 10.2152/jmi.60.175] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal lung disease characterized by the proliferation of fibroblasts and deposition of extracellular matrix. Since the prognosis of IPF is still poor, novel therapeutic modalities are strongly required. For this reason, to find molecular target for therapy of IPF is of much importance. The recent understanding of pathogenesis in IPF indicates the critical role of alveolar epithelial type II cells (AECII) and fibroblasts. Although the detailed mechanisms involved in IPF is still unclear, various profibrotic mediators which are produced by the injured AECII are thought to play a role in the progression of pulmonary fibrosis via stimulating fibroblasts. Among them, platelet-derived growth factor (PDGF) is one of critical growth factors by stimulating the proliferation and migration of fibroblasts. In this review, we discuss the role of PDGF in pulmonary fibrosis and the possibility as a therapeutic target for IPF.
Collapse
Affiliation(s)
- Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | | | | | | |
Collapse
|
160
|
Polychronis G, Halazonetis DJ. Shape covariation between the craniofacial complex and first molars in humans. J Anat 2014; 225:220-31. [PMID: 24916927 PMCID: PMC4111929 DOI: 10.1111/joa.12202] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2014] [Indexed: 12/31/2022] Open
Abstract
The occurrence of mutual genetic loci in morphogenesis of the face and teeth implies shape covariation between these structures. However, teeth finalize their shape at an early age, whereas the face grows and is subjected to environmental influences for a prolonged period; it is therefore conceivable that covariation might modulate with age. Here we investigate the extent of this covariation in humans by measuring the 3D shape of the occlusal surface of the permanent first molars and the shape of the craniofacial complex from lateral radiographs, at two maturations stages. A sample of Greek subjects was divided into two groups (110 adult, 110 prepubertal) with equally distributed gender. The occlusal surfaces of the right first molars were 3D scanned from dental casts; 265 and 274 landmarks (including surface and curve semilandmarks) were digitized on the maxillary and mandibular molars, respectively. The corresponding lateral cephalometric radiographs were digitized with 71 landmarks. Geometric morphometric methods were used to assess shape variation and covariation. The vertical dimension of the craniofacial complex was the main parameter of shape variation, followed by anteroposterior deviations. The male craniofacial complex was larger (4.0-5.7%) and was characterized by a prominent chin and clockwise rotation of the cranial base (adult group only). Allometry was weak and statistically significant only when examined for the sample as a whole (percent variance explained: 2.1%, P = 0.0002). Covariation was statistically significant only between the lower first molar and the craniofacial complex (RV = 14.05%, P = 0.0099, and RV = 12.31%, P = 0.0162, for the prepubertal and adult groups, respectively). Subtle age-related covariation differences were noted, indicating that environmental factors may influence the pattern and strength of covariation. However, the main pattern was similar in both groups: a class III skeletal pattern (relative maxillary retrusion and mandibular protrusion), hyperdivergency, forward rotation of the posterior cranial base and upward rotation of the anterior cranial base were associated with mesiodistal elongation of the lower molars and height reduction of their distal cusps. This pattern mimics phylogeny in humans, where flexion and counterclockwise rotation of the cranial base, considered advantageous to survival, co-occur with tooth reductions that cannot be easily explained in evolutionary terms. The similarity of the phylogenetic and covariation patterns seems to support the pleiotropic gene hypothesis.
Collapse
Affiliation(s)
- Georgios Polychronis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
161
|
Wu Z, Autry AE, Bergan JF, Watabe-Uchida M, Dulac CG. Galanin neurons in the medial preoptic area govern parental behaviour. Nature 2014; 509:325-30. [PMID: 24828191 PMCID: PMC4105201 DOI: 10.1038/nature13307] [Citation(s) in RCA: 410] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 04/02/2014] [Indexed: 11/11/2022]
Abstract
Mice display robust, stereotyped behaviors toward pups: virgin males typically attack pups, while virgin females and sexually experienced males and females display parental care. We show here that virgin males genetically impaired in vomeronasal sensing do not attack pups and are parental. Further, we uncover a subset of galanin-expressing neurons in the medial preoptic area (MPOA) that are specifically activated during male and female parenting, and a different subpopulation activated during mating. Genetic ablation of MPOA galanin neurons results in dramatic impairment of parental responses in males and females and affects male mating. Optogenetic activation of these neurons in virgin males suppresses inter-male and pup-directed aggression and induces pup grooming. Thus, MPOA galanin neurons emerge as an essential regulatory node of male and female parenting behavior and other social responses. These results provide an entry point to a circuit-level dissection of parental behavior and its modulation by social experience.
Collapse
Affiliation(s)
- Zheng Wu
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Anita E Autry
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Joseph F Bergan
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Mitsuko Watabe-Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Catherine G Dulac
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
162
|
Shah P, Keppler L, Rutkowski J. A review of platelet derived growth factor playing pivotal role in bone regeneration. J ORAL IMPLANTOL 2014; 40:330-40. [PMID: 24914921 DOI: 10.1563/aaid-joi-d-11-00173] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This article is focused on the literature review and study of recent advances in the field of bone grafting, which involves platelet-derived growth factor (PDGF) as one of the facilitating factors in bone regeneration. This article includes a description of the mechanism of PDGF for use in surgeries where bone grafting is required, which promotes future application of PDGF for faster bone regeneration or inhibition of bone growth if required as in osteosarcoma. The important specific activities of PDGF include mitogenesis (increase in the cell populations of healing cells), angiogenesis (endothelial mitoses into functioning capillaries), and macrophage activation (debridement of the wound site and a second phase source of growth factors for continued repair and bone regeneration). Thus PDGF can be utilized in wound with bone defect to conceal the wound with repair of bony defect.
Collapse
Affiliation(s)
- Prasun Shah
- 1 Maimonides Medical Center, Brooklyn, New York
| | | | | |
Collapse
|
163
|
McCarthy N, Eberhart JK. Gene-ethanol interactions underlying fetal alcohol spectrum disorders. Cell Mol Life Sci 2014; 71:2699-706. [PMID: 24554057 PMCID: PMC11114006 DOI: 10.1007/s00018-014-1578-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/14/2014] [Accepted: 01/27/2014] [Indexed: 12/16/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) is an umbrella term that describes a diverse set of ethanol-induced defects. The phenotypic variation is generated by numerous factors, including timing and dosage of ethanol exposure as well as genetic background. We are beginning to learn about how the concentration, duration, and timing of ethanol exposure mediate variability within ethanol teratogenesis. However, little is known about the genetic susceptibilities in FASD. Studies of FASD animal models are beginning to implicate a number of susceptibility genes that are involved in various pathways. Here we review the current literature that focuses on the genetic predispositions in FASD.
