151
|
Liu F, Zhang X, Li Y, Chen Q, Liu F, Zhu X, Mei L, Song X, Liu X, Song Z, Zhang J, Zhang W, Ling P, Wang F. Anti-Inflammatory Effects of a Mytilus coruscus α-d-Glucan (MP-A) in Activated Macrophage Cells via TLR4/NF-κB/MAPK Pathway Inhibition. Mar Drugs 2017; 15:md15090294. [PMID: 28930149 PMCID: PMC5618433 DOI: 10.3390/md15090294] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/03/2017] [Accepted: 09/15/2017] [Indexed: 12/17/2022] Open
Abstract
The hard-shelled mussel (Mytilus coruscus) has been used as Chinese traditional medicine for thousands of years; however, to date the ingredients responsible for the various beneficial health outcomes attributed to Mytilus coruscus are still unclear. An α-d-Glucan, called MP-A, was isolated from Mytilus coruscus, and observed to exert anti-inflammatory activity in THP-1 human macrophage cells. Specifically, we showed that MP-A treatment inhibited the production of inflammatory markers, including TNF-α, NO, and PGE2, inducible NOS (iNOS), and cyclooxygenase-2 (COX-2), in LPS-activated THP-1 cells. It was also shown to enhance phagocytosis in the analyzed cells, but to severely inhibit the phosphorylation of mitogen-activated protein kinases (MAPKs) and the nuclear translocation of NF-κB P65. Finally, MP-A was found to exhibit a high binding affinity for the cell surface receptor TLR4, but a low affinity for TLR2 and dectin-1, via surface plasmon resonance (SPR) analysis. The study indicates that MP-A suppresses LPS-induced TNF-α, NO and PEG2 production via TLR4/NF-κB/MAPK pathway inhibition, and suggests that MP-A may be a promising therapeutic candidate for diseases associated with TNF-α, NO, and/or PEG2 overproduction.
Collapse
Affiliation(s)
- Fuyan Liu
- Shandong Academy of Pharmaceutical Science, Jinan 250101, China.
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Xiaofeng Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yuqiu Li
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Qixin Chen
- Shandong Academy of Pharmaceutical Science, Jinan 250101, China.
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Fei Liu
- Shandong Academy of Pharmaceutical Science, Jinan 250101, China.
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Xiqiang Zhu
- Shandong Academy of Pharmaceutical Science, Jinan 250101, China.
| | - Li Mei
- Shandong Academy of Pharmaceutical Science, Jinan 250101, China.
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Xinlei Song
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Xia Liu
- Shandong Academy of Pharmaceutical Science, Jinan 250101, China.
| | - Zhigang Song
- Shandong Academy of Pharmaceutical Science, Jinan 250101, China.
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Jinhua Zhang
- Shandong Academy of Pharmaceutical Science, Jinan 250101, China.
| | - Wen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Peixue Ling
- Shandong Academy of Pharmaceutical Science, Jinan 250101, China. or
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China. or
| | - Fengshan Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
152
|
Wang JJ, Wei ZK, Zhang X, Wang YN, Fu YH, Yang ZT. Butyrate protects against disruption of the blood-milk barrier and moderates inflammatory responses in a model of mastitis induced by lipopolysaccharide. Br J Pharmacol 2017; 174:3811-3822. [PMID: 28800679 DOI: 10.1111/bph.13976] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Short-chain fatty acids are fermentation end products produced by gut bacteria, which have been shown to ameliorate inflammatory bowel diseases and allergic asthma. However, the mechanism involved remains largely unknown. Here, we investigate the protective effects and mechanisms of sodium butyrate (SB) on LPS-induced mastitis model. EXPERIMENTAL APPROACH Effects of increasing doses of SB on blood-milk barrier function and inflammation are studied in BALB/c mice with LPS-induced mastitis. The underlying mechanisms of anti-inflammatory effects of SB were further investigated in LPS-stimulated mouse mammary epithelial cells (mMECs). KEY RESULTS The results show that SB decreased LPS-induced disruption in mammary tissues, infiltration of inflammatory cells and the levels of TNF-α, IL-6 and IL-1β. SB up-regulated the tight junction proteins occludin and claudin-3 and reduced blood-milk barrier permeability in LPS-induced mastitis. Studies in vitro revealed that SB inhibited LPS-induced inflammatory response by inhibition of the NF-κB signalling pathway and histone deacetylases in LPS-stimulated mMECs. CONCLUSIONS AND IMPLICATIONS In our model, SB protected against LPS-induced mastitis by preserving blood-milk barrier function and depressing pro-inflammatory responses, suggesting the potential use of SB as a prophylactic agent to protect blood-milk barrier function in mastitis.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Zheng-Kai Wei
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Xu Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Ya-Nan Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Yun-He Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China.,Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin Province, China
| | - Zheng-Tao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
153
|
Mao YQ, Houry WA. The Role of Pontin and Reptin in Cellular Physiology and Cancer Etiology. Front Mol Biosci 2017; 4:58. [PMID: 28884116 PMCID: PMC5573869 DOI: 10.3389/fmolb.2017.00058] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/03/2017] [Indexed: 12/29/2022] Open
Abstract
Pontin (RUVBL1, TIP49, TIP49a, Rvb1) and Reptin (RUVBL2, TIP48, TIP49b, Rvb2) are highly conserved ATPases of the AAA+ (ATPases Associated with various cellular Activities) superfamily and are involved in various cellular processes that are important for oncogenesis. First identified as being upregulated in hepatocellular carcinoma and colorectal cancer, their overexpression has since been shown in multiple cancer types such as breast, lung, gastric, esophageal, pancreatic, kidney, bladder as well as lymphatic, and leukemic cancers. However, their exact functions are still quite unknown as they interact with many molecular complexes with vastly different downstream effectors. Within the nucleus, Pontin and Reptin participate in the TIP60 and INO80 complexes important for chromatin remodeling. Although not transcription factors themselves, Pontin and Reptin modulate the transcriptional activities of bona fide proto-oncogenes such as MYC and β-catenin. They associate with proteins involved in DNA damage repair such as PIKK complexes as well as with the core complex of Fanconi anemia pathway. They have also been shown to be important for cell cycle progression, being involved in assembly of telomerase, mitotic spindle, RNA polymerase II, and snoRNPs. When the two ATPases localize to the cytoplasm, they were reported to promote cancer cell invasion and metastasis. Due to their various roles in carcinogenesis, it is not surprising that Pontin and Reptin are proving to be important biomarkers for diagnosis and prognosis of various cancers. They are also current targets for the development of new therapeutic anticancer drugs.
Collapse
Affiliation(s)
- Yu-Qian Mao
- Department of Biochemistry, University of TorontoToronto, ON, Canada
| | - Walid A Houry
- Department of Biochemistry, University of TorontoToronto, ON, Canada.,Department of Chemistry, University of TorontoToronto, ON, Canada
| |
Collapse
|
154
|
Functions of protein phosphatase-6 in NF-κB signaling and in lymphocytes. Biochem Soc Trans 2017; 45:693-701. [PMID: 28620030 PMCID: PMC5473023 DOI: 10.1042/bst20160169] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/01/2017] [Accepted: 03/08/2017] [Indexed: 12/17/2022]
Abstract
Protein phosphatase-6 (PP6) is a member of the PPP family of Ser/Thr phosphatases involved in intracellular signaling. PP6 is conserved among all eukaryotes, and genetics in model organisms indicates it has non-redundant functions relative to other PPP phosphatases. PP6 functions in association with conserved SAPS subunits and, in vertebrate species, forms heterotrimers with Ankrd subunits. Multiple studies have demonstrated how PP6 exerts negative control at different steps of nuclear factor kappaB signaling. Expression of PP6 catalytic subunit and the PPP6R1 subunit is especially high in hematopoietic cells and lymphoid tissues. Recent efforts at conditionally knocking out genes for PP6c or PP6R1 (SAPS1) have revealed distinctive effects on development of and signaling in lymphocytes.
Collapse
|
155
|
Chen J, Xuan J, Gu YT, Shi KS, Xie JJ, Chen JX, Zheng ZM, Chen Y, Chen XB, Wu YS, Zhang XL, Wang XY. Celastrol reduces IL-1β induced matrix catabolism, oxidative stress and inflammation in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration in vivo. Biomed Pharmacother 2017; 91:208-219. [PMID: 28458159 DOI: 10.1016/j.biopha.2017.04.093] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 01/08/2023] Open
Abstract
Celastrol has been reported to exert therapeutic potential on pro-inflammatory diseases including asthma, Crohn's disease, arthritis and neurodegenerative disorders via inhibiting NF-κB pathway. While the effect of celastrol on intervertebral disc degeneration (IDD), which is also a pro-inflammatory disease, remains unknown. In this study, we evaluated the effect of celastrol on IDD in IL-1β treated human nucleus pulposus cells in vitro as well as in puncture induced rat IDD model in vivo. Our results showed that celastrol reduced the expression of catabolic genes (MMP-3, 9, 13, ADAMTS-4, 5), oxidative stress factors (COX-2, iNOS) and pro-inflammatory factors (IL-6, TNF-a) induced by IL-1β in nucleus pulposus cells, also phosphorylation of IκBα and p65 were attenuated by celastrol, indicating NF-κB pathway was inhibited by celastrol in nucleus pulposus cells. In vivo study showed that celastrol treated rats had stronger T2-weighted signal than vehicle-treated rats at 2 weeks and 6 weeks' time point, suggesting celastrol could attenuate intervertebral disc degeneration in vivo. Together, our study demonstrates that celastrol could reduce IL-1β induced matrix catabolism, oxidative stress and inflammation in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration in vivo, which shows its potential to be a therapeutic drug for IDD.
Collapse
Affiliation(s)
- Jian Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jun Xuan
- Jinhua Municipal Central Hospital, Jinhua Hospital of Zhejiang University, People's Republic of China
| | - Yun-Tao Gu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Ke-Si Shi
- The First Clinical College, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Jun-Jun Xie
- Department of Postgraduate Education, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Jiao-Xiang Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zeng-Ming Zheng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yu Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xi-Bang Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yao-Sen Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiao-Lei Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.
| | - Xiang-Yang Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.
| |
Collapse
|
156
|
Diniz MC, Olivon VC, Tavares LD, Simplicio JA, Gonzaga NA, de Souza DG, Bendhack LM, Tirapelli CR, Bonaventura D. Mechanisms underlying sodium nitroprusside-induced tolerance in the mouse aorta: Role of ROS and cyclooxygenase-derived prostanoids. Life Sci 2017; 176:26-34. [DOI: 10.1016/j.lfs.2017.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 01/15/2023]
|
157
|
Resveratrol Induces Differentiation of Human Umbilical Cord Mesenchymal Stem Cells into Neuron-Like Cells. Stem Cells Int 2017; 2017:1651325. [PMID: 28512471 PMCID: PMC5415670 DOI: 10.1155/2017/1651325] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/29/2017] [Accepted: 02/15/2017] [Indexed: 01/01/2023] Open
Abstract
Objective. Human umbilical cord mesenchymal stem cells (hUC-MSCs) potentially differentiate to various types of cells including neuron-like cells. The natural polyphenol resveratrol benefits patients with many diseases including ischemic brain injury. We hypothesize that resveratrol induces differentiation of hUC-MSCs into neuron-like cells. Methods. Flow cytometry was used to determine the surface antigens in different stage of hUC-MSCs (P2, P5, and P10). Nestin, neuron-specific enolase (NSE), and glial fibrillary acidic protein (GFAP) were detected by immunocytochemistry, Western blotting, and real time RT-PCT. The cultured hUC-MSCs were treated with resveratrol at different concentrations (0, 7.5, 15.0, and 30.0 mg/L). Nestin, GFAP, and NSE protein and mRNA were measured at posttreatment time points of 2 h, 4 h, 6 h, 12 h, and 24 h. Results. Neuron-like cells were found in hUC-MSCs treated by resveratrol at concentrations of 15.0 and 30.0 mg/L, but not in hUC-MSCs treated with vehicle and 7.5 mg/L resveratrol. Furthermore, immunocytochemical staining revealed that nestin and NSE immunoreactivities were positive in resveratrol-treated hUC-MSCs at concentrations of 15.0 and 30.0 mg/L. Resveratrol treatment significantly increased nestin and NSE protein and mRNA levels 4 h after the treatment. However, resveratrol treatment did not change GFAP immunoreactivities and protein and mRNA expression levels in cultured hUC-MSCs. Conclusions. Taken together, resveratrol treatment induces a differentiation of hUC-MSCs into neuron-like cells at relatively high concentrations.
