151
|
Wang Y, Sørensen MG, Zheng Q, Zhang C, Karsdal MA, Henriksen K. Will posttranslational modifications of brain proteins provide novel serological markers for dementias? Int J Alzheimers Dis 2012; 2012:209409. [PMID: 22779024 PMCID: PMC3388459 DOI: 10.1155/2012/209409] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/26/2012] [Indexed: 11/23/2022] Open
Abstract
Drug development for dementias is significantly hampered by the lack of easily accessible biomarkers. Fluid biomarkers of dementias provide indications of disease stage, but have little prognostic value, cannot detect early pathological changes, and can only be measured in CSF (cerebrospinal fluid) which significantly limits their applicability. In contrast, imaging based biomarkers can provide indications of probability of disease progression, yet are limited in applicability due to cost, radiation and radio-tracers. These aspects highlight the need for other approaches to the development of biomarkers of dementia, which should focus on not only providing information about pathological changes, but also on being measured easily and reproducibly. For other diseases, focus on development of assays monitoring highly specific protease-generated cleavage fragments of proteins has provided assays, which in serum or plasma have the ability to predict early pathological changes. Proteolytic processing of brain proteins, such as tau, APP, and α-synuclein, is a key pathological event in dementias. Here, we speculate that aiming biomarker development for dementias at detecting small brain protein degradation fragments of generated by brain-derived proteases specifically in blood samples could lead to the development of novel markers of disease progression, stage and importantly of treatment efficacy.
Collapse
Affiliation(s)
- Y. Wang
- Department of Biomarker Development, Nordic Bioscience A/S, Beijing 102206, China
| | - M. G. Sørensen
- Neurodegenerative Diseases, Nordic Bioscience A/S, Herlev Hovedgade 207, 2730 Herlev, Denmark
| | - Q. Zheng
- Department of Biomarker Development, Nordic Bioscience A/S, Beijing 102206, China
| | - C. Zhang
- Neurodegenerative Diseases, Nordic Bioscience A/S, Herlev Hovedgade 207, 2730 Herlev, Denmark
| | - M. A. Karsdal
- Neurodegenerative Diseases, Nordic Bioscience A/S, Herlev Hovedgade 207, 2730 Herlev, Denmark
| | - K. Henriksen
- Neurodegenerative Diseases, Nordic Bioscience A/S, Herlev Hovedgade 207, 2730 Herlev, Denmark
| |
Collapse
|
152
|
Pastore A, Temussi P. Protein aggregation and misfolding: good or evil? JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:244101. [PMID: 22595337 DOI: 10.1088/0953-8984/24/24/244101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protein aggregation and misfolding have important implications in an increasing number of fields ranging from medicine to biology to nanotechnology and material science. The interest in understanding this field has accordingly increased steadily over the last two decades. During this time the number of publications that have been dedicated to protein aggregation has increased exponentially, tackling the problem from several different and sometime contradictory perspectives. This review is meant to summarize some of the highlights that come from these studies and introduce this topical issue on the subject. The factors that make a protein aggregate and the cellular strategies that defend from aggregation are discussed together with the perspectives that the accumulated knowledge may open.
Collapse
|
153
|
Mufamadi MS, Choonara YE, Kumar P, Modi G, Naidoo D, Ndesendo VMK, du Toit LC, Iyuke SE, Pillay V. Surface-Engineered Nanoliposomes by Chelating Ligands for Modulating the Neurotoxicity Associated with β-Amyloid Aggregates of Alzheimer’s disease. Pharm Res 2012; 29:3075-89. [DOI: 10.1007/s11095-012-0770-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 04/30/2012] [Indexed: 11/28/2022]
|
154
|
Lakshmana MK, Hayes CD, Bennett SP, Bianchi E, Reddy KM, Koo EH, Kang DE. Role of RanBP9 on amyloidogenic processing of APP and synaptic protein levels in the mouse brain. FASEB J 2012; 26:2072-83. [PMID: 22294787 PMCID: PMC3336780 DOI: 10.1096/fj.11-196709] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/17/2012] [Indexed: 12/27/2022]
Abstract
We previously reported that RanBP9 binds low-density lipoprotein receptor-related protein (LRP), amyloid precursor protein (APP), and BACE1 and robustly increased Aβ generation in a variety of cell lines and primary neuronal cultures. To confirm the physiological/ pathological significance of this phenotype in vivo, we successfully generated transgenic mice overexpressing RanBP9 as well as RanBP9-null mice. Here we show that RanBP9 overexpression resulted in >2-fold increase in Aβ40 levels as early as 4 mo of age. A sustained increase in Aβ40 levels was seen at 12 mo of age in both CHAPS-soluble and formic acid (FA)-soluble brain fractions. In addition, Aβ42 levels were also significantly increased in FA-soluble fractions at 12 mo of age. More important, increased Aβ levels were translated to increased deposition of amyloid plaques. In addition, RanBP9 overexpression significantly decreased the levels of synaptophysin and PSD-95 proteins. Conversely, RanBP9-null mice showed increased levels of synaptophysin, PSD-95, and drebrin A protein levels. Given that loss of synapses is the best pathological correlate of cognitive deficits in Alzheimer's disease (AD), increased Aβ levels by RanBP9 observed in the present study provides compelling evidence that RanBP9 may indeed play a key role in the etiology of AD. If so, RanBP9 provides a great opportunity to develop novel therapy for AD.
Collapse
Affiliation(s)
- Madepalli K. Lakshmana
- Section of Neurobiology, Torrey Pines Institute for Molecular Studies, Port Saint Lucie, Florida, USA
| | - Crystal D. Hayes
- Section of Neurobiology, Torrey Pines Institute for Molecular Studies, Port Saint Lucie, Florida, USA
| | - Steven P. Bennett
- Section of Neurobiology, Torrey Pines Institute for Molecular Studies, Port Saint Lucie, Florida, USA
| | - Elisabetta Bianchi
- Laboratory of Immuneregulation, Department of Immunology, Institut Pasteur, Paris, France
| | | | - Edward H. Koo
- Department of Neuroscience, University of California, La Jolla, California, USA; and
| | - David E. Kang
- Department of Neuroscience, University of California, La Jolla, California, USA; and
- World Class University–Neurocytomics Program, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
155
|
Lee YJ, Choi DY, Han SB, Kim YH, Kim KH, Hwang BY, Kang JK, Lee BJ, Oh KW, Hong JT. Inhibitory effect of ethanol extract of Magnolia officinalis on memory impairment and amyloidogenesis in a transgenic mouse model of Alzheimer's disease via regulating β-secretase activity. Phytother Res 2012; 26:1884-92. [PMID: 22431473 DOI: 10.1002/ptr.4643] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/22/2011] [Accepted: 01/26/2012] [Indexed: 11/12/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized by deposition of amyloid beta (Aβ) in the brain. The components of the herb Magnolia officinalis are known to have antiinflammatory, antioxidative and neuroprotective activities. In this study we investigated the effects of ethanol extract of M. officinalis on memory dysfunction and amyloidogenesis in a transgenic mouse model of AD. Oral pretreatment of ethanol extract of M. officinalis (10 mg/kg in 0.05% ethanol) into drinking water for 3 months inhibited memory impairment and Aβ deposition in the brain of Tg2576 mice. Ethanol extract of M. officinalis also decreased activity of β-secretase, cleaving Aβ from amyloid precursor protein (APP), and expression of β-site APP cleaving enzyme 1 (BACE1), APP and its product, C99. Our results showed that ethanol extract of M. officinalis effectively prevented memory impairment via down-regulating β-secretase activity.
Collapse
Affiliation(s)
- Young-Jung Lee
- College of Pharmacy, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk, 361-763, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Cavallucci V, D'Amelio M, Cecconi F. Aβ toxicity in Alzheimer's disease. Mol Neurobiol 2012; 45:366-78. [PMID: 22415442 DOI: 10.1007/s12035-012-8251-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/24/2012] [Indexed: 01/09/2023]
Abstract
Alzheimer's Disease (AD), the most common age-related neurodegenerative disorder, is characterized by progressive cognitive decline, synaptic loss, the formation of extracellular β-amyloid plaques and intracellular neurofibrillary tangles, and neuronal cell death. Despite the massive neuronal loss in the 'late stage' of disease, dendritic spine loss represents the best pathological correlate to the cognitive impairment in AD patients. The 'amyloid hypothesis' of AD recognizes the Aβ peptide as the principal player in the pathological process. Many lines of evidence point out to the neurotoxicity of Aβ, highlighting the correlation between soluble Aβ oligomer accumulation, rather than insoluble Aβ fibrils and disease progression. Pathological increase of Aβ in AD brains, resulting from an imbalance between its production, aggregation and clearance, might target mitochondrial function promoting a progressive synaptic impairment. The knowledge of the exact mechanisms by which Aβ peptide impairs neuronal function will help us to design new pharmacological tools for preventing AD neurodegeneration.
