151
|
Bifari F, Pacelli L, Krampera M. Immunological properties of embryonic and adult stem cells. World J Stem Cells 2010; 2:50-60. [PMID: 21607122 PMCID: PMC3097923 DOI: 10.4252/wjsc.v2.i3.50] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/17/2010] [Accepted: 03/24/2010] [Indexed: 02/06/2023] Open
Abstract
The possibility of treating degenerative diseases by stem cell-based approaches is a promising therapeutical option. Among major concerns for the clinical application of stem cells, some derive from the possibility that stem cells may be rejected by the immune system as a consequence of histoincompatibility and that stem cells themselves may interfere with the normal functions of host immune response. Therefore, the immunogenicity and the immunomodulatory properties of stem cells must be carefully addressed. Although these properties are common features of different stem cell types, some peculiarities can be recognized and characterized for their proper clinical use.
Collapse
Affiliation(s)
- Francesco Bifari
- Francesco Bifari, Luciano Pacelli, Mauro Krampera, Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Pz.le Scuro 10, 37134 Verona, Italy
| | | | | |
Collapse
|
152
|
Qi Y, Qian L, Sun B, Chen C, Cao Y. Circulating CD34(+) cells are elevated in neonates with respiratory distress syndrome. Inflamm Res 2010; 59:889-95. [PMID: 20431906 DOI: 10.1007/s00011-010-0201-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 03/26/2010] [Accepted: 04/11/2010] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES The objective of the paper was to determine whether circulating stem-progenitor cells were elevated along with its mobilizing cytokines in neonatal respiratory distress syndrome (RDS). SUBJECTS AND METHODS Circulating CD34(+) cells were identified by flow cytometry in 41 RDS in comparison with 20 preterm and 14 term controls without diffuse lung diseases. Plasma concentrations of vascular endothelial growth factor, stromal cell-derived factor-1 (SDF-1) and granulocyte-macrophage colony-stimulating factor were determined by immunochemical assays. RESULTS The number of CD34(+) cells was significantly higher in RDS [25(6-174) cells/microl] than in the preterm controls [15(1-100) cells/microl, P < 0.05]. RDS survivors had higher level of CD34(+) cells than non-survivors (P < 0.05), and low CD34(+) cell level in RDS was correlated with prolonged duration of ventilation (r = -0.396, P < 0.05). Likewise, the CD34(+) cell level was inversely associated with Score for Neonatal Acute Physiology Perinatal Extension II (r = -0.473, P < 0.01) in RDS. Plasma SDF-1 concentration was significantly higher in RDS than in the preterm controls (P < 0.01), and was correlated with the level of CD34(+) cells (r = 0.305, P < 0.01). CONCLUSIONS The level of circulating CD34(+) cells was elevated in RDS along with an increase of plasma SDF-1, suggesting CD34(+) cells might be involved in reparation of neonatal lung injury.
Collapse
Affiliation(s)
- Yuanyuan Qi
- Department of Pediatrics, Children's Hospital, The Institute of Biomedical Sciences, Fudan University, 399 Wan Yuan Road, Shanghai 201102, People's Republic of China
| | | | | | | | | |
Collapse
|
153
|
Crosby LM, Waters CM. Epithelial repair mechanisms in the lung. Am J Physiol Lung Cell Mol Physiol 2010; 298:L715-31. [PMID: 20363851 DOI: 10.1152/ajplung.00361.2009] [Citation(s) in RCA: 524] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The recovery of an intact epithelium following lung injury is critical for restoration of lung homeostasis. The initial processes following injury include an acute inflammatory response, recruitment of immune cells, and epithelial cell spreading and migration upon an autologously secreted provisional matrix. Injury causes the release of factors that contribute to repair mechanisms including members of the epidermal growth factor and fibroblast growth factor families (TGF-alpha, KGF, HGF), chemokines (MCP-1), interleukins (IL-1beta, IL-2, IL-4, IL-13), and prostaglandins (PGE(2)), for example. These factors coordinate processes involving integrins, matrix materials (fibronectin, collagen, laminin), matrix metalloproteinases (MMP-1, MMP-7, MMP-9), focal adhesions, and cytoskeletal structures to promote cell spreading and migration. Several key signaling pathways are important in regulating these processes, including sonic hedgehog, Rho GTPases, MAP kinase pathways, STAT3, and Wnt. Changes in mechanical forces may also affect these pathways. Both localized and distal progenitor stem cells are recruited into the injured area, and proliferation and phenotypic differentiation of these cells leads to recovery of epithelial function. Persistent injury may contribute to the pathology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. For example, dysregulated repair processes involving TGF-beta and epithelial-mesenchymal transition may lead to fibrosis. This review focuses on the processes of epithelial restitution, the localization and role of epithelial progenitor stem cells, the initiating factors involved in repair, and the signaling pathways involved in these processes.
Collapse
Affiliation(s)
- Lynn M Crosby
- Departments of 1Physiology, University of Tennessee Health Science Center, Memphis, TN 38163-0001, USA
| | | |
Collapse
|
154
|
Lee SH, Jang AS, Kim YE, Cha JY, Kim TH, Jung S, Park SK, Lee YK, Won JH, Kim YH, Park CS. Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fibrosis. Respir Res 2010; 11:16. [PMID: 20137099 PMCID: PMC2827393 DOI: 10.1186/1465-9921-11-16] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 02/08/2010] [Indexed: 12/01/2022] Open
Abstract
Background No effective treatment for acute lung injury and fibrosis currently exists. Aim of this study was to investigate the time-dependent effect of bone marrow-derived mesenchymal stem cells (BMDMSCs) on bleomycin (BLM)-induced acute lung injury and fibrosis and nitric oxide metabolites and inflammatory cytokine production. Methods BMDMSCs were transferred 4 days after BLM inhalation. Wet/dry ratio, bronchoalveolar lavage cell profiles, histologic changes and deposition of collagen were analyzed. Results Nitrite, nitrate and cytokines were measured weekly through day 28. At day 7, the wet/dry ratio, neutrophilic inflammation, and amount of collagen were elevated in BLM-treated rats compared to sham rats (p = 0.05-0.002). Levels nitrite, nitrate, IL-1β, IL-6, TNF-α, TGF-β and VEGF were also higher at day 7 (p < 0.05). Degree of lymphocyte and macrophage infiltration increased steadily over time. BMDMSC transfer significantly reduced the BLM-induced increase in wet/dry ratio, degree of neutrophilic infiltration, collagen deposition, and levels of the cytokines, nitrite, and nitrate to those in sham-treated rats (p < 0.05). Fluorescence in situ hybridization localized the engrafted cells to areas of lung injury. Conclusion Systemic transfer of BMDMSCs effectively reduced the BLM-induced lung injury and fibrosis through the down-regulation of nitric oxide metabolites, and proinflammatory and angiogenic cytokines.
Collapse
Affiliation(s)
- Shin-Hwa Lee
- Genome Research Center for Allergy and Respiratory Diseases, Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, 1174 Jung Dong, Wonmi Ku, Bucheon, Gyeonggi Do 420-767, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Wang D, Morales JE, Calame DG, Alcorn JL, Wetsel RA. Transplantation of human embryonic stem cell-derived alveolar epithelial type II cells abrogates acute lung injury in mice. Mol Ther 2010; 18:625-34. [PMID: 20087316 DOI: 10.1038/mt.2009.317] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Respiratory diseases are a major cause of mortality and morbidity worldwide. Current treatments offer no prospect of cure or disease reversal. Transplantation of pulmonary progenitor cells derived from human embryonic stem cells (hESCs) may provide a novel approach to regenerate endogenous lung cells destroyed by injury and disease. Here, we examine the therapeutic potential of alveolar type II epithelial cells derived from hESCs (hES-ATIICs) in a mouse model of acute lung injury. When transplanted into lungs of mice subjected to bleomycin (BLM)-induced acute lung injury, hES-ATIICs behaved as normal primary ATIICs, differentiating into cells expressing phenotypic markers of alveolar type I epithelial cells. Without experiencing tumorigenic side effects, lung injury was abrogated in mice transplanted with hES-ATIICs, demonstrated by recovery of body weight and arterial blood oxygen saturation, decreased collagen deposition, and increased survival. Therefore, transplantation of hES-ATIICs shows promise as an effective therapeutic to treat acute lung injury.
Collapse
Affiliation(s)
- Dachun Wang
- Research Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
156
|
Park SH, Chun YS, Kim JC. Effective Keratocyte Culture Using Amniotic Membrane Matrix and Differentiation of Mesenchymal Stem Cells. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2010. [DOI: 10.3341/jkos.2010.51.12.1652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Soo Hyun Park
- Department of Ophthalmology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yeoun Sook Chun
- Department of Ophthalmology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jae Chan Kim
- Department of Ophthalmology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
157
|
Lee JW, Gupta N, Serikov V, Matthay MA. Potential application of mesenchymal stem cells in acute lung injury. Expert Opin Biol Ther 2009; 9:1259-70. [PMID: 19691441 DOI: 10.1517/14712590903213651] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite extensive research into the pathogenesis of acute lung injury and the acute respiratory distress syndrome (ALI/ARDS), mortality remains high at approximately 40%. Current treatment is primarily supportive, with lung-protective ventilation and a fluid conservative strategy. Pharmacologic therapies that reduce the severity of lung injury in experimental studies have not yet been translated into effective clinical treatment options. Therefore, innovative therapies are needed. Recent studies have suggested that bone-marrow-derived multipotent mesenchymal stem cells (MSC) may have therapeutic applications in multiple clinical disorders including myocardial infarction, diabetes, sepsis, hepatic and acute renal failure. Recently, MSC have been studied in several in vivo models of lung disease. This review focuses on first describing the existing experimental literature that has tested the use of MSC in models of ALI/ARDS, and then the potential mechanisms underlying their therapeutic use with an emphasis on secreted paracrine soluble factors. The review concludes with a discussion of future research directions required for potential clinical trials.
