151
|
Abstract
Transcription factors can regulate the expression of other genes in a tissue-specific and quantitative manner and are thus major regulators of embryonic developmental processes. Several transcription factors that regulate cardiac genes specifically have been described, and the recent discovery that dominant inherited transcription factor mutations cause congenital heart defects in humans has brought direct medical relevance to the study of cardiac transcription factors in heart development. Although this field of study is extensive, several major gaps in our knowledge of the transcriptional control of heart development still exist. This review will concentrate on recent developments in the field of cardiac transcription factors and their roles in heart formation.
Collapse
Affiliation(s)
- Benoit G Bruneau
- Division of Cardiovascular Research and Programme in Developmental Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.
| |
Collapse
|
152
|
Franco D, Domínguez J, de Castro Md MDP, Aránega A. [Regulation of myocardial gene expression during heart development]. Rev Esp Cardiol 2002; 55:167-84. [PMID: 11852007 DOI: 10.1016/s0300-8932(02)76576-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The heart is an organ with special significance in medicine and developmental biology. The development of the heart and its vessels during embryogenesis is the result of numerous and complex processes. At present, our understanding is based on decades of meticulous anatomical studies. However, the spectacular progress of modern molecular biology and developmental biology has marked the beginning of a new era in embryology. The molecular bases for cardiogenesis are just emerging. Several families of genes with restricted expression to the heart have been identified in the last years, including genes encoding for contractile proteins, ion channels as well as transcription factors involved in tissue specific gene expression. Likewise, the analyses of regulatory elements have increased our understanding of the molecular mechanisms directing gene expression. In this review, we illustrate the different patterns of gene and transgene expression in the developing myocardium. These data demonstrate that the wide molecular heterogeneity observed in the developing myocardium is not restricted to embryogenesis but it also remains in the adulthood. Therefore, such molecular diversity should be taken into account on the design of future gene therapy approaches, having thus direct clinical implications.
Collapse
Affiliation(s)
- Diego Franco
- Departamento de Biología Experimental, Area de Biología Celular, Facultad de Ciencias Experimentales, Universidad de Jaén, Spain.
| | | | | | | |
Collapse
|
153
|
Comparative Genetics of Heart Development: Conserved Cardiogenic Factors in Drosophila and Vertebrates. ACTA ACUST UNITED AC 2002. [DOI: 10.1007/978-1-4615-0967-7_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
|
154
|
Moses KA, DeMayo F, Braun RM, Reecy JL, Schwartz RJ. Embryonic expression of an Nkx2-5/Cre gene using ROSA26 reporter mice. Genesis 2001; 31:176-80. [PMID: 11783008 DOI: 10.1002/gene.10022] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nkx2-5, one of the earliest cardiac-specific markers in vertebrate embryos, was used as a genetic locus to knock in the Cre recombinase gene by homologous recombination. Offspring resulting from heterozygous Nkx2-5/Cre mice mated to ROSA26 (R26R) reporter mice provided a model system for following Nkx2-5 gene activity by beta-galactosidase (beta-gal) activity. beta-gal activity was initially observed in the early cardiac crescent, cardiomyocytes of the looping heart tube, and in the epithelium of the first pharyngeal arch. In later stage embryos (10.5-13.5 days postcoitum, dpc), beta-gal activity was observed in the stomach and spleen, the dorsum of the tongue, and in the condensing primordium of the tooth. The Nkx2-5/Cre mouse model should provide a useful genetic resource to elucidate the role of loxP manipulated genetic targets in cardiogenesis and other developmental processes.
Collapse
Affiliation(s)
- K A Moses
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
155
|
Bang ML, Centner T, Fornoff F, Geach AJ, Gotthardt M, McNabb M, Witt CC, Labeit D, Gregorio CC, Granzier H, Labeit S. The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res 2001; 89:1065-72. [PMID: 11717165 DOI: 10.1161/hh2301.100981] [Citation(s) in RCA: 520] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Titin is a giant vertebrate striated muscle protein with critical importance for myofibril elasticity and structural integrity. We show here that the complete sequence of the human titin gene contains 363 exons, which together code for 38 138 residues (4200 kDa). In its central I-band region, 47 novel PEVK exons were found, which contribute to titin's extensible spring properties. Additionally, 3 unique I-band titin exons were identified (named novex-1 to -3). Novex-3 functions as an alternative titin C-terminus. The novex-3 titin isoform is approximately 700 kDa in size and spans from Z1-Z2 (titin's N-terminus) to novex-3 (C-terminal exon). Novex-3 titin specifically interacts with obscurin, a 721-kDa myofibrillar protein composed of 57 Ig/FN3 domains, followed by one IQ, SH3, DH, and a PH domain at its C-terminus. The obscurin domains Ig48/Ig49 bind to novex-3 titin and target to the Z-line region when expressed as a GFP fusion protein in live cardiac myocytes. Immunoelectron microscopy detected the C-terminal Ig48/Ig49 obscurin epitope near the Z-line edge. The distance from the Z-line varied with sarcomere length, suggesting that the novex-3 titin/obscurin complex forms an elastic Z-disc to I-band linking system. This system could link together calcium-dependent, SH3-, and GTPase-regulated signaling pathways in close proximity to the Z-disc, a structure increasingly implicated in the restructuring of sarcomeres during cardiomyopathies.
Collapse
Affiliation(s)
- M L Bang
- Institut für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Jamali M, Rogerson PJ, Wilton S, Skerjanc IS. Nkx2-5 activity is essential for cardiomyogenesis. J Biol Chem 2001; 276:42252-8. [PMID: 11526122 DOI: 10.1074/jbc.m107814200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The homeobox transcription factor tinman is essential for heart vessel formation in Drosophila. In contrast, mice lacking the murine homologue Nkx2-5 are defective in cardiac looping but not in cardiac myocyte development. The lack of an essential role for Nkx2-5 in cardiomyogenesis in mammalian systems is most likely the result of genetic redundancy with family members. In this study, we used a dominant negative mutant of Nkx2-5, created by fusing the repressor domain of engrailed 2 to the Nkx2-5 homeodomain, termed Nkx/EnR. Expression of Nkx/EnR inhibited Me(2)SO-induced cardiomyogenesis in P19 cells but not skeletal myogenesis. Nkx/EnR inhibited expression of cardiomyoblast markers, such as GATA-4 and MEF2C, but not of mesoderm markers, such as Brachyury T and Wnt5b, or of skeletal lineage markers, such as MyoD and Mox1. To identify the minimal region of Nkx2-5 that can trigger cardiomyogenesis, we analyzed the activity of various Nkx2-5 deletion mutants. The C-terminal domain was not necessary for the ability of Nkx2-5 to induce cardiomyogenesis and loss of this domain did not enhance myogenesis. Therefore, Nkx2-5 function is essential for commitment of mesoderm into the cardiac muscle lineage, and the N-terminal region, together with the homeodomain, is sufficient for cardiomyogenesis in P19 cells.
Collapse
Affiliation(s)
- M Jamali
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | |
Collapse
|
157
|
Wang GF, Nikovits W, Bao ZZ, Stockdale FE. Irx4 forms an inhibitory complex with the vitamin D and retinoic X receptors to regulate cardiac chamber-specific slow MyHC3 expression. J Biol Chem 2001; 276:28835-41. [PMID: 11382777 DOI: 10.1074/jbc.m103716200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The slow myosin heavy chain 3 gene (slow MyHC3) is restricted in its expression to the atrial chambers of the heart. Understanding its regulation provides a basis for determination of the mechanisms controlling chamber-specific gene expression in heart development. The observed chamber distribution results from repression of slow MyHC3 gene expression in the ventricles. A binding site, the vitamin D response element (VDRE), for a heterodimer of vitamin D receptor (VDR) and retinoic X receptor alpha (RXR alpha) within the slow MyHC3 promoter mediates chamber-specific expression of the gene. Irx4, an Iroquois family homeobox gene whose expression is restricted to the ventricular chambers at all stages of development, inhibits AMHC1, the chick homolog of quail slow MyHC3, gene expression within developing ventricles. Repression of the slow MyHC3 gene in ventricular cardiomyocytes by Irx4 requires the VDRE. Unlike VDR and RXR alpha, Irx4 does not bind directly to the VDRE. Instead two-hybrid and co-immunoprecipitation assays show that Irx4 interacts with the RXR alpha component of the VDR/RXR alpha heterodimer and that the amino terminus of the Irx4 protein is required for its inhibitory action. These observations indicate that the mechanism of atrial chamber-specific expression requires the formation of an inhibitory protein complex composed of VDR, RXR alpha, and Irx4 that binds at the VDRE inhibiting slow MyHC3 expression in the ventricles.
Collapse
Affiliation(s)
- G F Wang
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305-5151, USA
| | | | | | | |
Collapse
|
158
|
Depre C, Tomlinson JE, Kudej RK, Gaussin V, Thompson E, Kim SJ, Vatner DE, Topper JN, Vatner SF. Gene program for cardiac cell survival induced by transient ischemia in conscious pigs. Proc Natl Acad Sci U S A 2001; 98:9336-41. [PMID: 11481491 PMCID: PMC55421 DOI: 10.1073/pnas.171297498] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Therapy for ischemic heart disease has been directed traditionally at limiting cell necrosis. We determined by genome profiling whether ischemic myocardium can trigger a genetic program promoting cardiac cell survival, which would be a novel and potentially equally important mechanism of salvage. Although cardiac genomics is usually performed in rodents, we used a swine model of ischemia/reperfusion followed by ventricular dysfunction (stunning), which more closely resembles clinical conditions. Gene expression profiles were compared by subtractive hybridization between ischemic and normal tissue of the same hearts. About one-third (23/74) of the nuclear-encoded genes that were up-regulated in ischemic myocardium participate in survival mechanisms (inhibition of apoptosis, cytoprotection, cell growth, and stimulation of translation). The specificity of this response was confirmed by Northern blot and quantitative PCR. Unexpectedly, this program also included genes not previously described in cardiomyocytes. Up-regulation of survival genes was more profound in subendocardium over subepicardium, reflecting that this response in stunned myocardium was proportional to the severity of the ischemic insult. Thus, in a swine model that recapitulates human heart disease, nonlethal ischemia activates a genomic program of cell survival that relates to the time course of myocardial stunning and differs transmurally in relation to ischemic stress, which induced the stunning. Understanding the genes up-regulated during myocardial stunning, including those not previously described in the heart, and developing strategies that activate this program may open new avenues for therapy in ischemic heart disease.
