151
|
Brommage R, Liu J, Hansen GM, Kirkpatrick LL, Potter DG, Sands AT, Zambrowicz B, Powell DR, Vogel P. High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes. Bone Res 2014; 2:14034. [PMID: 26273529 PMCID: PMC4472125 DOI: 10.1038/boneres.2014.34] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 12/13/2022] Open
Abstract
Screening gene function in vivo is a powerful approach to discover novel drug targets. We present high-throughput screening (HTS) data for 3 762 distinct global gene knockout (KO) mouse lines with viable adult homozygous mice generated using either gene-trap or homologous recombination technologies. Bone mass was determined from DEXA scans of male and female mice at 14 weeks of age and by microCT analyses of bones from male mice at 16 weeks of age. Wild-type (WT) cagemates/littermates were examined for each gene KO. Lethality was observed in an additional 850 KO lines. Since primary HTS are susceptible to false positive findings, additional cohorts of mice from KO lines with intriguing HTS bone data were examined. Aging, ovariectomy, histomorphometry and bone strength studies were performed and possible non-skeletal phenotypes were explored. Together, these screens identified multiple genes affecting bone mass: 23 previously reported genes (Calcr, Cebpb, Crtap, Dcstamp, Dkk1, Duoxa2, Enpp1, Fgf23, Kiss1/Kiss1r, Kl (Klotho), Lrp5, Mstn, Neo1, Npr2, Ostm1, Postn, Sfrp4, Slc30a5, Slc39a13, Sost, Sumf1, Src, Wnt10b), five novel genes extensively characterized (Cldn18, Fam20c, Lrrk1, Sgpl1, Wnt16), five novel genes with preliminary characterization (Agpat2, Rassf5, Slc10a7, Slc26a7, Slc30a10) and three novel undisclosed genes coding for potential osteoporosis drug targets.
Collapse
Affiliation(s)
| | - Jeff Liu
- Lexicon Pharmaceuticals , The Woodlands, TX, USA
| | | | | | | | | | | | | | - Peter Vogel
- Lexicon Pharmaceuticals , The Woodlands, TX, USA
| |
Collapse
|
152
|
Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat Med 2014; 20:1279-88. [PMID: 25306233 DOI: 10.1038/nm.3654] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/10/2014] [Indexed: 02/05/2023]
Abstract
The WNT16 locus is a major determinant of cortical bone thickness and nonvertebral fracture risk in humans. The disability, mortality and costs caused by osteoporosis-induced nonvertebral fractures are enormous. We demonstrate here that Wnt16-deficient mice develop spontaneous fractures as a result of low cortical thickness and high cortical porosity. In contrast, trabecular bone volume is not altered in these mice. Mechanistic studies revealed that WNT16 is osteoblast derived and inhibits human and mouse osteoclastogenesis both directly by acting on osteoclast progenitors and indirectly by increasing expression of osteoprotegerin (Opg) in osteoblasts. The signaling pathway activated by WNT16 in osteoclast progenitors is noncanonical, whereas the pathway activated in osteoblasts is both canonical and noncanonical. Conditional Wnt16 inactivation revealed that osteoblast-lineage cells are the principal source of WNT16, and its targeted deletion in osteoblasts increases fracture susceptibility. Thus, osteoblast-derived WNT16 is a previously unreported key regulator of osteoclastogenesis and fracture susceptibility. These findings open new avenues for the specific prevention or treatment of nonvertebral fractures, a substantial unmet medical need.
Collapse
|
153
|
Haÿ E, Dieudonné FX, Saidak Z, Marty C, Brun J, Da Nascimento S, Sonnet P, Marie PJ. N-cadherin/wnt interaction controls bone marrow mesenchymal cell fate and bone mass during aging. J Cell Physiol 2014; 229:1765-75. [PMID: 24664975 DOI: 10.1002/jcp.24629] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/21/2014] [Indexed: 01/25/2023]
Abstract
Age-related bone loss is characterized by reduced osteoblastogenesis and excessive bone marrow adipogenesis. The mechanisms governing bone marrow mesenchymal stromal cell (BMSC) differentiation into adipocytes or osteoblasts during aging are unknown. We show here that overexpressing N-cadherin (Cadh2) in osteoblasts increased BMSC adipocyte differentiation and reduced osteoblast differentiation in young transgenic (Tg) mice whereas this phenotype was fully reversed with aging. The reversed phenotype with age was associated with enhanced Wnt5a and Wnt10b expression in osteoblasts and a concomitant increase in BMSC osteogenic differentiation. Consistent with this mechanism, conditioned media from young wild type osteoblasts inhibited adipogenesis and promoted osteoblast differentiation in BMSC from old Cadh2 Tg mice, and this response was abolished by Wnt5a and Wnt10b silencing. Transplantation of BMSC from old Cadh2 Tg mice into young Tg recipients increased Wnt5a and Wnt10b expression and rescued BMSC osteogenic differentiation. In senescent osteopenic mice, blocking the CADH2-Wnt interaction using an antagonist peptide increased Wnt5a and Wnt10b expression, bone formation, and bone mass. The data indicate that Cadh2/Wnt interaction in osteoblasts regulates BMSC lineage determination, bone formation, and bone mass and suggest a therapeutic target for promoting bone formation in the aging skeleton.
Collapse
Affiliation(s)
- Eric Haÿ
- Inserm UMR-1132, Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Tyagi AM, Mansoori MN, Srivastava K, Khan MP, Kureel J, Dixit M, Shukla P, Trivedi R, Chattopadhyay N, Singh D. Enhanced immunoprotective effects by anti-IL-17 antibody translates to improved skeletal parameters under estrogen deficiency compared with anti-RANKL and anti-TNF-α antibodies. J Bone Miner Res 2014; 29:1981-92. [PMID: 24677326 DOI: 10.1002/jbmr.2228] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/07/2014] [Accepted: 03/13/2014] [Indexed: 12/19/2022]
Abstract
Activated T cell has a key role in the interaction between bone and immune system. T cells produce proinflammatory cytokines, including receptor activator of NF-κB ligand (RANKL), tumor necrosis factor α (TNF-α), and interleukin 17 (IL-17), all of which augment osteoclastogenesis. RANKL and TNF-α are targeted by inhibitors such as denosumab, a human monoclonal RANKL antibody, and infliximab, which neutralizes TNF-α. IL-17 is also an important mediator of bone loss, and an antibody against IL-17 is undergoing phase II clinical trial for rheumatoid arthritis. Although there are a few studies showing suppression of Th17 cell differentiation and induction of regulatory T cells (Tregs) by infliximab, the effect of denosumab remains poorly understood. In this study, we investigated the effects of anti-TNF-α, anti-RANKL, or anti-IL-17 antibody administration to estrogen-deficient mice on CD4(+) T-cell proliferation, CD28 loss, Th17/Treg balance and B lymphopoesis, and finally, the translation of these immunomodulatory effects on skeletal parameters. Adult Balb/c mice were treated with anti-RANKL/-TNF-α/-IL-17 subcutaneously, twice a week, postovariectomy (Ovx) for 4 weeks. Animals were then autopsied; bone marrow cells were collected for FACS and RNA analysis and serum collected for ELISA. Bones were dissected for static and dynamic histomorphometry studies. We observed that although anti-RANKL and anti-TNF-α therapies had no effect on Ovx-induced CD4(+) T-cell proliferation and B lymphopoesis, anti-IL-17 effectively suppressed both events with concomitant reversal of CD28 loss. Anti-IL-17 antibody reduced proinflammatory cytokine production and induced Tregs. All three antibodies restored trabecular microarchitecture with comparable efficacy; however, cortical bone parameters, bone biomechanical properties, and histomorphometry were best preserved by anti-IL-17 antibody, likely attributable to its inhibitory effect on osteoblast apoptosis and increased number of bone lining cells and Wnt10b expression. Based on the superior immunoprotective effects of anti-IL-17, which appears to translate to a better skeletal preservation, we propose beginning clinical trials using a humanized antibody against IL-17 for treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Abdul M Tyagi
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Cawthorn WP, Scheller EL, Learman BS, Parlee SD, Simon BR, Mori H, Ning X, Bree AJ, Schell B, Broome DT, Soliman SS, DelProposto JL, Lumeng CN, Mitra A, Pandit SV, Gallagher KA, Miller JD, Krishnan V, Hui SK, Bredella MA, Fazeli PK, Klibanski A, Horowitz MC, Rosen CJ, MacDougald OA. Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab 2014; 20:368-375. [PMID: 24998914 PMCID: PMC4126847 DOI: 10.1016/j.cmet.2014.06.003] [Citation(s) in RCA: 391] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/10/2013] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
Abstract
The adipocyte-derived hormone adiponectin promotes metabolic and cardiovascular health. Circulating adiponectin increases in lean states such as caloric restriction (CR), but the reasons for this paradox remain unclear. Unlike white adipose tissue (WAT), bone marrow adipose tissue (MAT) increases during CR, and both MAT and serum adiponectin increase in many other clinical conditions. Thus, we investigated whether MAT contributes to circulating adiponectin. We find that adiponectin secretion is greater from MAT than WAT. Notably, specific inhibition of MAT formation in mice results in decreased circulating adiponectin during CR despite unaltered adiponectin expression in WAT. Inhibiting MAT formation also alters skeletal muscle adaptation to CR, suggesting that MAT exerts systemic effects. Finally, we reveal that both MAT and serum adiponectin increase during cancer therapy in humans. These observations identify MAT as an endocrine organ that contributes significantly to increased serum adiponectin during CR and perhaps in other adverse states.