Collapse
Affiliation(s)
- Jae Woo Lee
- University of California, Anesthesiology, 505 Parnassus Avenue, Box 0648, San Francisco, CA 94143-0648, USA.
| | | | | | | |
Collapse
|
158
|
Roles of Wnt/beta-catenin signaling in epithelial differentiation of mesenchymal stem cells. Biochem Biophys Res Commun 2009; 390:1309-14. [PMID: 19879238 DOI: 10.1016/j.bbrc.2009.10.143] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 10/27/2009] [Indexed: 11/22/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) have been demonstrated to be able to differentiate into epithelial lineage, but the precise mechanisms controlling this process are unclear. Our aim is to explore the roles of Wnt/beta-catenin in the epithelial differentiation of MSCs. Using indirect co-culture of rat MSCs with rat airway epithelial cells (RTE), MSCs expressed several airway epithelial markers (cytokeratin 18, tight junction protein occudin, cystic fibrosis transmembrance regulator). The protein levels of some important members in Wnt/beta-catenin signaling were determined, suggested down-regulation of Wnt/beta-catenin with epithelial differentiation of MSCs. Furthermore, Wnt3alpha can inhibit the epithelial differentiation of MSCs. A loss of beta-catenin induced by Dickkopf-1 can enhance MSCs differentiation into epithelial cells. Lithium chloride transiently activated beta-catenin expression and subsequently decreased beta-catenin level and at last inhibited MSCs to differentiate into airway epithelium. Taken together, our study indicated that RTE cells can trigger epithelial differentiation of MSCs. Blocking Wnt/beta-catenin signaling may promote MSCs to differentiate towards airway epithelial cells.
Collapse
|
159
|
Takemiya K, Kai H, Yasukawa H, Tahara N, Kato S, Imaizumi T. Mesenchymal stem cell-based prostacyclin synthase gene therapy for pulmonary hypertension rats. Basic Res Cardiol 2009; 105:409-17. [DOI: 10.1007/s00395-009-0065-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 08/25/2009] [Accepted: 09/22/2009] [Indexed: 11/24/2022]
|
160
|
Karoubi G, Cortes-Dericks L, Breyer I, Schmid RA, Dutly AE. Identification of mesenchymal stromal cells in human lung parenchyma capable of differentiating into aquaporin 5-expressing cells. J Transl Med 2009; 89:1100-14. [PMID: 19652646 DOI: 10.1038/labinvest.2009.73] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The lack of effective therapies for end-stage lung disease validates the need for stem cell-based therapeutic approaches as alternative treatment options. In contrast with exogenous stem cell sources, the use of resident progenitor cells is advantageous considering the fact that the lung milieu is an ideal and familiar environment, thereby promoting the engraftment and differentiation of transplanted cells. Recent studies have shown the presence of multipotent 'mesenchymal stem cells' in the adult lung. The majority of these reports are, however, limited to animal models, and to date, there has been no report of a similar cell population in adult human lung parenchyma. Here, we show the identification of a population of primary human lung parenchyma (pHLP) mesenchymal stromal cells (MSCs) derived from intraoperative normal lung parenchyma biopsies. Surface and intracellular immunophenotyping by flow cytometry revealed that cultures do not contain alveolar type I epithelial cells or Clara cells, and are devoid of the following hematopoietic markers: CD34, CD45 and CXCR4. Cells show an expression pattern of surface antigens characteristic of MSCs, including CD73, CD166, CD105, CD90 and STRO-1. As per bone marrow MSCs, our pHLP cells have the ability to differentiate along the adipogenic, osteogenic and chondrogenic mesodermal lineages when cultured in the appropriate conditions. In addition, when placed in small airway growth media, pHLP cell cultures depict the expression of aquaporin 5 and Clara cell secretory protein, which is identified with that of alveolar type I epithelial cells and Clara cells, respectively, thereby exhibiting the capacity to potentially differentiate into airway epithelial cells. Further investigation of these resident cells may elucidate a therapeutic cell population capable of lung repair and/or regeneration.
Collapse
Affiliation(s)
- Golnaz Karoubi
- Division of General Thoracic Surgery, University Hospital Berne, Berne, Switzerland
| | | | | | | | | |
Collapse
|
161
|
Cargnoni A, Gibelli L, Tosini A, Signoroni PB, Nassuato C, Arienti D, Lombardi G, Albertini A, Wengler GS, Parolini O. Transplantation of allogeneic and xenogeneic placenta-derived cells reduces bleomycin-induced lung fibrosis. Cell Transplant 2009; 18:405-22. [PMID: 19622228 DOI: 10.3727/096368909788809857] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fetal membranes (amnion and chorion) have recently raised significant attention as potential sources of stem cells. We have recently demonstrated that cells derived from human term placenta show stem cell phenotype, high plasticity, and display low immunogenicity both in vitro and in vivo. Moreover, placenta-derived cells, after xenotransplantation, are able to engraft in solid organs including the lung. On these bases, we studied the effects of fetal membrane-derived cells on a mouse model of bleomycin-induced lung fibrosis. Fetal membrane-derived cells were infused 15 min after intratracheal bleomycin instillation. Different delivery routes were used: intraperitoneal or intratracheal for both xenogeneic and allogeneic cells, and intravenous for allogeneic cells. The effects of the transplanted cells on bleomycin-induced inflammatory and fibrotic processes were then scored and compared between transplanted and control animals at different time points. By PCR and immunohistochemistry analyses, we demonstrated the presence of transplanted cells 3, 7, 9, and 14 days after transplantation. Concomitantly, we observed a clear decrease in neutrophil infiltration and a significant reduction in the severity of bleomycin-induced lung fibrosis in mice treated with placenta-derived cells, irrespective of the source (allogeneic or xenogeneic) or delivery route. Our findings constitute further evidence in support of the hypothesis that placenta-derived cells could be useful for clinical application, and warrant further studies toward the use of these cells for the repair of tissue damage associated with inflammatory and fibrotic degeneration.
Collapse
Affiliation(s)
- Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, 25124 Brescia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Mobilization of bone marrow cells to the site of injury is necessary for wound healing. ACTA ACUST UNITED AC 2009; 67:315-21; discussion 321-2. [PMID: 19667884 DOI: 10.1097/ta.0b013e3181a5c9c7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Lung contusion (LC) and hemorrhagic shock (HS) result in early organ failure (lung and bone marrow [BM]), possibly through sequestration of mobilized BM hematopoietic progenitor cells (HPC) into the lung. Postinjury mesenteric lymph has been shown to cause early organ failure. Thus, we hypothesized that diversion of mesenteric lymph would improve early organ dysfunction through decreased mobilization of BM HPC to the lung. METHODS Rats were subjected to unilateral LC +/- lymph duct ligation (LDL). Additional groups underwent HS (mean arterial pressure of 35 mm Hg for 90 minutes) with and without LC +/- LDL. Controls were only cannulated. At 3 hours, both lungs and BM were harvested for growth of HPC (BFU-E, CFU-E, and CFU-GEMM). Additional rats were killed on day 14 and the lungs examined by histology. RESULTS LC alone decreased BM HPC in all cell types and increased their number in the injured lung (all *p < 0.05 vs. control). Shock exacerbated these results and resulted in a further increase in BM cells in the injured lung and a decrease in BM HPC growth. LDL reversed the response to LC alone. In rats subjected to LC and HS, LDL restored BM HPC growth to levels observed after LC alone and decreased HPC recovered in the contused lung 50% compared with that in shocked rats without LDL. At day 14, all rats subjected to LC demonstrated healing of their injury. In contrast, all LC + LDL rats had evidence of pneumonia, thickened alveoli, and increased numbers of inflammatory cells. CONCLUSIONS Diversion of the postinjury mesenteric lymph decreased early BM suppression after LC or LC with HS. However, this improved BM function occurred at the expense of impaired lung healing and an increased susceptibility to pulmonary infection. As mobilized BM cells differentiate into pneumocytes, these data indicate that mobilization of BM cells to the site of injury is an adaptive and necessary response for successful wound healing and tissue repair.
Collapse
|
163
|
Keskar V, Marion NW, Mao JJ, Gemeinhart RA. In vitro evaluation of macroporous hydrogels to facilitate stem cell infiltration, growth, and mineralization. Tissue Eng Part A 2009; 15:1695-707. [PMID: 19119921 DOI: 10.1089/ten.tea.2008.0238] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hydrogels have gained acceptance as biomaterials in a wide range of applications, including pharmaceutical formulations, drug delivery, and tissue sealants. However, exploiting the potential of hydrogels as scaffolds for cell transplantation, tissue engineering, and regenerative medicine still remains a challenge due to, in part, scaffold design limitations. Here, we describe a highly interconnected, macroporous poly(ethylene glycol) diacrylate hydrogel scaffold, with pores ranging from 100 to 600 microm. The scaffold exhibits rapid cell uptake and cell seeding without the need of any external force or device with high incorporation efficiency. When human mesenchymal stem cells are seeded within the porous scaffolds, the scaffolds were found to promote long-term stem cell viability, and on exposure to osteogenic medium, elicit an mineralization response as evaluated by an increased alkaline phosphatase activity (per cell) and calcium and phosphate content within the constructs. The atomic composition of the mineralized matrix was further determined by energy dispersive spectroscopy and found to be similar to calcium-deficient hydroxyapatite, the amorphous biological precursor of bone. The macroporous design of the hydrogel appears advantageous over similar porous hydrogel scaffolds with respect to ease of synthesis, ease of stem cell seeding, and its ability to support long-term stem cell survival and possible differentiation.
