151
|
Bachor TP, Karbanová J, Büttner E, Bermúdez V, Marquioni-Ramella M, Carmeliet P, Corbeil D, Suburo AM. Early ciliary and prominin-1 dysfunctions precede neurogenesis impairment in a mouse model of type 2 diabetes. Neurobiol Dis 2017; 108:13-28. [PMID: 28743634 DOI: 10.1016/j.nbd.2017.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 06/19/2017] [Accepted: 07/10/2017] [Indexed: 01/10/2023] Open
Abstract
Diabetes mellitus (DM) is reaching epidemic conditions worldwide and increases the risk for cognition impairment and dementia. Here, we postulated that progenitors in adult neurogenic niches might be particularly vulnerable. Therefore, we evaluated the different components of the mouse subventricular zone (SVZ) during the first week after chemical induction of type 1 and type 2 diabetes-like (T1DM and T2DM) conditions. Surprisingly, only T2DM mice showed SVZ damage. The initial lesions were localized to ependymal cilia, which appeared disorientated and clumped together. In addition, they showed delocalization of the ciliary membrane protein prominin-1. Impairment of neuroprogenitor proliferation, neurogenic marker abnormalities and ectopic migration of neuroblasts were found at a later stage. To our knowledge, our data describe for the first time such an early impact of T2DM on the SVZ. This is consistent with clinical data indicating that brain damage in T2DM patients differs from that in T1DM patients.
Collapse
Affiliation(s)
- Tomás P Bachor
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, B1629AHJ, Pilar, Argentina
| | - Jana Karbanová
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| | - Edgar Büttner
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| | - Vicente Bermúdez
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, B1629AHJ, Pilar, Argentina; Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| | - Melisa Marquioni-Ramella
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, B1629AHJ, Pilar, Argentina
| | - Peter Carmeliet
- Lab of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium; Lab of Angiogenesis and Vascular Metabolism, Dept. of Oncology, KU Leuven, Leuven, Belgium
| | - Denis Corbeil
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany.
| | - Angela M Suburo
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, B1629AHJ, Pilar, Argentina.
| |
Collapse
|
152
|
Lucchetti D, Calapà F, Palmieri V, Fanali C, Carbone F, Papa A, De Maria R, De Spirito M, Sgambato A. Differentiation Affects the Release of Exosomes from Colon Cancer Cells and Their Ability to Modulate the Behavior of Recipient Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1633-1647. [DOI: 10.1016/j.ajpath.2017.03.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/04/2017] [Indexed: 02/07/2023]
|
153
|
Kim SB, Kim HR, Park MC, Cho S, Goughnour PC, Han D, Yoon I, Kim Y, Kang T, Song E, Kim P, Choi H, Mun JY, Song C, Lee S, Jung HS, Kim S. Caspase-8 controls the secretion of inflammatory lysyl-tRNA synthetase in exosomes from cancer cells. J Cell Biol 2017; 216:2201-2216. [PMID: 28611052 PMCID: PMC5496609 DOI: 10.1083/jcb.201605118] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/05/2016] [Accepted: 05/04/2017] [Indexed: 12/20/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs), enzymes that normally control protein synthesis, can be secreted and have different activities in the extracellular space, but the mechanism of their secretion is not understood. This study describes the secretion route of the ARS lysyl-tRNA synthetase (KRS) and how this process is regulated by caspase activity, which has been implicated in the unconventional secretion of other proteins. We show that KRS is secreted from colorectal carcinoma cells within the lumen of exosomes that can trigger an inflammatory response. Caspase-8 cleaved the N-terminal of KRS, thus exposing a PDZ-binding motif located in the C terminus of KRS. Syntenin bound to the exposed PDZ-binding motif of KRS and facilitated the exosomic secretion of KRS dissociated from the multi-tRNA synthetase complex. KRS-containing exosomes released by cancer cells induced macrophage migration, and their secretion of TNF-α and cleaved KRS made a significant contribution to these activities, which suggests a novel mechanism by which caspase-8 may promote inflammation.
Collapse
Affiliation(s)
- Sang Bum Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Hye Rim Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea
| | - Min Chul Park
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea
| | - Seongmin Cho
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Peter C Goughnour
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Daeyoung Han
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Ina Yoon
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea
| | - YounHa Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Taehee Kang
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea
| | - Eunjoo Song
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hyosun Choi
- BK21 Plus Program, Department of Senior Healthcare, Graduate School, Eulji University, Daejeon, South Korea
| | - Ji Young Mun
- BK21 Plus Program, Department of Senior Healthcare, Graduate School, Eulji University, Daejeon, South Korea.,Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam, South Korea
| | - Chihong Song
- National Institute for Physiological Sciences, Okazaki, Japan
| | - Sangmin Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| |
Collapse
|
154
|
Chao OS, Chang TC, Di Bella MA, Alessandro R, Anzanello F, Rappa G, Goodman OB, Lorico A. The HDAC6 Inhibitor Tubacin Induces Release of CD133 + Extracellular Vesicles From Cancer Cells. J Cell Biochem 2017; 118:4414-4424. [PMID: 28452069 DOI: 10.1002/jcb.26095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/24/2017] [Indexed: 01/02/2023]
Abstract
Tumor-derived extracellular vesicles (EVs) are emerging as an important mode of intercellular communication, capable of transferring biologically active molecules that facilitate the malignant growth and metastatic process. CD133 (Prominin-1), a stem cell marker implicated in tumor initiation, differentiation and resistance to anti-cancer therapy, is reportedly associated with EVs in various types of cancer. However, little is known about the factors that regulate the release of these CD133+ EVs. Here, we report that the HDAC6 inhibitor tubacin promoted the extracellular release of CD133+ EVs from human FEMX-I metastatic melanoma and Caco-2 colorectal carcinoma cells, with a concomitant downregulation of intracellular CD133. This effect was specific for tubacin, as inhibition of HDAC6 deacetylase activity by another selective HDAC6 inhibitor, ACY-1215 or the pan-HDAC inhibitor trichostatin A (TSA), and knockdown of HDAC6 did not enhance the release of CD133+ EVs. The tubacin-induced EV release was associated with changes in cellular lipid composition, loss of clonogenic capacity and decrease in the ability to form multicellular aggregates. These findings indicate a novel potential anti-tumor mechanism for tubacin in CD133-expressing malignancies. J. Cell. Biochem. 118: 4414-4424, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Olivia S Chao
- College of Medicine, Roseman University, Las Vegas, Nevada, 89135
| | - Tim C Chang
- Amnis, Part of MilliporeSigma, Seattle, Washington, 98119
| | - Maria A Di Bella
- Department of Biopathology and Medical Biotechnology, University of Palermo, Via Divisi 83, Palermo, Italy
| | - Riccardo Alessandro
- Department of Biopathology and Medical Biotechnology, University of Palermo, Via Divisi 83, Palermo, Italy
| | - Fabio Anzanello
- College of Medicine, Roseman University, Las Vegas, Nevada, 89135.,Roseman Cancer Center, Las Vegas, Nevada, 89135
| | - Germana Rappa
- College of Medicine, Roseman University, Las Vegas, Nevada, 89135.,Roseman Cancer Center, Las Vegas, Nevada, 89135
| | - Oscar B Goodman
- College of Medicine, Roseman University, Las Vegas, Nevada, 89135
| | - Aurelio Lorico
- College of Medicine, Roseman University, Las Vegas, Nevada, 89135.,Roseman Cancer Center, Las Vegas, Nevada, 89135
| |
Collapse
|
155
|
Kim YS, Kaidina AM, Chiang JH, Yarygin KN, Lupatov AY. Cancer stem cell molecular markers verified in vivo. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2017. [DOI: 10.1134/s1990750817010036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
156
|
Hsu KS, Chuang JZ, Sung CH. The Biology of Ciliary Dynamics. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027904. [PMID: 28062565 DOI: 10.1101/cshperspect.a027904] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The cilium is an evolutionally conserved apical membrane protrusion that senses and transduces diverse signals to regulate a wide range of cellular activities. The cilium is dynamic in length, structure, and protein composition. Dysregulation of ciliary dynamics has been linked with ciliopathies and other human diseases. The cilium undergoes cell-cycle-dependent assembly and disassembly, with ciliary resorption linked with G1-S transition and cell-fate choice. In the resting cell, the cilium remains sensitive to environmental cues for remodeling during tissue homeostasis and repair. Recent findings further reveal an interplay between the cilium and extracellular vesicles and identify bioactive cilium-derived vesicles, posing a previously unrecognized role of cilia for sending signals. The photoreceptor outer segment is a notable dynamic cilium. A recently discovered protein transport mechanism in photoreceptors maintains light-regulated homeostasis of ciliary length.
Collapse
Affiliation(s)
- Kuo-Shun Hsu
- The Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, New York 10065
| | - Jen-Zen Chuang
- The Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, New York 10065
| | - Ching-Hwa Sung
- Departments of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
157
|
Bobinger T, May L, Lücking H, Kloska SP, Burkardt P, Spitzer P, Maler JM, Corbeil D, Huttner HB. CD133-Positive Membrane Particles in Cerebrospinal Fluid of Patients with Inflammatory and Degenerative Neurological Diseases. Front Cell Neurosci 2017; 11:77. [PMID: 28396625 PMCID: PMC5366322 DOI: 10.3389/fncel.2017.00077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/03/2017] [Indexed: 01/10/2023] Open
Abstract
Background: Analysis of cerebrospinal fluid (CSF) is a frequently used diagnostic tool in a variety of neurological diseases. Recent studies suggested that investigating membrane particles enriched with the stem cell marker CD133 may offer new avenues for studying neurological disease. In this study, we evaluated the amount of membrane particle-associated CD133 in human CSF in neuroinflammatory and degenerative diseases. Methods: We compared the amount of membrane particle-associated CD133 in CSF samples collected from 45 patients with normal pressure hydrocephalus, parkinsonism, dementia, and cognitive impairment, chronic inflammatory diseases and 10 healthy adult individuals as controls. After ultracentrifugation of CSF, gel electrophoresis and immunoblotting using anti-CD133 monoclonal antibody 80B258 were performed. Antigen-antibody complexes were detected using chemiluminescence. Results: The amount of membrane particle-associated CD133 was significantly increased in patients with normal pressure hydrocephalus (p < 0.001), parkinsonism (p = 0.011) as well as in patients with chronic inflammatory disease (p = 0.008). Analysis of CSF of patients with dementia and cognitive impairment revealed no significant change compared with healthy individuals. Furthermore, subgroup analysis of patients with chronic inflammatory diseases demonstrated significantly elevated levels in individuals with relapsing-remitting multiple sclerosis (p = 0.023) and secondary progressive multiple sclerosis (SPMS; p = 0.010). Conclusion: Collectively, our study revealed elevated levels of membrane particle-associated CD133 in patients with normal pressure hydrocephalus, parkinsonism as well as relapsing-remitting and SPMS. Membrane glycoprotein CD133 may be of clinical value for several neurological diseases.
