151
|
Abraham MC, Lu Y, Shaham S. A morphologically conserved nonapoptotic program promotes linker cell death in Caenorhabditis elegans. Dev Cell 2007; 12:73-86. [PMID: 17199042 DOI: 10.1016/j.devcel.2006.11.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 11/01/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
Apoptosis, cell death characterized by stereotypical morphological features, requires caspase proteases. Nonapoptotic, caspase-independent cell death pathways have been postulated; however, little is known about their molecular constituents or in vivo functions. Here, we show that death of the Caenorhabditis elegans linker cell during development is independent of the ced-3 caspase and all known cell death genes. The linker cell employs a cell-autonomous death program, and a previously undescribed engulfment program is required for its clearance. Dying linker cells display nonapoptotic features, including nuclear crenellation, absence of chromatin condensation, organelle swelling, and accumulation of cytoplasmic membrane-bound structures. Similar features are seen during developmental death of neurons in the vertebrate spinal cord and ciliary ganglia. Linker cell death is controlled by the microRNA let-7 and Zn-finger protein LIN-29, components of the C. elegans developmental timing pathway. We propose that the program executing linker cell death is conserved and used during vertebrate development.
Collapse
Affiliation(s)
- Mary C Abraham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
152
|
Martin DN, Balgley B, Dutta S, Chen J, Rudnick P, Cranford J, Kantartzis S, DeVoe DL, Lee C, Baehrecke EH. Proteomic analysis of steroid-triggered autophagic programmed cell death during Drosophila development. Cell Death Differ 2007; 14:916-23. [PMID: 17256009 DOI: 10.1038/sj.cdd.4402098] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Two morphological forms of programmed cell death, apoptosis and autophagic cell death, remove unneeded or damaged cells during animal development. Although the mechanisms that regulate apoptosis are well studied, little is known about autophagic cell death. A shotgun proteome analysis of purified dying larval salivary glands in Drosophila was used to identify proteins that are expressed during autophagic programmed cell death. A total of 5661 proteins were identified from stages before and after the onset of cell death. Analyses of these data enabled us to identify proteins from a number of interesting categories including regulators of transcription, the apoptosis, autophagy, lysosomal, and ubiquitin proteasome degradation pathways, and proteins involved in growth control. Several of the identified proteins, including the serine/threonine kinase warts (Wts), were not detected using whole-genome DNA microarrays, providing support for the importance of such high-throughput proteomic technology. Wts regulates cell-cycle arrest and apoptosis, and significantly, mutations in wts prevent destruction of salivary glands.
Collapse
Affiliation(s)
- D N Martin
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, MD 20742-4450, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Abstract
Cell death plays many roles during development, in the adult, and in the genesis of many pathological states. Much of this death is apoptotic in nature and requires the activity of members of the caspase family of proteases. It is now possible uniquely in Drosophila to carry out genetic screens for genes that determine the fate-life or death-of any population of cells during development and adulthood. This, in conjunction with the ability to obtain biochemical quantities of material, has made Drosophila a useful organism for exploring the mechanisms by which apoptosis is carried out and regulated. This review summarizes our knowledge of caspase-dependent cell death in Drosophila and compares that knowledge with what is known in worms and mammals. We also discuss the significance of recent work showing that a number of key cell death activators also play nonapoptotic roles. We highlight opportunities and outstanding questions along the way.
Collapse
Affiliation(s)
- Bruce A Hay
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| | | |
Collapse
|
154
|
Freitas DRJ, Rosa RM, Moura DJ, Seitz AL, Colodel EM, Driemeier D, Da Silva Vaz I, Masuda A. Cell death during preoviposition period in Boophilus microplus tick. Vet Parasitol 2006; 144:321-7. [PMID: 17157985 DOI: 10.1016/j.vetpar.2006.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 10/17/2006] [Accepted: 10/18/2006] [Indexed: 10/23/2022]
Abstract
Programmed cell death (PCD) is present during the development of multicellular organisms and occurs from embryogenesis to death. In females of Boophilus microplus, the mass of several organs is reduced after the detachment from the host. In order to better characterize the cell death process that eliminates unnecessary tissues, the degeneration of salivary glands, ovaries and synganglia was investigated using DNA fragmentation in agarose gel, comet and TUNEL assays, and apoptosis activation pathway by the caspase assay. DNA fragmentation and enzymatic activity of caspase-3 were observed in salivary glands and ovaries at 48 and 72h after tick removal from the host; in synganglia these parameters were maintained at low levels upon 48h. The results obtained suggest that there is a refined control of tissue maintenance through apoptosis.
Collapse
Affiliation(s)
- D R J Freitas
- Centro de Biotecnologia do Estado do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, C.P. 15005, 91501-970 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Abstract
The developmental cell death in the nematode C. elegans is controlled by a simple and dedicated genetic program. This genetic program is evolutionarily conserved in higher organisms, including mammals. However, although mammalian homologs of C. elegans cell death gene products continue to regulate apoptosis, they are no longer dedicated regulators of cell death. On the other hand, multiple cellular noncell death-related mechanisms have been recruited to regulate cell death under different conditions. Such evidence suggests that evolution has led to an extensive integration of mammalian apoptosis machinery with multiple cellular physiological processes.