Collapse
|
158
|
Corrêa MG, Sacchetti SB, Ribeiro FV, Pimentel SP, Casarin RCV, Cirano FR, Casati MZ. Periodontitis increases rheumatic factor serum levels and citrullinated proteins in gingival tissues and alter cytokine balance in arthritic rats. PLoS One 2017; 12:e0174442. [PMID: 28358812 PMCID: PMC5373534 DOI: 10.1371/journal.pone.0174442] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 03/09/2017] [Indexed: 01/10/2023] Open
Abstract
This study investigated some immunological features by experimental periodontitis (EP) and rheumatoid arthritis (RA) disease interact in destructive processes in arthritic rats. Rats were assigned to the following groups: EP +RA; RA; EP; and Negative Control. RA was induced by immunizations with type-II collagen and a local immunization with Complete Freund's adjuvant in the paw. Periodontitis was induced by ligating the right first molars. The serum level of rheumatoid factor (RF) and anti-citrullinated protein antibody (ACCPA) were measured before the induction of EP (T1) and at 28 days after (T2) by ELISA assay. ACCPA levels were also measured in the gingival tissue at T2. The specimens were processed for morphometric analysis of bone loss, and the gingival tissue surrounding the first molar was collected for the quantification of interleukin IL-1β, IL-4, IL-6, IL-17 and TNF-α using a Luminex/MAGpix assay. Paw edema was analyzed using a plethysmometer. Periodontitis increased the RF and ACCPA levels in the serum and in the gingival tissue, respectively. Besides, the level of paw swelling was increased by EP and remained in progress until the end of the experiment, when EP was associated with RA. Greater values of IL-17 were observed only when RA was present, in spite of PE. It can be concluded that periodontitis increases rheumatic factor serum levels and citrullinated proteins level in gingival tissues and alter cytokine balance in arthritic rats; at the same time, arthritis increases periodontal destruction, confirming the bidirectional interaction between diseases.
Collapse
Affiliation(s)
- Mônica G. Corrêa
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - Silvana B. Sacchetti
- Pediatric Rheumatology Unit, Pediatric Rheumatology Unit, Santa Casa de São Paulo, São Paulo, SP, Brazil
| | - Fernanda Vieira Ribeiro
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - Suzana Peres Pimentel
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | | | - Fabiano Ribeiro Cirano
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - Marcio Z. Casati
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
159
|
O'Keeffe SM, Beynon AL, Davies JS, Moynagh PN, Coogan AN. NF-κB signalling is involved in immune-modulation, but not basal functioning, of the mouse suprachiasmatic circadian clock. Eur J Neurosci 2017; 45:1111-1123. [PMID: 28245070 DOI: 10.1111/ejn.13553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 12/20/2022]
Affiliation(s)
- S. M. O'Keeffe
- Department of Psychology; Maynooth University; National University of Ireland; John Hume Building Maynooth Ireland
| | - A. L. Beynon
- Institute of Life Science; School of Medicine; Swansea University; Wales UK
| | - J. S. Davies
- Institute of Life Science; School of Medicine; Swansea University; Wales UK
| | - P. N. Moynagh
- Department of Biology; Maynooth University; National University of Ireland; Maynooth Ireland
| | - A. N. Coogan
- Department of Psychology; Maynooth University; National University of Ireland; John Hume Building Maynooth Ireland
| |
Collapse
|
160
|
Cao L, Chen J, Wei Y, Shi H, Zhang X, Yuan J, Shi D, Liu J, Zhu X, Wang X, Cui S, Feng L. Porcine parvovirus induces activation of NF-κB signaling pathways in PK-15 cells mediated by toll-like receptors. Mol Immunol 2017; 85:248-255. [PMID: 28340426 DOI: 10.1016/j.molimm.2016.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 01/18/2023]
Abstract
Porcine parvovirus (PPV) is a pathogenic factor that primarily induces severe reproductive failure of pregnant swine, which results in extensive losses to the swine industry worldwide. In this study, a potential mechanism of PPV-induced activation of the nuclear transcription factor-kappaB (NF-κB) by infection in porcine kidney cells (PK-15) was elucidated for the first time. The subcellular localization of p65 analyzed by immunofluorescence assay (IFA) showed that PPV infection induced p65 translocation from the cytoplasm to the nucleus. p65 phosphorylation was detected in PK-15 cells with progression of PPV infection. NF-κB-regulated gene expression was enhanced in a viral dose-dependent manner using the NF-κB luciferase reporter assay system. Furthermore, PPV-induced NF-κB activation was closely related to the inhibitory kappa B alpha (IκBα) degradation. Treatment with a NF-κB-specific inhibitor demonstrated that the production of PPV progeny viruses was enhanced to some extent. In addition, these results demonstrated that the adapter molecule TIR domain-containing adapter inducing IFN-β (TRIF) and myeloid differentiation primary-response protein 88 (MyD88)-dependent signaling pathways were involved in PPV-induced NF-κB activation. Together, these results provide evidence that the toll-like receptor (TLR) pathway participates in recognition of PPV and induction of NF-κB activation, and add to understanding of the molecular mechanisms underlying PPV infection.
Collapse
Affiliation(s)
- Liyan Cao
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150040, China
| | - Jianfei Chen
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150040, China
| | - Yanwu Wei
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150040, China
| | - Hongyan Shi
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150040, China
| | - Xin Zhang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150040, China
| | - Jing Yuan
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150040, China
| | - Da Shi
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150040, China
| | - Jianbo Liu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150040, China
| | - Xiangdong Zhu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150040, China
| | - Xin Wang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150040, China
| | - Shangjin Cui
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150040, China
| | - Li Feng
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150040, China.
| |
Collapse
|
161
|
Yoon DH, Han C, Fang Y, Gundeti S, Han Lee IS, Song WO, Hwang KC, Kim TW, Sung GH, Park H. Inhibitory Activity ofCordyceps bassianaExtract on LPS-induced Inflammation in RAW 264.7 Cells by Suppressing NF-κB Activation. ACTA ACUST UNITED AC 2017. [DOI: 10.20307/nps.2017.23.3.162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Deok Hyo Yoon
- Department of Biochemistry, Kangwon National University, Chunchon 200-701, Republic of Korea
| | - Changwoo Han
- College of Pharmacy, Kangwon National University, Chunchon 200-701, Republic of Korea
| | - Yuanying Fang
- College of Pharmacy, Kangwon National University, Chunchon 200-701, Republic of Korea
| | - Shankariah Gundeti
- College of Pharmacy, Kangwon National University, Chunchon 200-701, Republic of Korea
| | - In-Sook Han Lee
- Department of Science Education, Kangwon National University, Chunchon 200-701, Republic of Korea
| | - Won O Song
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI48824, USA
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, Catholic Kwandong University, Incheon 404-834, Republic of Korea
| | - Tae Woong Kim
- Department of Biochemistry, Kangwon National University, Chunchon 200-701, Republic of Korea
| | - Gi-Ho Sung
- Institute for Bio-Medical Convergence, Catholic Kwandong University, Incheon 404-834, Republic of Korea
| | - Haeil Park
- College of Pharmacy, Kangwon National University, Chunchon 200-701, Republic of Korea
| |
Collapse
|
162
|
Lad H, Bhatnagar D. Amelioration of oxidative and inflammatory changes by Swertia chirayita leaves in experimental arthritis. Inflammopharmacology 2016; 24:363-375. [DOI: 10.1007/s10787-016-0290-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/05/2016] [Indexed: 11/29/2022]
|
163
|
Molecular Weight-Dependent Immunostimulative Activity of Low Molecular Weight Chitosan via Regulating NF-κB and AP-1 Signaling Pathways in RAW264.7 Macrophages. Mar Drugs 2016; 14:md14090169. [PMID: 27657093 PMCID: PMC5039540 DOI: 10.3390/md14090169] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 11/17/2022] Open
Abstract
Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been found to possess many important biological properties, such as antioxidant and antitumor effects. In our previous study, LMWCs were found to elicit a strong immunomodulatory response in macrophages dependent on molecular weight. Herein we further investigated the molecular weight-dependent immunostimulative activity of LMWCs and elucidated its mechanism of action on RAW264.7 macrophages. LMWCs (3 kDa and 50 kDa of molecular weight) could significantly enhance the mRNA expression levels of COX-2, IL-10 and MCP-1 in a molecular weight and concentration-dependent manner. The results suggested that LMWCs elicited a significant immunomodulatory response, which was dependent on the dose and the molecular weight. Regarding the possible molecular mechanism of action, LMWCs promoted the expression of the genes of key molecules in NF-κB and AP-1 pathways, including IKKβ, TRAF6 and JNK1, and induced the phosphorylation of protein IKBα in RAW264.7 macrophage. Moreover, LMWCs increased nuclear translocation of p65 and activation of activator protein-1 (AP-1, C-Jun and C-Fos) in a molecular weight-dependent manner. Taken together, our findings suggested that LMWCs exert immunostimulative activity via activation of NF-κB and AP-1 pathways in RAW264.7 macrophages in a molecular weight-dependent manner and that 3 kDa LMWC shows great potential as a novel agent for the treatment of immune suppression diseases and in future vaccines.
Collapse
|
164
|
Kolovos P, Georgomanolis T, Koeferle A, Larkin JD, Brant L, Nikolicć M, Gusmao EG, Zirkel A, Knoch TA, van Ijcken WF, Cook PR, Costa IG, Grosveld FG, Papantonis A. Binding of nuclear factor κB to noncanonical consensus sites reveals its multimodal role during the early inflammatory response. Genome Res 2016; 26:1478-1489. [PMID: 27633323 PMCID: PMC5088591 DOI: 10.1101/gr.210005.116] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/14/2016] [Indexed: 01/25/2023]
Abstract
Mammalian cells have developed intricate mechanisms to interpret, integrate, and respond to extracellular stimuli. For example, tumor necrosis factor (TNF) rapidly activates proinflammatory genes, but our understanding of how this occurs against the ongoing transcriptional program of the cell is far from complete. Here, we monitor the early phase of this cascade at high spatiotemporal resolution in TNF-stimulated human endothelial cells. NF-κB, the transcription factor complex driving the response, interferes with the regulatory machinery by binding active enhancers already in interaction with gene promoters. Notably, >50% of these enhancers do not encode canonical NF-κB binding motifs. Using a combination of genomics tools, we find that binding site selection plays a key role in NF-κΒ–mediated transcriptional activation and repression. We demonstrate the latter by describing the synergy between NF-κΒ and the corepressor JDP2. Finally, detailed analysis of a 2.8-Mbp locus using sub-kbp-resolution targeted chromatin conformation capture and genome editing uncovers how NF-κΒ that has just entered the nucleus exploits pre-existing chromatin looping to exert its multimodal role. This work highlights the involvement of topology in cis-regulatory element function during acute transcriptional responses, where primary DNA sequence and its higher-order structure constitute a regulatory context leading to either gene activation or repression.