Collapse
Affiliation(s)
- C Depre
- Cardiovascular Research Institute, Department of Medicine, University of Medicine and Dentistry New Jersey, New Jersey Medical School, Newark, NJ 07103, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Moriyama M, Tsukamoto Y, Fujiwara M, Kondo G, Nakada C, Baba T, Ishiguro N, Miyazaki A, Nakamura K, Hori N, Sato K, Shomori K, Takeuchi K, Satoh H, Mori S, Ito H. Identification of a novel human ankyrin-repeated protein homologous to CARP. Biochem Biophys Res Commun 2001; 285:715-23. [PMID: 11453652 DOI: 10.1006/bbrc.2001.5216] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We cloned a novel ankyrin repeat protein, Arpp, by immunoscreening a cDNA library constructed from a human esophageal carcinoma cell line, TE1, with an antibody directed to a hypothetical protein encoded by antisense p53 mRNA. Arpp protein is composed of 333 amino acids and contains four ankyrin-like repeat motifs in the middle portion of the protein, a PEST-like sequence and a lysine-rich sequence similar to a nuclear localization signal in the N-terminal region, and a proline-rich region containing consensus phosphorylation sites in the C-terminal region. Protein sequence analysis revealed that Arpp is homologous (52.7% identity) to Carp which is shown to be involved in the regulation of the transcription of the cardiac ventricular myosin light chain 2 gene. Arpp mRNA was found to be expressed in normal skeletal and cardiac muscle. Interestingly, Arpp expression was detectable in bilateral ventricles, but undetectable in bilateral atria and large vessels, suggesting that Arpp may play a specific function in cardiac ventricles as well as skeletal muscles.
Collapse
Affiliation(s)
- M Moriyama
- Department of Molecular Biology, Tottori University, 86 Nishimachi, Yonago-city, Tottori 683-8503, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Pallavicini A, Kojić S, Bean C, Vainzof M, Salamon M, Ievolella C, Bortoletto G, Pacchioni B, Zatz M, Lanfranchi G, Faulkner G, Valle G. Characterization of human skeletal muscle Ankrd2. Biochem Biophys Res Commun 2001; 285:378-86. [PMID: 11444853 DOI: 10.1006/bbrc.2001.5131] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human Ankrd2 transcript encodes a 37-kDa protein that is similar to mouse Ankrd2 recently shown to be involved in hypertrophy of skeletal muscle. These novel ankyrin-rich proteins are related to C-193/CARP/MARP, a cardiac protein involved in the control of cardiac hypertrophy. A human genomic region of 14,300 bp was sequenced revealing a gene organization similar to mouse Ankrd2 with nine exons, four of which encode ankyrin repeats. The intracellular localization of Ankrd2 was unknown since no protein studies had been reported. In this paper we studied the intracellular localization of the protein and its expression on differentiation using polyclonal and monoclonal antibodies produced to human Ankrd2. In adult skeletal muscle Ankrd2 is found in slow fibers; however, not all of the slow fibers express Ankrd2 at the same level. This is particularly evident in dystrophic muscles, where the expression of Ankrd2 in slow fibers seems to be severely reduced.
Collapse
Affiliation(s)
- A Pallavicini
- CRIBI Biotechnology Centre, Università degli Studi di Padova, via Ugo Bassi 58b, I-35121 Padua, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Briegel KJ, Joyner AL. Identification and characterization of Lbh, a novel conserved nuclear protein expressed during early limb and heart development. Dev Biol 2001; 233:291-304. [PMID: 11336496 DOI: 10.1006/dbio.2001.0225] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the cloning, protein characterization, and expression of a novel vertebrate gene, termed Lbh (Limb-bud-and-heart), with a spatiotemporal expression pattern that marks embryologically significant domains in the developing limbs and heart. Lbh encodes a highly conserved nuclear protein, which in tissue culture cells possesses a transcriptional activator function. During limb development, expression of Lbh initiates in the ectoderm of the presumptive limb territory in the lateral body wall. As the limb buds appear, Lbh expression is restricted primarily to the distal ventral limb ectoderm and the apical ectodermal ridge, and overlaps in these ectodermal compartments with En1 and Fgf8 expression. During heart formation, Lbh is expressed as early as Nkx2.5 and dHand in the bilateral heart primordia, with the highest levels in the anterior promyocardium. After heart tube fusion and looping, Lbh expression is confined to the ventricular myocardium, with the highest intensity in the right ventricle and atrioventricular canal, as well as in the sinus venosus. Based on the molecular characteristics and the domain-specific expression pattern, it is possible that Lbh functions in synergy with other genes known to be required for heart and limb development.
Collapse
Affiliation(s)
- K J Briegel
- Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
162
|
Bang ML, Mudry RE, McElhinny AS, Trombitás K, Geach AJ, Yamasaki R, Sorimachi H, Granzier H, Gregorio CC, Labeit S. Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. J Cell Biol 2001; 153:413-27. [PMID: 11309420 PMCID: PMC2169455 DOI: 10.1083/jcb.153.2.413] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2000] [Accepted: 02/27/2001] [Indexed: 02/06/2023] Open
Abstract
We describe here a novel sarcomeric 145-kD protein, myopalladin, which tethers together the COOH-terminal Src homology 3 domains of nebulin and nebulette with the EF hand motifs of alpha-actinin in vertebrate Z-lines. Myopalladin's nebulin/nebulette and alpha-actinin-binding sites are contained in two distinct regions within its COOH-terminal 90-kD domain. Both sites are highly homologous with those found in palladin, a protein described recently required for actin cytoskeletal assembly (Parast, M.M., and C.A. Otey. 2000. J. Cell Biol. 150:643-656). This suggests that palladin and myopalladin may have conserved roles in stress fiber and Z-line assembly. The NH(2)-terminal region of myopalladin specifically binds to the cardiac ankyrin repeat protein (CARP), a nuclear protein involved in control of muscle gene expression. Immunofluorescence and immunoelectron microscopy studies revealed that myopalladin also colocalized with CARP in the central I-band of striated muscle sarcomeres. Overexpression of myopalladin's NH(2)-terminal CARP-binding region in live cardiac myocytes resulted in severe disruption of all sarcomeric components studied, suggesting that the myopalladin-CARP complex in the central I-band may have an important regulatory role in maintaining sarcomeric integrity. Our data also suggest that myopalladin may link regulatory mechanisms involved in Z-line structure (via alpha-actinin and nebulin/nebulette) to those involved in muscle gene expression (via CARP).
Collapse
Affiliation(s)
| | - Ryan E. Mudry
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, Arizona 85721
| | - Abigail S. McElhinny
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, Arizona 85721
| | - Karoly Trombitás
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, Washington 99164
| | - Adam J. Geach
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, Arizona 85721
| | - Rob Yamasaki
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, Washington 99164
| | - Hiroyuki Sorimachi
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8654, Japan
| | - Henk Granzier
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, Washington 99164
| | - Carol C. Gregorio
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, Arizona 85721
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721
| | - Siegfried Labeit
- European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Department of Anaesthesiology and Intensive Surgical Medicine, University of Mannheim, Mannheim 68167, Germany
| |
Collapse
|
163
|
Kemp TJ, Sadusky TJ, Simon M, Brown R, Eastwood M, Sassoon DA, Coulton GR. Identification of a novel stretch-responsive skeletal muscle gene (Smpx). Genomics 2001; 72:260-71. [PMID: 11401441 DOI: 10.1006/geno.2000.6461] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle is able to respond to a range of stimuli, including stretch and increased load, by increasing in diameter and length in the absence of myofiber division. This type of cellular growth (hypertrophy) is a highly complex process involving division of muscle precursor cells (myoblasts) and their fusion to existing muscle fibers as well as increased protein synthesis and decreased protein degradation. Underlying the alterations in protein levels are increases in a range of specific mRNAs including those coding for structural proteins and proteins that regulate the hypertrophic process. Seven days of passive stretch in vivo of tibialis anterior (TA) muscle has been shown to elicit muscle hypertrophy. We have identified a cDNA corresponding to an mRNA that exhibits increased expression in response to 7 days of passive stretch imposed on TA muscles in vivo. This 944-bp novel murine transcript is expressed primarily in cardiac and skeletal muscle and to a lesser extent in brain. Translation of the transcript revealed an open reading frame of 85 amino acids encoding a nuclear localization signal and two overlapping casein kinase II phosphorylation sites. This gene has been called "small muscle protein (X chromosome)" (Smpx; HGMW-approved human gene symbol SMPX) and we hypothesize that it plays a role in skeletal muscle hypertrophy.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Western
- Cell Differentiation/genetics
- Chromosome Mapping
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Embryo, Mammalian/metabolism
- Exons
- Gene Expression Regulation
- Gene Expression Regulation, Developmental
- Humans
- Immunohistochemistry
- Introns
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Muscle Proteins
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Porins/genetics
- Porins/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Specific Pathogen-Free Organisms
- Stress, Mechanical
- Tissue Distribution
- X Chromosome/genetics
Collapse
Affiliation(s)
- T J Kemp
- Molecular Pathology, Imperial College of Science, Technology, and Medicine, London, SW7 2AZ, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
164
|
Abstract
Building a vertebrate heart is a complex task and involves several tissues, including the myocardium, endocardium, neural crest, and epicardium. Interactions between these tissues result in the changes in function and morphology (and also in the extracellular matrix, which serves as a substrate for morphological change) that are requisite for development of the heart. Some of the signaling pathways that mediate these changes have now been identified and several investigators are now filling in the missing pieces in these pathways in hopes of ultimately understanding the molecular mechanisms that govern healthy heart development. In addition, transcription factors that regulate various aspects of heart development have been identified. Transcription factors of the GATA and Nkx2 families are of particular importance for early specification of the heart field and for regulating expression of genes that encode proteins of the contractile apparatus. This chapter highlights some of the most significant discoveries made in the rapidly expanding field of heart development.
