151
|
Said Hassane F, Saleh AF, Abes R, Gait MJ, Lebleu B. Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell Mol Life Sci 2010; 67:715-26. [PMID: 19898741 PMCID: PMC11115801 DOI: 10.1007/s00018-009-0186-0] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 10/02/2009] [Accepted: 10/15/2009] [Indexed: 01/19/2023]
Abstract
Crossing biological barriers represents a major limitation for clinical applications of biomolecules such as nucleic acids, peptides or proteins. Cell penetrating peptides (CPP), also named protein transduction domains, comprise short and usually basic amino acids-rich peptides originating from proteins able to cross biological barriers, such as the viral Tat protein, or are rationally designed. They have emerged as a new class of non-viral vectors allowing the delivery of various biomolecules across biological barriers from low molecular weight drugs to nanosized particles. Encouraging data with CPP-conjugated oligonucleotides have been obtained both in vitro and in vivo in animal models of diseases such as Duchenne muscular dystrophy. Whether CPP-cargo conjugates enter cells by direct translocation across the plasma membrane or by endocytosis remains controversial. In many instances, however, endosomal escape appears as a major limitation of this new delivery strategy.
Collapse
Affiliation(s)
- F. Said Hassane
- UMR 5235 CNRS, Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier 2, 34095 Montpellier Cedex 5, France
| | - A. F. Saleh
- Laboratory of Molecular Biology, Medical Research Council, Hills Road, Cambridge, CB2 0QH UK
| | - R. Abes
- UMR 5235 CNRS, Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier 2, 34095 Montpellier Cedex 5, France
| | - M. J. Gait
- Laboratory of Molecular Biology, Medical Research Council, Hills Road, Cambridge, CB2 0QH UK
| | - Bernard Lebleu
- UMR 5235 CNRS, Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier 2, 34095 Montpellier Cedex 5, France
| |
Collapse
|
152
|
Abstract
Ninety-four percent of human genes are discontinuous, such that segments expressed as mRNA are contained within exons and separated by intervening segments, called introns. Following transcription, genes are expressed as precursor mRNAs (pre-mRNAs), which are spliced co-transcriptionally, and the flanking exons are joined together to form a continuous mRNA. One advantage of this architecture is that it allows alternative splicing by differential use of exons to generate multiple mRNAs from individual genes. Regulatory elements located within introns and exons guide the splicing complex, the spliceosome, and auxiliary RNA binding proteins to the correct sites for intron removal and exon joining. Misregulation of splicing and alternative splicing can result from mutations in cis-regulatory elements within the affected gene or from mutations that affect the activities of trans-acting factors that are components of the splicing machinery. Mutations that affect splicing can cause disease directly or contribute to the susceptibility or severity of disease. An understanding of the role of splicing in disease expands potential opportunities for therapeutic intervention by either directly addressing the cause or by providing novel approaches to circumvent disease processes.
Collapse
Affiliation(s)
- Amanda J Ward
- Departments of Molecular and Cellular Biology and Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
153
|
Pérez B, Rincón A, Jorge-Finnigan A, Richard E, Merinero B, Ugarte M, Desviat LR. Pseudoexon exclusion by antisense therapy in methylmalonic aciduria (MMAuria). Hum Mutat 2010; 30:1676-82. [PMID: 19862841 DOI: 10.1002/humu.21118] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Development of pseudoexon exclusion therapies by antisense modification of pre-mRNA splicing represents a type of personalized genetic medicine. Here we present the cellular antisense therapy and the cell-based splicing assays to investigate the effect of two novel deep intronic changes c.1957-898A>G and c.1957-920C>A identified in the methylmalonyl-coenzyme A (CoA) mutase (MUT) gene. The results show that the nucleotide change c.1957-898A>G is a pathological mutation activating pseudoexon insertion and that antisense morpholino oligonucleotide (AMO) treatment in patient fibroblasts leads to recovery of MUT activity to levels 25 to 100% of control range. On the contrary, the change c.1957-920C>A, identified in two fibroblasts cell lines in cis with c.1885A>G (p.R629G) or c.458T>A (p.D153V), appears to be a rare variant of uncertain clinical significance. The functional analysis of c.1885A>G and c.458T>A indicate that they are the disease-causing mutations in these two patients. The results presented here highlight the necessity of scanning the described intronic region for mutations in MUT-affected patients, followed by functional analyses to demonstrate the pathogenicity of the identified changes, and extend previous work of the applicability of the antisense approach in methylmalonic aciduria (MMAuria) for a novel intronic mutation.
Collapse
Affiliation(s)
- B Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
154
|
Dhir A, Buratti E. Alternative splicing: role of pseudoexons in human disease and potential therapeutic strategies. FEBS J 2010; 277:841-55. [PMID: 20082636 DOI: 10.1111/j.1742-4658.2009.07520.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
What makes a nucleotide sequence an exon (or an intron) is a question that still lacks a satisfactory answer. Indeed, most eukaryotic genes are full of sequences that look like perfect exons, but which are nonetheless ignored by the splicing machinery (hence the name 'pseudoexons'). The existence of these pseudoexons has been known since the earliest days of splicing research, but until recently the tendency has been to view them as an interesting, but rather rare, curiosity. In recent years, however, the importance of pseudoexons in regulating splicing processes has been steadily revalued. Even more importantly, clinically oriented screening studies that search for splicing mutations are beginning to uncover a situation where aberrant pseudoexon inclusion as a cause of human disease is more frequent than previously thought. Here we aim to provide a review of the mechanisms that lead to pseudoexon activation in human genes and how the various cis- and trans-acting cellular factors regulate their inclusion. Moreover, we list the potential therapeutic approaches that are being tested with the aim of inhibiting their inclusion in the final mRNA molecules.
Collapse
Affiliation(s)
- Ashish Dhir
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | | |
Collapse
|
155
|
Walmsley GL, Arechavala-Gomeza V, Fernandez-Fuente M, Burke MM, Nagel N, Holder A, Stanley R, Chandler K, Marks SL, Muntoni F, Shelton GD, Piercy RJ. A duchenne muscular dystrophy gene hot spot mutation in dystrophin-deficient cavalier king charles spaniels is amenable to exon 51 skipping. PLoS One 2010; 5:e8647. [PMID: 20072625 PMCID: PMC2800183 DOI: 10.1371/journal.pone.0008647] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 12/10/2009] [Indexed: 11/26/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD), which afflicts 1 in 3500 boys, is one of the most common genetic disorders of children. This fatal degenerative condition is caused by an absence or deficiency of dystrophin in striated muscle. Most affected patients have inherited or spontaneous deletions in the dystrophin gene that disrupt the reading frame resulting in unstable truncated products. For these patients, restoration of the reading frame via antisense oligonucleotide-mediated exon skipping is a promising therapeutic approach. The major DMD deletion “hot spot” is found between exons 45 and 53, and skipping exon 51 in particular is predicted to ameliorate the dystrophic phenotype in the greatest number of patients. Currently the mdx mouse is the most widely used animal model of DMD, although its mild phenotype limits its suitability in clinical trials. The Golden Retriever muscular dystrophy (GRMD) model has a severe phenotype, but due to its large size, is expensive to use. Both these models have mutations in regions of the dystrophin gene distant from the commonly mutated DMD “hot spot”. Methodology/Principal Findings Here we describe the severe phenotype, histopathological findings, and molecular analysis of Cavalier King Charles Spaniels with dystrophin-deficient muscular dystrophy (CKCS-MD). The dogs harbour a missense mutation in the 5′ donor splice site of exon 50 that results in deletion of exon 50 in mRNA transcripts and a predicted premature truncation of the translated protein. Antisense oligonucleotide-mediated skipping of exon 51 in cultured myoblasts from an affected dog restored the reading frame and protein expression. Conclusions/Significance Given the small size of the breed, the amiable temperament and the nature of the mutation, we propose that CKCS-MD is a valuable new model for clinical trials of antisense oligonucleotide-induced exon skipping and other therapeutic approaches for DMD.