Collapse
Affiliation(s)
- Neil McCarthy
- Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research, Institute for Cellular and Molecular Biology, University of Texas at Austin,
Austin, TX 78713
USA
| | - Johann K. Eberhart
- Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research, Institute for Cellular and Molecular Biology, University of Texas at Austin,
Austin, TX 78713
USA
| |
Collapse
|
164
|
Fantauzzo KA, Soriano P. PI3K-mediated PDGFRα signaling regulates survival and proliferation in skeletal development through p53-dependent intracellular pathways. Genes Dev 2014; 28:1005-17. [PMID: 24788519 PMCID: PMC4018488 DOI: 10.1101/gad.238709.114] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PI3K is the main downstream effector of PDGFRα signaling during murine skeletal development. Fantauzzo et al. discovered skeletal defects in embryos in which PDGFRα is unable to bind PI3K. They identified 56 proteins that are phosphorylated by Akt downstream from PI3K-mediated PDGFRα signaling. Several of these proteins, including Ybox1, mediate cell survival through regulation of p53. These findings identify p53 as a novel effector downstream from PI3K-engaged PDGFRα signaling that regulates survival and proliferation during skeletal development in vivo. Previous studies have identified phosphatidylinositol 3-kinase (PI3K) as the main downstream effector of PDGFRα signaling during murine skeletal development. Autophosphorylation mutant knock-in embryos in which PDGFRα is unable to bind PI3K (PdgfraPI3K/PI3K) exhibit skeletal defects affecting the palatal shelves, shoulder girdle, vertebrae, and sternum. To identify proteins phosphorylated by Akt downstream from PI3K-mediated PDGFRα signaling, we immunoprecipitated Akt phosphorylation substrates from PDGF-AA-treated primary mouse embryonic palatal mesenchyme (MEPM) lysates and analyzed the peptides by nanoliquid chromatography coupled to tandem mass spectrometry (nano-LC-MS/MS). Our analysis generated a list of 56 proteins, including 10 that regulate cell survival and proliferation. We demonstrate that MEPM cell survival is impaired in the presence of a PI3K inhibitor and that PdgfraPI3K/PI3K-derived MEPMs do not proliferate in response to PDGF-AA treatment. Several of the identified Akt phosphorylation targets, including Ybox1, mediate cell survival through regulation of p53. We show that Ybox1 binds both the Trp53 promoter and the p53 protein and that expression of Trp53 is significantly decreased upon PDGF-AA treatment in MEPMs. Finally, we demonstrate that introduction of a Trp53-null allele attenuates the vertebral defects found in PdgfraPI3K/PI3K neonates. Our findings identify p53 as a novel effector downstream from PI3K-engaged PDGFRα signaling that regulates survival and proliferation during skeletal development in vivo.
Collapse
Affiliation(s)
- Katherine A Fantauzzo
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | | |
Collapse
|
165
|
Demoulin JB, Essaghir A. PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor Rev 2014; 25:273-83. [DOI: 10.1016/j.cytogfr.2014.03.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/10/2014] [Indexed: 01/05/2023]
|
166
|
Identification and Characterization of Mouse Type II Platelet-Derived Growth Factor Receptor α Transcript. Biosci Biotechnol Biochem 2014; 72:759-66. [DOI: 10.1271/bbb.70640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
167
|
Roh JW, Huang J, Hu W, Yang X, Jennings NB, Sehgal V, Sohn BH, Han HD, Lee SJ, Thanapprapasr D, Bottsford-Miller J, Zand B, Dalton HJ, Previs RA, Davis AN, Matsuo K, Lee JS, Ram P, Coleman RL, Sood AK. Biologic effects of platelet-derived growth factor receptor α blockade in uterine cancer. Clin Cancer Res 2014; 20:2740-50. [PMID: 24634380 PMCID: PMC4024372 DOI: 10.1158/1078-0432.ccr-13-2507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Platelet-derived growth factor receptor α (PDGFRα) expression is frequently observed in many kinds of cancer and is a candidate for therapeutic targeting. This preclinical study evaluated the biologic significance of PDGFRα and PDGFRα blockade (using a fully humanized monoclonal antibody, 3G3) in uterine cancer. EXPERIMENTAL DESIGN Expression of PDGFRα was examined in uterine cancer clinical samples and cell lines, and biologic effects of PDGFRα inhibition were evaluated using in vitro (cell viability, apoptosis, and invasion) and in vivo (orthotopic) models of uterine cancer. RESULTS PDGFRα was highly expressed and activated in uterine cancer samples and cell lines. Treatment with 3G3 resulted in substantial inhibition of PDGFRα phosphorylation and of downstream signaling molecules AKT and mitogen-activated protein kinase (MAPK). Cell viability and invasive potential of uterine cancer cells were also inhibited by 3G3 treatment. In orthotopic mouse models of uterine cancer, 3G3 monotherapy had significant antitumor effects in the PDGFRα-positive models (Hec-1A, Ishikawa, Spec-2) but not in the PDGFRα-negative model (OVCA432). Greater therapeutic effects were observed for 3G3 in combination with chemotherapy than for either drug alone in the PDGFRα-positive models. The antitumor effects of therapy were related to increased apoptosis and decreased proliferation and angiogenesis. CONCLUSIONS These findings identify PDGFRα as an attractive target for therapeutic development in uterine cancer.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Drug Synergism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Immunohistochemistry
- Mice, Nude
- Mitogen-Activated Protein Kinases/metabolism
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Oligonucleotide Array Sequence Analysis
- Phosphorylation/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, Platelet-Derived Growth Factor alpha/antagonists & inhibitors
- Receptor, Platelet-Derived Growth Factor alpha/immunology
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Signal Transduction/drug effects
- Transcriptome/drug effects
- Uterine Neoplasms/drug therapy
- Uterine Neoplasms/genetics
- Uterine Neoplasms/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ju-Won Roh
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, ThailandAuthors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jie Huang
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wei Hu
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - XiaoYun Yang
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nicholas B Jennings
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Vasudha Sehgal
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Bo Hwa Sohn
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Hee Dong Han
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sun Joo Lee
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, ThailandAuthors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Duangmani Thanapprapasr
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, ThailandAuthors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Justin Bottsford-Miller
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Behrouz Zand
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Heather J Dalton
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Rebecca A Previs
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ashley N Davis
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Koji Matsuo
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, ThailandAuthors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ju-Seog Lee
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Prahlad Ram
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Robert L Coleman
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Anil K Sood
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, ThailandAuthors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, ThailandAuthors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
168
|
Identification of TP53-induced glycolysis and apoptosis regulator (TIGAR) as the phosphoglycolate-independent 2,3-bisphosphoglycerate phosphatase. Biochem J 2014; 458:439-48. [PMID: 24423178 DOI: 10.1042/bj20130841] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The p53-induced protein TIGAR [TP53 (tumour protein 53)-induced glycolysis and apoptosis regulator] is considered to be a F26BPase (fructose-2,6-bisphosphatase) with an important role in cancer cell metabolism. The reported catalytic efficiency of TIGAR as an F26BPase is several orders of magnitude lower than that of the F26BPase component of liver or muscle PFK2 (phosphofructokinase 2), suggesting that F26BP (fructose 2,6-bisphosphate) might not be the physiological substrate of TIGAR. We therefore set out to re-evaluate the biochemical function of TIGAR. Phosphatase activity of recombinant human TIGAR protein was tested on a series of physiological phosphate esters. The best substrate was 23BPG (2,3-bisphosphoglycerate), followed by 2PG (2-phosphoglycerate), 2-phosphoglycolate and PEP (phosphoenolpyruvate). In contrast the catalytic efficiency for F26BP was approximately 400-fold lower than that for 23BPG. Using genetic and shRNA-based cell culture models, we show that loss of TIGAR consistently leads to an up to 5-fold increase in the levels of 23BPG. Increases in F26BP levels were also observed, albeit in a more limited and cell-type dependent manner. The results of the present study challenge the concept that TIGAR acts primarily on F26BP. This has significant implications for our understanding of the metabolic changes downstream of p53 as well as for cancer cell metabolism in general. It also suggests that 23BPG might play an unrecognized function in metabolic control.