Collapse
Affiliation(s)
- Tobias Bobinger
- Department of Neurology, University Hospital Erlangen Erlangen, Germany
| | - Lisa May
- Department of Neurology, University Hospital Erlangen Erlangen, Germany
| | - Hannes Lücking
- Department of Neuroradiology, University Hospital Erlangen Erlangen, Germany
| | - Stephan P Kloska
- Department of Neuroradiology, University Hospital Erlangen Erlangen, Germany
| | - Petra Burkardt
- Department of Neurology, University Hospital Erlangen Erlangen, Germany
| | - Philipp Spitzer
- Department of Psychiatry, University Hospital Erlangen Erlangen, Germany
| | - Juan M Maler
- Department of Psychiatry, University Hospital Erlangen Erlangen, Germany
| | - Denis Corbeil
- Biotechnology Center, Technische Universität Dresden Dresden, Germany
| | - Hagen B Huttner
- Department of Neurology, University Hospital Erlangen Erlangen, Germany
| |
Collapse
|
158
|
Evolution of caspase-mediated cell death and differentiation: twins separated at birth. Cell Death Differ 2017; 24:1359-1368. [PMID: 28338655 PMCID: PMC5520454 DOI: 10.1038/cdd.2017.37] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 12/28/2022] Open
Abstract
The phenotypic and biochemical similarities between caspase-mediated apoptosis and cellular differentiation are striking. They include such diverse phenomenon as mitochondrial membrane perturbations, cytoskeletal rearrangements and DNA fragmentation. The parallels between the two disparate processes suggest some common ancestry and highlight the paradoxical nature of the death-centric view of caspases. That is, what is the driving selective pressure that sustains death-inducing proteins throughout eukaryotic evolution? Plausibly, caspase function may be rooted in a primordial non-death function, such as cell differentiation, and was co-opted for its role in programmed cell death. This review will delve into the links between caspase-mediated apoptosis and cell differentiation and examine the distinguishing features of these events. More critically, we chronicle the evolutionary origins of caspases and propose that caspases may have held an ancient role in mediating the fidelity of cell division/differentiation through its effects on proteostasis and protein quality control.
Collapse
|
159
|
Thieleke-Matos C, Osório DS, Carvalho AX, Morais-de-Sá E. Emerging Mechanisms and Roles for Asymmetric Cytokinesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:297-345. [PMID: 28526136 DOI: 10.1016/bs.ircmb.2017.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cytokinesis completes cell division by physically separating the contents of the mother cell between the two daughter cells. This event requires the highly coordinated reorganization of the cytoskeleton within a precise window of time to ensure faithful genomic segregation. In addition, recent progress in the field highlighted the importance of cytokinesis in providing particularly important cues in the context of multicellular tissues. The organization of the cytokinetic machinery and the asymmetric localization or inheritance of the midbody remnants is critical to define the spatial distribution of mechanical and biochemical signals. After a brief overview of the conserved steps of animal cytokinesis, we review the mechanisms controlling polarized cytokinesis focusing on the challenges of epithelial cytokinesis. Finally, we discuss the significance of these asymmetries in defining embryonic body axes, determining cell fate, and ensuring the correct propagation of epithelial organization during proliferation.
Collapse
Affiliation(s)
- C Thieleke-Matos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cell Division and Genomic stability, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - D S Osório
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cytoskeletal Dynamics, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - A X Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cytoskeletal Dynamics, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - E Morais-de-Sá
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cell Division and Genomic stability, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
160
|
Kazama S, Kishikawa J, Kiyomatsu T, Kawai K, Nozawa H, Ishihara S, Watanabe T. Expression of the stem cell marker CD133 is related to tumor development in colorectal carcinogenesis. Asian J Surg 2017; 41:274-278. [PMID: 28190751 DOI: 10.1016/j.asjsur.2016.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/21/2016] [Accepted: 12/07/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND/OBJECTIVE CD133 is currently considered the most robust surface marker for colorectal cancer stem cells. Two meta-analysis reports have suggested that CD133 expression is significantly associated with shorter survival, and CD133 may play an important role in the progression of colorectal cancer. However, the role of CD133 in colorectal adenoma has not been fully elucidated. METHODS We used immunohistochemistry to evaluate CD133 expression in 200 endoscopically resected colorectal polyps from 200 patients and 20 normal mucosae between January 1993 and December 1996. RESULTS CD133 staining was positive in 17.9% of the colorectal adenomas. Moreover, CD133 expression was associated with differentiation status (p = 0.003) and tumor size (p = 0.03). CONCLUSION CD133 might play an important role in tumor development.
Collapse
Affiliation(s)
- Shinsuke Kazama
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Junko Kishikawa
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tomomichi Kiyomatsu
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kazushige Kawai
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroaki Nozawa
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Soichiro Ishihara
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Toshiaki Watanabe
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
161
|
Cordonnier M, Chanteloup G, Isambert N, Seigneuric R, Fumoleau P, Garrido C, Gobbo J. Exosomes in cancer theranostic: Diamonds in the rough. Cell Adh Migr 2017; 11:151-163. [PMID: 28166442 DOI: 10.1080/19336918.2016.1250999] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During the last 10 years, exosomes, which are small vesicles of 50-200 nm diameter of endosomal origin, have aroused a great interest in the scientific and clinical community for their roles in intercellular communication in almost all physiological and pathological processes. Most cells can potentially release these nanovesicles that share with the parent cell a similar lipid bilayer with transmembrane proteins and a panel of enclosed soluble proteins such as heat shock proteins and genetic material, thus acting as potential nanoshuttles of biomarkers. Exosomes surface proteins allow their targeting and capture by recipient cells, while the exosomes' content can modify the physiological state of recipient cells. Tumor derived exosomes by interacting with other cells of the tumor microenvironment modulate tumor progression, angiogenic switch, metastasis, and immune escape. Targeting tumor-derived exosomes might be an interesting approach in cancer therapy. Furthermore, because a key issue to improve cancer patients' outcome relies on earlier cancer diagnosis (metastases, as opposed to the primary tumor, are responsible for most cancer deaths) exosomes have been put forward as promising biomarker candidates for cancer diagnosis and prognosis. This review summarizes the roles of exosomes in cancer and clinical interest, focusing on the importance of exosomal heat shock proteins (HSP). The challenges of clinical translation of HSP-exosomes as therapeutic targets and biomarkers for early cancer detection are also discussed.
Collapse
Affiliation(s)
- Marine Cordonnier
- a INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon , France.,b University of Burgundy, Faculty of Medicine and Pharmacy , Dijon , France
| | - Gaëtan Chanteloup
- a INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon , France.,b University of Burgundy, Faculty of Medicine and Pharmacy , Dijon , France
| | - Nicolas Isambert
- a INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon , France.,b University of Burgundy, Faculty of Medicine and Pharmacy , Dijon , France.,c Department of Medical Oncology , Georges-François Leclerc Centre , Dijon , France
| | - Renaud Seigneuric
- a INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon , France.,b University of Burgundy, Faculty of Medicine and Pharmacy , Dijon , France
| | - Pierre Fumoleau
- c Department of Medical Oncology , Georges-François Leclerc Centre , Dijon , France
| | - Carmen Garrido
- a INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon , France.,b University of Burgundy, Faculty of Medicine and Pharmacy , Dijon , France.,c Department of Medical Oncology , Georges-François Leclerc Centre , Dijon , France.,d Equipe Labellisée par la Ligue Nationale Contre le Cancer , Paris , France
| | - Jessica Gobbo
- a INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon , France.,b University of Burgundy, Faculty of Medicine and Pharmacy , Dijon , France.,c Department of Medical Oncology , Georges-François Leclerc Centre , Dijon , France
| |
Collapse
|
162
|
Kim YS, Kaidina AM, Chiang JH, Yarygin KN, Lupatov AY. [Molecular markers of cancer stem cells verified in vivo]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 62:228-38. [PMID: 27420613 DOI: 10.18097/pbmc20166203228] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This systematic review aims to analyze molecular markers of cancer stem cells. Only studies that confirmed tumor-initiating capacity of this population by in vivo assay in immunodeficient mice were included. Final sample of papers that fully correspond with initial aim consists of 97 original studies. The results of their analysis reveal that markers commonly used for cancer stem cells deriving were as follows: CD133, СD44, ALDH, CD34, CD24 and EpCAM. The review also contains description of molecular features of some cancer stem cell markers, modern approaches to cancer treatment by targeting this population and brief assessment of cancer stem cell theory development.
Collapse
Affiliation(s)
- Y S Kim
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A M Kaidina
- Institute of Biomedical Chemistry, Moscow, Russia
| | - J H Chiang
- National Cheng Kung University, Tainan City, Taiwan
| | - K N Yarygin
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A Yu Lupatov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
163
|
Zambo I, Hermanova M, Zapletalova D, Skoda J, Mudry P, Kyr M, Zitterbart K, Sterba J, Veselska R. Expression of nestin, CD133 and ABCG2 in relation to the clinical outcome in pediatric sarcomas. Cancer Biomark 2017; 17:107-16. [PMID: 27314299 DOI: 10.3233/cbm-160623] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Nestin, CD133 and ABCG2 are recently discussed as putative markers, co-expression of which might determine a cancer stem cell (CSC) phenotype in sarcomas. OBJECTIVE Our study is focused on immunohistochemical analysis of nestin, CD133 and ABCG2 expression in rhabdomyosarcoma, Ewing sarcoma and osteosarcoma. Furthermore, we also analyzed the possible correlation of nestin, CD133 and ABCG2 expression levels with the patient outcome to identify potential prognostic values of these three putative CSC markers in the same cohorts. METHODS Using immunohistochemistry, expression of nestin, CD133 and ABCG2 was analyzed in 24 rhabdomyosarcoma, 22 Ewing sarcoma and 10 osteosarcoma tissue samples and expression levels of these markers were correlated with clinical outcome. RESULTS High nestin levels indicate poor prognosis in patients with Ewing sarcoma (P = 0.001), and high CD133 expression is associated with shorter survival in rhabdomyosarcoma patients (P = 0.002). In contrast, no significant relationship was found between ABCG2 expression and the clinical outcome. CONCLUSIONS Our analysis represents the first complex study of these three putative CSCs markers together in three different types of pediatric sarcomas and showed their possible prognostic values in these tumors.