Collapse
Affiliation(s)
- Vandana Keskar
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, IL 60612-7231, USA
| | | | | | | |
Collapse
|
164
|
Lassance RM, Prota LFM, Maron-Gutierrez T, Garcia CSNB, Abreu SC, Pássaro CP, Xisto DG, Castiglione RC, Carreira H, Ornellas DS, Santana MCE, Souza SAL, Gutfilen B, Fonseca LMB, Rocco PRM, Morales MM. Intratracheal instillation of bone marrow-derived cell in an experimental model of silicosis. Respir Physiol Neurobiol 2009; 169:227-33. [PMID: 19761873 DOI: 10.1016/j.resp.2009.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 09/03/2009] [Accepted: 09/04/2009] [Indexed: 01/22/2023]
Abstract
The time course of lung mechanics, histology, and inflammatory and fibrogenic mediators are analysed after intratracheal instillation (IT) of bone marrow-derived cells (BMDC) in a model of silicosis. C57BL/6 mice were randomly divided into SIL (silica, 20mg IT) and control (CTRL) groups (saline IT). At day 15, mice received saline or BMDC (2 x 10(6)cells) IT. The biodistribution of technetium-99m BMDC was higher in lungs compared with other organs. At days 30 and 60, lung mechanics, the area of granulomatous nodules, and mRNA expression of IL-1beta and TGF-beta were higher in SIL than CTRL animals. BMDC minimized changes in lung mechanics, the area of granulomatous nodules, and total cell infiltration at day 30, but these effects were no longer observed at day 60. Conversely, BMDC avoided the expression of IL-1beta at days 30 and 60 and TGF-beta only at day 30. In conclusion, BMDC therapy improved lung mechanics and histology, but this beneficial effect was not maintained in the course of injury.
Collapse
|
165
|
van Haaften T, Byrne R, Bonnet S, Rochefort GY, Akabutu J, Bouchentouf M, Rey-Parra GJ, Galipeau J, Haromy A, Eaton F, Chen M, Hashimoto K, Abley D, Korbutt G, Archer SL, Thébaud B. Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med 2009; 180:1131-42. [PMID: 19713449 DOI: 10.1164/rccm.200902-0179oc] [Citation(s) in RCA: 352] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RATIONALE Bronchopulmonary dysplasia (BPD) and emphysema are characterized by arrested alveolar development or loss of alveoli; both are significant global health problems and currently lack effective therapy. Bone marrow-derived mesenchymal stem cells (BMSCs) prevent adult lung injury, but their therapeutic potential in neonatal lung disease is unknown. OBJECTIVES We hypothesized that intratracheal delivery of BMSCs would prevent alveolar destruction in experimental BPD. METHODS In vitro, BMSC differentiation and migration were assessed using co-culture assays and a modified Boyden chamber. In vivo, the therapeutic potential of BMSCs was assessed in a chronic hyperoxia-induced model of BPD in newborn rats. MEASUREMENTS AND MAIN RESULTS In vitro, BMSCs developed immunophenotypic and ultrastructural characteristics of type II alveolar epithelial cells (AEC2) (surfactant protein C expression and lamellar bodies) when co-cultured with lung tissue, but not with culture medium alone or liver. Migration assays revealed preferential attraction of BMSCs toward oxygen-damaged lung versus normal lung. In vivo, chronic hyperoxia in newborn rats led to air space enlargement and loss of lung capillaries, and this was associated with a decrease in circulating and resident lung BMSCs. Intratracheal delivery of BMSCs on Postnatal Day 4 improved survival and exercise tolerance while attenuating alveolar and lung vascular injury and pulmonary hypertension. Engrafted BMSCs coexpressed the AEC2-specific marker surfactant protein C. However, engraftment was disproportionately low for cell replacement to account for the therapeutic benefit, suggesting a paracrine-mediated mechanism. In vitro, BMSC-derived conditioned medium prevented O(2)-induced AEC2 apoptosis, accelerated AEC2 wound healing, and enhanced endothelial cord formation. CONCLUSIONS BMSCs prevent arrested alveolar and vascular growth in part through paracrine activity. Stem cell-based therapies may offer new therapeutic avenues for lung diseases that currently lack efficient treatments.
Collapse
Affiliation(s)
- Timothy van Haaften
- Department of Pediatrics, Women and Children Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Coppes RP, van der Goot A, Lombaert IMA. Stem cell therapy to reduce radiation-induced normal tissue damage. Semin Radiat Oncol 2009; 19:112-21. [PMID: 19249649 DOI: 10.1016/j.semradonc.2008.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Normal tissue damage after radiotherapy is still a major problem in cancer treatment. Stem cell therapy may provide a means to reduce radiation-induced side effects and improve the quality of life of patients. This review discusses the current status in stem cell research with respect to their potential to reduce radiation toxicity. A number of different types of stem cells are being investigated for their potential to treat a variety of disorders. Their current status, localization, characterization, isolation, and potential in stem cell-based therapies are addressed. Although clinical adult stem cell research is still at an early stage, preclinical experiments show the potential these therapies may have. Based on the major advances made in this field, stem cell-based therapy has great potential to allow prevention or treatment of normal tissue damage after radiotherapy.
Collapse
Affiliation(s)
- Rob P Coppes
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | |
Collapse
|
167
|
Aliotta JM, Keaney PJ, Warburton RR, DelTatto M, Dooner MS, Passero MA, Quesenberry PJ, Klinger JR. Marrow cell infusion attenuates vascular remodeling in a murine model of monocrotaline-induced pulmonary hypertension. Stem Cells Dev 2009; 18:773-82. [PMID: 19072290 DOI: 10.1089/scd.2008.0237] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There have been reports of marrow cells converting into pulmonary epithelial cells after marrow transplantation in irradiated mice. We evaluated the impact of whole bone marrow (WBM) infusion in mice, with or without total body irradiation (TBI), treated with saline or monocrotaline (MCT), which induces pulmonary hypertension (PH). C57BL/6 mice were injected with MCT or saline weekly for 4 weeks. Cohorts were then infused with saline vehicle (vehicle) or WBM from C57BL/-Tg(UBC-GFP)30Scha/J mice, with or without previous TBI (WBM or WBM/TBI). Four weeks later, right ventricular peak pressures (RVPP), right ventricular free wall-to-body weight ratios (RV/BW), and pulmonary vessel wall thickness-to-blood vessel diameter ratios (PVWT/D) were determined. WBM infusion and WBM following TBI induced increases in RVPP and RV/BW in saline-treated mice, while only TBI-exposed mice showed additional increases in PVWT/D. MCT increased RVPP, RV/BW, and PVWT/D in mice given vehicle or WBM alone, but not in mice given WBM/TBI. RVPP and RV/BW were not significantly lower in MCT mice given WBM/TBI than in MCT mice treated with vehicle, but MCT-treated mice given WBM or TBI/WBM had significantly lower PVWT/D compared to MCT-treated mice given saline vehicle. No donor WBM-derived pulmonary vascular cells were detected, suggesting that the observed effects of WBM infusion may be due to paracrine effects separate from cell conversions. The observation of PH after marrow infusion suggests an additional mechanism for lung toxicity seen in marrow transplantation. In conclusion, WBM alone appears to increase RVPP and RV/BW in normal mice but the combination of WBM and TBI attenuates MCT-induced PH.
Collapse
Affiliation(s)
- Jason M Aliotta
- Division of Hematology and Oncology, Sleep, and Critical Care Medicine, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA.
| | | | | | | | | | | | | | | |
Collapse
|
168
|
|
169
|
Yuhgetsu H, Ohno Y, Funaguchi N, Asai T, Sawada M, Takemura G, Minatoguchi S, Fujiwara H, Fujiwara T. BENEFICIAL EFFECTS OF AUTOLOGOUS BONE MARROW MONONUCLEAR CELL TRANSPLANTATION AGAINST ELASTASE-INDUCED EMPHYSEMA IN RABBITS. Exp Lung Res 2009; 32:413-26. [PMID: 17162649 DOI: 10.1080/01902140601047633] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The authors investigated whether autologous bone marrow mononuclear cell (BMC) transplantation via the left and right main bronchi would mitigate elastase-induced pulmonary emphysema in rabbits. Four weeks after elastase administration, rabbits also receiving BMCs showed significantly better pulmonary function (FVC, FEV100, FEVPEF) and smaller alveolar airspaces, as indicated by a smaller mean linear intercept, than those receiving porcine pancreatic elastase (PPE) (200 U/kg) alone via the left and right main bronchi. BMCs also significantly reduced cell counts in bronchoalveolar lavage fluid, the incidence of apoptotic (TUNEL-positive) cells and matrix metalloproteinase (MMP)-2 expression, while increasing numbers of proliferative (Ki-67-positive) cells. Thus, BMCs may inhibit the progression to emphysema by attenuating inflammation, MMP-2 expression, and apoptosis, while enhancing alveolar cell proliferation.
Collapse
Affiliation(s)
- Hideyuki Yuhgetsu
- Second Department of Internal Medicine, Regeneration and Advanced Medical Science, Graduate School of Medicine, Gifu University, Gifu, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Engraftment of bone marrow-derived stem cells to the lung in a model of acute respiratory infection by Pseudomonas aeruginosa. Mol Ther 2009; 17:1257-65. [PMID: 19417738 DOI: 10.1038/mt.2009.96] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Stem cell therapy presents an attractive approach to cure cystic fibrosis (CF) lung disease. We set out to investigate the effect of epithelial damage caused by Pseudomonas aeruginosa, a pathogenic bacterium widely occurring in CF, on the engraftment of bone marrow cells in airway epithelium. Intravenous or intratracheal administration of unfractionated green fluorescent protein (GFP(+)) bone marrow cells in P. aeruginosa-infected mice resulted in none or very few GFP(+) cells detected in the lungs of the recipient mice, respectively. Only when GFP(+) bone marrow cells were purified to obtain a cell suspension enriched in progenitor cells and injected intratracheally, significant numbers of GFP(+) cells were detected. Localization of the donor cells at the level of airway epithelium was confirmed by Y-chromosome fluorescence in situ hybridization (FISH) analysis. All donor-derived Y-chromosome(+) cells were found to express cytokeratin (CK). The fractions of GFP(+) cells expressing CK were 0.34 and 0.76% for the 10(5) and 10(6) colony forming units (cfu) bacterial inoculums, respectively. When scored by Y-chromosome positivity these numbers were 0.60 and 1.12%, respectively. Our results show for the first time that tissue damage inflicted by bacteria like P. aeruginosa facilitates the airway engraftment of heterologous bone marrow-derived stem cells and their epithelial transformation.