Collapse
|
169
|
Uezumi A, Fukada S, Yamamoto N, Ikemoto-Uezumi M, Nakatani M, Morita M, Yamaguchi A, Yamada H, Nishino I, Hamada Y, Tsuchida K. Identification and characterization of PDGFRα+ mesenchymal progenitors in human skeletal muscle. Cell Death Dis 2014; 5:e1186. [PMID: 24743741 PMCID: PMC4001314 DOI: 10.1038/cddis.2014.161] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 02/07/2023]
Abstract
Fatty and fibrous connective tissue formation is a hallmark of diseased skeletal muscle and deteriorates muscle function. We previously identified non-myogenic mesenchymal progenitors that contribute to adipogenesis and fibrogenesis in mouse skeletal muscle. In this study, we report the identification and characterization of a human counterpart to these progenitors. By using PDGFRα as a specific marker, mesenchymal progenitors can be identified in the interstitium and isolated from human skeletal muscle. PDGFRα+ cells represent a cell population distinct from CD56+ myogenic cells, and adipogenic and fibrogenic potentials were highly enriched in the PDGFRα+ population. Activation of PDGFRα stimulates proliferation of PDGFRα+ cells through PI3K-Akt and MEK2-MAPK signaling pathways, and aberrant accumulation of PDGFRα+ cells was conspicuous in muscles of patients with both genetic and non-genetic muscle diseases. Our results revealed the pathological relevance of PDGFRα+ mesenchymal progenitors to human muscle diseases and provide a basis for developing therapeutic strategy to treat muscle diseases.
Collapse
Affiliation(s)
- A Uezumi
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192, Japan
| | - S Fukada
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - N Yamamoto
- Laboratory of Molecular Biology and Histochemistry, Fujita Health University, Aichi, Japan
| | - M Ikemoto-Uezumi
- Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Obu, Aichi 474-8511, Japan
| | - M Nakatani
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192, Japan
| | - M Morita
- Department of Orthopaedic Surgery, Fujita Health University, Aichi, Japan
| | - A Yamaguchi
- Department of Orthopaedic Surgery, Fujita Health University, Aichi, Japan
| | - H Yamada
- Department of Orthopaedic Surgery, Fujita Health University, Aichi, Japan
| | - I Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Y Hamada
- Department of Orthopedics, Tokushima Prefectural Central Hospital, 1-10-3 Kuramoto, Tokushima 770-8539, Japan
| | - K Tsuchida
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
170
|
Hayes BJ, Riehle KJ, Shimizu-Albergine M, Bauer RL, Hudkins KL, Johansson F, Yeh MM, Mahoney WM, Yeung RS, Campbell JS. Activation of platelet-derived growth factor receptor alpha contributes to liver fibrosis. PLoS One 2014; 9:e92925. [PMID: 24667490 PMCID: PMC3965491 DOI: 10.1371/journal.pone.0092925] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/27/2014] [Indexed: 01/27/2023] Open
Abstract
Chronic liver injury leads to fibrosis, cirrhosis, and loss of liver function. Liver cirrhosis is the 12th leading cause of death in the United States, and it is the primary risk factor for developing liver cancer. Fibrosis and cirrhosis result from activation of hepatic stellate cells (HSCs), which are the primary collagen producing cell type in the liver. Here, we show that platelet-derived growth factor receptor α (PDGFRα) is expressed by human HSCs, and PDGFRα expression is elevated in human liver disease. Using a green fluorescent protein (GFP) reporter mouse strain, we evaluated the role of PDGFRα in liver disease in mice and found that mouse HSCs express PDGFRα and expression is upregulated during carbon tetrachloride (CCl4) induced liver injury and fibrosis injection. This fibrotic response is reduced in Pdgfrα heterozygous mice, consistent with the hypothesis that liver fibrosis requires upregulation and activation of PDGFRα. These results indicate that Pdgfrα expression is important in the fibrotic response to liver injury in humans and mice, and suggest that blocking PDGFRα–specific signaling pathways in HSCs may provide therapeutic benefit for patients with chronic liver disease.
Collapse
Affiliation(s)
- Brian J. Hayes
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Kimberly J. Riehle
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Surgery, University of Washington, Seattle, Washington, United States of America
| | - Masami Shimizu-Albergine
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Renay L. Bauer
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Kelly L. Hudkins
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Fredrik Johansson
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Matthew M. Yeh
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - William M. Mahoney
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Raymond S. Yeung
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Surgery, University of Washington, Seattle, Washington, United States of America
| | - Jean S. Campbell
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
171
|
Hanna LLH, Sanders JO, Riley DG, Abbey CA, Gill CA. Identification of a major locus interacting with MC1R and modifying black coat color in an F₂ Nellore-Angus population. Genet Sel Evol 2014; 46:4. [PMID: 24460986 PMCID: PMC3924621 DOI: 10.1186/1297-9686-46-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 01/08/2014] [Indexed: 01/12/2023] Open
Abstract
Background In cattle, base color is assumed to depend on the enzymatic activity specified by the MC1R locus, i.e. the extension locus, with alleles coding for black (ED), red (e), and wild-type (E+). In most mammals, these alleles are presumed to follow the dominance model of ED > E+ > e, although exceptions are found. In Bos indicus x Bos taurus F2 cattle, some EDE+ heterozygotes are discordant with the dominance series for MC1R and display various degrees of red pigmentation on an otherwise predicted black background. The objective of this study was to identify loci that modify black coat color in these individuals. Results Reddening was classified with a subjective scoring system. Interval analyses identified chromosome-wide suggestive (P < 0.05) and significant (P < 0.01) QTL on bovine chromosomes (BTA) 4 and 5, although these were not confirmed using single-marker association or Bayesian methods. Evidence of a major locus (F = 114.61) that affects reddening was detected between 60 and 73 Mb on BTA 6 (Btau4.0 build), and at 72 Mb by single-marker association and Bayesian methods. The posterior mean of the genetic variance for this region accounted for 43.75% of the genetic variation in reddening. This region coincided with a cluster of tyrosine kinase receptor genes (PDGFRA, KIT and KDR). Fitting SNP haplotypes for a 1 Mb interval that contained all three genes and centered on KIT accounted for the majority of the variation attributed to this major locus, which suggests that one of these genes or associated regulatory elements, is responsible for the majority of variation in degree of reddening. Conclusions Recombinants in a 5 Mb region surrounding the cluster of tyrosine kinase receptor genes implicated PDGFRA as the strongest positional candidate gene. A higher density marker panel and functional analyses will be required to validate the role of PDGFRA or other regulatory variants and their interaction with MC1R for the modification of black coat color in Bos indicus influenced cattle.
Collapse
Affiliation(s)
| | | | | | | | - Clare A Gill
- Department of Animal Science, Texas A& M University, College Station, TX 77843, USA.
| |
Collapse
|
172
|
Hagiwara K, Obayashi T, Sakayori N, Yamanishi E, Hayashi R, Osumi N, Nakazawa T, Nishida K. Molecular and cellular features of murine craniofacial and trunk neural crest cells as stem cell-like cells. PLoS One 2014; 9:e84072. [PMID: 24465393 PMCID: PMC3896334 DOI: 10.1371/journal.pone.0084072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 11/11/2013] [Indexed: 11/18/2022] Open
Abstract
The outstanding differentiation capacities and easier access from adult tissues, cells derived from neural crest cells (NCCs) have fascinated scientists in developmental biology and regenerative medicine. Differentiation potentials of NCCs are known to depend on their originating regions. Here, we report differential molecular features between craniofacial (cNCCs) and trunk (tNCCs) NCCs by analyzing transcription profiles and sphere forming assays of NCCs from P0-Cre/floxed-EGFP mouse embryos. We identified up-regulation of genes linked to carcinogenesis in cNCCs that were not previously reported to be related to NCCs, which was considered to be, an interesting feature in regard with carcinogenic potentials of NCCs such as melanoma and neuroblastoma. Wnt signal related genes were statistically up-regulated in cNCCs, also suggesting potential involvement of cNCCs in carcinogenesis. We also noticed intense expression of mesenchymal and neuronal markers in cNCCs and tNCCs, respectively. Consistent results were obtained from in vitro sphere-forming and differentiation assays. These results were in accordance with previous notion about differential potentials of cNCCs and tNCCs. We thus propose that sorting NCCs from P0-Cre/floxed-EGFP mice might be useful for the basic and translational research of NCCs. Furthermore, these newly-identified genes up-regulated in cNCC would provide helpful information on NC-originating tumors, developmental disorders in NCC derivatives, and potential applications of NCCs in regenerative medicine.