Collapse
Affiliation(s)
- Iva Zambo
- Department of Pathological Anatomy, Medical Faculty, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Marketa Hermanova
- Department of Pathological Anatomy, Medical Faculty, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| | - Danica Zapletalova
- Department of Pediatric Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Jan Skoda
- Department of Pediatric Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic.,Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Peter Mudry
- Department of Pediatric Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Michal Kyr
- Department of Pediatric Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Karel Zitterbart
- Department of Pediatric Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Jaroslav Sterba
- Department of Pediatric Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Renata Veselska
- Department of Pediatric Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic.,Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
164
|
Barreca MM, Aliotta E, Geraci F. Extracellular Vesicles in Multiple Sclerosis as Possible Biomarkers: Dream or Reality? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 958:1-9. [DOI: 10.1007/978-3-319-47861-6_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
165
|
Nguyen MV, Zagory JA, Dietz WH, Park A, Fenlon M, Zhao M, Xu J, Lua I, Mavila N, Asahina K, Wang KS. Hepatic Prominin-1 expression is associated with biliary fibrosis. Surgery 2017; 161:1266-1272. [PMID: 28104292 DOI: 10.1016/j.surg.2016.09.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Intrahepatic biliary fibrosis, as seen with cholestatic liver injuries such as biliary atresia, is mechanistically distinct from fibrosis caused by hepatocyte toxicity. We previously demonstrated the expansion of cells expressing the stem/progenitor cell marker Prominin-1, within regions of developing fibrosis in biliary atresia. Thus, we hypothesized that Prominin-1 expression is biliary fibrosis-specific. METHODS Gene expression of Prominin-1 was analyzed in adult mice undergoing either cholestatic bile duct ligation or hepatotoxic carbon tetrachloride administration by quantitative polymerase chair reaction. Lineage tracing of Prominin-1-expressing cells and Collagen-1α-expressing cells was performed after bile duct ligation in Prominin-1cre-ert2-lacz;Gfplsl and Collagen-1αGfp transgenic mice, respectively. RESULTS Prominin-1 expression increased significantly after bile duct ligation compared with sham (6.6 ± 0.9-fold change at 2 weeks, P < .05) but not with carbon tetrachloride (-0.7 ± 0.5-fold change, not significant). Upregulation of Prominin-1 was observed histologically throughout the liver as early as 5 days after bile duct ligation in Prominin-1cre-ert2-lacz mice by LacZ staining in nonhepatocyte cells. Lineage tracing of Prominin-1-expressing cells labeled prior to bile duct ligation in Prominin-1cre-ert2-lacz;Gfplsl mice, demonstrated increasing colocalization of GREEN FLUORESCENT PROTEIN with biliary marker CYTOKERATIN-19 within ductular reactions up to 5 weeks after bile duct ligation consistent with biliary transdifferentiation. In contrast, rare colocalization of GREEN FLUORESCENT PROTEIN with mesenchymal marker α-SMOOTH MUSCLE ACTIN in Prominin-1cre-ert2-lacz;Gfplsl mice and some colocalization of GREEN FLUORESCENT PROTEIN with PROMININ-1 in Collagen-1αGfp mice, indicate minimal contribution of Prominin-1 progenitor cells to the pool of collagen-producing myofibroblasts. CONCLUSION During biliary fibrosis Prominin-1-expressing progenitor cells transdifferentiate into cells within ductular reactions. This transdifferentiation may promote fibrosis.
Collapse
Affiliation(s)
- Marie V Nguyen
- Division of Pediatric Surgery, Developmental Biology, Regenerative Medicine and Stem Cell Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA
| | - Jessica A Zagory
- Division of Pediatric Surgery, Developmental Biology, Regenerative Medicine and Stem Cell Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA
| | - William H Dietz
- Division of Pediatric Surgery, Developmental Biology, Regenerative Medicine and Stem Cell Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA
| | - Alex Park
- Division of Pediatric Surgery, Developmental Biology, Regenerative Medicine and Stem Cell Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA
| | - Michael Fenlon
- Division of Pediatric Surgery, Developmental Biology, Regenerative Medicine and Stem Cell Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA
| | - Menghan Zhao
- Division of Pediatric Surgery, Developmental Biology, Regenerative Medicine and Stem Cell Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA
| | - Jiabo Xu
- Division of Pediatric Surgery, Developmental Biology, Regenerative Medicine and Stem Cell Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA
| | - Ingrid Lua
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Nirmala Mavila
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA
| | - Kinji Asahina
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Kasper S Wang
- Division of Pediatric Surgery, Developmental Biology, Regenerative Medicine and Stem Cell Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA; Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA.
| |
Collapse
|
166
|
Iwai K, Yamamoto S, Yoshida M, Shiba K. Isolation of Extracellular Vesicles in Saliva Using Density Gradient Ultracentrifugation. Methods Mol Biol 2017; 1660:343-350. [PMID: 28828669 DOI: 10.1007/978-1-4939-7253-1_27] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This chapter describes a method for isolating human salivary extracellular vesicles (EVs) using density gradient ultracentrifugation. Standard protocols established for isolation of EVs from blood or a conditioned medium of cultured cells do not work for whole saliva, due to its viscosity. Therefore, procedures including a pretreatment step and utilizing iodixanol as a gradient material enable EVs to be concentrated to a 1.1 g/ml density. This protocol is compatible with both swing and angle rotors. By employing an angle rotor, which enables high g-force, the centrifugation time was reduced to 4 h from the 17 h required when using a swing rotor.
Collapse
Affiliation(s)
- Kazuya Iwai
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Oral & Maxillofacial Implantology, Tokyo Dental College, Tokyo, Japan
| | - Satoshi Yamamoto
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Oral & Maxillofacial Implantology, Tokyo Dental College, Tokyo, Japan
| | - Mitsutaka Yoshida
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Oral & Maxillofacial Implantology, Tokyo Dental College, Tokyo, Japan
| | - Kiyotaka Shiba
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.
| |
Collapse
|
167
|
The Multifaceted Functions of Exosomes in Health and Disease: An Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 998:3-19. [PMID: 28936729 DOI: 10.1007/978-981-10-4397-0_1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exosomes are extracellular vesicles of 50-150 nm in diameter secreted by basically all cell types. They mediate micro-communication among cells, tissues, and organs under both healthy and disease conditions by virtue of their ability to deliver macromolecules to target cells. Research on exosomes is a rapidly growing field, however many aspects of their biogenesis and functions still await a complete clarification. In our review we summarize most recent findings regarding biogenesis, structure, and functions of exosomes. In addition, an overview regarding the role of exosomes in both infectious and non-infectious diseases is provided. Finally, the use of exosomes as biomarkers and delivery tools for therapeutic molecules is addressed. Considering the body of literature data, exosomes have to be considered key components of the intercellular communication in both health and disease.
Collapse
|
168
|
Sohel MH. Extracellular/Circulating MicroRNAs: Release Mechanisms, Functions and Challenges. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.als.2016.11.007] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
169
|
Moore DL, Jessberger S. Creating Age Asymmetry: Consequences of Inheriting Damaged Goods in Mammalian Cells. Trends Cell Biol 2016; 27:82-92. [PMID: 27717533 DOI: 10.1016/j.tcb.2016.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 09/10/2016] [Accepted: 09/13/2016] [Indexed: 12/15/2022]
Abstract
Accumulating evidence suggests that mammalian cells asymmetrically segregate cellular components ranging from genomic DNA to organelles and damaged proteins during cell division. Asymmetric inheritance upon mammalian cell division may be specifically important to ensure cellular fitness and propagate cellular potency to individual progeny, for example in the context of somatic stem cell division. We review here recent advances in the field and discuss potential effects and underlying mechanisms that mediate asymmetric segregation of cellular components during mammalian cell division.
Collapse
Affiliation(s)
- Darcie L Moore
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Sebastian Jessberger
- Brain Research Institute, Faculty of Medicine and Science, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
170
|
Li J, Li X, Jiang X, Yang M, Yang R, Burnstock G, Xiang Z, Yuan H. Microvesicles shed from microglia activated by the P2X7-p38 pathway are involved in neuropathic pain induced by spinal nerve ligation in rats. Purinergic Signal 2016; 13:13-26. [PMID: 27683228 DOI: 10.1007/s11302-016-9537-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/12/2016] [Indexed: 12/30/2022] Open
Abstract
Microglia are critical in the pathogenesis of neuropathic pain. In this study, we investigated the role of microvesicles (MVs) in neuropathic pain induced by spinal nerve ligation (SNL) in rats. First, we found that MVs shed from microglia were increased in the cerebrospinal fluid and dorsal horn of the spinal cord after SNL. Next, MVs significantly reduced paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). In addition, the P2X7-p38 pathway was related to the bleb of MVs after SNL. Interleukin (IL)-1β was found to be significantly upregulated in the package of MVs, and PWT and PWL increased following inhibition with shRNA-IL-1β. Finally, the amplitude and frequency of spontaneous excitatory postsynaptic currents increased following stimulation with MVs. Our results indicate that the P2X7-p38 pathway is closely correlated with the shedding of MVs from microglia in neuropathic pain, and MVs had a significant effect on neuropathic pain by participating in the interaction between microglia and neurons.
Collapse
Affiliation(s)
- Jian Li
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Xiangnan Li
- Department of Anesthesiology, The Third People's Hospital of Yancheng, Yancheng, 224001, China
| | - Xin Jiang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Mei Yang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Rui Yang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, London, UK.,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia
| | - Zhenghua Xiang
- Department of Neurobiology, MOE Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai, 200433, China.