Collapse
Affiliation(s)
- Petros Kolovos
- Department of Cell Biology, Erasmus Medical Centre, 3015 CN Rotterdam, The Netherlands
| | | | - Anna Koeferle
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom
| | - Joshua D Larkin
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom
| | - Lilija Brant
- Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Miloš Nikolicć
- Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Eduardo G Gusmao
- IZKF Computational Biology Research Group, RWTH Aachen University Medical School, 52062 Aachen, Germany
| | - Anne Zirkel
- Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Tobias A Knoch
- Department of Cell Biology, Erasmus Medical Centre, 3015 CN Rotterdam, The Netherlands
| | | | - Peter R Cook
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom
| | - Ivan G Costa
- IZKF Computational Biology Research Group, RWTH Aachen University Medical School, 52062 Aachen, Germany
| | - Frank G Grosveld
- Department of Cell Biology, Erasmus Medical Centre, 3015 CN Rotterdam, The Netherlands
| | - Argyris Papantonis
- Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
165
|
Slusarczyk J, Trojan E, Glombik K, Piotrowska A, Budziszewska B, Kubera M, Popiolek-Barczyk K, Lason W, Mika J, Basta-Kaim A. Anti-inflammatory properties of tianeptine on lipopolysaccharide-induced changes in microglial cells involve toll-like receptor-related pathways. J Neurochem 2016; 136:958-70. [PMID: 26640965 DOI: 10.1111/jnc.13452] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/24/2022]
Abstract
Accumulating evidence suggests that activation of microglia plays a key role in the pathogenesis of depression. Activated microglia produce a wide range of factors whose prolonged or excessive release may lead to brain disorders. Thus, the inhibition of microglial cells may be beneficial in the treatment of depressive diseases. Tianeptine is an atypical antidepressant drug with proven clinical efficacy, but its mechanism of action remains still not fully understood. In the present study, using microglial cultures we investigated whether tianeptine modifies microglial activation after lipopolysaccharide (LPS) stimulation and which intracellular pathways are involved in the activity of this antidepressant. Our study shows that tianeptine attenuated the LPS-evoked inflammatory activation of microglia by decreasing the expression of proinflammatory cytokines such as IL-1β, IL-18, IL-6 and tumor necrosis factor α (TNF-α), the release of nitric oxide (NO) and reactive oxygen species (ROS) as well as the expression of inducible nitric oxide synthase. Analyses of signaling pathways demonstrate that tianeptine led to the suppression of LPS-induced TLR4 expression and ERK1/2 phosphorylation. Furthermore, our study reveals the inhibitory impact of tianeptine on caspase-3-induced PKCδ degradation and consequently on the activation of NF-κB factor in microglial cells. Taken together, present results show anti-inflammatory properties of tianeptine in microglial cultures stimulated by LPS. This study provides evidence that the inhibition of microglial activation may underlie the therapeutic activity of tianeptine. Our findings show the anti-inflammatory effect of tianeptine (TIA) in lipopolisaccharide (LPS)-stimulated microglial cells. The beneficial tianeptine action is mediated through the inhibition of Toll-like receptor 4 (TLR4) expression as well as the TLR4-related pathways: extracellular signal-regulated kinase 1/2 (ERK1/2), caspase-3-dependent protein kinase δ (PKCδ) cleavage and the expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). These findings may provide a new therapeutic strategy for treatment of disorders based on neuroinflammation, including depression.
Collapse
Affiliation(s)
- Joanna Slusarczyk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Trojan
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Glombik
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Anna Piotrowska
- Department of Pharmacology of Pain, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Boguslawa Budziszewska
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Marta Kubera
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Popiolek-Barczyk
- Department of Pharmacology of Pain, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wladyslaw Lason
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna Mika
- Department of Pharmacology of Pain, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
166
|
Modulation of rat monocyte/macrophage innate functions by increasing intensities of swimming exercise is associated with heat shock protein status. Mol Cell Biochem 2016; 421:111-25. [DOI: 10.1007/s11010-016-2791-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/06/2016] [Indexed: 12/16/2022]
|
167
|
Lupiañez CB, Villaescusa MT, Carvalho A, Springer J, Lackner M, Sánchez-Maldonado JM, Canet LM, Cunha C, Segura-Catena J, Alcazar-Fuoli L, Solano C, Fianchi L, Pagano L, Potenza L, Aguado JM, Luppi M, Cuenca-Estrella M, Lass-Flörl C, Einsele H, Vázquez L, Ríos-Tamayo R, Loeffler J, Jurado M, Sainz J. Common Genetic Polymorphisms within NFκB-Related Genes and the Risk of Developing Invasive Aspergillosis. Front Microbiol 2016; 7:1243. [PMID: 27570521 PMCID: PMC4982195 DOI: 10.3389/fmicb.2016.01243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/26/2016] [Indexed: 12/02/2022] Open
Abstract
Invasive Aspergillosis (IA) is an opportunistic infection caused by Aspergillus, a ubiquitously present airborne pathogenic mold. A growing number of studies suggest a major host genetic component in disease susceptibility. Here, we evaluated whether 14 single-nucleotide polymorphisms within NFκB1, NFκB2, RelA, RelB, Rel, and IRF4 genes influence the risk of IA in a population of 834 high-risk patients (157 IA and 677 non-IA) recruited through a collaborative effort involving the aspBIOmics consortium and four European clinical institutions. No significant overall associations between selected SNPs and the risk of IA were found in this large cohort. Although a hematopoietic stem cell transplantation (HSCT)-stratified analysis revealed that carriers of the IRF4rs12203592T/T genotype had a six-fold increased risk of developing the infection when compared with those carrying the C allele (ORREC = 6.24, 95%CI 1.25–31.2, P = 0.026), the association of this variant with IA risk did not reach significance at experiment-wide significant threshold. In addition, we found an association of the IRF4AATC and IRF4GGTC haplotypes (not including the IRF4rs12203592T risk allele) with a decreased risk of IA but the magnitude of the association was similar to the one observed in the single-SNP analysis, which indicated that the haplotypic effect on IA risk was likely due to the IRF4rs12203592 SNP. Finally, no evidence of significant interactions among the genetic markers tested and the risk of IA was found. These results suggest that the SNPs on the studied genes do not have a clinically relevant impact on the risk of developing IA.
Collapse
Affiliation(s)
- Carmen B Lupiañez
- Genomic Oncology Area, GENYO, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS GranadaGranada, Spain; Hematology Department, Virgen de las Nieves University HospitalGranada, Spain
| | - María T Villaescusa
- Hematology Department, University Hospital of SalamancaSalamanca, Spain; Hematology Department, Jiménez Díaz FoundationMadrid, Spain
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of MinhoBraga, Portugal; ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
| | - Jan Springer
- Universitätsklinikum Würzburg, Medizinische Klinik II Würzburg, Germany
| | - Michaela Lackner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck Innsbruck, Austria
| | - José M Sánchez-Maldonado
- Genomic Oncology Area, GENYO, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada Granada, Spain
| | - Luz M Canet
- Genomic Oncology Area, GENYO, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada Granada, Spain
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of MinhoBraga, Portugal; ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
| | - Juana Segura-Catena
- Genomic Oncology Area, GENYO, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS GranadaGranada, Spain; Hematology Department, Virgen de las Nieves University HospitalGranada, Spain
| | - Laura Alcazar-Fuoli
- Mycology Reference Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III Madrid, Spain
| | - Carlos Solano
- Hematology Department, Clinic University Hospital of Valencia Valencia, Spain
| | - Luana Fianchi
- Istituto di Ematologia, Università Cattolica del S. Cuore Rome, Italy
| | - Livio Pagano
- Istituto di Ematologia, Università Cattolica del S. Cuore Rome, Italy
| | - Leonardo Potenza
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia AOU Policlinico, Modena, Italy
| | - José M Aguado
- Unit of Infectious Diseases, University Hospital 12 de Octubre, Research Institute of Hospital 12 de Octubre (i+12) Madrid, Spain
| | - Mario Luppi
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia AOU Policlinico, Modena, Italy
| | - Manuel Cuenca-Estrella
- Mycology Reference Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III Madrid, Spain
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck Innsbruck, Austria
| | - Hermann Einsele
- Universitätsklinikum Würzburg, Medizinische Klinik II Würzburg, Germany
| | - Lourdes Vázquez
- Hematology Department, University Hospital of Salamanca Salamanca, Spain
| | | | - Rafael Ríos-Tamayo
- Genomic Oncology Area, GENYO, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS GranadaGranada, Spain; Hematology Department, Virgen de las Nieves University HospitalGranada, Spain
| | - Jurgen Loeffler
- Universitätsklinikum Würzburg, Medizinische Klinik II Würzburg, Germany
| | - Manuel Jurado
- Genomic Oncology Area, GENYO, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS GranadaGranada, Spain; Hematology Department, Virgen de las Nieves University HospitalGranada, Spain
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS GranadaGranada, Spain; Hematology Department, Virgen de las Nieves University HospitalGranada, Spain
| |
Collapse
|
168
|
Medical ozone increases methotrexate clinical response and improves cellular redox balance in patients with rheumatoid arthritis. Eur J Pharmacol 2016; 789:313-318. [PMID: 27450487 DOI: 10.1016/j.ejphar.2016.07.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/04/2016] [Accepted: 07/19/2016] [Indexed: 11/23/2022]
Abstract
Medical ozone reduced inflammation, IL-1β, TNF-α mRNA levels and oxidative stress in PG/PS-induced arthritis in rats. The aim of this study was to investigate the medical ozone effects in patients with rheumatoid arthritis treated with methotrexate and methotrexate+ozone, and to compare between them. A randomized clinical study with 60 patients was performed, who were divided into two groups: one (n=30) treated with methotrexate (MTX), folic acid and Ibuprophen (MTX group) and the second group (n=30) received the same as the MTX group+medical ozone by rectal insufflation of the gas (MTX+ozone group). The clinical response of the patients was evaluated by comparing Disease Activity Score 28 (DAS28), Health Assessment Questionnaire Disability Index (HAQ-DI), Anti-Cyclic Citrullinated (Anti-CCP) levels, reactants of acute phase and biochemical markers of oxidative stress before and after 20 days of treatment. MTX+ozone reduced the activity of the disease while MTX merely showed a tendency to decrease the variables. Reactants of acute phase displayed a similar picture. MTX+ozone reduced Anti-CCP levels as well as increased antioxidant system, and decreased oxidative damage whereas MTX did not change. Glutathione correlated with all clinical variables just after MTX+ozone. MTX+ozone increased the MTX clinical response in patients with rheumatoid arthritis. No side effects were observed. These results suggest that ozone can increase the efficacy of MTX probably because both share common therapeutic targets. Medical ozone treatment is capable of being a complementary therapy in the treatment of rheumatoid arthritis.