Collapse
Affiliation(s)
- Kunie Hagiwara
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, Japan
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Japan
| | - Takeshi Obayashi
- Division of Applied Informatics for Human and Life Science, Tohoku University Graduate School of Information Science, Aramaki-Aza-Aoba, Aoba-ku, Sendai, Japan
| | - Nobuyuki Sakayori
- Division of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, Japan
| | - Emiko Yamanishi
- Division of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, Japan
| | - Ryuhei Hayashi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Japan
| | - Noriko Osumi
- Division of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, Japan
- * E-mail:
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Japan
| |
Collapse
|
173
|
Okamoto T. The epigenetic alteration of synovial cell gene expression in rheumatoid arthritis and the roles of nuclear factor κB and Notch signaling pathways. Mod Rheumatol 2014. [DOI: 10.3109/s10165-004-0372-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
174
|
Platelet-derived growth factor. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
175
|
Induction of antigen-positive cell death by the expression of perforin, but not DTa, from a DNA vaccine enhances the immune response. Immunol Cell Biol 2013; 92:359-67. [PMID: 24323081 DOI: 10.1038/icb.2013.93] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/28/2013] [Accepted: 11/09/2013] [Indexed: 02/06/2023]
Abstract
The failure of traditional protein-based vaccines to prevent infection by viruses such as HIV or hepatitis C highlights the need for novel vaccine strategies. DNA vaccines have shown promise in small animal models, and are effective at generating anti-viral T cell-mediated immune responses; however, they have proved to be poorly immunogenic in clinical trials. We propose that the induction of necrosis will enhance the immune response to vaccine antigens encoded by DNA vaccines, as necrotic cells are known to release a range of intracellular factors that lead to dendritic cell (DC) activation and enhanced cross-presentation of antigen. Here we provide evidence that induction of cell death in DNA vaccine-targeted cells provides an adjuvant effect following intradermal vaccination of mice; however, this enhancement of the immune response is dependent on both the mechanism and timing of cell death after antigen expression. We report that a DNA vaccine encoding the cytolytic protein, perforin, resulted in DC activation, enhanced broad and multifunctional CD8 T-cell responses to the HIV-1 antigen GAG and reduced viral load following challenge with a chimeric virus, EcoHIV, compared with the canonical GAG DNA vaccine. This effect was not observed for a DNA vaccine encoding an apoptosis-inducing toxin, DTa, or when the level of perforin expression was increased to induce cell death sooner after vaccination. Thus, inducing lytic cell death following a threshold level of expression of a viral antigen can improve the immunogenicity of DNA vaccines, whereas apoptotic cell death has an inhibitory effect on the immune response.
Collapse
|
176
|
Emori C, Wigglesworth K, Fujii W, Naito K, Eppig JJ, Sugiura K. Cooperative effects of 17β-estradiol and oocyte-derived paracrine factors on the transcriptome of mouse cumulus cells. Endocrinology 2013; 154:4859-72. [PMID: 24035995 PMCID: PMC3836066 DOI: 10.1210/en.2013-1536] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oocyte-derived paracrine factors (ODPFs) and estrogens are both essential for the development and function of ovarian follicles in mammals. Cooperation of these two factors was assessed in vitro using intact cumulus-oocyte complexes, cumulus cells cultured after the removal of oocytes [oocytectomized (OOX) cumulus cells], and OOX cumulus cells cocultured with denuded oocytes, all in the presence or absence of 17β-estradiol (E2). Effects on the cumulus cell transcriptome were assessed by microarray analysis. There was no significant difference between the cumulus cell transcriptomes of either OOX cumulus cells cocultured with oocytes or intact cumulus-oocyte complexes. Therefore, oocyte-mediated regulation of the cumulus cell transcriptome is mediated primarily by ODPFs and not by gap junctional communication between oocytes and cumulus cells. Gene ontology analysis revealed that both ODPFs and E2 strongly affected the biological processes associated with cell proliferation in cumulus cells. E2 had limited effects on ODPF-regulated biological processes. However, in sharp contrast, ODPFs significantly affected biological processes regulated by E2 in cumulus cells. For example, only in the presence of ODPFs did E2 significantly promote the biological processes related to phosphorylation-mediated signal transduction in cumulus cells, such as the signaling pathways of epidermal growth factor, vascular endothelial growth factor, and platelet-derived growth factor. Therefore, ODPFs and E2 cooperate to regulate the cumulus cell transcriptome and, in general, oocytes modulate the effects of estrogens on cumulus cell function.
Collapse
Affiliation(s)
- Chihiro Emori
- PhD, Laboratory of Applied Genetics, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyoku, Tokyo, 113-8657, Japan.
| | | | | | | | | | | |
Collapse
|
177
|
Liggi S, Drakakis G, Hendry AE, Hanson KM, Brewerton SC, Wheeler GN, Bodkin MJ, Evans DA, Bender A. Extensions to In Silico Bioactivity Predictions Using Pathway Annotations and Differential Pharmacology Analysis: Application toXenopus laevisPhenotypic Readouts. Mol Inform 2013; 32:1009-24. [DOI: 10.1002/minf.201300102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/06/2013] [Indexed: 12/20/2022]
|
178
|
A critical role for PDGFRα signaling in medial nasal process development. PLoS Genet 2013; 9:e1003851. [PMID: 24086166 PMCID: PMC3784569 DOI: 10.1371/journal.pgen.1003851] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/16/2013] [Indexed: 11/19/2022] Open
Abstract
The primitive face is composed of neural crest cell (NCC) derived prominences. The medial nasal processes (MNP) give rise to the upper lip and vomeronasal organ, and are essential for normal craniofacial development, but the mechanism of MNP development remains largely unknown. PDGFRα signaling is known to be critical for NCC development and craniofacial morphogenesis. In this study, we show that PDGFRα is required for MNP development by maintaining the migration of progenitor neural crest cells (NCCs) and the proliferation of MNP cells. Further investigations reveal that PI3K/Akt and Rac1 signaling mediate PDGFRα function during MNP development. We thus establish PDGFRα as a novel regulator of MNP development and elucidate the roles of its downstream signaling pathways at cellular and molecular levels.