Collapse
Affiliation(s)
- Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
156
|
Nixon RA. Autophagy in neurodegenerative disease: friend, foe or turncoat? Trends Neurosci 2006; 29:528-35. [PMID: 16859759 DOI: 10.1016/j.tins.2006.07.003] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 05/10/2006] [Accepted: 07/10/2006] [Indexed: 02/09/2023]
Abstract
Autophagy, a lysosomal pathway for degrading organelles and long-lived proteins, is becoming recognized as a key adaptive response that can preclude death in stressed or diseased cells. However, during development strong induction of autophagy in specific cell populations mediates a type of programmed cell death that has distinctive 'autophagic' morphology and a requirement for autophagy activity. The recent identification of autophagosomes in neurons in a growing number of neurodegenerative disorders has, therefore, sparked controversy about whether these structures are contributing to neuronal cell death or protecting against it. Emerging evidence supports the view that induction of autophagy is a neuroprotective response and that inadequate or defective autophagy, rather than excessive autophagy, promotes neuronal cell death in most of these disorders. In this review, we consider possible mechanisms underlying autophagy-associated cell death and their relationship to pathways mediating apoptosis and necrosis.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA.
| |
Collapse
|
157
|
Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 2006; 126:121-34. [PMID: 16839881 DOI: 10.1016/j.cell.2006.05.034] [Citation(s) in RCA: 1031] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 01/27/2006] [Accepted: 05/01/2006] [Indexed: 10/24/2022]
Abstract
Inactivation of cell death is a major step in tumor development, and p53, a tumor suppressor frequently mutated in cancer, is a critical mediator of cell death. While a role for p53 in apoptosis is well established, direct links to other pathways controlling cell death are unknown. Here we describe DRAM (damage-regulated autophagy modulator), a p53 target gene encoding a lysosomal protein that induces macroautophagy, as an effector of p53-mediated death. We show that p53 induces autophagy in a DRAM-dependent manner and, while overexpression of DRAM alone causes minimal cell death, DRAM is essential for p53-mediated apoptosis. Moreover, analysis of DRAM in primary tumors revealed frequent decreased expression often accompanied by retention of wild-type p53. Collectively therefore, these studies not only report a stress-induced regulator of autophagy but also highlight the relationship of DRAM and autophagy to p53 function and damage-induced programmed cell death.
Collapse
Affiliation(s)
- Diane Crighton
- Tumour Cell Death Laboratory, Beatson Institute for Cancer Research, Cancer Research UK Beatson Laboratories, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Wichmann A, Jaklevic B, Su TT. Ionizing radiation induces caspase-dependent but Chk2- and p53-independent cell death in Drosophila melanogaster. Proc Natl Acad Sci U S A 2006; 103:9952-7. [PMID: 16785441 PMCID: PMC1502560 DOI: 10.1073/pnas.0510528103] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ionizing radiation (IR) can induce apoptosis via p53, which is the most commonly mutated gene in human cancers. Loss of p53, however, can render cancer cells refractory to therapeutic effects of IR. Alternate p53-independent pathways exist but are not as well understood as p53-dependent apoptosis. Studies of how IR induces p53-independent cell death could benefit from the existence of a genetically tractable model. In Drosophila melanogaster, IR induces apoptosis in the imaginal discs of larvae, typically assayed at 4-6 hr after exposure to a LD(50) dose. In mutants of Drosophila Chk2 or p53 homologs, apoptosis is severely diminished in these assays, leading to the widely held belief that IR-induced apoptosis depends on these genes in Drosophila. In this article, we show that IR-induced apoptosis still occurs in the imaginal discs of chk2 and p53 mutant larvae, albeit with a delay. We demonstrate that this phenomenon is a true apoptotic response because it requires caspase activity and the chromosomal locus that encodes the pro-apoptotic genes reaper, hid, and grim. We also show that Chk2- and p53-independent apoptosis is IR dose-dependent and is therefore probably triggered by a DNA damage signal. We conclude that Drosophila has Chk2- and p53-independent pathways to activate caspases and induce apoptosis in response to IR. This work establishes Drosophila as a model for p53-independent apoptosis, which is of potential therapeutic importance for inducing cell death in p53-deficient cancer cells.
Collapse
Affiliation(s)
- Anita Wichmann
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347
| | - Burnley Jaklevic
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347
| | - Tin Tin Su
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
159
|
Sekimoto T, Iwami M, Sakurai S. Coordinate responses of transcription factors to ecdysone during programmed cell death in the anterior silk gland of the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2006; 15:281-92. [PMID: 16756547 DOI: 10.1111/j.1365-2583.2006.00641.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Programmed cell death (PCD) in Bombyx mori anterior silk glands (ASGs) is triggered by 20-hydroxyecdysone (20E). We examined the expression profiles and effects of 20E on 11 transcription factor genes in the fifth instar to determine whether they demonstrate the hierarchical control seen in Drosophila PCD. Results indicate that EcR-A and usp-2, but not EcR-B1 or usp-1, may be components of the ecdysone receptor complex. Up-regulation of E75A, BHR3, and three BR-C isoforms, but not E75B, appeared to be associated with the induction of PCD. betaFTZ-F1 was not expressed during PCD execution. Thus, gene control in B. mori ASGs differs from that in Drosophila salivary glands, despite both tissues undergoing PCD in response to 20E at pupal metamorphosis.
Collapse
Affiliation(s)
- T Sekimoto
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa, Japan
| | | | | |
Collapse
|
160
|
Wu Y, Parthasarathy R, Bai H, Palli SR. Mechanisms of midgut remodeling: juvenile hormone analog methoprene blocks midgut metamorphosis by modulating ecdysone action. Mech Dev 2006; 123:530-47. [PMID: 16829058 DOI: 10.1016/j.mod.2006.05.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 05/17/2006] [Accepted: 05/20/2006] [Indexed: 11/21/2022]
Abstract
In holometabolous insects such as mosquito, Aedes aegypti, midgut undergoes remodeling during metamorphosis. Insect metamorphosis is regulated by several hormones including juvenile hormone (JH) and 20-hydroxyecdysone (20E). The cellular and molecular events that occur during midgut remodeling were investigated by studying nuclear stained whole mounts and cross-sections of midguts and by monitoring the mRNA levels of genes involved in 20E action in methoprene-treated and untreated Ae. aegypti. We used JH analog, methoprene, to mimic JH action. In Ae. aegypti larvae, the programmed cell death (PCD) of larval midgut cells and the proliferation and differentiation of imaginal cells were initiated at about 36h after ecdysis to the 4th instar larval stage (AEFL) and were completed by 12h after ecdysis to the pupal stage (AEPS). In methoprene-treated larvae, the proliferation and differentiation of imaginal cells was initiated at 36h AEFL, but the PCD was initiated only after ecdysis to the pupal stage. However, the terminal events that occur for completion of PCD during pupal stage were blocked. As a result, the pupae developed from methoprene-treated larvae contained two midgut epithelial layers until they died during the pupal stage. Quantitative PCR analyses showed that methoprene affected midgut remodeling by modulating the expression of ecdysone receptor B, ultraspiracle A, broad complex, E93, ftz-f1, dronc and drice, the genes that are shown to play key roles in 20E action and PCD. Thus, JH analog, methoprene acts on Ae. aegypti by interfering with the expression of genes involved in 20E action resulting in a block in midgut remodeling and death during pupal stage.