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
171
|
Panagiotou N, Wayne Davies R, Selman C, Shiels PG. Microvesicles as Vehicles for Tissue Regeneration: Changing of the Guards. CURRENT PATHOBIOLOGY REPORTS 2016; 4:181-187. [PMID: 27882267 PMCID: PMC5101251 DOI: 10.1007/s40139-016-0115-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Microvesicles (MVs) have been recognised as mediators of stem cell function, enabling and guiding their regenerative effects. RECENT FINDINGS MVs constitute one unique size class of extracellular vesicles (EVs) directly shed from the cell plasma membrane. They facilitate cell-to-cell communication via intercellular transfer of proteins, mRNA and microRNA (miRNA). MVs derived from stem cells, or stem cell regulatory cell types, have proven roles in tissue regeneration and repair processes. Their role in the maintenance of healthy tissue function throughout the life course and thus in age related health span remains to be elucidated. SUMMARY Understanding the biogenesis and mechanisms of action of MVs may enable the development of cell-free therapeutics capable of assisting in tissue maintenance and repair for a variety of age-related degenerative diseases. This review critically evaluates recent work published in this area and highlights important new findings demonstrating the use of MVs in tissue regeneration.
Collapse
Affiliation(s)
- Nikolaos Panagiotou
- Wolfson Wohl, Translational Research Centre, Institute of Cancer Sciences, MVLS, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH UK
| | - R. Wayne Davies
- School of Informatics, Institute of Neural and Adaptive Computation, Informatics Forum, University of Edinburgh, 10 Crichton Street, Edinburgh, EH8 9AB UK
| | - Colin Selman
- Graham Kerr, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ UK
| | - Paul G. Shiels
- Wolfson Wohl, Translational Research Centre, Institute of Cancer Sciences, MVLS, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH UK
| |
Collapse
|
172
|
Rushing G, Ihrie RA. Neural stem cell heterogeneity through time and space in the ventricular-subventricular zone. FRONTIERS IN BIOLOGY 2016; 11:261-284. [PMID: 28367160 PMCID: PMC5371406 DOI: 10.1007/s11515-016-1407-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND The origin and classification of neural stem cells (NSCs) has been a subject of intense investigation for the past two decades. Efforts to categorize NSCs based on their location, function and expression have established that these cells are a heterogeneous pool in both the embryonic and adult brain. The discovery and additional characterization of adult NSCs has introduced the possibility of using these cells as a source for neuronal and glial replacement following injury or disease. To understand how one could manipulate NSC developmental programs for therapeutic use, additional work is needed to elucidate how NSCs are programmed and how signals during development are interpreted to determine cell fate. OBJECTIVE This review describes the identification, classification and characterization of NSCs within the large neurogenic niche of the ventricular-subventricular zone (V-SVZ). METHODS A literature search was conducted using Pubmed including the keywords "ventricular-subventricular zone," "neural stem cell," "heterogeneity," "identity" and/or "single cell" to find relevant manuscripts to include within the review. A special focus was placed on more recent findings using single-cell level analyses on neural stem cells within their niche(s). RESULTS This review discusses over 20 research articles detailing findings on V-SVZ NSC heterogeneity, over 25 articles describing fate determinants of NSCs, and focuses on 8 recent publications using distinct single-cell analyses of neural stem cells including flow cytometry and RNA-seq. Additionally, over 60 manuscripts highlighting the markers expressed on cells within the NSC lineage are included in a chart divided by cell type. CONCLUSIONS Investigation of NSC heterogeneity and fate decisions is ongoing. Thus far, much research has been conducted in mice however, findings in human and other mammalian species are also discussed here. Implications of NSC heterogeneity established in the embryo for the properties of NSCs in the adult brain are explored, including how these cells may be redirected after injury or genetic manipulation.
Collapse
Affiliation(s)
- Gabrielle Rushing
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37232, USA
| | - Rebecca A. Ihrie
- Departments of Cancer Biology and Neurological Surgery, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
173
|
Wilsch-Bräuninger M, Florio M, Huttner WB. Neocortex expansion in development and evolution — from cell biology to single genes. Curr Opin Neurobiol 2016; 39:122-32. [DOI: 10.1016/j.conb.2016.05.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/15/2016] [Indexed: 02/06/2023]
|
174
|
Tunneling nanotubes mediate the transfer of stem cell marker CD133 between hematopoietic progenitor cells. Exp Hematol 2016; 44:1092-1112.e2. [PMID: 27473566 DOI: 10.1016/j.exphem.2016.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 07/15/2016] [Accepted: 07/16/2016] [Indexed: 12/24/2022]
Abstract
Deciphering all mechanisms of intercellular communication used by hematopoietic progenitors is important, not only for basic stem cell research, but also in view of their therapeutic relevance. Here, we investigated whether these cells can produce the thin F-actin-based plasma membrane protrusions referred to as tunneling nanotubes (TNTs), which are known to bridge cells over long distances without contact with the substratum and transfer cargo molecules along them in various biological processes. We found that human primary CD34+ hematopoietic progenitors and leukemic KG1a cells develop such structures upon culture on primary mesenchymal stromal cells or specific extracellular-matrix-based substrata. Time-lapse video microscopy revealed that cell dislodgement is the primary mechanism responsible for TNT biogenesis. Surprisingly, we found that, among various cluster of differentiation (CD) markers, only the stem cell antigen CD133 is transferred between cells. It is selectively and directionally transported along the surface of TNTs in small clusters, such as cytoplasmic phospho-myosin light chain 2, suggesting that the latter actin motor protein might be implicated in this process. Our data provide new insights into the biology of hematopoietic progenitors that can contribute to our understanding of all facets of intercellular communication in the bone marrow microenvironment under healthy or cancerous conditions.
Collapse
|
175
|
Bernabé-Rubio M, Andrés G, Casares-Arias J, Fernández-Barrera J, Rangel L, Reglero-Real N, Gershlick DC, Fernández JJ, Millán J, Correas I, Miguez DG, Alonso MA. Novel role for the midbody in primary ciliogenesis by polarized epithelial cells. J Cell Biol 2016; 214:259-73. [PMID: 27458130 PMCID: PMC4970324 DOI: 10.1083/jcb.201601020] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/29/2016] [Indexed: 12/03/2022] Open
Abstract
Polarized epithelial cells assemble a primary cilium by an unknown mechanism. After cytokinesis, the central part of the intercellular bridge, which is referred to as the midbody, is inherited as a remnant by one of the daughter cells. Here, Bernabé-Rubio et al. show that the midbody remnant meets the centrosome at the cell apex, enabling primary ciliogenesis. The primary cilium is a membrane protrusion that is crucial for vertebrate tissue homeostasis and development. Here, we investigated the uncharacterized process of primary ciliogenesis in polarized epithelial cells. We show that after cytokinesis, the midbody is inherited by one of the daughter cells as a remnant that initially locates peripherally at the apical surface of one of the daughter cells. The remnant then moves along the apical surface and, once proximal to the centrosome at the center of the apical surface, enables cilium formation. The physical removal of the remnant greatly impairs ciliogenesis. We developed a probabilistic cell population–based model that reproduces the experimental data. In addition, our model explains, solely in terms of cell area constraints, the various observed transitions of the midbody, the beginning of ciliogenesis, and the accumulation of ciliated cells. Our findings reveal a biological mechanism that links the three microtubule-based organelles—the midbody, the centrosome, and the cilium—in the same cellular process.
Collapse
Affiliation(s)
- Miguel Bernabé-Rubio
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Germán Andrés
- Electron Microscopy Unit, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Javier Casares-Arias
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jaime Fernández-Barrera
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Laura Rangel
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Natalia Reglero-Real
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - David C Gershlick
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - José J Fernández
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Jaime Millán
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Isabel Correas
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - David G Miguez
- Department of Condensed Matter Physics, Instituto de Ciencias de Materiales Nicolás Cabrera and Instituto de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Miguel A Alonso
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
176
|
Naz N, Jimenez AR, Sanjuan-Vilaplana A, Gurney M, Miyan J. Neonatal hydrocephalus is a result of a block in folate handling and metabolism involving 10-formyltetrahydrofolate dehydrogenase. J Neurochem 2016; 138:610-23. [DOI: 10.1111/jnc.13686] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/29/2016] [Accepted: 05/23/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Naila Naz
- Faculty of Life Sciences; The University of Manchester; Manchester UK
| | | | | | - Megan Gurney
- Faculty of Life Sciences; The University of Manchester; Manchester UK
| | - Jaleel Miyan
- Faculty of Life Sciences; The University of Manchester; Manchester UK
| |
Collapse
|
177
|
Abstract
Functional neural competence and integrity require interactive exchanges among sensory and motor neurons, interneurons and glial cells. Recent studies have attributed some of the tasks needed for these exchanges to extracellular vesicles (such as exosomes and microvesicles), which are most prominently involved in shuttling reciprocal signals between myelinating glia and neurons, thus promoting neuronal survival, the immune response mediated by microglia, and synapse assembly and plasticity. Such vesicles have also been identified as important factors in the spread of neurodegenerative disorders and brain cancer. These extracellular vesicle functions add a previously unrecognized level of complexity to transcellular interactions within the nervous system.
Collapse
|
178
|
Ettinger A, Kosodo Y, Huttner WB. Specific membrane dynamics during neural stem cell division. Methods Cell Biol 2016; 137:143-172. [PMID: 28065302 DOI: 10.1016/bs.mcb.2016.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Neural stem and progenitor cells in the developing cerebral cortex, but also when grown in culture, display a range of distinct phenomena during cytokinesis. Cleavage furrow ingression in neural progenitor cells can bisect their basal processes and, later on, result in midbody formation at the apical surface. After abscission, these midbodies are released as membrane-bound particles into the extracellular space, in contrast to uptake and degradation of postabscission midbodies in other cell types. Whether these cellular dynamics are unique to neural stem cells, or more ubiquitously found, and what biological significance these processes have for cell differentiation or cell-cell communication, are open questions that require a combination of approaches. Here, we discuss techniques to study the specific membrane dynamics underlying the basal process splitting and postabscission midbody release in neural stem cells. We provide some basic concepts and protocols to isolate, enrich and stain released midbodies, and follow midbody dynamics over time. Moreover, we discuss techniques to prepare cortical sections for high-voltage electron microscopy to visualize the fine basal processes of progenitor cells.