Collapse
Affiliation(s)
- Virve Cavallucci
- Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | | | | |
Collapse
|
157
|
Pivotal role of the RanBP9-cofilin pathway in Aβ-induced apoptosis and neurodegeneration. Cell Death Differ 2012; 19:1413-23. [PMID: 22361682 DOI: 10.1038/cdd.2012.14] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neurodegeneration associated with amyloid β (Aβ) peptide accumulation, synaptic loss, neuroinflammation, tauopathy, and memory impairments encompass the pathophysiological features of Alzheimer's disease (AD). We previously reported that the scaffolding protein RanBP9, which is overall increased in brains of AD patients, simultaneously promotes Aβ generation and focal adhesion disruption by accelerating the endocytosis of amyloid precursor protein (APP) and β1-integrin, respectively. Here, we show that RanBP9 protein levels are increased by fourfold in FAD mutant APP transgenic mice. Accordingly, RanBP9 transgenic mice demonstrate significantly increased synapse loss, neurodegeneration, gliosis, and spatial memory deficits. RanBP9 overexpression promotes apoptosis and potentiates Aβ-induced neurotoxicity independent of its capacity to promote Aβ generation. Conversely, RanBP9 reduction by siRNA or gene dosage mitigates Aβ-induced neurotoxicity. Importantly, RanBP9 activates/dephosphorylates cofilin, a key regulator of actin dynamics and mitochondria-mediated apoptosis, and siRNA knockdown of cofilin abolishes both Aβ and RanBP9-induced apoptosis. These findings implicate the RanBP9-cofilin pathway as critical therapeutic targets not only for stemming Aβ generation but also antagonizing Aβ-induced neurotoxicity.
Collapse
|
158
|
Neurodegeneration in Alzheimer disease: role of amyloid precursor protein and presenilin 1 intracellular signaling. J Toxicol 2012; 2012:187297. [PMID: 22496686 PMCID: PMC3306972 DOI: 10.1155/2012/187297] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/14/2011] [Accepted: 10/26/2011] [Indexed: 01/02/2023] Open
Abstract
Alzheimer disease (AD) is a heterogeneous neurodegenerative disorder characterized by (1) progressive loss of synapses and neurons, (2) intracellular neurofibrillary tangles, composed of hyperphosphorylated Tau protein, and (3) amyloid plaques. Genetically, AD is linked to mutations in few proteins amyloid precursor protein (APP) and presenilin 1 and 2 (PS1 and PS2). The molecular mechanisms underlying neurodegeneration in AD as well as the physiological function of APP are not yet known. A recent theory has proposed that APP and PS1 modulate intracellular signals to induce cell-cycle abnormalities responsible for neuronal death and possibly amyloid deposition. This hypothesis is supported by the presence of a complex network of proteins, clearly involved in the regulation of signal transduction mechanisms that interact with both APP and PS1. In this review we discuss the significance of novel finding related to cell-signaling events modulated by APP and PS1 in the development of neurodegeneration.
Collapse
|
159
|
Papareddy P, Mörgelin M, Walse B, Schmidtchen A, Malmsten M. Antimicrobial activity of peptides derived from human ß-amyloid precursor protein. J Pept Sci 2012; 18:183-91. [PMID: 22249992 DOI: 10.1002/psc.1439] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/03/2011] [Accepted: 11/15/2011] [Indexed: 11/07/2022]
Abstract
Antimicrobial peptides are important effector molecules of the innate immune system. Here, we describe that peptides derived from the heparin-binding disulfide-constrained loop region of human ß-amyloid precursor protein are antimicrobial. The peptides investigated were linear and cyclic forms of NWCKRGRKQCKTHPH (NWC15) as well as the cyclic form comprising the C-terminal hydrophobic amino acid extension FVIPY (NWCKRGRKQCKTHPHFVIPY; NWC20c). Compared with the benchmark antimicrobial peptide LL-37, these peptides efficiently killed the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive Staphylococcus aureus and Bacillus subtilis, and the fungi Candida albicans and Candida parapsilosis. Correspondingly, fluorescence and electron microscopy demonstrated that the peptides caused defects in bacterial membranes. Analogously, the peptides permeabilised negatively charged liposomes. Despite their bactericidal effect, the peptides displayed very limited hemolytic activities within the concentration range investigated and exerted very small membrane permeabilising effects on human epithelial cells. The efficiency of the peptides with respect to bacterial killing and liposome membrane leakage was in the order NWC20c > NWC15c > NWC15l, which also correlated to the adsorption density for these peptides at the model lipid membrane. Thus, whereas the cationic sequence is a minimum determinant for antimicrobial action, a constrained loop-structure as well as a hydrophobic extension further contributes to membrane permeabilising activity of this region of amyloid precursor protein.
Collapse
Affiliation(s)
- Praveen Papareddy
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Biomedical Center, Tornavägen 10, SE-221 84, Lund, Sweden
| | | | | | | | | |
Collapse
|
160
|
Wentzell JS, Bolkan BJ, Carmine-Simmen K, Swanson TL, Musashe DT, Kretzschmar D. Amyloid precursor proteins are protective in Drosophila models of progressive neurodegeneration. Neurobiol Dis 2012; 46:78-87. [PMID: 22266106 DOI: 10.1016/j.nbd.2011.12.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/06/2011] [Accepted: 12/31/2011] [Indexed: 12/11/2022] Open
Abstract
The processing of Amyloid Precursor Proteins (APPs) results in several fragments, including soluble N-terminal ectodomains (sAPPs) and C-terminal intracellular domains (AICD). sAPPs have been ascribed neurotrophic or neuroprotective functions in cell culture, although β-cleaved sAPPs can have deleterious effects and trigger neuronal cell death. Here we describe a neuroproprotective function of APP and fly APPL (Amyloid Precursor Protein-like) in vivo in several Drosophila mutants with progressive neurodegeneration. We show that expression of the N-terminal ectodomain is sufficient to suppress the progressive degeneration in these mutants and that the secretion of the ectodomain is required for this function. In addition, a protective effect is achieved by expressing kuzbanian (which has α-secretase activity) whereas expression of fly and human BACE aggravates the phenotypes, suggesting that the protective function is specifically mediated by the α-cleaved ectodomain. Furthermore, genetic and molecular studies suggest that the N-terminal fragments interact with full-length APPL activating a downstream signaling pathway via the AICD. Because we show protective effects in mutants that affect different genes (AMP-activated protein kinase, MAP1b, rasGAP), we propose that the protective effect is not due to a genetic interaction between APPL and these genes but a more general aspect of APP proteins. The result that APP proteins and specifically their soluble α-cleaved ectodomains can protect against progressive neurodegeneration in vivo provides support for the hypothesis that a disruption of the physiological function of APP could play a role in the pathogenesis of Alzheimer's Disease.
Collapse
Affiliation(s)
- Jill S Wentzell
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Sciences University, Portland, OR 97239, USA
| | | | | | | | | | | |
Collapse
|
161
|
Woo JA, Roh SE, Lakshmana MK, Kang DE. Pivotal role of RanBP9 in integrin-dependent focal adhesion signaling and assembly. FASEB J 2012; 26:1672-81. [PMID: 22223749 DOI: 10.1096/fj.11-194423] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Accumulation of the amyloid β (Aβ) peptide derived from the amyloid precursor protein (APP) plays a central role in the pathogenesis of Alzheimer's disease (AD). We previously reported that the scaffolding protein RanBP9 is markedly increased in AD brains and promotes Aβ generation by scaffolding APP/BACE1/LRP complexes together and accelerating APP endocytosis. Because APP, LRP, and RanBP9 all physically interact with β-integrins, we investigated whether RanBP9 alters integrin-dependent cell adhesion and focal adhesion signaling. Here, we show that RanBP9 overexpression dramatically disrupts integrin-dependent cell attachment and spreading in NIH3T3 and hippocampus-derived HT22 cells, concomitant with strongly decreased Pyk2/paxillin signaling and talin/vinculin localization in focal adhesion complexes. Conversely, RanBP9 knockdown robustly promotes cell attachment, spreading, and focal adhesion signaling and assembly. Cell surface biotinylation and endocytosis assays reveal that RanBP9 overexpression and RanBP9 siRNA potently reduces and increases surface β1-integrin and LRP by accelerating and inhibiting their endocytosis, respectively. Primary hippocampal neurons derived from RanBP9-transgenic mice also demonstrate severely reduced levels of surface β1-integrin, LRP, and APP, as well as neurite arborization. Therefore, these data indicate that RanBP9 simultaneously inhibits cell-adhesive processes and enhances Aβ generation by accelerating APP, LRP, and β1-integrin endocytosis.
Collapse
Affiliation(s)
- Jung A Woo
- World Class University-Neurocytomics Program, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
162
|
Schmidt SD, Mazzella MJ, Nixon RA, Mathews PM. Aβ measurement by enzyme-linked immunosorbent assay. Methods Mol Biol 2012; 849:507-527. [PMID: 22528112 DOI: 10.1007/978-1-61779-551-0_34] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The neuritic plaque in the brain of Alzheimer's disease patients consists of an amyloid composed primarily of Aβ, an approximately 4-kDa peptide derived from the amyloid precursor protein. Multiple lines of evidence suggest that Aβ plays a key role in the pathogenesis of the disease, and potential treatments that target Aβ production and/or Aβ accumulation in the brain as β-amyloid are being aggressively pursued. Methods to quantitate the Aβ peptide are, therefore, invaluable to most studies aimed at a better understanding of the molecular etiology of the disease and in assessing potential therapeutics. Although other techniques have been used to measure Aβ in the brains of AD patients and β-amyloid-depositing transgenic mice, the enzyme-linked immunosorbent assay (ELISA) is one of the most commonly used, reliable, and sensitive methods for quantitating the Aβ peptide. Here we describe methods for the recovery of both soluble and deposited Aβ from brain tissue and the subsequent quantitation of the peptide by sandwich ELISA.