Collapse
Affiliation(s)
- Yu Wu
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | |
Collapse
|
161
|
|
162
|
Shacka JJ, Klocke BJ, Shibata M, Uchiyama Y, Datta G, Schmidt RE, Roth KA. Bafilomycin A1 inhibits chloroquine-induced death of cerebellar granule neurons. Mol Pharmacol 2006; 69:1125-36. [PMID: 16391239 DOI: 10.1124/mol.105.018408] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Treatment of cells with the macrolide antibiotic bafilomycin A1, an inhibitor of vacuolar (V)-ATPase, or with the lysosomotropic agent chloroquine, has been shown to pharmacologically inhibit autophagy as evidenced by an accumulation of autophagosomes, which in turn causes Bax-dependent apoptosis. However, bafilomycin A1 has also been reported to inhibit chloroquine-induced apoptosis, suggesting a complex interrelationship between these two inhibitors of autophagy. To determine whether the cytoprotective effect of bafilomycin A1 on chloroquine-treated cells was dependent on inhibition of V-ATPase, we examined the single and combined effects of bafilomycin and chloroquine on cultured cerebellar granule neurons. When added separately, chloroquine or high concentrations of bafilomycin A1 (> or =10 nM) induced a dose-dependent inhibition of autophagy (as measured by an increase in LC3-II, a marker specific for autophagosomes), followed by caspase-3 activation and cell death. When added in combination, bafilomycin A1 potently inhibited chloroquine-induced caspase-3 activity and cell death at concentrations (< or =1 nM) that neither altered vacuolar acidification nor inhibited autophagy. The neuroprotective effects of bafilomycin A1 against chloroquine were substantially greater than those produced by Bax deficiency. Bafilomycin A1-induced neuroprotection seemed to be stimulus-specific, in that staurosporine-induced death was not attenuated by coaddition of bafilomycin A1. Together, these data suggest that in addition to promoting death via inhibition of V-ATPase and autophagy, bafilomycin A1 possesses novel, neuroprotective properties that inhibit Bax-dependent activation of the intrinsic apoptotic pathway resulting from the pharmacological inhibition of autophagy.
Collapse
Affiliation(s)
- John J Shacka
- Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, SC961, 1530 3rd Ave South, Birmingham, AL 35294-0017, USA
| | | | | | | | | | | | | |
Collapse
|
163
|
Kanao T, Miyachi Y. Exposure to low-dose X-rays promotes peculiar autophagic cell death in Drosophila melanogaster, an effect that can be regulated by the inducible expression of Hml dsRNA. Mutat Res 2006; 595:60-8. [PMID: 16324723 DOI: 10.1016/j.mrfmmm.2005.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Revised: 09/12/2005] [Accepted: 10/15/2005] [Indexed: 10/25/2022]
Abstract
We previously reported that to induce an early emergence effect with low-dose X-irradiation in Drosophila, exposure during the prepupae stage is necessary. The present study examined the mechanism by which low-dose radiation rapidly eliminates larval cells and activates the formation of the imaginal discs during metamorphosis. Upon exposure to 0.5 Gy X-rays at 2 h after puparium formation (APF), the larval salivary glands swelled and were surrounded by remarkably thick structures containing an acid phosphatase (Acph) enzyme, implicating a peculiar autophagic cell death. TUNEL staining revealed the presence of DNA fragmentations compared with cells from sham controls which remained unchanged until 12 h APF. Additionally, the salivary glands of exposed flies were completely destroyed by 10 h APF. Furthermore, exposure to 0.5 Gy X-rays also facilitated the activity of the engulfment function of dendritic cells (DCs); they were generated in the larval salivary glands, engulfed the cell corpses and finally moved to the fat body. Data from an experiment demonstrating the inducible expression of Hml double-stranded RNA (dsRNA) indicate that a slow rate of engulfment of larval cells results in a longer time to emergence. Thus, the animals subjected to low-dose X-rays activated autophagic processes, resulting in significantly faster adult eclosion.
Collapse
Affiliation(s)
- Tomoko Kanao
- Department of Radiological Sciences, International University of Health and Welfare, Kitakanemaru 2600-1, Ohtawara-shi, Tochigi-ken 324-8501, Japan
| | | |
Collapse
|
164
|
Golstein P, Kroemer G. Redundant cell death mechanisms as relics and backups. Cell Death Differ 2006; 12 Suppl 2:1490-6. [PMID: 15818403 DOI: 10.1038/sj.cdd.4401607] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Here we review recent observations indicating the existence of redundant cell death mechanisms. We speculate that this redundancy reflects a particular evolutionary history for cellular demise. Autophagic or apoptotic elements might have been added to a primordial death mechanism, initially improving cell dismantling and later acquiring the ability to act themselves as death effectors. The resulting redundancy of cell death mechanisms has pathophysiological implications.