Collapse
Affiliation(s)
- A Ettinger
- Institute of Epigenetics and Stem Cells, Munich, Germany
| | - Y Kosodo
- Korea Brain Research Institute, Daegu, Korea
| | - W B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
179
|
Comparative Study of Extracellular Vesicles from the Urine of Healthy Individuals and Prostate Cancer Patients. PLoS One 2016; 11:e0157566. [PMID: 27305142 PMCID: PMC4909321 DOI: 10.1371/journal.pone.0157566] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/01/2016] [Indexed: 01/29/2023] Open
Abstract
Recent studies suggest that extracellular vesicles may be the key to timely diagnosis and monitoring of genito-urological malignancies. In this study we investigated the composition and content of extracellular vesicles found in the urine of healthy donors and prostate cancer patients. Urine of 14 PCa patients and 20 healthy volunteers was clarified by low-speed centrifugation and total extracellular vesicles fraction was obtain by high-speed centrifugation. The exosome-enriched fraction was obtained by filtration of total extracellular vesicles through a 0.1 μm pore filter. Transmission electron microscopy showed that cell-free urine in both groups contained vesicles from 20 to 230 nm. Immunogold staining after ultrafiltration demonstrated that 95% and 90% of extracellular vesicles in healthy individuals and cancer patients, respectively, were exosomes. Protein, DNA and RNA concentrations as well as size distribution of extracellular vesicles in both fractions were analyzed. Only 75% of the total protein content of extracellular vesicles was associated with exosomes which amounted to 90–95% of all vesicles. Median DNA concentrations in total extracellular vesicles and exosome-enriched fractions were 18 pg/ml and 2.6 pg/ml urine, correspondingly. Urine extracellular vesicles carried a population of RNA molecules 25 nt to 200 nt in concentration of no more than 290 pg/ml of urine. Additionally, concentrations of miR-19b, miR-25, miR-125b, and miR-205 were quantified by qRT-PCR. MiRNAs were shown to be differently distributed between different fractions of extracellular vesicles. Detection of miR-19b versus miR-16 in total vesicles and exosome-enriched fractions achieved 100%/93% and 95%/79% specificity/sensitivity in distinguishing cancer patients from healthy individuals, respectively, demonstrating the diagnostic value of urine extracellular vesicles.
Collapse
|
180
|
Krämer-Albers EM, Hill AF. Extracellular vesicles: interneural shuttles of complex messages. Curr Opin Neurobiol 2016; 39:101-7. [PMID: 27183381 DOI: 10.1016/j.conb.2016.04.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022]
Abstract
A core function of neural cells is the exchange and integration of information. Extracellular vesicles such as exosomes and microvesicles recently entered the scene of neuroscience as novel vehicles transmitting complex signals between neural cells. Carrying a defined but mixed cargo of biomolecules, extracellular vesicles possess versatile biological activities with the ability to profoundly modulate the molecular configuration and behaviour of target cells. Extracellular vesicles are suggested to carry out functions during neural development and maintenance, they appear to spread neuropathology and furthermore, convey neuroprotection and regeneration. Understanding the molecular mechanisms of this sophisticated cellular crosstalk will fundamentally improve our insight in complex intercellular processes in the healthy and diseased nervous system.
Collapse
Affiliation(s)
- Eva-Maria Krämer-Albers
- Molecular Cell Biology and Focus Program Translational Neurosciences, Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
181
|
Chau KF, Springel MW, Broadbelt KG, Park HY, Topal S, Lun MP, Mullan H, Maynard T, Steen H, LaMantia AS, Lehtinen MK. Progressive Differentiation and Instructive Capacities of Amniotic Fluid and Cerebrospinal Fluid Proteomes following Neural Tube Closure. Dev Cell 2016; 35:789-802. [PMID: 26702835 DOI: 10.1016/j.devcel.2015.11.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/28/2015] [Accepted: 11/16/2015] [Indexed: 01/04/2023]
Abstract
After neural tube closure, amniotic fluid (AF) captured inside the neural tube forms the nascent cerebrospinal fluid (CSF). Neuroepithelial stem cells contact CSF-filled ventricles, proliferate, and differentiate to form the mammalian brain, while neurogenic placodes, which generate cranial sensory neurons, remain in contact with the AF. Using in vivo ultrasound imaging, we quantified the expansion of the embryonic ventricular-CSF space from its inception. We developed tools to obtain pure AF and nascent CSF, before and after neural tube closure, and to define how the AF and CSF proteomes diverge during mouse development. Using embryonic neural explants, we demonstrate that age-matched fluids promote Sox2-positive neurogenic identity in developing forebrain and olfactory epithelia. Nascent CSF also stimulates SOX2-positive self-renewal of forebrain progenitor cells, some of which is attributable to LIFR signaling. Our Resource should facilitate the investigation of fluid-tissue interactions during this highly vulnerable stage of early brain development.
Collapse
Affiliation(s)
- Kevin F Chau
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Mark W Springel
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kevin G Broadbelt
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Hye-Yeon Park
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Salih Topal
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Melody P Lun
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Hillary Mullan
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Thomas Maynard
- Department of Pharmacology and Physiology, Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Hanno Steen
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Anthony S LaMantia
- Department of Pharmacology and Physiology, Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
182
|
Valero J, Paris I, Sierra A. Lifestyle Shapes the Dialogue between Environment, Microglia, and Adult Neurogenesis. ACS Chem Neurosci 2016; 7:442-53. [PMID: 26971802 DOI: 10.1021/acschemneuro.6b00009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lifestyle modulates brain function. Diet, stress levels, and physical exercise among other factors influence the "brain cognitive reserve", that is, the capacity of the brain to maintain a normal function when confronting neurodegenerative diseases, injury, and/or aging. This cognitive reserve relays on several cellular and molecular elements that contribute to brain plasticity allowing adaptive responses to cognitive demands, and one of its key components is the hippocampal neurogenic reserve. Hippocampal neural stem cells give rise to new neurons that integrate into the local circuitry and contribute to hippocampal functions such as memory and learning. Importantly, adult hippocampal neurogenesis is well-known to be modulated by the demands of the environment and lifestyle factors. Diet, stress, and physical exercise directly act on neural stem cells and/or their progeny, but, in addition, they may also indirectly affect neurogenesis by acting on microglia. Microglia, the guardians of the brain, rapidly sense changes in the brain milieu, and it has been recently shown that their function is affected by lifestyle factors. However, few studies have analyzed the modulatory effect of microglia on adult neurogenesis in these conditions. Here, we review the current knowledge about the dialogue maintained between microglia and the hippocampal neurogenic cascade. Understanding how the communication between microglia and hippocampal neurogenesis is affected by lifestyle choices is crucial to maintain the brain cognitive reserve and prevent the maladaptive responses that emerge during disease or injury through adulthood and aging.
Collapse
Affiliation(s)
- Jorge Valero
- Achucarro Basque Center for Neuroscience, E-48170 Zamudio, Bizkaia Spain
- Ikerbasque Foundation, E-48013 Bilbao, Bizkaia Spain
| | - Iñaki Paris
- Achucarro Basque Center for Neuroscience, E-48170 Zamudio, Bizkaia Spain
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, E-48170 Zamudio, Bizkaia Spain
- Ikerbasque Foundation, E-48013 Bilbao, Bizkaia Spain
- University of the Basque Country EHU/UPV, E-48940 Leioa, Bizkaia Spain
| |
Collapse
|
183
|
Abner EL, Jicha GA, Shaw LM, Trojanowski JQ, Goetzl EJ. Plasma neuronal exosomal levels of Alzheimer's disease biomarkers in normal aging. Ann Clin Transl Neurol 2016; 3:399-403. [PMID: 27231710 PMCID: PMC4863753 DOI: 10.1002/acn3.309] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/02/2016] [Accepted: 03/24/2016] [Indexed: 12/14/2022] Open
Abstract
Plasma neuronal exosomal levels of pathogenic Alzheimer's disease (AD) proteins, cellular survival factors, and lysosomal proteins distinguish AD patients from control subjects, but changes in these exosomal proteins associated with normal aging have not been described for cognitively intact subjects. Plasma neuronal exosomal levels of P-T181-tau, P-S396-tau, Aβ 1-42, cathepsin D, repressor element 1-silencing transcription factor, and neurogranin were quantified longitudinally in cognitively intact older adults using two samples collected at 3- to 11-year intervals. Except for P-S396-tau, exosomal protein levels changed significantly with aging, but were largely outside the range observed in AD patients.
Collapse
Affiliation(s)
- Erin L Abner
- Sanders-Brown Center on Aging University of Kentucky Lexington Kentucky; Department of Epidemiology College of Public Health University of Kentucky Lexington Kentucky
| | - Gregory A Jicha
- Sanders-Brown Center on Aging University of Kentucky Lexington Kentucky; Department of Neurology College of Medicine University of Kentucky Lexington Kentucky
| | - Leslie M Shaw
- Department of Pathology University of Pennsylvania Philadelphia Pennsylvania
| | - John Q Trojanowski
- Department of Pathology University of Pennsylvania Philadelphia Pennsylvania; Center for Neurodegenerative Disease Research University of Pennsylvania Philadelphia Pennsylvania
| | - Edward J Goetzl
- Department of Medicine UCSF Medical Center and the Jewish Home of San Francisco San Francisco California
| |
Collapse
|
184
|
Zappulli V, Friis KP, Fitzpatrick Z, Maguire CA, Breakefield XO. Extracellular vesicles and intercellular communication within the nervous system. J Clin Invest 2016; 126:1198-207. [PMID: 27035811 DOI: 10.1172/jci81134] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs, including exosomes) are implicated in many aspects of nervous system development and function, including regulation of synaptic communication, synaptic strength, and nerve regeneration. They mediate the transfer of packets of information in the form of nonsecreted proteins and DNA/RNA protected within a membrane compartment. EVs are essential for the packaging and transport of many cell-fate proteins during development as well as many neurotoxic misfolded proteins during pathogenesis. This form of communication provides another dimension of cellular crosstalk, with the ability to assemble a "kit" of directional instructions made up of different molecular entities and address it to specific recipient cells. This multidimensional form of communication has special significance in the nervous system. How EVs help to orchestrate the wiring of the brain while allowing for plasticity associated with learning and memory and contribute to regeneration and degeneration are all under investigation. Because they carry specific disease-related RNAs and proteins, practical applications of EVs include potential uses as biomarkers and therapeutics. This Review describes our current understanding of EVs and serves as a springboard for future advances, which may reveal new important mechanisms by which EVs in coordinate brain and body function and dysfunction.