Collapse
|
169
|
Yu Q, Zhang S, Chao K, Feng R, Wang H, Li M, Chen B, He Y, Zeng Z, Chen M. E3 Ubiquitin ligase RNF183 Is a Novel Regulator in Inflammatory Bowel Disease. J Crohns Colitis 2016; 10:713-25. [PMID: 26818663 DOI: 10.1093/ecco-jcc/jjw023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/04/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Specific members of the RING finger [RNF] protein family serve as E3 ubiquitin ligases and play important roles in the regulation of inflammation. However, their roles in the pathogenesis of inflammatory bowel disease [IBD] have not been explored. METHODS Genomic microarray of inflamed colon samples from Crohn's disease [CD] patients was performed to identify potential up-regulated genes. Expression of the identified highly up-regulated RNF183 gene was subsequently examined by quantitative reverse transcription polymerase chain reaction [qRT-PCR], western blotting and immunohistochemistry of the intestinal tissues of IBD patients and the colons of trinitrobenzene sulphonic acid [TNBS]-induced colitic mice. RNF183-mediated interaction with the NF-κB pathway and ubiquitination of IκBα were examined by siRNA, plasmid transfection, and immunoprecipitation. The miRNA predicted to target RNF183 was explored and its role in the RNF183/ NF-κB pathway was investigated. RESULTS RNF183 was up-regulated in intestinal epithelial cells in IBD patients and in colitic mice. RNF183 promoted intestinal inflammation via the activation of the NF-κB pathway by increasing the ubiquitination and degradation of IκBα. Computational analysis identified putative binding of miR-7 to RNF183. Transfection of intestinal cells with a miR-7 mimic or inhibitor confirmed its negative regulatory effect on RNF183 expression and ubiquitination of IκBα. miR-7 was down-regulated in inflamed colon tissues of IBD patients and colitic mice. CONCLUSIONS RNF183, which is negatively regulated by miR-7, is a novel regulator promoting intestinal inflammation by increasing the ubiquitination and degradation of IκBα, thereby inducing NF-κB activation. The interaction between RNF183-mediated ubiquitination and miRNA may be an important novel epigenetic mechanism in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Qiao Yu
- IBD Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Shenghong Zhang
- IBD Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Kang Chao
- IBD Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Rui Feng
- IBD Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Huiling Wang
- IBD Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Manying Li
- IBD Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Baili Chen
- IBD Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yao He
- IBD Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhirong Zeng
- IBD Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Minhu Chen
- IBD Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
170
|
Zhang D, Wang J, Li Z, Zhou M, Chen Q, Zeng X, Chen Y. The Activation of NF-κB in Infiltrated Mononuclear Cells Negatively Correlates with Treg Cell Frequency in Oral Lichen Planus. Inflammation 2016; 38:1683-9. [PMID: 25761427 DOI: 10.1007/s10753-015-0145-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oral lichen planus (OLP) is a T cell-mediated chronic inflammatory mucosal disease with persistent accumulation of T cells in the lamina propria. Nuclear factor-kappa B (NF-κB) is a major regulator of immune responses, and NF-κB-dependent cytokines and pro-inflammatory mediators can be detected in higher levels in the saliva and serum from patients with OLP. CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells play an important role in the prevention of autoimmune pathology by regulating the immune response. To explore the correlation between NF-κB p65 activation and accumulation of Treg cells in patients with OLP, 40 ethnic Chinese patients with OLP and 10 healthy volunteers were recruited. The nuclear expression of NF-κB p65 in infiltrated mononuclear cells and Treg cells in the OLP lesion and the normal oral mucosa (NOM) was analyzed by immunohistochemistry assay. Our results showed that both the nuclear expression of NF-κB p65 and the number of Foxp3(+) Treg were higher in the OLP lesions. Furthermore, the frequency of Treg cells was negatively correlated with NF-κB nuclear expression in subepithelial lymphocytic infiltrate of the OLP lesion. This finding provides a new insight into the pathogenesis of OLP and may contribute to novel therapeutic strategies for the treatment of OLP by modulating the immune system.
Collapse
Affiliation(s)
- Dunfang Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | | | | | | | | | | | | |
Collapse
|
171
|
Saba E, Jeong DH, Roh SS, Kim SH, Kim SD, Kim HK, Rhee MH. Black ginseng-enriched Chong-Myung-Tang extracts improve spatial learning behavior in rats and elicit anti-inflammatory effects in vitro. J Ginseng Res 2016; 41:151-158. [PMID: 28413319 PMCID: PMC5386102 DOI: 10.1016/j.jgr.2016.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/22/2016] [Indexed: 12/28/2022] Open
Abstract
Background Chong-Myung-Tang (CMT) extract is widely used in Korea as a traditional herbal tonic for increasing memory capacity in high-school students and also for numerous body ailments since centuries. The use of CMT to improve the learning capacity has been attributed to various plant constituents, especially black ginseng, in it. Therefore, in this study, we have first investigated whether black ginseng-enriched CMT extracts affected spatial learning using the Morris water maze (MWM) test. Their molecular mechanism of action underlying improvement of learning and memory was examined in vitro. Methods We used two types of black ginseng-enriched CMT extracts, designated as CM-1 and CM-2, and evaluated their efficacy in the MWM test for spatial learning behavior and their anti-inflammatory effects in BV2 microglial cells. Results Our results show that both black ginseng-enriched CMT extracts improved the learning behavior in scopolamine-induced impairment in the water maze test. Moreover, these extracts also inhibited nitric oxide production in BV2 cells, with significant suppression of expression of proinflammatory cytokines, especially inducible nitric oxide synthase, cyclooxygenase-2, and interleukin-1β. The protein expression of mitogen-activated protein kinase and nuclear factor-κB pathway factors was also diminished by black ginseng-enriched CMT extracts, indicating that it not only improves the memory impairment, but also acts a potent anti-inflammatory agent for neuroinflammatory diseases. Conclusion Our research for the first time provides the scientific evidence that consumption of black ginseng-enriched CMT extract as a brain tonic improves memory impairment. Thus, our study results can be taken as a reference for future neurobehavioral studies.
Collapse
Affiliation(s)
- Evelyn Saba
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Da-Hye Jeong
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Seong-Soo Roh
- College of Korean Medicine, Daegu Haany University, Daegu, Korea
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Korea
| | - Sung-Dae Kim
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Hyun-Kyoung Kim
- Department of Food Science and Engineering, Seowon University, Chungbuk, Korea
| | - Man-Hee Rhee
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
172
|
Zuo H, Yuan J, Chen Y, Li S, Su Z, Wei E, Li C, Weng S, Xu X, He J. A MicroRNA-Mediated Positive Feedback Regulatory Loop of the NF-κB Pathway in Litopenaeus vannamei. THE JOURNAL OF IMMUNOLOGY 2016; 196:3842-53. [DOI: 10.4049/jimmunol.1502358] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/23/2016] [Indexed: 01/17/2023]
|
173
|
Pacheco GV, Novelo Noh IB, Velasco Cárdenas RMH, Angulo Ramírez AV, López Villanueva RF, Quintal Ortiz IG, Alonso Salomón LG, Ruz NP, Rivero Cárdenas NA. Expression of TLR-7, MyD88, NF-kB, and INF-α in B Lymphocytes of Mayan Women with Systemic Lupus Erythematosus in Mexico. Front Immunol 2016; 7:22. [PMID: 26870038 PMCID: PMC4735402 DOI: 10.3389/fimmu.2016.00022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/15/2016] [Indexed: 01/06/2023] Open
Abstract
Background Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease involving multiple organs. It is currently accepted that several genetic, environmental, and hormonal factors are contributing to its development. Innate immunity may have a great influence in autoimmunity through Toll-like receptors. TLR-7 recognizing single-strand RNA has been involved in SLE. Its activation induces intracellular signal with attraction of MyD88 and NF-kBp65, leading to IFN-α synthesis which correlate with disease activity. Objective To assess the expression of TLR-7, MyD88, and NF-kBp65 in B lymphocytes of Mayan women with SLE. Methods One hundred patients with SLE and 100 healthy controls, all of them Mayan women, were included. TLR-7 was analyzed on B and T lymphocytes, and MyD88 and NF-kB only in B lymphocytes. Serum INF-α level was evaluated by ELISA. Results Significant expression (p < 0.0001) of TLR-7 in B and T lymphocytes and serum IFN-α increased (p = 0.034) was observed in patients. MyD88 and NF-kBp65 were also increased in B lymphocytes of patients. TLR-7 and NF-kBp65 expression correlated, but no correlation with INF-α and disease activity was detected. Conclusion Data support the role of TLR-7 and signal proteins in the pathogenesis of SLE in the Mayan population of Yucatán.
Collapse
Affiliation(s)
- Guillermo Valencia Pacheco
- Laboratorio de Hematología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán , Mérida , Mexico
| | | | | | | | | | - Irma G Quintal Ortiz
- Laboratorio de Hematología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán , Mérida , Mexico
| | - Ligia G Alonso Salomón
- Laboratorio de Hematología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán , Mérida , Mexico
| | - Norma Pavía Ruz
- Laboratorio de Hematología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán , Mérida , Mexico
| | - Nubia A Rivero Cárdenas
- Laboratorio de Hematología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán , Mérida , Mexico
| |
Collapse
|
174
|
Wex K, Schmid U, Just S, Wang X, Wurm R, Naumann M, Schlüter D, Nishanth G. Receptor-Interacting Protein Kinase-2 Inhibition by CYLD Impairs Antibacterial Immune Responses in Macrophages. Front Immunol 2016; 6:650. [PMID: 26834734 PMCID: PMC4717182 DOI: 10.3389/fimmu.2015.00650] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/15/2015] [Indexed: 11/16/2022] Open
Abstract
Upon infection with intracellular bacteria, nucleotide oligomerization domain protein 2 recognizes bacterial muramyl dipeptide and binds, subsequently, to receptor-interacting serine/threonine kinase 2 (RIPK2), which activates immune responses via the nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) and extracellular signal-regulated kinase (ERK) pathways. Activation of RIPK2 depends on its K63 ubiquitination by E3 ligases, whereas the deubiquitinating enzyme A20 counter regulates RIPK2 activity by cleaving K63-polyubiquitin chains from RIPK2. Here, we newly identify the deubiquitinating enzyme CYLD as a new inhibitor of RIPK2. We show that CYLD binds to and removes K63-polyubiquitin chains from RIPK2 in Listeria monocytogenes (Lm) infected murine bone marrow-derived macrophages. CYLD-mediated K63 deubiquitination of RIPK2 resulted in an impaired activation of both NF-κB and ERK1/2 pathways, reduced production of proinflammatory cytokines interleukin-6 (IL-6), IL-12, anti-listerial reactive oxygen species (ROS) and nitric oxide (NO), and, finally, impaired pathogen control. In turn, RIPK2 inhibition by siRNA prevented activation of NF-κB and ERK1/2 and completely abolished the protective effect of CYLD deficiency with respect to the production of IL-6, NO, ROS, and pathogen control. Noteworthy, CYLD also inhibited autophagy of Listeria in a RIPK2-ERK1/2-dependent manner. The protective function of CYLD deficiency was dependent on interferon gamma (IFN-γ) prestimulation of infected macrophages. Interestingly, the reduced NF-κB activation in CYLD-expressing macrophages limited the protective effect of IFN-γ by reducing NF-κB-dependent signal transducers and activators of transcription-1 (STAT1) activation. Taken together, our study identifies CYLD as an important inhibitor of RIPK2-dependent antibacterial immune responses in macrophages.