Collapse
Affiliation(s)
- P Golstein
- Centre d'Immunologie de Marseille-Luminy, CNRS-INSERM-Université de la Mediterranée, Parc Scientifique de Luminy, Case 906, 13288 Marseille cedex 9, France.
| | | |
Collapse
|
165
|
Liu Y, Lehmann M. FOXO-independent suppression of programmed cell death by the PI3K/Akt signaling pathway in Drosophila. Dev Genes Evol 2006; 216:531-5. [PMID: 16520939 DOI: 10.1007/s00427-006-0063-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2005] [Accepted: 01/27/2006] [Indexed: 10/24/2022]
Abstract
Signaling through the PI3K/Akt/FOXO pathway plays an important role in vertebrates in protecting cells from programmed cell death. PI3K and Akt have been similarly shown to be involved in survival signaling in the invertebrate model organism Drosophila. However, it is not known whether PI3K and Akt execute this function by controlling a pro-apoptotic activity of Drosophila FOXO. In this study, we show that elevated signaling through PI3K and Akt can prevent developmentally controlled death in the salivary glands of the fruit fly. We further show that Drosophila FOXO is not required for normal salivary gland death and that the rescue of salivary gland death by PI3K occurs independent of FOXO. These results give support to the notion that FOXOs have acquired pro-apoptotic functions after separation of the vertebrate and invertebrate lineages.
Collapse
Affiliation(s)
- Yanling Liu
- Department of Biological Sciences, University of Arkansas, 601 Science Engineering, Fayetteville, AR 72701, USA
| | | |
Collapse
|
166
|
Guillon-Munos A, van Bemmelen MXP, Clarke PGH. Role of phosphoinositide 3-kinase in the autophagic death of serum-deprived PC12 cells. Apoptosis 2006; 10:1031-41. [PMID: 16151638 DOI: 10.1007/s10495-005-0741-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The death of serum-deprived undifferentiated PC12 cells shows both autophagic and apoptotic features. Since it is still controversial whether the autophagy is instrumental in the cell death or a mere epiphenomenon, we tested the effects of inhibiting the autophagy by a variety of phosphoinositide 3-kinase inhibitors, and provided evidence that the autophagy, or a related trafficking event, is indeed instrumental in the cell death. Furthermore, by comparing the effects of PI3-K inhibition and caspase-inhibition on autophagic and apoptotic cellular events, we showed that in this case the autophagic and apoptotic mechanisms mediate cell death by parallel pathways and do not act in series.
Collapse
Affiliation(s)
- A Guillon-Munos
- Département de Biologie Cellulaire et de Morphologie, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | | | | |
Collapse
|
167
|
Pick L, Anderson WR, Shultz J, Woodard CT. The Ftz‐F1 family: Orphan nuclear receptors regulated by novel protein–protein interactions. NUCLEAR RECEPTORS IN DEVELOPMENT 2006. [DOI: 10.1016/s1574-3349(06)16008-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
168
|
Abstract
Programmed cell death (PCD) is one of the important terminal paths for the cells of metazoans, and is involved in a variety of biological events that include morphogenesis, maintenance of tissue homeostasis, and elimination of harmful cells. Dysfunction of PCD leads to various diseases in humans, including cancer and several degenerative diseases. Apoptosis is not the only form of PCD. Recent studies have provided evidence that there is another mechanism of PCD, which is associated with the appearance of autophagosomes and depends on autophagy proteins. This form of cell death most likely corresponds to a process that has been morphologically defined as autophagic PCD. The present review summarizes recent experimental evidence about autophagic PCD and discusses some aspects of this form of cell death, including the mechanisms that may distinguish autophagic death from the process of autophagy involved in cell survival.
Collapse
Affiliation(s)
- Y Tsujimoto
- Laboratory of Molecular Genetics, Department of Medical Genetics, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
169
|
Wilson TG, Yerushalmi Y, Donnell DM, Restifo LL. Interaction between hormonal signaling pathways in Drosophila melanogaster as revealed by genetic interaction between methoprene-tolerant and broad-complex. Genetics 2005; 172:253-64. [PMID: 16204218 PMCID: PMC1456152 DOI: 10.1534/genetics.105.046631] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Juvenile hormone (JH) regulates insect development by a poorly understood mechanism. Application of JH agonist insecticides to Drosophila melanogaster during the ecdysone-driven onset of metamorphosis results in lethality and specific morphogenetic defects, some of which resemble those in mutants of the ecdysone-regulated Broad-Complex (BR-C). The Methoprene-tolerant (Met) bHLH-PAS gene mediates JH action, and Met mutations protect against the lethality and defects. To explore relationships among these two genes and JH, double mutants were constructed between Met alleles and alleles of each of the BR-C complementation groups: broad (br), reduced bristles on palpus (rbp), and 2Bc. Defects in viability and oogenesis were consistently more severe in rbp Met or br Met double mutants than would be expected if these genes act independently. Additionally, complementation between BR-C mutant alleles often failed when MET was absent. Patterns of BRC protein accumulation during metamorphosis revealed essentially no difference between wild-type and Met-null individuals. JH agonist treatment did not block accumulation of BRC proteins. We propose that MET and BRC interact to control transcription of one or more downstream effector genes, which can be disrupted either by mutations in Met or BR-C or by application of JH/JH agonist, which alters MET interaction with BRC.
Collapse
Affiliation(s)
- Thomas G Wilson
- Department of Entomology, Ohio State University, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
170
|
Guha A, Kornberg TB. Tracheal branch repopulation precedes induction of the Drosophila dorsal air sac primordium. Dev Biol 2005; 287:192-200. [PMID: 16198330 DOI: 10.1016/j.ydbio.2005.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 08/30/2005] [Accepted: 09/01/2005] [Indexed: 11/23/2022]
Abstract
The dorsal air sacs supply oxygen to the flight muscles of the Drosophila adult. This tracheal organ grows from an epithelial tube (the air sac primordium (ASP)) that arises during the third larval instar (L3) from a wing-disc-associated tracheal branch. Since the ASP is generated by a program of both morphogenesis and cell proliferation and since the larval tracheal branches are populated by cells that are terminally differentiated, the provenance of its progenitors has been uncertain. Here, we show that, although other larval tracheae are remodeled after L3, most tracheal branches in the tracheal metamere associated with the wing disc (Tr2) are precociously repopulated with imaginal tracheoblasts during L3. Concurrently, the larval cells in Tr2 undergo head involution defective (hid)-dependent programmed cell death. In BX-C mutant larvae, the tracheal branches of the Tr3 metamere are also repopulated during L3. Our results show that repopulation of the larval trachea is a prerequisite for FGF-dependent induction of cell proliferation and tubulogenesis in the ASP and that homeotic selector gene function is necessary for the temporal and spatial control of tracheal repopulation.