Collapse
Affiliation(s)
- M J Farrell
- Developmental Biology Program, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta 30912, USA
| | | |
Collapse
|
165
|
Kanai H, Tanaka T, Aihara Y, Takeda S, Kawabata M, Miyazono K, Nagai R, Kurabayashi M. Transforming growth factor-beta/Smads signaling induces transcription of the cell type-restricted ankyrin repeat protein CARP gene through CAGA motif in vascular smooth muscle cells. Circ Res 2001; 88:30-6. [PMID: 11139470 DOI: 10.1161/01.res.88.1.30] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transforming growth factor (TGF)-beta plays a major role in the development of vascular diseases. Despite the pleiotropic effects of TGF-ss on vascular smooth muscle cells (VSMCs), only a few genes have been characterized as direct targets of TGF-beta in VSMCs. Cardiac ankyrin repeat protein (CARP) has been thought to be expressed exclusively in the heart. In the present study, we showed that CARP is expressed in the vasculature after balloon injury and in cultured VSMCs in response to TGF-beta. Analysis of a half-life of the cytoplasmic CARP mRNA levels and the transient transfection of the CARP promoter/luciferase gene indicates that the regulation of CARP expression is increased by TGF-beta at the transcriptional level. Transfection of expression vectors encoding Smads significantly activated the CARP promoter/luciferase activity. Deletion analysis and site-specific mutagenesis of the CARP promoter indicate that TGF-beta response element is localized to CAGA motif at -108 bp relative to the transcription start site. Electrophoretic mobility shift assays showed that the binding activity to the CAGA motif was increased in nuclear extracts of cultured VSMCs by TGF-beta. Cells transfected with adenovirus vector expressing CARP showed a significant decrease in DNA synthesis. Overexpression of CARP enhanced the TGF-beta-mediated inhibition of the DNA synthesis. These data indicate that CARP is a downstream target of TGF-beta/Smad signaling in VSMCs and suggest a role of CARP in mediation of the inhibitory effects of TGF-beta on the proliferation of VSMCs.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Base Sequence
- Binding Sites
- COS Cells
- Cell Line
- DNA/biosynthesis
- DNA/drug effects
- DNA/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Dose-Response Relationship, Drug
- Gene Expression Regulation/drug effects
- Humans
- Luciferases/genetics
- Luciferases/metabolism
- Mice
- Molecular Sequence Data
- Muscle Proteins
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Mutation
- Nuclear Proteins/genetics
- Promoter Regions, Genetic/genetics
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/physiology
- Recombinant Fusion Proteins/drug effects
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Repressor Proteins/genetics
- Response Elements
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Deletion
- Signal Transduction
- Smad6 Protein
- Time Factors
- Trans-Activators/genetics
- Trans-Activators/physiology
- Transcription, Genetic/drug effects
- Transforming Growth Factor beta/pharmacology
- Transforming Growth Factor beta1
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- H Kanai
- Second Department of Internal Medicine, Gunma University School of Medicine, Maebashi, Gunma, Japan
| | | | | | | | | | | | | | | |
Collapse
|
166
|
|
167
|
Manning BS, Shotwell K, Mao L, Rockman HA, Koch WJ. Physiological induction of a beta-adrenergic receptor kinase inhibitor transgene preserves ss-adrenergic responsiveness in pressure-overload cardiac hypertrophy. Circulation 2000; 102:2751-7. [PMID: 11094043 DOI: 10.1161/01.cir.102.22.2751] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Transgenic mice with constitutive myocardium-targeted expression of a peptide inhibitor of the ss-adrenergic receptor kinase (ssARKct) have increased in vivo cardiac function and enhanced ss-adrenergic receptor (ssAR) responsiveness. METHODS AND RESULTS In the present study, we created transgenic mice with myocardium-targeted ssARKct transgene expression under control of the CARP (cardiac ankyrin repeat protein) promoter, which is active during cardiac development and inactive in the normal adult mouse heart. Consistent with this, adult CARP-ssARKct transgenic mice have normal in vivo cardiac contractility and ssAR responsiveness indistinguishable from their nontransgenic littermates (NLCs). However, because CARP is in a group of fetal genes activated in the adult ventricle during hypertrophy, we subjected animals to transverse aortic constriction (TAC) to induce pressure overload. Seven days after TAC, CARP-ssARKct hearts had elevations in left ventricular mass similar to those in NLCs; however, TAC did induce demonstrable ssARKct expression in the transgenic hearts. TAC in NLC mice resulted in an upregulation of myocardial ssARK1 and a loss of ssAR-mediated inotropic reserve. Importantly, although ssARK1 was increased in the hypertrophic CARP-ssARKct mice, the in vivo loss of ssAR responsiveness was not seen after induced ssARKct expression. CONCLUSIONS These results demonstrate that acute ssARK1 inhibition can restore lost myocardial ssAR responsiveness and inotropic reserve in vivo. Furthermore, these mice demonstrate the novel utility of the CARP promoter as an inducible element responsive to pathophysiological conditions in the adult heart.
Collapse
Affiliation(s)
- B S Manning
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | |
Collapse
|
168
|
Koch WJ, Lefkowitz RJ, Rockman HA. Functional consequences of altering myocardial adrenergic receptor signaling. Annu Rev Physiol 2000; 62:237-60. [PMID: 10845091 DOI: 10.1146/annurev.physiol.62.1.237] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
From the ability to successfully manipulate the mouse genome has come important transgenic and gene-targeted knockout models that impact many areas of biomedical research. Genetically engineered mouse models geared toward the study of cardiovascular regulation have recently been described and provide powerful tools to study normal and compromised cardiac physiology. The genetic manipulation of the adrenergic receptor (AR) signaling system in the heart, including its regulation by desensitizing kinases, has shed light on the role of this signaling pathway in the regulation of cardiac contractility. One major finding, supported by several mouse models, is that in vivo contractility can be enhanced via alteration of myocardial AR signaling. Thus genetic manipulation of this critical receptor system in the heart represents a novel therapeutic approach for improving function of the failing heart.
Collapse
Affiliation(s)
- W J Koch
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA.
| | | | | |
Collapse
|
169
|
Chernukhin IV, Shamsuddin S, Robinson AF, Carne AF, Paul A, El-Kady AI, Lobanenkov VV, Klenova EM. Physical and functional interaction between two pluripotent proteins, the Y-box DNA/RNA-binding factor, YB-1, and the multivalent zinc finger factor, CTCF. J Biol Chem 2000; 275:29915-21. [PMID: 10906122 DOI: 10.1074/jbc.m001538200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CTCF is a unique, highly conserved, and ubiquitously expressed 11 zinc finger (ZF) transcriptional factor with multiple DNA site specificities. It is able to bind to varying target sequences to perform different regulatory roles, including promoter activation or repression, creating hormone-responsive gene silencing elements, and functional block of enhancer-promoter interactions. Because different sets of ZFs are utilized to recognize different CTCF target DNA sites, each of the diverse DNA.CTCF complexes might engage different essential protein partners to define distinct functional readouts. To identify such proteins, we developed an affinity chromatography method based on matrix-immobilized purified recombinant CTCF. This approach resulted in isolation of several CTCF protein partners. One of these was identified as the multifunctional Y-box DNA/RNA-binding factor, YB-1, known to be involved in transcription, replication, and RNA processing. We examined CTCF/YB-1 interaction by reciprocal immunoprecipitation experiments with anti-CTCF and anti-YB-1 antibodies, and found that CTCF and YB-1 form complexes in vivo. We show that the bacterially expressed ZF domain of CTCF is fully sufficient to retain YB-1 in vitro. To assess possible functional significance of CTCF/YB-1 binding, we employed the very first identified by us, negatively regulated, target for CTCF (c-myc oncogene promoter) as a model in co-transfection assays with both CTCF and YB-1 expression vectors. Although expression of YB-1 alone had no effect, co-expression with CTCF resulted in a marked enhancement of CTCF-driven c-myc transcriptional repression. Thus our findings demonstrate, for the first time, the biological relevance of the CTCF/YB-1 interaction.
Collapse
Affiliation(s)
- I V Chernukhin
- Genetics Laboratory, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Aihara Y, Kurabayashi M, Tanaka T, Takeda SI, Tomaru K, Sekiguchi KI, Ohyama Y, Nagai R. Doxorubicin represses CARP gene transcription through the generation of oxidative stress in neonatal rat cardiac myocytes: possible role of serine/threonine kinase-dependent pathways. J Mol Cell Cardiol 2000; 32:1401-14. [PMID: 10900167 DOI: 10.1006/jmcc.2000.1173] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Doxorubicin (Dox), an anthracyclin antineoplastic agent, causes dilated cardiomyopathy. CARP has been identified as a nuclear protein whose mRNA levels are exquisitely sensitive to Dox. In this study we investigated the molecular mechanisms underlying the repression of CARP expression by Dox in cultured neonatal rat cardiac myocytes. Dox (1 micromol/l)-mediated decrease in CARP mRNA levels was strongly correlated with BNP but not with ANP mRNA levels. Hydrogen peroxide scavenger catalase (1 mg/ml) but not hydroxyl radical scavengers dimethylthiourea (10 mmol/l) or mannitol (10 mmol/l) blunted the Dox-mediated decrease in CARP and BNP expression. Superoxide dismutase inhibitor diethyldithiocarbamic acid (10 mmol/l), which inhibits the generation of hydrogen peroxide from superoxide metabolism, attenuated the repression. PD98059 (MEK1 inhibitor, 50 micromol/l), SB203580 (p38 MAP kinase inhibitor, 10 micromol/l), calphostin C (protein kinase C (PKC) inhibitor, 1 micromol/l), non-selective protein tyrosine kinase inhibitors genistein (50 micromol/l) or herbimycin A (1 micromol/l) failed to abrogate the downregulation of CARP and BNP expression by Dox. In contrast, H7 (30 micromol/l), a potent inhibitor of serine/threonine kinase, significantly blocked Dox-mediated downregulation of CARP and BNP expression. Transient transfection of a series of 5'-deletion and site-specific mutation constructs revealed that M-CAT element located at -37 of the human CARP promoter mediates Dox-induced repression of CARP promoter activity. These results suggest that a genetic response to Dox is mediated through the generation of hydrogen peroxide, which is selectively linked to the activation of H7-sensitive serine/threonine kinase distinct from PKC and well characterized mitogen-activated protein (MAP) kinases (ERK and p38MAP kinase). Furthermore, our data implicated M-CAT element as a Dox-response element within the CARP promoter in cardiac myocytes.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antibiotics, Antineoplastic/pharmacology
- Antioxidants/pharmacology
- Base Sequence
- Cells, Cultured
- Dactinomycin/pharmacology
- Dose-Response Relationship, Drug
- Down-Regulation
- Doxorubicin/pharmacology
- Enzyme Inhibitors/pharmacology
- Humans
- Hydrogen Peroxide/metabolism
- Luciferases/metabolism
- MAP Kinase Signaling System
- Molecular Sequence Data
- Muscle Proteins
- Mutation
- Myocardium/metabolism
- Natriuretic Peptide, Brain/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nucleic Acid Synthesis Inhibitors/pharmacology
- Oxidative Stress/drug effects
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Kinase C/metabolism
- Protein Serine-Threonine Kinases/metabolism
- Protein-Tyrosine Kinases/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Sequence Homology, Nucleic Acid
- Time Factors
- Transcription, Genetic/drug effects
- Transfection
Collapse
Affiliation(s)
- Y Aihara
- Second Department of Internal Medicine, Gunma University School of Medicine, Gunma, Japan
| | | | | | | | | | | | | | | |
Collapse
|
171
|
Aihara Y, Kurabayashi M, Saito Y, Ohyama Y, Tanaka T, Takeda S, Tomaru K, Sekiguchi K, Arai M, Nakamura T, Nagai R. Cardiac ankyrin repeat protein is a novel marker of cardiac hypertrophy: role of M-CAT element within the promoter. Hypertension 2000; 36:48-53. [PMID: 10904011 DOI: 10.1161/01.hyp.36.1.48] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CARP, a cardiac doxorubicin (adriamycin)-responsive protein, has been identified as a nuclear protein whose expression is downregulated in response to doxorubicin. In the present study, we tested the hypothesis that CARP serves as a reliable genetic marker of cardiac hypertrophy in vivo and in vitro. CARP expression was markedly increased in 3 distinct models of cardiac hypertrophy in rats: constriction of abdominal aorta, spontaneously hypertensive rats, and Dahl salt-sensitive rats. In addition, we found that CARP mRNA levels correlate very strongly with the brain natriuretic peptide mRNA levels in Dahl rats. Transient transfection assays into primary cultures of neonatal rat cardiac myocytes indicate that transcription from the CARP and brain natriuretic peptide promoters is stimulated by overexpression of p38 and Rac1, components of the stress-activated mitogen-activated protein kinase pathways. Mutation analysis and electrophoretic mobility shift assays indicated that the M-CAT element can serve as a binding site for nuclear factors, and this element is important for the induction of CARP promoter activity by p38 and Rac1. Thus, our data suggest that M-CAT element is responsible for the regulation of the CARP gene in response to the activation of stress-responsive mitogen-activated protein kinase pathways. Moreover, given that activation of these pathways is associated with cardiac hypertrophy, we propose that CARP represents a novel genetic marker of cardiac hypertrophy.