Collapse
Affiliation(s)
- Katharina Wex
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| | - Ursula Schmid
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| | - Sissy Just
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| | - Xu Wang
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| | - Rebecca Wurm
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Organ-Specific Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Gopala Nishanth
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Organ-Specific Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
175
|
Zong X, Hu W, Song D, Li Z, Du H, Lu Z, Wang Y. Porcine lactoferrin-derived peptide LFP-20 protects intestinal barrier by maintaining tight junction complex and modulating inflammatory response. Biochem Pharmacol 2016; 104:74-82. [PMID: 26776304 DOI: 10.1016/j.bcp.2016.01.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022]
Abstract
LFP-20, a 20-amino acid antimicrobial peptide in the N terminus of porcine lactoferrin, has antimicrobial and immunomodulatory activities. This study assessed the protective effects of LFP-20 on LPS-induced intestinal damage in a LPS-induced mouse model and in vitro, using intestinal porcine epithelial cell line 1 (IPEC-1) cells. LFP-20 prevented LPS-induced impairment in colon epithelium tissues, infiltration of macrophages or leukocytes, histological evidence of inflammation and increased levels of TNF-a, IL-6 and IFN-γ. LFP-20 increased the expression of zonula occludens-1, occludin and claudin-1 and reduced permeability as well as apoptosis of the colon in LPS-treated mice. In IPEC-1 cells, LFP-20 increased transepithelial electrical resistance and tight junction expression. Moreover, we found LFP-20 decreased the MyD88 and AKT levels to affect the NF-κB signaling pathway, to modulate inflammation response and tight junction networks in the processing of LPS stimulation. In summary, LFP-20 prevents the inflammatory response and disruption of tight junction structure induced by LPS, suggesting the potential use of LFP-20 as a prophylactic agent to protect intestinal barrier function.
Collapse
Affiliation(s)
- Xin Zong
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wangyang Hu
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Deguang Song
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhi Li
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huahua Du
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zeqing Lu
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yizhen Wang
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
176
|
Cartwright T, Perkins ND, L Wilson C. NFKB1: a suppressor of inflammation, ageing and cancer. FEBS J 2016; 283:1812-22. [PMID: 26663363 DOI: 10.1111/febs.13627] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/23/2015] [Accepted: 12/08/2015] [Indexed: 12/18/2022]
Abstract
The pleiotropic consequences of nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) pathway activation result from the combinatorial effects of the five subunits that form the homo- and heterodimeric NF-κB complexes. Although biochemical and gene knockout studies have demonstrated overlapping and distinct functions for these proteins, much is still not known about the mechanisms determining context-dependent functions, the formation of different dimer complexes and transcriptional control in response to diverse stimuli. Here we discuss recent results that reveal that the nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NFKB1) (p105/p50) subunit is an important regulator of NF-κB activity in vivo. These effects are not restricted to being a dimer partner for other NF-κB subunits. Rather p50 homodimers have a critical role as suppressors of the NF-κB response, while the p105 precursor has a variety of NF-κB-independent functions. The importance of Nfkb1 function can be seen in mouse models, where Nfkb1(-/-) mice display increased inflammation and susceptibility to certain forms of DNA damage, leading to cancer, and a rapid ageing phenotype. In humans, low expression of Kip1 ubiquitination-promoting complex 1 (KPC1), a ubiquitin ligase required for p105 to p50 processing, was shown to correlate with a reduction in p50 and glioblastoma incidence. Therefore, while the majority of research in this field has focused on the upstream signalling pathways leading to NF-κB activation or the function of other NF-κB subunits, such as RelA (p65), these data demonstrate a critical role for NFKB1, potentially revealing new strategies for targeting this pathway in inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Tyrell Cartwright
- Fibrosis Laboratory, Institute of Cellular Medicine, Newcastle University, UK
| | - Neil D Perkins
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, UK
| | - Caroline L Wilson
- Fibrosis Laboratory, Institute of Cellular Medicine, Newcastle University, UK
| |
Collapse
|
177
|
Ham B, Wang N, D'Costa Z, Fernandez MC, Bourdeau F, Auguste P, Illemann M, Eefsen RL, Høyer-Hansen G, Vainer B, Evrard M, Gao ZH, Brodt P. TNF Receptor-2 Facilitates an Immunosuppressive Microenvironment in the Liver to Promote the Colonization and Growth of Hepatic Metastases. Cancer Res 2015; 75:5235-47. [DOI: 10.1158/0008-5472.can-14-3173] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 10/07/2015] [Indexed: 11/16/2022]
|
178
|
Salles MB, Gehrke SA, Shibli JA, Allegrini S, Yoshimoto M, König B. Evaluating Nuclear Factor NF-κB Activation following Bone Trauma: A Pilot Study in a Wistar Rats Model. PLoS One 2015; 10:e0140630. [PMID: 26465330 PMCID: PMC4605579 DOI: 10.1371/journal.pone.0140630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022] Open
Abstract
The present study investigated the moment of peak NF-kB activation and its dissipation in the cortical bone in the femur of Wistar rat stimulated by surgical trauma. Sixty-five Wistar rats were divided into 13 groups (n = 5 per group): eight experimental groups (expG 1–8) divided based on the euthanasia time point (zero, 1 h, 2 h, 4 h, 6 h, 8 h, 12 h and 24 h) and five sham control groups (conG 1–5) killed at zero, 1 h, 2 h, 4 h and 6 h, respectively. A 1.8-mm-diameter defect was generated 0.5 mm from the femur proximal joint using a round bur to induce the surgical trauma. Overall, the activation peak of NF-κB in the cortical bone was 6 h (expG5 group) independent of the evaluated position; this peak was significantly different compared to those in the other groups (p < 0.05). The surgical trauma resulted in a spread of immune markings throughout the cortical bone with an accentuation in the knee region. The present study provides the first evidence that the NF-κB activation peak was established after 6 hours in the cortical bone of Wistar rats. The signs from a surgical trauma can span the entire cortical bone and are not limited to the damaged region.
Collapse
Affiliation(s)
- Marcos Barbosa Salles
- Anatomy Department, Biomedical Science Institute, Universidade de São Paulo, São Paulo, Brazil
- Implantology Department, São Leopoldo Mandic, Campinas, Brasil
| | - Sergio Alexandre Gehrke
- Biotecnos Research Center, Santa Maria, Rio Grande do Sul, Brazil
- Catholic University of Uruguay, Montevideo, Uruguay
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos, SP, Brazil
- * E-mail:
| | - Jamil Awad Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos, SP, Brazil
| | - Sergio Allegrini
- Anatomy Department, Biomedical Science Institute, Universidade de São Paulo, São Paulo, Brazil
- Orthopedy Department, Ernst Moritz Arndt University, Greifswald, Germany
| | - Marcelo Yoshimoto
- Anatomy Department, Biomedical Science Institute, Universidade de São Paulo, São Paulo, Brazil
- Implantology Department, São Leopoldo Mandic, Campinas, Brasil
| | - Bruno König
- Anatomy Department, Biomedical Science Institute, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
179
|
A Novel Korean Red Ginseng Compound Gintonin Inhibited Inflammation by MAPK and NF-κB Pathways and Recovered the Levels of mir-34a and mir-93 in RAW 264.7 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:624132. [PMID: 26579204 PMCID: PMC4633694 DOI: 10.1155/2015/624132] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/06/2015] [Indexed: 11/23/2022]
Abstract
The beneficial health promoting effects of ginseng from vitalizing the body to enhancing long life have been well explored very rapidly in the past few years. Up till now many ginsenosides have been discovered for their marvelous therapeutic effects. However during past three years, a novel ginseng compound has been discovered, called gintonin, that differs from other ginsenosides on the basis of its signal transduction and chemical nature. Gintonin has been widely studied for its anti-Alzheimer's disease activities and other neuropathies. However, its anti-inflammatory activity remained unexplored. In our study we have reported for the first time the anti-inflammatory activity of gintonin on RAW 264.7 cells. We found that gintonin potently suppresses the nitric oxide production without any cytotoxicity at given doses and also efficiently suppressed the levels of proinflammatory cytokines. Moreover, it mediaes its signal transduction via MAPK and NF-κB pathways and revives the levels of mir-34a and mir-93. These findings are valuable for the anti-inflammatory effects of this new compound with particular reference to microRNA involvement in the ginseng family.
Collapse
|
180
|
Zong X, Song D, Wang T, Xia X, Hu W, Han F, Wang Y. LFP-20, a porcine lactoferrin peptide, ameliorates LPS-induced inflammation via the MyD88/NF-κB and MyD88/MAPK signaling pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 52:123-131. [PMID: 26003437 DOI: 10.1016/j.dci.2015.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/17/2015] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
LFP-20 is one of the 20 amino acid anti-microbial peptides identified in the N terminus of porcine lactoferrin. Apart from its extensively studied direct anti-bacterial activity, its potential as an activator of immune-related cellular functions is unknown. Therefore, this study investigated its anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated pig alveolar macrophages in vitro and systemic inflammation in an in vivo mouse model. We found that the inhibitory effects of LFP-20 on production of pro-inflammatory cytokines were independent of its LPS-binding activity. However, they were associated with NF-κB and MAPK-dependent signaling. Furthermore, LFP-20 might directly influence MyD88 levels to block its interaction with NF-κB and MAPK-dependent signaling molecules that might alter LPS-mediated inflammatory responses in activated macrophages. Taken together, our data indicated that LFP-20 prevents the LPS-induced inflammatory response by inhibiting MyD88/NF-κB and MyD88/MAPK signaling pathways, and sheds light on the potential use of LFP-20 in the therapy of LPS-mediated sepsis.
Collapse
Affiliation(s)
- Xin Zong
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Deguang Song
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tenghao Wang
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi Xia
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wangyang Hu
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feifei Han
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yizhen Wang
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
181
|
Guo X, Hu H, Chen F, Li Z, Ye S, Cheng S, Zhang M, He Q. iTRAQ-based comparative proteomic analysis of Vero cells infected with virulent and CV777 vaccine strain-like strains of porcine epidemic diarrhea virus. J Proteomics 2015; 130:65-75. [PMID: 26361011 PMCID: PMC7102838 DOI: 10.1016/j.jprot.2015.09.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 08/28/2015] [Accepted: 09/02/2015] [Indexed: 12/24/2022]
Abstract
The re-emerging porcine epidemic diarrhea virus (PEDV) variant related diarrhea has been documented in China since late 2010 and now with global distribution. Currently, a virulent PEDV CH/YNKM-8/2013 and a CV777 vaccine strain-like AH-M have been successfully isolated from the clinical samples. To dissect out the underlying pathogenic mechanism of virulent PEDV and clarify the differences between virulent and CV777 vaccine strain-like PEDV infections, we performed an iTRAQ-based comparative quantitative proteomic study of Vero cells infected with both PEDV strains. A total of 661 and 474 differentially expressed proteins were identified upon virulent and CV777 vaccine strain-like isolates infection, respectively. Ingenuity Pathway Analysis was employed to investigate the canonical pathways and functional networks involved in both PEDV infections. Comprehensive studies have revealed that the PEDV virulent strain suppressed protein synthesis of Vero cells through down-regulating mTOR as well as its downstream targets 4EBP1 and p70S6K activities, which were validated by immunoblotting. In addition, the virulent strain could activate NF-κB pathway more intensively than the CV777 vaccine strain-like isolate, and elicit stronger inflammatory cascades as well. These data might provide new insights for elucidating the specific pathogenesis of PEDV infection, and pave the way for the development of effective therapeutic strategies. Biological significance Porcine epidemic diarrhea is now worldwide distributed and causing huge economic losses to swine industry. The immunomodulation and pathogenesis between PEDV and host, as well as the difference between virulent and attenuated strains of PEDV infections are still largely unknown. In this study, we presented for the first application of proteomic analysis to compare whole cellular protein alterations induced by virulent and CV777 vaccine strain-like PEDV infections, which might contribute to understand the pathogenesis of PEDV and anti-viral strategy development. Vero cells proteome was individually analyzed upon virulent and attenuated PEDV infections. Many pathways and interactive networks were constructed based on differentially expressed proteins. Virulent PEDV strain suppressed mTOR as well as its downstream targets 4EBP1 and p70S6K activities. Virulent PEDV strain activated NF-κB pathway more intensively than the attenuated isolate.