Collapse
Affiliation(s)
- William P. Cawthorn
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Musculoskeletal Research, Lilly Research Laboratories, Indianapolis, Indiana, 46285, USA
| | - Erica L. Scheller
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Brian S. Learman
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sebastian D. Parlee
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Becky R. Simon
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Hiroyuki Mori
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Xiaomin Ning
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People’s Republic of China
| | - Adam J. Bree
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Benjamin Schell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - David T. Broome
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sandra S. Soliman
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jenifer L. DelProposto
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Carey N. Lumeng
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Aditi Mitra
- Center for Arrhythmia Research (Department of Internal Medicine – Cardiology), University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sandeep V. Pandit
- Center for Arrhythmia Research (Department of Internal Medicine – Cardiology), University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Katherine A. Gallagher
- Department of Vascular Surgery, University of Michigan Hospital, Ann Arbor, MI, 48109, USA
| | - Joshua D. Miller
- Department of Orthopaedic Surgery, University of Michigan Hospital, Ann Arbor, MI, 48109, USA
| | - Venkatesh Krishnan
- Musculoskeletal Research, Lilly Research Laboratories, Indianapolis, Indiana, 46285, USA
| | - Susanta K. Hui
- Masonic Cancer Center and Therapeutic Radiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Miriam A. Bredella
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Pouneh K. Fazeli
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mark C. Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Clifford J. Rosen
- Maine Medical Center Research Institute, Scarborough, ME, 04074, USA
| | - Ormond A. MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
156
|
Hoffman CM, Calvi LM. Minireview: complexity of hematopoietic stem cell regulation in the bone marrow microenvironment. Mol Endocrinol 2014; 28:1592-601. [PMID: 25083740 DOI: 10.1210/me.2014-1079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hematopoiesis in vertebrates is sustained over the duration of an organism's lifetime due to strict regulation of the highly hierarchical hematopoietic system, where a few immature hematopoietic stem cells (HSCs) continuously regenerate the entire blood supply, which is constantly being replaced. Although HSCs self-regulate through cell-autonomous processes, they also receive a variety of signals from their microenvironment or niche. Within the microenvironment, HSCs are regulated through both cell-cell interactions and secreted signals, including hormones. HSCs at the apex of the blood supply integrate these signals to produce progeny to support hematopoiesis while simultaneously maintaining a stem cell pool. In the past 10 years, advances in genetic models and flow cytometry have provided the tools to test how the microenvironment regulates HSCs. This review is organized in 3 main parts and will focus on cellular components of the HSC niche that are potential targets for hormonal signals, then review critical regulatory signals in the HSC niche, and finally highlight the emerging role of hormonal and paracrine signals in the bone marrow.
Collapse
Affiliation(s)
- Corey M Hoffman
- Endocrine Division (C.M.H., L.M.C.), Department of Medicine, and Department of Pharmacology and Physiology (C.M.H.), University of Rochester School of Medicine, Rochester, New York 14642
| | | |
Collapse
|
157
|
Yorgan TA, Schinke T. Relevance of Wnt signaling for osteoanabolic therapy. MOLECULAR AND CELLULAR THERAPIES 2014; 2:22. [PMID: 26056589 PMCID: PMC4452071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/08/2014] [Indexed: 11/21/2023]
Abstract
The Wnt signaling pathway is long known to play fundamental roles in various aspects of embryonic development, but also in several homeostatic processes controlling tissue functions in adults. The complexity of this system is best underscored by the fact that the mammalian genome encodes for 19 different Wnt ligands, most but not all of them acting through an intracellular stabilization of β-catenin, representing the key molecule within the so-called canonical Wnt signaling pathway. Wnt ligands primarily bind to 10 different serpentine receptors of the Fzd family, and this binding can be positively or negatively regulated by additional molecules present at the surface of the respective target cells. One of these molecules is the transmembrane protein Lrp5, which has been shown to act as a Wnt co-receptor. In 2001, Lrp5, and thereby Wnt signaling, entered center stage in the research area of bone remodeling, a homeostatic process controlling bone mass, whose disturbance causes osteoporosis, one of the most prevalent disorders worldwide. More specifically, it was found that inactivating mutations of the human LRP5 gene cause osteoporosis-pseudoglioma syndrome, a rare genetic disorder characterized by impaired bone formation and persistence of hyaloid vessels in the eyeballs. In addition, activating LRP5 mutations were identified in individuals with osteosclerosis, a high bone mass condition characterized by excessive bone formation. Especially explained by the lack of cost-effective osteoanabolic treatment options, these findings had an immediate impact on the research regarding the bone-forming cell type, i.e. the osteoblast, whose differentiation and function is apparently controlled by Wnt signaling. This review summarizes the most important results obtained in a large number of studies, involving tissue culture experiments, mouse models and human patients. While there are still many open questions regarding the precise molecular interactions controlling Wnt signaling in osteoblasts, it is obvious that understanding this pathway is a key to optimize the therapeutic strategies for treating various skeletal disorders, including osteoporosis.
Collapse
Affiliation(s)
- Timur A Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, 20246 Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, 20246 Germany
| |
Collapse
|
158
|
Yorgan TA, Schinke T. Relevance of Wnt signaling for osteoanabolic therapy. MOLECULAR AND CELLULAR THERAPIES 2014; 2:22. [PMID: 26056589 PMCID: PMC4452071 DOI: 10.1186/2052-8426-2-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/08/2014] [Indexed: 12/17/2022]
Abstract
The Wnt signaling pathway is long known to play fundamental roles in various aspects of embryonic development, but also in several homeostatic processes controlling tissue functions in adults. The complexity of this system is best underscored by the fact that the mammalian genome encodes for 19 different Wnt ligands, most but not all of them acting through an intracellular stabilization of β-catenin, representing the key molecule within the so-called canonical Wnt signaling pathway. Wnt ligands primarily bind to 10 different serpentine receptors of the Fzd family, and this binding can be positively or negatively regulated by additional molecules present at the surface of the respective target cells. One of these molecules is the transmembrane protein Lrp5, which has been shown to act as a Wnt co-receptor. In 2001, Lrp5, and thereby Wnt signaling, entered center stage in the research area of bone remodeling, a homeostatic process controlling bone mass, whose disturbance causes osteoporosis, one of the most prevalent disorders worldwide. More specifically, it was found that inactivating mutations of the human LRP5 gene cause osteoporosis-pseudoglioma syndrome, a rare genetic disorder characterized by impaired bone formation and persistence of hyaloid vessels in the eyeballs. In addition, activating LRP5 mutations were identified in individuals with osteosclerosis, a high bone mass condition characterized by excessive bone formation. Especially explained by the lack of cost-effective osteoanabolic treatment options, these findings had an immediate impact on the research regarding the bone-forming cell type, i.e. the osteoblast, whose differentiation and function is apparently controlled by Wnt signaling. This review summarizes the most important results obtained in a large number of studies, involving tissue culture experiments, mouse models and human patients. While there are still many open questions regarding the precise molecular interactions controlling Wnt signaling in osteoblasts, it is obvious that understanding this pathway is a key to optimize the therapeutic strategies for treating various skeletal disorders, including osteoporosis.
Collapse
Affiliation(s)
- Timur A Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, 20246 Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, 20246 Germany
| |
Collapse
|
159
|
Knight MN, Hankenson KD. R-spondins: novel matricellular regulators of the skeleton. Matrix Biol 2014; 37:157-61. [PMID: 24980904 DOI: 10.1016/j.matbio.2014.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/18/2014] [Accepted: 06/18/2014] [Indexed: 01/08/2023]
Abstract
R-spondins are a family of four matricellular proteins produced by a variety of cell-types. Structurally, R-spondins contain a TSR1 domain that retains the tryptophan structure and a modified cysteine-rich CSVCTG region. In addition, the R-spondins contain two furin repeats implicated in canonical Wnt signaling. R-spondins positively regulate canonical Wnt signaling by reducing Wnt receptor turnover and thereby increasing beta-catenin stabilization. R-spondins are prominently expressed in the developing skeleton and contribute to limb formation, particularly of the distal digit. Additionally, results suggest that R-spondins may contribute to the maintenance of adult bone mass by regulating osteoblastogenesis and bone formation.
Collapse
Affiliation(s)
- M Noelle Knight
- Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, United States; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, United States
| | - Kurt D Hankenson
- Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, United States; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, United States.
| |
Collapse
|
160
|
Jou YC, Tsai YS, Hsieh HY, Shen CH, Fang CY, Chen SY, Lin MF, Chen FH, Hsu CD. Age-dependent Association Between Dickkopf-1 and Calcium-containing Urolithiasis. Urology 2014; 83:1006-10. [DOI: 10.1016/j.urology.2013.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/03/2013] [Accepted: 12/13/2013] [Indexed: 12/17/2022]
|
161
|
Kim J, Park Y, Park Y. trans-10, cis-12 CLA promotes osteoblastogenesis via SMAD mediated mechanism in bone marrow mesenchymal stem cells. J Funct Foods 2014; 8:367-376. [PMID: 25035711 PMCID: PMC4095819 DOI: 10.1016/j.jff.2014.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The inverse relationship between osteoblast and adipocyte differentiation in bone marrow mesenchymal stem cells has been linked to overall bone mass. It has previously been reported that conjugated linoleic acid (CLA) inhibits adipogenesis via a peroxisome-proliferator activated receptor-γ (PPARγ) mediated mechanism, while it increases osteoblastogenesis via a PPARγ-independent mechanism in mesenchymal stem cells. This suggests potential implication of CLA on improving bone mass. Thus the purpose of this study was to determine involvement of CLA on regulation of osteoblastogenesis in murine mesenchymal stem cells by focusing on the Mothers against decapentaplegic (MAD)-related family of molecules 8 (SMAD8), one of key regulators of osteoblastogenesis. The trans-10,cis-12 CLA, but not the cis-9,trans-11, significantly increased osteoblastogenesis via SMAD8, and inhibited adipogenesis independent of SMAD8, while inhibiting factors regulating osteoclastogenesis in this model. These suggest that CLA may help improve osteoblastogenesis via a SMAD8 mediated mechanism.
Collapse
Affiliation(s)
- Jonggun Kim
- Department of Food Science, University of Massachusetts, Amherst, 102
Holdsworth Way, Amherst, MA 01003
| | - Yooheon Park
- Department of Food Science, University of Massachusetts, Amherst, 102
Holdsworth Way, Amherst, MA 01003
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, 102
Holdsworth Way, Amherst, MA 01003
| |
Collapse
|
162
|
Abstract
Major advances in understanding basic bone biology and the cellular and molecular mechanisms responsible for the development of osteoporosis, over the last 20 years, have dramatically altered the management of this disease. The purpose of this mini-review is to highlight the seminal role of Wnt signaling in bone homeostasis and disease and the emergence of novel osteoporosis therapies by targeting Wnt signaling with drugs.