Collapse
|
179
|
McCarthy N, Wetherill L, Lovely CB, Swartz ME, Foroud TM, Eberhart JK. Pdgfra protects against ethanol-induced craniofacial defects in a zebrafish model of FASD. Development 2013; 140:3254-65. [PMID: 23861062 PMCID: PMC3931738 DOI: 10.1242/dev.094938] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human birth defects are highly variable and this phenotypic variability can be influenced by both the environment and genetics. However, the synergistic interactions between these two variables are not well understood. Fetal alcohol spectrum disorders (FASD) is the umbrella term used to describe the wide range of deleterious outcomes following prenatal alcohol exposure. Although FASD are caused by prenatal ethanol exposure, FASD are thought to be genetically modulated, although the genes regulating sensitivity to ethanol teratogenesis are largely unknown. To identify potential ethanol-sensitive genes, we tested five known craniofacial mutants for ethanol sensitivity: cyp26b1, gata3, pdgfra, smad5 and smoothened. We found that only platelet-derived growth factor receptor alpha (pdgfra) interacted with ethanol during zebrafish craniofacial development. Analysis of the PDGF family in a human FASD genome-wide dataset links PDGFRA to craniofacial phenotypes in FASD, prompting a mechanistic understanding of this interaction. In zebrafish, untreated pdgfra mutants have cleft palate due to defective neural crest cell migration, whereas pdgfra heterozygotes develop normally. Ethanol-exposed pdgfra mutants have profound craniofacial defects that include the loss of the palatal skeleton and hypoplasia of the pharyngeal skeleton. Furthermore, ethanol treatment revealed latent haploinsufficiency, causing palatal defects in ∼62% of pdgfra heterozygotes. Neural crest apoptosis partially underlies these ethanol-induced defects in pdgfra mutants, demonstrating a protective role for Pdgfra. This protective role is mediated by the PI3K/mTOR pathway. Collectively, our results suggest a model where combined genetic and environmental inhibition of PI3K/mTOR signaling leads to variability within FASD.
Collapse
Affiliation(s)
- Neil McCarthy
- Department of Molecular and Cell and Developmental Biology, Institute for Cellular and Molecular Biology and Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| | | | | | | | | | | |
Collapse
|
180
|
Neijts R, Simmini S, Giuliani F, van Rooijen C, Deschamps J. Region-specific regulation of posterior axial elongation during vertebrate embryogenesis. Dev Dyn 2013; 243:88-98. [PMID: 23913366 DOI: 10.1002/dvdy.24027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/18/2013] [Accepted: 07/21/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The vertebrate body axis extends sequentially from the posterior tip of the embryo, fueled by the gastrulation process at the primitive streak and its continuation within the tailbud. Anterior structures are generated early, and subsequent nascent tissues emerge from the posterior growth zone and continue to elongate the axis until its completion. The underlying processes have been shown to be disrupted in mouse mutants, some of which were described more than half a century ago. RESULTS Important progress in elucidating the cellular and genetic events involved in body axis elongation has recently been made on several fronts. Evidence for the residence of self-renewing progenitors, some of which are bipotential for neurectoderm and mesoderm, has been obtained by embryo-grafting techniques and by clonal analyses in the mouse embryo. Transcription factors of several families including homeodomain proteins have proven instrumental for regulating the axial progenitor niche in the growth zone. A complex genetic network linking these transcription factors and signaling molecules is being unraveled that underlies the phenomenon of tissue lengthening from the axial stem cells. The concomitant events of cell fate decision among descendants of these progenitors begin to be better understood at the levels of molecular genetics and cell behavior. CONCLUSIONS The emerging picture indicates that the ontogenesis of the successive body regions is regulated according to different rules. In addition, parameters controlling vertebrate axial length during evolution have emerged from comparative experimental studies. It is on these issues that this review will focus, mainly addressing the study of axial extension in the mouse embryo with some comparison with studies in chick and zebrafish, aiming at unveiling the recent progress, and pointing at still unanswered questions for a thorough understanding of the process of embryonic axis elongation.
Collapse
Affiliation(s)
- Roel Neijts
- Hubrecht Institute and University Medical Center, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
181
|
Wiradjaja F, Cottle DL, Jones L, Smyth I. Regulation of PDGFC signalling and extracellular matrix composition by FREM1 in mice. Dis Model Mech 2013; 6:1426-33. [PMID: 24046351 PMCID: PMC3820265 DOI: 10.1242/dmm.013748] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fras1-related extracellular matrix protein 1 (FREM1) is required for epidermal adhesion during embryogenesis, and mice lacking the gene develop fetal skin blisters and a range of other developmental defects. Mutations in members of the FRAS/FREM gene family cause diseases of the Fraser syndrome spectrum. Embryonic epidermal blistering is also observed in mice lacking PdgfC and its receptor, PDGFRα. In this article, we show that FREM1 binds to PDGFC and that this interaction regulates signalling downstream of PDGFRα. Fibroblasts from Frem1-mutant mice respond to PDGFC stimulation, but with a shorter duration and amplitude than do wild-type cells. Significantly, PDGFC-stimulated expression of the metalloproteinase inhibitor Timp1 is reduced in cells with Frem1 mutations, leading to reduced basement membrane collagen I deposition. These results show that the physical interaction of FREM1 with PDGFC can regulate remodelling of the extracellular matrix downstream of PDGFRα. We propose that loss of FREM1 function promotes epidermal blistering in Fraser syndrome as a consequence of reduced PDGFC activity, in addition to its stabilising role in the basement membrane.
Collapse
Affiliation(s)
- Fenny Wiradjaja
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|
182
|
Analysis of mice lacking the heparin-binding splice isoform of platelet-derived growth factor A. Mol Cell Biol 2013; 33:4030-40. [PMID: 23938297 DOI: 10.1128/mcb.00749-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Platelet-derived growth factor A-chain (PDGF-A) exists in two evolutionarily conserved isoforms, PDGF-Along and PDGF-Ashort, generated by alternative RNA splicing. They differ by the presence (in PDGF-Along) or absence (in PDGF-Ashort) of a carboxy-terminal heparin/heparan sulfate proteoglycan-binding motif. In mice, similar motifs present in other members of the PDGF and vascular endothelial growth factor (VEGF) families have been functionally analyzed in vivo, but the specific physiological importance of PDGF-Along has not been explored previously. Here, we analyzed the absolute and relative expression of the two PDGF-A splice isoforms during early postnatal organ development in the mouse and report on the generation of a Pdgfa allele (Pdgfa(Δex6)) incapable of producing PDGF-Along due to a deletion of the exon 6 splice acceptor site. In situations of limiting PDGF-A signaling through PDGF receptor alpha (PDGFRα), or in mice lacking PDGF-C, homozygous carriers of Pdgfa(Δex6) showed abnormal development of the lung, intestine, and vertebral column, pinpointing developmental processes where PDGF-Along may play a physiological role.
Collapse
|
183
|
Ross AP, Mansilla MA, Choe Y, Helminski S, Sturm R, Maute RL, May SR, Hozyasz KK, Wójcicki P, Mostowska A, Davidson B, Adamopoulos IE, Pleasure SJ, Murray JC, Zarbalis KS. A mutation in mouse Pak1ip1 causes orofacial clefting while human PAK1IP1 maps to 6p24 translocation breaking points associated with orofacial clefting. PLoS One 2013; 8:e69333. [PMID: 23935987 PMCID: PMC3723895 DOI: 10.1371/journal.pone.0069333] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/08/2013] [Indexed: 01/05/2023] Open
Abstract
Orofacial clefts are among the most common birth defects and result in an improper formation of the mouth or the roof of the mouth. Monosomy of the distal aspect of human chromosome 6p has been recognized as causative in congenital malformations affecting the brain and cranial skeleton including orofacial clefts. Among the genes located in this region is PAK1IP1, which encodes a nucleolar factor involved in ribosomal stress response. Here, we report the identification of a novel mouse line that carries a point mutation in the Pak1ip1 gene. Homozygous mutants show severe developmental defects of the brain and craniofacial skeleton, including a median orofacial cleft. We recovered this line of mice in a forward genetic screen and named the allele manta-ray (mray). Our findings prompted us to examine human cases of orofacial clefting for mutations in the PAK1IP1 gene or association with the locus. No deleterious variants in the PAK1IP1 gene coding region were recognized, however, we identified a borderline association effect for SNP rs494723 suggesting a possible role for the PAK1IP1 gene in human orofacial clefting.