Collapse
Affiliation(s)
- Xiaozhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Han Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangzhou Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhonghua Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyi Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuang Cheng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430070, China
| | - Mengjia Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
182
|
Mia MM, Bank RA. The IκB kinase inhibitor ACHP strongly attenuates TGFβ1-induced myofibroblast formation and collagen synthesis. J Cell Mol Med 2015; 19:2780-92. [PMID: 26337045 PMCID: PMC4687706 DOI: 10.1111/jcmm.12661] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/23/2015] [Indexed: 01/07/2023] Open
Abstract
Excessive accumulation of a collagen‐rich extracellular matrix (ECM) by myofibroblasts is a characteristic feature of fibrosis, a pathological state leading to serious organ dysfunction. Transforming growth factor beta1 (TGFβ1) is a strong inducer of myofibroblast formation and subsequent collagen production. Currently, there are no remedies for the treatment of fibrosis. Activation of the nuclear factor kappa B (NF‐κB) pathway by phosphorylating IκB with the enzyme IκB kinase (IKK) plays a major role in the induction of fibrosis. ACHP {2‐Amino‐6‐[2‐(cyclopropylmethoxy)‐6‐hydroxyphenyl]‐4‐(4‐piperidinyl)‐3 pyridinecarbonitrile}, a selective inhibitor of IKK, prohibits the activation of the NF‐κB pathway. It is not known whether ACHP has potential anti‐fibrotic properties. Using adult human dermal and lung fibroblasts we have investigated whether ACHP has the ability to inhibit the TGFβ1‐induced transition of fibroblasts into myofibroblasts and its excessive synthesis of ECM. The presence of ACHP strongly suppressed the induction of the myofibroblast markers alpha‐smooth muscle actin (αSMA) and SM22α, as well as the deposition of the ECM components collagen type I and fibronectin. Furthermore, post‐treatment with ACHP partly reversed the expression of αSMA and collagen type I production. Finally, ACHP suppressed the expression of the three collagen‐modifying enzymes lysyl hydroxylase (PLOD1,PLOD2 and PLOD3) in dermal fibroblasts, but did not do so in lung fibroblasts. We conclude that the IKK inhibitor ACHP has potent antifibrotic properties, and that the NF‐κB pathway plays an important role in myofibroblast biology.
Collapse
Affiliation(s)
- Masum M Mia
- Department of Pathology and Medical Biology, Division of Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ruud A Bank
- Department of Pathology and Medical Biology, Division of Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
183
|
Bozic M, Álvarez Á, de Pablo C, Sanchez-Niño MD, Ortiz A, Dolcet X, Encinas M, Fernandez E, Valdivielso JM. Impaired Vitamin D Signaling in Endothelial Cell Leads to an Enhanced Leukocyte-Endothelium Interplay: Implications for Atherosclerosis Development. PLoS One 2015; 10:e0136863. [PMID: 26322890 PMCID: PMC4556440 DOI: 10.1371/journal.pone.0136863] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/10/2015] [Indexed: 11/19/2022] Open
Abstract
Endothelial cell activation leading to leukocyte recruitment and adhesion plays an essential role in the initiation and progression of atherosclerosis. Vitamin D has cardioprotective actions, while its deficiency is a risk factor for the progression of cardiovascular damage. Our aim was to assess the role of basal levels of vitamin D receptor (VDR) on the early leukocyte recruitment and related endothelial cell-adhesion-molecule expression, as essential prerequisites for the onset of atherosclerosis. Knockdown of VDR in endothelial cells (shVDR) led to endothelial cell activation, characterized by upregulation of VCAM-1, ICAM-1 and IL-6, decreased peripheral blood mononuclear cell (PBMC) rolling velocity and increased PBMC rolling flux and adhesion to the endothelium. shVDR cells showed decreased IκBα levels and accumulation of p65 in the nucleus compared to shRNA controls. Inhibition of NF-κB activation with super-repressor IκBα blunted all signs of endothelial cell activation caused by downregulation of VDR in endothelial cells. In vivo, deletion of VDR led to significantly larger aortic arch and aortic root lesions in apoE-/- mice, with higher macrophage content. apoE-/-VDR-/-mice showed higher aortic expression of VCAM-1, ICAM-1 and IL-6 when compared to apoE-/-VDR+/+ mice. Our data demonstrate that lack of VDR signaling in endothelial cells leads to a state of endothelial activation with increased leukocyte-endothelial cell interactions that may contribute to the more severe plaque accumulation observed in apoE-/-VDR-/- mice. The results reveal an important role for basal levels of endothelial VDR in limiting endothelial cell inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Milica Bozic
- Nephrology Research Department, IRB Lleida, Lleida, Spain
| | - Ángeles Álvarez
- Department of Pharmacology and CIBERehd, University of Valencia, Valencia, Spain
| | - Carmen de Pablo
- Department of Pharmacology and CIBERehd, University of Valencia, Valencia, Spain
| | | | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz, School of Medicine, UAM and IRSIN, Madrid, Spain
| | - Xavier Dolcet
- Pathology Group, Pathology and Molecular Genetics Department, Hospital Universitari Arnau de Vilanova, University of Lleida and IRB Lleida, Spain
| | - Mario Encinas
- Department of Experimental Medicine, University of Lleida and IRB Lleida, Lleida, Spain
| | | | | |
Collapse
|
184
|
Schmidt SF, Larsen BD, Loft A, Nielsen R, Madsen JGS, Mandrup S. Acute TNF-induced repression of cell identity genes is mediated by NFκB-directed redistribution of cofactors from super-enhancers. Genome Res 2015; 25:1281-94. [PMID: 26113076 PMCID: PMC4561488 DOI: 10.1101/gr.188300.114] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 06/19/2015] [Indexed: 01/13/2023]
Abstract
The proinflammatory cytokine tumor necrosis factor (TNF) plays a central role in low-grade adipose tissue inflammation and development of insulin resistance during obesity. In this context, nuclear factor κ-light-chain-enhancer of activated B cells (NFκB) is directly involved and required for the acute activation of the inflammatory gene program. Here, we show that the major transactivating subunit of NFκB, v-rel avian reticuloendotheliosis viral oncogene homolog A (RELA), is also required for acute TNF-induced suppression of adipocyte genes. Notably, this repression does not involve RELA binding to the associated enhancers but rather loss of cofactors and enhancer RNA (eRNA) selectively from high-occupancy sites within super-enhancers. Based on these data, we have developed models that, with high accuracy, predict which enhancers and genes are repressed by TNF in adipocytes. We show that these models are applicable to other cell types where TNF represses genes associated with super-enhancers in a highly cell-type–specific manner. Our results propose a novel paradigm for NFκB-mediated repression, whereby NFκB selectively redistributes cofactors from high-occupancy enhancers, thereby specifically repressing super-enhancer-associated cell identity genes.
Collapse
Affiliation(s)
- Søren Fisker Schmidt
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Bjørk Ditlev Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Anne Loft
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Ronni Nielsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Jesper Grud Skat Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark; The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
185
|
Humphries F, Moynagh PN. Molecular and physiological roles of Pellino E3 ubiquitin ligases in immunity. Immunol Rev 2015; 266:93-108. [DOI: 10.1111/imr.12306] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Fiachra Humphries
- Institute of Immunology; Department of Biology; National University of Ireland Maynooth; Maynooth Ireland
| | - Paul N. Moynagh
- Institute of Immunology; Department of Biology; National University of Ireland Maynooth; Maynooth Ireland
- Centre for Infection and Immunity; School of Medicine, Dentistry and Biomedical Sciences; Queen's University Belfast; Northern Ireland UK
| |
Collapse
|
186
|
Fu C, Xu D, Wang CY, Jin Y, Liu Q, Meng Q, Liu KX, Sun HJ, Liu MZ. Alpha-Lipoic Acid Promotes Osteoblastic Formation in H2
O2
-Treated MC3T3-E1 Cells and Prevents Bone Loss in Ovariectomized Rats. J Cell Physiol 2015; 230:2184-201. [PMID: 25655087 DOI: 10.1002/jcp.24947] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/23/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Chao Fu
- Department of Clinical Pharmacology; College of Pharmacy; Dalian Medical University; Dalian China
| | - Dong Xu
- Department of Orthopaedics; First Affiliated Hospital; Dalian Medical University; Dalian China
| | - Chang-Yuan Wang
- Department of Clinical Pharmacology; College of Pharmacy; Dalian Medical University; Dalian China
| | - Yue Jin
- Department of Clinical Pharmacology; College of Pharmacy; Dalian Medical University; Dalian China
| | - Qi Liu
- Department of Clinical Pharmacology; College of Pharmacy; Dalian Medical University; Dalian China
| | - Qiang Meng
- Department of Clinical Pharmacology; College of Pharmacy; Dalian Medical University; Dalian China
| | - Ke-Xin Liu
- Department of Clinical Pharmacology; College of Pharmacy; Dalian Medical University; Dalian China
| | - Hui-Jun Sun
- Department of Clinical Pharmacology; College of Pharmacy; Dalian Medical University; Dalian China
| | - Mo-Zhen Liu
- Department of Orthopaedics; First Affiliated Hospital; Dalian Medical University; Dalian China
| |
Collapse
|
187
|
Rosuvastatin improves hepatopulmonary syndrome through inhibition of inflammatory angiogenesis of lung. Clin Sci (Lond) 2015; 129:449-60. [PMID: 25940601 DOI: 10.1042/cs20140622] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 05/05/2015] [Indexed: 01/10/2023]
Abstract
The hepatopulmonary syndrome (HPS) is characterized by hypoxia and increased intrapulmonary shunts in cirrhotic patients. Emerging evidence showed promising results of treating HPS by abolishment of intrapulmonary inflammation and angiogenesis. Rosuvastatin is a kind of 3-hydroxy-methyl-3-glutamyl coenzyme A reductase inhibitor. In addition to lipid-lowering effects, it has anti-inflammation and anti-angiogenesis properties. We postulated that rosuvastatin treatment can ameliorate HPS. Common bile duct ligation (CBDL) was applied in an experimental HPS animal model. CBDL rats received 2-week rosuvastatin (20 mg/kg/day) treatments from the fifteenth day after operation. The haemodynamic data, blood gas analysis, liver biochemistries, tumour necrosis factor-α (TNF-α) and vascular endothelial growth factor (VEGF) were examined after rosuvastatin treatment. The liver and lung tissues were dissected for histopathological studies and protein analyses. In the parallel groups, intrapulmonary shunts were determined. The haemodynamic and liver biochemistries were not changed after rosuvastatin treatment in CBDL rats, but the alveolar-arterial oxygen pressure gradient was significantly decreased, implying that HPS-induced hypoxia was reversed after rosuvastatin treatment. In addition, rosuvastatin treatment reduced intrapulmonary shunts and plasma levels of VEGF and TNF-α. Besides, the intrapulmonary protein expression of nuclear factor kappa B (NF-κB), VEGF receptor (VEGFR)-1,2 and Rho-associated A kinase were significantly down-regulated and the intrapulmonary angiogenesis was ameliorated. We concluded that rosuvastatin alleviates experimental HPS through blockade of pulmonary inflammatory angiogenesis via TNF-α/NF-κB and VEGF/Rho-associated A kinase pathways down-regulation.