Collapse
Affiliation(s)
- Y Aihara
- Second Department of Internal Medicine, Gunma University School of Medicine, Maebashi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Kasahara H, Lee B, Schott JJ, Benson DW, Seidman JG, Seidman CE, Izumo S. Loss of function and inhibitory effects of human CSX/NKX2.5 homeoprotein mutations associated with congenital heart disease. J Clin Invest 2000; 106:299-308. [PMID: 10903346 PMCID: PMC314312 DOI: 10.1172/jci9860] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2000] [Accepted: 06/12/2000] [Indexed: 11/17/2022] Open
Abstract
CSX/NKX2.5 is an evolutionarily conserved homeodomain-containing (HD-containing) transcription factor that is essential for early cardiac development. Recently, ten different heterozygous CSX/NKX2.5 mutations were found in patients with congenital heart defects that are transmitted in an autosomal dominant fashion. To determine the consequence of these mutations, we analyzed nuclear localization, DNA binding, transcriptional activation, and dimerization of mutant CSX/NKX2.5 proteins. All mutant proteins were translated and located to the nucleus, except one splice-donor site mutant whose protein did not accumulate in the cell. All mutants that had truncation or missense mutations in the HD had severely reduced DNA binding activity and little or no transcriptional activation function. In contrast, mutants with intact HDs exhibit normal DNA binding to the monomeric binding site but had three- to ninefold reduction in DNA binding to the dimeric binding sites. HD missense mutations that preserved homodimerization ability inhibited the activation of atrial natriuretic factor by wild-type CSX/NKX2.5. Although our studies do not characterize the genotype-phenotype relationship of the ten human mutations, they identify specific abnormalities of CSX/NKX2.5 function essential for transactivation of target genes.
Collapse
Affiliation(s)
- H Kasahara
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
173
|
Tevosian SG, Deconinck AE, Tanaka M, Schinke M, Litovsky SH, Izumo S, Fujiwara Y, Orkin SH. FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell 2000; 101:729-39. [PMID: 10892744 DOI: 10.1016/s0092-8674(00)80885-5] [Citation(s) in RCA: 304] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We disrupted the FOG-2 gene in mice to define its requirement in vivo. FOG-2(-/-) embryos die at midgestation with a cardiac defect characterized by a thin ventricular myocardium, common atrioventricular canal, and the tetralogy of Fallot malformation. Remarkably, coronary vasculature is absent in FOG-2(-/-) hearts. Despite formation of an intact epicardial layer and expression of epicardium-specific genes, markers of cardiac vessel development (ICAM-2 and FLK-1) are not detected, indicative of failure to activate their expression and/or to initiate the epithelial to mesenchymal transformation of epicardial cells. Transgenic reexpression of FOG-2 in cardiomyocytes rescues the FOG-2(-/-) vascular phenotype, demonstrating that FOG-2 function in myocardium is required and sufficient for coronary vessel development. Our findings provide the molecular inroad into the induction of coronary vasculature by myocardium in the developing heart.
Collapse
Affiliation(s)
- S G Tevosian
- Division of Hematology-Oncology, Children's Hospital and Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Abstract
The tinman homeobox gene of Drosophila is absolutely required for development of the insect heart. This observation prompted the isolation of tinman-related genes from vertebrates, in the hope that the developmental function of the gene would be conserved between evolutionarily distinct species. The first vertebrate tinman gene, Nkx2-5, was isolated from mouse and subsequently, orthologues of Nkx2-5 have been isolated from a number of different species. In all cases, a conserved pattern of Nkx2-5 expression is observed in the developing heart, commencing prior to differentiation. Genetic ablation of Nkx2-5 in the mouse results in embryonic lethality due to heart defects, but most myocardial genes are expressed normally and a beating heart tube forms. This observation raises the possibility that additional genes related to Nkx2-5 are partially rescuing Nkx2-5 function in the null mouse. Recently, additional members of the tinman-related gene family have been discovered and characterized in a number of different species. Somewhat surprisingly, orthologous genes in different organisms can be rather divergent in sequence and may show completely different expression patterns. In at least some organisms, expression of the tinman-related genes is not observed in the heart. Due to the increasing number of family members and the somewhat divergent expression patterns, the precise role of the tinman-related genes in cardiac development remains an open question. In a search for additional tinman-related genes in the frog, Xenopus laevis, we have identified Nkx2-9, a novel member of the tinman-related gene family. Preliminary characterization reveals that Nkx2-9 is expressed in the cardiogenic region of the embryo prior to differentiation, but transcript levels decrease rapidly, in the heart, at about the time that differentiation commences.
Collapse
Affiliation(s)
- C S Newman
- Institute for Cellular and Molecular Biology, University of Texas at Austin 78712, USA
| | | |
Collapse
|
175
|
Kemp TJ, Sadusky TJ, Saltisi F, Carey N, Moss J, Yang SY, Sassoon DA, Goldspink G, Coulton GR. Identification of Ankrd2, a novel skeletal muscle gene coding for a stretch-responsive ankyrin-repeat protein. Genomics 2000; 66:229-41. [PMID: 10873377 DOI: 10.1006/geno.2000.6213] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanically induced hypertrophy of skeletal muscles involves shifts in gene expression leading to increases in the synthesis of specific proteins. Full characterization of the regulation of muscle hypertrophy is a prerequisite for the development of novel therapies aimed at treating muscle wasting (atrophy) in human aging and disease. Using suppression subtractive hybridization, cDNAs corresponding to mRNAs that increase in relative abundance in response to mechanical stretch of mouse skeletal muscles in vivo were identified. A novel 1100-bp transcript was detected exclusively in skeletal muscle. This exhibited a fourfold increase in expression after 7 days of stretch. The transcript had an open reading frame of 328 amino acids encoding an ATP/GTP binding domain, a nuclear localization signal, two PEST protein-destabilization motifs, and a 132-amino-acid ankyrin-repeat region. We have named this gene ankyrin-repeat domain 2 (stretch-responsive muscle) (Ankrd2). We hypothesize that Ankrd2 plays an important role in skeletal muscle hypertrophy.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Ankyrin Repeat/genetics
- Base Sequence
- Cell Differentiation
- Cells, Cultured
- Cloning, Molecular
- DNA, Complementary/genetics
- Exons
- Gene Expression
- Genomic Library
- Humans
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Muscle Proteins/biosynthesis
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/metabolism
- Nuclear Proteins
- Organ Specificity/genetics
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- Repressor Proteins
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Stress, Mechanical
Collapse
Affiliation(s)
- T J Kemp
- Division of Biomedical Sciences, Imperial College of Science, Technology and Medicine, London, SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Stanton LW, Garrard LJ, Damm D, Garrick BL, Lam A, Kapoun AM, Zheng Q, Protter AA, Schreiner GF, White RT. Altered patterns of gene expression in response to myocardial infarction. Circ Res 2000; 86:939-45. [PMID: 10807865 DOI: 10.1161/01.res.86.9.939] [Citation(s) in RCA: 239] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of cDNA microarrays has made it possible to simultaneously analyze gene expression for thousands of genes. Microarray technology was used to evaluate the expression of >4000 genes in a rat model of myocardial infarction. More than 200 genes were identified that showed differential expression in response to myocardial infarction. Gene expression changes were monitored from 2 to 16 weeks after infarction in 2 regions of the heart, the left ventricle free wall and interventricular septum. A novel clustering program was used to identify patterns of expression within this large set of data. Unique patterns were revealed within the transcriptional responses that illuminate changes in biological processes associated with myocardial infarction.
Collapse
|
177
|
Johnatty SE, Dyck JR, Michael LH, Olson EN, Abdellatif M. Identification of genes regulated during mechanical load-induced cardiac hypertrophy. J Mol Cell Cardiol 2000; 32:805-15. [PMID: 10775485 DOI: 10.1006/jmcc.2000.1122] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac hypertrophy is associated with both adaptive and adverse changes in gene expression. To identify genes regulated by pressure overload, we performed suppressive subtractive hybridization between cDNA from the hearts of aortic-banded (7-day) and sham-operated mice. In parallel, we performed a subtraction between an adult and a neonatal heart, for the purpose of comparing different forms of cardiac hypertrophy. Sequencing more than 100 clones led to the identification of an array of functionally known (70%) and unknown genes (30%) that are upregulated during cardiac growth. At least nine of those genes were preferentially expressed in both the neonatal and pressure over-load hearts alike. Using Northern blot analysis to investigate whether some of the identified genes were upregulated in the load-independent calcineurin-induced cardiac hypertrophy mouse model, revealed its incomplete similarity with the former models of cardiac growth.