Collapse
Affiliation(s)
- Stephen D Schmidt
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | | | | | | |
Collapse
|
163
|
Optimization of expression, purification, and NMR measurement for structural studies of transmembrane region of amyloid β protein. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-010-0276-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
164
|
Shi C, Zheng DD, Fang L, Wu F, Kwong WH, Xu J. Ginsenoside Rg1 promotes nonamyloidgenic cleavage of APP via estrogen receptor signaling to MAPK/ERK and PI3K/Akt. Biochim Biophys Acta Gen Subj 2011; 1820:453-60. [PMID: 22178929 DOI: 10.1016/j.bbagen.2011.12.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 11/28/2011] [Accepted: 12/05/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND The pathogenic accumulation of amyloid β peptide (Aβ), a natural occurring peptide processed from beta-amyloid precursor protein (APP), is considered to play a key role in the development of Alzheimer's disease (AD). Ginsenoside Rg1, an active component in ginseng, has been identified as a phytoestrogen and also found to be neuroprotective. However, it is unknown whether Rg1-induced estrogenic activity intervenes in APP processing, and improves memory performance. METHODS Using HT22 cells and SH-SY5Y cells stably expressing the Swedish mutant APP (APPsw), this study investigated whether Rg1 intervened in APP metabolism through estrogenic activity. Using the ovariectomized (OVX) rats to mimic age-related changes in postmenopausal females, this study also tested the long-term effect of Rg1 on APP metabolism. RESULTS The in vitro study demonstrated that Rg1 increased extracellular secretion of soluble amyloid precursor protein α (sAPPα), enhanced α-secretase activity and decreased extracellular release of Aβ. These effects of Rg1 could be prevented by inhibitors of protein kinase C (PKC), Extracellular-Signal Regulated Kinase/Mitogen-Activated Protein Kinase (ERK/MAPK) and Phosphoinositide-3 kinase (PI3K)/Akt pathways. Inhibition of endogenous estrogen receptor (ER) activity abrogated Rg1-triggered release of sAPPα, increase of α-secretase activity, and activation of ERK and Akt signaling. In addition, Rg1 promoted phosphorylation of ERα at Ser118 residue. The in vivo study demonstrated that 8-week Rg1 treatment of OVX rats increased sAPPα levels and decreased Aβ content in the hippocampi, and improved the spatial learning and memory. GENERAL SIGNIFICANCE Rg1 might be used to slow or prevent AD, in particular in postmenopausal females.
Collapse
Affiliation(s)
- Chun Shi
- Department of Anatomy, Guangzhou Medical University, Guangzhou 510182, China
| | | | | | | | | | | |
Collapse
|
165
|
Olgiati P, Politis AM, Papadimitriou GN, De Ronchi D, Serretti A. Genetics of late-onset Alzheimer's disease: update from the alzgene database and analysis of shared pathways. Int J Alzheimers Dis 2011; 2011:832379. [PMID: 22191060 PMCID: PMC3235576 DOI: 10.4061/2011/832379] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 09/21/2011] [Indexed: 12/13/2022] Open
Abstract
The genetics of late-onset Alzheimer's disease (LOAD) has taken impressive steps forwards in the last few years. To date, more than six-hundred genes have been linked to the disorder. However, only a minority of them are supported by a sufficient level of evidence. This review focused on such genes and analyzed shared biological pathways. Genetic markers were selected from a web-based collection (Alzgene). For each SNP in the database, it was possible to perform a meta-analysis. The quality of studies was assessed using criteria such as size of research samples, heterogeneity across studies, and protection from publication bias. This produced a list of 15 top-rated genes: APOE, CLU, PICALM, EXOC3L2, BIN1, CR1, SORL1, TNK1, IL8, LDLR, CST3, CHRNB2, SORCS1, TNF, and CCR2. A systematic analysis of gene ontology terms associated with each marker showed that most genes were implicated in cholesterol metabolism, intracellular transport of beta-amyloid precursor, and autophagy of damaged organelles. Moreover, the impact of these genes on complement cascade and cytokine production highlights the role of inflammatory response in AD pathogenesis. Gene-gene and gene-environment interactions are prominent issues in AD genetics, but they are not specifically featured in the Alzgene database.
Collapse
Affiliation(s)
- Paolo Olgiati
- Institute of Psychiatry, University of Bologna, Viale Carlo Pepoli 5, 40123 Bologna, Italy
| | | | | | | | | |
Collapse
|
166
|
Caenorhabditis elegans as an experimental tool for the study of complex neurological diseases: Parkinson's disease, Alzheimer's disease and autism spectrum disorder. INVERTEBRATE NEUROSCIENCE 2011; 11:73-83. [PMID: 22068627 DOI: 10.1007/s10158-011-0126-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 10/21/2011] [Indexed: 12/23/2022]
Abstract
The nematode Caenorhabditis elegans has a very well-defined and genetically tractable nervous system which offers an effective model to explore basic mechanistic pathways that might be underpin complex human neurological diseases. Here, the role C. elegans is playing in understanding two neurodegenerative conditions, Parkinson's and Alzheimer's disease (AD), and a complex neurological condition, autism, is used as an exemplar of the utility of this model system. C. elegans is an imperfect model of Parkinson's disease because it lacks orthologues of the human disease-related genes PARK1 and LRRK2 which are linked to the autosomal dominant form of this disease. Despite this fact, the nematode is a good model because it allows transgenic expression of these human genes and the study of the impact on dopaminergic neurons in several genetic backgrounds and environmental conditions. For AD, C. elegans has orthologues of the amyloid precursor protein and both human presenilins, PS1 and PS2. In addition, many of the neurotoxic properties linked with Aβ amyloid and tau peptides can be studied in the nematode. Autism spectrum disorder is a complex neurodevelopmental disorder characterised by impairments in human social interaction, difficulties in communication, and restrictive and repetitive behaviours. Establishing C. elegans as a model for this complex behavioural disorder is difficult; however, abnormalities in neuronal synaptic communication are implicated in the aetiology of the disorder. Numerous studies have associated autism with mutations in several genes involved in excitatory and inhibitory synapses in the mammalian brain, including neuroligin, neurexin and shank, for which there are C. elegans orthologues. Thus, several molecular pathways and behavioural phenotypes in C. elegans have been related to autism. In general, the nematode offers a series of advantages that combined with knowledge from other animal models and human research, provides a powerful complementary experimental approach for understanding the molecular mechanisms and underlying aetiology of complex neurological diseases.
Collapse
|
167
|
Monosubstituted γ-lactam and conformationally constrained 1,3-diaminopropan-2-ol transition-state isostere inhibitors of β-secretase (BACE). Bioorg Med Chem Lett 2011; 21:6916-24. [DOI: 10.1016/j.bmcl.2011.06.109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/22/2011] [Accepted: 06/24/2011] [Indexed: 11/19/2022]
|
168
|
Jiang H, Hampel H, Prvulovic D, Wallin A, Blennow K, Li R, Shen Y. Elevated CSF levels of TACE activity and soluble TNF receptors in subjects with mild cognitive impairment and patients with Alzheimer's disease. Mol Neurodegener 2011; 6:69. [PMID: 21978728 PMCID: PMC3206445 DOI: 10.1186/1750-1326-6-69] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 10/06/2011] [Indexed: 12/28/2022] Open
Abstract
We recently reported that expression levels of tumor necrosis factor (TNF) receptors, TNFR1 and TNFR2, are significantly changed in the brains and cerebrospinal fluid (CSF) with Alzheimer's disease (AD). Moreover, we also found that, in an Alzheimer's mouse model, genetic deletion of TNF receptor (TNFR1) reduces amyloid plaques and amyloid beta peptides (Aβ) production through β-secretase (BACE1) regulation. TNF-α converting enzyme (TACE/ADAM-17) does not only cleave pro- TNF-α but also TNF receptors, however, whether the TACE activity was changed in the CSF was not clear. In this study, we examined TACE in the CSF in 32 AD patients and 27 age-matched healthy controls (HCs). Interestingly, we found that TACE activity was significantly elevated in the CSF from AD patients compared with HCs. Furthermore, we also assayed the CSF levels of TACE cleaved soluble forms of TNFR1 and TNFR2 in the same patients. We found that AD patients had higher levels of both TACE cleaved soluble TNFR1 (sTNFR1) and TNFR2 (sTNFR2) in the CSF compared to age- and gender-matched healthy controls. Levels of sTNFR1 correlated strongly with the levels of sTNFR2 (rs = 0.567-0.663, p < 0.01). The levels of both sTNFR1 and sTNFR2 significantly correlated with the TACE activity (rs = 0.491-0.557, p < 0.05). To examine if changes in TACE activity and in levels of cleaved soluble TNFRs are an early event in the course of AD, we measured these molecules in the CSF from 47 subjects with mild cognitive impairment (MCI), which is considered as a preclinical stage of AD. Unexpectedly, we found significantly higher levels of TACE activity and soluble TNFRs in the MCI group than that in AD patients. These results suggest that TACE activity and soluble TNF receptors may be potential diagnostic candidate biomarkers in AD and MCI.