Collapse
Affiliation(s)
- Gemma L. Walmsley
- Department of Veterinary Clinical Sciences, Royal Veterinary College, London, United Kingdom
| | | | - Marta Fernandez-Fuente
- Department of Veterinary Clinical Sciences, Royal Veterinary College, London, United Kingdom
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, United Kingdom
| | - Margaret M. Burke
- Pathology Laboratory, Harefield Hospital, Royal Brompton & Harefield NHS Foundation Trust, Harefield, Middlesex, United Kingdom
| | - Nicole Nagel
- Alphapet Veterinary Clinic, Bognor Regis, West Sussex, United Kingdom
| | - Angela Holder
- Pathology and Infectious Diseases, Royal Veterinary College, London, United Kingdom
| | - Rachael Stanley
- Department of Veterinary Clinical Sciences, Royal Veterinary College, London, United Kingdom
| | - Kate Chandler
- Department of Veterinary Clinical Sciences, Royal Veterinary College, London, United Kingdom
| | - Stanley L. Marks
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, United Kingdom
| | - G. Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Richard J. Piercy
- Department of Veterinary Clinical Sciences, Royal Veterinary College, London, United Kingdom
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, United Kingdom
- * E-mail:
| |
Collapse
|
156
|
Schirle NT, Goodman RA, Krishnamurthy M, Beal PA. Selective inhibition of ADAR2-catalyzed editing of the serotonin 2c receptor pre-mRNA by a helix-threading peptide. Org Biomol Chem 2010; 8:4898-904. [DOI: 10.1039/c0ob00309c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
157
|
Séguin RM, Ferrari N. Emerging oligonucleotide therapies for asthma and chronic obstructive pulmonary disease. Expert Opin Investig Drugs 2009; 18:1505-17. [PMID: 19715448 DOI: 10.1517/13543780903179294] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD) are disorders of the airways largely related to the presence of persistent inflammation. The approval of inhaled corticosteroids in the early 1970s pioneered a new age of therapy in treating chronic inflammatory airway diseases. This was the first time that an anti-inflammatory product was available to reduce the characteristic lung inflammation in airways and the associated obstruction, inflammation and hyper-responsiveness. Fast forward 40 years: corticosteroids are still an important therapeutic intervention; however, they exhibit limited use in moderate to severe asthma and COPD. Oligonucleotide therapies are an emerging class which include the antisense, the RNAi (siRNA and miRNA), the immunomodulatory, the aptamer and the decoy approaches. As these approaches are rather recent in the respiratory field, most are still early in development. Nevertheless, with limitations of current small molecule therapies and the hurdles faced with biologics, the use of oligonucleotides is relevant and the door is open to the development of this category of therapeutics. This review focuses on the major classes of oligonucleotides that are currently in late stage preclinical or clinical development for the treatment of asthma and COPD, and discusses the implications for their use as therapies for respiratory diseases.
Collapse
Affiliation(s)
- Rosanne M Séguin
- Topigen Pharmaceuticals, Inc., Immunology and Development Support, 2901 Rachel East Street, Suite 13, Montréal, Québec H1W 4A4, Canada.
| | | |
Collapse
|
158
|
Ferlini A, Sabatelli P, Fabris M, Bassi E, Falzarano S, Vattemi G, Perrone D, Gualandi F, Maraldi NM, Merlini L, Sparnacci K, Laus M, Caputo A, Bonaldo P, Braghetta P, Rimessi P. Dystrophin restoration in skeletal, heart and skin arrector pili smooth muscle of mdx mice by ZM2 NP-AON complexes. Gene Ther 2009; 17:432-8. [PMID: 19907501 DOI: 10.1038/gt.2009.145] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Potentially viable therapeutic approaches for Duchenne muscular dystrophy (DMD) are now within reach. Indeed, clinical trials are currently under way. Two crucial aspects still need to be addressed: maximizing therapeutic efficacy and identifying appropriate and sensible outcome measures. Nevertheless, the end point of these trials remains painful muscle biopsy to show and quantify protein restoration in treated boys. In this study we show that PMMA/N-isopropil-acrylamide+ (NIPAM) nanoparticles (ZM2) bind and convey antisense oligoribonucleotides (AONs) very efficiently. Systemic injection of the ZM2-AON complex restored dystrophin protein synthesis in both skeletal and cardiac muscles of mdx mice, allowing protein localization in up to 40% of muscle fibers. The mdx exon 23 skipping level was up to 20%, as measured by the RealTime assay, and dystrophin restoration was confirmed by both reverse transcription-PCR and western blotting. Furthermore, we verified that dystrophin restoration also occurs in the smooth muscle cells of the dorsal skin arrector pili, an easily accessible histological structure, in ZM2-AON-treated mdx mice, with respect to untreated animals. This finding reveals arrector pili smooth muscle to be an appealing biomarker candidate and a novel low-invasive treatment end point. Furthermore, this marker would also be suitable for subsequent monitoring of the therapeutic effects in DMD patients. In addition, we demonstrate herein the expression of other sarcolemma proteins such as alpha-, beta-, gamma- and delta-sarcoglycans in the human skin arrector pili smooth muscle, thereby showing the potential of this muscle as a biomarker for other muscular dystrophies currently or soon to be the object of clinical trials.
Collapse
Affiliation(s)
- A Ferlini
- Department of Experimental and Diagnostic Medicine, Section of Medical Genetics, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Chou LS, Liu CSJ, Boese B, Zhang X, Mao R. DNA sequence capture and enrichment by microarray followed by next-generation sequencing for targeted resequencing: neurofibromatosis type 1 gene as a model. Clin Chem 2009; 56:62-72. [PMID: 19910506 DOI: 10.1373/clinchem.2009.132639] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The introduction and use of next-generation sequencing (NGS) techniques have taken genomic research into a new era; however, implementing such powerful techniques in diagnostics laboratories for applications such as resequencing of targeted disease genes requires attention to technical issues, including sequencing template enrichment, management of massive data, and high interference by homologous sequences. METHODS In this study, we investigated a process for enriching DNA samples that uses a customized high-density oligonucleotide microarray to enrich a targeted 280-kb region of the NF1 (neurofibromin 1) gene. The captured DNA was sequenced with the Roche/454 GS FLX system. Two NF1 samples (CN1 and CN2) with known genotypes were tested with this protocol. RESULTS Targeted microarray capture may also capture sequences from nontargeted regions in the genome. The capture specificity estimated for the targeted NF1 region was approximately 60%. The de novo Alu insertion was partially detected in sample CN1 by additional de novo assembly with 50% base-match stringency; the single-base deletion in sample CN2 was successfully detected by reference mapping. Interferences by pseudogene sequences were removed by means of dual-mode reference-mapping analysis, which reduced the risk of generating false-positive data. The risk of generating false-negative data was minimized with higher sequence coverage (>30x). CONCLUSIONS We used a clinically relevant complex genomic target to evaluate a microarray-based sample-enrichment process and an NGS instrument for clinical resequencing purposes. The results allowed us to develop a systematic data-analysis strategy and algorithm to fit potential clinical applications.