Collapse
|
185
|
Morton MC, Feliciano DM. Neurovesicles in Brain Development. Cell Mol Neurobiol 2016; 36:409-16. [PMID: 26993505 PMCID: PMC11482443 DOI: 10.1007/s10571-015-0297-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/29/2015] [Indexed: 12/14/2022]
Abstract
Long before the nervous system is organized into electrically active neural circuits, connectivity emerges between cells of the developing brain through extracellular signals. Extracellular vesicles that shuttle RNA, proteins, and lipids from donor cells to recipient cells are candidates for mediating connectivity in the brain. Despite the abundance of extracellular vesicles during brain development, evidence for their physiological functions is only beginning to materialize. Here, we review evidence of the existence, content, and functions of extracellular vesicles in brain development.
Collapse
Affiliation(s)
- Mary C Morton
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634-0314, USA
| | - David M Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634-0314, USA.
| |
Collapse
|
186
|
Osteikoetxea X, Németh A, Sódar BW, Vukman KV, Buzás EI. Extracellular vesicles in cardiovascular disease: are they Jedi or Sith? J Physiol 2016; 594:2881-94. [PMID: 26872404 DOI: 10.1113/jp271336] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022] Open
Abstract
In the recent past, extracellular vesicles have become recognized as important players in cell biology and biomedicine. Extracellular vesicles, including exosomes, microvesicles and apoptotic bodies, are phospholipid bilayer-enclosed structures found to be secreted by most if not all cells. Extracellular vesicle secretion represents a universal and highly conserved active cellular function. Importantly, increasing evidence supports that extracellular vesicles may serve as biomarkers and therapeutic targets or tools in human diseases. Cardiovascular disease undoubtedly represents one of the most intensely studied and rapidly growing areas of the extracellular vesicle field. However, in different studies related to cardiovascular disease, extracellular vesicles have been shown to exert diverse and sometimes discordant biological effects. Therefore, it might seem a puzzle whether these vesicles are in fact beneficial or detrimental to cardiovascular health. In this review we provide a general introduction to extracellular vesicles and an overview of their biological roles in cardiovascular diseases. Furthermore, we aim to untangle the various reasons for the observed discrepancy in biological effects of extracellular vesicles in cardiovascular diseases. To this end, we provide several examples that demonstrate that the observed functional diversity is in fact due to inherent differences among various types of extracellular vesicles.
Collapse
Affiliation(s)
- Xabier Osteikoetxea
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Andrea Németh
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Barbara W Sódar
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Krisztina V Vukman
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Edit Irén Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
187
|
Brown DV, Daniel PM, D'Abaco GM, Gogos A, Ng W, Morokoff AP, Mantamadiotis T. Coexpression analysis of CD133 and CD44 identifies proneural and mesenchymal subtypes of glioblastoma multiforme. Oncotarget 2016; 6:6267-80. [PMID: 25749043 PMCID: PMC4467436 DOI: 10.18632/oncotarget.3365] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 01/12/2015] [Indexed: 02/03/2023] Open
Abstract
Accumulating evidence suggests that the stem cell markers CD133 and CD44 indicate molecular subtype in Glioblastoma Multiforme (GBM). Gene coexpression analysis of The Cancer Genome Atlas GBM dataset was undertaken to compare markers of the Glioblastoma Stem-Progenitor Cell (GSPC) phenotype. Pearson correlation identified genes coexpressed with stem cell markers, which were then used to build a gene signature that classifies patients based on a CD133 coexpression module signature (CD133-M) or CD44-M subtype. CD133-M tumors were enriched for the Proneural (PN) GBM subtype compared to Mesenchymal (MES) subtype for CD44-M tumors. Gene set enrichment identified DNA replication/cell cycle genes in the CD133-M and invasion/migration in CD44-M, while functional experiments showed enhanced cellular growth in CD133 expressing cells and enhanced invasion in cells expressing CD44. As with the 4 major molecular subtypes of GBM, there was no long-term survival difference between CD44-M and CD133-M patients, although CD44-M patients responded better to temozolomide while CD133-M patients benefited from radiotherapy. The use of a targeted coexpression approach to predict functional properties of surface marker expressing cells is novel, and in the context of GBM, supports accumulating evidence that CD133 and CD44 protein marker expression correlates with molecular subtype.
Collapse
Affiliation(s)
- Daniel V Brown
- Department of Pathology, University of Melbourne, Melbourne, Australia
| | - Paul M Daniel
- Department of Pathology, University of Melbourne, Melbourne, Australia
| | - Giovanna M D'Abaco
- Department of Surgery (RMH), University of Melbourne, Parkville, Victoria, Australia.,Centre for Neural Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Gogos
- Department of Surgery (RMH), University of Melbourne, Parkville, Victoria, Australia
| | - Wayne Ng
- Department of Surgery (RMH), University of Melbourne, Parkville, Victoria, Australia
| | - Andrew P Morokoff
- Department of Surgery (RMH), University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
188
|
Focus on Extracellular Vesicles: Therapeutic Potential of Stem Cell-Derived Extracellular Vesicles. Int J Mol Sci 2016; 17:174. [PMID: 26861305 PMCID: PMC4783908 DOI: 10.3390/ijms17020174] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/15/2015] [Indexed: 12/20/2022] Open
Abstract
The intense research focus on stem and progenitor cells could be attributed to their differentiation potential to generate new cells to replace diseased or lost cells in many highly intractable degenerative diseases, such as Alzheimer disease, multiple sclerosis, and heart diseases. However, experimental and clinical studies have increasingly attributed the therapeutic efficacy of these cells to their secretion. While stem and progenitor cells secreted many therapeutic molecules, none of these molecules singly or in combination could recapitulate the functional effects of stem cell transplantations. Recently, it was reported that extracellular vesicles (EVs) could recapitulate the therapeutic effects of stem cell transplantation. Based on the observations reported thus far, the prevailing hypothesis is that stem cell EVs exert their therapeutic effects by transferring biologically active molecules such as proteins, lipids, mRNA, and microRNA from the stem cells to injured or diseased cells. In this respect, stem cell EVs are similar to EVs from other cell types. They are both primarily vehicles for intercellular communication. Therefore, the differentiating factor is likely due to the composition of their cargo. The cargo of EVs from different cell types are known to include a common set of proteins and also proteins that reflect the cell source of the EVs and the physiological or pathological state of the cell source. Hence, elucidation of the stem cell EV cargo would provide an insight into the multiple physiological or biochemical changes necessary to affect the many reported stem cell-based therapeutic outcomes in a variety of experimental models and clinical trials.
Collapse
|
189
|
Wuchter P, Saffrich R, Giselbrecht S, Nies C, Lorig H, Kolb S, Ho AD, Gottwald E. Microcavity arrays as an in vitro model system of the bone marrow niche for hematopoietic stem cells. Cell Tissue Res 2016; 364:573-584. [PMID: 26829941 DOI: 10.1007/s00441-015-2348-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/10/2015] [Indexed: 12/28/2022]
Abstract
In previous studies human mesenchymal stromal cells (MSCs) maintained the "stemness" of human hematopoietic progenitor cells (HPCs) through direct cell-cell contact in two-dimensional co-culture systems. We establish a three-dimensional (3D) co-culture system based on a custom-made chip, the 3(D)-KITChip, as an in vitro model system of the human hematopoietic stem cell niche. This array of up to 625 microcavities, with 300 μm size in each orientation, was inserted into a microfluidic bioreactor. The microcavities of the 3(D)-KITChip were inoculated with human bone marrow MSCs together with umbilical cord blood HPCs. MSCs used the microcavities as a scaffold to build a complex 3D mesh. HPCs were distributed three-dimensionally inside this MSC network and formed ß-catenin- and N-cadherin-based intercellular junctions to the surrounding MSCs. Using RT(2)-PCR and western blots, we demonstrate that a proportion of HPCs maintained the expression of CD34 throughout a culture period of 14 days. In colony-forming unit assays, the hematopoietic stem cell plasticity remained similar after 14 days of bioreactor co-culture, whereas monolayer co-cultures showed increasing signs of HPC differentiation and loss of stemness. These data support the notion that the 3D microenvironment created within the microcavity array preserves vital stem cell functions of HPCs more efficiently than conventional co-culture systems.
Collapse
Affiliation(s)
- Patrick Wuchter
- Department of Medicine V, Heidelberg University, 69120, Heidelberg, Germany. .,HEiKA - Heidelberg Karlsruhe Research Partnership, Heidelberg University and Karlsruhe Institute of Technology, Heidelberg and Karlsruhe, Germany.
| | - Rainer Saffrich
- Department of Medicine V, Heidelberg University, 69120, Heidelberg, Germany.,HEiKA - Heidelberg Karlsruhe Research Partnership, Heidelberg University and Karlsruhe Institute of Technology, Heidelberg and Karlsruhe, Germany
| | - Stefan Giselbrecht
- HEiKA - Heidelberg Karlsruhe Research Partnership, Heidelberg University and Karlsruhe Institute of Technology, Heidelberg and Karlsruhe, Germany.,Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Cordula Nies
- Institute for Biological Interfaces-5, Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Karlsruhe, Germany.,HEiKA - Heidelberg Karlsruhe Research Partnership, Heidelberg University and Karlsruhe Institute of Technology, Heidelberg and Karlsruhe, Germany
| | - Hanna Lorig
- Institute for Biological Interfaces-5, Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Karlsruhe, Germany.,HEiKA - Heidelberg Karlsruhe Research Partnership, Heidelberg University and Karlsruhe Institute of Technology, Heidelberg and Karlsruhe, Germany
| | - Stephanie Kolb
- Institute for Biological Interfaces-5, Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Karlsruhe, Germany.,HEiKA - Heidelberg Karlsruhe Research Partnership, Heidelberg University and Karlsruhe Institute of Technology, Heidelberg and Karlsruhe, Germany
| | - Anthony D Ho
- Department of Medicine V, Heidelberg University, 69120, Heidelberg, Germany.,HEiKA - Heidelberg Karlsruhe Research Partnership, Heidelberg University and Karlsruhe Institute of Technology, Heidelberg and Karlsruhe, Germany
| | - Eric Gottwald
- Institute for Biological Interfaces-5, Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Karlsruhe, Germany. .,HEiKA - Heidelberg Karlsruhe Research Partnership, Heidelberg University and Karlsruhe Institute of Technology, Heidelberg and Karlsruhe, Germany.
| |
Collapse
|
190
|
Dudok JJ, Murtaza M, Henrique Alves C, Rashbass P, Wijnholds J. Crumbs 2 prevents cortical abnormalities in mouse dorsal telencephalon. Neurosci Res 2016; 108:12-23. [PMID: 26802325 DOI: 10.1016/j.neures.2016.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 01/15/2023]
Abstract
The formation of a functionally integrated nervous system is dependent on a highly organized sequence of events that includes timely division and differentiation of progenitors. Several apical polarity proteins have been shown to play crucial roles during neurogenesis, however, the role of Crumbs 2 (CRB2) in cortical development has not previously been reported. Here, we show that conditional ablation of Crb2 in the murine dorsal telencephalon leads to defects in the maintenance of the apical complex. Furthermore, within the mutant dorsal telencephalon there is premature expression of differentiation proteins. We examined the physiological function of Crb2 on wild type genetic background as well as on background lacking Crb1. Telencephalon lacking CRB2 resulted in reduced levels of PALS1 and CRB3 from the apical complex, an increased number of mitotic cells and expanded neuronal domain. These defects are transient and therefore only result in rather mild cortical abnormalities. We show that CRB2 is required for maintenance of the apical polarity complex during development of the cortex and regulation of cell division, and that loss of CRB2 results in cortical abnormalities.