Collapse
Affiliation(s)
- Hong Jiang
- Center for Advanced Therapeutic Strategies for Brain Disorders, Roskamp Institute, Sarasota, FL 34243, USA.
| | | | | | | | | | | | | |
Collapse
|
169
|
The role of lipoprotein receptors on the physiological function of APP. Exp Brain Res 2011; 217:377-87. [PMID: 21947084 DOI: 10.1007/s00221-011-2876-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/09/2011] [Indexed: 12/26/2022]
Abstract
In this review, we will primarily focus on the role of members of the low-density lipoprotein receptor (LDL-R) family that are involved in trafficking and processing of the amyloid precursor protein (APP). We will discuss the role of the LDL-receptor family members, low-density lipoprotein receptor-related protein 1 (LRP1), LRP1b, apolipoprotein E receptor 2, sortilin-related receptor (SorLA/LR11) and megalin/LRP2 on the physiological function of APP and its cellular localization. Additionally, we will focus on adaptor proteins that have been shown to influence the physiological function of LDL-R family members in combination with APP processing. The results in this review emphasize that the physiological function of APP cannot be explained by the focus on the APP protein alone but rather in combination with various direct or indirect interaction partners within the cellular environment.
Collapse
|
170
|
Asada-Utsugi M, Uemura K, Noda Y, Kuzuya A, Maesako M, Ando K, Kubota M, Watanabe K, Takahashi M, Kihara T, Shimohama S, Takahashi R, Berezovska O, Kinoshita A. N-cadherin enhances APP dimerization at the extracellular domain and modulates Aβ production. J Neurochem 2011; 119:354-63. [PMID: 21699541 DOI: 10.1111/j.1471-4159.2011.07364.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sequential processing of amyloid precursor protein (APP) by β- and γ-secretase leads to the generation of amyloid-β (Aβ) peptides, which plays a central role in Alzheimer's disease pathogenesis. APP is capable of forming a homodimer through its extracellular domain as well as transmembrane GXXXG motifs. A number of reports have shown that dimerization of APP modulates Aβ production. On the other hand, we have previously reported that N-cadherin-based synaptic contact is tightly linked to Aβ production. In the present report, we investigated the effect of N-cadherin expression on APP dimerization and metabolism. Here, we demonstrate that N-cadherin expression facilitates cis-dimerization of APP. Moreover, N-cadherin expression led to increased production of Aβ as well as soluble APPβ, indicating that β-secretase-mediated cleavage of APP is enhanced. Interestingly, N-cadherin expression affected neither dimerization of C99 nor Aβ production from C99, suggesting that the effect of N-cadherin on APP metabolism is mediated through APP extracellular domain. We confirmed that N-cadherin enhances APP dimerization by a novel luciferase-complementation assay, which could be a platform for drug screening on a high-throughput basis. Taken together, our results suggest that modulation of APP dimerization state could be one of mechanisms, which links synaptic contact and Aβ production.
Collapse
Affiliation(s)
- Megumi Asada-Utsugi
- School of Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Maltsev AV, Bystryak S, Galzitskaya OV. The role of β-amyloid peptide in neurodegenerative diseases. Ageing Res Rev 2011; 10:440-52. [PMID: 21406255 DOI: 10.1016/j.arr.2011.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 03/03/2011] [Accepted: 03/07/2011] [Indexed: 12/27/2022]
Abstract
Studies of neurodegenerative disorders (NDDs) are drawing more attention of researchers worldwide due to the high incidence of Alzheimer's disease (AD). The pathophysiology of such disorders is, in part, characterized by the transition of a wild-type peptide from its native conformation into a very stable pathological isoform. Subsequently, these abnormal proteins form aggregates of amyloid fibrils that continuously increase in size. Changes in the metabolic processes of neurons (e.g. oxidative stress, hyperphosphorylation of the tau protein, and resulting secondary changes in the cell metabolism) ultimately lead to cell death. We hypothesize that extracellular deposition of β-amyloid peptide fibrils and neurofibrillary tangles represents the body's adaptation mechanism, aimed at preservation of autonomic functioning; while the cognitive decline is severe, the rest of the organ systems remain unaffected and continue to function. This hypothesis is supported by the fact that destruction of pathological plaques, fibrils, and tangles and the use of vaccines targeting β-amyloid result in undesirable side effects. To gain a better understanding of the pathophysiology of Alzheimer's disease and to develop novel therapies, continued studies of the sporadic form of disease and the mechanisms triggering conformational changes in β-amyloid peptide fragments are essential. This review is focused on studies investigating the formation of amyloid fibrils and their role in the pathogenesis of neurodegenerative diseases. In addition, we discuss a related disorder--amyloidosis--where formation of fibrils, tangles, and plaques leads to neuronal death which may occur as a result of a failed adaptation process. Further in-depth investigation and comprehensive analysis of alterations in the metabolism of APP, β-amyloid, and tau protein, which have a pathological effect on cell membrane, alter phosphate exchange, and impair other key metabolic functions of the cell long before the characteristic amyloid deposition takes place, is warranted. A better understanding of intraneuronal processes is crucial in identifying specific inhibitors of pathologic neuronal processes and, consequently, will allow for targeted therapy, thus maximizing efficacy of selected therapeutic regimens.
Collapse
Affiliation(s)
- A V Maltsev
- Russian Gerontological Research Clinical Center, Russian Ministry of Health Care, Moscow, Russia.
| | | | | |
Collapse
|
172
|
Hémar A, Mulle C. [Alzheimer's disease, amyloid peptide and synaptic dysfunction]. Med Sci (Paris) 2011; 27:733-6. [PMID: 21880261 DOI: 10.1051/medsci/2011278015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the first cause of dementia that leads to insidious and progressive loss of memory and cognitive functions. In the early stages of AD, there is a strong correlation between memory impairment and cortical levels of soluble amyloid-β peptide oligomers (Aβ). It has become clear that Aβ disrupt glutamatergic synaptic function, which in turn may lead to the characteristic cognitive deficits. Conversely, experiments in rodents have conforted the notion that Aβo impairs synaptic transmission and plasticity, and that mouse models with increased production of these oligomers display cognitive impairment. Many studies have attempted to determine the mechanisms by which Aβo disrupt synaptic plasticity and mediate their detrimental effect, but the actual pathways are still poorly understood. Here we review this thriving area of research which aims at understanding the mechanisms of synaptic dysfunction in the early phase of AD, and its consequences on the activity of neural circuits.
Collapse
Affiliation(s)
- Agnès Hémar
- Institut interdisciplinaire de neurosciences, Université de Bordeaux, Bordeaux Cedex, France.
| | | |
Collapse
|
173
|
Stieren ES, El Ayadi A, Xiao Y, Siller E, Landsverk ML, Oberhauser AF, Barral JM, Boehning D. Ubiquilin-1 is a molecular chaperone for the amyloid precursor protein. J Biol Chem 2011; 286:35689-35698. [PMID: 21852239 DOI: 10.1074/jbc.m111.243147] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer disease (AD) is associated with extracellular deposition of proteolytic fragments of amyloid precursor protein (APP). Although mutations in APP and proteases that mediate its processing are known to result in familial, early onset forms of AD, the mechanisms underlying the more common sporadic, yet genetically complex forms of the disease are still unclear. Four single-nucleotide polymorphisms within the ubiquilin-1 gene have been shown to be genetically associated with AD, implicating its gene product in the pathogenesis of late onset AD. However, genetic linkage between ubiquilin-1 and AD has not been confirmed in studies examining different populations. Here we show that regardless of genotype, ubiquilin-1 protein levels are significantly decreased in late onset AD patient brains, suggesting that diminished ubiquilin function may be a common denominator in AD progression. Our interrogation of putative ubiquilin-1 activities based on sequence similarities to proteins involved in cellular quality control showed that ubiquilin-1 can be biochemically defined as a bona fide molecular chaperone and that this activity is capable of preventing the aggregation of amyloid precursor protein both in vitro and in live neurons. Furthermore, we show that reduced activity of ubiquilin-1 results in augmented production of pathogenic amyloid precursor protein fragments as well as increased neuronal death. Our results support the notion that ubiquilin-1 chaperone activity is necessary to regulate the production of APP and its fragments and that diminished ubiquilin-1 levels may contribute to AD pathogenesis.
Collapse
Affiliation(s)
- Emily S Stieren
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Amina El Ayadi
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Yao Xiao
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Efraín Siller
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Megan L Landsverk
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Andres F Oberhauser
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555
| | - José M Barral
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas 77555.
| | - Darren Boehning
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas 77555.
| |
Collapse
|
174
|
Jefferson T, Čaušević M, auf dem Keller U, Schilling O, Isbert S, Geyer R, Maier W, Tschickardt S, Jumpertz T, Weggen S, Bond JS, Overall CM, Pietrzik CU, Becker-Pauly C. Metalloprotease meprin beta generates nontoxic N-terminal amyloid precursor protein fragments in vivo. J Biol Chem 2011; 286:27741-50. [PMID: 21646356 PMCID: PMC3149364 DOI: 10.1074/jbc.m111.252718] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 06/02/2011] [Indexed: 01/07/2023] Open
Abstract
Identification of physiologically relevant substrates is still the most challenging part in protease research for understanding the biological activity of these enzymes. The zinc-dependent metalloprotease meprin β is known to be expressed in many tissues with functions in health and disease. Here, we demonstrate unique interactions between meprin β and the amyloid precursor protein (APP). Although APP is intensively studied as a ubiquitously expressed cell surface protein, which is involved in Alzheimer disease, its precise physiological role and relevance remain elusive. Based on a novel proteomics technique termed terminal amine isotopic labeling of substrates (TAILS), APP was identified as a substrate for meprin β. Processing of APP by meprin β was subsequently validated using in vitro and in vivo approaches. N-terminal APP fragments of about 11 and 20 kDa were found in human and mouse brain lysates but not in meprin β(-/-) mouse brain lysates. Although these APP fragments were in the range of those responsible for caspase-induced neurodegeneration, we did not detect cytotoxicity to primary neurons treated by these fragments. Our data demonstrate that meprin β is a physiologically relevant enzyme in APP processing.