Collapse
Affiliation(s)
- Adam P. Ross
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, California, United States of America
| | - M. Adela Mansilla
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Youngshik Choe
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Simon Helminski
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, California, United States of America
| | - Richard Sturm
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Roy L. Maute
- Institute for Cancer Genetics, Columbia University, New York City, New York, United States of America
| | - Scott R. May
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Kamil K. Hozyasz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland
| | - Piotr Wójcicki
- Department of Plastic Surgery, Wrocław Medical University, Polanica Zdroj, Poland
- Department of Plastic Surgery, Medical Centre, Polanica-Zdrój, Poland
| | - Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Beth Davidson
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Iannis E. Adamopoulos
- Department of Internal Medicine, University of California Davis, Sacramento, California, United States of America
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, California, United States of America
| | - Samuel J. Pleasure
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Jeffrey C. Murray
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Konstantinos S. Zarbalis
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, California, United States of America
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, California, United States of America
| |
Collapse
|
184
|
Detection of H2O2-mediated phosphorylation of kinase-inactive PDGFRα. Methods Enzymol 2013. [PMID: 23849866 DOI: 10.1016/b978-0-12-405881-1.00011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Platelet-derived growth factor (PDGF) receptor α (PDGFRα) belongs to the 58-member family of receptor tyrosine kinases and contributes to a variety of physiological and pathological settings. Activation of PDGFRα proceeds by at least two mechanisms. The traditional route involves PDGF-dependent dimerization and activation of the receptor's intrinsic kinase activity. The second mechanism proceeds intracellularly and involves reactive oxygen species and Src family kinases, which activate monomeric PDGFRα. Herein we describe an assay to investigate reactive oxygen species-mediated phosphorylation of PDGFRα that is independent of the receptor's intrinsic kinase activity.
Collapse
|
185
|
Vogel TW, Carter CS, Abode-Iyamah K, Zhang Q, Robinson S. The role of primary cilia in the pathophysiology of neural tube defects. Neurosurg Focus 2013; 33:E2. [PMID: 23025443 DOI: 10.3171/2012.6.focus12222] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neural tube defects (NTDs) are a set of disorders that occur from perturbation of normal neural development. They occur in open or closed forms anywhere along the craniospinal axis and often result from a complex interaction between environmental and genetic factors. One burgeoning area of genetics research is the effect of cilia signaling on the developing neural tube and how the disruption of primary cilia leads to the development of NTDs. Recent progress has implicated the hedgehog (Hh), wingless-type integration site family (Wnt), and planar cell polarity (PCP) pathways in primary cilia as involved in normal neural tube patterning. A set of disorders involving cilia function, known as ciliopathies, offers insight into abnormal neural development. In this article, the authors discuss the common ciliopathies, such as Meckel-Gruber and Joubert syndromes, that are associated with NTDs, and review cilia-related signaling cascades responsible for mammalian neural tube development. Understanding the contribution of cilia in the formation of NTDs may provide greater insight into this common set of pediatric neurological disorders.
Collapse
Affiliation(s)
- Timothy W Vogel
- Department of Neurosurgery, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
186
|
Iwayama T, Olson LE. Involvement of PDGF in fibrosis and scleroderma: recent insights from animal models and potential therapeutic opportunities. Curr Rheumatol Rep 2013; 15:304. [PMID: 23307576 DOI: 10.1007/s11926-012-0304-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fibrosis is the principal characteristic of the autoimmune disease known as scleroderma or systemic sclerosis (SSc). Studies published within the last three years suggest central involvement of platelet-derived growth factors (PDGFs) in SSc-associated fibrosis. PDGFs may also be involved in SSc-associated autoimmunity and vasculopathy. The PDGF signaling pathway is well understood and PDGF receptors are expressed on collagen-secreting fibroblasts and on mesenchymal stem and/or progenitor cells that may affect SSc in profound and unexpected ways. Although much work remains before we fully understand how PDGFs are involved in SSc, there is much interest in using PDGF inhibitors as a therapeutic approach to SSc.
Collapse
Affiliation(s)
- Tomoaki Iwayama
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | | |
Collapse
|
187
|
Heldin CH. Targeting the PDGF signaling pathway in the treatment of non-malignant diseases. J Neuroimmune Pharmacol 2013; 9:69-79. [PMID: 23793451 DOI: 10.1007/s11481-013-9484-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/05/2013] [Indexed: 12/13/2022]
Abstract
Platelet-derived growth factor (PDGF) is a family of mesenchymal mitogens with important functions during the embryonal development and in the control of tissue homeostasis in the adult. The PDGF isoforms exert their effects by binding to α-and β-tyrosine kinase receptors. Overactivity of PDGF signaling has been linked to the development of certain malignant and non-malignant diseases, including atherosclerosis and various fibrotic diseases. Different types of PDGF antagonists have been developed, including inhibitory monoclonal antibodies and DNA aptamers against PDGF isoforms and receptors, and receptor tyrosine kinase inhibitors. Beneficial effects have been recorded using such inhibitors in preclinical models and in patients with certain malignant as well as non-malignant diseases. The present communication summarizes the use of PDGF antagonists in the treatment of non-malignant diseases.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research Ltd, Science for Life Laboratory, Uppsala University, Box 595, SE-75124, Uppsala, Sweden,
| |
Collapse
|
188
|
Funa K, Sasahara M. The roles of PDGF in development and during neurogenesis in the normal and diseased nervous system. J Neuroimmune Pharmacol 2013; 9:168-81. [PMID: 23771592 PMCID: PMC3955130 DOI: 10.1007/s11481-013-9479-z] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/23/2013] [Indexed: 12/13/2022]
Abstract
The four platelet-derived growth factor (PDGF) ligands and PDGF receptors (PDGFRs), α and β (PDGFRA, PDGFRB), are essential proteins that are expressed during embryonic and mature nervous systems, i.e., in neural progenitors, neurons, astrocytes, oligodendrocytes, and vascular cells. PDGF exerts essential roles from the gastrulation period to adult neuronal maintenance by contributing to the regulation of development of preplacodal progenitors, placodal ectoderm, and neural crest cells to adult neural progenitors, in coordinating with other factors. In adulthood, PDGF plays critical roles for maintenance of many specific cell types in the nervous system together with vascular cells through controlling the blood brain barrier homeostasis. At injury or various stresses, PDGF modulates neuronal excitability through adjusting various ion channels, and affecting synaptic plasticity and function. Furthermore, PDGF stimulates survival signals, majorly PI3-K/Akt pathway but also other ways, rescuing cells from apoptosis. Studies imply an involvement of PDGF in dendrite spine morphology, being critical for memory in the developing brain. Recent studies suggest association of PDGF genes with neuropsychiatric disorders. In this review, we will describe the roles of PDGF in the nervous system, from the discovery to recent findings, in order to understand the broad spectrum of PDGF in the nervous system. Recent development of pharmacological and replacement therapies targeting the PDGF system is discussed.