Collapse
Affiliation(s)
- Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA.
| |
Collapse
|
163
|
Canonical Wnt signalling activates TAZ through PP1A during osteogenic differentiation. Cell Death Differ 2014; 21:854-63. [PMID: 24510127 DOI: 10.1038/cdd.2014.8] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 12/13/2013] [Accepted: 01/02/2014] [Indexed: 12/16/2022] Open
Abstract
TAZ, a transcriptional modulator, has a key role in cell proliferation, differentiation and stem cell self-renewal. TAZ activity is regulated by several signalling pathways, including Hippo, GPCR and Wnt signalling, but the regulatory mechanisms of TAZ activation are not yet clearly understood. In this report, we show that TAZ is regulated by canonical Wnt signalling during osteogenic differentiation. Wnt3a increases TAZ expression and an inhibitor of GSK3β, a downstream effector of Wnt signalling, induces TAZ. Wnt3a facilitates the dephosphorylation of TAZ, which stabilises TAZ and prevents it from binding 14-3-3 proteins, thus inducing the nuclear localisation of TAZ. Dephosphorylation of TAZ occurs via PP1A, and depletion of PP1A blocks Wnt3a-induced TAZ stabilisation. Wnt3a-induced TAZ activates osteoblastic differentiation and siRNA-induced TAZ depletion decreases Wnt3a-induced osteoblast differentiation. Taken together, these results show that TAZ mediates Wnt3a-stimulated osteogenic differentiation through PP1A, suggesting that the Wnt signal regulates the Hippo pathway.
Collapse
|
164
|
Chen J, Tu X, Esen E, Joeng KS, Lin C, Arbeit JM, Rüegg MA, Hall MN, Ma L, Long F. WNT7B promotes bone formation in part through mTORC1. PLoS Genet 2014; 10:e1004145. [PMID: 24497849 PMCID: PMC3907335 DOI: 10.1371/journal.pgen.1004145] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 12/12/2013] [Indexed: 11/30/2022] Open
Abstract
WNT signaling has been implicated in both embryonic and postnatal bone formation. However, the pertinent WNT ligands and their downstream signaling mechanisms are not well understood. To investigate the osteogenic capacity of WNT7B and WNT5A, both normally expressed in the developing bone, we engineered mouse strains to express either protein in a Cre-dependent manner. Targeted induction of WNT7B, but not WNT5A, in the osteoblast lineage dramatically enhanced bone mass due to increased osteoblast number and activity; this phenotype began in the late-stage embryo and intensified postnatally. Similarly, postnatal induction of WNT7B in Runx2-lineage cells greatly stimulated bone formation. WNT7B activated mTORC1 through PI3K-AKT signaling. Genetic disruption of mTORC1 signaling by deleting Raptor in the osteoblast lineage alleviated the WNT7B-induced high-bone-mass phenotype. Thus, WNT7B promotes bone formation in part through mTORC1 activation. The human bone tissue is of considerable regenerative capacity as reflected in bone remodeling and in fracture healing. However, bone tissue regeneration deteriorates with age, and tremendous unmet medical needs exist for safe and effective strategies to stimulate bone formation in older individuals commonly inflicted with osteoporosis or osteopenia. WNT signaling has emerged as a promising target pathway for developing novel bone anabolic therapeutics. Identifying bone-promoting WNT ligands and elucidating the underlying mechanisms may lead to useful therapeutic targets. The present study reports that WNT7B potently enhances bone formation through activation of mTORC1 in the mouse.
Collapse
Affiliation(s)
- Jianquan Chen
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xiaolin Tu
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Emel Esen
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Kyu Sang Joeng
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Congxin Lin
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jeffrey M. Arbeit
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | | | - Liang Ma
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Fanxin Long
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
165
|
Simon BR, Learman BS, Parlee SD, Scheller EL, Mori H, Cawthorn WP, Ning X, Krishnan V, Ma YL, Tyrberg B, MacDougald OA. Sweet taste receptor deficient mice have decreased adiposity and increased bone mass. PLoS One 2014; 9:e86454. [PMID: 24466105 PMCID: PMC3899259 DOI: 10.1371/journal.pone.0086454] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/10/2013] [Indexed: 12/16/2022] Open
Abstract
Functional expression of sweet taste receptors (T1R2 and T1R3) has been reported in numerous metabolic tissues, including the gut, pancreas, and, more recently, in adipose tissue. It has been suggested that sweet taste receptors in these non-gustatory tissues may play a role in systemic energy balance and metabolism. Smaller adipose depots have been reported in T1R3 knockout mice on a high carbohydrate diet, and sweet taste receptors have been reported to regulate adipogenesis in vitro. To assess the potential contribution of sweet taste receptors to adipose tissue biology, we investigated the adipose tissue phenotypes of T1R2 and T1R3 knockout mice. Here we provide data to demonstrate that when fed an obesogenic diet, both T1R2 and T1R3 knockout mice have reduced adiposity and smaller adipocytes. Although a mild glucose intolerance was observed with T1R3 deficiency, other metabolic variables analyzed were similar between genotypes. In addition, food intake, respiratory quotient, oxygen consumption, and physical activity were unchanged in T1R2 knockout mice. Although T1R2 deficiency did not affect adipocyte number in peripheral adipose depots, the number of bone marrow adipocytes is significantly reduced in these knockout animals. Finally, we present data demonstrating that T1R2 and T1R3 knockout mice have increased cortical bone mass and trabecular remodeling. This report identifies novel functions for sweet taste receptors in the regulation of adipose and bone biology, and suggests that in these contexts, T1R2 and T1R3 are either dependent on each other for activity or have common independent effects in vivo.
Collapse
Affiliation(s)
- Becky R. Simon
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Brian S. Learman
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sebastian D. Parlee
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Erica L. Scheller
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hiroyuki Mori
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - William P. Cawthorn
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Musculoskeletal Research, Lilly Research Laboratories, Indianapolis, Indiana, United States of America
| | - Xiaomin Ning
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Venkatesh Krishnan
- Musculoskeletal Research, Lilly Research Laboratories, Indianapolis, Indiana, United States of America
| | - Yanfei L. Ma
- Musculoskeletal Research, Lilly Research Laboratories, Indianapolis, Indiana, United States of America
| | - Björn Tyrberg
- Cardiovascular and Metabolic Disease, MedImmune LLC, Gaithersburg, Maryland, United States of America
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, Florida, United States of America
| | - Ormond A. MacDougald
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
166
|
Van Camp JK, Beckers S, Zegers D, Van Hul W. Wnt Signaling and the Control of Human Stem Cell Fate. Stem Cell Rev Rep 2013; 10:207-29. [DOI: 10.1007/s12015-013-9486-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
167
|
Liu W, Konermann A, Guo T, Jäger A, Zhang L, Jin Y. Canonical Wnt signaling differently modulates osteogenic differentiation of mesenchymal stem cells derived from bone marrow and from periodontal ligament under inflammatory conditions. Biochim Biophys Acta Gen Subj 2013; 1840:1125-34. [PMID: 24231680 DOI: 10.1016/j.bbagen.2013.11.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 09/14/2013] [Accepted: 11/03/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Cellular plasticity and complex functional requirements of the periodontal ligament (PDL) assume a local stem cell (SC) niche to maintain tissue homeostasis and repair. Here, pathological alterations caused by inflammatory insults might impact the regenerative capacities of these cells. As bone homeostasis is fundamentally controlled by Wnt-mediated signals, it was the aim of this study to characterize the SC-like capacities of cells derived from PDL and to investigate their involvement in bone pathophysiology especially regarding the canonical Wnt pathway. METHODS PDLSCs were investigated for their SC characteristics via analysis of cell surface marker expression, colony forming unit efficiency, proliferation, osteogenic differentiation and adipogenic differentiation, and compared to bone marrow derived mesenchymal SCs (BMMSCs). To determine the impact of both inflammation and the canonical Wnt pathway on osteogenic differentiation, cells were challenged with TNF-α, maintained with or without Wnt3a or DKK-1 under osteogenic induction conditions and investigated for p-IκBα, p-NF-κB, p-Akt, β-catenin, p-GSK-3β, ALP and Runx2. RESULTS PDLSCs exhibit weaker adipogenic and osteogenic differentiation capacities compared to BMMSCs. TNF-α inhibited osteogenic differentiation of PDLSCs more than BMMSCs mainly through regulating canonical Wnt pathway. Blocking the canonical Wnt pathway by DKK-1 reconstituted osteogenic differentiation of PDLSCs under inflammatory conditions, whereas activation by Wnt3a increased osteogenic differentiation of BMMSCs. CONCLUSIONS Our results suggest a diverse regulation of the inhibitory effect of TNF-α in BMMSCs and PDLSCs via canonical Wnt pathway modulation. GENERAL SIGNIFICANCE These findings provide novel insights on PDLSC SC-like capacities and their involvement in bone pathophysiology under the impact of the canonical Wnt pathway.
Collapse
Affiliation(s)
- Wenjia Liu
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China; Department of Oral Histology and Pathology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Anna Konermann
- Department of Orthodontics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tao Guo
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Andreas Jäger
- Department of Orthodontics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Liqiang Zhang
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yan Jin
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China; Department of Oral Histology and Pathology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.
| |
Collapse
|
168
|
Abstract
Osteoporosis is a skeletal disorder characterized by bone loss, which results in architectural deterioration of the skeleton, compromised bone strength and an increased risk of fragility fractures. Most current therapies for osteoporosis stabilize the skeleton by inhibiting bone resorption (antiresorptive agents), but the development of anabolic therapies that can increase bone formation and bone mass is of great interest. Wnt signalling induces differentiation of bone-forming cells (osteoblasts) and suppresses the development of bone-resorbing cells (osteoclasts). The Wnt pathway is controlled by antagonists that interact either directly with Wnt proteins or with Wnt co-receptors. The importance of Wnt signalling in bone formation is indicated by skeletal disorders such as sclerosteosis and van Buchem syndrome, which are caused by mutations in the gene encoding the Wnt antagonist sclerostin (SOST). Experiments in mice have shown that downregulation or neutralization of Wnt antagonists enhances bone formation. Phase II clinical trials show that 1-year treatment with antisclerostin antibodies increases bone formation, decreases bone resorption and leads to a substantial increase in BMD. Consequently, Wnt signalling can be targeted by the neutralization of its extracellular antagonists to obtain a skeletal anabolic response.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Research, Saint Francis Hospital and Medical Centre, 114 Woodland Street, Hartford, CT 06105-1299, USA.