Collapse
Affiliation(s)
- Jacobus J Dudok
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Mariyam Murtaza
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - C Henrique Alves
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Pen Rashbass
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Jan Wijnholds
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Department of Ophthalmology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
191
|
Bátiz LF, Castro MA, Burgos PV, Velásquez ZD, Muñoz RI, Lafourcade CA, Troncoso-Escudero P, Wyneken U. Exosomes as Novel Regulators of Adult Neurogenic Niches. Front Cell Neurosci 2016; 9:501. [PMID: 26834560 PMCID: PMC4717294 DOI: 10.3389/fncel.2015.00501] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 12/14/2015] [Indexed: 01/09/2023] Open
Abstract
Adult neurogenesis has been convincingly demonstrated in two regions of the mammalian brain: the sub-granular zone (SGZ) of the dentate gyrus (DG) in the hippocampus, and the sub-ventricular zone (SVZ) of the lateral ventricles (LV). SGZ newborn neurons are destined to the granular cell layer (GCL) of the DG, while new neurons from the SVZ neurons migrate rostrally into the olfactory bulb (OB). The process of adult neurogenesis persists throughout life and is supported by a pool of neural stem cells (NSCs), which reside in a unique and specialized microenvironment known as "neurogenic niche". Neurogenic niches are structured by a complex organization of different cell types, including the NSC-neuron lineage, glial cells and vascular cells. Thus, cell-to-cell communication plays a key role in the dynamic modulation of homeostasis and plasticity of the adult neurogenic process. Specific cell-cell contacts and extracellular signals originated locally provide the necessary support and regulate the balance between self-renewal and differentiation of NSCs. Furthermore, extracellular signals originated at distant locations, including other brain regions or systemic organs, may reach the niche through the cerebrospinal fluid (CSF) or the vasculature and influence its nature. The role of several secreted molecules, such as cytokines, growth factors, neurotransmitters, and hormones, in the biology of adult NSCs, has been systematically addressed. Interestingly, in addition to these well-recognized signals, a novel type of intercellular messengers has been identified recently: the extracellular vesicles (EVs). EVs, and particularly exosomes, are implicated in the transfer of mRNAs, microRNAs (miRNAs), proteins and lipids between cells and thus are able to modify the function of recipient cells. Exosomes appear to play a significant role in different stem cell niches such as the mesenchymal stem cell niche, cancer stem cell niche and pre-metastatic niche; however, their roles in adult neurogenic niches remain virtually unexplored. This review focuses on the current knowledge regarding the functional relationship between cellular and extracellular components of the adult SVZ and SGZ neurogenic niches, and the growing evidence that supports the potential role of exosomes in the physiology and pathology of adult neurogenesis.
Collapse
Affiliation(s)
- Luis Federico Bátiz
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Program for Cell Biology and Microscopy, Universidad Austral de ChileValdivia, Chile; Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de ChileValdivia, Chile
| | - Maite A Castro
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Program for Cell Biology and Microscopy, Universidad Austral de ChileValdivia, Chile; Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de ChileValdivia, Chile
| | - Patricia V Burgos
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Program for Cell Biology and Microscopy, Universidad Austral de ChileValdivia, Chile; Instituto de Fisiología, Facultad de Medicina, Universidad Austral de ChileValdivia, Chile
| | - Zahady D Velásquez
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de ChileValdivia, Chile
| | - Rosa I Muñoz
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de ChileValdivia, Chile
| | - Carlos A Lafourcade
- Laboratorio de Neurociencias, Facultad de Medicina, Universidad de Los Andes Santiago, Chile
| | - Paulina Troncoso-Escudero
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de ChileValdivia, Chile
| | - Ursula Wyneken
- Laboratorio de Neurociencias, Facultad de Medicina, Universidad de Los Andes Santiago, Chile
| |
Collapse
|
192
|
Marçola M, Lopes-Ramos CM, Pereira EP, Cecon E, Fernandes PA, Tamura EK, Camargo AA, Parmigiani RB, Markus RP. Light/Dark Environmental Cycle Imposes a Daily Profile in the Expression of microRNAs in Rat CD133+Cells. J Cell Physiol 2016; 231:1953-63. [DOI: 10.1002/jcp.25300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/04/2016] [Indexed: 02/07/2023]
Affiliation(s)
- Marina Marçola
- Department of Physiology; Laboratory of Chronopharmacology; Institute of Bioscience; University of São Paulo; São Paulo City São Paulo Brazil
| | - Camila M. Lopes-Ramos
- Centro de Oncologia Molecular; Hospital Sírio-Libanês; São Paulo City São Paulo Brazil
| | - Eliana P. Pereira
- Department of Physiology; Laboratory of Chronopharmacology; Institute of Bioscience; University of São Paulo; São Paulo City São Paulo Brazil
| | - Erika Cecon
- Department of Physiology; Laboratory of Chronopharmacology; Institute of Bioscience; University of São Paulo; São Paulo City São Paulo Brazil
| | - Pedro A. Fernandes
- Department of Physiology; Laboratory of Chronopharmacology; Institute of Bioscience; University of São Paulo; São Paulo City São Paulo Brazil
| | - Eduardo K. Tamura
- Department of Physiology; Laboratory of Chronopharmacology; Institute of Bioscience; University of São Paulo; São Paulo City São Paulo Brazil
| | - Anamaria A. Camargo
- Centro de Oncologia Molecular; Hospital Sírio-Libanês; São Paulo City São Paulo Brazil
| | - Raphael B. Parmigiani
- Centro de Oncologia Molecular; Hospital Sírio-Libanês; São Paulo City São Paulo Brazil
| | - Regina P. Markus
- Department of Physiology; Laboratory of Chronopharmacology; Institute of Bioscience; University of São Paulo; São Paulo City São Paulo Brazil
| |
Collapse
|
193
|
Müller G. Personalized Diagnosis and Therapy. DRUG DISCOVERY AND EVALUATION: PHARMACOLOGICAL ASSAYS 2016:3167-3284. [DOI: 10.1007/978-3-319-05392-9_152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
194
|
Kotani M, Sato Y, Ueno A, Ito T, Itoh K, Imada M. A Novel Monoclonal Antibody Against Neuroepithelial and Ependymal Cells and Characteristics of Its Positive Cells in Neurospheres. Cell Mol Neurobiol 2016; 36:11-26. [PMID: 26012782 PMCID: PMC11482417 DOI: 10.1007/s10571-015-0216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/20/2015] [Indexed: 11/26/2022]
Abstract
There are still few useful cell membrane surface antigens suitable for identification and isolation of neural stem cells (NSCs). We generated a novel monoclonal antibody (mAb), designated as mAb against immature neural cell antigens (INCA mAb), which reacted with the areas around a lateral ventricle of a fetal cerebrum. INCA mAb specifically reacted with neuroepithelial cells in fetal cerebrums and ependymal cells in adult cerebrums. The recognition molecules were O-linked 40 and 42 kDa glycoproteins on the cell membrane surface (gp40 INCA and gp42 INCA). Based on expression pattern analysis of the recognition molecules in developing cerebrums, it was concluded that gp42 INCA was a stage-specific antigen expressed on undifferentiated neuroepithelial cells, while gp40 INCA was a cell lineage-specific antigen expressed at the stages of differentiation from neuroepithelial cells to ependymal cells. A flow cytometric analysis showed that fetal and young adult neurospheres were divided into INCA mAb(-) CD133 polyclonal antibody (pAb)(-), INCA mAb(+) CD133 pAb(-), and INCA mAb(+) CD133 pAb(+) cell populations based on the reactivity against INCA mAb and CD133 pAb. The proportion of cells having the neurosphere formation capability in the INCA mAb(+) CD133 pAb(+) cell population was significantly larger than that of undivided neurospheres. Neurospheres formed by clonal expansion of INCA mAb(+) CD133 pAb(+) cells gave rise to neurons and glial cells. INCA mAb will be a useful immunological probe in the study of NSCs.
Collapse
Affiliation(s)
- Masaharu Kotani
- Department of Molecular and Cellular Biology, Faculty of Pharmaceutical Sciences, Ohu University, Fukushima, 963-8611, Japan.
| | - Yasunori Sato
- Department of Health Chemistry, Faculty of Pharmaceutical Sciences, Ohu University, Fukushima, 963-8611, Japan
| | - Akemichi Ueno
- Department of Health Chemistry, Faculty of Pharmaceutical Sciences, Ohu University, Fukushima, 963-8611, Japan
| | - Toshinori Ito
- Department of English Language Technology, Faculty of Pharmaceutical Sciences, Ohu University, Fukushima, 963-8611, Japan
| | - Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, 769-2193, Japan
| | - Masato Imada
- Department of Functional Morphology, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| |
Collapse
|
195
|
Carrière J, Barnich N, Nguyen HTT. Exosomes: From Functions in Host-Pathogen Interactions and Immunity to Diagnostic and Therapeutic Opportunities. Rev Physiol Biochem Pharmacol 2016; 172:39-75. [PMID: 27600934 DOI: 10.1007/112_2016_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since their first description in the 1980s, exosomes, small endosomal-derived extracellular vesicles, have been involved in innate and adaptive immunity through modulating immune responses and mediating antigen presentation. Increasing evidence has reported the role of exosomes in host-pathogen interactions and particularly in the activation of antimicrobial immune responses. The growing interest concerning exosomes in infectious diseases, their accessibility in various body fluids, and their capacity to convey a rich content (e.g., proteins, lipids, and nucleic acids) to distant recipient cells led the scientific community to consider the use of exosomes as potential new diagnostic and therapeutic tools. In this review, we summarize current understandings of exosome biogenesis and their composition and highlight the function of exosomes as immunomodulators in pathological states such as in infectious disorders. The potential of using exosomes as diagnostic and therapeutic tools is also discussed.