Collapse
Affiliation(s)
- Tamara Jefferson
- From Cell and Matrix Biology, Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Mirsada Čaušević
- the Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Ulrich auf dem Keller
- the Institute of Cell Biology, Swiss Federal Institute of Technology Zurich, ETH Hoenggerberg, HPM D24, CH-8093 Zurich, Switzerland
| | - Oliver Schilling
- the Institute of Molecular Medicine and Cell Research, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany
| | - Simone Isbert
- the Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Rebecca Geyer
- From Cell and Matrix Biology, Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Wladislaw Maier
- the Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Sabrina Tschickardt
- the Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Thorsten Jumpertz
- the Department of Neuropathology, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Sascha Weggen
- the Department of Neuropathology, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Judith S. Bond
- the Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, and
| | - Christopher M. Overall
- the Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, and
| | - Claus U. Pietrzik
- the Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany
| | | |
Collapse
|
175
|
Bilobalide regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway. Neurochem Int 2011; 59:59-64. [DOI: 10.1016/j.neuint.2011.03.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 03/30/2011] [Indexed: 01/11/2023]
|
176
|
Kang DE, Roh SE, Woo JA, Liu T, Bu JH, Jung AR, Lim Y. The Interface between Cytoskeletal Aberrations and Mitochondrial Dysfunction in Alzheimer's Disease and Related Disorders. Exp Neurobiol 2011; 20:67-80. [PMID: 22110363 PMCID: PMC3213703 DOI: 10.5607/en.2011.20.2.67] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 05/17/2011] [Indexed: 01/19/2023] Open
Abstract
The major defining pathological hallmarks of Alzheimer's disease (AD) are the accumulations of Aβ in senile plaques and hyperphosphorylated tau in neurofibrillary tangles and neuropil threads. Recent studies indicate that rather than these insoluble lesions, the soluble Aβ oligomers and hyperphosphorylated tau are the toxic agents of AD pathology. Such pathological protein species are accompanied by cytoskeletal changes, mitochondrial dysfunction, Ca2+ dysregulation, and oxidative stress. In this review, we discuss how the binding of Aβ to various integrins, defects in downstream focal adhesion signaling, and activation of cofilin can impact mitochondrial dysfunction, cytoskeletal changes, and tau pathology induced by Aβ oligomers. Such pathological consequences can also feedback to further activate cofilin to promote cofilin pathology. We also suggest that the mechanism of Aβ generation by the endocytosis of APP is mechanistically linked with perturbations in integrin-based focal adhesion signaling, as APP, LRP, and β-integrins are physically associated with each other.
Collapse
Affiliation(s)
- David E Kang
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
177
|
Ling S, Zhou J, Rudd JA, Hu Z, Fang M. The recent updates of therapeutic approaches against aβ for the treatment of Alzheimer's disease. Anat Rec (Hoboken) 2011; 294:1307-18. [PMID: 21717585 DOI: 10.1002/ar.21425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/30/2011] [Indexed: 12/21/2022]
Abstract
One of the main neuropathological lesions observed in brain autopsy of Alzheimer's disease (AD) patients is the extracellular senile plaques mainly composed of amyloid-beta (Aβ) peptide. Recently, treatment strategies have focused on modifying the formation, clearance, and accumulation of this potentially neurotoxic peptide. β- and γ-secretase are responsible for the cleavage of amyloid precursor protein (APP) and the generation of Aβ peptide. Treatments targeting these two critical secretases may therefore reduce Aβ peptide levels and positive impact on AD. Vaccination is also an advanced approach against Aβ. This review focuses on recent advances of our understanding of this key peptide, with emphasis on Aβ peptide synthesis, accumulation and neurotoxicity, and current therapies including vaccination and two critical secretase inhibitors. MicroRNAs (miRNAs) are a class of conserved endogenous small noncoding RNAs, known to regulate the expression of complementary messenger RNAs, involved in AD development. We therefore address the relationship of miRNAs in the brain and Aβ generation, as a novel therapeutic approach to the treatment of AD while also providing new insights on the etiology of this neurological disorder.
Collapse
Affiliation(s)
- Shucai Ling
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
178
|
Chakraborty R, Vepuri V, Mhatre SD, Paddock BE, Miller S, Michelson SJ, Delvadia R, Desai A, Vinokur M, Melicharek DJ, Utreja S, Khandelwal P, Ansaloni S, Goldstein LE, Moir RD, Lee JC, Tabb LP, Saunders AJ, Marenda DR. Characterization of a Drosophila Alzheimer's disease model: pharmacological rescue of cognitive defects. PLoS One 2011; 6:e20799. [PMID: 21673973 PMCID: PMC3108982 DOI: 10.1371/journal.pone.0020799] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 05/13/2011] [Indexed: 02/07/2023] Open
Abstract
Transgenic models of Alzheimer's disease (AD) have made significant contributions to our understanding of AD pathogenesis, and are useful tools in the development of potential therapeutics. The fruit fly, Drosophila melanogaster, provides a genetically tractable, powerful system to study the biochemical, genetic, environmental, and behavioral aspects of complex human diseases, including AD. In an effort to model AD, we over-expressed human APP and BACE genes in the Drosophila central nervous system. Biochemical, neuroanatomical, and behavioral analyses indicate that these flies exhibit aspects of clinical AD neuropathology and symptomology. These include the generation of Aβ(40) and Aβ(42), the presence of amyloid aggregates, dramatic neuroanatomical changes, defects in motor reflex behavior, and defects in memory. In addition, these flies exhibit external morphological abnormalities. Treatment with a γ-secretase inhibitor suppressed these phenotypes. Further, all of these phenotypes are present within the first few days of adult fly life. Taken together these data demonstrate that this transgenic AD model can serve as a powerful tool for the identification of AD therapeutic interventions.
Collapse
Affiliation(s)
- Ranjita Chakraborty
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Vidya Vepuri
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Siddhita D. Mhatre
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Brie E. Paddock
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Sean Miller
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Sarah J. Michelson
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Radha Delvadia
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Arkit Desai
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Marianna Vinokur
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - David J. Melicharek
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Suruchi Utreja
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Preeti Khandelwal
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Sara Ansaloni
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Lee E. Goldstein
- Department of Psychiatry, Boston University, Boston, Massachusetts, United States of America
| | - Robert D. Moir
- Genetics and Aging Research Unit, MIND, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jeremy C. Lee
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Loni P. Tabb
- Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Aleister J. Saunders
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Daniel R. Marenda
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
179
|
Freude KK, Penjwini M, Davis JL, LaFerla FM, Blurton-Jones M. Soluble amyloid precursor protein induces rapid neural differentiation of human embryonic stem cells. J Biol Chem 2011; 286:24264-74. [PMID: 21606494 PMCID: PMC3129207 DOI: 10.1074/jbc.m111.227421] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human embryonic stem cells (hESCs) offer tremendous potential for not only treating neurological disorders but also for their ability to serve as vital reagents to model and investigate human disease. To further our understanding of a key protein involved in Alzheimer disease pathogenesis, we stably overexpressed amyloid precursor protein (APP) in hESCs. Remarkably, we found that APP overexpression in hESCs caused a rapid and robust differentiation of pluripotent stem cells toward a neural fate. Despite maintenance in standard hESC media, up to 80% of cells expressed the neural stem cell marker nestin, and 65% exhibited the more mature neural marker β-3 tubulin within just 5 days of passaging. To elucidate the mechanism underlying the effects of APP on neural differentiation, we examined the proteolysis of APP and performed both gain of function and loss of function experiments. Taken together, our results demonstrate that the N-terminal secreted soluble forms of APP (in particular sAPPβ) robustly drive neural differentiation of hESCs. Our findings not only reveal a novel and intriguing role for APP in neural lineage commitment but also identify a straightforward and rapid approach to generate large numbers of neurons from human embryonic stem cells. These novel APP-hESC lines represent a valuable tool to investigate the potential role of APP in development and neurodegeneration and allow for insights into physiological functions of this protein.