Collapse
Affiliation(s)
- Lan-Szu Chou
- Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT 84108-1221, USA
| | | | | | | | | |
Collapse
|
160
|
Sammeth M. Complete alternative splicing events are bubbles in splicing graphs. J Comput Biol 2009; 16:1117-40. [PMID: 19689216 DOI: 10.1089/cmb.2009.0108] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Eukaryotic splicing structures are known to involve a high degree of alternative forms derived from a premature transcript by alternative splicing (AS). With the advent of new sequencing technologies, evidence for new splice forms becomes increasingly available-bit by bit revealing that the true splicing diversity of "AS events" often comprises more than two alternatives and therefore cannot be sufficiently described by pairwise comparisons as conducted in analyzes hitherto. Especially, I emphasize on "complete" AS events which include all hitherto known variants of a splicing variation. Challenges emerge from the richness of data (millions of transcripts) and artifacts introduced during the technical process of obtaining transcript sequences ("noise")-especially when dealing with single-read sequences known as expressed sequence tags (ESTs). Herein, I describe a novel method to efficiently predict AS events in different resolutions ("dimensions") from transcript annotations that allows for combination of fragmented EST data with full-length cDNAs and can cope with large datasets containing noise. At the doorstep of many new splice forms becoming available by novel high-throughput sequencing technologies, the presented method helps to dynamically update AS databases. Applying this method to estimate the real complexity of alternative splicing, I found in human and murine annotations thousands of novel AS events that either have been disregarded or mischaracterized in earlier works. The growth of evidence for such events suggests that the number still keeps climbing. When considering complete events, the majority of exons that are observed as "mutually exclusive" in pairwise comparisons in fact involves at least one other alternative splice form that disagrees with their mutual exclusion. Similar observations also hold for the alternative skipping of two subsequent exons. Results suggest that the systematical analysis of complete AS events on large scale provides subtle insights in the mechanisms that drive (alternative) splicing.
Collapse
Affiliation(s)
- Michael Sammeth
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) , Barcelona, Spain.
| |
Collapse
|
161
|
Heemskerk H, de Winter CL, van Ommen GJB, van Deutekom JCT, Aartsma-Rus A. Development of antisense-mediated exon skipping as a treatment for duchenne muscular dystrophy. Ann N Y Acad Sci 2009; 1175:71-9. [PMID: 19796079 DOI: 10.1111/j.1749-6632.2009.04973.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disease caused by frame shifting and nonsense mutations in the dystrophin gene. Through skipping of an (additional) exon from the pre-mRNA, the reading frame can be restored. This can be achieved with antisense oligonucleotides (AONs), which induce exon skipping by binding to splice sites or splice enhancer sites. The resulting protein will be shorter but at least partially functional. So far, exon skipping has been very successful in cell cultures, in mouse and dog models, and even in a first exploratory study in patients. Current research mainly focuses on optimization of systemic AON delivery. Here we give an overview of the available mouse models. To obtain the most informative results for future clinical application, research may have to move from the currently preferred mdx mouse to mouse models more comparable to patients, such as the utrophin/dystrophin-negative mouse and the hDMD mouse models. Further, we briefly discuss two AON backbone chemistries that are currently in clinical trials for DMD exon skipping. We propose that different chemistries should be further developed in parallel in order to hasten the transfer of the exon skipping therapy to the clinic.
Collapse
Affiliation(s)
- Hans Heemskerk
- Duchenne Muscular Dystrophy Genetic Therapy Group, Department of Human Genetics, Leiden University, Medical Center, Leiden, the Netherlands
| | | | | | | | | |
Collapse
|
162
|
Kollberg G, Holme E. Antisense oligonucleotide therapeutics for iron-sulphur cluster deficiency myopathy. Neuromuscul Disord 2009; 19:833-6. [PMID: 19846308 DOI: 10.1016/j.nmd.2009.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/08/2009] [Accepted: 09/30/2009] [Indexed: 11/18/2022]
Abstract
Iron-sulphur cluster deficiency myopathy is caused by a deep intronic mutation in ISCU resulting in inclusion of a cryptic exon in the mature mRNA. ISCU encodes the iron-sulphur cluster assembly protein IscU. Iron-sulphur clusters are essential for most basic redox transformations including the respiratory-chain function. Most patients are homozygous for the mutation with a phenotype characterized by a non-progressive myopathy with childhood onset of early fatigue, dyspnoea and palpitation on trivial exercise. A more severe phenotype with early onset of a slowly progressive severe muscle weakness, severe exercise intolerance and cardiomyopathy is caused by a missense mutation in compound with the intronic mutation. Treatment of cultured fibroblasts derived from three homozygous patients with an antisense phosphorodiamidate morpholino oligonucleotide for 48 h resulted in 100% restoration of the normal splicing pattern. The restoration was stable and after 21 days the correctly spliced mRNA still was the dominating RNA species.
Collapse
Affiliation(s)
- Gittan Kollberg
- Department of Clinical Chemistry, Sahlgrenska University Hospital, SE-413 45 Göteborg, Sweden.
| | | |
Collapse
|
163
|
Kinali M, Arechavala-Gomeza V, Feng L, Cirak S, Hunt D, Adkin C, Guglieri M, Ashton E, Abbs S, Nihoyannopoulos P, Garralda ME, Rutherford M, Mcculley C, Popplewell L, Graham IR, Dickson G, Wood MJA, Wells DJ, Wilton SD, Kole R, Straub V, Bushby K, Sewry C, Morgan JE, Muntoni F. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 2009; 8:918-28. [PMID: 19713152 PMCID: PMC2755039 DOI: 10.1016/s1474-4422(09)70211-x] [Citation(s) in RCA: 515] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Mutations that disrupt the open reading frame and prevent full translation of DMD, the gene that encodes dystrophin, underlie the fatal X-linked disease Duchenne muscular dystrophy. Oligonucleotides targeted to splicing elements (splice switching oligonucleotides) in DMD pre-mRNA can lead to exon skipping, restoration of the open reading frame, and the production of functional dystrophin in vitro and in vivo, which could benefit patients with this disorder. METHODS We did a single-blind, placebo-controlled, dose-escalation study in patients with DMD recruited nationally, to assess the safety and biochemical efficacy of an intramuscular morpholino splice-switching oligonucleotide (AVI-4658) that skips exon 51 in dystrophin mRNA. Seven patients with Duchenne muscular dystrophy with deletions in the open reading frame of DMD that are responsive to exon 51 skipping were selected on the basis of the preservation of their extensor digitorum brevis (EDB) muscle seen on MRI and the response of cultured fibroblasts from a skin biopsy to AVI-4658. AVI-4658 was injected into the EDB muscle; the contralateral muscle received saline. Muscles were biopsied between 3 and 4 weeks after injection. The primary endpoint was the safety of AVI-4658 and the secondary endpoint was its biochemical efficacy. This trial is registered, number NCT00159250. FINDINGS Two patients received 0.09 mg AVI-4658 in 900 microL (0.9%) saline and five patients received 0.9 mg AVI-4658 in 900 microL saline. No adverse events related to AVI-4658 administration were reported. Intramuscular injection of the higher-dose of AVI-4658 resulted in increased dystrophin expression in all treated EDB muscles, although the results of the immunostaining of EDB-treated muscle for dystrophin were not uniform. In the areas of the immunostained sections that were adjacent to the needle track through which AVI-4658 was given, 44-79% of myofibres had increased expression of dystrophin. In randomly chosen sections of treated EDB muscles, the mean intensity of dystrophin staining ranged from 22% to 32% of the mean intensity of dystrophin in healthy control muscles (mean 26.4%), and the mean intensity was 17% (range 11-21%) greater than the intensity in the contralateral saline-treated muscle (one-sample paired t test p=0.002). In the dystrophin-positive fibres, the intensity of dystrophin staining was up to 42% of that in healthy muscle. We showed expression of dystrophin at the expected molecular weight in the AVI-4658-treated muscle by immunoblot. INTERPRETATION Intramuscular AVI-4658 was safe and induced the expression of dystrophin locally within treated muscles. This proof-of-concept study has led to an ongoing systemic clinical trial of AVI-4658 in patients with DMD. FUNDING UK Department of Health.