Collapse
Affiliation(s)
- Keiko Funa
- Sahlgrenska Cancer Center, University of Gothenburg, Box 425, SE 405 30, Gothenburg, Sweden,
| | | |
Collapse
|
189
|
Multifarious functions of PDGFs and PDGFRs in tumor growth and metastasis. Trends Mol Med 2013; 19:460-73. [PMID: 23773831 DOI: 10.1016/j.molmed.2013.05.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/03/2013] [Accepted: 05/09/2013] [Indexed: 01/06/2023]
Abstract
Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) are frequently expressed in various tumors and their expression levels correlate with tumor growth, invasiveness, drug resistance, and poor clinical outcomes. Emerging experimental evidence demonstrates that PDGFs exhibit multiple functions in modulation of tumor growth, metastasis, and the tumor microenvironment by targeting malignant cells, vascular cells, and stromal cells. Understanding PDGF-PDGFR-mediated molecular signaling may provide new mechanistic rationales for optimizing current cancer therapies and the development of future novel therapeutic modalities.
Collapse
|
190
|
Kang S, Lu K, Leelawattanachai J, Hu X, Park S, Park T, Min IM, Jin MM. Virus-mimetic polyplex particles for systemic and inflammation-specific targeted delivery of large genetic contents. Gene Ther 2013; 20:1042-52. [DOI: 10.1038/gt.2013.29] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 04/11/2013] [Accepted: 04/29/2013] [Indexed: 01/20/2023]
|
191
|
Donovan J, Shiwen X, Norman J, Abraham D. Platelet-derived growth factor alpha and beta receptors have overlapping functional activities towards fibroblasts. FIBROGENESIS & TISSUE REPAIR 2013; 6:10. [PMID: 23663505 PMCID: PMC3667071 DOI: 10.1186/1755-1536-6-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/05/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Platelet-derived growth factor (PDGF) signalling is essential for many key cellular processes in mesenchymal cells. As there is redundancy in signalling between the five PDGF ligand isoforms and three PDGF receptor isoforms, and deletion of either of the receptors in vivo produces an embryonic lethal phenotype, it is not know which ligand and receptor combinations mediate specific cellular functions. Fibroblasts are key mediators in wound healing and tissues repair. Recent clinical trials using broad spectrum tyrosine kinase inhibitors in fibrotic diseases have highlighted the need to further examine the specific cellular roles each of the tyrosine kinases plays in fibrotic processes. In this study, we used PDGFR-specific neutralising antibodies to dissect out receptor-specific signalling events in fibroblasts in vitro, to further understand key cellular processes involved in wound healing and tissue repair. RESULTS Neutralising antibodies against PDGFRs were shown to block signalling through PDGFRα and PDGFRβ receptors, reduce human PDGF-AA and PDGF-BB-induced collagen gel remodelling in dermal fibroblasts, and reduce migration stimulated by all PDGF ligands in human dermal and lung fibroblasts. CONCLUSIONS PDGFRα and PDGFRβ neutralising antibodies can be a useful tool in studying PDGFR isoform-specific cellular events.
Collapse
Affiliation(s)
- Johanna Donovan
- Centre for Rheumatology and Connective Tissue Diseases and Division of Medicine, UCL Medical School, Royal Free Campus, London, UK
| | - Xu Shiwen
- Centre for Rheumatology and Connective Tissue Diseases and Division of Medicine, UCL Medical School, Royal Free Campus, London, UK
| | - Jill Norman
- Centre for Nephrology, Division of Medicine, UCL Medical School, Royal Free Campus, London, UK
| | - David Abraham
- Centre for Rheumatology and Connective Tissue Diseases and Division of Medicine, UCL Medical School, Royal Free Campus, London, UK
| |
Collapse
|
192
|
Das B, Cash MN, Hand AR, Shivazad A, Grieshaber SS, Robinson B, Culp DJ. Tissue distibution of murine Muc19/smgc gene products. J Histochem Cytochem 2013; 58:141-56. [PMID: 19826070 DOI: 10.1369/jhc.2009.954891] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 09/24/2009] [Indexed: 11/22/2022] Open
Abstract
The recently identified gene Muc19/Smgc encodes two diverse splice variants, Smgc (submandibular gland protein C) and Muc19 (mucin 19). Muc19 is a member of the large gel-forming mucin family and is an exocrine product of sublingual mucous salivary glands in mice. SMGC is a transiently expressed secretion product of developing rodent submandibular and sublingual glands. Little is known about the expression of Muc19/Smgc gene products in other murine salivary and non-salivary tissues containing the mucous cell phenotype. Muc19 expression was therefore initially assessed by RT-PCR and immunohistochemistry. As a complementary approach, we developed a knockin mouse model, Muc19-EGFP, in which mice express a fusion protein containing the first 69 residues of Muc19 followed by enhanced green fluorescent protein (EGFP) as a marker of Muc19 expression. Results from both approaches are consistent, with preferential Muc19 expression in salivary major and minor mucous glands as well as submucosal glands of the tracheolarynx and bulbourethral glands. Evidence also indicates that individual mucous cells of minor salivary and bulbourethral glands produce another gel-forming mucin in addition to Muc19. We further find tissue expression of full-length Smgc transcripts, which encode for SMGC, and are restricted to neonatal tracheolarynx and all salivary tissues.
Collapse
Affiliation(s)
- Biswadip Das
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610-3003, USA
| | | | | | | | | | | | | |
Collapse
|
193
|
Cao T, Wang C, Yang M, Wu C, Wang B. Mouse limbs expressing only the Gli3 repressor resemble those of Sonic hedgehog mutants. Dev Biol 2013; 379:221-8. [PMID: 23644062 DOI: 10.1016/j.ydbio.2013.04.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 11/29/2022]
Abstract
Anterioposterior vertebrate limb patterning is controlled by opposing action between Sonic Hedgehog (Shh) and the Gli3 transcriptional repressor. Unexpectedly, Gli3(Δ699) mutant mice, which are thought to express only a Gli3 repressor and not the full-length activator, exhibit limb phenotypes inconsistent with those of Shh mutant mice. Therefore, it remains debatable whether Shh patterns the anterioposterior limb primarily by inhibiting generation of the Gli3 repressor. However, one caveat is that Gli3(Δ699) may not be as potent as the natural form of Gli3 repressor because of the nature of the mutant allele. In the present study, we created a conditional Gli3 mutant allele that exclusively expresses Gli3 repressor in the presence of Cre recombinase. Using this mutant, we show that the phenotypes of mouse limbs expressing only the Gli3 repressor exhibit no or single digit, resembling those of Shh mutant limbs. Consistent with the limb phenotypes, the expression of genes dependent on Shh signaling is also inhibited in both mutants. This inhibition by the Gli3 repressor is independent of Shh. Thus, our study clarifies the current controversy and provides important genetic evidence to support the hypothesis that Shh patterns the anterioposterior limb primarily through the inhibition of Gli3 repressor formation.