Collapse
Affiliation(s)
- Jessica Carrière
- University of Clermont Auvergne, M2iSH, UMR 1071 INSERM/University of Auvergne, Clermont-Ferrand, 63001, France.,INRA USC 2018, Clermont-Ferrand, 63001, France
| | - Nicolas Barnich
- University of Clermont Auvergne, M2iSH, UMR 1071 INSERM/University of Auvergne, Clermont-Ferrand, 63001, France.,INRA USC 2018, Clermont-Ferrand, 63001, France
| | - Hang Thi Thu Nguyen
- University of Clermont Auvergne, M2iSH, UMR 1071 INSERM/University of Auvergne, Clermont-Ferrand, 63001, France. .,INRA USC 2018, Clermont-Ferrand, 63001, France.
| |
Collapse
|
196
|
Guerra MM, González C, Caprile T, Jara M, Vío K, Muñoz RI, Rodríguez S, Rodríguez EM. Understanding How the Subcommissural Organ and Other Periventricular Secretory Structures Contribute via the Cerebrospinal Fluid to Neurogenesis. Front Cell Neurosci 2015; 9:480. [PMID: 26778959 PMCID: PMC4689152 DOI: 10.3389/fncel.2015.00480] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/26/2015] [Indexed: 12/13/2022] Open
Abstract
The dynamic and molecular composition of the cerebrospinal fluid (CSF) and, consequently, the CSF physiology is much more complex and fascinating than the simplistic view held for decades. Signal molecules either transported from blood to CSF or secreted into the CSF by circumventricular organs and CSF-contacting neurons, use the CSF to reach their targets in the brain, including the pre- and postnatal neurogenic niche. The subcommissural organ (SCO), a highly conserved brain gland present throughout the vertebrate phylum, is one of the sources for signals, as well as the choroid plexus, tanycytes and CSF-contacting neurons. The SCO secretes into the fetal and adult CSF SCO-spondin, transthyretin, and basic fibroblast growth factor. These proteins participate in certain aspects of neurogenesis, such as cell cycle of neural stem cells, neuronal differentiation, and axon pathfinding. Through the CSF, the SCO-secretory proteins may reach virtually any target in the embryonic and adult central nervous system. Since the SCO continues to secrete throughout life span, it seems likely that the neurogenetic property of the SCO compounds would be targeted to the niches where neurogenesis continues in adulthood. This review is aimed to bring into discussion early and new evidence concerning the role(s) of the SCO, and the probable mechanisms by which SCO compounds can readily reach the neurogenic niche of the subventricular zone flowing with the CSF to participate in the regulation of the neurogenic niche. As we unfold the multiples trans-fluid talks between discrete brain domains we will have more tools to influence such talks.
Collapse
Affiliation(s)
- Maria M Guerra
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile Valdivia, Chile
| | - César González
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile Valdivia, Chile
| | - Teresa Caprile
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción Concepción, Chile
| | - Maryoris Jara
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile Valdivia, Chile
| | - Karin Vío
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile Valdivia, Chile
| | - Rosa I Muñoz
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile Valdivia, Chile
| | - Sara Rodríguez
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile Valdivia, Chile
| | - Esteban M Rodríguez
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile Valdivia, Chile
| |
Collapse
|
197
|
Patel B, Patel J, Cho JH, Manne S, Bonala S, Henske E, Roegiers F, Markiewski M, Karbowniczek M. Exosomes mediate the acquisition of the disease phenotypes by cells with normal genome in tuberous sclerosis complex. Oncogene 2015; 35:3027-36. [DOI: 10.1038/onc.2015.358] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/31/2015] [Accepted: 08/24/2015] [Indexed: 01/14/2023]
|
198
|
Porro C, Trotta T, Panaro MA. Microvesicles in the brain: Biomarker, messenger or mediator? J Neuroimmunol 2015; 288:70-8. [PMID: 26531697 DOI: 10.1016/j.jneuroim.2015.09.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 09/09/2015] [Accepted: 09/15/2015] [Indexed: 02/06/2023]
Abstract
Microvesicles (MVs) are cell-derived vesicles produced after membrane remodeling of eukaryotic cells during activation or apoptosis. MVs are considered a novel biomarker/messenger for many diseases. Neurons, astrocytes, microglia, as well as neural stem cells, have been described to release MVs, many studies have demonstrated the involvement of platelets and endothelial MVs in some central nervous diseases. This review is focused on understanding the role of MVs in the brain; new findings demonstrated that MVs can contribute to the onset and progression of some neurodegenerative and neuroinflammatory diseases, as well as to the development and regeneration of the nervous system.
Collapse
Affiliation(s)
- Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | - Teresa Trotta
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
199
|
Huang BK, Gamm UA, Bhandari V, Khokha MK, Choma MA. Three-dimensional, three-vector-component velocimetry of cilia-driven fluid flow using correlation-based approaches in optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2015; 6:3515-38. [PMID: 26417520 PMCID: PMC4574676 DOI: 10.1364/boe.6.003515] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/02/2015] [Accepted: 08/07/2015] [Indexed: 05/21/2023]
Abstract
Microscale quantification of cilia-driven fluid flow is an emerging area in medical physiology, including pulmonary and central nervous system physiology. Cilia-driven fluid flow is most completely described by a three-dimensional, three-component (3D3C) vector field. Here, we generate 3D3C velocimetry measurements by synthesizing higher dimensional data from lower dimensional measurements obtained using two separate optical coherence tomography (OCT)-based approaches: digital particle image velocimetry (DPIV) and dynamic light scattering (DLS)-OCT. Building on previous work, we first demonstrate directional DLS-OCT for 1D2C velocimetry measurements in the sub-1 mm/s regime (sub-2.5 inch/minute regime) of cilia-driven fluid flow in Xenopus epithelium, an important animal model of the ciliated respiratory tract. We then extend our analysis toward 3D3C measurements in Xenopus using both DLS-OCT and DPIV. We demonstrate the use of DPIV-based approaches towards flow imaging of Xenopus cerebrospinal fluid and mouse trachea, two other important ciliary systems. Both of these flows typically fall in the sub-100 μm/s regime (sub-0.25 inch/minute regime). Lastly, we develop a framework for optimizing the signal-to-noise ratio of 3D3C flow velocity measurements synthesized from 2D2C measures in non-orthogonal planes. In all, 3D3C OCT-based velocimetry has the potential to comprehensively characterize the flow performance of biological ciliated surfaces.
Collapse
Affiliation(s)
- Brendan K. Huang
- Department of Biomedical Engineering, Yale University, 55 Prospect St., New Haven, Connecticut 06520,
USA
| | - Ute A. Gamm
- Department of Diagnostic Radiology, Yale University, 333 Cedar St., New Haven, Connecticut 06510,
USA
| | - Vineet Bhandari
- Department of Pediatrics, Yale University, 333 Cedar St., New Haven, Connecticut 06510,
USA
- Current affiliations: Drexel University College of Medicine, Philadelphia, PA, 19129,
USA
- St. Christopher’s Hospital for Children, Philadelphia, PA, 19134,
USA
| | - Mustafa K. Khokha
- Department of Pediatrics, Yale University, 333 Cedar St., New Haven, Connecticut 06510,
USA
- Department of Genetics, Yale University, 333 Cedar St., New Haven, Connecticut 06510,
USA
| | - Michael A. Choma
- Department of Biomedical Engineering, Yale University, 55 Prospect St., New Haven, Connecticut 06520,
USA
- Department of Diagnostic Radiology, Yale University, 333 Cedar St., New Haven, Connecticut 06510,
USA
- Department of Pediatrics, Yale University, 333 Cedar St., New Haven, Connecticut 06510,
USA
- Department of Applied Physics, PO Box 208267, Yale University, New Haven, Connecticut 06520,
USA
| |
Collapse
|
200
|
Arai Y, Sampaio JL, Wilsch-Bräuninger M, Ettinger AW, Haffner C, Huttner WB. Lipidome of midbody released from neural stem and progenitor cells during mammalian cortical neurogenesis. Front Cell Neurosci 2015; 9:325. [PMID: 26379497 PMCID: PMC4551859 DOI: 10.3389/fncel.2015.00325] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/06/2015] [Indexed: 01/24/2023] Open
Abstract
Midbody release from proliferative neural progenitor cells is tightly associated with the neuronal commitment of neural progenitor cells during the progression of neurogenesis in the mammalian cerebral cortex. While the central portion of the midbody, a cytoplasmic bridge between nascent daughter cells, is engulfed by one of the daughter cell by most cells in vitro, it is shown to be released into the extracellular cerebrospinal fluid (CF) in vivo in mouse embryos. Several proteins have been involved in midbody release; however, few studies have addressed the participation of the plasma membrane's lipids in this process. Here, we show by Shotgun Lipidomic analysis that phosphatydylserine (PS), among other lipids, is enriched in the released midbodies compared to lipoparticles and cellular membranes, both collected from the CF of the developing mouse embryos. Moreover, the developing mouse embryo neural progenitor cells released two distinct types of midbodies carrying either internalized PS or externalized PS on their membrane. This strongly suggests that phagocytosis and an alternative fate of released midbodies exists. HeLa cells, which are known to mainly engulf the midbody show almost no PS exposure, if any, on the outer leaflet of the midbody membrane. These results point toward that PS exposure might be involved in the selection of recipients of released midbodies, either to be engulfed by daughter cells or phagocytosed by non-daughter cells or another cell type in the developing cerebral cortex.
Collapse
Affiliation(s)
- Yoko Arai
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| | - Julio L Sampaio
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| | | | - Andreas W Ettinger
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| | - Christiane Haffner
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| |
Collapse
|