| |
Collapse
|
169
|
Giovanini AF, Deliberador TM, Tannuri Nemeth JE, Crivellaro VR, Portela GS, de Oliveira Filho MA, de Araujo MR, Zielak JC, Gonzaga CC. Leukocyte-platelet-rich plasma (L-PRP) impairs the osteoconductive capacity of the autograft associated to changes in the immunolocalization of TGF-β1 and its co-expression with Wnt10b and CD34 cells. J Craniomaxillofac Surg 2013; 41:e180-6. [DOI: 10.1016/j.jcms.2013.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/02/2013] [Accepted: 01/03/2013] [Indexed: 12/25/2022] Open
|
170
|
Boudin E, Fijalkowski I, Piters E, Van Hul W. The role of extracellular modulators of canonical Wnt signaling in bone metabolism and diseases. Semin Arthritis Rheum 2013; 43:220-40. [DOI: 10.1016/j.semarthrit.2013.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 12/17/2022]
|
171
|
Van Camp JK, Beckers S, Zegers D, Boudin E, Nielsen TL, Andersen M, Roef G, Taes Y, Brixen K, Van Hul W. Genetic association study of WNT10B polymorphisms with BMD and adiposity parameters in Danish and Belgian males. Endocrine 2013; 44:247-54. [PMID: 23325361 DOI: 10.1007/s12020-012-9869-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 12/24/2012] [Indexed: 11/30/2022]
Abstract
Because of the importance of the Wnt pathway in the development and maintenance of both adipose and bone tissue, we wanted to evaluate the involvement of WNT10B, a Wnt pathway activator, in adipogenesis and osteoblastogenesis in humans. Genetic association between WNT10B polymorphisms and adiposity parameters as well as bone mineral density (BMD) measurements was analysed in two independent populations. The first is a population of 1,228 Danish men (702 aged 20-29 years; 532 aged 60-74 years) from the Odense Androgen Study (OAS), which was designed as a cross-sectional, population-based study. The second population, called SIBLOS, includes 922 Belgian men (34 ± 5 years old) and contains siblings selected from over 500 families. Four tagSNPs (rs833840, rs833841, rs10875902 and rs4018511) that capture variation of ten SNPs (MAF > 5 %) in a 15.2 kb region spanning the WNT10B gene and its flanking regions were genotyped. Although no association with body mass index was found, we found all tagSNPs to be associated with BMD parameters (BMD whole body, total hip and femoral neck) and height in the OAS population. The association of rs10875902 was most prominent (nominal p = 0.012) and confirmed a previously shown negative effect on BMD. No significant associations were observed in the SIBLOS population. In the present study, no association between WNT10B polymorphisms and adiposity parameters was found. However, our results clearly illustrate a role for WNT10B variants in determining human BMD. The effect of WNT10B polymorphisms on height should be evaluated in additional populations.
Collapse
Affiliation(s)
- Jasmijn K Van Camp
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43, 2650, Edegem, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Nawa K, Ikeno H, Matsuhashi N, Ogasawara T, Otsuka E. Discovering small molecules that inhibit adipogenesis and promote osteoblastogenesis: unique screening and Oncostatin M-like activity. Differentiation 2013; 86:65-74. [PMID: 23995451 DOI: 10.1016/j.diff.2013.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 06/21/2013] [Accepted: 07/23/2013] [Indexed: 10/26/2022]
Abstract
Oncostatin M (OSM), one of the IL-6 family cytokines, inhibits adipogenic differentiation and stimulates osteoblastogenic differentiation from human bone marrow mesenchymal stem cells (hBMSCs). This functional study of OSM enabled us to develop a two-dimensional small-molecule screen that shifts hBMSC differentiation from adipocyte to osteoblast. Several structurally related compounds (isoxazoles) inhibited the accumulation of intracellular lipid droplets, whereas they promoted alkaline phosphatase activity and extracellular matrix calcification. Isoxazoles also reduced the expression of adipogenic transcription factor PPARγ and increased the levels of osteogenic transcription factors Runx2 and Osterix. They also induced the expression of the Wnt/β-catenin downstream gene and TOPflash reporter; however, the dephosphorylated β-catenin-active form was not significantly increased. Interestingly, the slight modification of the active compound led to a complete reversion of the dual differentiation activities. In summary, we have identified isoxazoles with anti-adipogenic and pro-osteogenic activities that provide a potential new tool for exploring the lineage commitment of mesenchymal stem cells and a possible lead for therapeutic intervention in osteopenia and osteoporosis.
Collapse
Affiliation(s)
- Katsuhiko Nawa
- Frontier Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | | | | | | | | |
Collapse
|
173
|
Wan Y, Lu C, Cao J, Zhou R, Yao Y, Yu J, Zhang L, Zhao H, Li H, Zhao J, Zhu X, He L, Liu Y, Yao Z, Yang X, Guo X. Osteoblastic Wnts differentially regulate bone remodeling and the maintenance of bone marrow mesenchymal stem cells. Bone 2013; 55:258-67. [PMID: 23334081 DOI: 10.1016/j.bone.2012.12.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/28/2012] [Accepted: 12/31/2012] [Indexed: 12/29/2022]
Abstract
Wnt signaling has important roles in embryonic bone development and postnatal bone remodeling, but inconsistent impact on bone property is observed in different genetic alterations of Lrp5 and β-catenin. More importantly, it is still controversial whether Lrp5 regulate bone formation locally or globally through gut-derived serotonin. Here we explored the function of Wnt proteins in osteoblastic niche through inactivation of the Wntless (Wls) gene, which abrogates the secretion of Wnts. The depletion of Wls in osteoblast progenitor cells resulted in severe osteopenia with more profound defects in osteoblastogenesis, osteoclastogenesis and maintenance of bone marrow mesenchymal stem cells (BMSCs) compared to that observed in Lrp5 and β-catenin mutants. These findings support the point of view that Wnt/Lrp5 signaling locally regulates bone mass accrual through multiple effects of osteoblastic Wnts on osteoblastic bone formation and osteoclastic bone resorption. Moreover, osteoblastic Wnts confer a niche role for maintenance of BMSCs, providing novel cues for the definition of BMSCs niche in bone marrow.
Collapse
Affiliation(s)
- Yong Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Zhou H, Cooper MS, Seibel MJ. Endogenous Glucocorticoids and Bone. Bone Res 2013; 1:107-19. [PMID: 26273496 DOI: 10.4248/br201302001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/20/2013] [Indexed: 01/28/2023] Open
Abstract
While the adverse effects of glucocorticoids on bone are well described, positive effects of glucocorticoids on the differentiation of osteoblasts are also observed. These paradoxical effects of glucocorticoids are dose dependent. At both physiologicaland supraphysiological levels of glucocorticoids, osteoblasts and osteocytes are the major glucocorticoid target cells. However, the response of the osteoblasts to each of these is quite distinct. At physiology levels, glucocorticoids direct mesenchymal progenitor cells to differentiate towards osteoblasts and thus increase bone formation in a positive way. In contrast with ageing, the excess production of glucocorticoids, at both systemic and intracellular levels, appear to impact on osteoblast and osteocytes in a negative way in a similar fashion to that seen with therapeutic glucocorticoids. This review will focus on therole of glucocorticoids in normal bone physiology, with particular emphasis on the mechanism by which endogenous glucocorticoids impact on bone and its constituent cells.
Collapse
Affiliation(s)
- Hong Zhou
- Bone Research Program, ANZAC Research Institute , Sydney, Australia ; Concord Clinical School, The University of Sydney , Sydney, Australia
| | - Mark S Cooper
- Concord Clinical School, The University of Sydney , Sydney, Australia ; Department of Endocrinology & Metabolism, Concord Hospital , Sydney, Australia
| | - Markus J Seibel
- Bone Research Program, ANZAC Research Institute , Sydney, Australia ; Concord Clinical School, The University of Sydney , Sydney, Australia ; Department of Endocrinology & Metabolism, Concord Hospital , Sydney, Australia
| |
Collapse
|
175
|
Kim JH, Liu X, Wang J, Chen X, Zhang H, Kim SH, Cui J, Li R, Zhang W, Kong Y, Zhang J, Shui W, Lamplot J, Rogers MR, Zhao C, Wang N, Rajan P, Tomal J, Statz J, Wu N, Luu HH, Haydon RC, He TC. Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther Adv Musculoskelet Dis 2013; 5:13-31. [PMID: 23514963 DOI: 10.1177/1759720x12466608] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Wnt signaling pathway plays an important role not only in embryonic development but also in the maintenance and differentiation of the stem cells in adulthood. In particular, Wnt signaling has been shown as an important regulatory pathway in the osteogenic differentiation of mesenchymal stem cells. Induction of the Wnt signaling pathway promotes bone formation while inactivation of the pathway leads to osteopenic states. Our current understanding of Wnt signaling in osteogenesis elucidates the molecular mechanisms of classic osteogenic pathologies. Activating and inactivating aberrations of the canonical Wnt signaling pathway in osteogenesis results in sclerosteosis and osteoporosis respectively. Recent studies have sought to target the Wnt signaling pathway to treat osteogenic disorders. Potential therapeutic approaches attempt to stimulate the Wnt signaling pathway by upregulating the intracellular mediators of the Wnt signaling cascade and inhibiting the endogenous antagonists of the pathway. Antibodies against endogenous antagonists, such as sclerostin and dickkopf-1, have demonstrated promising results in promoting bone formation and fracture healing. Lithium, an inhibitor of glycogen synthase kinase 3β, has also been reported to stimulate osteogenesis by stabilizing β catenin. Although manipulating the Wnt signaling pathway has abundant therapeutic potential, it requires cautious approach due to risks of tumorigenesis. The present review discusses the role of the Wnt signaling pathway in osteogenesis and examines its targeted therapeutic potential.