Collapse
|
171
|
Verstappen J, Katsaros C, Torensma R, Von den Hoff JW. A functional model for adult stem cells in epithelial tissues. Wound Repair Regen 2009; 17:296-305. [DOI: 10.1111/j.1524-475x.2009.00497.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
172
|
Griesenbach U, Alton EWFW. Gene transfer to the lung: lessons learned from more than 2 decades of CF gene therapy. Adv Drug Deliv Rev 2009; 61:128-39. [PMID: 19138713 DOI: 10.1016/j.addr.2008.09.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 09/22/2008] [Indexed: 11/30/2022]
Abstract
Gene therapy is currently being developed for a wide range of acute and chronic lung diseases. The target cells, and to a degree the extra and intra-cellular barriers, are disease-specific and over the past decade the gene therapy community has recognized that no one vector is good for all applications, but that the gene transfer agent (GTA) has to be carefully matched to the specific disease target. Gene therapy is particularly attractive for diseases that currently do not have satisfactory treatment options and probably easier for monogenic disorders than for complex diseases. Cystic fibrosis (CF) fulfils these criteria and is, therefore, a good candidate for gene therapy-based treatment. This review will focus on CF as an example for lung gene therapy, but lessons learned may be applicable to other target diseases.
Collapse
Affiliation(s)
- Uta Griesenbach
- Department of Gene Therapy, Faculty of Medicine at the National Heart and Lung Institute, Imperial College London, Manresa Road, London SW36LR, UK.
| | | |
Collapse
|
173
|
Lombaert IMA, Brunsting JF, Wierenga PK, Kampinga HH, de Haan G, Coppes RP. Cytokine treatment improves parenchymal and vascular damage of salivary glands after irradiation. Clin Cancer Res 2009; 14:7741-50. [PMID: 19047101 DOI: 10.1158/1078-0432.ccr-08-1449] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE During radiotherapy for head and neck cancer, co-irradiation (IR) of salivary glands results in acute and often lifelong hyposalivation. Recently, we showed that bone marrow-derived cells (BMC) can partially facilitate postradiation regeneration of the mouse submandibular gland. In this study, we investigate whether optimized mobilization of BMCs can further facilitate regeneration of radiation-damaged salivary glands. EXPERIMENTAL DESIGN Salivary glands of mice reconstituted with eGFP+ bone marrow cells were irradiated with a single dose of 15 Gy. One month later, BMCs were mobilized using granulocyte colony-stimulating factor (G-CSF) or the combination of FMS-like tyrosine kinase-3 ligand, stem cell factor, and G-CSF (termed F/S/G) as mobilizing agents. Salivary gland function and morphology were evaluated at 90 days post-IR by measuring the saliva flow rate, the number of acinar cells, and the functionality of the vasculature. RESULTS Compared with G-CSF alone, the combined F/S/G treatment mobilized a 10-fold higher number and different types of BMCs to the bloodstream and increased the number of eGFP+ cells in the irradiated submandibular gland from 49% to 65%. Both treatments reduced radiation-induced hyposalivation from almost nothing in the untreated group to approximately 20% of normal amount. Surprisingly, however, F/S/G treatment resulted in significant less damage to submandibular blood vessels and induced BMC-derived neovascularization. CONCLUSIONS Post-IR F/S/G treatment facilitates regeneration of the submandibular gland and ameliorates vascular damage. The latter is partly due to BMCs differentiating in vascular cells but is likely to also result from direct stimulation of existing blood vessel cells.
Collapse
Affiliation(s)
- Isabelle M A Lombaert
- Section of Radiation and Stress Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
174
|
Wong AP, Keating A, Lu WY, Duchesneau P, Wang X, Sacher A, Hu J, Waddell TK. Identification of a bone marrow-derived epithelial-like population capable of repopulating injured mouse airway epithelium. J Clin Invest 2009; 119:336-48. [PMID: 19164856 DOI: 10.1172/jci36882] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 12/03/2008] [Indexed: 02/05/2023] Open
Abstract
The bone marrow compartment is enriched in stem and progenitor cells, and an unidentified subpopulation of these cells can contribute to lung epithelial repair. Here we identify this subpopulation and quantitate its relative contribution to injured airway epithelium. A subpopulation of adherent human and murine bone marrow cells that expresses Clara cell secretory protein (CCSP) was identified using flow cytometry. When cultured at the air-liquid interface in ex vivo cultures, Ccsp+ cells expressed type I and type II alveolar markers as well as basal cell markers and active epithelial sodium channels. Ccsp+ cells preferentially homed to naphthalene-damaged airways when delivered transtracheally or intravenously, with the former being more efficient than the latter. Interestingly, naphthalene-induced lung damage transiently increased Ccsp expression in bone marrow and peripheral circulation. Furthermore, lethally irradiated Ccsp-null mice that received tagged wild-type bone marrow contained donor-derived epithelium in both normal and naphthalene-damaged airways. This study therefore identifies what we believe to be a newly discovered cell in the bone marrow that might have airway reconstitution potential in the context of cell-based therapies for lung disease. Additionally, these data could reconcile previous controversies regarding the contribution of bone marrow to lung regeneration.
Collapse
Affiliation(s)
- Amy P Wong
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, and the McEwen Centre in Regenerative Medicine, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Oh SH, Witek RP, Bae SH, Darwiche H, Jung Y, Pi L, Brown A, Petersen BE. Detection of transketolase in bone marrow-derived insulin-producing cells: benfotiamine enhances insulin synthesis and glucose metabolism. Stem Cells Dev 2009; 18:37-46. [PMID: 18393672 PMCID: PMC3118870 DOI: 10.1089/scd.2007.0255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 04/07/2008] [Indexed: 12/12/2022] Open
Abstract
Adult bone marrow (BM)-derived insulin-producing cells (IPCs) are capable of regulating blood glucose levels in chemically induced hyperglycemic mice. Using cell transplantation therapy, fully functional BM-derived IPCs help to mediate treatment of diabetes mellitus. Here, we demonstrate the detection of the pentose phosphate pathway enzyme, transketolase (TK), in BM-derived IPCs cultured under high-glucose conditions. Benfotiamine, a known activator of TK, was not shown to affect the proliferation of insulinoma cell line, INS-1; however, when INS-1 cells were cultured with oxythiamine, an inhibitor of TK, cell proliferation was suppressed. Treatment with benfotiamine activated glucose metabolism in INS-1 cells in high-glucose culture conditions, and appeared to maximize the BM-derived IPCs ability to synthesize insulin. Benfotiamine was not shown to induce the glucose receptor Glut-2, however it was shown to activate glucokinase, the enzyme responsible for conversion of glucose to glucose-6-phosphate. Furthermore, benfotiamine-treated groups showed upregulation of the downstream glycolytic enzyme, glyceraldehyde phosphate dehydrogenase (GAPDH). However, in cells where the pentose phosphate pathway was blocked by oxythiamine treatment, there was a clear downregulation of Glut-2, glucokinase, insulin, and GAPDH. When benfotiamine was used to treat mice transplanted with BM-derived IPCs transplanted, their glucose level was brought to a normal range. The glucose challenge of normal mice treated with benfotiamine lead to rapidly normalized blood glucose levels. These results indicate that benfotiamine activates glucose metabolism and insulin synthesis to prevent glucose toxicity caused by high concentrations of blood glucose in diabetes mellitus.
Collapse
Affiliation(s)
- Seh-Hoon Oh
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida 32610, USA. .edu
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Mora AL, Rojas M. Aging and lung injury repair: a role for bone marrow derived mesenchymal stem cells. J Cell Biochem 2008; 105:641-7. [PMID: 18759327 DOI: 10.1002/jcb.21890] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The incidence of lung fibrosis increases with age. Aging is associated with modifications in the intracellular and extracellular environment including alteration of the extracellular matrix, imbalance of the redox state, accumulation of senescent cells and potential alteration of the recruitment of bone marrow mesenchymal stem cells. The combination of these senescence-related alterations in the lung and in bone marrow progenitor cells might be responsible of the higher susceptibility to lung fibrosis in elderly individuals. The understanding of these age related changes must be considered in the rationale for the development of therapeutic interventions to control lung injury and fibrosis.
Collapse
Affiliation(s)
- Ana L Mora
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Center for Translational Research in the Lung, McKelvey Center for Lung Transplantation, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
177
|
Abstract
Alterations in pulmonary vessel structure and function are highly prevalent in patients with COPD. Vascular abnormalities impair gas exchange and may result in pulmonary hypertension, which is one of the principal factors associated with reduced survival in COPD patients. Changes in pulmonary circulation have been identified at initial disease stages, providing new insight into their pathogenesis. Endothelial cell damage and dysfunction produced by the effects of cigarette smoke products or inflammatory elements is now considered to be the primary alteration that initiates the sequence of events resulting in pulmonary hypertension. Cellular and molecular mechanisms involved in this process are being extensively investigated. Progress in the understanding of the pathobiology of pulmonary hypertension associated with COPD may provide the basis for a new therapeutic approach addressed to correct the imbalance between endothelium-derived vasoactive agents. The safety and efficacy of endothelium-targeted therapy in COPD-associated pulmonary hypertension warrants further investigation in randomized clinical trials.
Collapse
Affiliation(s)
- Víctor I Peinado
- Department of Pulmonary Medicine, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Ciber de Enfermedades Respiratorias, Barcelona, Spain
| | - Sandra Pizarro
- Department of Pulmonary Medicine, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Ciber de Enfermedades Respiratorias, Barcelona, Spain
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Ciber de Enfermedades Respiratorias, Barcelona, Spain.
| |
Collapse
|
178
|
Fritzell JA, Mao Q, Gundavarapu S, Pasquariello T, Aliotta JM, Ayala A, Padbury JF, De Paepe ME. Fate and effects of adult bone marrow cells in lungs of normoxic and hyperoxic newborn mice. Am J Respir Cell Mol Biol 2008; 40:575-87. [PMID: 18988921 DOI: 10.1165/rcmb.2008-0176oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cell-based therapy in adult lung injury models is associated with highly variable donor cell engraftment and epithelial reconstitution. The role of marrow-derived cell therapy in neonatal lung injury is largely unknown. In this study, we determined the fate and effects of adult bone marrow cells in a model of neonatal lung injury. Wild-type mice placed in a normoxic or hyperoxic (95% O(2)) environment received bone marrow cells from animals expressing green fluorescent protein (GFP) at Postnatal Day (P)5. Controls received vehicle buffer. Lungs were analyzed between Post-Transplantation (TPX) Day 2 and Week 8. The volume of GFP-immunoreactive donor cells, monitored by stereologic volumetry, remained constant between Post-TPX Weeks 1 and 8 and was similar in normoxic and hyperoxia-exposed recipients. Virtually all marrow-derived cells showed colocalization of GFP and the pan-macrophage marker, F4/80, by double immunofluorescence studies. Epithelial transdifferentiation was not seen. Marrow cell administration had adverse effects on somatic growth and alveolarization in normoxic mice, while no effects were discerned in hyperoxia-exposed recipients. Reexposure of marrow-treated animals to hyperoxia at P66 resulted in significant expansion of the donor-derived macrophage population. In conclusion, intranasal administration of unfractionated bone marrow cells to newborn mice does not achieve epithelial reconstitution, but establishes persistent alveolar macrophage chimerism. The predominantly adverse effects of marrow treatment in newborn lungs are likely due to macrophage-associated paracrine effects. While this model and route of cell therapy may not achieve epithelial reconstitution, the role of selected stem cell populations and/or alternate routes of administration for cell-based therapy in injured newborn lungs deserve further investigation.