Collapse
|
188
|
Orabi AI, Sah S, Javed TA, Lemon KL, Good ML, Guo P, Xiao X, Prasadan K, Gittes GK, Jin S, Husain SZ. Dynamic imaging of pancreatic nuclear factor κB (NF-κB) activation in live mice using adeno-associated virus (AAV) infusion and bioluminescence. J Biol Chem 2015; 290:11309-20. [PMID: 25802340 PMCID: PMC4416837 DOI: 10.1074/jbc.m115.647933] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 12/19/2022] Open
Abstract
Nuclear factor κB (NF-κB) is an important signaling molecule that plays a critical role in the development of acute pancreatitis. Current methods for examining NF-κB activation involve infection of an adenoviral NF-κB-luciferase reporter into cell lines or electrophoretic mobility shift assay of lysate. The use of adeno-associated viruses (AAVs) has proven to be an effective method of transfecting whole organs in live animals. We examined whether intrapancreatic duct infusion of AAV containing an NF-κB-luciferase reporter (AAV-NF-κB-luciferase) can reliably measure pancreatic NF-κB activation. We confirmed the infectivity of the AAV-NF-κB-luciferase reporter in HEK293 cells using a traditional luciferase readout. Mice were infused with AAV-NF-κB-luciferase 5 weeks before induction of pancreatitis (caerulein, 50 μg/kg). Unlike transgenic mice that globally express NF-κB-luciferase, AAV-infused mice showed a 15-fold increase in pancreas-specific NF-κB bioluminescence following 12 h of caerulein compared with baseline luminescence (p < 0.05). The specificity of the NF-κB-luciferase signal to the pancreas was confirmed by isolating the pancreas and adjacent organs and observing a predominant bioluminescent signal in the pancreas compared with liver, spleen, and stomach. A complementary mouse model of post-ERCP-pancreatitis also induced pancreatic NF-κB signals. Taken together these data provide the first demonstration that NF-κB activation can be examined in a live, dynamic fashion during pancreatic inflammation. We believe this technique offers a valuable tool to study real-time activation of NF-κB in vivo.
Collapse
Affiliation(s)
| | - Swati Sah
- From the Department of Pediatrics and
| | | | | | | | - Ping Guo
- Surgery, Children's Hospital of Pittsburgh of UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Xiangwei Xiao
- Surgery, Children's Hospital of Pittsburgh of UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Krishna Prasadan
- Surgery, Children's Hospital of Pittsburgh of UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - George K Gittes
- Surgery, Children's Hospital of Pittsburgh of UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | | | | |
Collapse
|
189
|
Greco E, Aita A, Galozzi P, Gava A, Sfriso P, Negm OH, Tighe P, Caso F, Navaglia F, Dazzo E, De Bortoli M, Rampazzo A, Obici L, Donadei S, Merlini G, Plebani M, Todd I, Basso D, Punzi L. The novel S59P mutation in the TNFRSF1A gene identified in an adult onset TNF receptor associated periodic syndrome (TRAPS) constitutively activates NF-κB pathway. Arthritis Res Ther 2015; 17:93. [PMID: 25888769 PMCID: PMC4416318 DOI: 10.1186/s13075-015-0604-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 03/20/2015] [Indexed: 11/11/2022] Open
Abstract
Introduction Mutations in the TNFRSF1A gene, encoding tumor necrosis factor receptor 1 (TNF-R1), are associated with the autosomal dominant autoinflammatory disorder, called TNF receptor associated periodic syndrome (TRAPS). TRAPS is clinically characterized by recurrent episodes of long-lasting fever and systemic inflammation. A novel mutation (c.262 T > C; S59P) in the TNFRSF1A gene at residue 88 of the mature protein was recently identified in our laboratory in an adult TRAPS patient. The aim of this study was to functionally characterize this novel TNFRSF1A mutation evaluating its effects on the TNF-R1-associated signaling pathways, firstly NF-κB, under particular conditions and comparing the results with suitable control mutations. Methods HEK-293 cell line was transfected with pCMV6-AC construct expressing wild-type (WT) or c.262 T > C (S59P), c.362G > A (R92Q), c.236C > T (T50M) TNFRSF1A mutants. Peripheral blood mononuclear cells (PBMCs) were instead isolated from two TRAPS patients carrying S59P and R92Q mutations and from five healthy subjects. Both transfected HEK-293 and PBMCs were stimulated with tumor necrosis factor (TNF) or interleukin 1β (IL-1β) to evaluate the expression of TNF-R1, the activation of TNF-R1-associated downstream pathways and the pro-inflammatory cytokines by means of immunofluorescent assay, array-based technique, immunoblotting and immunometric assay, respectively. Results TNF induced cytoplasmic accumulation of TNF-R1 in all mutant cells. Furthermore, all mutants presented a particular set of active TNF-R1 downstream pathways. S59P constitutively activated IL-1β, MAPK and SRC/JAK/STAT3 pathways and inhibited apoptosis. Also, NF-κB pathway involvement was demonstrated in vitro by the enhancement of p-IκB-α and p65 nuclear subunit of NF-κB expression in all mutants in the presence of TNF or IL-1β stimulation. These in vitro results correlated with patients’ data from PBMCs. Concerning the pro-inflammatory cytokines secretion, mainly IL-1β induced a significant and persistent enhancement of IL-6 and IL-8 in PBMCs carrying the S59P mutation. Conclusions The novel S59P mutation leads to defective cellular trafficking and to constitutive activation of TNF-R1. This mutation also determines constitutive activation of the IL-1R pathway, inhibition of apoptosis and enhanced and persistent NF-κB activation and cytokine secretion in response to IL-1β stimulation. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0604-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eliana Greco
- University of Padova, Rheumatology Unit, Department of Medicine - DIMED, Via Giustiniani 2, 35128, Padova, Italy. .,University of Padova, Laboratory Medicine, Department of Medicine - DIMED, Via Giustiniani 2, 35128, Padova, Italy.
| | - Ada Aita
- University of Padova, Rheumatology Unit, Department of Medicine - DIMED, Via Giustiniani 2, 35128, Padova, Italy. .,University of Padova, Laboratory Medicine, Department of Medicine - DIMED, Via Giustiniani 2, 35128, Padova, Italy.
| | - Paola Galozzi
- University of Padova, Rheumatology Unit, Department of Medicine - DIMED, Via Giustiniani 2, 35128, Padova, Italy.
| | - Alessandra Gava
- University of Padova, Rheumatology Unit, Department of Medicine - DIMED, Via Giustiniani 2, 35128, Padova, Italy.
| | - Paolo Sfriso
- University of Padova, Rheumatology Unit, Department of Medicine - DIMED, Via Giustiniani 2, 35128, Padova, Italy.
| | - Ola H Negm
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Derby road, NG7 2UH, Nottingham, UK. .,Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Elgomhouria Street, 35516, Mansoura City, Egypt.
| | - Patrick Tighe
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Derby road, NG7 2UH, Nottingham, UK.
| | - Francesco Caso
- University of Padova, Rheumatology Unit, Department of Medicine - DIMED, Via Giustiniani 2, 35128, Padova, Italy.
| | - Filippo Navaglia
- University of Padova, Laboratory Medicine, Department of Medicine - DIMED, Via Giustiniani 2, 35128, Padova, Italy.
| | - Emanuela Dazzo
- Institute of Neuroscience of the National Research Council, Section of Padova, Corso Stati Uniti, 4, 3512, Padova, Italy.
| | - Marzia De Bortoli
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padova, Italy.
| | - Alessandra Rampazzo
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padova, Italy.
| | - Laura Obici
- Amyloidosis Research and Treatment Center, Biotechnology Research laboratories, Fondazione IRCSS Policlinico San Matteo and University of Pavia, Viale Camillo Golgi 19, 27100, Pavia, Italy.
| | - Simona Donadei
- Amyloidosis Research and Treatment Center, Biotechnology Research laboratories, Fondazione IRCSS Policlinico San Matteo and University of Pavia, Viale Camillo Golgi 19, 27100, Pavia, Italy.
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Biotechnology Research laboratories, Fondazione IRCSS Policlinico San Matteo and University of Pavia, Viale Camillo Golgi 19, 27100, Pavia, Italy.
| | - Mario Plebani
- University of Padova, Laboratory Medicine, Department of Medicine - DIMED, Via Giustiniani 2, 35128, Padova, Italy.
| | - Ian Todd
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Derby road, NG7 2UH, Nottingham, UK.
| | - Daniela Basso
- University of Padova, Laboratory Medicine, Department of Medicine - DIMED, Via Giustiniani 2, 35128, Padova, Italy.
| | - Leonardo Punzi
- University of Padova, Rheumatology Unit, Department of Medicine - DIMED, Via Giustiniani 2, 35128, Padova, Italy.
| |
Collapse
|
190
|
Bovine immunoglobulin/protein isolate binds pro-inflammatory bacterial compounds and prevents immune activation in an intestinal co-culture model. PLoS One 2015; 10:e0120278. [PMID: 25830826 PMCID: PMC4382133 DOI: 10.1371/journal.pone.0120278] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/28/2015] [Indexed: 12/15/2022] Open
Abstract
Intestinal barrier dysfunction is associated with chronic gastrointestinal tract inflammation and diseases such as IBD and IBS. Serum-derived bovine immunoglobulin/protein isolate (SBI) is a specially formulated protein preparation (>90%) for oral administration. The composition of SBI is greater than 60% immunoglobulin including contributions from IgG, IgA, and IgM. Immunoglobulin within the lumen of the gut has been recognized to have anti-inflammatory properties and is involved in maintaining gut homeostasis. The binding of common intestinal antigens (LPS and Lipid A) and the ligand Pam3CSK4, by IgG, IgA, and IgM in SBI was shown using a modified ELISA technique. Each of these antigens stimulated IL-8 and TNF-α cytokine production by THP-1 monocytes. Immune exclusion occurred as SBI (≤50 mg/mL) bound free antigen in a dose dependent manner that inhibited cytokine production by THP-1 monocytes in response to 10 ng/mL LPS or 200 ng/mL Lipid A. Conversely, Pam3CSK4 stimulation of THP-1 monocytes was unaffected by SBI/antigen binding. A co-culture model of the intestinal epithelium consisted of a C2BBe1 monolayer separating an apical compartment from a basal compartment containing THP-1 monocytes. The C2BBe1 monolayer was permeabilized with dimethyl palmitoyl ammonio propanesulfonate (PPS) to simulate a damaged epithelial barrier. Results indicate that Pam3CSK4 was able to translocate across the PPS-damaged C2BBe1 monolayer. However, binding of Pam3CSK4 by immunoglobulins in SBI prevented Pam3CSK4 translocation across the damaged C2BBe1 barrier. These results demonstrated steric exclusion of antigen by SBI which prevented apical to basal translocation of antigen due to changes in the physical properties of Pam3CSK4, most likely as a result of immunoglobulin binding. This study demonstrates that immunoglobulins in SBI can reduce antigen-associated inflammation through immune and steric exclusion mechanisms and furthers the mechanistic understanding of how SBI might improve immune status and reduce inflammation in various intestinal disease states.
Collapse
|
191
|
Orphan receptor IL-17RD regulates Toll-like receptor signalling via SEFIR/TIR interactions. Nat Commun 2015; 6:6669. [PMID: 25808990 DOI: 10.1038/ncomms7669] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 02/18/2015] [Indexed: 11/08/2022] Open
Abstract
Receptor families of the innate immune response engage in 'cross-talk' to tailor optimal immune responses against invading pathogens. However, these responses are subject to multiple levels of regulation to keep in check aberrant inflammatory signals. Here, we describe a role for the orphan receptor interleukin-17 receptor D (IL-17RD) in negatively regulating Toll-like receptor (TLR)-induced responses. Deficiency of IL-17RD expression in cells leads to enhanced pro-inflammatory signalling and gene expression in response to TLR stimulation, and Il17rd(-/-) mice are more susceptible to TLR-induced septic shock. We demonstrate that the intracellular Sef/IL-17R (SEFIR) domain of IL-17RD targets TIR adaptor proteins to inhibit TLR downstream signalling thus revealing a paradigm involving cross-regulation of members of the IL-17R and TLR families.