Collapse
Affiliation(s)
- Jeong Hwan Kim
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, University of Chicago Medical Center, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Liu W, Liu Y, Guo T, Hu C, Luo H, Zhang L, Shi S, Cai T, Ding Y, Jin Y. TCF3, a novel positive regulator of osteogenesis, plays a crucial role in miR-17 modulating the diverse effect of canonical Wnt signaling in different microenvironments. Cell Death Dis 2013; 4:e539. [PMID: 23492770 PMCID: PMC3613843 DOI: 10.1038/cddis.2013.65] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wnt signaling pathways are a highly conserved pathway, which plays an important role from the embryonic development to bone formation. The effect of Wnt pathway on osteogenesis relies on their cellular environment and the expression of target genes. However, the molecular mechanism of that remains unclear. On the basis of the preliminary results, we observed the contrary effect of canonical Wnt signaling on osteogenic differentiation of periodontal ligament stem cells (PDLSCs) in the different culture environment. Furthermore, we found that the expression level of miR-17 was also varied with the change in the culture environment. Therefore, we hypothesized that miR-17 and canonical Wnt signaling may have potential interactions, particularly the inner regulation relationship in different microenvironments. In this paper, we observed that canonical Wnt signaling promoted osteogenesis of PDLSCs in the fully culture medium, while inhibited it in the osteogenic differentiation medium. Interestingly, alteration in the expression level of endogenous miR-17 could partially reverse the different effect of canonical Wnt signaling. Furthermore, the role of miR-17 was because of its target gene TCF3 (transcription factor 3), a key transcription factor of canonical Wnt pathway. Overexpression of TCF3 attenuated the effect of miR-17 on modulating canonical Wnt signaling. Finally, we elucidated that TCF3 enhanced osteogenesis both in vitro and in vivo. In brief, the different level of miR-17 was the main cause of the different effect of canonical Wnt signaling, and TCF3 was the crucial node of miR-17–canonial Wnt signaling regulation loop. This understanding of microRNAs regulating signaling pathways in different microenvironments may pave the way for fine-tuning the process of osteogenesis in bone-related disorders.
Collapse
Affiliation(s)
- W Liu
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Brun J, Fromigué O, Dieudonné FX, Marty C, Chen J, Dahan J, Wei Y, Marie PJ. The LIM-only protein FHL2 controls mesenchymal cell osteogenic differentiation and bone formation through Wnt5a and Wnt10b. Bone 2013. [PMID: 23201222 DOI: 10.1016/j.bone.2012.11.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wnt signaling is an important pathway that controls the osteogenic differentiation of mesenchymal stromal cells (MSC). We previously showed that FHL2, a LIM-only protein with four and a half LIM domains, controls MSC osteogenic differentiation via the canonical Wnt/β-catenin signaling. In this study, we investigated the role of Wnt proteins in the regulation of MSC differentiation by FHL2. We found that Wnt3a increased FHL2 mRNA expression in murine C3H10T1/2 mesenchymal cells. Silencing FHL2 using short hairpin (sh) RNA attenuated β-catenin transcriptional activity and osteogenic differentiation induced by Wnt3a. In addition, FHL2 silencing reduced the expression of the key molecules Wnt5a and Wnt10b and osteoblast gene expression. Wnt10b overcomes the negative effect of FHL2 knockdown on osteoblast gene expression in vitro. To confirm this finding in vivo, we analyzed the expression of these Wnt molecules in FHL2 deficient mice. Histomorphometric analyses showed that FHL2 knockout decreased trabecular number and thickness and reduced bone mass in 15-month old mice. This phenotype was associated with decreased Wnt5a and Wnt10b and lower than normal c-myc, cyclin D1 and osteoblast gene expression in the bone marrow. Ex vivo analysis showed decreased basal and Wnt3a-induced Wnt5a and Wnt10b mRNA expression in FHL2-deficient bone marrow cells, further indicating that this defect may contribute to the reduced osteoblast function in FHL2 deficient mice. In contrast, the decreased adipogenesis induced by FHL2 deficiency in vitro and in vivo was linked to increased Foxo1 expression. Collectively, the results provide evidence for a previously unrecognized mechanism by which FHL2 controls the osteogenic differentiation of MSC, bone formation and bone mass through modulation of Wnt molecules.
Collapse
|
178
|
Fazeli PK, Horowitz MC, MacDougald OA, Scheller EL, Rodeheffer MS, Rosen CJ, Klibanski A. Marrow fat and bone--new perspectives. J Clin Endocrinol Metab 2013; 98:935-45. [PMID: 23393168 PMCID: PMC3590487 DOI: 10.1210/jc.2012-3634] [Citation(s) in RCA: 316] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CONTEXT There is growing interest in the relationship between bone mineral density, bone strength, and fat depots. Marrow adipose tissue, a well-established component of the marrow environment, is metabolically distinct from peripheral fat depots, but its functional significance is unknown. OBJECTIVE In this review, we discuss animal and human data linking the marrow adipose tissue depot to parameters of bone density and integrity as well as the potential significance of marrow adipose tissue in metabolic diseases associated with bone loss, including type 1 diabetes mellitus and anorexia nervosa. Potential hormonal determinants of marrow adipose tissue are also discussed. CONCLUSIONS We conclude that whereas most animal and human data demonstrate an inverse association between marrow adipose tissue and measures of bone density and strength, understanding the functional significance of marrow adipose tissue and its hormonal determinants will be critical to better understanding its role in skeletal integrity and the role of marrow adipose tissue in the pathophysiology of bone loss.
Collapse
Affiliation(s)
- Pouneh K Fazeli
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
179
|
WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 2013; 19:179-92. [PMID: 23389618 DOI: 10.1038/nm.3074] [Citation(s) in RCA: 1520] [Impact Index Per Article: 126.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 12/18/2012] [Indexed: 12/11/2022]
Abstract
Low bone mass and strength lead to fragility fractures, for example, in elderly individuals affected by osteoporosis or children with osteogenesis imperfecta. A decade ago, rare human mutations affecting bone negatively (osteoporosis-pseudoglioma syndrome) or positively (high-bone mass phenotype, sclerosteosis and Van Buchem disease) have been identified and found to all reside in components of the canonical WNT signaling machinery. Mouse genetics confirmed the importance of canonical Wnt signaling in the regulation of bone homeostasis, with activation of the pathway leading to increased, and inhibition leading to decreased, bone mass and strength. The importance of WNT signaling for bone has also been highlighted since then in the general population in numerous genome-wide association studies. The pathway is now the target for therapeutic intervention to restore bone strength in millions of patients at risk for fracture. This paper reviews our current understanding of the mechanisms by which WNT signalng regulates bone homeostasis.
Collapse
|
180
|
Dwivedi PP, Lam N, Powell BC. Boning up on glypicans-opportunities for new insights into bone biology. Cell Biochem Funct 2013; 31:91-114. [DOI: 10.1002/cbf.2939] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/09/2012] [Accepted: 11/16/2012] [Indexed: 01/01/2023]
Affiliation(s)
| | - N. Lam
- Craniofacial Research Group; Women's and Children's Health Research Institute; North Adelaide; South Australia; Australia
| | | |
Collapse
|
181
|
James AW. Review of Signaling Pathways Governing MSC Osteogenic and Adipogenic Differentiation. SCIENTIFICA 2013; 2013:684736. [PMID: 24416618 PMCID: PMC3874981 DOI: 10.1155/2013/684736] [Citation(s) in RCA: 323] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/21/2013] [Indexed: 05/07/2023]
Abstract
Mesenchymal stem cells (MSC) are multipotent cells, functioning as precursors to a variety of cell types including adipocytes, osteoblasts, and chondrocytes. Between osteogenic and adipogenic lineage commitment and differentiation, a theoretical inverse relationship exists, such that differentiation towards an osteoblast phenotype occurs at the expense of an adipocytic phenotype. This balance is regulated by numerous, intersecting signaling pathways that converge on the regulation of two main transcription factors: peroxisome proliferator-activated receptor- γ (PPAR γ ) and Runt-related transcription factor 2 (Runx2). These two transcription factors, PPAR γ and Runx2, are generally regarded as the master regulators of adipogenesis and osteogenesis. This review will summarize signaling pathways that govern MSC fate towards osteogenic or adipocytic differentiation. A number of signaling pathways follow the inverse balance between osteogenic and adipogenic differentiation and are generally proosteogenic/antiadipogenic stimuli. These include β -catenin dependent Wnt signaling, Hedgehog signaling, and NELL-1 signaling. However, other signaling pathways exhibit more context-dependent effects on adipogenic and osteogenic differentiation. These include bone morphogenic protein (BMP) signaling and insulin growth factor (IGF) signaling, which display both proosteogenic and proadipogenic effects. In summary, understanding those factors that govern osteogenic versus adipogenic MSC differentiation has significant implications in diverse areas of human health, from obesity to osteoporosis to regenerative medicine.
Collapse
Affiliation(s)
- Aaron W. James
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS A3-251, Los Angeles, CA 90077, USA
- *Aaron W. James:
| |
Collapse
|
182
|
Rahman S, Czernik PJ, Lu Y, Lecka-Czernik B. β-catenin directly sequesters adipocytic and insulin sensitizing activities but not osteoblastic activity of PPARγ2 in marrow mesenchymal stem cells. PLoS One 2012; 7:e51746. [PMID: 23272157 PMCID: PMC3525589 DOI: 10.1371/journal.pone.0051746] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 11/05/2012] [Indexed: 12/18/2022] Open
Abstract
Lineage allocation of the marrow mesenchymal stem cells (MSCs) to osteoblasts and adipocytes is dependent on both Wnt signaling and PPARγ2 activity. Activation of PPARγ2, an essential regulator of energy metabolism and insulin sensitivity, stimulates adipocyte and suppresses osteoblast differentiation and bone formation, and correlates with decreased bone mass and increased fracture rate. In contrast, activation of Wnt signaling promotes osteoblast differentiation, augments bone accrual and reduces total body fat. This study examined the cross-talk between PPARγ2 and β-catenin, a key mediator of canonical Wnt signaling, on MSC lineage determination. Rosiglitazone-activated PPARγ2 induced rapid proteolytic degradation of β-catenin, which was prevented by either inhibiting glycogen synthase kinase 3 beta (GSK3β) activity, or blocking pro-adipocytic activity of PPARγ2 using selective antagonist GW9662 or mutation within PPARγ2 protein. Stabilization of β-catenin suppressed PPARγ2 pro-adipocytic but not anti-osteoblastic activity. Moreover, β-catenin stabilization decreased PPARγ2-mediated insulin signaling as measured by insulin receptor and FoxO1 gene expression, and protein levels of phosphorylated Akt (pAkt). Cellular knockdown of β-catenin with siRNA increased expression of adipocyte but did not affect osteoblast gene markers. Interestingly, the expression of Wnt10b was suppressed by anti-osteoblastic, but not by pro-adipocytic activity of PPARγ2. Moreover, β-catenin stabilization in the presence of activated PPARγ2 did not restore Wnt10b expression indicating a dominant role of PPARγ2 in negative regulation of pro-osteoblastic activity of Wnt signaling. In conclusion, β-catenin and PPARγ2 are in cross-talk which results in sequestration of pro-adipocytic and insulin sensitizing activity. The anti-osteoblastic activity of PPARγ2 is independent of this interaction.