Collapse
Affiliation(s)
- S E Johnatty
- Molecular Cardiology Unit, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
178
|
Takimoto E, Mizuno T, Terasaki F, Shimoyama M, Honda H, Shiojima I, Hiroi Y, Oka T, Hayashi D, Hirai H, Kudoh S, Toko H, Kawamura K, Nagai R, Yazaki Y, Komuro I. Up-regulation of natriuretic peptides in the ventricle of Csx/Nkx2-5 transgenic mice. Biochem Biophys Res Commun 2000; 270:1074-9. [PMID: 10772952 DOI: 10.1006/bbrc.2000.2561] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A cardiac homeobox-containing gene Csx/Nkx2-5, which is essential for cardiac development, is abundantly expressed in the adult heart as well as in the heart primordia. Targeted disruption of this gene results in embryonic lethality due to abnormal heart morphogenesis. To elucidate the role of Csx/Nkx2-5 in the adult heart, we generated transgenic mice which overexpress human Csx/Nkx2-5. The transgene was expressed abundantly in the heart and the skeletal muscle. mRNA levels of several cardiac genes including natriuretic peptides, CARP, MLC2v, and endogenous Csx/Nkx2-5 were increased in the ventricle of the transgenic mice. Electron microscopic analysis revealed that the ventricular myocardium of the transgenic mice had many secretory granules, which disappeared after administration of vasopressin. These results suggest that Csx/Nkx2-5 regulates many cardiac genes and induces formation of secretory granules in the adult ventricle.
Collapse
Affiliation(s)
- E Takimoto
- Department of Cardiovascular Medicine, Department of Hematology and Oncology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Bruneau BG, Bao ZZ, Tanaka M, Schott JJ, Izumo S, Cepko CL, Seidman JG, Seidman CE. Cardiac expression of the ventricle-specific homeobox gene Irx4 is modulated by Nkx2-5 and dHand. Dev Biol 2000; 217:266-77. [PMID: 10625552 DOI: 10.1006/dbio.1999.9548] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the isolation and characterization of the cDNAs encoded by the murine and human homeobox genes, Irx4 (Iroquois homeobox gene 4). Mouse and human Irx4 proteins are highly conserved (83%) and their 63-aa homeodomain is more than 93% identical to that of the Drosophila Iroquois patterning genes. Human IRX4 maps to chromosome 5p15.3, which is syntenic to murine chromosome 13. Irx4 transcripts are present in the developing central nervous system, skin, and vibrissae, but are predominantly expressed in the cardiac ventricles. In mice at embryonic day (E) 7.5, Irx4 transcripts are found in the chorion and at low levels in a discrete anterior domain of the cardiac primordia. During the formation of the linear heart tube and its subsequent looping (E8.0-8.5), Irx4 expression is restricted to the ventricular segment and is absent from both the posterior (eventual atrial) and the anterior (eventual outflow tract) segments of the heart. Throughout all subsequent stages in which the chambers of the heart become morphologically distinct (E8.5-11) and into adulthood, cardiac Irx4 expression is found exclusively in the ventricular myocardium. Irx4 gene expression was also assessed in embryos with aberrant cardiac development: mice lacking RXRalpha or MEF2c have normal Irx4 expression, but mice lacking the homeobox transcription factor Nkx2-5 (Csx) have markedly reduced levels of Irx4 transcripts. dHand-null embryos initiate Irx4 expression, but cannot maintain normal levels. These data indicate that the homeobox gene Irx4 is likely to be an important mediator of ventricular differentiation during cardiac development, which is downstream of Nkx2-5 and dHand.
Collapse
Affiliation(s)
- B G Bruneau
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Benson DW, Silberbach GM, Kavanaugh-McHugh A, Cottrill C, Zhang Y, Riggs S, Smalls O, Johnson MC, Watson MS, Seidman JG, Seidman CE, Plowden J, Kugler JD. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest 1999; 104:1567-73. [PMID: 10587520 PMCID: PMC409866 DOI: 10.1172/jci8154] [Citation(s) in RCA: 454] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/1999] [Accepted: 10/12/1999] [Indexed: 11/17/2022] Open
Abstract
Heterozygous mutations in NKX2.5, a homeobox transcription factor, were reported to cause secundum atrial septal defects and result in atrioventricular (AV) conduction block during postnatal life. To further characterize the role of NKX2.5 in cardiac morphogenesis, we sought additional mutations in groups of probands with cardiac anomalies and first-degree AV block, idiopathic AV block, or tetralogy of Fallot. We identified 7 novel mutations by sequence analysis of the NKX2.5-coding region in 26 individuals. Associated phenotypes included AV block, which was the primary manifestation of cardiac disease in nearly a quarter of affected individuals, as well as atrial septal defect and ventricular septal defect. Ventricular septal defect was associated with tetralogy of Fallot or double-outlet right ventricle in 3 individuals. Ebstein's anomaly and other tricuspid valve abnormalities were also present. Mutations in human NKX2.5 cause a variety of cardiac anomalies and may account for a clinically significant portion of tetralogy of Fallot and idiopathic AV block. The coinheritance of NKX2.5 mutations with various congenital heart defects suggests that this transcription factor contributes to diverse cardiac developmental pathways.
Collapse
Affiliation(s)
- D W Benson
- Division of Pediatric Cardiology, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Aihara Y, Kurabayashi M, Arai M, Kedes L, Nagai R. Molecular cloning of rabbit CARP cDNA and its regulated expression in adriamycin-cardiomyopathy. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1447:318-24. [PMID: 10542334 DOI: 10.1016/s0167-4781(99)00171-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A full-length rabbit cDNA of cardiac adriamycin responsive protein (CARP) has been cloned. It shows high levels of identity at the amino acid sequence level (>86%) with the rat, mouse and human homologues. CARP mRNA levels are highly regulated in adriamycin-cardiomyopathy in rabbits.
Collapse
Affiliation(s)
- Y Aihara
- Second Department of Internal Medicine, Gunma University School of Medicine, 3-39-15, Showa-machi, Maebashi, Gunma, Japan
| | | | | | | | | |
Collapse
|
182
|
Kuo H, Chen J, Ruiz-Lozano P, Zou Y, Nemer M, Chien KR. Control of segmental expression of the cardiac-restricted ankyrin repeat protein gene by distinct regulatory pathways in murine cardiogenesis. Development 1999; 126:4223-34. [PMID: 10477291 DOI: 10.1242/dev.126.19.4223] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although accumulating evidence suggests that the heart develops in a segmental fashion, the molecular mechanisms that control regional specification of cardiomyocytes in the developing heart remain largely unknown. In this study, we have used the mouse cardiac-restricted ankyrin repeat protein (CARP) gene as a model system to study these mechanisms. The CARP gene encodes a nuclear co-regulator for cardiac gene expression, which lies downstream of the cardiac homeobox gene, Nkx 2.5, and is an early marker of the cardiac muscle cell lineage. We have demonstrated that the expression of the gene is developmentally down regulated and dramatically induced as part of the embryonic gene program during cardiac hypertrophy. Using a lacZ/knock-in mouse and three lines of transgenic mouse harboring various CARP promoter/lacZ reporters, we have identified distinct 5′ cis regulatory elements of the gene that can direct heart segment-specific transgene expression, such as atrial versus ventricular and left versus right. Most interestingly, a 213 base pair sequence element of the gene was found to confer conotruncal segment-specific transgene expression. Using the transgene as a conotruncal segment-specific marker, we were able to document the developmental fate of a subset of cardiomyocytes in the conotruncus during cardiogenesis. In addition, we have identified an essential GATA-4 binding site in the proximal upstream regulatory region of the gene and cooperative transcriptional regulation mediated by Nkx2.5 and GATA-4. We have shown that this cooperative regulation is dependent on binding of GATA-4 to its cognate DNA sequence in the promoter, which suggests that Nkx2.5 controls CARP expression, at least in part, through GATA-4.
Collapse
Affiliation(s)
- H Kuo
- UCSD-Salk Program in Molecular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California 92093-0613, USA
| | | | | | | | | | | |
Collapse
|
183
|
Shiojima I, Komuro I, Oka T, Hiroi Y, Mizuno T, Takimoto E, Monzen K, Aikawa R, Akazawa H, Yamazaki T, Kudoh S, Yazaki Y. Context-dependent transcriptional cooperation mediated by cardiac transcription factors Csx/Nkx-2.5 and GATA-4. J Biol Chem 1999; 274:8231-9. [PMID: 10075728 DOI: 10.1074/jbc.274.12.8231] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the cardiac homeobox gene Csx/Nkx-2.5 is essential for normal heart development, little is known about its regulatory mechanisms. In a search for the downstream target genes of Csx/Nkx-2. 5, we found that the atrial natriuretic peptide (ANP) gene promoter was strongly transactivated by Csx/Nkx-2.5. Deletion and mutational analyses of the ANP promoter revealed that the Csx/Nkx-2.5-binding element (NKE2) located at -240 was required for high level transactivation by Csx/Nkx-2.5. We also found that Csx/Nkx-2.5 and GATA-4 displayed synergistic transcriptional activation of the ANP promoter, and in contrast to previous reports (Durocher, D., Charron, F., Warren, R., Schwartz, R. J., and Nemer, M. (1997) EMBO J. 16, 5687-5696; Lee, Y., Shioi, T., Kasahara, H., Jobe, S. M., Wiese, R. J., Markham, B., and Izumo, S (1998) Mol. Cell. Biol. 18, 3120-3129), this synergism was dependent on binding of Csx/Nkx-2.5 to NKE2, but not on GATA-4-DNA interactions. Although GATA-4 also potentiated the Csx/Nkx-2.5-induced transactivation of the artificial promoter that contains multimerized Csx/Nkx-2.5-binding sites, Csx/Nkx-2.5 reduced the GATA-4-induced transactivation of the GATA-4-dependent promoters. These findings indicate that the cooperative transcriptional regulation mediated by Csx/Nkx-2.5 and GATA-4 is promoter context-dependent and suggest that the complex cis-trans interactions may fine-tune gene expression in cardiac myocytes.