Collapse
|
192
|
Cao L, Ge X, Gao Y, Ren Y, Ren X, Li G. Porcine epidemic diarrhea virus infection induces NF-κB activation through the TLR2, TLR3 and TLR9 pathways in porcine intestinal epithelial cells. J Gen Virol 2015; 96:1757-67. [PMID: 25814121 DOI: 10.1099/vir.0.000133] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a coronavirus that induces persistent diarrhoea in swine, resulting in severe economic losses in swine-producing countries. Insights into the interplay between PEDV infection and the innate immune system are necessary for understanding the associated mechanism of pathogenesis. The transcription factor NF-κB plays an important role in regulating host immune responses. Here, we elucidated for the first time to our knowledge the potential mechanism of PEDV-mediated NF-κB activation in porcine small intestinal epithelial cells (IECs). During PEDV infection, NF-κB p65 was found to translocate from the cytoplasm to the nucleus, and PEDV-dependent NF-κB activity was associated with viral dose and active replication. Using small interfering RNAs to screen different mRNA components of the Toll-like receptor (TLR) or RIG-I-like receptor signalling pathways, we demonstrated that TLR2, TLR3 and TLR9 contribute to NF-κB activation in response to PEDV infection, but not RIG-I. By screening PEDV structural proteins for their ability to induce NF-κB activities, we found that PEDV nucleocapsid protein (N) could activate NF-κB and that the central region of N was essential for NF-κB activation. Furthermore, TLR2 was involved in PEDV N-induced NF-κB activation in IECs. Collectively, these findings provide new avenues of investigation into the molecular mechanisms of NF-κB activation induced by PEDV infection.
Collapse
Affiliation(s)
- Liyan Cao
- 1College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Xuying Ge
- 1College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Yu Gao
- 1College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Yudong Ren
- 2College of Electrical and Information, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Xiaofeng Ren
- 1College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Guangxing Li
- 1College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| |
Collapse
|
193
|
Finkin-Groner E, Moradov D, Shifrin H, Bejar C, Nudelman A, Weinstock M. Indoline-3-propionate and 3-aminopropyl carbamates reduce lung injury and pro-inflammatory cytokines induced in mice by LPS. Br J Pharmacol 2015; 172:1101-13. [PMID: 25322956 DOI: 10.1111/bph.12982] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/01/2014] [Accepted: 10/08/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE In the search for safer and effective anti-inflammatory agents, we investigated the effect of methyl indoline-3-propionate and indoline-3-(3-aminopropyl) carbamates on LPS-induced lung injury and pro-inflammatory cytokines in mice. Their mechanism of action was determined in murine peritoneal macrophages. EXPERIMENTAL APPROACH Lung injury was induced by intratracheal infusion of LPS and assessed by the change in lung weight and structure by light microscopy after staining by haematoxylin and eosin. In LPS-activated macrophages, MAPK proteins and IκBα were measured by Western blotting and the transcription factors, AP-1 and NF-κB by electromobility shift assay. Cytokines in the plasma and spleen of mice injected with LPS were measured by elisa-based assay. KEY RESULTS AN917 and AN680 (1-10 pM) decreased TNF-α protein in macrophages by inhibiting phosphorylation of p38 MAPK, IκBα degradation and activation of AP-1 and NF-κB without affecting cell viability. In vivo, these compounds (10 μmol · kg(-1)) markedly decreased lung injury induced by LPS and the elevation of TNF-α and IL-6 in lung, plasma and spleen. Activation of α-7nACh receptors contributed to the reduction of TNF-α by AN917, which inhibited AChE in the spleen by 35%. CONCLUSION AND IMPLICATIONS Indoline carbamates are potent inhibitors of pro-inflammatory mediators in murine macrophages and in mice injected with LPS, acting via the p38 MAPK, AP-1 and NF-κB cascades. Indirect α-7nACh receptor activation by AN917, through inhibition of AChE, contributes to its anti-inflammatory effect. Indoline carbamates may have therapeutic potential for lung injury and other diseases associated with chronic inflammation without causing immunosuppression.
Collapse
Affiliation(s)
- E Finkin-Groner
- Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
194
|
Elumalai P, Arunakaran J. Review on molecular and chemopreventive potential of nimbolide in cancer. Genomics Inform 2014; 12:156-64. [PMID: 25705153 PMCID: PMC4330249 DOI: 10.5808/gi.2014.12.4.156] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 11/09/2014] [Accepted: 11/09/2014] [Indexed: 12/16/2022] Open
Abstract
Cancer is the most dreaded disease in human and also major health problem worldwide. Despite its high occurrence, the exact molecular mechanisms of the development and progression are not fully understood. The existing cancer therapy based on allopathic medicine is expensive, exhibits side effects; and may also alter the normal functioning of genes. Thus, a non-toxic and effective mode of treatment is needed to control cancer development and progression. Some medicinal plants offer a safe, effective and affordable remedy to control the cancer progression. Nimbolide, a limnoid derived from the neem (Azadirachta indica) leaves and flowers of neem, is widely used in traditional medical practices for treating various human diseases. Nimbolide exhibits several pharmacological effects among which its anticancer activity is the most promising. The previous studies carried out over the decades have shown that nimbolide inhibits cell proliferation and metastasis of cancer cells. This review highlights the current knowledge on the molecular targets that contribute to the observed anticancer activity of nimbolide related to induction of apoptosis and cell cycle arrest; and inhibition of signaling pathways related to cancer progression.
Collapse
Affiliation(s)
- Perumal Elumalai
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India
| | - Jagadeesan Arunakaran
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India
| |
Collapse
|
195
|
Activation of apoptosis by caspase-3-dependent specific RelB cleavage in anticancer agent-treated cancer cells: involvement of positive feedback mechanism. Biochem Biophys Res Commun 2014; 456:810-4. [PMID: 25511695 DOI: 10.1016/j.bbrc.2014.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 11/22/2022]
Abstract
DTCM-glutarimide (DTCM-G) is a newly found anti-inflammatory agent. In the course of experiments with lymphoma cells, we found that DTCM-G induced specific RelB cleavage. Anticancer agent vinblastine also induced the specific RelB cleavage in human fibrosarcoma HT1080 cells. The site-directed mutagenesis analysis revealed that the Asp205 site in RelB was specifically cleaved possibly by caspase-3 in vinblastine-treated HT1080 cells. Moreover, the cells stably overexpressing RelB Asp205Ala were resistant to vinblastine-induced apoptosis. Thus, the specific Asp205 cleavage of RelB by caspase-3 would be involved in the apoptosis induction by anticancer agents, which would provide the positive feedback mechanism.
Collapse
|
196
|
Kim DC, Lee HS, Ko W, Lee DS, Sohn JH, Yim JH, Kim YC, Oh H. Anti-inflammatory effect of methylpenicinoline from a marine isolate of Penicillium sp. (SF-5995): inhibition of NF-κB and MAPK pathways in lipopolysaccharide-induced RAW264.7 macrophages and BV2 microglia. Molecules 2014; 19:18073-89. [PMID: 25379644 PMCID: PMC6271136 DOI: 10.3390/molecules191118073] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/28/2014] [Accepted: 10/28/2014] [Indexed: 12/21/2022] Open
Abstract
In the course of a search for anti-inflammatory metabolites from marine-derived fungi, methylpenicinoline (1) was isolated from a marine isolate of Penicillin sp. Compound 1 inhibited lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production by suppressing the expression of inducible NO synthase (iNOS) in RAW264.7 macrophages and BV2 microglia. It also attenuated prostaglandin E2 (PGE2) production by suppressing cyclooxygenase-2 (COX-2) expression in a concentration-dependent manner (from 10 μM to 80 μM) without affecting cell viability. In addition, compound 1 reduced the production of the pro-inflammatory cytokine interleukin-1β (IL-1β). In a further study designed to elucidate the mechanism of its anti-inflammatory effects, compound 1 was shown to block nuclear factor-kappa B (NF-κB) activation in LPS-induced RAW264.7 macrophages and BV2 microglia by inhibiting the phosphorylation of inhibitor kappa B-α (IκB-α), thereby suppressing the nuclear translocation of NF-κB dimers, namely p50 and p65, that are known to be crucial molecules associated with iNOS and COX-2 expression. In addition, compound 1 inhibited the activation of mitogen-activated protein kinase (MAPK) pathways. Taken together, the results suggest that compound 1 might be a valuable therapeutic agent for the treatment of anti-inflammatory and anti-neuroinflammatory diseases.
Collapse
Affiliation(s)
- Dong-Cheol Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| | - Hee-Suk Lee
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| | - Wonmin Ko
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| | - Dong-Sung Lee
- Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon 400-712, Korea.
| | - Jae Hak Sohn
- College of Medical and Life Sciences, Silla University, Busan 617-736, Korea.
| | - Joung Han Yim
- Korea Polar Research Institute, KORDI, 7-50 Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea.
| | - Youn-Chul Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| | - Hyuncheol Oh
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| |
Collapse
|
197
|
Lee MS, Koh D, Kim GS, Lee SE, Noh HJ, Kim SY, Lee YH, Lim Y, Shin SY. 2-Hydroxy-3,4-naphthochalcone (2H-NC) inhibits TNFα-induced tumor invasion through the downregulation of NF-κB-mediated MMP-9 gene expression. Bioorg Med Chem Lett 2014; 25:128-32. [PMID: 25466202 DOI: 10.1016/j.bmcl.2014.10.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 01/28/2023]
Abstract
The control of tumor metastasis is important for the successful prevention and treatment of cancer. Emerging evidence indicates that various natural and synthetic chalcones exhibit antimetastatic activity through the inhibition of nuclear factor-κB (NF-κB), although the precise mechanism by which this occurs is currently unclear. In this study, 2-hydroxy-3,4-naphthochalcone (2H-NC) was found to reduce tumor necrosis factor alpha (TNFα)-induced MMP-9 mRNA expression and gelatinolytic enzyme activity. These actions were associated with inhibition of RelA/p65 NF-κB activity. In addition, 2H-NC inhibited TNFα-induced invasion of MDA-MB-231 breast cancer cells, as assessed using a three-dimensional spheroid invasion assay. Taken together, these data demonstrate that 2H-NC prevents TNFα-induced tumor cell invasion through downregulation of NF-κB-mediated MMP-9 gene expression, and thereby identify naphthochalcones as a potentially effective class of molecules to use as a platform for the development of antimetastatic agents.
Collapse
Affiliation(s)
- Mi So Lee
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
198
|
HONG SUHYUN, JEONG HUIKYUNG, HAN MINHO, PARK CHEOL, CHOI YUNGHYUN. Esculetin suppresses lipopolysaccharide-induced inflammatory mediators and cytokines by inhibiting nuclear factor-κB translocation in RAW 264.7 macrophages. Mol Med Rep 2014; 10:3241-6. [DOI: 10.3892/mmr.2014.2613] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 10/02/2014] [Indexed: 11/06/2022] Open
|
199
|
Jeong JJ, Jang SE, Hyam SR, Han MJ, Kim DH. Mangiferin ameliorates colitis by inhibiting IRAK1 phosphorylation in NF-κB and MAPK pathways. Eur J Pharmacol 2014; 740:652-61. [DOI: 10.1016/j.ejphar.2014.06.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 12/27/2022]
|
200
|
Regulation of moxibustion on the expression of NF-κBp65 and PPARγ mRNA in colon of rats with ulcerative colitis. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2014. [DOI: 10.1007/s11726-014-0786-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|