Collapse
Affiliation(s)
- Ting Cao
- Institute of Life Science, Nanjing University, Nanjing, Jiangsu, China
| | | | | | | | | |
Collapse
|
194
|
Das B, Cash MN, Robinson B, Kuhns CS, Latchney LR, Fallon MA, Elliott RW, Hand AR, Culp DJ. The sld genetic defect: two intronic CA repeats promote insertion of the subsequent intron and mRNA decay. J Biol Chem 2013; 288:14742-55. [PMID: 23580649 DOI: 10.1074/jbc.m113.468645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The autosomal recessive mutation, sld, attenuates mucous cell expression in murine sublingual glands with corresponding effects on mucin 19 (Muc19). We conducted a systematic study including genetic mapping, sequencing, and functional analyses to elucidate a mutation to explain the sld phenotype in neonatal mice. Genetic mapping and gene expression analyses localized the sld mutation within the gene Muc19/Smgc, specifically attenuating Muc19 transcripts, and Muc19 knock-out mice mimic the sld phenotype in neonates. Muc19 transcription is unaffected in sld mice, whereas mRNA stability is markedly decreased. Decreased mRNA stability is not due to a defect in 3'-end processing nor to sequence differences in Muc19 transcripts. Comparative sequencing of the Muc19/Smgc gene identified four candidate intronic mutations within the Muc19 coding region. Minigene splicing assays revealed a novel splicing event in which insertion of two additional repeats within a CA repeat region of intron 53 of the sld genome enhances retention of intron 54, decreasing the levels of correctly spliced transcripts. Moreover, pateamine A, an inhibitor of nonsense-mediated mRNA decay, inhibits degradation of aberrant Muc19 transcripts. The mutation in intron 53 thus enhances aberrant splicing leading to degradation of aberrant transcripts and decreased Muc19 message stability, consistent with the sld phenotype. We propose a working model of the unique splicing event enhanced by the mutation, as well as putative explanations for the gradual but limited increase in Muc19 glycoprotein expression and its restricted localization to subpopulations of mucous cells in sld mice during postnatal gland development.
Collapse
Affiliation(s)
- Biswadip Das
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Abstract
CONTEXT The use of kinase inhibitors (KIs) in the treatment of cancer has become increasingly common, and practitioners must be familiar with endocrine-related side effects associated with these agents. This review provides an update to the clinician regarding the management of potential endocrinological effects of KIs. EVIDENCE ACQUISITION PubMed was employed to identify relevant manuscripts. A review of the literature was conducted, and data were summarized and incorporated. EVIDENCE SYNTHESIS KIs, including small molecule KIs and monoclonal antibodies directed against kinases, have emerged over the past decade as an important class of anticancer agents. KIs specifically interfere with signaling pathways that are dysregulated in certain types of cancers and also target common mechanisms of growth, invasion, metastasis, and angiogenesis. Currently, at least 20 KIs are approved as cancer therapeutics. However, KIs may affect a broad spectrum of targets and may have additional, unidentified mechanisms of action at the cellular level due to overlap between signaling pathways in the tumor cell and endocrine system. Recent reports in the literature have identified side effects associated with KIs, including alterations in thyroid function, bone metabolism, linear growth, gonadal function, fetal development, adrenal function, and glucose metabolism. CONCLUSIONS Clinicians need to monitor the thyroid functions of patients on KIs. In addition, bone density and vitamin D status should be assessed. Special care should be taken to follow linear growth and development in children taking these agents. Clinicians should counsel patients appropriately on the potential adverse effects of KIs on fetal development.
Collapse
Affiliation(s)
- Maya B Lodish
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and the Pediatric Endocrinology Inter-Institute Training Program, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
196
|
Ding G, Tanaka Y, Hayashi M, Nishikawa SI, Kataoka H. PDGF receptor alpha+ mesoderm contributes to endothelial and hematopoietic cells in mice. Dev Dyn 2013; 242:254-68. [PMID: 23335233 PMCID: PMC3597973 DOI: 10.1002/dvdy.23923] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/12/2012] [Accepted: 12/20/2012] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Early mesoderm can be classified into Flk-1+ or PDGF receptor alpha (PDGFRα)+ population, grossly representing lateral and paraxial mesoderm, respectively. It has been demonstrated that all endothelial (EC) and hematopoietic (HPC) cells are derived from Flk-1+ cells. Although PDGFRα+ cells give rise to ECs/HPCs in in vitro ES differentiation, whether PDGFRα+ population can become hemato-endothelial lineages has not been proved in mouse embryos. RESULTS Using PDGFRαMerCreMer mice, PDGFRα+ early mesoderm was shown to contribute to endothelial cells including hemogenic ECs, fetal liver B lymphocytes, and Lin-Kit+Sca-1+ (KSL) cells. Contribution of PDGFRα+ mesoderm into ECs and HPCs was limited until E8.5, indicating that PDGFRα+/Flk-1+ population that exists until E8.5 may be the source for hemato-endothelial lineages from PDGFRα+ population. The functional significance of PDGFRα+ mesoderm in vascular development and hematopoiesis was confirmed by genetic deletion of Etv2 or restoration of Runx1 in PDGFRα+ cells. Etv2 deletion and Runx1 restoration in PDGFRα+ cells resulted in abnormal vascular remodeling and rescue of fetal liver CD45+ and Lin-Kit+Sca-1+ (KSL) cells, respectively. CONCLUSIONS Endothelial and hematopoietic cells can be derived from PDGFRα+ early mesoderm in mice. PDGFRα+ mesoderm is functionally significant in vascular development and hematopoiesis from phenotype analysis of genetically modified embryos.
Collapse
Affiliation(s)
- Guo Ding
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Kobe, Japan
| | | | | | | | | |
Collapse
|
197
|
Origin of the Turtle Body Plan: The Folding Theory to Illustrate Turtle-Specific Developmental Repatterning. VERTEBRATE PALEOBIOLOGY AND PALEOANTHROPOLOGY 2013. [DOI: 10.1007/978-94-007-4309-0_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
198
|
|
199
|
New insights into the mechanism of lens development using zebra fish. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 296:1-61. [PMID: 22559937 DOI: 10.1016/b978-0-12-394307-1.00001-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
On the basis of recent advances in molecular biology, genetics, and live-embryo imaging, direct comparisons between zebra fish and human lens development are being made. The zebra fish has numerous experimental advantages for investigation of fundamental biomedical problems that are often best studied in the lens. The physical characteristics of visible light can account for the highly coordinated cell differentiation during formation of a beautifully transparent, refractile, symmetric optical element, the biological lens. The accessibility of the zebra fish lens for direct investigation during rapid development will result in new knowledge about basic functional mechanisms of epithelia-mesenchymal transitions, cell fate, cell-matrix interactions, cytoskeletal interactions, cytoplasmic crowding, membrane transport, cell adhesion, cell signaling, and metabolic specialization. The lens is well known as a model for characterization of cell and molecular aging. We review the recent advances in understanding vertebrate lens development conducted with zebra fish.
Collapse
|
200
|
Pazin DE, Gamer LW, Cox KA, Rosen V. Molecular profiling of synovial joints: use of microarray analysis to identify factors that direct the development of the knee and elbow. Dev Dyn 2012; 241:1816-26. [PMID: 22972626 DOI: 10.1002/dvdy.23861] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2012] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Synovial joints develop from the interzone, a dense layer of mesenchymal progenitor cells that marks the site of the future joint. During the morphogenic events that follow, joints attain their distinct shape and organization. The molecular mechanisms controlling the initial specification of synovial joints has been studied, but the question of how individual joints attain the specific structure required for their unique functions remains largely unresolved. Here, we use microarray analysis to compare knee and elbow formation to identify factors involved in the development of specific joints. RESULTS The knee is enriched for the hindlimb patterning genes Hoxc9, Hoxc10, and Tbx4 and for Tgfbi, Rspo2, and Sfrp2, factors involved in transforming growth factor-beta/bone morphogenetic protein (TGFβ/BMP) and Wnt signaling. Consistent with these findings, we show that TGFβ signaling directs knee morphogenesis, and is necessary for meniscus development. The tissue surrounding the elbow is highly enriched for genes involved in muscle specification and differentiation, and in splotch-delayed muscleless mutants, elbow, but not knee morphogenesis is disrupted. CONCLUSIONS Our results suggest there are fundamental differences in how individual joints develop after interzone formation. Our microarray analyses provides a new resource for further investigation of the pathways involved in the morphogenesis of specific synovial joints.
Collapse
Affiliation(s)
- Dorothy E Pazin
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|