Collapse
Affiliation(s)
- James A Fritzell
- Women and Infants Hospital, Dept. of Pathology, 101 Dudley Street, Providence, RI 02905, USA
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Carraro G, Perin L, Sedrakyan S, Giuliani S, Tiozzo C, Lee J, Turcatel G, De Langhe SP, Driscoll B, Bellusci S, Minoo P, Atala A, De Filippo RE, Warburton D. Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells 2008; 26:2902-11. [PMID: 18719226 PMCID: PMC3174105 DOI: 10.1634/stemcells.2008-0090] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new source of stem cells has recently been isolated from amniotic fluid; these amniotic fluid stem cells have significant potential for regenerative medicine. These cells are multipotent, showing the ability to differentiate into cell types from each embryonic germ layer. We investigated the ability of human amniotic fluid stem cells (hAFSC) to integrate into murine lung and to differentiate into pulmonary lineages after injury. Using microinjection into cultured mouse embryonic lungs, hAFSC can integrate into the epithelium and express the early human differentiation marker thyroid transcription factor 1 (TTF1). In adult nude mice, following hyperoxia injury, tail vein-injected hAFSC localized in the distal lung and expressed both TTF1 and the type II pneumocyte marker surfactant protein C. Specific damage of Clara cells through naphthalene injury produced integration and differentiation of hAFSC at the bronchioalveolar and bronchial positions with expression of the specific Clara cell 10-kDa protein. These results illustrate the plasticity of hAFSC to respond in different ways to different types of lung damage by expressing specific alveolar versus bronchiolar epithelial cell lineage markers, depending on the type of injury to recipient lung. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Gianni Carraro
- Developmental Biology, Regenerative Medicine and Surgery Program, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine and School of Dentistry, Los Angeles, California, USA
| | - Laura Perin
- Developmental Biology, Regenerative Medicine and Surgery Program, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine and School of Dentistry, Los Angeles, California, USA
| | - Sargis Sedrakyan
- Developmental Biology, Regenerative Medicine and Surgery Program, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine and School of Dentistry, Los Angeles, California, USA
| | - Stefano Giuliani
- Developmental Biology, Regenerative Medicine and Surgery Program, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine and School of Dentistry, Los Angeles, California, USA
| | - Caterina Tiozzo
- Women's & Children's Hospital, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jooeun Lee
- Developmental Biology, Regenerative Medicine and Surgery Program, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine and School of Dentistry, Los Angeles, California, USA
| | - Gianluca Turcatel
- Developmental Biology, Regenerative Medicine and Surgery Program, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine and School of Dentistry, Los Angeles, California, USA
| | - Stijn P. De Langhe
- Developmental Biology, Regenerative Medicine and Surgery Program, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine and School of Dentistry, Los Angeles, California, USA
| | - Barbara Driscoll
- Developmental Biology, Regenerative Medicine and Surgery Program, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine and School of Dentistry, Los Angeles, California, USA
| | - Saverio Bellusci
- Developmental Biology, Regenerative Medicine and Surgery Program, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine and School of Dentistry, Los Angeles, California, USA
| | - Parviz Minoo
- Women's & Children's Hospital, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Roger Edward De Filippo
- Developmental Biology, Regenerative Medicine and Surgery Program, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine and School of Dentistry, Los Angeles, California, USA
| | - David Warburton
- Developmental Biology, Regenerative Medicine and Surgery Program, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine and School of Dentistry, Los Angeles, California, USA
| |
Collapse
|
180
|
Rea S, Giles NL, Webb S, Adcroft KF, Evill LM, Strickland DH, Wood FM, Fear MW. Bone marrow-derived cells in the healing burn wound--more than just inflammation. Burns 2008; 35:356-64. [PMID: 18952376 DOI: 10.1016/j.burns.2008.07.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 07/16/2008] [Indexed: 01/19/2023]
Abstract
Scarring after severe burn is a result of changes in collagen deposition and fibroblast activity that result in repaired but not regenerated tissue. Re-epithelialisation of wounds and dermal cell repopulation has been thought to be driven by cells in the periphery of the wound. However, recent research demonstrated that cells originating from the bone marrow contribute to healing wounds in other tissues and also after incisional injury. We investigated the contribution of bone marrow-derived cells to long-term cell populations in scar tissue (primarily fibroblasts and keratinocytes) after severe burn. Wild-type mice were lethally irradiated and then the bone marrow reconstituted by injection of chimeric bone marrow cells expressing EGFP marker protein. Mice with chimeric bone marrow were then given a burn, either an 1-cm diameter injury (to mimic minor injury) or 2-cm diameter (to mimic moderate injury). Wounds were analysed at days 1, 3, 7, 14, 21, 28, 56 and 120 using FACS and immunohistochemistry to identify the percentage and cell type within the wound originating from the bone marrow. The inflammatory cell infiltrate at the early time-points was bone marrow in origin. At later time-points, we noted that over half of the fibroblast population was bone marrow-derived; we also observed that a small percentage of keratinocytes appeared to be bone marrow in origin. These findings support the theory that the bone marrow plays an important role in providing cells not only for inflammation but also dermal and epidermal cells during burn wound healing. This increases our understanding of cell origins in the healing wound, and has the potential to impact on clinical practice providing a potential mechanism for intervention away from conventional topical treatments and directed instead to systemic treatments affecting the bone marrow response.
Collapse
Affiliation(s)
- Suzanne Rea
- The McComb Research Foundation, Royal Perth Hospital, Perth, WA, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Quesenberry PJ, Aliotta JM. The paradoxical dynamism of marrow stem cells: considerations of stem cells, niches, and microvesicles. STEM CELL REVIEWS 2008; 4:137-47. [PMID: 18665337 PMCID: PMC4495665 DOI: 10.1007/s12015-008-9036-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/01/2008] [Indexed: 01/05/2023]
Abstract
Marrow stem cell regulation represents a complex and flexible system. It has been assumed that the system was intrinsically hierarchical in nature, but recent data has indicated that at the progenitor/stem cell level the system may represent a continuum with reversible alterations in phenotype occurring as the stem cells transit cell cycle. Short and long-term engraftment, in vivo and in vitro differentiation, gene expression, and progenitor numbers have all been found to vary reversibly with cell cycle. In essence, the stem cells appear to show variable potential, probably based on transcription factor access, as they proceed through cell cycle. Another critical component of the stem cell regulation is the microenvironment, so-called niches. We propose that there are not just several unique niche cells, but a wide variety of niche cells which continually change phenotype to appropriately interact with the continuum of stem cell phenotypes. A third component of the regulatory system is microvesicle transfer of genetic information between cells. We have shown that marrow cells can express the genetic phenotype of pulmonary epithelial cells after microvesicle transfer from lung to marrow cells. Similar transfers of tissue specific mRNA occur between liver, brain, and heart to marrow cells. Thus, there would appear to be a continuous genetic modulation of cells through microvesicle transfer between cells. We propose that there is an interactive triangulated Venn diagram with continuously changing stem cells interacting with continuously changing areas of influence, both being modulated by transfer of genetic information by microvesicles.
Collapse
Affiliation(s)
- Peter J. Quesenberry
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Jason M. Aliotta
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
182
|
Liebler JM, Lutzko C, Banfalvi A, Senadheera D, Aghamohammadi N, Crandall ED, Borok Z. Retention of human bone marrow-derived cells in murine lungs following bleomycin-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2008; 295:L285-92. [PMID: 18515407 PMCID: PMC2519849 DOI: 10.1152/ajplung.00222.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 05/23/2008] [Indexed: 11/22/2022] Open
Abstract
We studied the capacity of adult human bone marrow-derived cells (BMDC) to incorporate into distal lung of immunodeficient mice following lung injury. Immunodeficient NOD/SCID and NOD/SCID/beta(2) microglobulin (beta(2)M)(null) mice were administered bleomycin (bleo) or saline intranasally. One, 2, 3 and 4 days after bleo or saline, human BMDC labeled with CellTracker Green CMFDA (5-chloromethylfluorescein diacetate) were infused intravenously. Retention of CMFDA(+) cells was maximal when delivered 4 days after bleo treatment. Seven days after bleo, <0.005% of enzymatically dispersed lung cells from NOD/SCID mice were CMFDA(+), which increased 10- to 100-fold in NOD/SCID/beta(2)M(null) mice. Preincubation of BMDC with Diprotin A, a reversible inhibitor of CD26 peptidase activity that enhances the stromal-derived factor-1 (SDF-1/CXCL12)/CXCR4 axis, resulted in a 30% increase in the percentage of CMFDA(+) cells retained in the lung. These data indicate that human BMDC can be identified in lungs of mice following injury, albeit at low levels, and this may be modestly enhanced by manipulation of the SDF-1/CXCR4 axis. Given the overall low number of human cells detected, methods to increase homing and retention of adult BMDC, and consideration of other stem cell populations, will likely be required to facilitate engraftment in the treatment of lung injury.