Collapse
Affiliation(s)
- Kristine K Freude
- Department of Neurobiology and Behavior and Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697, USA
| | | | | | | | | |
Collapse
|
180
|
Puzzo D, Privitera L, Fa' M, Staniszewski A, Hashimoto G, Aziz F, Sakurai M, Ribe EM, Troy CM, Mercken M, Jung SS, Palmeri A, Arancio O. Endogenous amyloid-β is necessary for hippocampal synaptic plasticity and memory. Ann Neurol 2011; 69:819-30. [PMID: 21472769 DOI: 10.1002/ana.22313] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 09/10/2010] [Accepted: 10/15/2010] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The goal of this study was to investigate the role of endogenous amyloid-β peptide (Aβ) in healthy brain. METHODS Long-term potentiation (LTP), a type of synaptic plasticity that is thought to be associated with learning and memory, was examined through extracellular field recordings from the CA1 region of hippocampal slices, whereas behavioral techniques were used to assess contextual fear memory and reference memory. Amyloid precursor protein (APP) expression was reduced through small interfering RNA (siRNA) technique. RESULTS We found that both antirodent Aβ antibody and siRNA against murine APP reduced LTP as well as contextual fear memory and reference memory. These effects were rescued by the addition of human Aβ₄₂, suggesting that endogenously produced Aβ is needed for normal LTP and memory. Furthermore, the effect of endogenous Aβ on plasticity and memory was likely due to regulation of transmitter release, activation of α7-containing nicotinic acetylcholine receptors, and Aβ₄₂ production. INTERPRETATION Endogenous Aβ₄₂ is a critical player in synaptic plasticity and memory within the normal central nervous system. This needs to be taken into consideration when designing therapies aiming at reducing Aβ levels to treat Alzheimer disease.
Collapse
Affiliation(s)
- Daniela Puzzo
- Department of Pathology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Schieb H, Weidlich S, Schlechtingen G, Linning P, Jennings G, Gruner M, Wiltfang J, Klafki HW, Knölker HJ. Structural design, solid-phase synthesis and activity of membrane-anchored β-secretase inhibitors on Aβ generation from wild-type and Swedish-mutant APP. Chemistry 2011; 16:14412-23. [PMID: 21132705 DOI: 10.1002/chem.201002878] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Covalent coupling of β-secretase inhibitors to a raftophilic lipid anchor via a suitable spacer by using solid-phase peptide synthesis leads to tripartite structures displaying substantially improved inhibition of cellular secretion of the β-amyloid peptide (Aβ). Herein, we describe a series of novel tripartite structures, their full characterization by NMR spectroscopy and mass spectrometry, and the analysis of their biological activity in cell-based assays. The tripartite structure concept is applicable to different pharmacophores, and the potency in terms of β-secretase inhibition can be optimized by adjusting the spacer length to achieve an optimal distance of the inhibitor from the lipid bilayer. A tripartite structure containing a transition-state mimic inhibitor was found to be less potent on Aβ generation from Swedish-mutant amyloid precursor protein (APP) than from the wild-type protein. Moreover, our observations suggest that specific variants of Aβ are generated from wild-type APP but not from Swedish-mutant APP and are resistant to β-secretase inhibition. Efficient inhibition of Aβ secretion by tripartite structures in the absence of appreciable neurotoxicity was confirmed in a primary neuronal cell culture, thus further supporting the concept.
Collapse
Affiliation(s)
- Heinke Schieb
- Department of Psychiatry and Psychotherapy, University of Duisburg-Essen, LVR-Klinikum, Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Vignini A, Sartini D, Morganti S, Nanetti L, Luzzi S, Provinciali L, Mazzanti L, Emanuelli M. Platelet amyloid precursor protein isoform expression in Alzheimer's disease: evidence for peripheral marker. Int J Immunopathol Pharmacol 2011; 24:529-534. [PMID: 21658330 DOI: 10.1177/039463201102400229] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by a progressive cognitive and memory decline. Among peripheral markers of AD, great interest has been focused on the amyloid precursor protein (APP). In this regard, platelets represent an important peripheral source of APP since it has been demonstrated that the three major isoforms, that are constituted of 770, 751 and 695 aa residues, are inserted in the membrane of resting platelets. APP 751 and APP 770 contain a Kunitz-type serine protease inhibitor domain (APP KPI) and APP 695 lacks this domain. To address this issue, we first examined the platelet APP isoform mRNAs prospectively as biomarker for the diagnosis of AD by means of real-time quantitative PCR, and then evaluated the correlation between APP mRNA expression levels and cognitive impairment of enrolled subjects. Differential gene expression measurements in the AD patient group (n=18) revealed a significant up-regulation of APP TOT (1.52-fold), APP KPI (1.32-fold), APP 770 (1.33-fold) and APP 751 (1.26-fold) compared to controls (n=22). Moreover, a statistically significant positive correlation was found between APP mRNA levels (TOT, KPI, 770 and 751) and cognitive impairment. Since AD definitive diagnosis still relies on pathological evaluation at autopsy, the present results are consistent with the hypothesis that platelet APP could be considered a potential reliable peripheral marker for studying AD and could contribute to define a signature for the presence of AD pathology.
Collapse
|
183
|
Filipović A, Gronau JH, Green AR, Wang J, Vallath S, Shao D, Rasul S, Ellis IO, Yagüe E, Sturge J, Coombes RC. Biological and clinical implications of nicastrin expression in invasive breast cancer. Breast Cancer Res Treat 2011; 125:43-53. [PMID: 20224929 DOI: 10.1007/s10549-010-0823-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 02/07/2023]
Abstract
Nicastrin is an essential component of the gamma secretase (GS) enzyme complex, required for its synthesis and recognition of substrates for proteolytic cleavage. The purpose of this study was to investigate whether nicastrin has prognostic value or potential as a therapeutic target in breast cancer (BC). The suitability of nicastrin as a target in BC was assessed using BC tissue microarrays (TMAs) (n = 1050), and its biological role in vitro was evaluated in BC cell lines following gene silencing. Nicastrin blocking antibodies were developed and evaluated for their suitability as potential clinical therapeutics. TMA and cell line analysis confirmed that nicastrin expression was upregulated in BC compared to normal breast cells. In TMA patient samples, high nicastrin expression was observed in 47.5% of cases and correlated with ERα expression, patient age, and tumor grade. In pre-defined subset analysis, high nicastrin expression predicted for worse BC specific survival in the ERα -ve cohort. In vitro gene silencing of nicastrin resulted in disruption of the GS complex and a decrease in notch1 cleavage. This was sufficient to increase E-cadherin expression and its co-localization with p120 catenin at cell-cell junctions in MCF7 cells. Nicastrin silencing in invasive MDA-MB-231 cells resulted in loss of vimentin expression and a marked reduction in both cell motility and invasion; which was concomitant with the de novo formation of cell-cell junctions characterized by the colocalization of p120 catenin and F-actin. These data indicate that nicastrin can function to maintain epithelial to mesenchymal transition during BC progression. Anti-nicastrin polyclonal and monoclonal antibodies were able to decrease notch1 and vimentin expression and reduced the invasive capacity of BC cells in vitro. This supports our hypothesis that a nicastrin blocking antibody could be used to limit metastatic dissemination in invasive BC.
Collapse
Affiliation(s)
- Aleksandra Filipović
- Section of Oncology, Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Calmodulin regulates the non-amyloidogenic metabolism of amyloid precursor protein in platelets. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:500-6. [PMID: 21167219 DOI: 10.1016/j.bbamcr.2010.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/26/2010] [Accepted: 12/03/2010] [Indexed: 01/19/2023]
Abstract
A balance between the proteolytic processing of amyloid precursor protein APP through the amyloidogenic and the non-amyloidogenic pathways controls the production and release of amyloid β-protein, whose accumulation in the brain is associated to the onset of Alzheimer Disease. APP is also expressed on circulating platelets. The regulation of APP processing in these cells is poorly understood. In this work we show that platelets store considerable amounts of APP fragments, including sAPPα, that can be released upon stimulation of platelets. Moreover, platelet stimulation also promotes the proteolysis of intact APP expressed on the cell surface. This process is supported by an ADAM metalloproteinase, and causes the release of sAPPα. Processing of intact platelet APP is promoted also by treatment with calmodulin antagonist W7. W7-induced APP proteolysis occurs through the non-amyloidogenic pathway, is mediated by a metalloproteinase, and causes the release of sAPPα. Co-immunoprecipitation and pull-down experiments revealed a physical association between calmodulin and APP. These results document a novel role of calmodulin in the regulation of non-amyloidogenic processing of APP.
Collapse
|
185
|
Tang CE, Guan YJ, Yi B, Li XH, Liang K, Zou HY, Yi H, Li MY, Zhang PF, Li C, Peng F, Chen ZC, Yao KT, Xiao ZQ. Identification of the amyloid β-protein precursor and cystatin C as novel epidermal growth factor receptor regulated secretory proteins in nasopharyngeal carcinoma by proteomics. J Proteome Res 2010; 9:6101-11. [PMID: 20882990 DOI: 10.1021/pr100663p] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The epidermal growth factor receptor (EGFR) is usually overexpressed in nasopharyngeal carcinoma (NPC) and is associated with pathogenesis of NPC. However, while EGFR-modulated intracellular proteins have been extensively studied, little is known concerning their extracellular counterparts. To identify EGFR-regulated secreted proteins in NPC, we compared the secretome profiles of TGF-α-stimulated and unstimulated NPC cell line CNE-2. CNE-2 cells were cultured in the absence or presence of TGF-α for 24 h, and secreted proteins were obtained from conditioned serum-free media and enriched by ultrafiltration centrifugation. Using 2-DE and subsequent mass spectrometry, we identified 16 differential secreted proteins, among which the amyloid β-protein precursor (APP) was up-regulated and cystatin C was down-regulated after TGF-α stimulation. We further showed that the secretory changes of APP and cystatin C in CNE-2 after TGF-α stimulation could be abrogated by pretreatment of EGFR tyrosine kinase inhibitor PD153035 and PI3 kinase inhibitor Wortmannin, validating that APP and cystatin C are EGFR-regulated secreted proteins in NPC cells. Immunohistochemistry showed that the expression level of EGFR was positively correlated with the expression level of APP and negatively correlated with the expression level of cystatin C in NPC tissues, indicating that EGFR also regulates expression of APP and cystatin C in clinical NPC tissues. Furthermore, functional analysis showed that the growth and migration of CNE-2 cells decreased after neutralization of secretory APP in the medium using the anti-APP antibody. Our data provide substantial evidence that APP and cystatin C are target secreted proteins of EGFR in NPC, and upregulation of secretory APP by EGFR may be involved in the pathogenesis of NPC.