Collapse
Affiliation(s)
- I Shiojima
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Tanaka M, Chen Z, Bartunkova S, Yamasaki N, Izumo S. The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development 1999; 126:1269-80. [PMID: 10021345 DOI: 10.1242/dev.126.6.1269] [Citation(s) in RCA: 397] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Csx/Nkx2.5 is a vertebrate homeobox gene with a sequence homology to the Drosophila tinman, which is required for the dorsal mesoderm specification. Recently, heterozygous mutations of this gene were found to cause human congenital heart disease (Schott, J.-J., Benson, D. W., Basson, C. T., Pease, W., Silberbach, G. M., Moak, J. P., Maron, B. J., Seidman, C. E. and Seidman, J. G. (1998) Science 281, 108–111). To investigate the functions of Csx/Nkx2.5 in cardiac and extracardiac development in the vertebrate, we have generated and analyzed mutant mice completely null for Csx/Nkx2.5. Homozygous null embryos showed arrest of cardiac development after looping and poor development of blood vessels. Moreover, there were severe defects in vascular formation and hematopoiesis in the mutant yolk sac. Interestingly, TUNEL staining and PCNA staining showed neither enhanced apoptosis nor reduced cell proliferation in the mutant myocardium. In situ hybridization studies demonstrated that, among 20 candidate genes examined, expression of ANF, BNP, MLC2V, N-myc, MEF2C, HAND1 and Msx2 was disturbed in the mutant heart. Moreover, in the heart of adult chimeric mice generated from Csx/Nkx2.5 null ES cells, there were almost no ES cell-derived cardiac myocytes, while there were substantial contributions of Csx /Nkx2.5-deficient cells in other organs. Whole-mount β-gal staining of chimeric embryos showed that more than 20% contribution of Csx/Nkx2. 5-deficient cells in the heart arrested cardiac development. These results indicate that (1) the complete null mutation of Csx/Nkx2.5 did not abolish initial heart looping, (2) there was no enhanced apoptosis or defective cell cycle entry in Csx/Nkx2.5 null cardiac myocytes, (3) Csx/Nkx2.5 regulates expression of several essential transcription factors in the developing heart, (4) Csx/Nkx2.5 is required for later differentiation of cardiac myocytes, (5) Csx/Nkx2. 5 null cells exert dominant interfering effects on cardiac development, and (6) there were severe defects in yolk sac angiogenesis and hematopoiesis in the Csx/Nkx2.5 null embryos.
Collapse
Affiliation(s)
- M Tanaka
- Cardiovascular Division, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
185
|
Reecy JM, Li X, Yamada M, DeMayo FJ, Newman CS, Harvey RP, Schwartz RJ. Identification of upstream regulatory regions in the heart-expressed homeobox gene Nkx2-5. Development 1999; 126:839-49. [PMID: 9895330 DOI: 10.1242/dev.126.4.839] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nkx2-5 marks the earliest recognizable cardiac progenitor cells, and is activated in response to inductive signals involved in lineage specification. Nkx2-5 is also expressed in the developing foregut, thyroid, spleen, stomach and tongue. One approach to elucidate the signals involved in cardiogenesis was to examine the transcriptional regulation of early lineage markers such as Nkx2-5. We generated F0 transgenic mice, which carry Nkx2-5 flanking sequences linked to a lacZ reporter gene. We identified multiple regulatory regions located within the proximal 10.7 kb of the Nkx2-5 gene. In addition to a proximal promoter, we identified a second promoter and a novel upstream exon that could participate in the regulation of Nkx2-5 transcription. Although used rarely in normal development, this novel exon could be spliced into the Nkx2-5 coding region in several ways, thereby potentially creating novel Nkx2-5 protein isoforms, whose transcriptional activity is greatly diminished as compared to wild-type Nkx2-5. An enhancer that directs expression in pharynx, spleen, thyroid and stomach was identified within 3.5 kb of exon 1 between the coding exon 1 and the novel upstream exon 1a. Two or more enhancers upstream of exon 1a were capable of driving expression in the cardiac crescent, throughout the myocardium of the early heart tube, then in the outflow tract and right ventricle of the looped heart tube. A negative element was also located upstream of exon1a, which interacted in complex ways with enhancers to direct correct spatial expression. In addition, potential autoregulatory elements can be cooperatively stimulated by Nkx2-5 and GATA-4. Our results demonstrate that a complex suite of interacting regulatory domains regulate Nkx2-5 transcription. Dissection of these elements should reveal essential features of cardiac induction and positive and negative signaling within the cardiac field.
Collapse
Affiliation(s)
- J M Reecy
- Department of Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
186
|
Kasahara H, Izumo S. Identification of the in vivo casein kinase II phosphorylation site within the homeodomain of the cardiac tisue-specifying homeobox gene product Csx/Nkx2.5. Mol Cell Biol 1999; 19:526-36. [PMID: 9858576 PMCID: PMC83910 DOI: 10.1128/mcb.19.1.526] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/1998] [Accepted: 09/17/1998] [Indexed: 11/20/2022] Open
Abstract
Csx/Nkx2.5, a member of the homeodomain-containing transcription factors, serves critical developmental functions in heart formation in vertebrates and nonvertebrates. In this study the putative nuclear localization signal (NLS) of Csx/Nkx2.5 was identified by site-directed mutagenesis to the amino terminus of the homeodomain, which is conserved in almost all homeodomain proteins. When the putative NLS of Csx/Nkx2.5 was mutated a significant amount of the cytoplasmically localized Csx/Nkx2.5 was unphosphorylated, in contrast to the nuclearly localized Csx/Nkx2.5, which is serine- and threonine-phosphorylated, suggesting that Csx/Nkx2.5 phosphorylation is regulated, at least in part, by intracellular localization. Tryptic phosphopeptide mapping indicated that Csx/Nkx2.5 has at least five phosphorylation sites. Using in-gel kinase assays, we detected a Csx/Nkx2.5 kinase whose molecular mass is approximately 40 kDa in both cytoplasmic and nuclear extracts. Mutational analysis and in vitro kinase assays suggested that this 40-kDa Csx/Nkx2.5 kinase is a catalytic subunit of casein kinase II (CKII) that phosphorylates the serine residue between the first and second helix of the homeodomain. This CKII site is phosphorylated in vivo. CKII-dependent phosphorylation of the homeodomain increased Csx/Nkx2. 5 DNA binding. Serine-to-alanine mutation at the CKII phosphorylation site reduced transcriptional activity when the carboxyl-terminal repressor domain was deleted. Although the precise biological function of Csx/Nkx2.5 phosphorylation by CKII remains to be determined, it may play an important role, as this CKII phosphorylation site within the homeodomain is fully conserved in all known members of the NK2 family of the homeobox genes.
Collapse
Affiliation(s)
- H Kasahara
- Cardiovascular Division, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
187
|
Skerjanc IS, Petropoulos H, Ridgeway AG, Wilton S. Myocyte enhancer factor 2C and Nkx2-5 up-regulate each other's expression and initiate cardiomyogenesis in P19 cells. J Biol Chem 1998; 273:34904-10. [PMID: 9857019 DOI: 10.1074/jbc.273.52.34904] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Nkx2-5 homeodomain protein plays a key role in cardiomyogenesis. Ectopic expression in frog and zebrafish embryos results in an enlarged myocardium; however, expression of Nkx2-5 in fibroblasts was not able to trigger the development of beating cardiac muscle. In order to examine the ability of Nkx2-5 to modulate endogenous cardiac specific gene expression in cells undergoing early stages of differentiation, P19 cell lines overexpressing Nkx2-5 were differentiated in the absence of Me2SO. Nkx2-5 expression induced cardiomyogenesis in these cultures aggregated without Me2SO. During differentiation into cardiac muscle, Nkx2-5 expression resulted in the activation of myocyte enhancer factor 2C (MEF2C), but not MEF2A, -B, or -D. In order to compare the abilities of Nkx2-5 and MEF2C to induce cellular differentiation, P19 cells overexpressing MEF2C were aggregated in the absence of Me2SO. Similar to Nkx2-5, MEF2C expression initiated cardiomyogenesis, resulting in the up-regulation of Brachyury T, bone morphogenetic protein-4, Nkx2-5, GATA-4, cardiac alpha-actin, and myosin heavy chain expression. These findings indicate the presence of a positive regulatory network between Nkx2-5 and MEF2C and show that both factors can direct early stages of cell differentiation into a cardiomyogenic pathway.
Collapse
Affiliation(s)
- I S Skerjanc
- Department of Biochemistry, Medical Sciences Building, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| | | | | | | |
Collapse
|
188
|
Mertens PR, Alfonso-Jaume MA, Steinmann K, Lovett DH. A synergistic interaction of transcription factors AP2 and YB-1 regulates gelatinase A enhancer-dependent transcription. J Biol Chem 1998; 273:32957-65. [PMID: 9830047 DOI: 10.1074/jbc.273.49.32957] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The matrix metalloproteinase gelatinase A plays a central role in several critical physiologic processes, including angiogenesis, tumor invasion/metastasis, and chronic inflammation. We demonstrate that high level gelatinase A expression is mediated by a unique interaction of two developmentally regulated transcription factors, AP2 and YB-1, within a discrete 40-base pair enhancer element (RE-1) located in the 5'-flanking region of the gelatinase A gene. Electrophoretic mobility shift assay studies and immunoprecipitation experiments confirmed a direct interaction of AP2 with this binding sequence in the form of AP2.YB-1 heteromeric complexes. Binding of AP2.YB-1 complexes to the RE-1 sequence results in the formation of extended single-stranded DNA regions and may stabilize DNA conformational changes. Overexpression of YB-1 and AP2 proteins by gelatinase A synthesizing hepatoma HepG2 cells induced a synergistic increase in the RE-1-mediated transcription of nearly 160-fold. Thus, the transcription of gelatinase A is subject to a previously unrecognized interplay of double (AP2) and single-stranded (YB-1) DNA binding transcription factors to yield a highly regulated pattern of gene expression.
Collapse
Affiliation(s)
- P R Mertens
- Department of Medicine, San Francisco Veterans Administration Medical Center/University of California, San Francisco, California 94121, USA
| | | | | | | |
Collapse
|
189
|
Grow MW, Krieg PA. Tinman function is essential for vertebrate heart development: elimination of cardiac differentiation by dominant inhibitory mutants of the tinman-related genes, XNkx2-3 and XNkx2-5. Dev Biol 1998; 204:187-96. [PMID: 9851852 DOI: 10.1006/dbio.1998.9080] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Drosophila, the tinman gene is absolutely required for development of the dorsal vessel, the insect equivalent of the heart. In vertebrates, the tinman gene is represented by a small family of tinman-related sequences, some of which are expressed during embryonic heart development. At present however, the precise importance of this gene family for vertebrate heart development is unclear. Using the Xenopus embryo, we have employed a dominant inhibitory strategy to interfere with the function of the endogenous tinman-related genes. In these experiments, suppression of tinman gene function can result in the complete elimination of myocardial gene expression and the absence of cell movements associated with embryonic heart development. This inhibition can be rescued by expression of wild-type tinman sequences. These experiments indicate that function of tinman family genes is essential for development of the vertebrate heart.