Collapse
Affiliation(s)
- Maria Kinali
- The Dubowitz Neuromuscular Centre, University College London Institute of Child Health London, UK
- Department of Pediatrics, Hammersmith Hospital, London, UK
| | | | - Lucy Feng
- The Dubowitz Neuromuscular Centre, University College London Institute of Child Health London, UK
| | - Sebahattin Cirak
- The Dubowitz Neuromuscular Centre, University College London Institute of Child Health London, UK
| | - David Hunt
- Department of Orthopaedics, St Mary's Hospital, London, UK
| | - Carl Adkin
- The Dubowitz Neuromuscular Centre, University College London Institute of Child Health London, UK
| | - Michela Guglieri
- Institute of Human Genetics, Newcastle University, Newcastle, UK
| | - Emma Ashton
- DNA Laboratory Genetics Centre, Guy's Hospital, London, UK
| | - Stephen Abbs
- DNA Laboratory Genetics Centre, Guy's Hospital, London, UK
| | | | - Maria Elena Garralda
- Academic Unit of Child and Adolescent Psychiatry, Imperial College St Mary's Campus, London, UK
| | - Mary Rutherford
- Robert Steiner MRI Unit, Hammersmith Hospital Campus, Imperial College London, UK
| | - Caroline Mcculley
- Division of Neuroscience and Mental Health, Hammersmith Hospital Campus, Imperial College London, UK
| | - Linda Popplewell
- Hammersmith Hospital Campus, Imperial College London, UK
- Royal Holloway University of London, UK
| | - Ian R Graham
- Hammersmith Hospital Campus, Imperial College London, UK
- Royal Holloway University of London, UK
| | - George Dickson
- Hammersmith Hospital Campus, Imperial College London, UK
- Royal Holloway University of London, UK
| | - Matthew JA Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| | - Dominic J Wells
- Division of Neuroscience and Mental Health, Hammersmith Hospital Campus, Imperial College London, UK
| | - Steve D Wilton
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Perth, WA, Australia
| | | | - Volker Straub
- Institute of Human Genetics, Newcastle University, Newcastle, UK
| | - Kate Bushby
- Institute of Human Genetics, Newcastle University, Newcastle, UK
| | - Caroline Sewry
- The Dubowitz Neuromuscular Centre, University College London Institute of Child Health London, UK
- Centre for Inherited Neuromuscular Disorders, Robert Jones and Agnes Hunt NHS Trust, Oswestry, UK
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, University College London Institute of Child Health London, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, University College London Institute of Child Health London, UK
- Department of Pediatrics, Hammersmith Hospital, London, UK
| |
Collapse
|
164
|
Moerdyk-Schauwecker M, Stein DA, Eide K, Blouch RE, Bildfell R, Iversen P, Jin L. Inhibition of HSV-1 ocular infection with morpholino oligomers targeting ICP0 and ICP27. Antiviral Res 2009; 84:131-41. [PMID: 19665486 DOI: 10.1016/j.antiviral.2009.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 06/20/2009] [Accepted: 07/31/2009] [Indexed: 11/17/2022]
Abstract
Alternative therapies are needed for HSV-1 infections in patients refractory to treatment with Acyclovir (ACV) and its derivatives. Peptide-conjugated phosphorodiamidate morpholino oligomers (PPMO) are single-stranded DNA analogues that enter cells readily and reduce target gene expression through steric blockage of complementary RNA. When applied before or soon after infection PPMO targeting the translation-start-site regions of HSV-1 ICP0 or ICP27 mRNA reduced HSV-1 plaque formation by 70-98% in vitro. The ICP0 PPMO also reduced ACV-resistant HSV-1 (strain 615.9) plaque formation by 70-90%, while an equivalent dose of ACV produced only 40-50% inhibition when the treatment was applied between 1 and 3hpi. Seven daily topical treatments of 100microg ICP0 PPMO caused no gross or microscopic damage to the corneas of uninfected mice. Topical application of 10microg ICP0 PPMO to the eyes of HSV-1 infected mice reduced the incidence of eye disease by 37.5-50% compared to controls. This study demonstrates that topically applied PPMO holds promise as an antiviral drug candidate against HSV-1 ocular infection.
Collapse
Affiliation(s)
- Megan Moerdyk-Schauwecker
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | | | |
Collapse
|
165
|
Baralle D, Lucassen A, Buratti E. Missed threads. The impact of pre-mRNA splicing defects on clinical practice. EMBO Rep 2009; 10:810-6. [PMID: 19648957 PMCID: PMC2726684 DOI: 10.1038/embor.2009.170] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Diana Baralle
- Human Genetics Division, University of Southampton School of Medicine, Southampton, UK.
| | | | | |
Collapse
|
166
|
Kollberg G, Tulinius M, Melberg A, Darin N, Andersen O, Holmgren D, Oldfors A, Holme E. Clinical manifestation and a new ISCU mutation in iron–sulphur cluster deficiency myopathy. Brain 2009; 132:2170-9. [DOI: 10.1093/brain/awp152] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
167
|
Aartsma-Rus A, Fokkema I, Verschuuren J, Ginjaar I, van Deutekom J, van Ommen GJ, den Dunnen JT. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 2009; 30:293-9. [PMID: 19156838 DOI: 10.1002/humu.20918] [Citation(s) in RCA: 418] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Antisense-mediated exon skipping aiming for reading frame restoration is currently a promising therapeutic application for Duchenne muscular dystrophy (DMD). This approach is mutation specific, but as the majority of DMD patients have deletions that cluster in hotspot regions, the skipping of a small number of exons is applicable to relatively large numbers of patients. To assess the actual applicability of the exon skipping approach, we here determined for deletions, duplications and point mutations reported in the Leiden DMD mutation database, which exon(s) should be skipped to restore the open reading frame. In theory, single and double exon skipping would be applicable to 79% of deletions, 91% of small mutations, and 73% of duplications, amounting to 83% of all DMD mutations. Exon 51 skipping, which is being tested in clinical trials, would be applicable to the largest group (13%) of all DMD patients. Further research is needed to determine the functionality of different in-frame dystrophins and a number of hurdles has to be overcome before this approach can be applied clinically.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
168
|
Abstract
Duchenne muscular dystrophy (DMD) is a lethal muscle disorder caused by mutations in the DMD gene for which no mutation-targeted therapy has been available thus far. However, exon-skipping mediated by antisense oligonucleotides (AOs), which are short single-strand DNAs, has considerable potential for DMD therapy, and clinical trials in DMD patients are currently underway. This exon-skipping therapy changes an out-of-frame mutation into an in-frame mutation, aiming at conversion of a severe DMD phenotype into a mild phenotype by restoration of truncated dystrophin expression. Recently, stable and less-toxic AOs have been developed, and their higher efficacy was confirmed in mice and dog models of DMD. In this review, we briefly summarize the genetic basis of DMD and the potential and perspectives of exon skipping as a promising therapy for this disease.
Collapse
Affiliation(s)
- Akinori Nakamura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | | |
Collapse
|
169
|
Arnett ALH, Chamberlain JR, Chamberlain JS. Therapy for neuromuscular disorders. Curr Opin Genet Dev 2009; 19:290-7. [PMID: 19411172 DOI: 10.1016/j.gde.2009.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 03/17/2009] [Accepted: 03/20/2009] [Indexed: 12/21/2022]
Abstract
Research into therapeutic approaches for both recessive and dominant neuromuscular disorders has made great progress over the past few years. In the field of gene therapy, antisense-mediated exon skipping is being applied to bypass deleterious mutations in the dystrophin gene and restore dystrophin expression in animal models of muscular dystrophy. Approaches for the dominant genetic muscle diseases have turned toward elimination of the mutant gene product with anti-sense oligonucleotide therapy and RNA interference techniques. Refinements of adeno-associated viral vectors and strategies for their delivery are also leading towards future clinical trials. The discovery of new, multipotent cell lineages, some of which possess the ability to successfully engraft muscle following vascular delivery, presents exciting prospects for the field of stem cell therapy. These discoveries represent steady progress towards the development of effective therapies for a wide range of neuromuscular disorders.