Collapse
Affiliation(s)
- Can-E Tang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Fustiñana MS, Ariel P, Federman N, Freudenthal R, Romano A. Characterization of the beta amyloid precursor protein-like gene in the central nervous system of the crab Chasmagnathus. Expression during memory consolidation. BMC Neurosci 2010; 11:109. [PMID: 20809979 PMCID: PMC2940927 DOI: 10.1186/1471-2202-11-109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 09/01/2010] [Indexed: 11/24/2022] Open
Abstract
Background Human β-amyloid, the main component in the neuritic plaques found in patients with Alzheimer's disease, is generated by cleavage of the β-amyloid precursor protein. Beyond the role in pathology, members of this protein family are synaptic proteins and have been associated with synaptogenesis, neuronal plasticity and memory, both in vertebrates and in invertebrates. Consolidation is necessary to convert a short-term labile memory to a long-term and stable form. During consolidation, gene expression and de novo protein synthesis are regulated in order to produce key proteins for the maintenance of plastic changes produced during the acquisition of new information. Results Here we partially cloned and sequenced the beta-amyloid precursor protein like gene homologue in the crab Chasmagnathus (cappl), showing a 37% of identity with the fruit fly Drosophila melanogaster homologue and 23% with Homo sapiens but with much higher degree of sequence similarity in certain regions. We observed a wide distribution of cappl mRNA in the nervous system as well as in muscle and gills. The protein localized in all tissues analyzed with the exception of muscle. Immunofluorescence revealed localization of cAPPL in associative and sensory brain areas. We studied gene and protein expression during long-term memory consolidation using a well characterized memory model: the context-signal associative memory in this crab species. mRNA levels varied at different time points during long-term memory consolidation and correlated with cAPPL protein levels Conclusions cAPPL mRNA and protein is widely distributed in the central nervous system of the crab and the time course of expression suggests a role of cAPPL during long-term memory formation.
Collapse
Affiliation(s)
- Maria Sol Fustiñana
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
187
|
Raychaudhuri M, Mukhopadhyay D. AICD Overexpression in Neuro 2A Cells Regulates Expression of PTCH1 and TRPC5. Int J Alzheimers Dis 2010; 2011. [PMID: 20827383 PMCID: PMC2935165 DOI: 10.4061/2011/239453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 07/26/2010] [Indexed: 11/20/2022] Open
Abstract
Amyloid precursor protein (APP), implicated in Alzheimer's disease, is a transmembrane protein of undetermined function. APP is cleaved by gamma-secretase that releases the APP intracellular domain (AICD) in the cytoplasm. In vitro and in vivo studies have implicated the role of AICD in cell signaling and transcriptional regulation of Gsk3β, KAI1, BACE1, EGFR, and other proteins. In this study, by overexpressing AICD in mouse neuroblastoma cell lines, we have demonstrated the alteration in the expressions of two proteins, patched homolog 1 (PTCH1), a receptor for sonic hedgehog signaling, and transient receptor potential cation channel subfamily C member 5 (TRPC5), a component of receptor-activated nonselective calcium permeant cation channel. Our results indicate the possibility of regulation by AICD in developmental processes as well as in the maintenance of calcium homeostasis at the transcription level.
Collapse
Affiliation(s)
- Mithu Raychaudhuri
- Structural Genomics Section, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, WB, Kolkata 700 064, India
| | | |
Collapse
|
188
|
Stieren E, Werchan WP, El Ayadi A, Li F, Boehning D. FAD mutations in amyloid precursor protein do not directly perturb intracellular calcium homeostasis. PLoS One 2010; 5:e11992. [PMID: 20700539 PMCID: PMC2916833 DOI: 10.1371/journal.pone.0011992] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 07/13/2010] [Indexed: 11/19/2022] Open
Abstract
Disturbances in intracellular calcium homeostasis are likely prominent and causative factors leading to neuronal cell death in Alzheimer's disease (AD). Familial AD (FAD) is early-onset and exhibits autosomal dominant inheritance. FAD-linked mutations have been found in the genes encoding the presenilins and amyloid precursor protein (APP). Several studies have shown that mutated presenilin proteins can directly affect calcium release from intracellular stores independently of Abeta production. Although less well established, there is also evidence that APP may directly modulate intracellular calcium homeostasis. Here, we directly examined whether overexpression of FAD-linked APP mutants alters intracellular calcium dynamics. In contrast to previous studies, we found that overexpression of mutant APP has no effects on basal cytosolic calcium, ER calcium store size or agonist-induced calcium release and subsequent entry. Thus, we conclude that mutated APP associated with FAD has no direct effect on intracellular calcium homeostasis independently of Abeta production.
Collapse
Affiliation(s)
- Emily Stieren
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Walter P. Werchan
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Amina El Ayadi
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Fuzhen Li
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Darren Boehning
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
189
|
Nautiyal M, Sweatt AJ, MacKenzie JA, Mark Payne R, Szucs S, Matalon R, Wallin R, Hutson SM. Neuronal localization of the mitochondrial protein NIPSNAP1 in rat nervous system. Eur J Neurosci 2010; 32:560-9. [DOI: 10.1111/j.1460-9568.2010.07326.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
190
|
Identification of novel N-terminal fragments of amyloid precursor protein in cerebrospinal fluid. Exp Neurol 2010; 223:351-8. [DOI: 10.1016/j.expneurol.2009.06.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/11/2009] [Accepted: 06/17/2009] [Indexed: 11/19/2022]
|
191
|
Kang EL, Cameron AN, Piazza F, Walker KR, Tesco G. Ubiquitin regulates GGA3-mediated degradation of BACE1. J Biol Chem 2010; 285:24108-19. [PMID: 20484053 DOI: 10.1074/jbc.m109.092742] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACE1 (beta-site amyloid precursor protein-cleaving enzyme 1) is a membrane-tethered member of the aspartyl proteases, essential for the production of beta-amyloid, a toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. The BACE1 C-terminal fragment contains a DXXLL motif that has been shown to bind the VHS (VPS27, Hrs, and STAM) domain of GGA1-3 (Golgi-localized gamma-ear-containing ARF-binding proteins). GGAs are trafficking molecules involved in the transport of proteins containing the DXXLL signal from the Golgi complex to endosomes. Moreover, GGAs bind ubiquitin and traffic synthetic and endosomal ubiquitinated cargoes to lysosomes. We have previously shown that depletion of GGA3 results in increased BACE1 levels and activity because of impaired lysosomal degradation. Here, we report that the accumulation of BACE1 is rescued by the ectopic expression of GGA3 in H4 neuroglioma cells depleted of GGA3. Accordingly, the overexpression of GGA3 reduces the levels of BACE1 and beta-amyloid. We then established that mutations in the GGA3 VPS27, Hrs, and STAM domain (N91A) or in BACE1 di-leucine motif (L499A/L500A), able to abrogate their binding, did not affect the ability of ectopically expressed GGA3 to rescue BACE1 accumulation in cells depleted of GGA3. Instead, we found that BACE1 is ubiquitinated at lysine 501 and is mainly monoubiquitinated and Lys-63-linked polyubiquitinated. Finally, a GGA3 mutant with reduced ability to bind ubiquitin (GGA3L276A) was unable to regulate BACE1 levels both in rescue and overexpression experiments. These findings indicate that levels of GGA3 tightly and inversely regulate BACE1 levels via interaction with ubiquitin sorting machinery.
Collapse
Affiliation(s)
- Eugene L Kang
- Alzheimer's Disease Research Laboratory, Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
192
|
Park TJ, Im S, Kim JS, Kim Y. High-yield expression and purification of the transmembrane region of ion channel-forming amyloid-β protein for NMR structural studies. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
193
|
Wentzell J, Kretzschmar D. Alzheimer's disease and tauopathy studies in flies and worms. Neurobiol Dis 2010; 40:21-8. [PMID: 20302939 DOI: 10.1016/j.nbd.2010.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/08/2010] [Accepted: 03/10/2010] [Indexed: 12/24/2022] Open
Abstract
Progressive dementias like Alzheimer's Disease (AD) and other tauopathies are an increasing threat to human health worldwide. Although significant progress has been made in understanding the pathogenesis of these diseases using cell culture and mouse models, the complexity of these diseases has still prevented a comprehensive understanding of their underlying causes. As with other neurological diseases, invertebrate models have provided novel genetic approaches for investigating the molecular pathways that are affected in tauopathies, including AD. This review focuses on transgenic models that have been established in Drosophila melanogaster and Caenorhabditis elegans to investigate these diseases, and the insights that have been gained from these studies. Also included are a brief description of the endogenous versions of human "disease genes" (like tau and the Amyloid Precursor Protein) that are expressed in invertebrates, and an overview of results that have been obtained from animals lacking or overexpressing these genes. These diverse models can be used to advance our knowledge about how these proteins acquire a pathogenic function and how disrupting their normal functions may contribute to neurological pathologies. They also provide powerful assays for identifying molecular and genetic interactions that are important in developing or preventing the deleterious effects.