Collapse
Affiliation(s)
- Sima Rahman
- Department of Orthopaedic Surgery, University of Toledo College of Medicine, Toledo, Ohio, United States of America
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Piotr J. Czernik
- Department of Orthopaedic Surgery, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Yalin Lu
- Department of Orthopaedic Surgery, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Beata Lecka-Czernik
- Department of Orthopaedic Surgery, University of Toledo College of Medicine, Toledo, Ohio, United States of America
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
183
|
Song L, Liu M, Ono N, Bringhurst FR, Kronenberg HM, Guo J. Loss of wnt/β-catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes. J Bone Miner Res 2012; 27:2344-58. [PMID: 22729939 PMCID: PMC3474875 DOI: 10.1002/jbmr.1694] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Wnt signaling is essential for osteogenesis and also functions as an adipogenic switch, but it is not known if interrupting wnt signaling via knockout of β-catenin from osteoblasts would cause bone marrow adiposity. Here, we determined whether postnatal deletion of β-catenin in preosteoblasts, through conditional cre expression driven by the osterix promoter, causes bone marrow adiposity. Postnatal disruption of β-catenin in the preosteoblasts led to extensive bone marrow adiposity and low bone mass in adult mice. In cultured bone marrow-derived cells isolated from the knockout mice, adipogenic differentiation was dramatically increased, whereas osteogenic differentiation was significantly decreased. As myoblasts, in the absence of wnt/β-catenin signaling, can be reprogrammed into the adipocyte lineage, we sought to determine whether the increased adipogenesis we observed partly resulted from a cell-fate shift of preosteoblasts that had to express osterix (lineage-committed early osteoblasts), from the osteoblastic to the adipocyte lineage. Using lineage tracing both in vivo and in vitro we showed that the loss of β-catenin from preosteoblasts caused a cell-fate shift of these cells from osteoblasts to adipocytes, a shift that may at least partly contribute to the bone marrow adiposity and low bone mass in the knockout mice. These novel findings indicate that wnt/β-catenin signaling exerts control over the fate of lineage-committed early osteoblasts, with respect to their differentiation into osteoblastic versus adipocytic populations in bone, and thus offers potential insight into the origin of bone marrow adiposity.
Collapse
Affiliation(s)
- Lige Song
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
184
|
Cho ES, Lim SS, Hwang JW, Lee JC. Constitutive activation of smoothened leads to impaired developments of postnatal bone in mice. Mol Cells 2012; 34:399-405. [PMID: 22983747 PMCID: PMC3887766 DOI: 10.1007/s10059-012-0186-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/30/2012] [Accepted: 09/30/2012] [Indexed: 01/14/2023] Open
Abstract
Sonic hedgehog (Shh) signaling regulates patterning, proliferation, and stem cell self-renewal in many organs. Smoothened (Smo) plays a key role in transducing Shh signaling into the nucleus by activating a glioma family of transcription factors; however, the cellular and molecular mechanisms underlying the role of sustained Smo activation in postnatal development are still unclear. In this study, we explored the effects of Shh signaling on bone development using a conditional knock-in mouse model that expresses a constitutively activated form of Smo (SmoM2) upon osteocalcin (OCN)-Cre-mediated recombination (SmoM2; OCN-Cre mice). We also evaluated the expression pattern of bone formation-related factors in primary calvarial cultures of mutant and control mice. The SmoM2; OCN-Cre mutant showed growth retardation and reduction of bone mineral density compared to control mice. Constitutively activated SmoM2 also repressed mRNA expression of Runx2, osterix, type I collagen, and osteocalcin. Further, sustained SmoM2 induction suppressed mineralization in calvarial primary osteoblasts cultures, whereas such induction did not affect cell proliferation in the mutant cultures as compared with SmoM2 only control cultures. These results suggest that sustained Smo activation inhibits postnatal development of bone by suppressing gene expression of bone formation regulatory factors in mice.
Collapse
Affiliation(s)
- Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and Brain Korea 21 Program, Chonbuk National University,Jeonju 561-756,
Korea
| | - Shin-Saeng Lim
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and Brain Korea 21 Program, Chonbuk National University,Jeonju 561-756,
Korea
- Department of Bioactive Material Sciences, Chonbuk National University, Jeonju 561-756,
Korea
| | - Jae-Won Hwang
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and Brain Korea 21 Program, Chonbuk National University,Jeonju 561-756,
Korea
| | - Jeong-Chae Lee
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and Brain Korea 21 Program, Chonbuk National University,Jeonju 561-756,
Korea
- Department of Bioactive Material Sciences, Chonbuk National University, Jeonju 561-756,
Korea
| |
Collapse
|
185
|
Bone cell communication factors and Semaphorins. BONEKEY REPORTS 2012; 1:183. [PMID: 24171101 DOI: 10.1038/bonekey.2012.183] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/26/2012] [Indexed: 01/06/2023]
Abstract
Bone tissue is continuously renewed throughout adult life by a process called 'remodeling', which involves a dynamic interplay among bone cells including osteoclasts, osteoblasts and osteocytes. For example, a tight coupling between bone resorption and formation is essential for the homeostasis of the skeletal system. Studies on the coupling mechanism in physiological and pathological settings have revealed that osteoclasts or osteoclastic bone resorption promote bone formation through the production of diverse coupling factors. The classical coupling factors are the molecules that promote bone formation after resorption, but there may be distinct mechanisms at work in various phases of bone remodeling. A recent study revealed that the Semaphorin 4D expressed by osteoclasts inhibits bone formation, which represents a mechanism by which coupling is dissociated. Furthermore, it has been demonstrated that osteoblastic expression of Semaphorin 3A exerts an osteoprotective effect by both suppressing bone resorption and increasing bone formation. Thus, recent advances have made it increasingly clear that bone remodeling is regulated by not only classical coupling factors, but also molecules that mediate cell-cell communication among bone cells. We propose that such factors be called bone cell communication factors, which control the delicate balance of the interaction of bone cells so as to maintain bone homeostasis.
Collapse
|
186
|
Matzelle MM, Gallant MA, Condon KW, Walsh NC, Manning CA, Stein GS, Lian JB, Burr DB, Gravallese EM. Resolution of inflammation induces osteoblast function and regulates the Wnt signaling pathway. ACTA ACUST UNITED AC 2012; 64:1540-50. [PMID: 22139865 DOI: 10.1002/art.33504] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Inflammation in the bone microenvironment stimulates osteoclast differentiation, resulting in uncoupling of resorption and formation. Mechanisms contributing to the inhibition of osteoblast function in inflammatory diseases, however, have not been elucidated. Rheumatoid arthritis (RA) is a prototype of an inflammatory arthritis that results in focal loss of articular bone. The paucity of bone repair in inflammatory diseases such as RA raises compelling questions regarding the impact of inflammation on bone formation. The aim of this study was to establish the mechanisms by which inflammation regulates osteoblast activity. METHODS We characterized an innovative variant of a murine model of arthritis in which inflammation is induced in C57BL/6J mice by transfer of arthritogenic K/BxN serum and allowed to resolve. RESULTS In the setting of resolving inflammation, bone resorption ceased and appositional osteoblast-mediated bone formation was induced, resulting in repair of eroded bone. Resolution of inflammation was accompanied by striking changes in the expression of regulators of the Wnt/β-catenin pathway, which is critical for osteoblast differentiation and function. Down-regulation of the Wnt antagonists secreted frizzled-related protein 1 (sFRP1) and sFRP2 during the resolution phase paralleled induction of the anabolic and pro-matrix mineralization factors Wnt10b and DKK2, demonstrating the role of inflammation in regulating Wnt signaling. CONCLUSION Repair of articular bone erosion occurs in the setting of resolving inflammation, accompanied by alterations in the Wnt signaling pathway. These data imply that in inflammatory diseases that result in persistent articular bone loss, strict control of inflammation may not be achieved and may be essential for the generation of an anabolic microenvironment that supports bone formation and repair.
Collapse
|
187
|
Liu XL, Li CC, Liu KJ, Cui CY, Zhang YZ, Liu Y. The influence of fluoride on the expression of inhibitors of Wnt/β-catenin signaling pathway in rat skin fibroblast Cells. Biol Trace Elem Res 2012; 148:117-21. [PMID: 22290293 DOI: 10.1007/s12011-012-9333-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/11/2012] [Indexed: 11/25/2022]
Abstract
The effective therapy of fluoride-induced bone diseases requires an understanding of the mechanism of the disorders. Changes in the inhibitors of the Wnt/β-catenin pathway, Dickkopf-1 (Dkk-1) and Sclerostin (SOST),were studied in supernatants harvested from rat skin fibroblasts cultured with varied doses of fluoride. The contents of SOST and Dkk-1 in fibroblast supernatants were assessed at four exposure time-points and investigated by using the method of ELISA. Compared to the relevant controls(0 mg F(−)/L), a significant decrease of the concentrations of SOST and Dkk-1 was observed as the fluoride concentration increased. Compared to the relevant time controls (24 h), a significant decrease of the concentrations of SOST and Dkk-1 was observed with the extension of time. Our results suggest that the Wnt/β-catenin pathway inhibitors Dkk-1 and SOST play an important role in skeletal fluorosis. They can be used as important indications for diagnosing bone metabolism changes caused by fluoride exposure and therapeutic targets in diseases resulting from fluoride exposure.