Collapse
Affiliation(s)
- Andrea L H Arnett
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195-7720, United States.
| | | | | |
Collapse
|
170
|
Rimessi P, Sabatelli P, Fabris M, Braghetta P, Bassi E, Spitali P, Vattemi G, Tomelleri G, Mari L, Perrone D, Medici A, Neri M, Bovolenta M, Martoni E, Maraldi NM, Gualandi F, Merlini L, Ballestri M, Tondelli L, Sparnacci K, Bonaldo P, Caputo A, Laus M, Ferlini A. Cationic PMMA nanoparticles bind and deliver antisense oligoribonucleotides allowing restoration of dystrophin expression in the mdx mouse. Mol Ther 2009; 17:820-7. [PMID: 19240694 PMCID: PMC2835127 DOI: 10.1038/mt.2009.8] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 01/05/2009] [Indexed: 11/09/2022] Open
Abstract
For subsets of Duchenne muscular dystrophy (DMD) mutations, antisense oligoribonucleotide (AON)-mediated exon skipping has proven to be efficacious in restoring the expression of dystrophin protein. In the mdx murine model systemic delivery of AON, recognizing the splice donor of dystrophin exon 23, has shown proof of concept. Here, we show that using cationic polymethylmethacrylate (PMMA) (marked as T1) nanoparticles loaded with a low dose of 2'-O-methyl-phosphorothioate (2'OMePS) AON delivered by weekly intraperitoneal (IP) injection (0.9 mg/kg/week), could restore dystrophin expression in body-wide striated muscles. Delivery of an identical dose of naked AON did not result in detectable dystrophin expression. Transcription, western, and immunohistochemical analysis showed increased levels of dystrophin transcript and protein, and correct localization at the sarcolemma. This study shows that T1 nanoparticles have the capacity to bind and convoy AONs in body-wide muscle tissues and to reduce the dose required for dystrophin rescue. By immunofluorescence and electron microscopy studies, we highlighted the diffusion pathways of this compound. This nonviral approach may valuably improve the therapeutic usage of AONs in DMD as well as the delivery of RNA molecules with many implications in both basic research and medicine.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Dystrophin/genetics
- Dystrophin/metabolism
- Electrophoresis, Polyacrylamide Gel
- Exons/genetics
- Genetic Therapy/methods
- Immunohistochemistry
- Male
- Mice
- Mice, Inbred mdx
- Mice, Mutant Strains
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/therapy
- Nanoparticles/chemistry
- Oligoribonucleotides, Antisense/genetics
- Oligoribonucleotides, Antisense/metabolism
- Oligoribonucleotides, Antisense/physiology
- Polymethyl Methacrylate/chemical synthesis
- Polymethyl Methacrylate/chemistry
Collapse
Affiliation(s)
- Paola Rimessi
- Department of Experimental and Diagnostic Medicine, Section of Medical Genetics, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Du L, Gatti RA. Progress toward therapy with antisense-mediated splicing modulation. CURRENT OPINION IN MOLECULAR THERAPEUTICS 2009; 11:116-23. [PMID: 19330717 PMCID: PMC2753608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Antisense oligonucleotides (AO) or antisense RNA can complementarily bind to a target site in pre-mRNA and regulate gene splicing, either to restore gene function by reprogramming gene splicing or to inhibit gene expression by disrupting splicing. These two applications represent novel therapeutic strategies for several types of diseases such as genetic disorders, cancers and infectious diseases. In this review, the recent developments and applications of antisense-mediated splicing modulation in molecular therapy are discussed, with emphasis on advances in antisense-mediated splice targeting, applications in diseases and systematic delivery.
Collapse
Affiliation(s)
- Liutao Du
- Department of Pathology and Laboratory Medicine, The David Geffen School of Medicine at UCLA, 675 Charles Young Drive South, CA 90095-1732, USA.
| | | |
Collapse
|
172
|
Krähling V, Stein DA, Spiegel M, Weber F, Mühlberger E. Severe acute respiratory syndrome coronavirus triggers apoptosis via protein kinase R but is resistant to its antiviral activity. J Virol 2009; 83:2298-309. [PMID: 19109397 PMCID: PMC2643707 DOI: 10.1128/jvi.01245-08] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 12/15/2008] [Indexed: 01/09/2023] Open
Abstract
In this study, infection of 293/ACE2 cells with severe acute respiratory syndrome coronavirus (SARS-CoV) activated several apoptosis-associated events, namely, cleavage of caspase-3, caspase-8, and poly(ADP-ribose) polymerase 1 (PARP), and chromatin condensation and the phosphorylation and hence inactivation of the eukaryotic translation initiation factor 2alpha (eIF2alpha). In addition, two of the three cellular eIF2alpha kinases known to be virus induced, protein kinase R (PKR) and PKR-like endoplasmic reticulum kinase (PERK), were activated by SARS-CoV. The third kinase, general control nonderepressible-2 kinase (GCN2), was not activated, but late in infection the level of GCN2 protein was significantly reduced. Reverse transcription-PCR analyses revealed that the reduction of GCN2 protein was not due to decreased transcription or stability of GCN2 mRNA. The specific reduction of PKR protein expression by antisense peptide-conjugated phosphorodiamidate morpholino oligomers strongly reduced cleavage of PARP in infected cells. Surprisingly, the knockdown of PKR neither enhanced SARS-CoV replication nor abrogated SARS-CoV-induced eIF2alpha phosphorylation. Pretreatment of cells with beta interferon prior to SARS-CoV infection led to a significant decrease in PERK activation, eIF2alpha phosphorylation, and SARS-CoV replication. The various effects of beta interferon treatment were found to function independently on the expression of PKR. Our results show that SARS-CoV infection activates PKR and PERK, leading to sustained eIF2alpha phosphorylation. However, virus replication was not impaired by these events, suggesting that SARS-CoV possesses a mechanism to overcome the inhibitory effects of phosphorylated eIF2alpha on viral mRNA translation. Furthermore, our data suggest that viral activation of PKR can lead to apoptosis via a pathway that is independent of eIF2alpha phosphorylation.
Collapse
Affiliation(s)
- Verena Krähling
- Department of Virology, Philipps University Marburg, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
| | | | | | | | | |
Collapse
|
173
|
Wan J, Sazani P, Kole R. Modification of HER2 pre-mRNA alternative splicing and its effects on breast cancer cells. Int J Cancer 2009; 124:772-7. [PMID: 19035464 PMCID: PMC2671679 DOI: 10.1002/ijc.24052] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The oncogene HER2 is overexpressed in a variety of human tumors, providing a target for anti-cancer molecular therapies. Here, we employed a 2'-O-methoxyethyl (MOE) splice switching oligonucleotide, SSO111, to induce skipping of exon 15 in HER2 pre-mRNA, leading to significant downregulation of full-length HER2 mRNA, and simultaneous upregulation of Delta15HER2 mRNA. SSO111 treatment of SK-BR-3 cells, which highly overexpress HER2, led to inhibition of cell proliferation and induction of apoptosis. The novel Delta15HER2 mRNA encodes a soluble, secreted form of the receptor. Treating SK-BR-3 cells with exogenous Delta15HER2 protein reduced membrane-bound HER2 and decreased HER3 transphosphorylation. Delta15HER2 protein thus has similar activity to an autoinhibitory, natural splice variant of HER2, Herstatin, and to the breast cancer drug Herceptin. Both SSO111 and Delta15HER2 may be potential candidates for the development of novel HER2-targeted cancer therapeutics.