Collapse
Affiliation(s)
- Janice M Liebler
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary and Critical Care Medicine, University of Southern California, Los Angeles, California 90033, USA.
| | | | | | | | | | | | | |
Collapse
|
183
|
Yang Q, Mu J, Li Q, Li A, Zeng Z, Yang J, Zhang X, Tang J, Xie P. A simple and efficient method for deriving neurospheres from bone marrow stromal cells. Biochem Biophys Res Commun 2008; 372:520-4. [DOI: 10.1016/j.bbrc.2008.05.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 05/05/2008] [Indexed: 12/22/2022]
|
184
|
Chae YK, Kang SK, Kim MS, Woo J, Lee J, Chang S, Kim DW, Kim M, Park S, Kim I, Keam B, Rhee J, Koo NH, Park G, Kim SH, Jang SE, Kweon IY, Sidransky D, Moon C. Human AQP5 plays a role in the progression of chronic myelogenous leukemia (CML). PLoS One 2008; 3:e2594. [PMID: 18612408 PMCID: PMC2440422 DOI: 10.1371/journal.pone.0002594] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 04/23/2008] [Indexed: 11/19/2022] Open
Abstract
Aquaporins (AQPs) have previously been associated with increased expression in solid tumors. However, its expression in hematologic malignancies including CML has not been described yet. Here, we report the expression of AQP5 in CML cells by RT-PCR and immunohistochemistry. While normal bone marrow biopsy samples (n = 5) showed no expression of AQP5, 32% of CML patient samples (n = 41) demonstrated AQP5 expression. In addition, AQP5 expression level increased with the emergence of imatinib mesylate resistance in paired samples (p = 0.047). We have found that the overexpression of AQP5 in K562 cells resulted in increased cell proliferation. In addition, small interfering RNA (siRNA) targeting AQP5 reduced the cell proliferation rate in both K562 and LAMA84 CML cells. Moreover, by immunoblotting and flow cytometry, we show that phosphorylation of BCR-ABL1 is increased in AQP5-overexpressing CML cells and decreased in AQP5 siRNA-treated CML cells. Interestingly, caspase9 activity increased in AQP5 siRNA-treated cells. Finally, FISH showed no evidence of AQP5 gene amplification in CML from bone marrow. In summary, we report for the first time that AQP5 is overexpressed in CML cells and plays a role in promoting cell proliferation and inhibiting apoptosis. Furthermore, our findings may provide the basis for a novel CML therapy targeting AQP5.
Collapse
Affiliation(s)
- Young Kwang Chae
- Department of Otolaryngology–Head and Neck Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sung Koo Kang
- Department of Otolaryngology–Head and Neck Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Myoung Sook Kim
- Department of Otolaryngology–Head and Neck Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Janghee Woo
- Department of Otolaryngology–Head and Neck Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Juna Lee
- Department of Otolaryngology–Head and Neck Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Graduate Program in Human Genetics, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Steven Chang
- Department of Otolaryngology–Head and Neck Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Dong-Wook Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seonyang Park
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, Korea
| | - Inho Kim
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, Korea
| | - Bhumsuk Keam
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, Korea
| | - Jiyoung Rhee
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, Korea
| | - Nam Hee Koo
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, Korea
| | - Gyeongsin Park
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Soo-Hyun Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Se-Eun Jang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Il-Young Kweon
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - David Sidransky
- Department of Otolaryngology–Head and Neck Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Chulso Moon
- Department of Otolaryngology–Head and Neck Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Graduate Program in Human Genetics, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
185
|
Reger RL, Wolfe MR. Freezing harvested hMSCs and recovery of hMSCs from frozen vials for subsequent expansion, analysis, and experimentation. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008; 449:109-16. [PMID: 18370087 DOI: 10.1007/978-1-60327-169-1_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Human multipotential stromal cells (hMSCs) are easily isolated from bone marrow and can be expanded by up to 200-fold in culture. Cultures of hMSCs are heterogeneous mixtures of stem/progenitor cells and more mature cell types. The proportion of each cell type in a given culture depends on how the cells are maintained. To maintain their stem cell-like qualities, hMSCs should be plated at low seeding densities (60-150 cells/cm2), lifted when between 60% and 80% confluent and should not be expanded beyond 4-5 passages. Thus, it is useful to establish a frozen bank of early passage cells. hMSCs store well in vapor phase liquid nitrogen (LN2) and are easily recovered for further expansion. This chapter describes one method of establishing a bank of early passage hMSCs using a seed lot system and the subsequent recovery of hMSCs from frozen stocks. The recovered cells can then be harvested and used for analyses of identification, functionality, in vitro and/or in vivo experimentation, or further expanded.
Collapse
Affiliation(s)
- Roxanne L Reger
- Center for Gene Therapy, Tulane University Health Sciences Center, New Orleans, LA, USA
| | | |
Collapse
|
186
|
Bifari F, Lisi V, Mimiola E, Pasini A, Krampera M. Immune Modulation by Mesenchymal Stem Cells. ACTA ACUST UNITED AC 2008; 35:194-204. [PMID: 21547117 DOI: 10.1159/000128968] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 03/05/2008] [Indexed: 12/27/2022]
Abstract
SUMMARY: Mesenchymal stem cells (MSCs) and their stromal progeny may be considered powerful regulatory cells, a sort of dendritic cell counterpart, which influence all the main immune effectors and functional roles in vivo, as well as potential applications in the treatment of a number of human immunological diseases. By choosing MSC tissue origin, cell dose, administration route, and treatment schedule, all the potential side effects related to MSC use, including tumor growth enhancement, have to be well considered to maximize the benefits of MSC-depen-dent immune regulation without significant risks for the patients.
Collapse
Affiliation(s)
- Francesco Bifari
- Stem Cell Research Laboratory, Section of Hematology, Department of Clinical and Experimental Medicine, University of Verona, Italy
| | | | | | | | | |
Collapse
|
187
|
Serikov VB, Mikhaylov VM, Krasnodembskay AD, Matthay MA. Bone marrow-derived cells participate in stromal remodeling of the lung following acute bacterial pneumonia in mice. Lung 2008; 186:179-190. [PMID: 18357492 PMCID: PMC2863038 DOI: 10.1007/s00408-008-9078-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2007] [Accepted: 01/29/2008] [Indexed: 10/22/2022]
Abstract
Bone marrow-derived cells (BMDC) have been shown to graft injured tissues, differentiate in specialized cells, and participate in repair. The importance of these processes in acute lung bacterial inflammation and development of fibrosis is unknown. The goal of this study was to investigate the temporal sequence and lineage commitment of BMDC in mouse lungs injured by bacterial pneumonia. We transplanted GFP-tagged BMDC into 5-Gy-irradiated C57BL/6 mice. After 3 months of recovery, mice were subjected to LD(50) intratracheal instillation of live E. coli (controls received saline) which produced pneumonia and subsequent areas of fibrosis. Lungs were investigated by immunohistology for up to 6 months. At the peak of lung inflammation, the predominant influx of BMDC were GFP(+) leukocytes. Postinflammatory foci of lung fibrosis were evident after 1-2 months. The fibrotic foci in lung stroma contained clusters of GFP(+) CD45(+) cells, GFP(+) vimentin-positive cells, and GFP(+) collagen I-positive fibroblasts. GFP(+) endothelial or epithelial cells were not identified. These data suggest that following 5-Gy irradiation and acute bacterial pneumonia, BMDC may temporarily participate in lung postinflammatory repair and stromal remodeling without long-term engraftment as specialized endothelial or epithelial cells.
Collapse
Affiliation(s)
- Vladimir B Serikov
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA.
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194021, Russia.
| | | | - Anna D Krasnodembskay
- Department of Cell Biology, St. Petersburg State University, St. Petersburg, 194021, Russia
| | - Michael A Matthay
- Cardiovascular Research Institute, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
188
|
Coculture of bone marrow mesenchymal stem cells and nucleus pulposus cells modulate gene expression profile without cell fusion. Spine (Phila Pa 1976) 2008; 33:870-6. [PMID: 18404106 DOI: 10.1097/brs.0b013e31816b4619] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Changes in gene expression profile and cell fusion of mesenchymal stem cells (MSC) and nucleus pulposus cells (NPC) after coculture were analyzed. OBJECTIVE To investigate the mechanisms of the interaction between NPC and MSC such us differentiation, stimulatory effect, and cell fusion. SUMMARY OF BACKGROUND DATA Introduction of exogenous cells to supplement and replenish intervertebral disc cell population offers a potential approach to treat intervertebral disc degeneration (IDD). Recent evidences showed that intradiscal injection of MSC effectively alter the course of IDD in vivo, and the regenerative potential may result from up-regulated extracellular matrix protein synthesis mediated by MSC and NPC interaction. METHODS Using a double labeling cell system and flow activated cell sorting, we quantitatively analyzed changes in the gene expression profile of human male MSC and female NPC after coculture in a 3-dimensional system that allows short distance paracrine interactions typical of the nucleus pulposus. Furthermore, we analyzed for cell fusion in the cell interaction by fluorescence in situ hybridization (FISH) for X and Y chromosomes, using a 3-dimensional culture system to allow cell-to-cell interactions conducive to cell fusion. RESULTS Two weeks of coculture cell interaction in a 3-dimensional environment induces a change in MSCs towards a more chondrogenic gene expression profile indicating MSC differentiation, and NPC gene expression changes in matrix and chondrogenic genes demonstrating only a modest trophic effect of MSC on NPC. Moreover, FISH analysis demonstrated that cell fusion is not responsible for MSC plasticity in the interaction with NPCs. CONCLUSION This study clarifies the mechanism of MSCs and NPCs interaction in a 3-dimensional environment, excluding cell fusion. These data support the use of undifferentiated MSC for stem cell therapy for IDD treatment.