Collapse
Affiliation(s)
- Jill Wentzell
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
194
|
Abstract
The generation of amyloid beta-peptide (A beta) by enzymatic cleavages of the beta-amyloid precursor protein (APP) has been at the center of Alzheimer's disease (AD) research. While the basic process of beta- and gamma-secretase-mediated generation of A beta is text book knowledge, new aspects of A beta and other cleavage products have emerged in recent years. Also our understanding of the enzymes involved in APP proteolysis has increased dramatically. All of these discoveries contribute to a more complete understanding of APP processing and the physiologic and pathologic roles of its secreted and intracellular protein products. Understanding APP processing is important for any therapeutic strategy aimed at reducing A beta levels in AD. In this review, we provide a concise description of the current state of understanding the enzymes involved in APP processing, the cleavage products generated by different processing patterns, and the potential functions of those cleavage products.
Collapse
Affiliation(s)
- Vivian W. Chow
- Department of Pathology, Division of Neuropathology, The Johns Hopkins University School of Medicine
| | | | - Philip C. Wong
- Department of Pathology, Division of Neuropathology, The Johns Hopkins University School of Medicine
| | | |
Collapse
|
195
|
Manthey D, Gamerdinger M, Behl C. The selective beta1-adrenoceptor antagonist nebivolol is a potential oestrogen receptor agonist with neuroprotective abilities. Br J Pharmacol 2010; 159:1264-73. [PMID: 20128815 DOI: 10.1111/j.1476-5381.2009.00610.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Nebivolol, a selective beta(1)-adrenoceptor antagonist mediating rapid vasodilating effects, is used clinically to treat hypertension. Recently, it was reported that nebivolol also acts as an oestrogen receptor (ER) agonist. To investigate the neuroprotective potential of oestrogens, we assessed the oestrogenic effects of nebivolol in several in vitro neuronal models. EXPERIMENTAL APPROACH Human neuroepithelioma SK-N-MC cells stably transfected with human ER alpha and beta, and mouse N2A neuroblastoma cells expressing human APP695(SWE)[N2Aswe, stably transfected with the Swedish mutation form of the Alzheimer-associated amyloid precursor protein (APPswe, K670M/N671L)] were incubated with different concentrations of nebivolol and 17beta-oestradiol (E2) for 24-48 h. ER activation was detected in a specific reporter assay, and ER-dependent gene expression was measured by quantitative real-time PCR (qRT PCR). Furthermore, cell survival rates were determined, and oxidative stress was induced by hydrogen peroxide and paraquat. Amyloid beta protein precursor (APP) processing was investigated, and the cleavage fragments sAPPalpha and Abeta were quantified via alpha-, beta- and gamma-secretase activity assays. Alterations of secretase expression levels were determined by qRT PCR. KEY RESULTS Nebivolol induces oestrogen-dependent gene transcription, and protects neuronal cells against oxidative stress even at low and physiological concentrations (10(-8) M). Moreover, nebivolol modulates processing of APP in mouse neuronal N2Aswe cells by increasing alpha-secretase activity, ultimately leading to enhanced release of soluble non-amyloidogenic sAPPalpha. CONCLUSIONS AND IMPLICATIONS We showed that nebivolol acts as ER agonist in neuronal cell lines, and suggest oestrogen-like neuroprotective effects mediated by nebivolol.
Collapse
Affiliation(s)
- D Manthey
- Department of Pathobiochemistry, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | | | | |
Collapse
|
196
|
Wild type but not mutant APP is involved in protective adaptive responses against oxidants. Amino Acids 2010; 39:271-83. [DOI: 10.1007/s00726-009-0438-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 11/27/2009] [Indexed: 01/05/2023]
|
197
|
Konietzko U, Goodger ZV, Meyer M, Kohli BM, Bosset J, Lahiri DK, Nitsch RM. Co-localization of the amyloid precursor protein and Notch intracellular domains in nuclear transcription factories. Neurobiol Aging 2010; 31:58-73. [PMID: 18403052 PMCID: PMC2868363 DOI: 10.1016/j.neurobiolaging.2008.03.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 02/28/2008] [Accepted: 03/01/2008] [Indexed: 11/21/2022]
Abstract
The beta-amyloid precursor protein (APP) plays a major role in Alzheimer's disease. The APP intracellular domain (AICD), together with Fe65 and Tip60, localizes to spherical nuclear AFT complexes, which may represent sites of transcription. Despite a lack of co-localization with several described nuclear compartments, we have identified a close apposition between AFT complexes and splicing speckles, Cajal bodies and PML bodies. Live imaging revealed that AFT complexes were highly mobile within nuclei and following pharmacological inhibition of transcription fused into larger assemblies. We have previously shown that AICD regulates the expression of its own precursor APP. In support of our earlier findings, transfection of APP promoter plasmids as substrates resulted in cytosolic AFT complex formation at labeled APP promoter plasmids. In addition, identification of chromosomal APP or KAI1 gene loci by fluorescence in situ hybridization showed their close association with nuclear AFT complexes. The transcriptional activator Notch intracellular domain (NICD) localized to the same nuclear spots as occupied by AFT complexes suggesting that these nuclear compartments correspond to transcription factories. Fe65 and Tip60 also co-localized with APP in the neurites of primary neurons. Pre-assembled AFT complexes may serve to assist fast nuclear signaling upon endoproteolytic APP cleavage.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Amyloid beta-Protein Precursor/chemistry
- Amyloid beta-Protein Precursor/metabolism
- Animals
- Brain/metabolism
- Brain/physiopathology
- Cell Line
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cell Nucleus/ultrastructure
- Cells, Cultured
- Histone Acetyltransferases/genetics
- Histone Acetyltransferases/metabolism
- Humans
- In Situ Hybridization, Fluorescence
- Lysine Acetyltransferase 5
- Macromolecular Substances/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Plasmids
- Promoter Regions, Genetic/genetics
- Protein Structure, Tertiary/physiology
- Receptors, Notch/chemistry
- Receptors, Notch/metabolism
- Signal Transduction/physiology
- Trans-Activators
- Transcriptional Activation/physiology
Collapse
Affiliation(s)
- Uwe Konietzko
- Division of Psychiatry Research, University of Zürich, August Forel Street 1, 8008 Zürich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
198
|
Ceramide and cholesterol: possible connections between normal aging of the brain and Alzheimer's disease. Just hypotheses or molecular pathways to be identified? Alzheimers Dement 2009; 1:43-50. [PMID: 19595816 DOI: 10.1016/j.jalz.2005.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Even though it is known that aging is the single most important risk factor for Alzheimer's disease (AD), there is a lack of information on the molecular pathway(s) that connect normal aging of the brain to this form of neuropathology. Because of the rise in average lifespan, the number of individuals that reach the seventh or eighth decade of life and become at high risk for AD is rapidly increasing. Current estimations predict that by 2050 about 45 to 50 million individuals will be affected by AD worldwide. Here, we discuss the need for more age-directed research to understand AD neuropathology. We also elaborate on the possible role of cholesterol and ceramide as molecular connections between aging and AD, and as novel therapeutic targets for the prevention of late-onset AD.
Collapse
|
199
|
Abramov E, Dolev I, Fogel H, Ciccotosto GD, Ruff E, Slutsky I. Amyloid-β as a positive endogenous regulator of release probability at hippocampal synapses. Nat Neurosci 2009; 12:1567-76. [DOI: 10.1038/nn.2433] [Citation(s) in RCA: 398] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 09/25/2009] [Indexed: 01/18/2023]
|
200
|
Augustin S, Rimbach G, Augustin K, Cermak R, Wolffram S. Gene Regulatory Effects of Ginkgo biloba Extract and Its Flavonol and Terpenelactone Fractions in Mouse Brain. J Clin Biochem Nutr 2009; 45:315-21. [PMID: 19902022 PMCID: PMC2771253 DOI: 10.3164/jcbn.08-248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 05/20/2009] [Indexed: 01/15/2023] Open
Abstract
The standardised Ginkgo biloba extract EGb761 is known for its potential beneficial effects in the prevention and therapy of neurodegenerative disorders including Alzheimer’s disease (AD). However, the molecular mechanisms and the specific role of its constituents are largely unknown. The aim of the present feeding trial was to investigate the effects of EGb761 and its major constituents on the expression of genes encoding for proteins involved in the pathogenesis of AD in mouse brain. Six month old C57B6 mice were fed semi synthetic diets enriched with either EGb761 or one of its main fractions, flavonols and terpenelactones, respectively, over a period of 4 weeks. Thereafter, mRNA of α-secretase, neprilysin, amyloid precursor protein (App), App binding protein-1 and acetylcholine esterase was quantified in hippocampus and cortex. EGb761 and its flavonol fraction had no effects on relative mRNA levels of the respective genes in mouse brain. However, the terpenelactone fraction significantly decreased the mRNA levels of App in the hippocampus. Taken together, a 4 week dietary treatment with EGb761 or its main fractions had only moderate effects on mRNA levels of AD related genes in cortex and hippocampus of mice.
Collapse
Affiliation(s)
- Sabine Augustin
- Institute of Animal Nutrition and Physiology, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Strasse 9, 24098 Kiel, Germany
| | | | | | | | | |
Collapse
|