Collapse
Affiliation(s)
- Jing Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7295, USA.
| | | | | |
Collapse
|
174
|
Laufer SD, Restle T. Peptide-mediated cellular delivery of oligonucleotide-based therapeutics in vitro: quantitative evaluation of overall efficacy employing easy to handle reporter systems. Curr Pharm Des 2009; 14:3637-55. [PMID: 19075740 PMCID: PMC2778081 DOI: 10.2174/138161208786898806] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cellular uptake of therapeutic oligonucleotides and subsequent intracellular trafficking to their target sites represents the major technical hurdle for the biological effectiveness of these potential drugs. Accordingly, laboratories worldwide focus on the development of suitable delivery systems. Among the different available non-viral systems like cationic polymers, cationic liposomes and polymeric nanoparticles, cell-penetrating peptides (CPPs) represent an attractive concept to bypass the problem of poor membrane permeability of these charged macromolecules. While uptake per se in most cases does not represent the main obstacle of nucleic acid delivery in vitro, it becomes increasingly apparent that intracellular trafficking is the bottleneck. As a consequence, in order to optimize a given delivery system, a side-by-side analysis of nucleic acid cargo internalized and the corresponding biological effect is required to determine the overall efficacy. In this review, we will concentrate on peptide-mediated delivery of siRNAs and steric block oligonucleotides and discuss different methods for quantitative assessment of the amount of cargo taken up and how to correlate those numbers with biological effects by applying easy to handle reporter systems. To illustrate current limitations of non-viral nucleic acid delivery systems, we present own data as an example and discuss options of how to enhance trafficking of molecules entrapped in cellular compartments.
Collapse
Affiliation(s)
- S D Laufer
- Institut für Molekulare Medizin, Universität zu Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | | |
Collapse
|
175
|
Abstract
The muscular dystrophies are a group of genetically and phenotypically heterogeneously inherited diseases characterized by progressive muscle wasting, which can lead to premature death in severe forms such as Duchenne muscular dystrophy (DMD). In many cases they are caused by the absence of proteins that are critical components of the dystrophin-glycoprotein complex, which links the cytoskeleton and the basal lamina. There is no effective treatment for these disorders at present, but several novel strategies for replacing or repairing the defective gene are in development, with early encouraging results from animal models. We review these strategies, which include the use of stem cells of different tissue origins, gene replacement therapies mediated by various viral vectors, and transcript repair treatments using exon skipping strategies. We comment on their advantages and on limitations that must be overcome before successful application to human patients. Our focus is on studies in a clinically relevant large canine model of DMD. Recent advances in the field suggest that effective therapies for muscular dystrophies are on the horizon. Because of the complex nature of these diseases, it may be necessary to combine multiple approaches to achieve a successful treatment.
Collapse
Affiliation(s)
- Zejing Wang
- Division of Clinical Research, Fred Hutchinson Cancer Research Center in Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|
176
|
Tazi J, Bakkour N, Stamm S. Alternative splicing and disease. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1792:14-26. [PMID: 18992329 PMCID: PMC5632948 DOI: 10.1016/j.bbadis.2008.09.017] [Citation(s) in RCA: 397] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 09/19/2008] [Accepted: 09/30/2008] [Indexed: 12/11/2022]
Abstract
Almost all protein-coding genes are spliced and their majority is alternatively spliced. Alternative splicing is a key element in eukaryotic gene expression that increases the coding capacity of the human genome and an increasing number of examples illustrates that the selection of wrong splice sites causes human disease. A fine-tuned balance of factors regulates splice site selection. Here, we discuss well-studied examples that show how a disturbance of this balance can cause human disease. The rapidly emerging knowledge of splicing regulation now allows the development of treatment options.
Collapse
Affiliation(s)
- Jamal Tazi
- University of Montpellier II, Institute of Molecular Genetics, Centre Nationale de Recherche Scientifique, 1919 Route de Mende, France
| | | | | |
Collapse
|
177
|
Heemskerk H, Aguilera B, Janson A, Pang K, van Ommen GJ, van Deutekom J, Aartsma-Rus A. Muscle binding peptides found by phage display as delivery agent for antisense oligonucleotides. J Control Release 2008. [DOI: 10.1016/j.jconrel.2008.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
178
|
van Vliet L, de Winter CL, van Deutekom JCT, van Ommen GJB, Aartsma-Rus A. Assessment of the feasibility of exon 45-55 multiexon skipping for Duchenne muscular dystrophy. BMC MEDICAL GENETICS 2008; 9:105. [PMID: 19046429 PMCID: PMC2611974 DOI: 10.1186/1471-2350-9-105] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 12/01/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND The specific skipping of an exon, induced by antisense oligonucleotides (AON) during splicing, has shown to be a promising therapeutic approach for Duchenne muscular dystrophy (DMD) patients. As different mutations require skipping of different exons, this approach is mutation dependent. The skipping of an entire stretch of exons (e.g. exons 45 to 55) has recently been suggested as an approach applicable to larger groups of patients. However, this multiexon skipping approach is technically challenging. The levels of intended multiexon skips are typically low and highly variable, and may be dependent on the order of intron removal. We hypothesized that the splicing order might favor the induction of multiexon 45-55 skipping. METHODS We here tested the feasibility of inducing multiexon 45-55 in control and patient muscle cell cultures using various AON cocktails. RESULTS In all experiments, the exon 45-55 skip frequencies were minimal and comparable to those observed in untreated cells. CONCLUSION We conclude that current state of the art does not sufficiently support clinical development of multiexon skipping for DMD.
Collapse
Affiliation(s)
- Laura van Vliet
- DMD Genetic Therapy Group, Department of Human Genetics, Leiden University, Medical Center, Postzone S4-P, PO Box 9600, 2300RC, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
179
|
Abstract
Alternative pre-mRNA splicing is an important element in eukaryotic gene expression, as most of the protein-coding genes use this process to generate multiple protein isoforms from a single gene. An increasing number of human diseases are now recognized to be caused by the selection of 'wrong' alternative exons. Research during the last few years identified a number of low-molecular-mass chemical substances that can change alternative exon usage. Most of these substances act by either blocking histone deacetylases or by interfering with the phosphorylation of splicing factors. How the remaining large number of these substances affect splicing is not yet fully understood. The emergence of these low-molecular-mass substances provides not only probes for studying alternative pre-mRNA splicing, but also opens the door to the possible harnessing of these compounds as drugs to control diseases caused by the selection of 'wrong' splice sites.
Collapse
|
180
|
Ivanova GD, Arzumanov A, Abes R, Yin H, Wood MJA, Lebleu B, Gait MJ. Improved cell-penetrating peptide-PNA conjugates for splicing redirection in HeLa cells and exon skipping in mdx mouse muscle. Nucleic Acids Res 2008; 36:6418-28. [PMID: 18842625 PMCID: PMC2582604 DOI: 10.1093/nar/gkn671] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/17/2008] [Accepted: 09/22/2008] [Indexed: 11/19/2022] Open
Abstract
Steric blocking peptide nucleic acid (PNA) oligonucleotides have been used increasingly for redirecting RNA splicing particularly in therapeutic applications such as Duchenne muscular dystrophy (DMD). Covalent attachment of a cell-penetrating peptide helps to improve cell delivery of PNA. We have used a HeLa pLuc705 cell splicing redirection assay to develop a series of PNA internalization peptides (Pip) conjugated to an 18-mer PNA705 model oligonucleotide with higher activity compared to a PNA705 conjugate with a leading cell-penetrating peptide being developed for therapeutic use, (R-Ahx-R)(4). We show that Pip-PNA705 conjugates are internalized in HeLa cells by an energy-dependent mechanism and that the predominant pathway of cell uptake of biologically active conjugate seems to be via clathrin-dependent endocytosis. In a mouse model of DMD, serum-stabilized Pip2a or Pip2b peptides conjugated to a 20-mer PNA (PNADMD) targeting the exon 23 mutation in the dystrophin gene showed strong exon-skipping activity in differentiated mdx mouse myotubes in culture in the absence of an added transfection agent at concentrations where naked PNADMD was inactive. Injection of Pip2a-PNADMD or Pip2b-PNADMD into the tibealis anterior muscles of mdx mice resulted in approximately 3-fold higher numbers of dystrophin-positive fibres compared to naked PNADMD or (R-Ahx-R)(4)-PNADMD.