Collapse
|
189
|
Stem cells in cardiopulmonary development: Implications for novel approaches to therapy for pediatric cardiopulmonary disease. PROGRESS IN PEDIATRIC CARDIOLOGY 2008. [DOI: 10.1016/j.ppedcard.2007.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
190
|
Dooner MS, Aliotta JM, Pimentel J, Dooner GJ, Abedi M, Colvin G, Liu Q, Weier HU, Johnson KW, Quesenberry PJ. Conversion Potential of Marrow Cells into Lung Cells Fluctuates with Cytokine-Induced Cell Cycle. Stem Cells Dev 2008; 17:207-19. [DOI: 10.1089/scd.2007.0195] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Mark S. Dooner
- Department of Medical Oncology Research, Center for Stem Cell Biology Research, Rhode Island Hospital, Providence, RI 02903
| | - Jason M. Aliotta
- Department of Medical Oncology Research, Center for Stem Cell Biology Research, Rhode Island Hospital, Providence, RI 02903
| | - Jeffrey Pimentel
- Research Department, Roger Williams Medical Center, Providence, RI 02908
| | - Gerri J. Dooner
- Department of Medical Oncology Research, Center for Stem Cell Biology Research, Rhode Island Hospital, Providence, RI 02903
| | - Mehrdad Abedi
- Research Department, Roger Williams Medical Center, Providence, RI 02908
| | - Gerald Colvin
- Department of Medical Oncology Research, Center for Stem Cell Biology Research, Rhode Island Hospital, Providence, RI 02903
| | - Qin Liu
- University of Massachusetts Medical School, Worcester, MA 01655
| | - Heinz-Ulli Weier
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Kevin W. Johnson
- Department of Medical Oncology Research, Center for Stem Cell Biology Research, Rhode Island Hospital, Providence, RI 02903
| | - Peter J. Quesenberry
- Department of Medical Oncology Research, Center for Stem Cell Biology Research, Rhode Island Hospital, Providence, RI 02903
| |
Collapse
|
191
|
Sueblinvong V, Loi R, Eisenhauer PL, Bernstein IM, Suratt BT, Spees JL, Weiss DJ. Derivation of lung epithelium from human cord blood-derived mesenchymal stem cells. Am J Respir Crit Care Med 2008; 177:701-11. [PMID: 18063840 PMCID: PMC2277209 DOI: 10.1164/rccm.200706-859oc] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 12/06/2007] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Recent studies have suggested that both embryonic stem cells and adult bone marrow stem cells can participate in the regeneration and repair of diseased adult organs, including the lungs. However, the extent of airway epithelial remodeling with adult marrow stem cells is low, and there are no available in vivo data with embryonic stem cells. Human umbilical cord blood contains both hematopoietic and nonhematopoietic stem cells, which have been used clinically as an alternative to bone marrow transplantation for hematologic malignancies and other diseases. OBJECTIVES We hypothesized that human umbilical cord blood stem cells might be an effective alternative to adult bone marrow and embryonic stem cells for regeneration and repair of injured airway epithelium. METHODS Human cord blood was obtained from normal deliveries at the University of Vermont. Cultured plastic adherent cells were characterized as mesenchymal stem cells (MSCs) by flow cytometry and differentiation assays. Cord blood-derived MSCs (CB-MSCs) were cultured in specialized airway growth media or with specific growth factors, including keratinocyte growth factor and retinoic acid. mRNA and protein expression were analyzed with PCR and immunofluorescent staining. CB-MSCs were systematically administered to immunotolerant, nonobese diabetic/severe combined immunodeficiency (NOD-SCID) mice. Lungs were analyzed for presence of human cells. MEASUREMENTS AND MAIN RESULTS When cultured in specialized airway growth media or with specific growth factors, CB-MSCs differentially expressed Clara cell secretory protein (CCSP), cystic fibrosis transmembrane conductance regulator (CFTR), surfactant protein C, and thyroid transcription factor-1 mRNA, and CCSP and CFTR protein. Furthermore, CB-MSCs were easily transduced with recombinant lentiviral vectors to express human CFTR. After systemic administration to immunotolerant, NOD-SCID, mice, rare cells were found in the airway epithelium that had acquired cytokeratin and human CFTR expression. CONCLUSIONS CB-MSCs appear to be comparable to MSCs obtained from adult bone marrow in ability to express phenotypic markers of airway epithelium and to participate in airway remodeling in vivo.
Collapse
Affiliation(s)
- Viranuj Sueblinvong
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont 05405, USA.
| | | | | | | | | | | | | |
Collapse
|
192
|
Suzuki H, Hogg JC, van Eeden SF. Sequestration and homing of bone marrow-derived lineage negative progenitor cells in the lung during pneumococcal pneumonia. Respir Res 2008; 9:25. [PMID: 18315863 PMCID: PMC2292714 DOI: 10.1186/1465-9921-9-25] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 03/03/2008] [Indexed: 11/30/2022] Open
Abstract
Background Bone marrow (BM)-derived progenitor cells have been shown to have the potential to differentiate into a diversity of cell types involved in tissue repair. The characteristics of these progenitor cells in pneumonia lung is unknown. We have previously shown that Streptococcus pneumoniae induces a strong stimulus for the release of leukocytes from the BM and these leukocytes preferentially sequester in the lung capillaries. Here we report the behavior of BM-derived lineage negative progenitor cells (Lin- PCs) during pneumococcal pneumonia using quantum dots (QDs), nanocrystal fluorescent probes as a cell-tracking technique. Methods Whole BM cells or purified Lin- PCs, harvested from C57/BL6 mice, were labeled with QDs and intravenously transfused into pneumonia mice infected by intratracheal instillation of Streptococcus pneumoniae. Saline was instilled for control. The recipients were sacrificed 2 and 24 hours following infusion and QD-positive cells retained in the circulation, BM and lungs were quantified. Results Pneumonia prolonged the clearance of Lin- PCs from the circulation compared with control (21.7 ± 2.7% vs. 7.7 ± 0.9%, at 2 hours, P < 0.01), caused preferential sequestration of Lin- PCs in the lung microvessels (43.3 ± 8.6% vs. 11.2 ± 3.9%, at 2 hours, P < 0.05), and homing of these cells to both the lung (15.1 ± 3.6% vs. 2.4 ± 1.2%, at 24 hours, P < 0.05) and BM as compared to control (18.5 ± 0.8% vs. 9.5 ± 0.4%, at 24 hours, P < 0.01). Very few Lin- PCs migrated into air spaces. Conclusion In this study, we demonstrated that BM-derived progenitor cells are preferentially sequestered and retained in pneumonic mouse lungs. These cells potentially contribute to the repair of damaged lung tissue.
Collapse
Affiliation(s)
- Hisashi Suzuki
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, St, Paul's Hospital, University of British Columbia, Room 166, 1081 Burrard Street, Vancouver, British Columbia, V6Z 1Y6, Canada.
| | | | | |
Collapse
|
193
|
Bücheler M, von Foerster U, Haisch A, Bootz F, Lang S, Rotter N. [Tissue engineering of respiratory epithelium. Regenerative medicine for reconstructive surgery of the upper airways]. HNO 2008; 56:275-80. [PMID: 18286253 DOI: 10.1007/s00106-008-1677-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Reconstruction of long tracheal defects remains an unsolved surgical problem. Tissue engineering of respiratory epithelium is therefore of utmost surgical and scientific interest. Successful cultivation and reproduction of respiratory epithelium in vitro is crucial to seed scaffolds of various biomaterials with functionally active respiratory mucosa. Most frequently, the suspension culture as well as the tissue or explant cultures are used. Collagenous matrices, synthetic and biodegradable polymers, serve as carriers in studies. It is essential for clinical practice that mechanically stable biomaterials be developed that are resorbable in the long term or that cartilaginous constructs produced in vitro be employed which are seeded with respiratory epithelium before implantation. Vascularization of a bioartificial matrix for tracheal substitution is also prerequisite for integration of the constructs produced in vitro into the recipient organism. Here, the state of the art of research, perspectives and limitations of tracheal tissue engineering are reviewed.
Collapse
Affiliation(s)
- M Bücheler
- Klinik für Hals-Nasen-Ohren-Heilkunde/HNO-Chirurgie, Universitätsklinikum Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Deutschland.
| | | | | | | | | | | |
Collapse
|
194
|
Dos Santos CC. Advances in mechanisms of repair and remodelling in acute lung injury. Intensive Care Med 2008; 34:619-30. [PMID: 18264692 DOI: 10.1007/s00134-007-0963-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 09/03/2007] [Indexed: 11/25/2022]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is the most severe manifestation of acute lung injury (ALI). In patients who survive the acute injury the process of repair and remodelling may be an independent risk factor determining morbidity and mortality. This review explores recent advances in the field of fibroproliferative ARDS/ALI, with a special emphasis on (a) the primary contributing factors with a focus on cellular and soluble factors, and (b) mechanisms involved in repair and remodelling as they pertain to the importance of cell death, re-population, and matrix deposition. DISCUSSION Factors influencing progression to fibroproliferative ARDS vs. resolution and reconstitution of the normal pulmonary parenchymal architecture are poorly understood. Determinants of persistent injury and abnormal repair and remodelling may be profoundly affected by both environmental and genetic factors. Moreover, cumulative evidence suggests that acute inflammation and fibrosis may be in part independent and interactive processes that are autonomously regulated and thus amenable to individual and specific therapy. CONCLUSIONS Although our current understanding of these processes is limited by the inability to accurately replicate the complex human physiology in laboratory settings, it has recently become apparent that the process of repair and remodelling begins early in the course of ARDS/ALI and may be determined by the type of pulmonary injury. Understanding the mechanisms leading to and regulating fibroproliferative changes may contribute to the development of novel early therapeutic interventions in ARDS/ALI patients.