Collapse
Affiliation(s)
- Xiao-Li Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Wuhan 430030, People’s Republic of China
| | | | | | | | | | | |
Collapse
|
188
|
Mori H, Prestwich TC, Reid MA, Longo KA, Gerin I, Cawthorn WP, Susulic VS, Krishnan V, Greenfield A, Macdougald OA. Secreted frizzled-related protein 5 suppresses adipocyte mitochondrial metabolism through WNT inhibition. J Clin Invest 2012; 122:2405-16. [PMID: 22728933 DOI: 10.1172/jci63604] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/03/2012] [Indexed: 12/12/2022] Open
Abstract
Preadipocytes secrete several WNT family proteins that act through autocrine/paracrine mechanisms to inhibit adipogenesis. The activity of WNT ligands is often decreased by secreted frizzled-related proteins (SFRPs). Sfrp5 is strongly induced during adipocyte differentiation and increases in adipocytes during obesity, presumably to counteract WNT signaling. We tested the hypothesis that obesity-induced Sfrp5 expression promotes the development of new adipocytes by inhibiting endogenous suppressors of adipogenesis. As predicted, mice that lack functional SFRP5 were resistant to diet-induced obesity. However, counter to our hypothesis, we found that adipose tissue of SFRP5-deficient mice had similar numbers of adipocytes, but a reduction in large adipocytes. Transplantation of adipose tissue from SFRP5-deficient mice into leptin receptor-deficient mice indicated that the effects of SFRP5 deficiency are tissue-autonomous. Mitochondrial gene expression was increased in adipose tissue and cultured adipocytes from SFRP5-deficient mice. In adipocytes, lack of SFRP5 stimulated oxidative capacity through increased mitochondrial activity, which was mediated in part by PGC1α and mitochondrial transcription factor A. WNT3a also increased oxygen consumption and the expression of mitochondrial genes. Thus, our findings support a model of adipogenesis in which SFRP5 inhibits WNT signaling to suppress oxidative metabolism and stimulate adipocyte growth during obesity.
Collapse
Affiliation(s)
- Hiroyuki Mori
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Abstract
Mice lacking the large zinc finger protein Schnurri-3 (Shn3) display increased bone mass, in part, attributable to augmented osteoblastic bone formation. Here, we show that in addition to regulating bone formation, Shn3 indirectly controls bone resorption by osteoclasts in vivo. Although Shn3 plays no cell-intrinsic role in osteoclasts, Shn3-deficient animals show decreased serum markers of bone turnover. Mesenchymal cells lacking Shn3 are defective in promoting osteoclastogenesis in response to selective stimuli, likely attributable to reduced expression of the key osteoclastogenic factor receptor activator of nuclear factor-κB ligand. The bone phenotype of Shn3-deficient mice becomes more pronounced with age, and mice lacking Shn3 are completely resistant to disuse osteopenia, a process that requires functional osteoclasts. Finally, selective deletion of Shn3 in the mesenchymal lineage recapitulates the high bone mass phenotype of global Shn3 KO mice, including reduced osteoclastic bone catabolism in vivo, indicating that Shn3 expression in mesenchymal cells directly controls osteoblastic bone formation and indirectly regulates osteoclastic bone resorption.
Collapse
|
190
|
Lin GL, Hankenson KD. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem 2012; 112:3491-501. [PMID: 21793042 DOI: 10.1002/jcb.23287] [Citation(s) in RCA: 366] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent progenitors that can commit to osteoblast, chondrocyte, adipocyte, and several other lineages. The proper utilization of stem cells for clinical applications requires an integrated understanding of multiple signal inputs that control maintenance of stemness, proliferation, commitment, and differentiation. Various signaling pathways have been implicated in the regulation of MSC differentiation; however, complexities of pathway interactions, as well as seemingly contradictory results in the literature, create an often confusing and disjointed knowledge base. Several recent publications explore the integration of signaling pathways such as BMP, Wnt, Notch, Hedgehog, and Fibroblast Growth Factors in MSC osteoblast differentiation. The transcription factor Cbfa1/Runx2 has been implicated in these pathways as a potential focal point for signaling integration. This review will outline the current understanding of these pathways and indicate where both spatiotemporal effects during differentiation and comparable experimental conditions need to be considered in order to clarify the outcome(s) of differing regulatory levels of these signaling pathways.
Collapse
Affiliation(s)
- Grace L Lin
- Medical Scientist Training Program, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
191
|
Cawthorn WP, Bree AJ, Yao Y, Du B, Hemati N, Martinez-Santibañez G, MacDougald OA. Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a β-catenin-dependent mechanism. Bone 2012; 50:477-89. [PMID: 21872687 PMCID: PMC3261372 DOI: 10.1016/j.bone.2011.08.010] [Citation(s) in RCA: 334] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/22/2011] [Accepted: 08/06/2011] [Indexed: 12/21/2022]
Abstract
Wnt10b is an established regulator of mesenchymal stem cell (MSC) fate that inhibits adipogenesis and stimulates osteoblastogenesis, thereby impacting bone mass in vivo. However, downstream mechanisms through which Wnt10b exerts these effects are poorly understood. Moreover, whether other endogenous Wnt ligands also modulate MSC fate remains to be fully addressed. In this study, we identify Wnt6 and Wnt10a as additional Wnt family members that, like Wnt10b, are downregulated during development of white adipocytes in vivo and in vitro, suggesting that Wnt6 and/or Wnt10a may also inhibit adipogenesis. To assess the relative activities of Wnt6, Wnt10a and Wnt10b to regulate mesenchymal cell fate, we used gain- and loss-of function approaches in bipotential ST2 cells and in 3T3-L1 preadipocytes. Enforced expression of Wnt10a stabilizes β-catenin, suppresses adipogenesis and stimulates osteoblastogenesis to a similar extent as Wnt10b, whereas stable expression of Wnt6 has a weaker effect on these processes than Wnt10a or Wnt10b. In contrast, knockdown of endogenous Wnt6 is associated with greater preadipocyte differentiation and impaired osteoblastogenesis than knockdown of Wnt10a or Wnt10b, suggesting that, among these Wnt ligands, Wnt6 is the most potent endogenous regulator of MSC fate. Finally, we show that knockdown of β-catenin completely prevents the inhibition of adipogenesis and stimulation of osteoblast differentiation by Wnt6, Wnt10a or Wnt10b. Potential mechanisms whereby Wnts regulate fate of MSCs downstream of β-catenin are also investigated. In conclusion, this study identifies Wnt10a and Wnt6 as additional regulators of MSC fate and demonstrates that mechanisms downstream of β-catenin are required for Wnt6, Wnt10a and Wnt10b to influence differentiation of mesenchymal precursors.
Collapse
Affiliation(s)
- William P. Cawthorn
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Adam J. Bree
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Yao Yao
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Baowen Du
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Nahid Hemati
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | | | - Ormond A. MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Corresponding author: Department of Molecular and Integrative Physiology, University of Michigan Medical School, Brehm Center, 1000 Wall Street, Rm 6313, Ann Arbor, MI 48105. Tel: (734) 647-4880. Fax: (734) 232-8175
| |
Collapse
|
192
|
Wang J, Liu B, Gu S, Liang J. Effects of Wnt/β-catenin signalling on proliferation and differentiation of apical papilla stem cells. Cell Prolif 2012; 45:121-31. [PMID: 22288815 DOI: 10.1111/j.1365-2184.2012.00806.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES The Wnt signalling pathway has been shown to play an important role in tooth development, however its effects with stem cells from the apical papilla (SCAP) have remained unclear. The purpose of this study was to determine effects of Wnt/β-catenin on proliferation and differentiation of SCAP in vitro. MATERIALS AND METHODS SCAP were obtained, identified and cultured. Cell proliferation, alkaline phosphatase (ALP) activity, mRNA expression of mineralization-related genes and mineralized nodule formation were measured in presence or absence of various concentrations of lithium chloride. RESULTS MTT assay and flow cytometry demonstrated that Wnt/β-catenin activity could promote proliferation of SCAP. Real-time PCR analysis found that Wnt/β-catenin strongly upregulated expression of dentine sialophosphoprotein, osteocalcin and ALP in SCAP after incubation with mineralization induction medium, while ALP and alizarin red staining indicated that Wnt/β-catenin enhanced ALP activity and formation of mineralized nodules. CONCLUSION Our results suggest that canonical Wnt/β-catenin signalling promotes proliferation and odonto/osteogenic differentiation of SCAP.
Collapse
Affiliation(s)
- J Wang
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | |
Collapse
|
193
|
Ono N, Nakashima K, Schipani E, Hayata T, Ezura Y, Soma K, Kronenberg HM, Noda M. Constitutively active PTH/PTHrP receptor specifically expressed in osteoblasts enhances bone formation induced by bone marrow ablation. J Cell Physiol 2012; 227:408-15. [PMID: 21866553 DOI: 10.1002/jcp.22986] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bone is maintained by continuous bone formation by osteoblasts provided by proliferation and differentiation of osteoprogenitors. Parathyroid hormone (PTH) activates bone formation, but because of the complexity of cells in the osteoblast lineage, how these osteoprogenitors are regulated by PTH in vivo is incompletely understood. To elucidate how signals by PTH in differentiated osteoblasts regulate osteoprogenitors in vivo, we conducted bone marrow ablation using Col1a1-constitutively active PTH/PTHrP receptor (caPPR) transgenic mice. These mice express caPPR specifically in osteoblasts by using 2.3 kb Col1a1 promoter and showed higher trabecular bone volume under steady-state conditions. In contrast, after bone marrow ablation, stromal cells recruited from bone surface extensively proliferated in the marrow cavity in transgenic mice, compared to limited proliferation in wild-type mice. Whereas de novo bone formation was restricted to the ablated area in wild-type mice, the entire marrow cavity, including not only ablated area but also outside the ablated area, was filled with newly formed bone in transgenic mice. Bone mineral density was significantly increased after ablation in transgenic mice. Bone marrow cell culture in osteogenic medium revealed that alkaline phosphatase-positive area was markedly increased in the cells obtained from transgenic mice. Furthermore, mRNA expression of Wnt-signaling molecules such as LRP5, Wnt7b, and Wnt10b were upregulated after marrow ablation in bone marrow cells of transgenic mice. These results indicate that constitutive activation of PTH/PTHrP receptor in differentiated osteoblasts enhances bone marrow ablation-induced recruitment, proliferation, and differentiation of osteoprogenitors.
Collapse
Affiliation(s)
- Noriaki Ono
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Abstract
Wnt10b is a member of the Wnt ligand gene family that encodes for secreted proteins, which activate the ancient and highly conserved Wnt signalling cascade. The Wnt pathway has been shown to be essential for embryonic development, tissue integrity, and stem cell activity, but if deregulated, also causes disease such as cancer. Although the 19 different Wnt ligands found in both human and mouse can activate several branches of the Wnt pathway, WNT10B specifically activates canonical Wnt/β-catenin signalling and thus triggers β-catenin/LEF/TCF-mediated transcriptional programs. In this review, we highlight the unique functions of WNT10B and mechanisms of how WNT10B acts in the immune system, mammary gland, adipose tissue, bone and skin. In these organs, WNT10B has been well established to be involved in signalling networks controlling stemness, pluripotency and cell fate decisions. Deregulation of these processes causes diseases such as breast cancer, obesity and osteoporosis. Compelling evidence suggests that WNT10B is a valuable candidate for the development of therapeutic regimens for human diseases.