Collapse
Affiliation(s)
- M W Grow
- Department of Zoology, University of Texas at Austin, Austin, Texas, 78712, USA
| | | |
Collapse
|
190
|
Fu Y, Yan W, Mohun TJ, Evans SM. Vertebrate tinman homologues XNkx2-3 and XNkx2-5 are required for heart formation in a functionally redundant manner. Development 1998; 125:4439-49. [PMID: 9778503 DOI: 10.1242/dev.125.22.4439] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tinman is a Drosophila homeodomain protein that is required for formation of both visceral and cardiac mesoderm, including formation of the dorsal vessel, a heart-like organ. Although several vertebrate tinman homologues have been characterized, their requirement in earliest stages of heart formation has been an open question, perhaps complicated by potential functional redundancy of tinman homologues. We have utilized a novel approach to investigate functional redundancy within a gene family, by coinjecting DNA encoding dominantly acting repressor derivatives specific for each family member into developing Xenopus embryos. Our results provide the first evidence that vertebrate tinman homologues are required for earliest stages of heart formation, and that they are required in a functionally redundant manner. Coinjection of dominant repressor constructs for both XNkx2-3 and XNkx2-5 is synergistic, resulting in a much higher frequency of mutant phenotypes than that obtained with injection of either dominant repressor construct alone. Rescue of mutant phenotypes can be effected by coinjection of either wild-type tinman homologue. The most extreme mutant phenotype is a complete absence of expression of XNkx2-5 in cardiogenic mesoderm, an absence of markers of differentiated myocardium, and absence of morphologically distinguishable heart on the EnNkxHD-injected side of the embryo. This phenotype represents the most severe cardiac phenotype of any vertebrate mutant yet described, and underscores the importance of the tinman family for heart development. These results provide the first in vivo evidence that XNkx2-3 and XNkx2-5 are required as transcriptional activators for the earliest stages of heart formation. Furthermore, our results suggest an intriguing mechanism by which functional redundancy operates within a gene family during development. Our experiments have been performed utilizing a recently developed transgenic strategy, and attest to the efficacy of this strategy for enabling transgene expression in limited cell populations within the developing Xenopus embryo.
Collapse
Affiliation(s)
- Y Fu
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0613C, USA
| | | | | | | |
Collapse
|
191
|
Wang GF, Nikovits W, Schleinitz M, Stockdale FE. A positive GATA element and a negative vitamin D receptor-like element control atrial chamber-specific expression of a slow myosin heavy-chain gene during cardiac morphogenesis. Mol Cell Biol 1998; 18:6023-34. [PMID: 9742119 PMCID: PMC109188 DOI: 10.1128/mcb.18.10.6023] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/1998] [Accepted: 07/13/1998] [Indexed: 11/20/2022] Open
Abstract
We have used the slow myosin heavy chain (MyHC) 3 gene to study the molecular mechanisms that control atrial chamber-specific gene expression. Initially, slow MyHC 3 is uniformly expressed throughout the tubular heart of the quail embryo. As cardiac development proceeds, an anterior-posterior gradient of slow MyHC 3 expression develops, culminating in atrial chamber-restricted expression of this gene following chamberization. Two cis elements within the slow MyHC 3 gene promoter, a GATA-binding motif and a vitamin D receptor (VDR)-like binding motif, control chamber-specific expression. The GATA element of the slow MyHC 3 is sufficient for expression of a heterologous reporter gene in both atrial and ventricular cardiomyocytes, and expression of GATA-4, but not Nkx2-5 or myocyte enhancer factor 2C, activates reporter gene expression in fibroblasts. Equivalent levels of GATA-binding activity were found in extracts of atrial and ventricular cardiomyocytes from embryonic chamberized hearts. These observations suggest that GATA factors positively regulate slow MyHC 3 gene expression throughout the tubular heart and subsequently in the atria. In contrast, an inhibitory activity, operating through the VDR-like element, increased in ventricular cardiomyocytes during the transition of the heart from a tubular to a chambered structure. Overexpression of the VDR, acting via the VDR-like element, duplicates the inhibitory activity in ventricular but not in atrial cardiomyocytes. These data suggest that atrial chamber-specific expression of the slow MyHC 3 gene is achieved through the VDR-like inhibitory element in ventricular cardiomyocytes at the time distinct atrial and ventricular chambers form.
Collapse
Affiliation(s)
- G F Wang
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305-5115, USA
| | | | | | | |
Collapse
|
192
|
Patterson KD, Cleaver O, Gerber WV, Grow MW, Newman CS, Krieg PA. Homeobox genes in cardiovascular development. Curr Top Dev Biol 1998; 40:1-44. [PMID: 9673847 DOI: 10.1016/s0070-2153(08)60363-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As summarized earlier, a surprisingly large number of different homeobox genes are expressed in the developing heart. Some are clearly important, as demonstrated by mouse gene ablation studies. For example, knockout of Nkx2-5 or Hoxa-3 function is embryonic lethal due to defects in cardiovascular development. However, gene ablation studies indicate that other homeobox genes that show cardiovascular expression are either not required for heart development or their function is effectively complemented by a redundant gene activity. Given the number of closely related homeobox genes that are expressed in the heart (and the rate at which new genes are being discovered), this is very likely to be the case for at least some homeobox gene activities. At present little is known of the precise mechanism of action of homeobox genes in embryonic development. This statement applies to homeobox genes in general, not just to genes involved in cardiovascular development. There is a popular view that homeobox genes are master regulators that control expression of a large number of downstream genes. In at least some cases, e.g., the eyeless gene of Drosophila (Holder et al., 1995), homeobox genes appear to be capable of activating and maintaining a very complex developmental program. Significantly, the eyeless gene is able to initiate eye development at numerous ectopic locations. Increasing evidence, however, suggests that genes of this type may be rather rare. Certainly there is no evidence to date that any of the homeobox genes expressed in the heart are able to initiate the complete heart development pathway. This is probably best understood in the case of the tinman gene in Drosophila, which, although absolutely required for heart development, is not capable of initiating the cardiac development pathway in ectopic locations (Bodmer, 1993). This conclusion is supported by studies of the vertebrate tinman-related gene Nkx2-5. Gene ablation studies show that Nkx2-5 is essential for correct cardiac development (Lyons et al., 1995) but is not able to initiate the regulatory pathway leading to cardiac development when expressed ectopically (Cleaver et al., 1996; Chen and Fishman, 1996). If most homeodomain proteins are not direct regulators of a differentiation pathway, what is their role during organogenesis? The cardiovascular homeobox gene about which most is known at the mechanistic level is gax (Smith et al., 1997). A number of experiments indicate that the Gax protein is involved in the regulation of cell proliferation and that it interacts with components of the cell cycle regulation machinery. Indeed, over recent years, the idea that at least some homeobox genes play their role in organogenesis through regulation of proliferation has been developed in some detail by Duboule (1995). Further evidence that this mechanism of homeobox activity is important, especially during organogenesis, comes from studies of the Hox11 homeobox gene, which is absolutely required for development of the spleen in mouse (Roberts et al., 1994). Studies indicate that Hox11 is able to interact with at least two different protein phosphatases, PP2A and PP1, which in turn, are involved in cell cycle regulation (Kawabe et al., 1997). It is quite clear that research in future years will need to focus on the precise mode of action of the different homeodomain proteins if we are to understand their role in the development of the cardiovascular system.
Collapse
Affiliation(s)
- K D Patterson
- Institute for Cellular and Molecular Biology, University of Texas, Austin 78712, USA
| | | | | | | | | | | |
Collapse
|
193
|
Lee Y, Shioi T, Kasahara H, Jobe SM, Wiese RJ, Markham BE, Izumo S. The cardiac tissue-restricted homeobox protein Csx/Nkx2.5 physically associates with the zinc finger protein GATA4 and cooperatively activates atrial natriuretic factor gene expression. Mol Cell Biol 1998; 18:3120-9. [PMID: 9584153 PMCID: PMC108894 DOI: 10.1128/mcb.18.6.3120] [Citation(s) in RCA: 211] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Specification and differentiation of the cardiac muscle lineage appear to require a combinatorial network of many factors. The cardiac muscle-restricted homeobox protein Csx/Nkx2.5 (Csx) is expressed in the precardiac mesoderm as well as the embryonic and adult heart. Targeted disruption of Csx causes embryonic lethality due to abnormal heart morphogenesis. The zinc finger transcription factor GATA4 is also expressed in the heart and has been shown to be essential for heart tube formation. GATA4 is known to activate many cardiac tissue-restricted genes. In this study, we tested whether Csx and GATA4 physically associate and cooperatively activate transcription of a target gene. Coimmunoprecipitation experiments demonstrate that Csx and GATA4 associate intracellularly. Interestingly, in vitro protein-protein interaction studies indicate that helix III of the homeodomain of Csx is required to interact with GATA4 and that the carboxy-terminal zinc finger of GATA4 is necessary to associate with Csx. Both regions are known to directly contact the cognate DNA sequences. The promoter-enhancer region of the atrial natriuretic factor (ANF) contains several putative Csx binding sites and consensus GATA4 binding sites. Transient-transfection assays indicate that Csx can activate ANF reporter gene expression to the same extent that GATA4 does in a DNA binding site-dependent manner. Coexpression of Csx and GATA4 synergistically activates ANF reporter gene expression. Mutational analyses suggest that this synergy requires both factors to fully retain their transcriptional activities, including the cofactor binding activity. These results demonstrate the first example of homeoprotein and zinc finger protein interaction in vertebrates to cooperatively regulate target gene expression. Such synergistic interaction among tissue-restricted transcription factors may be an important mechanism to reinforce tissue-specific developmental pathways.
Collapse
Affiliation(s)
- Y Lee
- Cardiovascular Research Center, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
194
|
Abstract
Recent discoveries have led to a greater appreciation of the diverse mechanisms that underlie cardiac morphogenesis. Genetic strategies (primarily gene targeting approaches in mice) have significantly broadened research in cardiovascular developmental biology by illuminating new pathways involved in heart development and by allowing the genetic evaluation of pathways that have previously been implicated in these events. Advances have also been made using biochemical and cell- and tissue-based approaches. This review summarizes the author's interpretation of current trends in the effort to understand the molecular basis of cardiac-development, with an emphasis on insights obtained from genetic models.
Collapse
Affiliation(s)
- H M Sucov
- Department of Cell and Neurobiology, University of Southern California School of Medicine, Los Angeles 90033, USA.
| |
Collapse
|
195
|
Ruiz-Lozano P, Smith SM, Perkins G, Kubalak SW, Boss GR, Sucov HM, Evans RM, Chien KR. Energy deprivation and a deficiency in downstream metabolic target genes during the onset of embryonic heart failure in RXRalpha−/− embryos. Development 1998; 125:533-44. [PMID: 9425147 DOI: 10.1242/dev.125.3.533] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
RXRalpha null mutant mice display ocular and cardiac malformations, liver developmental delay, and die from cardiac failure around embryonic day (E) 14.5 pc. To dissect the molecular basis of the RXRalpha-associated cardiomyopathy, we performed subtractive hybridization and systematically characterized putative downstream target genes that were selectively lacking in the mutant embryos, both at early (E10.5) and late (E13.5) stages of mouse embryonic development. Approximately 50% of the subtracted clones (61/115) encoded proteins involved in intermediary metabolism and electron transport, suggesting an energy deficiency in the RXRalpha−/− embryos. In particular, clone G1, which encodes subunit 14.5b of the NADH-ubiquinone dehydrogenase complex, displayed a dose-dependent expression in the wild-type, heterozygous and RXRalpha mutant mice. This gene was also downregulated in a retinoid-deficient rat embryo model. ATP content and medium Acyl-CoA dehydrogenase mRNA were lower in RXRalpha mutant hearts compared to wild-type mice. Ultrastructural studies showed that the density of mitochondria per myocyte was higher in the RXRalpha mutant compared to wild-type littermates. We propose a model whereby defects in intermediary metabolism may be a causative factor of the RXRalpha−/− phenotype and resembles an embryonic form of dilated cardiomyopathy.