Collapse
Affiliation(s)
- Claudia C Dos Santos
- Interdepartmental Division of Critical Care, University of Toronto, 30, Bond Street 4-008, M5G 1W8, Toronto, Ontario, Canada.
| |
Collapse
|
195
|
Dinsmore JH, Dib N. Stem cells and cardiac repair: a critical analysis. J Cardiovasc Transl Res 2008; 1:41-54. [PMID: 20559957 DOI: 10.1007/s12265-007-9008-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 12/27/2007] [Indexed: 01/11/2023]
Abstract
Utilizing stem cells to repair the damaged heart has seen an intense amount of activity over the last 5 years or so. There are currently multiple clinical studies in progress to test the efficacy of various different cell therapy approaches for the repair of damaged myocardium that were only just beginning to be tested in preclinical animal studies a few years earlier. This rapid transition from preclinical to clinical testing is striking and is not typical of the customary timeframe for the progress of a therapy from bench-to-bedside. Doubtless, there will be many more trials to follow in the upcoming years. With the plethora of trials and cell alternatives, there has come not only great enthusiasm for the potential of the therapy, but also great confusion about what has been achieved. Cell therapy has the potential to do what no drug can: regenerate and replace damaged tissue with healthy tissue. Drugs may be effective at slowing the progression of heart failure, but none can stop or reverse the process. However, tissue repair is not a simple process, although the idea on its surface is quite simple. Understanding cells, the signals that they respond to, and the keys to appropriate survival and tissue formation are orders of magnitude more complicated than understanding the pathways targeted by most drugs. Drugs and their metabolites can be monitored, quantified, and their effects correlated to circulating levels in the body. Not so for most cell therapies. It is quite difficult to measure cell survival except through ex vivo techniques like histological analysis of the target organ. This makes the emphasis on preclinical research all the more important because it is only in the animal studies that research has the opportunity to readily harvest the target tissues and perform the detailed analyses of what has happened with the cells. This need for detailed and usually time-intensive research in animal studies stands in contrast to the rapidity with which therapies have progressed to the clinic. It is now becoming clear through a number of notable examples that progress to the clinic may have occurred too quickly, before adequate testing and independent verification of results could be completed (Check, Nature 446:485-486, 2007; Chien, J Clin Investig 116:1838-1840, 2006; Giles, Nature 442:344-347, 2006). Broad reproducibility and transfer of results from one lab to another has been and always will be essential for the successful application of any cell therapy. So, what is the prognosis for cell therapy to repair heart damage? Will there be an approved cell therapy, or multiple ones, or will it require combinations of more than one cell type to be successful? These are questions often asked. The answers are difficult to know and even more difficult to predict because there are so many variables associated with cell-based therapies. There is much about the biology of cell systems that we still do not understand. Much of the pluripotency or transdifferentiation phenomena (see below) being observed go against accepted and well-tested principles for cell development and fate choice, and has caused a reevaluation of long-accepted theories. Clearly, new pathways for tissue repair and regeneration have been uncovered, but will these new pathways be sufficient to effect significant tissue repair and regeneration? Despite the false starts so far, there is the strong likelihood one or possibly multiple cell therapies will succeed. Clearly, important information has been gained, which should better guide the field to achieving success. When there is the successful verification in patients of a cell therapy, there will be an explosion of technological advances around the approach(es) that succeed. Whatever cells get approved accompanying them will be: more effective delivery methods; growth and storage methods; combination therapies, mixes of cells or cells + gene therapies; combinations with biomaterials and technologies for immune protection, allowing allografting. There are many parallel paths of technology development waiting to be brought together once there is an effective cellular approach. The coming years will no doubt bring some exciting developments.
Collapse
Affiliation(s)
- Jonathan H Dinsmore
- Advanced Cell Technology and Mytogen, Inc., Bldg. 96, 13th St., Charlestown, MA 02129, USA.
| | | |
Collapse
|
196
|
Ingenito EP, Tsai LW. Evolving endoscopic approaches for treatment of emphysema. Semin Thorac Cardiovasc Surg 2008; 19:181-9. [PMID: 17870014 DOI: 10.1053/j.semtcvs.2007.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2007] [Indexed: 11/11/2022]
Abstract
Novel endobronchial methods for reducing lung volume in patients with advanced emphysema are currently being evaluated in clinical trials as potential alternatives to lung volume reduction surgery (LVRS). Three bronchoscopic lung volume reduction (BLVR) approaches have shown promise in initial testing: (1) placement of endobronchial one-way valves to promote atelectasis by blocking inspiratory flow; (2) airway bypass tract formation using a radiofrequency catheter to facilitate emptying of damaged lung regions with long expiratory times; and (3) instillation of biological adhesives designed to collapse and remodel hyperinflated lung. The limited clinical data currently available suggests all three techniques are reasonably safe. However, efficacy signals have been smaller and less durable than those observed after LVRS. Studies to optimize patient selection, refine treatment strategies, characterize procedural safety, elucidate mechanisms of action, and characterize short- and longer-term effectiveness of each approach are ongoing.
Collapse
Affiliation(s)
- Edward P Ingenito
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
197
|
Wolfe M, Pochampally R, Swaney W, Reger RL. Isolation and culture of bone marrow-derived human multipotent stromal cells (hMSCs). Methods Mol Biol 2008; 449:3-25. [PMID: 18370080 DOI: 10.1007/978-1-60327-169-1_1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We have developed protocols whereby a total of 30-90 x 10(6) hMSCs with an average viability greater than 90% can be produced in a single multilevel Cell Factory from a relatively small (1-3 mL) bone marrow aspirate in 14-20 d. It is possible to generate as many as 5 x 10(8) multipotent stromal cells (MSCs) from a single sample, depending on the number of Cell Factories seeded from the initial isolated hMSCs. Briefly, mononuclear cells are collected from a bone marrow aspirate by density gradient centrifugation. The cells are cultured overnight and the adherent cells are allowed to attach to the flask. Nonadherent cells are removed and the culture expanded for 7-10 d with periodic feeding of the cells. The cells are then harvested and seeded at low density (60-100 cells/cm2) into Nunc Cell Factories. The cells are allowed to expand for an additional 7-10 d, and are then harvested.
Collapse
Affiliation(s)
- Margaret Wolfe
- Center for Gene Therapy, Tulane University Health Sciences Center, New Orleans, LA, USA
| | | | | | | |
Collapse
|
198
|
Quintanilha LF, Mannheimer EG, Carvalho AB, Paredes BD, Dias JV, Almeida AS, Gutfilen B, Barbosa da Fonseca LM, Resende CMC, Rezende GFM, Campos de Carvalho AC, Goldenberg RCS. Bone marrow cell transplant does not prevent or reverse murine liver cirrhosis. Cell Transplant 2008; 17:943-953. [PMID: 19069636 DOI: 10.3727/096368908786576453] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We tested the effect of bone marrow cell (BMC) transplantation in either preventing or reversing cirrhosis on an experimental model of chronic liver disease. Female Wistar rats were fed a liquid alcohol diet and received intraperitoneal injections of carbon tetrachloride (CCl4) over 15 weeks. Ten animals (cell-treated group) received five injections of BMCs during the cirrhosis induction protocol (on the 4th, 6th, 8th, 10th, and 12th weeks) and four animals received the cells after liver injury was established through tail vein. Nine animals (nontreated group) were submitted to the previously described protocols; however, they received vehicle injections. Analyses were performed to verify whether the infusion of cells was effective in preventing the development of cirrhosis in our model of induction, and if the cells could reverse cirrhosis once it was established. Hepatic architecture and fibrotic septa were analyzed in liver slices stained with hematoxilin & eosin and Sirius red, respectively. Fibrosis quantification was measured by Sirius red histomorphometry. Indirect immunofluorescence was performed to detect the amount of tissue transglutaminase 2. Blood analyses were performed to assess liver injury and function by the assessment of alanine aminotransferase and albumin. Ultrasound was performed to analyze the portal vein caliber and presence of ascitis. Cirrhosis features (regenerative nodules and fibrous septa) were observed in histopathology after 15 weeks of continuous hepatic injury in nontreated and cell-treated groups. Collagen content, immunofluorescence analysis, and biochemical and ultrasound parameters were similar in nontreated and cell-treated groups; however, both groups showed significant differences compared to a normal control group. Cell infusions with bone marrow-derived cells seem to be ineffective in improving morphofunctional parameters of the liver when applied to chronic cases either during or after establishment of the hepatic lesion.
Collapse
Affiliation(s)
- L F Quintanilha
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, 21941-902, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Loebinger MR, Aguilar S, Janes SM. Therapeutic potential of stem cells in lung disease: progress and pitfalls. Clin Sci (Lond) 2008; 114:99-108. [PMID: 18062775 DOI: 10.1042/cs20070073] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There has been increasing excitement over the last few years with the suggestion that exogenous stem cells may offer new treatment options for a wide range of diseases. Within respiratory medicine, these cells have been shown to have the ability to differentiate and function as both airway and lung parenchyma epithelial cells in both in vitro and increasingly in vivo experiments. The hypothesis is that these cells may actively seek out damaged tissue to assist in the local repair, and the hope is that their use will open up new cellular and genetic treatment modalities. Such is the promise of these cells that they are being rushed from the benchside to the bedside with the commencement of early clinical trials. However, important questions over their use remain and the field is presently littered with controversy and uncertainty. This review evaluates the progress made and the pitfalls encountered to date, and critically assesses the evidence for the use of stem cells in lung disease.
Collapse
Affiliation(s)
- Michael R Loebinger
- Centre of Respiratory Research, Rayne Building, University College London, 5 University Street, London WC1E 6JJ, UK.
| | | | | |
Collapse
|
200
|
Yamauchi K, Inoue H. Airway remodeling in asthma and irreversible airflow limitation-ECM deposition in airway and possible therapy for remodeling-. Allergol Int 2007; 56:321-9. [PMID: 17965575 DOI: 10.2332/allergolint.r-07-151] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Indexed: 11/20/2022] Open
Abstract
Airway remodeling in asthma is characterized by goblet cell hyperplasia, subepithelial fibrosis, and hyperplasia and hypertrophy of airway smooth muscle cells. The airway wall thickness increases because of subepithelial fibrosis, and hyperplasia and hypertrophy of the airway smooth muscle cells and submucosal glands. Airway remodeling, therefore, can often cause irreversible airflow limitation and an increase of airway hyperresponsiveness. Recent studies have described the molecular and cellular mechanisms of collagen deposition in the airway wall such as subepithelial fibrosis. Fibroblasts or myofibroblasts play a critical role in the exaggerated deposition of collagen in asthmatic airways. Bone marrow derived fibroblasts may play a role in fibrotic remodeling in asthmatic airways. Airway remodeling is induced by cytokines and mediators produced in chronic allergic airway inflammation. Since, once formed, remodeling is resistant to asthma therapy, early intervention with inhaled corticosteroid should be considered to prevent the progress of airway remodeling.
Collapse
Affiliation(s)
- Kohei Yamauchi
- Third Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan.
| | | |
Collapse
|