Collapse
Affiliation(s)
- Arjun Guha
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
171
|
Galiana E, Rivière MP, Pagnotta S, Baudouin E, Panabières F, Gounon P, Boudier L. Plant-induced cell death in the oomycete pathogen Phytophthora parasitica. Cell Microbiol 2005; 7:1365-78. [PMID: 16098223 DOI: 10.1111/j.1462-5822.2005.00565.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The activation of programmed cell death in the host during plant-pathogen interactions is an important component of the plant disease resistance mechanism. In this study we show that activation of programmed cell death in microorganisms also regulates plant-pathogen interactions. We found that a form of vacuolar cell death is induced in the oomycete Phytophthora parasitica--the agent that causes black shank disease in Nicotiana tabacum--by extracellular stimuli from resistant tobacco. The single-celled zoospores underwent cell death characterized by dynamic membrane rearrangements, cell shrinkage, formation of numerous large vacuoles in the cytoplasm and degradation of cytoplasmic components before plasma membrane disruption. Phytophthora cell death required protein synthesis but not caspase activation, and was associated with the production of intracellular reactive oxygen species. This characterization of plant-mediated cell death signalling in pathogens will enhance our understanding of the biological processes regulating plant-pathogen interactions, and improve our ability to control crop diseases.
Collapse
Affiliation(s)
- Eric Galiana
- Institut National de la Recherche Agronomique/Université Nice Sophia-Antipolis/Centre National de la Recherche Scientifique, Sophia Antipolis Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
172
|
Löw P, Talián GC, Sass M. Up- and downregulated genes in muscles that undergo developmentally programmed cell death in the insectManduca sexta. FEBS Lett 2005; 579:4943-8. [PMID: 16122740 DOI: 10.1016/j.febslet.2005.07.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 07/19/2005] [Accepted: 07/21/2005] [Indexed: 12/20/2022]
Abstract
This study was designed to investigate changes in gene expression associated with stage-specific programmed cell death (PCD) in intersegmental muscles (ISMs) of the moth, Manduca sexta. The technique of differential display reverse transcription PCR was applied to compare mRNA levels before and after the onset of PCD in ISMs. Expression of E75B transcription factor was repressed while another factor, betaFTZ-F1, stayed at a very low level. However, gene coding for a translation-initiation factor (eIF1A) was upregulated. Expression of these genes had not been previously reported to be altered in dying ISMs. An ecdysteroid agonist, RH-5849, that prevented PCD in ISMs also blocked these changes.
Collapse
Affiliation(s)
- Péter Löw
- Department of Anatomy, Cell and Developmental Biology, Loránd Eötvös University, Budapest, Pázmány Péter sétány 1/C., H-1117, Hungary.
| | | | | |
Collapse
|
173
|
Juhász G, Sass M. Hid can induce, but is not required for autophagy in polyploid larval Drosophila tissues. Eur J Cell Biol 2005; 84:491-502. [PMID: 15900708 DOI: 10.1016/j.ejcb.2004.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The major cell death pathways are apoptosis and autophagy-type cell death in Drosophila. Overexpression of proapoptotic genes in developing imaginal tissues leads to the activation of caspases and apoptosis, but most of them show no effect on the polytenic cells of the fat body during the last larval stage. Surprisingly, overexpression of Hid induces caspase-independent autophagy in the fat body, as well as in most other larval tissues tested. Hid mutation results in inhibition of salivary gland cell death, but the disintegration of the larval midgut is not affected. Electron microscopy shows that autophagy is normally induced in fat body, midgut and salivary gland cells of homozygous mutant larvae, suggesting that Hid is not required for autophagy itself. Constitutive expression of the caspase inhibitor p35 produces identical phenotypes. Our results show that the large, post-mitotic larval cells do not react or activate autophagy in response to the same strong apoptotic stimuli that trigger apoptosis in small, mitotically active imaginal disc cells.
Collapse
Affiliation(s)
- Gábor Juhász
- Department of General Zoology, Eötvös Loránd University, H-1117 Pázmány sétány 1/C, Budapest, Hungary.
| | | |
Collapse
|
174
|
Abstract
Autophagy is an evolutionarily conserved mechanism for the degradation of cellular components in the cytoplasm, and serves as a cell survival mechanism in starving cells. Recent studies indicate that autophagy also functions in cell death, but the precise role of this catabolic process in dying cells is not clear. Here I discuss the possible roles for autophagy in dying cells and how understanding the relationship between autophagy, cell survival and cell death is important for health and development.
Collapse
Affiliation(s)
- Eric H Baehrecke
- Eric H. Baehrecke is at the Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland 20742, USA.
| |
Collapse
|
175
|
Nishiura JT, Ray K, Murray J. Expression of nuclear receptor-transcription factor genes during Aedes aegypti midgut metamorphosis and the effect of methoprene on expression. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:561-573. [PMID: 15857762 DOI: 10.1016/j.ibmb.2005.01.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 01/28/2005] [Accepted: 01/28/2005] [Indexed: 05/24/2023]
Abstract
Exposure of mosquito 4th instars to the juvenile hormone analogue methoprene prevents the emergence of adults by interfering with metamorphosis. One metamorphic processes that is disrupted is midgut remodeling. To investigate the molecular mechanisms by which this occurs, the pattern of transcription factor gene expression during the Aedes aegypti (L.) 4th instar was investigated by the method of real time PCR. The results indicate that in untreated larvae, expression of transcription factors genes AHR3 and AaE75B increases within 24h after the last larval-larval molt, transcription of AaEcR-B, AaUSP-a and AassFTZ-F1 increases approximately 24h later, and transcription of AaE75A increases just before the larval-pupal molt. There is uniform expression of AaUSP-b throughout the 4th instar. The effect of methoprene exposure on transcription factor gene expression during midgut remodeling was investigated. The results indicate that, in a dose and stage dependent manner, methoprene affects increases in expression that normally occur during midgut remodeling. The coincident effects of methoprene on metamorphic midgut remodeling and on transcription factor gene expression suggests that the two processes are related.