Collapse
Affiliation(s)
- P Wend
- Department of Obstetrics and Gynecology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, USA
| | | | | | | |
Collapse
|
195
|
Update on Wnt signaling in bone cell biology and bone disease. Gene 2011; 492:1-18. [PMID: 22079544 DOI: 10.1016/j.gene.2011.10.044] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/13/2011] [Accepted: 10/20/2011] [Indexed: 12/17/2022]
Abstract
For more than a decade, Wnt signaling pathways have been the focus of intense research activity in bone biology laboratories because of their importance in skeletal development, bone mass maintenance, and therapeutic potential for regenerative medicine. It is evident that even subtle alterations in the intensity, amplitude, location, and duration of Wnt signaling pathways affects skeletal development, as well as bone remodeling, regeneration, and repair during a lifespan. Here we review recent advances and discrepancies in how Wnt/Lrp5 signaling regulates osteoblasts and osteocytes, introduce new players in Wnt signaling pathways that have important roles in bone development, discuss emerging areas such as the role of Wnt signaling in osteoclastogenesis, and summarize progress made in translating basic studies to clinical therapeutics and diagnostics centered around inhibiting Wnt pathway antagonists, such as sclerostin, Dkk1 and Sfrp1. Emphasis is placed on the plethora of genetic studies in mouse models and genome wide association studies that reveal the requirement for and crucial roles of Wnt pathway components during skeletal development and disease.
Collapse
|
196
|
Fei Y, Xiao L, Doetschman T, Coffin DJ, Hurley MM. Fibroblast growth factor 2 stimulation of osteoblast differentiation and bone formation is mediated by modulation of the Wnt signaling pathway. J Biol Chem 2011; 286:40575-83. [PMID: 21987573 DOI: 10.1074/jbc.m111.274910] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fibroblast growth factor 2 (FGF2) positively modulates osteoblast differentiation and bone formation. However, the mechanism(s) is not fully understood. Because the Wnt canonical pathway is important for bone homeostasis, this study focuses on modulation of Wnt/β-catenin signaling using Fgf2(-/-) mice (FGF2 all isoforms ablated), both in the absence of endogenous FGF2 and in the presence of exogenous FGF2. This study demonstrates a role of endogenous FGF2 in bone formation through Wnt signaling. Specifically, mRNA expression for the canonical Wnt genes Wnt10b, Lrp6, and β-catenin was decreased significantly in Fgf2(-/-) bone marrow stromal cells during osteoblast differentiation. In addition, a marked reduction of Wnt10b and β-catenin protein expression was observed in Fgf2(-/-) mice. Furthermore, Fgf2(-/-) osteoblasts displayed marked reduction of inactive phosphorylated glycogen synthase kinase-3β, a negative regulator of Wnt/β-catenin pathway as well as a significant decrease of Dkk2 mRNA, which plays a role in terminal osteoblast differentiation. Addition of exogenous FGF2 promoted β-catenin nuclear accumulation and further partially rescued decreased mineralization in Fgf2(-/-) bone marrow stromal cell cultures. Collectively, our findings suggest that FGF2 stimulation of osteoblast differentiation and bone formation is mediated in part by modulating the Wnt pathway.
Collapse
Affiliation(s)
- Yurong Fei
- University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | |
Collapse
|
197
|
Zhou S, Bueno EM, Kim SW, Amato I, Shen L, Hahne J, Bleiberg I, Morley P, Glowacki J. Effects of age on parathyroid hormone signaling in human marrow stromal cells. Aging Cell 2011; 10:780-8. [PMID: 21518242 DOI: 10.1111/j.1474-9726.2011.00717.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human bone marrow stromal cells (hMSCs) have the potential to differentiate into osteoblasts; there are age-related decreases in their proliferation and differentiation to osteoblasts. Parathyroid hormone (PTH), when applied intermittently in vivo, has osteoanabolic effects in a variety of systems. In this study, we compared PTH signaling and osteoanabolic effects in hMSCs from young and old subjects. There were age-related decreases in expression of PTH/PTHrP receptor type 1 (PTHR1) gene (P = 0.049, n = 19) and in PTH activation of CREB (P = 0.029, n = 7) and PTH stabilization of β-catenin (P = 0.018, n = 7). Three human PTH peptides, PTH1-34, PTH1-31C (Ostabolin-C, Leu(27) , Cyclo[Glu(22) -Lys(26) ]-hPTH1-31), and PTH1-84 (10 nm), stimulated osteoblast differentiation with hMSCs. Treatment with PTH1-34 resulted in a significant 67% increase in alkaline phosphatase activity in hMSCs obtained from younger subjects (<50 years old, n = 5), compared with an 18% increase in hMSCs from elders (>55 years old, n = 7). Both knockdown of CREB and treatment with a protein kinase A inhibitor H-89 blocked PTH stimulation of osteoblast differentiation in hMSCs from young subjects. The PTH peptides significantly stimulated proliferation of hMSCs. Treatment with PTH1-34 resulted in an average of twice as many cells in cultures of hMSCs from young subjects (n = 4), but had no effect with hMSCs from elders (n = 7). Upregulation of PTHR1 by 24-h pretreatment with 100 nm dexamethasone rescued PTH stimulation of proliferation in hMSCS from elders. In conclusion, age-related intrinsic alterations in signaling responses to osteoanabolic agents like PTH may contribute to cellular and tissue aging of the human skeleton.
Collapse
Affiliation(s)
- Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Patsch JM, Kohler T, Berzlanovich A, Muschitz C, Bieglmayr C, Roschger P, Resch H, Pietschmann P. Trabecular bone microstructure and local gene expression in iliac crest biopsies of men with idiopathic osteoporosis. J Bone Miner Res 2011; 26:1584-92. [PMID: 21308775 DOI: 10.1002/jbmr.344] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Male idiopathic osteoporosis (MIO) is a metabolic bone disease that is characterized by low bone mass, microstructural alterations, and increased fracture risk in otherwise healthy men. Although the detailed pathophysiology of MIO has yet to be clarified, evidence increasingly suggests an osteoblastic defect as the underlying cause. In this study we tested the hypothesis that the expression profile of certain osteoblastic or osteoblast-related genes (ie, WNT10B, RUNX2, Osterix, Osteocalcin, SOST, RANKL, and OPG) is different in iliac crest biopsies of MIO patients when compared with healthy controls. Furthermore, we investigated the relation of local gene expression characteristics with histomorphometric, microstructural, and clinical features. Following written informed consent and diligent clinical patient characterization, iliac crest biopsies were performed in nine men. While RNA extraction, reverse-transcription, and real-time polymerase chain reactions (PCRs) were performed on one biopsy, a second biopsy of each patient was submitted for histomorphometry and micro-computed tomography (µCT). Age-matched bone samples from forensic autopsies served as controls. MIO patients displayed significantly reduced WNT10B, RUNX2, RANKL, and SOST expression. Performing µCT for the first time in MIO biopsies, we found significant decreases in trabecular number and connectivity density. Trabecular separation was increased significantly, but trabecular thickness was similar in both groups. Histomorphometry revealed decreased BV/TV and osteoid volume and fewer osteoclasts in MIO. By providing evidence for reduced local WNT10B, RUNX2, and RANKL gene expression and histomorphometric low turnover, our data support the osteoblast dysfunction model discussed for MIO. Further, MIO seems to lead to a different microstructural pathology than age-related bone loss.
Collapse
Affiliation(s)
- Janina M Patsch
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Immunology and Infectiology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Sturge J, Caley MP, Waxman J. Bone metastasis in prostate cancer: emerging therapeutic strategies. Nat Rev Clin Oncol 2011; 8:357-68. [DOI: 10.1038/nrclinonc.2011.67] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
200
|
Mödder UI, Oursler MJ, Khosla S, Monroe DG. Wnt10b activates the Wnt, notch, and NFκB pathways in U2OS osteosarcoma cells. J Cell Biochem 2011; 112:1392-402. [PMID: 21321991 PMCID: PMC3071438 DOI: 10.1002/jcb.23048] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although osteosarcoma represents the most common bone malignancy, the molecular and cellular mechanisms influencing its pathogenesis have remained elusive. Recent evidence has suggested that the Wnt signaling pathway may play a crucial role in osteosarcoma. This study employed a microarray approach to discover novel genes and pathways involved in Wnt signaling in osteosarcoma. We developed a Wnt10b-expressing cell line using the human U2OS osteosarcoma model (U2OS-Wnt10b) and performed microarray and pathway analyses using parental U2OS cells as control. Differential expression of 1,003 genes encompassing 28 pathways was noted. The Wnt, NFκB, and Notch pathways were chosen for further study based on their known importance in bone biology. Known Wnt-responsive genes Axin-2 (4.9-fold), CD44 (2.1-fold), endothelin-1 (4.2-fold) and sclerostin domain containing-1 (43-fold) were regulated by Wnt10b. The proinflammatory cytokines interleukin-1α and tumor necrosis factor-α, known inducers of NFκB, were upregulated both at the transcript and protein level, and NFκB reporter activity was stimulated 3.8-fold, confirming NFκB activation. Interestingly, genes involved in Notch signaling [Notch-1 (2.4-fold) and Jagged-1 (3.1-fold)] were upregulated, whereas the Notch inhibitor, lunatic fringe, was downregulated (8.2-fold). This resulted in the activation of the classic Notch-responsive genes, hairy and enhancer of split-1 (Hes-1; 2.2-fold) and hairy/enhancer-of-split related with YRPW motif-1 (Hey-1; 2.5-fold). A Hey-1 reporter construct was regulated 9.1-fold in U2OS-Wnt10b cells, confirming Notch activation. Interestingly, Wnt3a failed to induce the Notch and NFκB pathways, demonstrating Wnt-specificity. In conclusion, our data demonstrate that Wnt10b, but not Wnt3a, stimulates the NFκB and Notch pathways in U2OS osteosarcoma cells.
Collapse
Affiliation(s)
- Ulrike I. Mödder
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester MN, USA
| | - Merry Jo Oursler
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester MN, USA
| | - Sundeep Khosla
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester MN, USA
| | - David G. Monroe
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester MN, USA
| |
Collapse
|