Collapse
Affiliation(s)
- Gabriela D. Ivanova
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH UK, UMR 5235 CNRS, Université Montpellier 2, Place Eugene Bataillon, 34095 Montpellier cedex 5, France and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Andrey Arzumanov
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH UK, UMR 5235 CNRS, Université Montpellier 2, Place Eugene Bataillon, 34095 Montpellier cedex 5, France and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Rachida Abes
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH UK, UMR 5235 CNRS, Université Montpellier 2, Place Eugene Bataillon, 34095 Montpellier cedex 5, France and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Haifang Yin
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH UK, UMR 5235 CNRS, Université Montpellier 2, Place Eugene Bataillon, 34095 Montpellier cedex 5, France and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Matthew J. A. Wood
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH UK, UMR 5235 CNRS, Université Montpellier 2, Place Eugene Bataillon, 34095 Montpellier cedex 5, France and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Bernard Lebleu
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH UK, UMR 5235 CNRS, Université Montpellier 2, Place Eugene Bataillon, 34095 Montpellier cedex 5, France and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Michael J. Gait
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH UK, UMR 5235 CNRS, Université Montpellier 2, Place Eugene Bataillon, 34095 Montpellier cedex 5, France and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| |
Collapse
|
181
|
|
182
|
Marquis J, Kämpfer SS, Angehrn L, Schümperli D. Doxycycline-controlled splicing modulation by regulated antisense U7 snRNA expression cassettes. Gene Ther 2008; 16:70-7. [PMID: 18701908 DOI: 10.1038/gt.2008.138] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Many diseases affect pre-mRNA splicing, and alternative splicing is a major source of proteome diversity and an important mechanism for modulating gene expression. The ability to regulate a specific splicing event is therefore desirable; for example, to understand splicing-associated pathologies. We have developed methods based on modified U7 snRNAs, which allow us to induce efficient skipping or inclusion of selected exons. Here, we have adapted these U7 tools to a regulatable system that relies on a doxycycline-sensitive version of the Krüppel-associated box (KRAB)/KAP1 transcriptional silencing. Co-transduction of target cells with two lentiviral vectors, one carrying the KRAB protein and the other the regulatable U7 cassette, allows a tight regulation of the modified U7 snRNA. No leakage is observed in the repressed state, whereas full induction can be obtained with doxycycline in ng ml(-1) concentrations. Only a few days are necessary for a full switch, and the induction/repression can be repeated over several cycles without noticeable loss of control. Importantly, the U7 expression correlates with splicing correction, as shown for the skipping of an aberrant beta-globin exon created by a thalassaemic mutation and the promotion of exon 7 inclusion in the human SMN2 gene, an important therapeutic target for spinal muscular atrophy.
Collapse
Affiliation(s)
- J Marquis
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | | | | |
Collapse
|
183
|
Klootwijk RD, Savelkoul PJM, Ciccone C, Manoli I, Caplen NJ, Krasnewich DM, Gahl WA, Huizing M. Allele-specific silencing of the dominant disease allele in sialuria by RNA interference. FASEB J 2008; 22:3846-52. [PMID: 18653764 DOI: 10.1096/fj.08-110890] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dominant disease alleles are attractive therapeutic targets for allele-specific gene silencing by small interfering RNA (siRNA). Sialuria is a dominant disorder caused by missense mutations in the allosteric site of GNE, coding for the rate-limiting enzyme of sialic acid biosynthesis, UDP-GlcNAc 2-epimerase/ManNAc kinase. The resultant loss of feedback inhibition of GNE-epimerase activity by CMP-sialic acid causes excessive production of free sialic acid. For this study we employed synthetic siRNAs specifically targeting the dominant GNE mutation c.797G>A (p.R266Q) in sialuria fibroblasts. We demonstrated successful siRNA-mediated down-regulation of the mutant allele by allele-specific real-time PCR. Importantly, mutant allele-specific silencing resulted in a significant decrease of free sialic acid, to within the normal range. Feedback inhibition of GNE-epimerase activity by CMP-sialic acid recovered after silencing demonstrating specificity of this effect. These findings indicate that allele-specific silencing of a mutated allele is a viable therapeutic strategy for autosomal dominant diseases, including sialuria.
Collapse
Affiliation(s)
- Riko D Klootwijk
- Medical Genetics Branch, NHGRI, NIH, 10 Center Dr., MSC 1851, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Graziewicz MA, Tarrant TK, Buckley B, Roberts J, Fulton L, Hansen H, Ørum H, Kole R, Sazani P. An endogenous TNF-alpha antagonist induced by splice-switching oligonucleotides reduces inflammation in hepatitis and arthritis mouse models. Mol Ther 2008; 16:1316-22. [PMID: 18461057 PMCID: PMC2671678 DOI: 10.1038/mt.2008.85] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 04/02/2008] [Indexed: 11/09/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is a key mediator of inflammatory diseases, including rheumatoid arthritis (RA), and anti-TNF-alpha drugs such as etanercept are effective treatments. Splice-switching oligonucleotides (SSOs) are a new class of drugs designed to induce therapeutically favorable splice variants of targeted genes. In this work, we used locked nucleic acid (LNA)-based SSOs to modulate splicing of TNF receptor 2 (TNFR2) pre-mRNA. The SSO induced skipping of TNFR2 exon 7, which codes the transmembrane domain (TM), switching endogenous expression from the membrane-bound, functional form to a soluble, secreted form (Delta7TNFR2). This decoy receptor protein accumulated in the circulation of treated mice, antagonized TNF-alpha, and altered disease in two mouse models: TNF-alpha-induced hepatitis and collagen-induced arthritis (CIA). This is the first report of upregulation of the endogenous, circulating TNF-alpha antagonist by oligonucleotide-induced splicing modulation.
Collapse
Affiliation(s)
| | - Teresa K Tarrant
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian Buckley
- Ercole Biotech, Inc., Research Triangle Park, North Carolina, USA
| | - Jennifer Roberts
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - LeShara Fulton
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | - Ryszard Kole
- Ercole Biotech, Inc., Research Triangle Park, North Carolina, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peter Sazani
- Ercole Biotech, Inc., Research Triangle Park, North Carolina, USA
| |
Collapse
|
185
|
Gusti V, Kim DS, Gaur RK. Sequestering of the 3' splice site in a theophylline-responsive riboswitch allows ligand-dependent control of alternative splicing. Oligonucleotides 2008; 18:93-9. [PMID: 18321166 DOI: 10.1089/oli.2007.0107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Despite the important role of alternative splicing in various aspects of biological processes, our ability to regulate this process at will remains a challenge. In this report, we asked whether a theophylline-responsive riboswitch could be adapted to manipulate alternative splicing. We constructed a pre-mRNA containing a single upstream 5' splice site and two 3' splice sites, of which the proximal 3' splice site is embedded in theophylline-responsive riboswitch. We show that this pre-mRNA spliced with preferential utilization of proximal 3' splice site in vitro. However, addition of theophylline to the splicing reaction promoted splicing at distal 3' splice site thereby changing the ratio of distal-to-proximal 3' splice site usage by more than twofold. Our data suggest that theophylline influenced 3' splice site choice without affecting the kinetics of the splicing reaction. We conclude that an in vitro selected riboswitch can be adapted to control alternative splicing, which may find many applications in basic, biotechnological, and biomedical research.