Collapse
Affiliation(s)
- James T Nishiura
- Biology Department, Brooklyn College, City University of New York, 2900 Bedford Ave., Brooklyn, NY 11210, USA.
| | | | | |
Collapse
|
176
|
Liu Y, Schiff M, Czymmek K, Tallóczy Z, Levine B, Dinesh-Kumar SP. Autophagy regulates programmed cell death during the plant innate immune response. Cell 2005; 121:567-577. [PMID: 15907470 DOI: 10.1016/j.cell.2005.03.007] [Citation(s) in RCA: 611] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 02/01/2005] [Accepted: 03/07/2005] [Indexed: 11/27/2022]
Abstract
The plant innate immune response includes the hypersensitive response (HR), a form of programmed cell death (PCD). PCD must be restricted to infection sites to prevent the HR from playing a pathologic rather than protective role. Here we show that plant BECLIN 1, an ortholog of the yeast and mammalian autophagy gene ATG6/VPS30/beclin 1, functions to restrict HR PCD to infection sites. Initiation of HR PCD is normal in BECLIN 1-deficient plants, but remarkably, healthy uninfected tissue adjacent to HR lesions and leaves distal to the inoculated leaf undergo unrestricted PCD. In the HR PCD response, autophagy is induced in both pathogen-infected cells and distal uninfected cells; this is reduced in BECLIN 1-deficient plants. The restriction of HR PCD also requires orthologs of other autophagy-related genes including PI3K/VPS34, ATG3, and ATG7. Thus, the evolutionarily conserved autophagy pathway plays an essential role in plant innate immunity and negatively regulates PCD.
Collapse
Affiliation(s)
- Yule Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Michael Schiff
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Kirk Czymmek
- Department of Biological Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Zsolt Tallóczy
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Beth Levine
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - S P Dinesh-Kumar
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520.
| |
Collapse
|
177
|
Abstract
Studies in Drosophila have provided a detailed understanding of how programmed cell death is regulated by steroid hormones during development. This work has defined a two-step hormone-triggered regulatory cascade that results in the coordinate induction of central players in the death pathway, including the reaper and hid death activators, the Apaf-1 ortholog dark, and the dronc apical caspase gene. Recent transcriptional profiling studies have identified many new players in this pathway. In addition, genetic studies are providing new insights into the control of autophagic cell death and revealing how this response is related to, but distinct from, apoptosis.
Collapse
Affiliation(s)
- Viravuth P Yin
- Department of Human Genetics, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112-5331, USA
| | | |
Collapse
|
178
|
Proikas-Cezanne T, Waddell S, Gaugel A, Frickey T, Lupas A, Nordheim A. WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene 2005; 23:9314-25. [PMID: 15602573 DOI: 10.1038/sj.onc.1208331] [Citation(s) in RCA: 284] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
WD-repeat proteins are regulatory beta-propeller platforms that enable the assembly of multiprotein complexes. Here, we report the functional and bioinformatic analysis of human WD-repeat protein Interacting with PhosphoInosides (WIPI)-1alpha (WIPI49/Atg18), a member of a novel WD-repeat protein family with autophagic capacity in Saccharomyces cerevisiae and Caenorhabditis elegans, recently identified as phospholipid-binding effectors. Our phylogenetic analysis divides the WIPI protein family into two paralogous groups that fold into 7-bladed beta-propellers. Structural modeling identified two evolutionary conserved interaction sites in WIPI propellers, one of which may bind phospholipids. Human WIPI-1alpha has LXXLL signature motifs for nuclear receptor interactions and binds androgen and estrogen receptors in vitro. Strikingly, human WIPI genes were found aberrantly expressed in a variety of matched tumor tissues including kidney, pancreatic and skin cancer. We found that endogenous hWIPI-1 protein colocalizes in part with the autophagosomal marker LC3 at punctate cytoplasmic structures in human melanoma cells. In addition, hWIPI-1 accumulated in large vesicular and cup-shaped structures in the cytoplasm when autophagy was induced by amino-acid deprivation. These cytoplasmic formations were blocked by wortmannin, a classic inhibitor of PI-3 kinase-mediated autophagy. Our data suggest that WIPI proteins share an evolutionary conserved function in autophagy and that autophagic capacity may be compromised in human cancers.
Collapse
Affiliation(s)
- Tassula Proikas-Cezanne
- Department of Molecular Biology, Institute for Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, Tuebingen, Germany.
| | | | | | | | | | | |
Collapse
|
179
|
Kilpatrick ZE, Cakouros D, Kumar S. Ecdysone-mediated up-regulation of the effector caspase DRICE is required for hormone-dependent apoptosis in Drosophila cells. J Biol Chem 2005; 280:11981-6. [PMID: 15657059 DOI: 10.1074/jbc.m413971200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Drosophila steroid hormone ecdysone mediates cell death during metamorphosis by regulating the transcription of a number of cell death genes. The apical caspase DRONC is known to be transcriptionally regulated by ecdysone during development. Here we demonstrate that ecdysone also regulates the transcription of DRICE, a major effector caspase and a downstream target for DRONC in the fly. Using RNA interference in an ecdysone-responsive Drosophila cell line, we show that drice up-regulation is essential for apoptosis induced by ecdysone. We also show that drice expression is specifically controlled by the ecdysone-regulated transcription factor BR-C. Combined with previous observations, our results indicate that transcriptional regulation of the components of the core apoptotic machinery plays a key role in hormone-regulated programmed cell death during Drosophila development.