Collapse
MESH Headings
- Acyl-CoA Dehydrogenase
- Acyl-CoA Dehydrogenases/genetics
- Adenosine Triphosphate/analysis
- Animals
- Cardiomyopathy, Dilated/embryology
- Cardiomyopathy, Dilated/genetics
- Cloning, Molecular/methods
- DNA, Complementary/genetics
- Electron Transport Complex I
- Energy Metabolism/genetics
- Gene Expression Regulation, Developmental
- Gene Library
- Genes/genetics
- Genes/physiology
- Heart/embryology
- Mice
- Mice, Knockout
- Mitochondria, Heart
- Myocardium/chemistry
- Myocardium/cytology
- Myocardium/metabolism
- Myocardium/ultrastructure
- NADH, NADPH Oxidoreductases/genetics
- RNA, Messenger/analysis
- Rats
- Rats, Mutant Strains
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/physiology
- Retinoid X Receptors
- Retinoids
- Transcription Factors/genetics
- Transcription Factors/physiology
Collapse
Affiliation(s)
- P Ruiz-Lozano
- Department of Medicine and Center for Molecular Genetics, University of California, San Diego, La Jolla 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Baumeister A, Arber S, Caroni P. Accumulation of muscle ankyrin repeat protein transcript reveals local activation of primary myotube endcompartments during muscle morphogenesis. J Cell Biol 1997; 139:1231-42. [PMID: 9382869 PMCID: PMC2140219 DOI: 10.1083/jcb.139.5.1231] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The characteristic shapes and positions of each individual body muscle are established during the process of muscle morphogenesis in response to patterning information from the surrounding mesenchyme. Throughout muscle morphogenesis, primary myotubes are arranged in small parallel bundles, each myotube spanning the forming muscles from end to end. This unique arrangement potentially assigns a crucial role to primary myotube end regions for muscle morphogenesis. We have cloned muscle ankyrin repeat protein (MARP) as a gene induced in adult rat skeletal muscle by denervation. MARP is the rodent homologue of human C-193 (Chu, W., D.K. Burns, R.A. Swerick, and D.H. Presky. 1995. J. Biol. Chem. 270:10236-10245) and is identical to rat cardiac ankyrin repeat protein. (Zou, Y., S. Evans, J. Chen, H.-C. Kuo, R.P. Harvey, and K.R. Chien. 1997. Development. 124:793-804). In denervated muscle fibers, MARP transcript accumulated in a unique perisynaptic pattern. MARP was also expressed in large blood vessels and in cardiac muscle, where it was further induced by cardiac hypertrophy. During embryonic development, MARP was expressed in forming skeletal muscle. In situ hybridization analysis in mouse embryos revealed that MARP transcript exclusively accumulates at the end regions of primary myotubes during muscle morphogenesis. This closely coincided with the expression of thrombospondin-4 in adjacent prospective tendon mesenchyme, suggesting that these two compartments may constitute a functional unit involved in muscle morphogenesis. Transfection experiments established that MARP protein accumulates in the nucleus and that the levels of both MARP mRNA and protein are controlled by rapid degradation mechanisms characteristic of regulatory early response genes. The results establish the existence of novel regulatory muscle fiber subcompartments associated with muscle morphogenesis and denervation and suggest that MARP may be a crucial nuclear cofactor in local signaling pathways from prospective tendon mesenchyme to forming muscle and from activated muscle interstitial cells to denervated muscle fibers.
Collapse
Affiliation(s)
- A Baumeister
- Friedrich Miescher Institute, P.O. Box 2543, CH-4002 Basel, Switzerland
| | | | | |
Collapse
|
197
|
Nikolova M, Chen X, Lufkin T. Nkx2.6 expression is transiently and specifically restricted to the branchial region of pharyngeal-stage mouse embryos. Mech Dev 1997; 69:215-8. [PMID: 9486544 DOI: 10.1016/s0925-4773(97)00174-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Nkx2.6 gene belongs to the NK superfamily of homeobox genes (Harvey, 1996). We report here the expression pattern of the murine Nkx2.6 gene during early mouse development, which is unique among the NK family of homeobox genes in that its expression is restricted to the very narrow development period between stages E8.5 and E10.5 of embryogenesis. The distribution of Nkx2.6 transcripts is also quite restricted spatially, with expression detected uniquely within the caudal branchial arches. Nkx2.6 is expressed in all three layers comprising the caudal branchial arches (ectoderm, mesectoderm and endoderm) with the strongest expression being detected in the surface ectoderm.
Collapse
Affiliation(s)
- M Nikolova
- Brookdale Center for Developmental and Molecular Biology, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | |
Collapse
|
198
|
Abstract
Heart formation provides an excellent model for studying the molecular basis of cell determination in vertebrate embryos. By combining molecular assays with the experimental approaches of classic embryology, a model for the cell signalling events that initiate cardiogenesis is emerging. Studies of chick, amphibian, and fish embryos demonstrate the inductive role of dorso-anterior endoderm in specifying the cardiac fate of adjacent mesoderm. A consequence of this signalling is the onset of cardiomyogenesis and several transcription factors--Nkx2-5-related, HAND, GATA and MEF-2 families--contribute to these events.
Collapse
Affiliation(s)
- T Mohun
- National Institute for Medical Research, Ridgeway, Mill Hill, London, UK.
| | | |
Collapse
|
199
|
Jeyaseelan R, Poizat C, Baker RK, Abdishoo S, Isterabadi LB, Lyons GE, Kedes L. A novel cardiac-restricted target for doxorubicin. CARP, a nuclear modulator of gene expression in cardiac progenitor cells and cardiomyocytes. J Biol Chem 1997; 272:22800-8. [PMID: 9278441 DOI: 10.1074/jbc.272.36.22800] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Doxorubicin (Dox), a cardiotoxic antineoplastic drug, disrupts the cardiac-specific program of gene expression (Kurabayashi, M., Dutta, S., Jeyaseelan, R., and Kedes, L. (1995) Mol. Cell. Biol. 15, 6386-6397; Jeyaseelan, R., Poizat, C., Wu, H. Y., and Kedes, L. (1997) J. Biol. Chem. 272, 5828-5832). To determine whether this drug might interfere with the function of cardiac-specific regulatory pathways, we used a differential display strategy to clone from neonatal rat cardiomyocyte candidate mRNAs that were rapidly sensitive to Dox. We report here the identification of a constitutively expressed, cardiac-restricted, nuclear protein whose mRNA level is exquisitely sensitive to Dox. Hence we have named this protein cardiac adriamycin-responsive protein (CARP). CARP mRNA is present at the earliest stages of cardiac morphogenesis. It was detected by in situ hybridization within the cardiogenic plate of 7. 5-day post coitum (p.c.) embryos, and in 8.5-day p.c. embryos CARP transcripts are present in uniformly high levels in the myocardium. Throughout cardiac development, CARP expression is specific for the myocardium; endocardial cushions and valves exhibit only background levels of signal. Transcript levels persist but gradually decrease in neonatal, 2-week-old, and adult hearts. There were no stages when CARP mRNA could not be detected. The pattern and timing of CARP mRNA expression, including transient expression in the tongue at 14.5 days p.c., coincides with that of Nkx2.5/Csx (a putative homolog of tinman, the Drosophila melanogaster gene responsible for cardiac development). The cloned full-length 1749 nucleotide CARP cDNA encodes a 319-amino acid 40-kDa polypeptide containing five tandem ankyrin repeats. CARP appears to be the rat homolog of a previously reported human single-copy gene (C-193; Chu, W., Burns, D. K., Swerlick, R. A., and Presky, D. H. (1995) J. Biol. Chem. 270, 10236-10245), whose mRNA is inducible by cytokines only in human endothelial cells. CARP appears to function as a negative regulator of cardiac-specific gene expression. Overexpression of CARP in cardiomyocytes suppresses cardiac troponin C and atrial natriuretic factor transcription. Cotransfection experiments in HeLa cells indicate that CARP inhibits Nkx2.5 transactivation of atrial natriuretic factor promoter. When fused to a GAL4 DNA-binding domain, CARP has transcriptional inhibitory properties in noncardiac cells. CARP thus represents the first example of a cardiac-restricted transcriptional regulatory protein that is sensitive to Dox.
Collapse
Affiliation(s)
- R Jeyaseelan
- Institute for Genetic Medicine and the Department of Biochemistry and Molecular Biology, University of Southern California School of Medicine, Los Angeles, California 90033, USA
| | | | | | | | | | | | | |
Collapse
|
200
|
Biben C, Harvey RP. Homeodomain factor Nkx2-5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dev 1997; 11:1357-69. [PMID: 9192865 DOI: 10.1101/gad.11.11.1357] [Citation(s) in RCA: 221] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
One of the first morphological manifestations of left/right (L/R) asymmetry in mammalian embryos is a pronounced rightward looping of the linear heart tube. The direction of looping is thought to be controlled by signals from an embryonic L/R axial system. We report here that morphological L/R asymmetry in the murine heart first became apparent at the linear tube stage as a leftward displacement of its caudal aspect. Beginning at the same stage, the basic helix-loop-helix (bHLH) factor gene eHand was expressed in a strikingly left-dominant pattern in myocardium, reflecting an intrinsic molecular asymmetry. In hearts of embryos lacking the homeobox gene Nkx2-5, which do not loop, left-sided eHand expression was abolished. However, expression was unaffected in Sc1-/- hearts that loop poorly because of hematopoietic insufficiency, and was right-sided in hearts of inv/inv embryos that display situs inversus. The data predict that eHand expression is enhanced in descendants of the left heart progenitor pool as one response to inductive signaling from the L/R axial system, and that eHand controls intrinsic morphogenetic pathways essential for looping. One aspect of the intrinsic response to L/R information falls under Nkx2-5 homeobox control.
Collapse
Affiliation(s)
- C Biben
- The Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Victoria, Australia
| | | |
Collapse
|