Collapse
Affiliation(s)
- Veronica Gusti
- Division of Molecular Biology, Beckman Research, Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | |
Collapse
|
186
|
Rayburn ER, Zhang R. Antisense, RNAi, and gene silencing strategies for therapy: mission possible or impossible? Drug Discov Today 2008; 13:513-21. [PMID: 18549978 PMCID: PMC2497463 DOI: 10.1016/j.drudis.2008.03.014] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 03/12/2008] [Accepted: 03/17/2008] [Indexed: 12/17/2022]
Abstract
Antisense oligonucleotides can regulate gene expression in living cells. As such, they regulate cell function and division, and can modulate cellular responses to internal and external stresses and stimuli. Although encouraging results from preclinical and clinical studies have been obtained and significant progress has been made in developing these agents as drugs, they are not yet recognized as effective therapeutics. Several major hurdles remain to be overcome, including problems with efficacy, off-target effects, delivery and side effects. The lessons learned from antisense drug development can help in the development of other oligonucleotide-based therapeutics such as CpG oligonucleotides, RNAi and miRNA.
Collapse
Affiliation(s)
- Elizabeth R. Rayburn
- Department of Pharmacology and Toxicology and Division of Clinical Pharmacology, University of Alabama at Birmingham, Birmingham, AL 35294
- Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ruiwen Zhang
- Department of Pharmacology and Toxicology and Division of Clinical Pharmacology, University of Alabama at Birmingham, Birmingham, AL 35294
- Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
187
|
Denti MA, Incitti T, Sthandier O, Nicoletti C, De Angelis FG, Rizzuto E, Auricchio A, Musarò A, Bozzoni I. Long-term benefit of adeno-associated virus/antisense-mediated exon skipping in dystrophic mice. Hum Gene Ther 2008; 19:601-8. [PMID: 18500943 DOI: 10.1089/hum.2008.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many mutations and deletions in the dystrophin gene, responsible for Duchenne muscular dystrophy (DMD), can be corrected at the posttranscriptional level by skipping specific exons. Here we show that long-term benefit can be obtained in the dystrophic mouse model through the use of adeno-associated viral vectors expressing antisense sequences: persistent exon skipping, dystrophin rescue, and functional benefit were observed 74 weeks after a single systemic administration. The therapeutic benefit was sufficient to preserve the muscle integrity of mice up to old age. These results indicate a possible long-term gene therapy treatment of the DMD pathology.
Collapse
Affiliation(s)
- Michela Alessandra Denti
- Department of Genetics and Molecular Biology, Institute Pasteur Cenci-Bolognetti, University of Rome La Sapienza, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Williams JH, Schray RC, Sirsi SR, Lutz GJ. Nanopolymers improve delivery of exon skipping oligonucleotides and concomitant dystrophin expression in skeletal muscle of mdx mice. BMC Biotechnol 2008; 8:35. [PMID: 18384691 PMCID: PMC2362111 DOI: 10.1186/1472-6750-8-35] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 04/02/2008] [Indexed: 11/11/2022] Open
Abstract
Background Exon skipping oligonucleotides (ESOs) of 2'O-Methyl (2'OMe) and morpholino chemistry have been shown to restore dystrophin expression in muscle fibers from the mdx mouse, and are currently being tested in phase I clinical trials for Duchenne Muscular Dystrophy (DMD). However, ESOs remain limited in their effectiveness because of an inadequate delivery profile. Synthetic cationic copolymers of poly(ethylene imine) (PEI) and poly(ethylene glycol) (PEG) are regarded as effective agents for enhanced delivery of nucleic acids in various applications. Results We examined whether PEG-PEI copolymers can facilitate ESO-mediated dystrophin expression after intramuscular injections into tibialis anterior (TA) muscles of mdx mice. We utilized a set of PEG-PEI copolymers containing 2 kDa PEI and either 550 Da or 5 kDa PEG, both of which bind 2'OMe ESOs with high affinity and form stable nanoparticulates with a relatively low surface charge. Three weekly intramuscular injections of 5 μg of ESO complexed with PEI2K-PEG550 copolymers resulted in about 500 dystrophin-positive fibers and about 12% of normal levels of dystrophin expression at 3 weeks after the initial injection, which is significantly greater than for injections of ESO alone, which are known to be almost completely ineffective. In an effort to enhance biocompatibility and cellular uptake, the PEI2K-PEG550 and PEI2K-PEG5K copolymers were functionalized by covalent conjugation with nanogold (NG) or adsorbtion of colloidal gold (CG), respectively. Surprisingly, using the same injection and dosing regimen, we found no significant difference in dystrophin expression by Western blot between the NG-PEI2K-PEG550, CG-PEI2K-PEG5K, and non-functionalized PEI2K-PEG550 copolymers. Dose-response experiments using the CG-PEI2K-PEG5K copolymer with total ESO ranging from 3–60 μg yielded a maximum of about 15% dystrophin expression. Further improvements in dystrophin expression up to 20% of normal levels were found at 6 weeks after 10 twice-weekly injections of the NG-PEI2K-PEG550 copolymer complexed with 5 μg of ESO per injection. This injection and dosing regimen showed over 1000 dystrophin-positive fibers. H&E staining of all treated muscle groups revealed no overt signs of cytotoxicity. Conclusion We conclude that PEGylated PEI2K copolymers are efficient carriers for local delivery of 2'OMe ESOs and warrant further development as potential therapeutics for treatment of DMD.
Collapse
Affiliation(s)
- Jason H Williams
- Drexel University College of Medicine, Department of Pharmacology and Physiology, Philadelphia, Pennsylvania 19102, USA.
| | | | | | | |
Collapse
|
189
|
Arechavala-Gomeza V, Graham IR, Popplewell LJ, Adams AM, Aartsma-Rus A, Kinali M, Morgan JE, van Deutekom JC, Wilton SD, Dickson G, Muntoni F. Comparative analysis of antisense oligonucleotide sequences for targeted skipping of exon 51 during dystrophin pre-mRNA splicing in human muscle. Hum Gene Ther 2007; 18:798-810. [PMID: 17767400 DOI: 10.1089/hum.2006.061] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene that result in the absence of functional protein. In the majority of cases these are out-of-frame deletions that disrupt the reading frame. Several attempts have been made to restore the dystrophin mRNA reading frame by modulation of pre-mRNA splicing with antisense oligonucleotides (AOs), demonstrating success in cultured cells, muscle explants, and animal models. We are preparing for a phase I/IIa clinical trial aimed at assessing the safety and effect of locally administered AOs designed to inhibit inclusion of exon 51 into the mature mRNA by the splicing machinery, a process known as exon skipping. Here, we describe a series of systematic experiments to validate the sequence and chemistry of the exon 51 AO reagent selected to go forward into the clinical trial planned in the United Kingdom. Eight specific AO sequences targeting exon 51 were tested in two different chemical forms and in three different preclinical models: cultured human muscle cells and explants (wild type and DMD), and local in vivo administration in transgenic mice harboring the entire human DMD locus. Data have been validated independently in the different model systems used, and the studies describe a rational collaborative path for the preclinical selection of AOs for evaluation in future clinical trials.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Base Sequence
- Blotting, Western
- Cells, Cultured
- Dystrophin/chemistry
- Dystrophin/genetics
- Exons
- Gene Targeting
- Humans
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Oligonucleotides, Antisense/analysis
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/genetics
- Organ Culture Techniques
- RNA Precursors/metabolism
- RNA, Messenger/metabolism
- Reproducibility of Results
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
|