Collapse
Affiliation(s)
- Zoé E Kilpatrick
- Hanson Institute, Institute of Medical and Veterinary Science, PO Box 14, Rundle Mall, Adelaide, SA 5000, Australia
| | | | | |
Collapse
|
180
|
Consoulas C, Levine RB, Restifo LL. The steroid hormone-regulated geneBroad Complex is required for dendritic growth of motoneurons during metamorphosis ofDrosophila. J Comp Neurol 2005; 485:321-37. [PMID: 15803508 DOI: 10.1002/cne.20499] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dendrites are subject to subtle modifications as well as extensive remodeling during the assembly and maturation of neural circuits in a wide variety of organisms. During metamorphosis, Drosophila flight motoneurons MN1-MN4 undergo dendritic regression, followed by regrowth, whereas MN5 differentiates de novo (Consoulas et al. [2002] J. Neurosci. 22:4906-4917). Many cellular changes during metamorphosis are triggered and orchestrated by the steroid hormone 20-hydroxyecdysone, which initiates a cascade of coordinated gene expression. Broad Complex (BRC), a primary response gene in the ecdysone cascade, encodes a family of transcription factors (BRC-Z1-Z4) that are essential for metamorphic reorganization of the central nervous system (CNS). Using neuron-filling techniques that reveal cellular morphology with very high resolution, we tested the hypothesis that BRC is required for metamorphic development of MN1-MN5. Through a combination of loss-of-function mutant analyses, genetic mapping, and transgenic rescue experiments, we found that 2Bc function, mediated by BRC-Z3, is required selectively for motoneuron dendritic regrowth (MN1-MN4) and de novo outgrowth (MN5), as well as for soma expansion of MN5. In contrast, larval development and dendritic regression of MN1-MN4 are BRC-independent. Surprisingly, BRC proteins are not expressed in the motoneurons, suggesting that BRC-Z3 exerts its effect in a non-cell-autonomous manner. The 2Bc mutants display no gross defects in overall thoracic CNS structure, or in peripheral structures such as target muscles or sensory neurons. Candidates for mediating the effect of BRC-Z3 on dendritic growth of MN1-MN5 include their synaptic inputs and non-neuronal CNS cells that interact with them through direct contact or diffusible factors.
Collapse
Affiliation(s)
- Christos Consoulas
- ARL Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
181
|
Kakei M, Iwami M, Sakurai S. Death commitment in the anterior silk gland of the silkworm, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2005; 51:17-25. [PMID: 15686642 DOI: 10.1016/j.jinsphys.2004.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 10/29/2004] [Accepted: 10/29/2004] [Indexed: 05/24/2023]
Abstract
The insect steroid hormone, 20-hydroxyecdysone (20E) triggers the programmed cell death (PCD) of the anterior silk glands (ASGs) of the silkworm, Bombyx mori. We tried to determine the time of commitment to die (death commitment) by examining ASG responses to 20E and juvenile hormone analogue (JHA) in vivo as well as in vitro. The ASGs obtained late on day 6 of the fifth instar completed PCD when cultured with 20E, while the ASGs obtained on day 4 and cultured with 20E did not undergo PCD. The ASGs became competent to respond to 20E at mid-day 5. The ASGs with responsiveness to 20E were not sensitive to JHA, indicating that the ASGs were committed to die before becoming capable of responding to 20E. Topical application of JHA on day 4 suppressed 20E-induced PCD, but that on day 5 failed to do so, indicating that the death commitment might occur between day 4 and 5. We also determined the time of death commitment after allatectomy of the fourth instar larvae, a procedure that induced the precocious PCD. Timed application of JHA and culture of ASGs with 20E in the presence of JHA showed that the ASGs had lost their sensitivity to JHA between 72 and 96 h after allatectomy, i.e. 24-48 h before precocious gut purge in the allatectomized larvae. This result is similar to that obtained in the fifth instar. We conclude that the cellular commitment to die takes place one day before the ASGs become competent to respond to 20E.
Collapse
Affiliation(s)
- Motonori Kakei
- Division of Life Sciences, Graduate School of Science and Technology, Kanazawa University, Kakumamachi, Kanazawa 920-1192, Japan
| | | | | |
Collapse
|
182
|
Abstract
Autophagy, the process by which cells recycle cytoplasm and dispose of excess or defective organelles, has entered the research spotlight largely owing to the discovery of the protein components that drive this process. Identifying the autophagy genes in yeast and finding orthologs in other organisms reveals the conservation of the mechanism of autophagy in eukaryotes and allows the use of molecular genetics and biology in different model systems to study this process. By mostly morphological studies, autophagy has been linked to disease processes. Whether autophagy protects from or causes disease is unclear. Here, we summarize current knowledge about the role of autophagy in disease and health.
Collapse
Affiliation(s)
- Takahiro Shintani
- University of Michigan, Life Sciences Institute, Ann Arbor, MI 48109-2216, USA
| | | |
Collapse
|
183
|
Rusten TE, Lindmo K, Juhász G, Sass M, Seglen PO, Brech A, Stenmark H. Programmed Autophagy in the Drosophila Fat Body Is Induced by Ecdysone through Regulation of the PI3K Pathway. Dev Cell 2004; 7:179-92. [PMID: 15296715 DOI: 10.1016/j.devcel.2004.07.005] [Citation(s) in RCA: 373] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2004] [Revised: 06/30/2004] [Accepted: 07/06/2004] [Indexed: 10/26/2022]
Abstract
Eukaryotic cells catabolize their own cytoplasm by autophagy in response to amino acid starvation and inductive signals during programmed tissue remodeling and cell death. The Tor and PI3K signaling pathways have been shown to negatively control autophagy in eukaryotes, but the mechanisms that link these effectors to overall animal development and nutritional status in multicellular organisms remain poorly understood. Here, we reveal a complex regulation of programmed and starvation-induced autophagy in the Drosophila fat body. Gain-of-function genetic analysis indicated that ecdysone receptor signaling induces programmed autophagy whereas PI3K signaling represses programmed autophagy. Genetic interaction studies showed that ecdysone signaling downregulates PI3K signaling and that this represents the effector mechanism for induction of programmed autophagy. Hence, these studies link hormonal induction of autophagy to the regulatory function of the PI3K signaling pathway in vivo.
Collapse
Affiliation(s)
- Tor Erik Rusten
- Department of Biochemistry, The Norwegian Radium Hospital, Montebello, N-0310 Oslo
| | | | | | | | | | | | | |
Collapse
|
184
|
Arif A, Vasanthi P, Hansen IA, Scheller K, Dutta-Gupta A. The Insect Hemolymph Protein HP19 Mediates the Nongenomic Effect of Ecdysteroids on Acid Phosphatase Activity. J Biol Chem 2004; 279:28000-8. [PMID: 15117951 DOI: 10.1074/jbc.m402311200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of acid phosphatase (ACP) in insect fat bodies is stimulated by the steroid hormone 20-hydoxyecdysone (20E) in vivo. However, in fat bodies kept in culture, a factor from the hemolymph is required to enhance the ACP activity. We identified the factor as a protein with a molecular mass of 19 kDa (HP19) from the hemolymph of a lepidopteran insect, the rice moth, Corcyra cephalonica. Western analysis of hemolymph proteins with denaturing and non-denaturing PAGE using antibodies raised against HP19 suggest that this protein exists as a monomer. It is synthesized by the hind gut-associated lobular fat body of the larvae and is released into the hemolymph. The stimulatory effect of HP19 on the ACP activity is developmentally regulated and exhibits its maximal effect shortly before the onset of metamorphosis. We cloned the HP19 cDNA by immunoscreening a hind gut-associated lobular fat body cDNA expression library. Analysis of the amino acid sequence shows that HP19 belongs to the family of glutathione S-transferase (GST) like proteins. However, affinity-purified GST from Corcyra failed to show any mediation effect on 20E-stimulated ACP activity, and HP19 lacks GST enzymatic activity. Notably, HP19 mediates the hormone-stimulated ACP activity in intact fat body tissue and homogenates even in the presence of inhibitors of transcription and translation, suggesting a nongenomic mode of action. In addition, we show that HP19 inhibits the 20E-induced phosphorylation of the hexamerin receptor protein.
Collapse
Affiliation(s)
- Abul Arif
- Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | | | | | | | | |
Collapse
|
185
|
Yin VP, Thummel CS. A balance between the diap1 death inhibitor and reaper and hid death inducers controls steroid-triggered cell death in Drosophila. Proc Natl Acad Sci U S A 2004; 101:8022-7. [PMID: 15150408 PMCID: PMC419550 DOI: 10.1073/pnas.0402647101] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Indexed: 11/18/2022] Open
Abstract
The steroid hormone ecdysone directs the massive destruction of obsolete larval tissues during Drosophila metamorphosis, providing a model system for defining the molecular mechanisms of steroid-regulated programmed cell death. Although earlier studies have identified an ecdysone triggered genetic cascade that immediately precedes larval tissue cell death, no death regulatory genes have been functionally linked to this death response. We show here that ecdysone-induced expression of the death activator genes reaper (rpr) and head involution defective (hid) is required for destruction of the larval midgut and salivary glands during metamorphosis, with hid playing a primary role in the salivary glands and rpr and hid acting in a redundant manner in the midguts. We also identify the Drosophila inhibitor of apoptosis 1 as a survival factor in the larval cell death pathway, delaying death until its inhibitory effect is overcome by rpr and hid. This study reveals functional interactions between rpr and hid in Drosophila cell death responses and provides evidence that the precise timing of larval tissue cell death during metamorphosis is achieved through a steroid-triggered shift in the balance between the Drosophila inhibitor of apoptosis 1 and the rpr and hid death activators.
Collapse
Affiliation(s)
- Viravuth P Yin
- Department of Human Genetics and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112-5331, USA
| | | |
Collapse
|
186
|
Affiliation(s)
- Eric Lam
- Biotechnology Center and the Department of Plant Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA.
| |
Collapse
|
187
|
Levine B, Klionsky DJ. Development by Self-Digestion. Dev Cell 2004. [DOI: 10.1016/s1534-5807(04)00099-1 order by 1-- trpx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
188
|
|
189
|
|
190
|
Levine B, Klionsky DJ. Development by Self-Digestion. Dev Cell 2004. [DOI: 10.1016/s1534-5807(04)00099-1 and 6346=6346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
191
|
|
192
|
Levine B, Klionsky DJ. Development by Self-Digestion. Dev Cell 2004. [DOI: 10.1016/s1534-5807(04)00099-1 and (select 4137 from (select(sleep(5)))vhil)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
193
|
|
194
|
Levine B, Klionsky DJ. Development by Self-Digestion. Dev Cell 2004. [DOI: 10.1016/s1534-5807(04)00099-1 waitfor delay '0:0:5'-- cijg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
195
|
|
196
|
|
197
|
Levine B, Klionsky DJ. Development by Self-Digestion. Dev Cell 2004. [DOI: 10.1016/s1534-5807(04)00099-1 and 7792=3000-- onwj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
198
|
Levine B, Klionsky DJ. Development by Self-Digestion. Dev Cell 2004. [DOI: 10.1016/s1534-5807(04)00099-1 waitfor delay '0:0:5'] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
199
|
Levine B, Klionsky DJ. Development by Self-Digestion. Dev Cell 2004. [DOI: 10.1016/s1534-5807(04)00099-1 order by 1-- uxyn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
200
|
Abstract
Apoptosis is a conserved cell-death process displaying characteristic morphological and molecular changes including activation of caspase proteases. Recent work challenges the accepted roles of these proteases. New investigations in mice and the nematode Caenorhabditis elegans suggest that there could be caspase-independent pathways leading to cell death. In addition, another type of cell death displaying autophagic features might depend on caspases. Recent studies also indicate that caspase activation does not always lead to cell death and, instead, might be important for cell differentiation. Here, we review recent evidence for both the expanded roles of caspases and the existence of caspase-independent cell-death processes. We suggest that cellular context plays an important role in defining the consequences of caspase activation.
Collapse
Affiliation(s)
- Mary C Abraham
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|